WorldWideScience

Sample records for advanced burnable absorbers

  1. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al2O3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B4C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  2. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  3. Absorber management using burnable poisons

    International Nuclear Information System (INIS)

    An investigation of the problem of optimal control carried out by means of a two-dimensional model of a PWR reactor. A solution is found to the problem, and the possibility of achieving optimal control with burnable poisons such as boron, cadmium and gadolinium is discussed. Further, an attempt is made to solve the control problem of BWR, but no final solution is found. (author)

  4. A Novel Burnable Absorber Concept for PWR: BigT (Burnable Absorber-Integrated Guide Thimble)

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohdsyukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chung, Chang Kyu [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents the essential BigT design concepts and its lattice neutronic characteristics. Neutronic performance of a newly-proposed BA concept for PWR named BigT is investigated in this study. Preliminary lattice analyses of the BigT absorber-loaded WH 17x17 fuel assembly show a high potential of the concept as it performs relatively well in comparison with commercial burnable absorber technologies, especially in managing reactivity depletion and peaking factor. A sufficiently high control rod worth can still be obtained with the BigT absorbers in place. It is expected that with such performance and design flexibilities, any loading pattern and core management objective, including a soluble boron-free PWR, can potentially be fulfilled with the BigT absorbers. Future study involving full 3D reactor core simulations with the BigT absorbers shall hopefully verify this hypothesis. A new burnable absorber design for Pressurized Water Reactor (PWR) named 'Burnable absorber-Integrated control rod Guide Thimble' (BigT) was recently proposed. Unlike conventional burnable absorber (BA) technologies, the BigT integrates BA materials directly into the guide thimble but still allows insertion of control rod (CR). In addition, the BigT offers a variety of design flexibilities such that any loading pattern and core management objective can potentially be fulfilled.

  5. Effectiveness of using burnable absorbers in a VVER-1000

    International Nuclear Information System (INIS)

    The operational efficiency and safety of a nuclear reactor depends on the method used to compensate its excess reactivity. In a VVER-1000, along with the boron dissolved in the water in the primary coolant loop, the excess reactivity is compensated with a burnable absorber. The main purpose of using burnable absorber rods as a method to compensate for part of the excess reactivity instead of a liquid absorber is to provide the reactor negative feedback with respect to the coolant temperature and consequently to make it self-regulating. There are disadvantages associated with burnable poisons that can be partially corrected by using another type of absorber - an integral absorber. Examples of such an absorber are gadolinium, integrated in the form of an oxide (Gd2O3) with the fuel, and boron, which is incorporated in the form of zirconium diboride (ZrB2) on the surface of the fuel pellets. Successful experience has been accumulated abroad in using both uranium - gadolinium fuel and fuel coated with a thin film containing ZrB2 in PWRs. The effectiveness of using different types of burnable absorbers in a VVER-1000 was investigated, using a stationary three-year fuel cycle as an example. The neutron physics characteristics of the reactor were calculated using the KASSETA-OKA-BIPR-KR program package. The results of the comparative calculations of the fuel loading characteristics of a VVER-1000 show that replacing lumped absorbers with integral ones demonstrates a real possibility of improving the economic indices and safety of nuclear power plants with VVER's

  6. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  7. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga2O3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  8. A feasibility study for the application of enriched gadolinia burnable absorber rods in nuclear core design

    International Nuclear Information System (INIS)

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  9. Safe core management with burnable absorbers in WWERs

    International Nuclear Information System (INIS)

    The objective of this TECDOC is to present state of the art information on burnable poisoned fuel during the CRP. It is based on experimental evidence and on the utilization of theoretical models and will help achieve improvements in safety and economy of LWR cores with hexagonal geometries. 149 refs, figs and tabs

  10. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  11. Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses

    International Nuclear Information System (INIS)

    The concept of taking credit for the reduction in reactivity of burned or spent nuclear fuel (SNF) due to fuel burnup is commonly referred to as burnup credit. The reduction in reactivity that occurs with fuel burnup is due to the net reduction of fissile nuclide concentrations and the production of actinide and fission-product neutron absorbers. The change in the inventory of these nuclides with fuel burnup, and the consequent reduction in reactivity, is dependent upon the depletion environment. Therefore, the use of burnup credit necessitates consideration of all possible fuel operating conditions, including the use of integral burnable absorbers (IBAs). The Interim Staff Guidance on burnup credit [1] issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends licensees restrict the use of burnup credit to assemblies that have not used burnable absorbers (e.g., IBAs or burnable poison rods, BPRs). This restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. The reason for this restriction is that the presence of burnable absorbers during depletion hardens the neutron spectrum, resulting in lower 235U depletion and higher production of fissile plutonium isotopes. Enhanced plutonium production has the effect of increasing the reactivity of the fuel at discharge and beyond. Consequently, an assembly exposed to burnable absorbers may have a slightly higher reactivity for a given burnup than an assembly that has not been exposed to burnable absorbers. This paper examines the effect of IBAs on reactivity for various designs and enrichment/poison loading combinations as a function of burnup. The effect of BPRs, which are typically removed during operation, is addressed elsewhere [2

  12. Preliminary Investigation of the Soluble Boron Free AP 1000 Core with the BigT Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohd-Syukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, HyeongHeon [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The measurement of the U and Pu peak ratio provides information on the relative concentration of U and Pu elements. Photon measurements of spent nuclear fuel using high resolution spectrometers show a large background continuum in the low energy x-ray region in large part from Compton scattering of energetic gamma-rays. The high Compton continuum can make measurements of plutonium x-rays difficult because the relatively small signal to background ratio produced. According to the performance of the MCNPX simulation, the suppression ratios for the measurements of spent nuclear fuels were more than a factor of five. This result shows the feasibility of a Compton suppression system to the XRF technique. Many advanced PWRs are required to have a 24-month operating cycle to improve plant economy, and to keep the boron concentration low to allow an adequately negative moderator feedback during any ATWS event through 100% core life. Too much boron, typically greater than 1,300 ppm at full power, will make the MTC positive. The optimal design of burnable absorbers is key to the feasibility of this extended cycle and low boron core below the design limit of peak pin power. New concepts for burnable absorbers include changing the materials and geometry in the burnable absorber. k{sub inf}, peaking factor, MTC, and control rod worth of new BAs were compared with those of the conventional BA.

  13. Application of the BigT Burnable Absorber to an OPR1000 Core

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwanyeal; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Hyeongheon [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents a feasibility study of applying BigT to an OPR1000 core as the burnable absorber to replace the conventional Gd{sub 2}O{sub 3} integral burnable absorber. Preliminary lattice calculations based on the PLUS7 fuel assembly installed with the BigT burnable absorber were performed to characterize BigT using metallic Gd as the burnable absorber material. A 3-D OPR1000 core was subsequently modeled with the BigT-installed fuel assemblies and 3-D core depletion analyses were performed to find an equilibrium cycle for a 3-batch fuel management. All neutronic calculations were completed using the continuous energy Monte Carlo SERPENT code with ENDF/B-VII.0 library. The neutronic feasibility study of the BigT loaded OPR1000 core has been performed in this work. It has been shown that an 18-month equilibrium cycle can be designed with 64 feed fuel assemblies and the critical boron centration can much lowered in a BigT-loaded OPR1000 core. The power peaking factor of the core was understandably high because the core loading pattern was not optimized yet for the 3-batch fuel management simulation. Nevertheless, it has been demonstrated that the new BigT scheme can replace the traditional gadolinia without any serious compromise in the core performances. It is concluded that the BigT has a very high potential as a promising burnable absorber for the OPR1000 core and it deserves detailed evaluations. Burnable absorber is a strong neutron absorber material which transmutes into a less-absorbent material once it captures a neutron. It is used to control excess reactivity and local power peaking, and to optimize fuel utilization. Boron is widely used in Westinghouse-type nuclear reactor designs in the form of the Integral Fuel Burnable Absorber (IFBA). Gadolinia (Gd{sub 2}O{sub 3}) is only used in Korea-designed nuclear power plants such as OPR1000 in which Gd{sub 2}O{sub 3} of 6∼8 w/o is directly admixed with UO{sub 2} fuel with a lower enrichment 0.72∼2 w

  14. A simple method for burnable absorbers assignment in the in-core fuel management

    International Nuclear Information System (INIS)

    Process of assignment of necessary number of burnable absorbers in fresh fuel assemblies in WWER-1000 (ETE) loading, primarily based on Haling power distribution (HPD), which should be preserved during cycle depletion, is described and analysed in this paper. Finding of optimal number of burnable absorbers, in our case for WWER-1000 reactor (now of IFBA type), is one from the important steps in the in-core fuel management optimization process. Original process based on PSDPI (Power Shape Driven Progressive Iteration (Method)) has been changed by process of direct searching of requested number of fuel assemblies in each burnup step. This process has been modified in this sense, that HPD is not requested in all fresh fuel assemblies, only is requested, that power in all fresh fuel assemblies will not be higher than maximal from HPD (or possibly from the end of cycle EOB) (Authors)

  15. WLUP burnable absorber isotopic influence on coolant void reactivity in an ACR lattice

    International Nuclear Information System (INIS)

    ACRTM-1000 is the topmost nuclear power reactor promoted by AECL during the next years as a response to increasing competitiveness in the nuclear energy market. Recent AECL innovations allowed overriding for the first time the main CANDU drawback - the positive Coolant Void Reactivity (CVR). The solution was using of burnable absorbers in the central element (CE) whose radius was significantly increased. The paper's goal is to evaluate the isotopic influence on CVR and, as result, on nuclear safety when the central element is filled one by one with the most common oxide of burnable isotopes from the IAEA updated WIMS library (WLUP). The isotopes taken into account are: Dysprosium, Hafnium, Gadolinium, Erbium and Holmium. A comparison between CVRs given at the using of above lanthanides and their suitability to be used in the central element design is illustrated in the paper. (authors)

  16. A reduced-boron OPR1000 core based on the BigT burnable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan Yeal; Yahya, Mohd-Syukri; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    Reducing critical boron concentration in a commercial pressurized water reactor core offers many advantages in view of safety and economics. This paper presents a preliminary investigation of a reduced-boron pressurized water reactor core to achieve a clearly negative moderator temperature coefficient at hot zero power using the newly-proposed 'Burnable absorber-Integrated Guide Thimble' (BigT) absorbers. The reference core is based on a commercial OPR1000 equilibrium configuration. The reduced-boron ORP1000 configuration was determined by simply replacing commercial gadolinia-based burnable absorbers with the optimized BigT-loaded design. The equilibrium cores in this study were directly searched via repetitive Monte Carlo depletion calculations until convergence. The results demonstrate that, with the same fuel management scheme as in the reference core, application of the BigT absorbers can effectively reduce the critical boron concentration at the beginning of cycle by about 65 ppm. More crucially, the analyses indicate promising potential of the reduced-boron OPR1000 core with the BigT absorbers, as its moderator temperature coefficient at the beginning of cycle is clearly more negative and all other vital neutronic parameters are within practical safety limits. All simulations were completed using the Monte Carlo Serpent code with the ENDF/B-VII.0 library.

  17. A study on the nuclear characteristics of enriched gadolinia burnable absorber rods; the first year (2000) report

    International Nuclear Information System (INIS)

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  18. Implementation of a Gadolinium Burnable Absorber in the Carbide LEU-NTR

    Energy Technology Data Exchange (ETDEWEB)

    Venneria, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    Among the most crucial are the rapid reactivity depletion during full-power operation and the positive reactivity insertion during the full-submersion criticality accident. In previous work, it has been suggested that both challenges can be mitigated through the successful implementation of a burnable absorber in the active core. Of the poisons previously surveyed, one of the most promising is Gadolinium in the form of Gadolina (Gd2O4). This paper explores the possibility of different methods by which the Gadolinia can be implemented in the core and makes a preliminary study of its effect on the full submersion criticality accident and the reactivity depletion during operation. The application of a Gadolinium neutron absorber in the active core region of the LEU-NTR has been shown to be neutronically feasible. It can be introduced into the core in various locations without resulting in core performance loss. The utility of the poison in terms of mitigating the full-submersion reactivity accident and the rapid change in reactivity during full-power operation have been preliminarily shown and the first steps towards eventual implementation made. Future work will consist of determining the maximum poison content in the core and tailoring the self-shielding effect in order to determine a specific Gd depletion rate.

  19. Gas emission from the UO2 samples, containing fission products and burnable absorber

    Science.gov (United States)

    Kopytin, V. P.; Baranov, V. G.; Burlakova, M. A.; Tenishev, A. V.; Kuzmin, R. S.; Pokrovskiy, S. A.; Mikhalchik, V. V.

    2016-04-01

    The process gas released from the fuel pellets of uranium fuel during fuel burn-up reduces the thermal conductivity of the rod-shell gap, enhances hydrogen embrittlement of the cladding material, causes it's carbonization, as well as transport processes in the fuel. In this study a technique of investigating the thermal desorption of gases from the UO2 fuel material were perfected in the temperature range 300-2000 K for uniform sample heating rate of 15 K/min in vacuum. The characteristic kinetic dependences are acquired for the gas emission from UO2 samples, containing simulators of fission products (SFP) and the burnable neutron absorber (BNA). Depending on the amount of SFP and BNA contained in the sample thermal desorption gas spectra (TDGS) vary. The composition of emitted gas varies, as well as the number of peaks in the TDGS and the peaks shift to higher temperatures. This indicates that introduction of SFPs and BNA alters the sample material structure and cause the creation of so- called traps which have different bonding energies to the gases. The traps can be a grid of dislocations, voids, and contained in the UO2 matrix SFP and BNA. Similar processes will occur in the fuel pellets in the real conditions of the Nuclear Power Plant as well.

  20. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-12-14

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for

  1. Self-shielding effects in burnup of Gd used as burnable absorber. Previous studies on its experimental verification

    International Nuclear Information System (INIS)

    Continuing with the domestic 'Burnable Absorbers Research Plan' studies were done to estimate self-shielding effects during Gd2O3 burnup as burnable absorber included in fuel pins of a CAREM geometry. In this way, its burnup was calculated without and with self-shielding. For the second case, were obtained values depending on internal pin radius and the effective one for the homogenized pin. For Gd 157, the burnup corresponding to the first case resulted 52.6 % and of 1.23 % for the effective one. That shows the magnitude of the effects under study. Considering that is necessary to perform one experimental verification, also are presented calculational results for the case to irradiate a pellet containing UO2 (natural) and 8 wt % of Gd2O3, as a function of cooling time, that include: measurable isotopes concentrations, expected activities, and photon spectra for conditions able to be compared with bidimensional calculations with self-shielding. The irradiation time was supposed 30 dpp using RA-3 reactor at 10 MW. (author)

  2. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  3. Development of neural network for predicting local power distributions in BWR fuel bundles considering burnable neutron absorber

    International Nuclear Information System (INIS)

    A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods. The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonlinearity and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis. (author)

  4. Evaluation of the presence of a burnable absorber in an assembly 3x3 type PWR; Evaluacion de la presencia de un absorbedor quemable en un ensamble 3x3 tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez F, M. A.; Del Valle G, E.; Alonso V, G. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D. F. 07738 (Mexico)]. e-mail: mike_ipn_esfm@hotmail.com

    2008-07-01

    In the present work the effect is evaluated that causes the presence of a burnable absorber in an adjustment of rods of 3x3 of a fuel assembly type PWR using CASMO-4 code, when comparing the infinite multiplication factor and some average cross sections by means of codes MCNP-4A, CASMO-3 and HELIOS. For this evaluation two cases are evaluated: first consists of an adjustment of rods of 3x3 full completely of fuel and the second consists of a central rod full with a burnable absorber type wet annular burnable absorber (WABA) and the remaining full fuel rods. In both cases the enrichment of the fissile isotopes is varied, for two types of fuel, MOX degree armament and UO{sub 2}. (Author)

  5. A study on the oxidation characteristic of UO2-Gd2O3 pellet for recycling of burnable absorber pellet scrap

    International Nuclear Information System (INIS)

    The development of recycling process of defective (U,Gd)O2 scrap is one of the important subject in this project. Among the several burnable absorbers, Gd has a very large neutron absorption cross-section. Therefore, gadolinia bearing UO2 fuel, (U,Gd)O2, has been widely used as a burnable absorber in light water reactors. During the pellet fabrication process, fairly amount of defective (U,Gd)O2 pellets are produced and it is necessary to recycle the scraps. Generally, the defective scraps are powdered through the oxidation in air in the temperature range of 450 to 550 deg C and then mixed with co-milled powder, and further processed to fabricate (U,Gd)O2 pellets. In addition, the sintered pellet properties are closely depend on the powder property of oxidized M3O8 powder. Therefore, the careful investigate of oxidation kinetics and related powder property of (U,Gd)O2 is very important. The oxidation behavior of UO2-6wt% Gd2O3 and UO2-12wt% Gd2O3 has been studied in the temperature range from 350 to 700 deg C using TGA and XRD techniques in air. UO2 was necessarily oxidized to U3O8 regardless of oxidation temperature and its weight gain was 4wt%. However, (U,Gd)O2 exhibit a different oxidation behavior ; The final phase and saturated weight gain depends on oxidation temperature. The saturated weight gain increases with oxidation temperature up to 500deg C and thereafter decreases with temperature. In addition, the amount of weight gain obtained at 500 deg C was smaller in UO2-12wt% Gd2O3 than in UO2-6wt% Gd2O3 and the final phase at the saturated weight gain was M3O8 in UO2-6wt% Gd2O3 but the mixture of M4O9 and M3O8 in UO2-12wt% Gd2O3. It is supposed that Gd substitution for U decreases the equilibrium O/M ratio and thereby enhance the stability of M4O9 type cubic phase

  6. Experimental validation of calculation schemes connected with PWR absorbers and burnable poisons; Validation experimentale des schemas de calcul relatifs aux absorbants et poisons consommables dans les REP

    Energy Technology Data Exchange (ETDEWEB)

    Klenov, P.

    1995-10-01

    In France 80% of electricity is produced by PWR reactors. For a better exploitation of these reactors a modular computer code Apollo-II has been developed. his code compute the flux transport by discrete ordinate method or by probabilistic collisions on extended configurations such as reactor cells, assemblies or little cores. For validation of this code on mixed oxide fuel lattices with absorbers an experimental program Epicure in the reactor Eole was induced. This thesis is devoted to the validation of the Apollo code according to the results of the Epicure program. 43 refs., 65 figs., 1 append.

  7. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  8. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  9. Heterogeneous burnable poisons:

    International Nuclear Information System (INIS)

    The use of materials possessing high neutron absorption cross-section commonly known as 'burnable poisons' have its origin in BWR reactors with the purpose of improving the efficiency of the first fuel load. Later on, it was extended to PWR to compensate of initial reactivity without infringing the requirement of maintaining a negative moderator coefficient. The present tendency is to increase the use of solid burnable poisons to extend the fuel cycle life and discharge burnup. There are two concepts for the burnable poisons utilization: 1) heterogeneously distributions in the form of rods, plates, etc. and 2) homogeneous dispersions of burnable poisons in the fuel. The purpose of this work is to present the results of sinterability studies, performed on Al2O3-B4C and Al2O3-Gd2O3 systems. Experiments were carried on pressing at room temperature mixtures of powders containing up to 5 wt % of B4C or Gd2O3 in Al2O3 and subsequently sintering at 1750 deg C in reducing atmosphere. Evaluation of density, porosity and microstructures were done and a comparison with previous experiences is shown. (Author)

  10. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  11. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  12. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Burnable poison rods, made of B4C- Al2 O3 pellets with 5.01 mg/cm310 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  13. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B4C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% 235U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor

  14. Neutronic analysis of Gd2O3 as burnable poison

    International Nuclear Information System (INIS)

    For the reactors core design, the use of burnable poisons is one of the options for the control of in excess reactivity and the power form factor. As alternative procedures, the absorbing material may be included in pellets of an inert material or in fuel pellets. Besides, a cladding material and the locations of the fuel elements must be chosen for the first case. The CAREM reactor core design foresees the use of gadolinium oxide (Gd2O3) as burnable poison. In this work, a comparative study was made, from the neutronic point of view, among the following alternatives for the poisons location: a) Gd2O3 bars supports in alumina (Al2O3), sheathed in steel; b) Gd2O3 bars supports in alumina sheathed in Zry-4; c) Gd2O3 in uranium dioxide (UO2) fuel pellets. (Author)

  15. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  16. Study on the metal vapor generator for the production of improved gadolinia burnable poison material

    International Nuclear Information System (INIS)

    A longer cycle operation of a nuclear fuel is one of the ways to promote the economy of a nuclear power plant. For this purpose, high burn up fuel which has initial higher enrichment is required with higher loading of fuel. As a result, adequate burnable poison material must be used to control peak fuel pin power. Devices to manufacture the improved gadolinia burnable poison are developed. The improved gadolinia contains higher abundance of the preferred thermal neutron absorbers. Devices are composed of metal vapor generator, lasers and ion extractor. In this paper, a metal vapor generator by using electron beam gun is reported

  17. Study on the laser spectroscopic technique for the production of lmproved gadolinia burnable poison material

    International Nuclear Information System (INIS)

    A longer cycle operation of a nuclear fuel is one of the ways to promote the economy of a nuclear power plant. For this purpose, high burn up fuel which has initial higher enrichment is required with higher loading of fuel. Therefore, adequate burnable poison material must be used to control peak fuel pin power. Technologies to manufacture the improved gadolinia burnable poison, which contains higher abundance of the preferred thermal neutron absorbers, are composed of metal vapor generation-, lasers spectroscopic-, and photoion extraction technology. In this paper, laser spectroscopic technology with a small scale metal vapor generator is reported

  18. Improved Neutronics Treatment of Burnable Poisons for the Prismatic HTR

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wang; A. A. Bingham; J. Ortensi; C. J. Permann

    2012-10-01

    In prismatic block High Temperature Reactors (HTR), highly absorbing material such a burnable poison (BP) cause local flux depressions and large gradients in the flux across the blocks which can be a challenge to capture accurately with traditional homogenization methods. The purpose of this paper is to quantify the error associated with spatial homogenization, spectral condensation and discretization and to highlight what is needed for improved neutronics treatments of burnable poisons for the prismatic HTR. A new triangular based mesh is designed to separate the BP regions from the fuel assembly. A set of packages including Serpent (Monte Carlo), Xuthos (1storder Sn), Pronghorn (diffusion), INSTANT (Pn) and RattleSnake (2ndorder Sn) is used for this study. The results from the deterministic calculations show that the cross sections generated directly in Serpent are not sufficient to accurately reproduce the reference Monte Carlo solution in all cases. The BP treatment produces good results, but this is mainly due to error cancellation. However, the Super Cell (SC) approach yields cross sections that are consistent with cross sections prepared on an “exact” full core calculation. In addition, very good agreement exists between the various deterministic transport and diffusion codes in both eigenvalue and power distributions. Future research will focus on improving the cross sections and quantifying the error cancellation.

  19. Advanced UV Absorbers for the Protection of Human Skin.

    Science.gov (United States)

    Hüglin, Dietmar

    2016-01-01

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far. PMID:27561611

  20. Rare earths as burnable poison for extended cycles control in electricity generation reactors

    International Nuclear Information System (INIS)

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR's and PWR's operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR's. (author). 58 refs., 65 figs., 47 tabs

  1. Use of erbium as burnable poison for VVER reactors

    International Nuclear Information System (INIS)

    Problems related to use of Erbium as burnable poison for VVER are discussed. Comparison is made between neutronics characteristics of Uranium-Gadolinium and Uranium-Erbium fuel cycles. The study shows that use of Erbium as burnable poison allows decreasing the peaking factor in the core. Meanwhile residual Erbium at the end of the fuel cycle makes it necessary to increase fuel enrichment. There is made the conclusion of prospects of using Erbium as burnable poison for VVER. (orig.)

  2. Dysprosium and hafnium base absorbers for advanced WWER control rods

    International Nuclear Information System (INIS)

    Dysprosium titanate is an attractive control rod material for thermal neutron nuclear reactors such as WWER and RBMK. Its main advantages are almost non-swelling, no out-gassing under neutron irradiation, quit high neutron efficiency, a high melting point (∼ 1870 deg. C), non-interaction with the cladding at temperatures above 1000 deg. C, simple fabrication. nonradioactive waste and easy to reprocess. The dysprosium titanate control rods have worked without operating problems in the reactor MIR during 17 years and in WWER-1000 4 years. After post-irradiation examinations, this long-life control rod type was recommended for using in the nuclear reactors. Dysprosium hafnate is a promising absorber ceramic material. The research results confirmed that it has a large radiation damage resistance. The examination results of hafnium dummies (GFE-1) irradiated in BOR-60 are presented. The maximum accumulated neutron fluence was 3.4 x 1022cm-2 (E>0.1 MeV) and the temperature range was 340 to 360 deg. C. Due to high radiation growth (3-4 %) and the absence of an axial gap between the dummy and the upper capsule tip the dummies were bent. The irradiated dummies have high mechanical properties. Other aspects of the expected hafnium irradiation behaviour and the use of hafnium in control rods are discussed. This report presents some experimental data on Dy2O3·TiO2, Hf, Dy2O3·HfO2 and possibilities of their use in WWER control rods. (author)

  3. Application of burnable poisons integrated with fuel pellets in LWR

    International Nuclear Information System (INIS)

    The problem of using burnable poisons (gadolinium and erbium oxides) integrated with fuel pellets for suppression of the excess reactivity in the LWR reactor cores at fuel cycle begin when the fuel with maximum enrichment is loaded in the core is discussed. It is shown that application of the fuel elements with such pellets ensures sufficient burnup growth for fuel with increased enrichment, increase in the fuel cycle duration and decrease in neutron fluence on reactor vessel in the cases of optimized layouts of fresh and irradiated fuel assemblies in the reactor core. Basing on the analysis of studying into (U, Gd)O2 pellet heating and thermal conductivity under high burnups it is proved that the fuel with enrichment of 4.4 % of 235U may be used if the Gd2O3 content amounts to 2 %. Application of erbium absorber is recommended in uranium and plutonium fuel in inertial (nonfissible) matrix designed for burnups greater than 100 GeV · days/t

  4. Analysis of a possible experimental assessment of a prototype fuel element containing burnable poison in the RA-3 reactor

    International Nuclear Information System (INIS)

    The Argentine RA-3 research reactor (5 MW) is presently operated with LEU fuel by the National Atomic Energy Commission (CNEA). It belongs to the group of nuclear installations controlled, from the radiological and nuclear safety point of view, by the Nuclear Regulatory Authority (ARN). A new type of fuel elements containing burnable absorbers, with similar enrichment as the standard fuel elements but greater fissile contents, has recently been proposed for a new Argentine reactor design (RRR). In this framework the ARN considers interesting, if technically possible, the performance of an experiment in the RA-3 reactor. The experiment might enable, for such fuel element containing burnable poison, the verification of its neutronic behaviour under irradiation as well as a validation of the calculation line by comparison to measured values. It should be desirable that such experiment could reproduce as much as possible those conditions estimated for the RRR reactor, still under design in Argentina, having Silicide fuel elements with burnable poison, in the shape of cadmium wires in their structure. We here analyse a possible experiment consisting in the loading of a prototype fuel element with burnable poison in a normally loaded RA-3 core configuration. It would essentially be a standard RA-3 fuel element, having cadmium wires in its frame. This experiment would enable the verification of the prototype behaviour under irradiation, its operation limits and conditions, and particularly, the reactivity safety margins established in Argentine Standards, both calculated and measured. The main part of the experiment would imply some 200 full power days of operation at 5 MW, which would be drastically reduced if the reactor power is increased to 10 MW, as foreseen. We also show that under the proposed conditions, the experiment would not represent a significant penalty to the reactor normal operation. (author)

  5. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  6. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  7. The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.A.

    1999-03-24

    Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically

  8. Development of a highly efficient burnable poison matrix material for cycle lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, J.S. [Florida Univ., 202 Nuclear Science Center, Gainesville, FL (United States); Baney, R.H.; Pressley, L. [Florida Univ., Gainesville, FL (United States)

    2001-07-01

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials that from early indications appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA(tm)s) and address one of the major disadvantages of the use of boron shims. The new class of polymer materials, poly-acetylenic carbonyl-siloxane, termed ''Carborane'', were developed by Dr. T. Keller of the Naval Research Laboratory (NRL). Dr. T. Keller is cooperating in this research effort. Other classes of boron containing polymer materials are also under review. Displacement of water by the boron shims incurs an ''end of cycle reactivity penalty'' since at the end of cycle the moderator coefficient is strongly negative. ''Carborane'' has the property of being able to contain a tailored amount of boron while maintaining an extremely high hydrogen content, and at the same time being extremely stable to high temperatures and to neutron irradiation. Tests run by the NRL have shown that ''Carborane'' is stable to about 1000 C. The high hydrogen and carbon content contained in the ''Carborane'' Polymer offsets the large fuel cycle reactivity penalty which occurs with current generation BPRA(tm)s, as a result of the reactivity loss resulting from the BPRA(tm)s displacement of moderator water in the guide tubes of Pressurized Water Reactor (PWR) assemblies. Current generation BPRA utilize B{sub 4}C in an Al{sub 2}O{sub 3} matrix. In an attempt to minimize the reactivity penalty from water displacement, Westinghouse has developed a costly annular BPRA, called the Wet Annular Burnable Absorber (WABA) assembly. This burnable poison rod design reduces the moderator displacement by 22% by the use of a central annular water hole. The ''Carborane'' matrix proposed by the University of Florida

  9. Development of a highly efficient burnable poison matrix material for cycle lifetime extension

    International Nuclear Information System (INIS)

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials that from early indications appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA(tm)s) and address one of the major disadvantages of the use of boron shims. The new class of polymer materials, poly-acetylenic carbonyl-siloxane, termed ''Carborane'', were developed by Dr. T. Keller of the Naval Research Laboratory (NRL). Dr. T. Keller is cooperating in this research effort. Other classes of boron containing polymer materials are also under review. Displacement of water by the boron shims incurs an ''end of cycle reactivity penalty'' since at the end of cycle the moderator coefficient is strongly negative. ''Carborane'' has the property of being able to contain a tailored amount of boron while maintaining an extremely high hydrogen content, and at the same time being extremely stable to high temperatures and to neutron irradiation. Tests run by the NRL have shown that ''Carborane'' is stable to about 1000 C. The high hydrogen and carbon content contained in the ''Carborane'' Polymer offsets the large fuel cycle reactivity penalty which occurs with current generation BPRA(tm)s, as a result of the reactivity loss resulting from the BPRA(tm)s displacement of moderator water in the guide tubes of Pressurized Water Reactor (PWR) assemblies. Current generation BPRA utilize B4C in an Al2O3 matrix. In an attempt to minimize the reactivity penalty from water displacement, Westinghouse has developed a costly annular BPRA, called the Wet Annular Burnable Absorber (WABA) assembly. This burnable poison rod design reduces the moderator displacement by 22% by the use of a central annular water hole. The ''Carborane'' matrix proposed by the University of Florida reduces the water displacement penalty by 59%, utilizing the hydrogen and carbon present in the ''Carborane''. In addition to increasing

  10. Flattening of burnup reactivity in long-life prismatic HTGR by particle type burnable poisons

    International Nuclear Information System (INIS)

    Highlights: ► The effect of particle-type burnable poisons in long-life prismatic HTGR was analyzed in detail. ► Different burnable poison particles can be combined to minimize excess reactivity during the core life. ► The use of burnable poison particles increases the passive safety features of prismatic HTGRs. - Abstract: For the flattening of burnup reactivity in long-life prismatic High-Temperature Gas-cooled Reactors (HTGRs), the effect of particle type on burnable poison properties is analyzed in detail using Monte Carlo calculations. Some examples of optimized specifications are shown. It is shown that combinations of particles with different materials, diameters, and concentrations make it possible to reduce excess reactivity to around or below 1 $ during the core life. The use of optimized burnable poison particles will help improve the passive safety features of long-life prismatic HTGR

  11. A development of burnable poison fuel for the JMTR

    International Nuclear Information System (INIS)

    This paper describes the results of fabrication tests of fuel plate and side plate containing natural boron and their irradiation tests and post-irradiation examinations for the JMTR (50 MWt). In order to increase uranium loading density in fuel meat from present 22 wt% to 30 wt%, powder metallurgy techniques were used for fabricating the fuel plates. And fabrication procedure of the side plates with natural boron was nearly the same as that of fuel plates. Irradiation tests and post-irradiation experiments on the fuel plates and the mini-side plates showed satisfiable results. However, oxide film spallation was observed on one of four plates irradiated under the same conditions. It is unable to clear the reason why such a phenomenon was observed on only one plate. In the first program, fuel elements with burnable poison and full core irradiation tests were planned as well. However, in the application of safety approval for the core conversion with burnable poison fuel, by the competent authority in Japan, difficulties were felt with a problem of hypothetical accident analysis which were not directly related to the core conversion. The program was therefore stopped from the viewpoint of man power and cost needed for obtaining the safety approval. (author)

  12. Optimal burnable poison-loading in a PWR with carbon coated particle fuel

    International Nuclear Information System (INIS)

    An innovative PWR concept that uses carbon-coated particle fuels moderated by graphite as that of HTGR but cooled by pressurized light water has been studied. The aim of this concept is to take both the best advantages of fuel integrity against fission products release and the reliability PWR technology based on the long operational experience. The purpose of the study is to optimize loading pattern of burnable poison in the proposed core in order to suppress excess reactivity during a cycle. Although there are many parameters to be determined for optimization of the usage of burnable poison, the emphasis is put here on loading patterns of Gadolinia in an assembly and in the core. We investigated the burnup characteristics of the core varying the concentration of burnable poison in a fuel rod, the number of burnable poison-rods in an assembly, and the number of burnable poison-assemblies in the core. The result suggested that Gadolinia was more suitable for this reactor than boron as burnable poison, and it was possible to make the reactivity swing negligible by combining at least three kinds of burnable poison-assemblies in which the amount of Gadolinia was different. Therefore the requirement for the number of control rods was reduced and it meant that Control Rod Programming would become easier. (author)

  13. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  14. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they

  15. The treatment of burnable poison pins in LWRWIMS

    International Nuclear Information System (INIS)

    This report describes an investigation into the modelling approximations normally made when the LWR lattice code LWRWIMS is used for design calculations on assemblies containing burnable poison pins. Parameters investigated include energy group structure, intervals between calculations in MWd/te and spatial subdivision of the poison pins. An estimate is made of the effect of using pin-cell smearing with diffusion theory for the assembly geometry, instead of a more exact heterogeneous transport theory calculation. The influence on reactivity of the minor gadolinium isotopes 152, 154, 156, 158 and 160 in a poison pin dominated by the isotopes 155 and 157 is presented, and finally, recommendations on the use of LWRWIMS for this type of calculation are made. (author)

  16. Absorbing Charged Rotating Metric in de Sitter Space in Advanced Time Coordinates and the Related Energy-Momentum Tensor

    Institute of Scientific and Technical Information of China (English)

    XU Dian-Yah

    2000-01-01

    Absorbing charged rotating (ACR) metric in de Sitter space and related energy-momentum tensor are derived.The ACR metric is very simple in advanced time coordinates. The ACR metric involves 8 independent parameters which are divided into two classes: (1) the mass M, charge Q, angular momentum per unit mass a, and cosmological constant A; (2) M/ v, 2M/ v2, Q/ v, and 2Q/ v2. The non-stationary part of the energy-momentum tensor is positive definite everywhere.

  17. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M.

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  18. Isotope Separation Effect of Burnable Absorber for Long-cycle Boron-free Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chidong; Choe, Jiwon; Lee, Deokjung Lee [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2015-05-15

    To satisfy these requirements, BA rods in the boron-free reactor should be depleted in proportion to the cycle depletion, and burned out completely at EOC. However, there remain residues of the BA to the end, which reduces the cycle length of the reactors. In order to create more economic profits, these residues should be minimized so that the cycle length can get longer. The amount of burned BA and the corresponding assembly lifetime are analyzed to investigate the effectiveness of isotope separation for BA of a long-cycle boron-free reactor. It was noted that only Erbium and Hafnium can be burned relatively in a flat rate over the whole cycle, whereas Gd, Sm, Eu, Cd, {sup 157}Gd, {sup 149}Sm, {sup 151}Eu, and {sup 113}Cd are burned almost 100% even within the half of lifetime. In terms of assembly lifetime, Hafnium showed higher improvement than Erbium between the single isotope and its naturally occurring element.

  19. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    International Nuclear Information System (INIS)

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  20. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  1. Thermochemical modelling of advanced CANDU reactor fuel

    Science.gov (United States)

    Corcoran, Emily Catherine

    2009-04-01

    With an aging fleet of nuclear generating facilities, the imperative to limit the use of non-renewal fossil fuels and the inevitable need for additional electricity to power Canada's economy, a renaissance in the use of nuclear technology in Canada is at hand. The experience and knowledge of over 40 years of CANDU research, development and operation in Ontario and elsewhere has been applied to a new generation of CANDU, the Advanced CANDU Reactor (ACR). Improved fuel design allows for an extended burnup, which is a significant improvement, enhancing the safety and the economies of the ACR. The use of a Burnable Neutron Absorber (BNA) material and Low Enriched Uranium (LEU) fuel has created a need to understand better these novel materials and fuel types. This thesis documents a work to advance the scientific and technological knowledge of the ACR fuel design with respect to thermodynamic phase stability and fuel oxidation modelling. For the BNA material, a new (BNA) model is created based on the fundamental first principles of Gibbs energy minimization applied to material phase stability. For LEU fuel, the methodology used for the BNA model is applied to the oxidation of irradiated fuel. The pertinent knowledge base for uranium, oxygen and the major fission products is reviewed, updated and integrated to create a model that is applicable to current and future CANDU fuel designs. As part of this thesis, X-Ray Diffraction (XRD) and Coulombic Titration (CT) experiments are compared to the BNA and LEU models, respectively. From the analysis of the CT results, a number of improvements are proposed to enhance the LEU model and provide confidence in its application to ACR fuel. A number of applications for the potential use of these models are proposed and discussed. Keywords: CANDU Fuel, Gibbs Energy Mimimization, Low Enriched Uranium (LEU) Fuel, Burnable Neutron Absorber (BNA) Material, Coulometric Titration, X-Ray Diffraction

  2. Burn-up measurements at TRIGA fuel elements containing strong burnable poison

    International Nuclear Information System (INIS)

    The reactivity method of determining the burn-up of research reactor fuel elements is applied to the highly enriched FLIP elements of TRIGA reactors. In contrast to other TRIGA fuel element types, the reactivity of FLIP elements increases with burn-up due to consumption of burnable poison. 33 fuel elements with burn-up values between 3% and 14% were investigated. The experiments showed that variations in the initial fuel composition significantly influence the reactivity and, consequently, increase the inaccuracy of the burn-up measurements. Particularly important are variations in the initial concentration of erbium, which is used as burnable poison in FLIP fuel. A method for reducing the effects of the material composition variations on the measured reactivity is presented. If it is applied, the accuracy of the reactivity method for highly poisoned fuel elements becomes comparable to the accuracy of other methods for burn-up determination. (orig.)

  3. New LWR Fuel Assembly Concepts using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    The most importance role of the soluble boron is the control of the long term reactivity to maintain the criticality of the reactor cores by reducing core excess reactivity. However, the use of soluble boron in the coolant leads to several issues. First, boron is corrosive and the presence of boron in the coolant will increase corrosion on the primary coolant loop and the corrosive nuclides will be mixed with the coolant. Furthermore, CVCS (Chemical and Volume Control System) is required to clean these corrosive elements from the coolant and to purify and control the level of boron diluted in the coolant. The presence of CVCS including the corrosive elements requires complicated maintenance and operation leading to increases of additional pipes which can add the possibilities of occurrences of LOCAs (Loss of Coolant Accident). Furthermore, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. In this paper, we suggest use of burnable poison rods where burnable poison particles are distributed in the SiC matrix as in the FCM (Fully Ceramic Micro-encapsulated) fuel and we performed a feasibility study on the use of the new LWR fuel assembly design concepts using this concept of new burnable poison rods to achieve low boron or boron-free cores

  4. Apply Burnable Poison For Fuel Pebble Of PBMR-400 With OTTO Refueling

    International Nuclear Information System (INIS)

    A new fuel pebble was designed by adding spherical Gd2O3 particles for obtaining the minimum reactivity swing. Optimization is done in a lattice model to determine the combination of radius and number of burnable poison (BP) particles per pebble to obtain the minimum reactivity swing. The numerical calculation so that with 740 μm and 13 particles of Gd2O3. The reactivity swing is reduced from 38% to 2.0%, whereas the k∞ is 1.06 - 1.08 for a fuel lattice with the target burnup of 55 GWd/t. (author)

  5. Fuel Temperature Characteristics for Fuel Channels using Burnable Poison in the CANDU reactor

    International Nuclear Information System (INIS)

    Although the CANFLEX RU fuel bundle loaded 11.0 wt% Er2O3 are originally designed focused on the safety characteristics, the fuel temperature characteristics is revealed to be not deteriorated but rather is slightly enhanced by the decreased fuel temperature in the outer ring compared with that of standard 37 fuel bundle. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. In a view of safety, the fuel temperature coefficient (FTC) is an important safety parameter and it is dependent on the fuel temperature. For an accurate evaluation of the safety-related physics parameters including FTC, the fuel temperature distribution and its correlation with the coolant temperature should be accurately identified. Therefore, we have evaluated the fuel temperature distribution of a CANFLEX fuel bundle loaded with a burnable poison and compared the standard 37 element fuel bundle and CANFELX-NU fuel bundle

  6. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  7. Advanced methods for incineration of solid, burnable LLW and melting for recycling of scrap metals

    International Nuclear Information System (INIS)

    Radioactive contaminated waste is a great cost factor for nuclear power plants and other nuclear industry. On the deregulated electricity market the price on produced kWh is an important competition tool. Therefore the waste minimisation and volume reduction has given highest priority by many power producers in the process to achieve savings and hence low production cost. Studsvik RadWaste AB in Nykoeping, Sweden, is a company specialised in volume reduction of LLW, as solid combustible waste and as scrap metal for melting and recycling. The treatment facility in Sweden offers this kind of services - together with segmentation and decontamination when necessary - for several customers from Europe, Japan and USA. In addition to these treatment services a whole spectrum of services like transportation, measurement and safeguard, site assistance, industrial cleaning and decontamination in connection with demolition at site is offered from the Studsvik company. (orig.)

  8. Shielding and Containment Evaluations of the NAC-LWT Cask with Tritium Burnable Poison Rods

    International Nuclear Information System (INIS)

    In 1989, the NAC legal weight truck cask (NAC-LWT) was approved by the U.S. Nuclear Regulatory Commission to transport either one pressurized water reactor (PWR) fuel assembly or two boiling water reactor (BWR) fuel assemblies. Since that time, license amendments have allowed the shipment of high-burnup PWR and BWR fuel rods, MTR-type research reactor fuel elements, and TRIGA-type fuel elements. In 1999, DOE approved an NAC-LWT submittal for a shipment of lead test assemblies (LTAs) containing tritium-producing burnable poison rods (TPBARs). This paper presents the 10 CFR Part 71 shielding and containment evaluations of the NAC-LWT with the LTA payload

  9. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    Science.gov (United States)

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. PMID:26963606

  10. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  11. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Burnable poison rods made of Al2O3-B4C pellets with different concentrations of 10B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm3 of 10B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  12. Applying burnable poison particles to reduce the reactivity swing in high temperature reactors with batch-wise fuel loading

    International Nuclear Information System (INIS)

    Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B4C highly enriched in 10B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B4C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs

  13. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Stephen [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

    2012-06-19

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of

  14. Neutronics Design Flexibilities of the BigT Gadolinium Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohd-Syukri; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Kim, HyeongHeon [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2015-05-15

    A new BA design named 'Burnable absorber-Integrated Guide Thimble' (BigT) was recently proposed for PWR. The BigT offers flexibility in BA self-shielding adjustment per design specifications. It is upon this assertion that this paper was prepared; i.e. this research aims to demonstrate the neutronics design flexibilities of BigT gadolinium absorbers. Specifically, three studies were completed to investigate sensitivities of the BigT gadolinium absorbers: (1) at a constant BA mass, (2) with a similar initial reactivity hold-down, and (3) for an optimal burnup reactivity swing. The paper clearly demonstrates neutronics flexibilities of the BigT gadolinium absorbers. Ascertained design variables are: (1) gadolinium effective shape, (2) BigT loading per lattice, and (3) BigT location in the lattice. Hybrid combination of the BigT designs may also alter the lattice depletion pattern, as well as density of gadolinium installed in the BigT absorbers. It is concluded that self-shielding of Gd can easily be adjusted in the BigT applications.

  15. Thermalhydraulic characteristics for fuel channels using burnable poison in the CANDU reactor

    International Nuclear Information System (INIS)

    The power coefficient is one of the most important physics parameters governing nuclear reactor safety and operational stability, and its sign and magnitude have a significant effect on the safety and control characteristics of the power reactor. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. However, the previous study has mainly focused on the safety characteristics by evaluating the power coefficient for the fuel channel using BP in the CANDU reactor. Together with the safety characteristics, the economic performance is also important in order to apply the newly designed fuel channel to the power plant. In this study, the economic performance has been evaluated by analyzing the thermal hydraulic characteristics for the fuel channel using BP in the CANDU reactor

  16. Study of burnable poisons and gadolinium qualification in light water reactors

    International Nuclear Information System (INIS)

    The aim of this work is to develop a calculation procedure for analyzing light water moderated reactors utilizing gadolinium as a burnable poison. The main points of this work can be summarized as follows: the available cross section data of gadolinium were analysed and corrected whenever it was necessary. The processes which include required precautions for obtaining multigroup cross sections were defined; an exhaustive study of the assumptions used in multicell calculation methods allowed the definition of option to be used for obtaining good results without excessive calculation cost. This study was followed by the interpretation of experimental results; when gadolinium is used in grain structure, a problem of double heterogeneity is encountered. A new calculation method was developed for such situations. Its validity was confirmed by a comparison with the Monte Carlo method; the problems encountered in performing a study of burn up of fuel elements containing gadolinium were analysed and the necessary precautions were established. The effect of the initial charge and geometrical form of the gadolinium and the behavior of lattices during the burn up were examined

  17. Absorber materials, control rods and designs of shutdown systems for advanced liquid metal fast reactors. Proceeding of a technical committee meeting

    International Nuclear Information System (INIS)

    Thirty-five specialists from France, Germany, India, Japan, the Republic of Kazakhsan, the Russian Federation and the Republic of Georgia (observer) attended the meeting. The meeting had seven sessions. The main topics of discussions were: Status of control rod designs for fast reactors and experience with operation; properties and behaviour of absorber materials for control rods; results of post-irradiation examination of absorber materials, and mechanisms affecting their properties and behaviour; design of a backup reactivity shutdown system utilizing passive mechanisms: Curie point electromagnetic mechanism; enhancement of thermal expansion of absorber rdo drive lines; hydraulically suspended control rods; gas expansion modules in the core; and the possibility of optimizing the reactivity coefficients and the efficiency of Pu burning by using absorber and moderator materials in the core. A total of 23 papers were presented, and a technical tour of the IPPE also took place. Refs, figs, tabs

  18. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  19. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  20. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  1. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s−1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  2. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Science.gov (United States)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  3. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  4. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  5. Effect of Burnable Absorbers on Inert Matrix Fuel Performance and Transuranic Burnup in a Low Power Density Light-Water Reactor

    Directory of Open Access Journals (Sweden)

    Geoff Recktenwald

    2013-04-01

    Full Text Available Zirconium dioxide has received particular attention as a fuel matrix because of its ability to form a solid solution with transuranic elements, natural radiation stability and desirable mechanical properties. However, zirconium dioxide has a lower coefficient of thermal conductivity than uranium dioxide and this presents an obstacle to the deployment of these fuels in commercial reactors. Here we show that axial doping of a zirconium dioxide based fuel with erbium reduces power peaking and fuel temperature. Full core simulations of a modified AP1000 core were done using MCNPX 2.7.0. The inert matrix fuel contained 15 w/o transuranics at its beginning of life and constituted 28% of the assemblies in the core. Axial doping reduced power peaking at startup by more than ~23% in the axial direction and reduced the peak to average power within the core from 1.80 to 1.44. The core was able to remain critical between refueling while running at a simulated 2000 MWth on an 18 month refueling cycle. The results show that the reactor would maintain negative core average reactivity and void coefficients during operation. This type of fuel cycle would reduce the overall production of transuranics in a pressurized water reactor by 86%.

  6. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  7. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  8. New methods development for SCORPIO-VVER core monitoring systems to address advanced VVER 440 fuel types

    International Nuclear Information System (INIS)

    With the introduction of advanced design fuel with the Gd burnable absorber to Czech and Slovak VVER 440 reactors, the SCORPIO-VVER core monitoring system (CMS) faces new requirements and challenges. New methodology and tools had to be developed in the area of core design (neutron physics, core thermal hydraulics and fuel thermal mechanics) to properly model and address new design features of Gadolinium bearing fuel of Gd 1 and Gd 2 type. These methods have to be adapted for implementation in SCORPIO-VVER CMS. The paper provides a comprehensive list of requirements and open questions that need to be properly addressed and clearly defined prior to starting any major system innovation. Validation of a simplified simulator for the HiBu domain is under development using FEMAXI code and new 2D-3D tool development for the CEZ utility. Conclusions of the paper concentrate on mid-term and long-term innovation plans for core and fuel operation reliability systems

  9. New methods development for SCORPIO-VVER core monitoring systems to address advanced VVER 440 fuel types

    International Nuclear Information System (INIS)

    With introduction of advanced design fuel with Gd burnable absorber to Czech and Slovak VVER 440 reactors SCORPIO-VVER CMS faces new requirements and challenges. New methodology and tools had to be developed in the area of core design (neutron physics, core thermal hydraulics and fuel thermal mechanics) to properly model and address new design features of Gadolinium bearing fuel of Gd 1 and Gd 2 type. These methods have to be adapted for implementation in SCORPIO-VVER CMS. The paper provides comprehensive list of requirements and open questions, which need to be properly addressed and clearly defined prior to major innovation of the system commence. All related fields are being step by step re-evaluated (neutron physics, thermal-hydraulics and fuel thermal-mechanics). Pin power determination methodology had to be improved. Higher geometrical complexity on upper and lower core ends, particularly for transition cores with different fuel types, led to change in axial nodalization. More stringent fuel related limits (design criteria, lover margins) with higher burn-up and required unit (fuel) maneuverability require new calculation strategy in fuel conditioning/de-conditioning PCI supervising module PES. Validation of simplified simulator for HiBu domain is under development using FEMAXI code and new 2D-3D tool development for CEZ utility. Conclusions of the paper concentrate on mid term and long term innovation plans for core and fuel operation reliability crucial systems. (Author)

  10. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  11. Multiband terahertz metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo; Liu Jia; Gu Wei

    2011-01-01

    This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.

  12. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  13. Modification of Japanese first nuclear ship reactor for a regional energy supply system using gadolinia as a burnable poison

    International Nuclear Information System (INIS)

    In our laboratory, a small regional energy supply system which uses a small nuclear reactor has been studied for a long time. This system could supply not only heat but also electricity. Heat could be used for hot-water supply, a heating system of a house, melting snow and so on. In this point, this system seems to be useful for the places like northern part of Japan where it snows in winter. This reactor is based on Nuclear Ship Mutsu which was developed as the first nuclear ship of Japan about 40 years ago. It has several advantages for a small reactor. For example, its moderator temperature coefficient is always to be deeply negative because boric acid solution is not used in moderator and coolant. This can lead to a self-controlled operation without control rod maneuvering for load change. But some modifications have been performed in order to satisfy requirements such as (1) longer core life without refueling and reshuffling, (2) reactivity adjustment for load change without control rods or soluble boron, (3) simpler operations for load changes and (4) ultimate safety with sufficient passive capability. In our previous study, we confirmed the core based on Mutsu core had longer core life (about 10 years) using high uranium enrichment fuel (more than 5wt%) and current 17x17 fuel assemblies. We also confirmed excess reactivity during the cycle could be suppressed using combination of erbium oxide (Er2O3) and gadolinium oxide (Gd2O3) as burnable poisons. Er2O3 has advantages such that criticality safety can be kept even if uranium enrichment is more than 5wt% and burnup characteristics of the core can be gradual. But at this time there are 2 problems to apply for the core using Er2O3 in Japan. First problem is that more than 5wt% enrichment fuel is not yet accepted in Japan. Second problem is that there are no experiences of using Er2O3 in commercial reactors in Japan. Considering these problems, we have to modify the design of the core, using only Gd2O3 as a

  14. Nuclear design report for system-integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Chung Chan; Zee, Sung Quun; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report presents nuclear characteristics analysis results for SMART. Information is given on fuel loading, power density distributions, reactivity coefficients and control rod worths. The core consists of 57 modified Korean Standard Fuel Assemblies (m-KOFAs). and all fuel assemblies contain burnable absorbers to control the power distribution and the excess reactivity that is required for soluble boron-free and ultra longer cycle operation. The cycle length of SMART amounts to 990 EFPD corresponding to a cycle burnup of 26,160 MWD/MTU. 4 refs., 92 figs., 5 tabs. (Author)

  15. Optimisation of initial core of AHWR-LEU using burnable poison

    International Nuclear Information System (INIS)

    This paper focuses on the physics design optimisation of initial core of AHWR-LEU. Advanced Heavy Water Reactor (AHWR) being designed for 920 MWth, is a vertical pressure tube thorium-based reactor cooled by boiling light water and moderated by heavy water designed to maximise power production from thorium. The equilibrium fuel cycle is based on the conversion of naturally available thorium into fissile 233U driven by plutonium as external fissile feed. Plutonium is used as makeup fuel to achieve high discharge burnup and self-sustaining characteristics of Th-233U fuel cycle. The reactor would be operated in closed fuel cycle by recycling 233U back into the reactor. Physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Use of Low Enriched Uranium (LEU) fuel with thorium in AHWR has several attractive features like enhanced safe where all the reactivity coefficients are negative by design. The delayed neutron parameter β will be larger than the reference AHWR fuelled with (Th,Pu)MOX and (Th,233U) MOX and hence enhanced controllability. This fuel cycle would be operated in a once-through mode. The initial core will have large excess reactivity and will require large amount of neutron poison (boron) to be dissolved in moderator to quench this initial core excess reactivity. Generally, flux flattening is achieved by using differential enrichment in the central and outer region of the core. (author)

  16. Feasibility study on the development of advanced LWR fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO{sub 2} pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO{sub 2}-Gd{sub 2}O{sub 3} burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs.

  17. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  18. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  19. Unidirectional perfect absorber.

    Science.gov (United States)

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  20. A Preliminary Study on the Conceptual Design of Thorium/Uranium Mixed Nuclear Fuel for the Alternative of Burnable Poison in Commercial Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Thorium has higher neutron absorption cross section than that of U-238. Thus, the thorium mixed uranium oxide nuclear fuel can reduce the initial excessive reactivity and the long-live radio-wastes with increasing the fuel utilization efficiency. In this study, a preliminary study on the application of the thorium/uranium mixed fuel is performed for the alternative of the PLUS7 fuel assembly which includes burnable poison. A conceptual design without geometrical change is proposed and the reactor characteristics are analyzed. In this study, a fuel assembly using the uranium/thorium mixed fuel was designed to substitute the assembly which includes burnable poison. The reactor characteristics, which are kinf, power distribution and plutonium production rate, were evaluated and the results are compared with the E1 assembly which is used in the OPR1000 reactor. The results show that the proposed design can efficiently reduce the excessive reactivity, peak power, and plutonium production with increasing the fuel utilization period

  1. Effect of burnable poison addition on the thermo-mechanical properties of UO2-5wt5CeO2 pellets

    International Nuclear Information System (INIS)

    The microstructural characteristics and the thermo-mechanical properties of the pellets were evaluated and compared for UO2 and UO2-5wt%CeO2 pellets doped with burnable poisons (5wt% and 10wt% of Gd2O3, Sm2O3 and Dy2O3), sintered in reducing atmosphere for 4h. The sintered density and the grain size of UO2 and UO2-5wt%CeO2 pellets decreased by adding Gd2O3, Sm2O3 and Dy2O3 and the Vickers handness (Hv) of these pellets were found not affected with density and grain size variations. The fracture toughness (KIC) of the UO2 pellets increased with Gd2O3 and Dy2O3 adding and decreased with 10wt% Sm2O3 but that of UO2-5wt%CeO2 pellets were not changed. The fracture strength (of) of UO2 and UO2-5wt%CeO2 pellets were not affected by addition of burnable poison material and the critical thermal shock temperature difference (ΔTc) of the pellets increased for UO2 pellets doped with Gd2O3. Sm2O3 and Dy2O3 in the low temperature range (80 ∼ 200 .deg. C)

  2. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  3. Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation

    International Nuclear Information System (INIS)

    The traditional tuned mass absorber is widely employed to control the vibration of a primary structure by transferring the vibrating energy to the absorber. However, the working band of the absorber is very narrow, which limits the application of broadband vibration control. This study presents a novel broadband electromagnetic absorber by first introducing two negative impedance shunts to improve broadband damping of the absorber. The electromagnetic absorber is modeled, and the corresponding electromagnetic coupling coefficient is tested. A cantilever beam is employed to verify the broadband vibration absorption of the negative resistance (NR) shunted electromagnetic absorber (NR absorber) and the negative inductance NR shunted electromagnetic absorber (NINR absorber). The governing equations of the beam with two absorbers are derived, and the experiments are set up. The results point out that the NR and NINR absorbers can attenuate the broadband vibration. The proposed absorbers do not need the feedback system and the real-time controller compared to the active absorber; hence, they have great application potential in aerospace and in submarine applications, as well as in civil and mechanical engineering. (paper)

  4. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  5. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  6. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  7. Metasurface Broadband Solar Absorber.

    Science.gov (United States)

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  8. Ionized Absorbers in AGN

    Science.gov (United States)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  9. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  10. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  11. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Nuclear characteristics analysis report for system-integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Chung Chan; Song, Jae Seung; Cho, Byung Oh; Zee, Sung Quun

    1998-11-01

    This report present nuclear characteristics analysis results for SMART. Information is given on fuel loading, power density distributions, reactivity coefficients and control rod worths. The core consists of 57 modified Korean Standard Fuel Assemblies (m-KOFAs), and all fuel assemblies contain burnable absorbers to control the power distribution and the excess reactivity that is required for soluble boron-free and ultra longer cycle operation. The cycle length of SMART amounts to 990 EFPD corresponding to a cycle burnup of 26,250 MWD/MTU. (author). 4 refs., 6 tabs., 85 figs.

  13. Sensing with THz metamaterial absorbers

    CERN Document Server

    Cong, Longqing

    2014-01-01

    Metamaterial perfect absorbers from microwaves to optical part of the electromagnetic spectrum has been intensely studied for its ability to absorb electromagnetic radiation. Perfect absorption of light by metamaterials have opened up new opportunities for application oriented functionalities such as efficient sensors and emitters. We present an absorber based sensing scheme at the terahertz frequencies and discuss optimized designs to achieve high frequency and amplitude sensitivities. The major advantage of a perfect metamaterial absorber as a sensor is the sensitive shift in the absorber resonance frequency along with the sharp change in the amplitude of the resonance due to strong interaction of the analyte with the electric and the magnetic fields at resonant perfect absorption frequency. We compare the sensing performance of the perfect metamaterial absorber with its complementary structural design and planar metasurface with identical structure. The best FoM values obtained for the absorber sensor here...

  14. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  15. Energy-absorbing effectiveness factor

    OpenAIRE

    Jones, Norman

    2010-01-01

    Abstract A study is reported on the energy-absorbing effectiveness factor which was introduced recently. The factor is defined as the quotient of the total energy, which can be absorbed in a system, to the maximum energy up to failure in a normal tensile specimen, which is made from the same volume of material. This dimensionless parameter allows comparisons to be made of the effectiveness of various geometrical shapes and of energy-absorbers made from different materials. The infl...

  16. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  17. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  18. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  19. Absorbers: Definitions, properties and applications

    Directory of Open Access Journals (Sweden)

    G. Belitskii

    1998-01-01

    Full Text Available Roughly speaking, the absorber is a set, which includes, after finite number of initial states, each trajectory of a transformation of space into itself. This paper deals with the exact definition of absorbers for linear operators, the study of the properties, the applications to “classical” dynamics and to solvability of operator equations. It is expected that the description of the structure of absorbers will add new insights to the recent discussion of nature and content of notion of attractiveness for nonlinear dynamics.

  20. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    This paper reports that the selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth, compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts

  1. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  2. The absorber hypothesis of electrodynamics

    OpenAIRE

    De Luca, Jayme

    2008-01-01

    We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.

  3. Absorber materials in CANDU PHWRs

    International Nuclear Information System (INIS)

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in the relatively benign environment of low pressure, low temperature heavy water between neighbouring rows or columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a redesigned back-fit resolved the problem. (author). 3 refs, 8

  4. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  5. Small, long-life high temperature gas-cooled reactor free from prompt supercritical accidents by particle-type burnable poisons

    International Nuclear Information System (INIS)

    A design concept for a high temperature gas-cooled reactor without the possibility of a prompt supercritical accident has been proposed by coupling the use of particle-type burnable poison (BP) and criticality control by the core temperature. The combinations of two different BPs, B4C and Gd2O3 particles and B4C and CdO particles, with the proper particle sizes and the appropriate volume ratio, showed excellent performance in controlling excess reactivity and flattening the reactivity swing. To maintain reactivity at a lower level than the prompt critical state, the reactor was designed to operate in a subcritical mode for a burnup period or for the whole operation cycle. Under subcritical operation during the partial burnup period, the core temperature had to be lowered by at least 164 K for the loading of B4C + Gd2O3 particles and by at least 178 K for the B4C + CdO particles, which in turn dropped the thermal efficiency from 48% to 42.26% and 41.77%, respectively. On the other hand, under full subcritical operation, a greater decrease of core temperature was required. Remarkable decreases in the core temperatures, approximately 347 K for the B4C + Gd2O3 case and approximately 280 K for the B4C + CdO case, resulted in the drop of thermal efficiency to only 35.9% and 38.2%, respectively. Therefore, the relative importance of the increase in passive safety and the decrease in thermal efficiency must be considered with regard to their importance in nuclear reactor design. (author)

  6. THE INFLUENCE OF CaO AND P2O5 OF BONE ASH UPON THE REACTIVITY AND THE BURNABILITY OF CEMENT RAW MIXTURES

    Directory of Open Access Journals (Sweden)

    TOMÁŠ IFKA

    2012-03-01

    Full Text Available The influence of CaO and P2O5 upon the reactivity of cement raw meal was investigated in this paper. Ash of bone meal containing Ca3(PO42 - 3CaO·P2O5 was used as the source of P2O5. Two series of samples with different content of the ash of bone meal were prepared. In the first series, the ash of bone was added into cement raw meal. The second series of samples were prepared by considering ash as one of CaO sources. Therefore, the total content of CaO in cement raw meal was kept constant, while the amount of P2O5 increased. These different series of samples were investigated by analyzing free lime content in the clinkers. The XRD analysis and Electron Micro Probe Analyzer analysis of the clinkers were also carried out. Two parameters were used to characterize the reactivity of cement raw meal: content of free lime and Burnability Index (BI calculated from free lime content in both series of samples burnt at 1350 ºC, 1400 ºC, 1450 ºC and 1500 ºC. According to the first parameter, P2O5 content that drastically makes worse the reactivity of cement raw meal was found at 1.11 wt.% in the first series, while this limit has reached 1.52 wt.% in the second one. According to the BI, the limit of P2O5 was found at 1.42 wt. % in the first series and 1, 61 wt.% in the second one. Furthermore, EPMA has demonstrated the presence of P2O5 in both calcium silicate phases forming thus solid solutions.

  7. Waveform-dependent absorbing metasurfaces

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F

    2014-01-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  8. Anomalous Diffusion with Absorbing Boundary

    OpenAIRE

    Kantor, Yacov; Kardar, Mehran

    2007-01-01

    In a very long Gaussian polymer on time scales shorter that the maximal relaxation time, the mean squared distance travelled by a tagged monomer grows as ~t^{1/2}. We analyze such sub-diffusive behavior in the presence of one or two absorbing boundaries and demonstrate the differences between this process and the sub-diffusion described by the fractional Fokker-Planck equation. In particular, we show that the mean absorption time of diffuser between two absorbing boundaries is finite. Our res...

  9. Perfectly Reflectionless Omnidirectional Electromagnetic Absorber

    CERN Document Server

    Sainath, Kamalesh

    2014-01-01

    We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

  10. Saturable absorber theory with a modulated pump beam

    Science.gov (United States)

    Blaya, S.; Acebal, P.; Carretero, L.

    2016-08-01

    Recently, it has been shown that the time delay of a signal in a saturable absorber can be equally analysed by a temporal variation of the absorption or the phase (group velocity reduction). In this work, we perform the study of time advancement and delay of transmitted pulses in bacteriorhodopsin films by using a time modulated pump beam at the same frequency of modulation as the reference beam. Thus, based on a saturable absorber theory, analytical expressions of the time delay/advancement and the transmitted pulse have been obtained. As a result, it is theoretically and experimentally demonstrated, that by means of the phase difference between the pump and reference beams a temporal advancement or delay of the sinusoidal transmitted pulses can be obtained.

  11. A recyclable and regenerable magnetic chitosan absorbent for dye uptake.

    Science.gov (United States)

    Zhao, Weifeng; Huang, Xuelian; Wang, Yilin; Sun, Shudong; Zhao, Changsheng

    2016-10-01

    A recyclable and regenerable magnetic polysaccharide absorbent for methylene blue (MB) removal was prepared by coating magnetic polyethyleneimine nanoparticles (PEI@MNPs) with sulfonated chitosan (SCS) and further cross-linked with glutaraldehyde. The driving force for coating is the electrostactic interaction between positively charged PEI and negatively charged SCS. Infrared spectra, zeta potential, thermal gravimetric analysis and X-ray diffraction demonstrated the successful synthesis of magnetic polysaccharide absorbent. The self-assembly of polysaccharide with magnetic nanopartices did not alter the saturation magnetization value of the absorbent confirmed by vibrating sample magnetometer. The nanoparticles showed fast removal (about 30min reached equilibrium) of MB. In particular, the removal ability of MB after desorption did not reduce, demonstrating an excellent regeneration ability. Our study provides new insights into utilizing polysaccharides for environmental remediation and creating advanced magnetic materials for various promising applications. PMID:27312630

  12. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  13. Optical trapping of absorbing particles

    CERN Document Server

    Rubinsztein-Dunlop, H; Friese, M E J; Heckenberg, N R

    1998-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling point of the surrounding medium.

  14. Optimum thickness of Mossbauer absorber

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work,an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

  15. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  16. Glueing of solar absorbers; Solarabsorber kleben

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-04-20

    Bonding technologies in absorber fabrication are evolving. After soldering, ultrasonic welding and laser welding, glueing is the latest development. The Go Innovate AG company developed a process for glueing the most varied absorber materials.

  17. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  18. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  19. Indian advanced heavy water reactor for thorium utilisation and nuclear data requirements and status

    International Nuclear Information System (INIS)

    BARC is embarking on thorium utilisation program in a concerted and consistent manner to achieve all round capabilities in the entire Thorium cycle under the Advanced Heavy Water Reactor (AHWR) development program. Upgrading our nuclear data capability for thorium cycle is one of the main tasks of this program. This paper gives a brief overview of the physics design features of the AHWR. The basic starting point of the analysis has been the lattice simulation of the fuel cluster employing the WIMS-D4 code package with 1986 version of 69 group library. For the analysis of thorium cycle, the present multi group version contains the three major isotopes viz., 232Th, 233U and 233Pa. To correctly evaluate the fuel cycle we require many more isotopes of the Th burnup chain. With the help of NDS, IAEA, many other isotopes of interest in AHWR, actinides in the thorium burnup chain, burnable absorbers, etc., were generated. Some of them were added to the WIMS-D4 library and the results are discussed. The WIMS-D4 library is also being updated as part of the IAEA coordinated research project on Final Stage of WLUP with international cooperation. India is also taking part in CRP. The evaluation of AHWR lattice with this new library is presented. Some comments regarding the fission product data being used in WIMS libraries are given, which are tuned to U-Pu cycles. The measurements for 233U are rather old. Measurements in high energies are also very sparse. More attention by nuclear data community is required in this regard as well. India has also begun a modest program to assess the ADS concepts, with the aim of employing thermal reactor systems, such as AHWR. A one way coupled booster reactor concept is being analysed with available code systems and nuclear data. A brief summary of this concept is also being discussed in this paper. A general survey on the quality of the evaluated nuclear data of the major and minor isotopes of thorium cycle is also given. A major

  20. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  1. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  2. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  3. Planar Metamaterial Absorber Based on Lumped Elements

    Institute of Scientific and Technical Information of China (English)

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; ZHOU Hang; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2010-01-01

    @@ We present the design of a planar metamaterial absorber based on lumped elements,which shows a wide-band polarization-insensitive and wide-angle strong absorption.This absorber consists of metal electric resonators,the dielectric substrate,the metal film and lumped elements.The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances.The simulated absorbances under three different load conditions indicate that the local resonance circuit(lumped resistance and capacitance)could boost up the resonance of the whole RLC circuit.The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high,and electric energy is subsequently consumed by lumped resistances.This absorber may have potential applications in many military fields.

  4. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  5. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  6. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  7. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  8. Structured Metal Film as Perfect Absorber

    Science.gov (United States)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  9. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    A method is described for recovering UF6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  10. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  11. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  12. CO2 Absorbing Capacity of MEA

    OpenAIRE

    José I Huertas; Gomez, Martin D.; Nicolas Giraldo; Jessica Garzón

    2015-01-01

    We describe the use of a gas bubbler apparatus in which the gas phase is bubbled into a fixed amount of absorbent under standard conditions as a uniform procedure for determining the absorption capacity of solvents. The method was systematically applied to determine the CO2 absorbing capacity of MEA (Ac) at several aqueous MEA (β) and gas-phase CO2 concentrations. Ac approached the nominal CO2 absorbing capacity of MEA (720 g CO2/kg MEA) at very low β levels, increasing from 447.9±18.1 to 581...

  13. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  14. Design and application of functional absorbers

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2004-01-01

    This paper gives an overview of the research at Institute of Acoustics, Tongji University, on functional absorbers and experience acquired in practical applications over the past three decades. Experiments and analysis of the absorption characteristics of three different geometrical forms of functional absorbers, i.e., panels, cubes and tubes, were conducted with different arrangements. The resulting esthetical effects are illustrated with pictures. Several non-fiber materials are used to compose functional absorbers with advantages both in acoustic properties and in architectural features. Cost effectiveness analysis is also given in order to provide design guidelines.

  15. Study on an innovative fast reactor utilizing hydride neutron absorber development of coating technique on cladding inner surface

    International Nuclear Information System (INIS)

    The study to extend the control rod life of the Fast Reactor (FR) and to compress its excess reactivity are being performed by adopting the hafnium hydride (HfHx) for control rod material and by using the gadolinium hydride (GdHx) burnable poison (BP) for the reactivity recession, respectively. In the program named 'Study on an innovative Fast Reactor utilizing Hydride Neutron Absorber', the coating technique on inner surface of cladding has been developed to prevent hydrogen transfer through cladding at occasions of the temperature rise events. The Cr2O3 coating (chromizing) and the Al2O3 coating (calorizing) were selected for the coating techniques from the viewpoint of stability under in-core conditions. Following tests were performed for austenitic steel SUS316 which is widely used in FRs and for ferritic steel SUS430. The SUS430 was selected to simulate the ODS (Oxide Dispersion Strengthened ferritic steel) which is the attractive candidate material for the high burn-up FR. Examination of coating processing conditions by using short length claddings (100-200 mm). Approval of coating conditions to mock-up length cladding (1000 mm). Measurement of hydrogen transfer coefficient. Then appropriate conditions for coating were clarified and the formation of homogeneous films of both chromizing and calorizing was achieved on the inner surfaces of long length claddings (1000 mm). The hydrogen transfer experiments showed that the hydrogen transfer coefficient of coated SUS316 and SUS430 can be reduced to below 1/10 of SUS316 raw material. (author)

  16. Design of a magnetorheological automotive shock absorber

    Science.gov (United States)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  17. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue;

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  18. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  19. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  20. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping...... of a specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... with the desired maximum amplification, from which the device damper, mass and stiffness are determined, accounting for the background flexibility. Examples demonstrate the influence of the flexibility effect and the efficiency of the proposed procedure....

  1. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  2. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Science.gov (United States)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  3. Directed percolation with an absorbing boundary

    OpenAIRE

    Lauritsen, K. B.; K. Sneppen; Markosova, M.; Jensen, M. H.

    1997-01-01

    We consider directed percolation with an absorbing boundary in 1+1 and 2+1 dimensions. The distribution of cluster lifetimes and sizes depend on the boundary. The new scaling exponents can be related to the exponents characterizing standard directed percolation in 1+1 dimension. In addition, we investigate the backbone cluster and red bonds, and calculate the distribution of living sites along the absorbing boundary.

  4. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  5. Absorbing Boundary Conditions for Hyperbolic Systems

    Institute of Scientific and Technical Information of China (English)

    Matthias Ehrhardt

    2010-01-01

    This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.

  6. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  7. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  8. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  9. On the definition of absorbed dose

    Science.gov (United States)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  10. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  11. Ultrathin flexible dual band terahertz absorber

    Science.gov (United States)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  12. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  13. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  14. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  15. Broadband plasmonic absorber for photonic integrated circuits

    CERN Document Server

    Xiong, Xiao; Ren, Xi-Feng; Guo, Guang-Can

    2013-01-01

    The loss of surface plasmon polaritons has long been considered as a fatal shortcoming in information transport. Here we propose a plasmonic absorber utilizing this "shortcoming" to absorb the stray light in photonic integrated circuits (PICs). Based on adiabatic mode evolution, its performance is insensitive to incident wavelength with bandwidth larger than 300nm, and robust against surrounding environment and temperature. Besides, the use of metal enables it to be very compact and beneficial to thermal dissipation. With this 40um-long absorber, the absorption efficiency can be over 99.8% at 1550nm, with both the reflectivity and transmittance of incident light reduced to less than 0.1%. Such device may find various applications in PICs, to eliminate the residual strong pump laser or stray light.

  16. The MIRD method of estimating absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  17. PT-symmetric laser-absorber

    OpenAIRE

    Longhi, Stefano

    2010-01-01

    In a recent work, Y.D. Chong et al. [Phys. Rev. Lett. {\\bf 105}, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time $(\\m...

  18. Spin Particle in an Absorbing Environment

    Science.gov (United States)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  19. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  20. Using Advanced Fuel Bundles in CANDU Reactors

    International Nuclear Information System (INIS)

    Improving the exit fuel burnup in CANDU reactors was a long-time challenge for both bundle designers and performance analysts. Therefore, the 43-element design together with several fuel compositions was studied, in the aim of assessing new reliable, economic and proliferation-resistant solutions. Recovered Uranium (RU) fuel is intended to be used in CANDU reactors, given the important amount of slightly enriched Uranium (~0.96% w/o U235) that might be provided by the spent LWR fuel recovery plants. Though this fuel has a far too small U235 enrichment to be used in LWR's, it can be still used to fuel CANDU reactors. Plutonium based mixtures are also considered, with both natural and depleted Uranium, either for peacefully using the military grade dispositioned Plutonium or for better using Plutonium from LWR reprocessing plants. The proposed Thorium-LEU mixtures are intended to reduce the Uranium consumption per produced MW. The positive void reactivity is a major concern of any CANDU safety assessment, therefore reducing it was also a task for the present analysis. Using the 43-element bundle with a certain amount of burnable poison (e.g. Dysprosium) dissolved in the 8 innermost elements may lead to significantly reducing the void reactivity. The expected outcomes of these design improvements are: higher exit burnup, smooth/uniform radial bundle power distribution and reduced void reactivity. Since the improved fuel bundles are intended to be loaded in existing CANDU reactors, we found interesting to estimate the local reactivity effects of a mechanical control absorber (MCA) on the surrounding fuel cells. Cell parameters and neutron flux distributions, as well as macroscopic cross-sections were estimated using the transport code DRAGON and a 172-group updated nuclear data library. (author)

  1. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  2. Technology and assessment of neutron absorbing materials

    International Nuclear Information System (INIS)

    The present review assesses more recent developments in the technology and application of those absorber materials which are considered to be established or to have shown potential in reactor control. Emphasis is placed on physical, chemical and metallurgical properties and upon irradiation behaviour. (author)

  3. Timing the warm absorber in NGC 4051

    CERN Document Server

    Silva, Catia; Costantini, Elisa

    2016-01-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ~ 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051, whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas due to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed ...

  4. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  5. On Delayed Choice and Contingent Absorber Experiments

    OpenAIRE

    Kastner, R. E.

    2012-01-01

    It is pointed out that a slight variation on the Wheeler Delayed Choice Experiment presents the same challenge to orthodox quantum mechanics as Maudlin-type contingent absorber experiments present to the Transactional Interpretation (TI). Therefore, the latter cannot be used as a basis for refutation of TI.

  6. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  7. Absorbed fractions for electrons in ellipsoidal volumes

    Science.gov (United States)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  8. A sound absorbing metasurface with coupled resonators

    Science.gov (United States)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  9. Absorbing Software Testing into the Scrum Method

    Science.gov (United States)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  10. Ultra-broadband terahertz metamaterial absorber

    Science.gov (United States)

    Zhu, Jianfei; Ma, Zhaofeng; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-07-01

    We demonstrated an ultra-broadband, polarization-insensitive, and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design, each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21 μm is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40°. The full absorption width at half maximum of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  11. High-performance THz metamaterial absorber

    CERN Document Server

    Zhu, Jianfei; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-01-01

    We demonstrated an ultra-broadband, polarization-insensitive and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21um is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40{\\deg}. The full absorption width at half maximum (FWHM) of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  12. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    The invention concerns an absorber rod drive for Boiling Water Reactors, in which a mechanical drive is combined with a hydraulic drive working separately from it, so that both drives are situated concentric within an overall length. The driving torque of a motor is transmitted to a threaded spindle, which moves a free adjacent hollow piston vertically via a fixed nut. The same means are used for the hydraulic liquid which is used as coolant or moderator and there are nozzles, annular gaps and/or bores between the hydraulic system and the reactor pressure vessel for the purpose of pressure compensation. All the components of the absorber rod drive except the sealing housing and the setting drive are situated in one casing tube taking the differential pressure. (orig./HP)

  13. Imaging highly absorbing nanoparticles using photothermal microscopy

    Science.gov (United States)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  14. Phase separation in systems with absorbing states

    OpenAIRE

    Munoz, M. A.; Marconi, U. Marini Bettolo; Cafiero, R.

    1998-01-01

    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invaria...

  15. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  16. Cylinder light concentrator and absorber: theoretical description

    OpenAIRE

    Kildishev, Alexander V.; Prokopeva, Ludmila J.; Narimanov, Evgenii

    2010-01-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the d...

  17. Broadband metasurface absorber for solar thermal applications

    Science.gov (United States)

    Wan, C.; Chen, L.; Cryan, M. J.

    2015-12-01

    In this paper we propose a broadband polarization-independent selective absorber for solar thermal applications. It is based on a metal-dielectric-metal metasurface structure, but with an interlayer of absorbing amorphous carbon rather than a low loss dielectric. Optical absorbance results derived from finite difference time domain modelling are shown for ultra-thin carbon layers in air and on 200 nm of gold for a range of carbon thicknesses. A gold-amorphous carbon-gold trilayer with a top layer consisting of a 1D grating is then optimised in 2D to give a sharp transition from strong absorption up to 2 μm to strong reflection above 2 μm resulting in good solar selective performance. The gold was replaced by the high-melting-point metal tungsten, which is shown to have very similar performance to the gold case. 3D simulations then show that the gold-based structure performs well as a square periodic array of squares, however there is low absorption around 400 nm. A cross-based structure is found to increase this absorption without significantly reducing the performance at longer wavelengths.

  18. Microscopic modeling of nitride intersubband absorbance

    Science.gov (United States)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  19. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  20. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  1. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  2. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador;

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  3. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    Science.gov (United States)

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  4. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  5. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...

  6. A MICROGAP SURGE ABSORBER FABRICATED USING CONVENTIONAL SEMICONDUCTOR TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    李宏; 阮航宇

    2001-01-01

    A new type microgap surge absorber fabricated by only semiconductor technique has in it a special structure silicon chip which forms microgaps for gas discharge with electrodes, and has advantages such as small size, low cost, suitability for mass production besides the desirable characteristics that common microgap surge absorbers have. Applications of this absorber in communication facilities are discussed.

  7. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  8. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers....

  9. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response. PMID:20158174

  10. Optical momentum transfer to absorbing mie particles.

    Science.gov (United States)

    Kemp, Brandon A; Grzegorczyk, Tomasz M; Kong, Jin Au

    2006-09-29

    The momentum transfer to absorbing particles is derived from the Lorentz force density without prior assumption of the momentum of light in media. We develop a view of momentum conservation rooted in the stress tensor formalism that is based on the separation of momentum contributions to bound and free currents and charges consistent with the Lorentz force density. This is in contrast with the usual separation of material and field contributions. The theory is applied to predict a decrease in optical momentum transfer to Mie particles due to absorption, which contrasts the common intuition based on the scattering and absorption by Rayleigh particles. PMID:17026034

  11. A novel broadband waterborne acoustic absorber

    Science.gov (United States)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  12. Cylinder light concentrator and absorber: theoretical description.

    Science.gov (United States)

    Kildishev, Alexander V; Prokopeva, Ludmila J; Narimanov, Evgenii E

    2010-08-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications--from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the desired ray-optical performance, can provide absorption efficiencies comparable to those of ideal devices with a smooth gradient in index. PMID:20721056

  13. Acoustical model of a Shoddy fibre absorber

    Science.gov (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  14. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  15. Single-mode cavity with HOMs absorber

    International Nuclear Information System (INIS)

    We present a new 500 MHz cavity which has a simple damped structure for the 1.5 GeV high-brilliant VUV ring. The feature of the cavity design is that higher-order modes (HOMs) propagate out from the cavity through the beam duct with a large diameter and are absorbed in resistive parts in the duct. A low power measurement on a prototype model of the cavity was carried out and the Q-values of HOMs were confirmed to strongly reduce. Thus the coupled-bunch instabilities due to HOMs are expected to be sufficiently suppressed. (author)

  16. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  17. Warm absorbers in active galactic nuclei

    CERN Document Server

    Reynolds, C S; Reynolds, C S; Fabian, A C

    1995-01-01

    Recent {\\it ASCA} observations confirm the presence of X-ray absorption due to partially ionized gas in many Seyfert 1 galaxies; the so-called warm absorber. Constraints on the location of the warm material are presented with the conclusion that this material lies at radii coincident with, or just outside, the broad-line region. The stability of this warm material to isobaric perturbations under the assumptions of thermal and photoionization equilibrium is also studied. It is shown that there is a remarkably small range of ionization parameter, \\xi, for which the warm absorber state is stable. The robustness of this result to changes in the shape of the primary continuum, the assumed density and optical depth is investigated. Given the constraints on the location and the stability properties of the material, several models for the environments of Seyfert nuclei are discussed. These attempt to explain the presence of significant amounts of partially ionized material. In particular, various models of the broad-...

  18. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  19. An Energy Absorber with Force Modificator

    Institute of Scientific and Technical Information of China (English)

    SU Hao; ZHANG Xiaowei; YU Tongxi

    2006-01-01

    Thin-walled tubes are extensively applied in engineering,especially in vehicle structures to resist axial or traversal impact loads,for their excellent energy absorbing capacity.However,in the axial deformation mode,the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures,cargo and environment.Aiming to develop energy absorbers with impact-force modificator,square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube.A small device is designed to serve as an impact-force modificator,which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube,so as to reduce the peak force.Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption.The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube.With future improvements,it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.

  20. Tracking Performances of Several Front-Absorber Designs

    CERN Document Server

    Lautridou, P; CERN. Geneva; Métivier, V; Rahmani, A; Ramillien, V; Reposeur, T; Morsch, Andreas; Cussonneau, J P

    1998-01-01

    The tracking performances of the ALICE forward muon spectrometer are investigated for several front-absorbers designs. The obtained mass resolution is compared to the one of the absorber proposed in the LOI. Out of punchthrough considerations, two absorbers compositions, including a Carbon+Concrete sandwich design, allow to reach the requested mass resolution for the Y's. Almost identical behaviours are observed versus rapidity and transverse momentum of resonances for both new candidates. These proposed designs improve the mass resolution performances and could stand as suitable absorber options for the forward muon spectrometer of ALICE. The Carbon+Concrete absorber has been retained for the Technical Proposal [1].

  1. A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang-Hee [Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, CA 94720 (United States); Park, Sungmin, E-mail: sang-hee.yoon@wyss.harvard.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States)

    2011-03-15

    A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.

  2. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  3. Nano-Composite Superfine Nickel Powder Double Absorbent Coating Designing

    Institute of Scientific and Technical Information of China (English)

    LU Yan-hong; WANG Zhi-hui; HUANG Dong-zhen; HU Chuan-xin; ZHANG Chen-jia; LI Wan-zhi; LIANG Wen-ting

    2004-01-01

    We adopt a definite procedure to compound traditional absorbing material-superfine powder nickel and nano -SiC powder to obtain the nano-composite nickel powder, then testing the absorbing speciality of the composite powder. In virtue of computer assistant designing, we apply double-deck absorbent structure to improve absorbent effect and widen wave band. The experiment indicated that it is possible to achieve the anticipative object to improve the absorbing capability by adopting nano-composite absorbing material, but each component of the composite material must have matched electromagnetic parameter with another. For matching double-coating structure, it ought to modulate the correlativity of each factor to achieve the most matching in order to optimise the absorbent speciality.

  4. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al27, C12, B11, B10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 1010 order, however, usual neutron flux from spent fuel is 108 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  5. Perfect plasmonic absorbers for photovoltaic applications

    International Nuclear Information System (INIS)

    A novel regime of perfect absorption in a thin plasmonic layer corresponds to a collective mode of an array of plasmonic nanospheres. In our theoretical study we show that the absorption of the incident light occurs mainly in the semiconductor material hosting plasmonic nanospheres, whereas the absorption in the metal is very small. The regime survives when the uniform host layer is replaced by a practical photovoltaic cell. Trapping the light allows the thickness of the doped semiconductor to be reduced to values for which the degradation under light exposure should be insufficient. The light-trapping regime is compatible with both the metal-backed variant of the photovoltaic cell and its semitransparent variant when both electrodes are preformed of a conductive oxide. Negligible parasitic losses, a variety of design solutions and a reasonable operational band make our perfect plasmonic absorbers promising for photovoltaic applications. (paper)

  6. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  7. A variable passive low-frequency absorber

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders

    2005-01-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both...... the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5–2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still...... typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design....

  8. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  9. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  10. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  11. Absorbing layers for the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Olivier, E-mail: pinaud@math.colostate.edu

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  12. Perfect absorber metamaterial for real time detection and recognition of micro-poisons in aqueous solutions and atmosphere using millimeter wavelength spectroscopy

    Science.gov (United States)

    Abramovich, A.; Rotshild, D.; Ochana, M.; Rozban, D.

    2016-02-01

    Metamaterials are artificial materials not exist in the nature. They are also known as Left Handed Material (LHM) in which both the permeability and permittivity are negative. A perfect absorber metamaterial for millimeter wavelength can be artificially tailored and manufactured as two dimensional matrixes of metal shapes on a dielectric substrate. Those perfect absorbers metamaterial can be designed to be frequency selective with high Q property. In This study we present a new method that can provide real-time response by combining advanced spectroscopy methods in millimeter Wavelength (MMW) regime and perfect absorber metamaterial. This method is based on very inexpensive perfect absorber metamaterial, with a high Q factor. It was realized by printed metal shapes on FR4 substrate with ground plane on the bottom. The resonance frequency of the perfect absorber will be determined according to the geometrical metal shape dimensions and the dielectric constant of the substrate. The spectral measurements were carried out using high resolution coherence THz spectroscopy system. Due to the perfect absorber sensitivity and its high Q property, the perfect absorber metamaterial is very sensitive to environmental micro-poisons, which influence its resonance frequency. Using a high-resolution spectroscopy system it is possible to detect and quantify this influence. In this study we present very promising experimental results of Malathion detection using perfect absorber metamaterial. The manufacturing of such perfect absorber metamaterial was carried out using the well-known and very inexpensive PCB technology.

  13. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  14. Light Absorbing Aerosols in Mexico City

    Science.gov (United States)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  15. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  16. Advanced Surface Technology

    DEFF Research Database (Denmark)

    Møller, Per; Nielsen, Lars Pleht

    This new significant book on advanced modern surface technology in all its variations, is aimed at both teaching at engineering schools and practical application in industry. The work covers all the significant aspects of modern surface technology and also describes how new advanced techniques make...... it possible to examine surfaces all the way down to their atomic layers and also to perform realistic durability tests. The many surface techniques are described in clear and simple language, and the book is richly illustrated with detailed drawings and photos. It also deals with replacing environmentally...... of the components. It covers everything from biocompatible surfaces of IR absorbent or reflective surfaces to surfaces with specific properties within low friction, hardness, corrosion, colors, etc. The book includes more than 400 pages detailing virtually all analysis methods for examining at surfaces....

  17. Heat and mass transfer characteristics of a small helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-In [College of Engineering, School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of); Kwon, Oh-Kyung [KITECH, 35-3 Hongchon-ri, Ipjang-meon, Chonan, Chungnam 330-825 (Korea, Republic of); Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private bag 92019, Auckland (New Zealand); Moon, Choon-Geun; Lee, Ho-Saeng [Department of Refrigeration and Air-conditioning Engineering, Graduate School, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of)

    2006-02-01

    This paper presents experimental results of heat and mass transfer investigation of the falling film absorber (with strong lithium bromide solution) for a small household absorption chiller/heater. Various components (e.g. low temperature generator, absorber and evaporator) were arranged concentrically in cylindrical form such that the helical-arrangement of the heat exchangers allowed the system to be more compact than the conventional system. Measurements from the helical absorber were compared with data from the literature. The comparison revealed that the heat and mass transfer performance of the helical absorber tube is similar to the existing tube bundle absorber. As a result, the proposed helical absorber shows a good potential due its reduced size and weight for the future designs of small capacity absorption chillers/heaters. (author)

  18. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  19. Specific absorbed fractions and S-factors for calculating absorbed dose to embryo and fetus

    International Nuclear Information System (INIS)

    The variation of specific absorbed fractions from maternal tissues to embryo/fetus is investigated for four different target masses and geometries. S-factors are calculated for selected radionuclides assumed to be distributed uniformly in fetal tissues represented by spheres from 1 mg to 4 kg. As an example, the dose to fetal tissues for iodine-131 and iron-59 is estimated based on human biokinetic data for various stages of pregnancy. 24 references, 4 tables

  20. Experimental investigation of damping force of twin tube shock absorber

    OpenAIRE

    Sandip K. Kadu; Milind S. Mhaske

    2014-01-01

    A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A), number of holes(B) and suspension velocity(C) were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by t...

  1. Absorbency properties of nonwoven hygenic peds in Turkish markets

    OpenAIRE

    Ağırgan, Mehtap

    2005-01-01

    ABSTRACT The absorbation features (degrees) of the most used hygenic pads in Turkish market have been studied. The baby diapers, hygienic pads and adult incontienents pads used in this project have been choosen as the one whichare most sold on the base of the sale amounts in Turkey. Besides the production analysis, width/thickness analysis liquid absorbation and several absorbency tests have been carried out and the final results have been shown in the form of graphics. The pads exami...

  2. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  3. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Science.gov (United States)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  4. Two-phase control absorber development program: out-reactor measurements with hoorizontal absorber elements

    International Nuclear Information System (INIS)

    The two-phase control absorber works on the principle that the neutron flux in a nuclear reactor can be regulated by changing the density of a two-phase fluid flowing through U-tubes in the reactor core. The concept is considered to be a strong candidate for use in future CANDU nuclear reactors with either vertical or horizontal pressure tubes. In addition to the experiments carried out previously on vertically oriented U-tubes and reported separately, a series of tests with horizontal U-tubes was performed. The results confirmed that U-tube orientation has no measurable effect on the performance of the two-phase control absorber concept. In particular, the measured pressure drops, mixture densities, fluid velocities and void propagation velocities, at given operating conditions, were identical in the two orientations, within experimental error. The results of the experiments and analyses were incorporated in a steady-state design code that was used in the conceptual design of a Two-Phase Absorber Control System for a CANDU-PHW-1250 power reactor. The experimental data are available separately as AECL-6532 Supplement. (auth)

  5. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    Science.gov (United States)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  6. Simulated mixed absorbers and effective atomic numbers for attenuation

    Indian Academy of Sciences (India)

    K Karunakaran Nair; N Ramachandran; K K Abdullah; K M Varier

    2006-09-01

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury and also for the simulated absorbers by rotating the targets. ORTEC HPGe and NaI(Tl) detectors were used for detection of -rays.The experimental results compare favourably with theoretical values derived from XCOM package and suggest the usefulness of the concept of effective atomic numbers and the utility of the rotating absorbers technique.

  7. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    CERN Document Server

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  8. Influence of the radiation absorbed by micro particles on the flame propagation and combustion regimes

    CERN Document Server

    Ivanov, M F; Liberman, M A

    2015-01-01

    Thermal radiation of the hot combustion products usually does not influence noticeably the flame propagating through gaseous mixture. the situation is changed drastically in the presence even small concentration of particles, which absorb radiation, transfer the heat to the surrounding unburned gaseous mixture by means of heat conduction, so that the gas phase temperature in front of the advancing flame lags that of the particles. It is shown that radiative preheating of unreacted mixture ahead of the flame results in a modest increase of the advancing flame velocity for a highly reactive gaseous fuel, or to considerable increase of the flame velocity in the case of a slow reactive mixture. The effects of radiation preheating as stronger as smaller the normal flame velocity. The radiation heat transfer can become a dominant mechanism compared with molecular heat conduction, determining the structure and the speed of combustion wave in the case of a small enough velocity of the advancing flame. It is shown tha...

  9. CMOS absorbance detection system for capillary electrophoresis

    International Nuclear Information System (INIS)

    This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p-n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems

  10. Design of a multiband terahertz perfect absorber

    Science.gov (United States)

    Dan, Hu; Hong-yan, Wang; Zhen-jie, Tang; Xi-wei, Zhang; Lin, Ju; Hua-ying, Wang

    2016-03-01

    A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region. Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).

  11. Liquid effluent treatment using inorganic absorbers

    International Nuclear Information System (INIS)

    The use of inorganic absorbers for the removal of a number of specified elements from aqueous waste streams has been studied. A worldwide review of the literature on the subject has been carried out and a number of processes identified at various stages of development, from the experimental to the fully developed industrial scale. The processes have been reduced to two major types; precipitation techniques, both seeded and unseeded and ion exchange. The chemical aspects of the use of such materials have been examined with regard to the processes and the nuclides in question. A comparative costing exercise has been carried out on typical processes examining plant, process and disposal costs, and has shown that one of the over-riding factors in deciding the economics of precipitation processes is the subsequent dewatering stage; because of the relatively low amounts of waste produced ion-exchange processes involving the use of columns have been found to have the lowest overall costs. Finally, a number of gaps in the present state of knowledge in this field have been identified and a number of recommendations are made. (author)

  12. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  13. 76 FR 60017 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement (SEIS) for the...

    Science.gov (United States)

    2011-09-28

    ... burnable absorber rods. The rods are inserted in the reactor fuel assemblies to absorb excess neutrons... Statement (SEIS) for the Production of Tritium in a Commercial Light Water Reactor AGENCY: National Nuclear... Tennessee Valley Authority (TVA) reactors using tritium-producing burnable absorber rods (TPBARs). In...

  14. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  15. A blast absorber test: measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den; Hof, J. van 't; Arkel, E. van

    2006-01-01

    A blast absorber test was conducted at the Aberdeen Test Centre from 13 to 17 June 2005. The test was set up to determine the absorbing and shielding effect of a gravel pile, of 1.5 meters high and 15 by 15 meters wide, on blasts from large weapons: e.g. armor, artillery or demolition. The blast was

  16. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.;

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...

  17. Photochromic And Thermochromic Pigments For Solar Absorbing-Reflecting Coatings

    Science.gov (United States)

    Novinson, Thomas

    1987-11-01

    Both photochromic and thermochromic compounds were synthesized and physical measurements were made to determine coefficients of relectance, absorbance and emission. The most interesting group of thermochromic compounds are related to silver tctraiodomercurate and the most interesting photochromic compounds are substituted benzoindolinopyrospirans. The synthesis and optical reflectance and absorbance properties of other classes of compounds are also reported.

  18. Absorbed fraction of electrons in human respiratory tract

    International Nuclear Information System (INIS)

    Absorbed fractions of electrons, defined as part of electron energy deposited in the target, were calculated for various combinations of source and targets in HRTM. In that propose source code for PENELOPE was developed while respirator tract was modeled according to ICRP66. Absorbed fractions were fitted with the function presented in the paper

  19. Review of LMFBR absorber development in DeBeNe

    International Nuclear Information System (INIS)

    The control rods design methods for LMFBRs, design criteria and choice of absorber materials are reviewed in presented paper. The results of the absorber rods material testing and its in-pile behaviour investigation as well as the programme of the future R and D work are also given

  20. Comparison of piezoelectronic networks acting as distributed vibration absorbers

    OpenAIRE

    Maurini, Corrado; Dell'Isola, Francesco; Del Vescovo, Dionisio

    2004-01-01

    International audience Electric vibration absorbers made of distributed piezoelectric devices for the control of beam vibrations are studied. The absorbers are obtained by interconnecting an array of piezoelectric transducers uniformly distributed on a beam with different modular electric networks. Five different topologies are considered and their damping performance is analysed and compared.

  1. Nylon shock absorber prevents injury to parachute jumpers

    Science.gov (United States)

    Mandel, J. A.

    1966-01-01

    Nylon shock absorbers reduce the canopy-opening shock of a parachute to a level that protects the wearer from injury. A shock absorber is mounted on each of the four risers between the shroud lines and the harness. Because of their size and location, they pose no problem in repacking the chute and harness after a jump.

  2. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  3. Desulfurizing absorbent for flue gas and its absorption mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new desulfurizing absorbent for flue gas, i.e., anorganic physical solvent of DMSO(dimethyl sulfoxide) mixed with arelatively small amount of chemical solvent(Mn2+) was studied.Compared with pure physical solvent of DMSO, the purificationefficiency of the new absorbent has been much improved. And itsabsorption and reaction mechanism are discussed.

  4. Effects of Root-Growing Space on Its Absorbing Characteristics

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-xing; LI Sheng-xiu

    2003-01-01

    Influences of root-growing space of maize upon root physiological characteristics, nutrient uptake and crop yields were studied under conditions with and without supply of water and N. Results showed that limitation of the root-growing space greatly affected root growth, decreased total root-absorbing area and TTC-reductive amounts. However, it obviously increased the root active-absorbing area, specific absorbing area (absorbing area per gram root weight) and specific active-absorbing area (actively absorbing area per gram root weight) in addition to promoting the TTC-reductive intensity. This clearly showed that plants were not passively tolerant to stress, but actively regulated their physiological metabolic processes, and strengthened their absorbing ability to increase water and nutrient uptake so that root injury by the environmental stress could be reduced. Supply of water and N stimulated root growth, increased root-absorbing area and activity, promoted nutrient uptake, and therefore increased crop yield and decreased the detrimental effects resulting from the limitation of roots-growing space.

  5. Radiation Synthesis and Characterization of Natural and Natural-Synthetic Hybrid Super Absorbent Polymers for Agricultural Applications. Chapter 19

    International Nuclear Information System (INIS)

    The experimental studies carried out in Hacettepe University, Laboratories of Radiation and Polymers Science (LRPS) in the past ten years, which focused mainly on the synthesis of synthetic and natural-synthetic super absorbent polymers in various irradiation conditions, are summarized in the first part of the presentation. Studies conducted on the following areas: (1) the controlled release of fertilizers and herbicides and the effect of the natural polymer type, (2) the neutralization degree of poly(acrylic acid), (3) the temperature and pressure on the swelling kinetics, and (4) the maximum water absorption capacity of the potential soil conditional hydrogels, were explained. The results were then compared with those obtained from commercial super absorbent polymers prepared through conventional techniques. In the third part of the presentation, basic and advanced techniques in the characterization of the network structure of super water absorbents were presented. (author)

  6. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  7. Absorber-evaporator unit for an absorption-refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Hallatt, R.J.; Rorschach, R.L.

    1965-01-26

    This low temperature absorption-refrigeration system uses an absorber-evaporator. A conduit is connected between the upper portion of the absorber and the lower portion of the evaporator to conduct inert gas from the absorber to the evaporator. A second conduit connects the upper portion of the evaporator to the lower portion of the absorber and a blower in this conduit circulates the inert gas through the closed system. By placing the blower between the evaporator ad the absorber, the pressure in the evaporator is maintained at a minimum so that the working temperature is as low as possible. The medium to be cooled by the refrigerant is circulated through a heat exchanger located within the evaporator, whereby the latent heat of vaporization of the liquid refrigerant is employed to cool the outside medium. (2 claims)

  8. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m2, and occurred 2 to 3 hours after the end of the pool fire. (author)

  9. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  10. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  11. Structure and Performance Analysis of Regenerative Electromagnetic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Longxin Zhen

    2010-12-01

    Full Text Available This paper analyzed the structure and principle of a regenerative electromagnetic shock absorber in detail. The innovative shock absorber resembles linear generator in principle and can generate electric power through the relative reciprocating motion between coil assembly and permanent magnet assembly. At the same time, the damping can remove discomfort caused by road roughness. The regenerated electric power can be recovered through battery. Analysis of magnetic flux density of the permanent magnet array of the innovative shock absorber was performed using ANSYS software based on the structure parameters given in the paper,then the performance parameters of the shock absorber was determined . Analysis and calculation results prove the viability of this shock absorber.

  12. Theory of patch-antenna metamaterial perfect absorbers

    Science.gov (United States)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  13. Multilayer metamaterial absorbers inspired by perfectly matched layers

    CERN Document Server

    Pastuszczak, Anna; Antosiewicz, Tomasz J; Kotynski, Rafal

    2014-01-01

    We derive periodic multilayer absorbers with effective uniaxial properties similar to perfectly matched layers (PML). This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML). We compare the spatial reflection spectrum of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional. This opens a route to create electromagnetic absorbers for real and not only numerical applications and as an example we introduce a layered absorber for the wavelength of $8$~$\\mu$m made of SiO$_2$ and NaCl. We also show that similar cylindrical core-shell nanostructures derived from flat multilayers also exhibit very good absorptive and reflective properties despite the different geometry.

  14. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  15. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Kishwar, E-mail: kknano@hotmail.com; Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  16. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    Science.gov (United States)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  17. Thin-film absorber for a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  18. Ultrathin planar broadband absorber through effective medium design

    Institute of Scientific and Technical Information of China (English)

    Dong Liu; Haitong Yu; Zhen Yang; Yuanyuan Duan

    2016-01-01

    Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material,fabrication,and system cost.Here,we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers.The absorber consists of two ultrathin absorbing dielectrics to designan effective absorbing medium,a transparent layer,and metallic substrate.Compared with previous studies,this strategy provides another dimension of freedom to enhance optical absorption;therefore,destructive interference can be realized over a broad spectrum.To demonstrate the power and simplicity of this strategy,we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge,10-nm-thick Ti,and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods.Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm.As an application example,we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 ℃,thus demonstrating its potential in solar thermal systems.The effective medium design strategy is general and allows material versatility,suggesting possible applications in real-time optical manipulation using dynamic materials.

  19. Interaction of inhalational anaesthetics with CO2 absorbents.

    Science.gov (United States)

    Baum, Jan A; Woehlck, Harvey J

    2003-03-01

    We review the currently available carbon dioxide absorbents: sodium hydroxide lime (=soda lime), barium hydroxide lime, potassium-hydroxide-free soda lime, calcium hydroxide lime and non-caustic lime. In general, all of these carbon dioxide absorbents are liable to react with inhalational anaesthetics. However, there is a decreasing reactivity of the different absorbents with inhalational anaesthetics: barium hydroxide lime > soda lime > potassium-hydroxide-free soda lime > calcium hydroxide lime and non-caustic lime. Gaseous compounds generated by the reaction of the anaesthetics with desiccated absorbents are those that threaten patients. All measures are comprehensively described to--as far as possible--prevent any accidental drying out of the absorbent. Whether or not compound A, a gaseous compound formed by the reaction of sevoflurane with normally hydrated absorbents, is still a matter of concern is discussed. Even after very high loading with this compound, during long-lasting low-flow sevoflurane anaesthesias, no clinical or laboratory signs of renal impairment were observed in any of the surgical patients. Finally, guidelines for the judicious use of different absorbents are given. PMID:12751549

  20. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  1. The rat bowel of β-asaron absorbs the research

    Institute of Scientific and Technical Information of China (English)

    QI Yue; JIA Dong; YOU Xian-min; ZOU Gui-xin; JIANG Hong

    2008-01-01

    Objective Study the β-asaron under the condition that the bowel each segment of rat and be worth in the diffent medicine density and pH of the absorption dynamics characteristic, as to it's the rat absorbs the part in the body and it absorbs the mechanism to carry on the study, for the further design β-asaron settle release the product to provide the living creature medicine learn the basis. Methods Apply the rat to the body to infuse to flow the bowel absorption experiment investigation and absorption dynamics characteristic;adopt the HPLC method measurement β-asaron is in rat body the bowel absorbs the medicine density within the reflux liquid. Results It absorb the quantity and β-asaron of the medicine in the reflux liquid, the density of β-asaron becomes the direct proption, the absorption speed constant of the medicine is basic and constant within the scope of the 19 μg·mL-1- 57 μg·mL-1; In the pH is 5.6; 6.9; 8.0 three kinds of dissimilarities lie the absorption velocity constant of the quality and absorb the of percentage and also did not show the difference of salience;β-asaron is in the small intestines the lower part absorb better, absorbthe velocity to press to return to bowel, ileum, jejunum, duodenum, colon to descend one by one in order, absorb the velocity constant one by one in order is 0.402, 0.396, 0.385, 0.325 h-1. Conclusions β-asaron absorbs to present a class absorption dynamics characteristic in the bowel way, absorbing the mechanism as passive absorption; in order to return to ileum and jejunums, main absorption part there is certain absorption in the colon, too.

  2. Metamaterial perfect absorber based on artificial dielectric "atoms".

    Science.gov (United States)

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence. PMID:27607650

  3. Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology

    Science.gov (United States)

    Lee, Dongju; Sung, Hyuk-Kee; Lim, Sungjoon

    2016-07-01

    In this study, a flexible metamaterial (MM) absorber was designed at 0.1 THz and fabricated using inkjet printing technology. The unit cell of the MM absorber was designed using a finite element method-based full-wave simulation. The unit cell comprised square rings, and it was printed with silver nanoparticle ink on flexible Kapton polyimide film. The fabrication processes were performed using a material printer. The absorber's reflection coefficient was measured using a vector network analyzer and a WR-10 waveguide. The absorption ratio was 93.5 % at 0.102 THz. Therefore, we demonstrated the possibility of inkjet printing at a subterahertz band.

  4. The optimisation of absorber thickness for neutron Soller slit collimators

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. [Victoria Univ. of Technol., Melbourne (Australia). Sch. of Commun. and Inf.

    1998-08-11

    When constructing neutron Soller slit collimators an absorbing layer is applied to the blades. Choice of an optimum absorber thickness becomes more important as the collimator is made shorter or the neutron absorption becomes poorer as occurs for short wavelength neutrons. A quality factor for the performance of Soller slit collimators is proposed and used to determine the optimum thickness of the absorbing layer. The solution to this problem is non analytic but easily coded as a computer program. Sample calculations of optimum thickness are described. A simple formula for the approximate optimum thickness is given. (orig.) 3 refs.

  5. Solar absorber material stability under high solar flux

    Science.gov (United States)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  6. Radio-absorbing properties of nickel-containing schungite powder

    Science.gov (United States)

    Lyn'kov, L. M.; Borbot'ko, T. V.; Krishtopova, E. A.

    2009-05-01

    A nickel-containing shungite powder has been synthesized by means of chemical reduction from aqueous solutions. The chemical composition and radio-absorbing properties of this powder have been studied.

  7. Evaluation of electromagnetic absorbing capacity of materials in foundry industry

    Directory of Open Access Journals (Sweden)

    D. Nowak

    2010-01-01

    Full Text Available In the paper, a research on determining the standing wave ratio as a measure of electromagnetic absorbing capacity of moulding materials is presented. Preliminary tests performed using a microwave strip line showed that high-silica, chromite and magnesite moulding sands are characterised by low absorbing capacity of microwaves. It was demonstrated that microwave absorbing capacity is significantly affected by chemical compounds included in the examined substrates. It was found that use of a microwave strip line permits precise determining characteristic microwave absorbing capacities of various moulding materials and thus their suitability for microwave drying/hardening of moulds and cores or for other foundry processes. Such a microwave drier can be applied for identifying mass components and for determining e.g. base granularity by means of precisely determined reflection ratios |Γ| and positions of minimum signal values.

  8. Angular solar absorptance of absorbers used in solar thermal collectors.

    Science.gov (United States)

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  9. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...

  10. New HI 21-cm absorbers at low and intermediate redshifts

    CERN Document Server

    Zwaan, M A; Péroux, C; Murphy, M T; Bouché, N; Curran, S J; Biggs, A D

    2015-01-01

    We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0180 K. A subset of our systems were also searched for OH absorption, but no detections were made.

  11. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  12. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  13. Integrated microcalorimeters using Ir TES and Sn mushroom absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, M. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States)]. E-mail: Galeazzi@physics.miami.edu; Bogorin, D. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States); Chen, C. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States)

    2006-04-15

    University of Miami has recently started a program to fabricate fully integrated microcalorimeter arrays using iridium thin films as Transition Edge Sensors (TES) and tin mushroom absorbers. We present our preliminary results in both areas.

  14. Experimental investigation of damping force of twin tube shock absorber

    Directory of Open Access Journals (Sweden)

    Sandip K. Kadu

    2014-09-01

    Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.

  15. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  16. Distribution of Doppler Redshifts of Associated Absorbers of SDSS Quasars

    Indian Academy of Sciences (India)

    Cai-Juan Pan; Zhi-Fu Chen

    2013-12-01

    Doppler redshifts of a sample of Mg II associated absorbers of SDSS DR7 quasars are analysed. We find that there might be three Gaussian components in the distribution of the Doppler redshift. The first Gaussian component, with the peak being located at Dopp = -0.0074, probably arises from absorbers with outflow histories observed in the direction close to jets of quasars. The second Gaussian component, with the peak being located at Dopp = -0.0017, possibly arises from absorbers with outflow histories observed in the direction far away from jets of quasars. Whereas, the third Gaussian component, with the peak being located at Dopp = -0.0004, might arise from the random motion of absorbers with respect to quasars.

  17. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  18. Perfect absorbers on curved surfaces and their potential applications.

    Science.gov (United States)

    Alaee, Rasoul; Menzel, Christoph; Rockstuhl, Carsten; Lederer, Falk

    2012-07-30

    Recently perfect metamaterial absorbers triggered some fascination since they permit the observation of an extreme interaction of light with a nanostructured thin film. For the first time we evaluate here the functionality of such perfect absorbers if they are applied on curved surfaces. We probe their optical response and discuss potential novel applications. Examples are the complete suppression of back-scattered light from the covered objects, rendering it cloaked in reflection, and their action as optical black holes. PMID:23038388

  19. Determination of neutron absorbed doses in lithium aluminates.

    Science.gov (United States)

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  20. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  1. The Nature of Weak MgII Absorbing Structures

    OpenAIRE

    Milutinovic, Nikola; Rigby, Jane R.; Masiero, Joseph R.; Lynch, Ryan S.; Palma, Chris; Charlton, Jane C.

    2005-01-01

    We consider geometries and possible physical models for weak low ionization absorbers based on the relative incidence of low and high ionization absorption systems. We found a total of 16 metal-line systems, with low and/or high ionization absorption detected in our survey of weak low ionization absorption systems from the archive of HST/STIS data. The weak low ionization absorbers trace an abundant population of metal-enriched regions (close to solar metallicity). Generally, models show that...

  2. Research On Solar Energy Collector With Cell Polycarbonate Absorber

    OpenAIRE

    Putāns, Henriks; Zagorska, Viktorija; Ziemelis, Imants; Jesko, Zanis

    2015-01-01

    A flat plate solar collector with cell polycarbonate absorber and transparent cover has been made and its experimental investigation carried out. The collector consists of a wooden box, into which, a layer of heat insulation with a mirror film and 4 mm thick cell polycarbonate sheet, as the absorber, are placed. The coherence between collector’s efficiency, heat carrier and ambient air temperature, as well as intensity of the solar radiation and heat power in the experimental investigation ha...

  3. Design of integration-ready metasurface-based infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán [Laboratorio de Bajas Temperaturas, Instituto Balseiro and Centro Atómico Bariloche, Bariloche 8400 (Argentina)

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  4. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  5. Ceramic material which absorbs neutrons and its uses

    International Nuclear Information System (INIS)

    A ceramic material, which absorbs thermal and epithermal neutrons even at high temperatures, consists of a basic material absorbing neutrons and 5 to 50% by weight relative to the total weight of the material of at least one of the hydrides of zirconium, yttrium and/or at least one of the rare earth elements, and possibly a binder, and the usual fillers and auxiliaries. (orig.)

  6. Nitrogen abundances in damped Lyalpha absorbers

    Science.gov (United States)

    Zafar, T.; Centurión, M.; Molaro, P.; Péroux, C.; D'Odorico, V.; Vladilo, G.

    Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. Damped Lyalpha (DLA) and sub-DLA systems with typical metallicities of -3.0≲ Z/Z⊙ ≲ -0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the European Southern Observatory (ESO) Ultraviolet Visual Echelle Spectrograph (UVES) advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha -elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha ] behaviour: three-quarter systems show a mean value of [N/alpha ] =-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha ] = -1.43 with a lower dispersion of 0.13 dex. The high [N/alpha ] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha ] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha ] groups around [N/H] ≃-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H] <-2.5 would provide more clues.

  7. Simulation of terahertz metamaterial absorbers with microbolometer structure

    Science.gov (United States)

    Ding, Jie; Wang, Jun; Guo, Xiaopei; Jiang, Yadong; Fan, Lin

    2014-09-01

    The metamaterial absorber in terahertz (THz) region, with the metal pattern layer/dielectric spacer/metal reflective layer sandwich structure, is characterized in this paper. The principle of metamaterial absorber absorbing terahertz wave was introduced firstly. The top layer of metamaterial absorber is a periodically patterned with metallic subwavelength structure, which also serves as an electric resonator. The bottom layer is a thick metal plane, which is used to reduce THz wave transmittance. The dielectric layer between two metallic layers results in magnetic resonance and the resonance depends on the thickness and dielectric constant of the dielectric layer. The absorption of metamaterial absorber to terahertz wave was simulated with CST software. The relationship between the size of the metamaterial structure and absorption frequency was analyzed with the simulation results. The results indicate that the absorption frequency is affected by the cell constant and geometric structure of top metal pattern, and absorption rate is related to both the thickness of dielectric layer and the size of resonator. In the end, the possibility of integrating the metamaterial absorber with micro-bridge structure to design room temperature terahertz detector was discussed, and the manufacturing process was introduced about room temperature terahertz detector with high THz wave absorption rate.

  8. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  9. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  10. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  11. Ammonia-water absorption in vertical tubular absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime; Rodriguez, Cristobal; Vazquez, Manuel [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Campus Lagoas-Marcosende, No 9, 36200 Vigo (Spain)

    2005-03-01

    This paper presents a detailed analysis of the heat and mass transfer processes during the absorption of ammonia into water in a co-current vertical tubular absorber. The absorber configuration is of the shell and tubes type. The absorption process progresses as the vapour and liquid contact inside the tubes. Water is used as the absorber cooling medium. A differential mathematical model has been developed on the basis of mass and energy balances and heat and mass transfer equations, in order to provide further understanding of the absorber behaviour. The model takes into account separately for the churn, slug and bubbly flow patterns experimentally forecasted in this type of absorption processes inside vertical tubes and considers the simultaneous heat and mass transfer processes in both liquid and vapour phases, as well as heat transfer to the cooling medium. The model equations have been solved using the finite-difference method. Results obtained for specific data are depicted to show local values of the most important variables all along the absorber length. Parametric analyses have been performed to show the influence of design parameters and operating conditions on the absorber performance. The effect of the heat and mass transfer coefficients has also been evaluated. (authors)

  12. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  13. Emerging Market Firms’ Acquisitions in Advanced Markets

    DEFF Research Database (Denmark)

    Stucchi, Tamara

    2012-01-01

    markets. These antecedents can influence emerging market firms’ capacities to absorb or exploit technological and/or marketing advantages in advanced markets. In order to be successful, emerging market firms have to undertake those upmarket acquisitions that best “fit” their antecedents. Four mutually......This study draws upon the resource-based view and the institution-based view of the firm to provide a comprehensive overview of how different resource-, institution- and industry-based antecedents affect the motivations guiding the acquisitions that emerging market firms undertake in advanced...... exclusive acquisition strategies are derived, which are then illustrated using examples of Indian firms’ acquisitions in advanced markets....

  14. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    Science.gov (United States)

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53). PMID:23152147

  15. Determining factors for high performance silicone rubber microwave absorbing materials

    International Nuclear Information System (INIS)

    Silicone rubber microwave absorbing materials (RMAMs) based on ferrite as the major absorbent were prepared by the mechanical blending method. The determining factors for the complex permittivity, complex permeability, and reflectivity of RMAM were thoroughly investigated with various samples including different crystal structures of Ba-ferrite (M-type, W-type, and Y-type), the ferrite with doped elements (Ba, Sr), the materials' thickness, the combination ratio of ferrite and carbonyl iron. The effects of surface modification and loading amount of ferrite on the mechanical properties, processing performance, and absorbing property of RMAM were also assessed. The results show that W-type Ba-ferrite based RMAM exhibits better absorbing property at high frequencies (8-18 GHz) than the other two barium ferrites (M-type and Y-type) based ones, and the absorbing property of RMAM based on Sr-ferrite is best. As the thickness of RMAM and the amount of absorbents increase, the absorption peak moves toward low frequency, the absorption frequency bandwidth is narrowed, and the reflectivity first decreases and later increases. The optimum thickness is 1.5-1.7 mm, and the amount of ferrite is 450 parts per hundreds of rubber (phr). Surface modification of the absorbent with silane coupling agent could improve the mechanical properties and processing performance of RMAM. It is concluded that there will be a synergistic effect when carbonyl iron (CI) is used in combination with Sr-ferrite (Sr-W) in an appropriate proportion. When the total volume fraction of absorbents is 51%, the optimum ratio of Cl to Sr-W is 17:34, the absorption frequency bandwidth (<-10 dB) is about 8 GHz, and the absorption area is -99 dB. - Highlights: → W-type ferrite exhibits better absorbing property than M-type and Y-type at 8-18 GHz. → Sr-W based RMAM has best absorbing property of Ba- and Sr-ferrite. → The optimum thickness of RMAM is 1.5-1.7 mm, and the amount of ferrite is 450 phr.

  16. Advance care directives

    Science.gov (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  17. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  18. Systematic review of absorbable vs non-absorbable sutures used for the closure of surgical incisions

    Institute of Scientific and Technical Information of China (English)

    Muhammad; S; Sajid; Malcolm; R; Mc; Fall; Pauline; A; Whitehouse; Parv; S; Sains

    2014-01-01

    AIM: To report a systematic review of published randomized controlled trials(RCTs) investigating the role of absorbable suture(AS) against non-AS(NAS) used for the closure of surgical incisions.METHODS: RCTs investigating the use of AS vs NAS for the closure of surgical incisions were statistically analysed based upon the principles of meta-analysis and the summated outcomes were represented as OR.RESULTS: The systematic search of medical literature yielded 10 RCTs on 1354 patients. Prevalence of wound infection(OR = 0.97; 95%CI: 0.56, 1.69; Z = 0.11; P = 0.92) and operative morbidity(P = 0.45) was comparable in both groups. Nonetheless, the use of AS lead to lower risk of wound break-down(OR = 0.12; 95%CI: 0.04, 0.39; Z = 3.52; P < 0.0004).CONCLUSION: This meta-analysis of 10 RCTs demonstrates that the use of AS is similar to NAS for skin closure for surgical site infection and other operative morbidities. AS do not increase the risk of skin wound dehiscence,rather lead to a reduced risk of wound dehiscence compared to NAS.

  19. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  20. Absorber performance of a water/lithium-bromide absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guozhen [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China)], E-mail: xieguozhen@bucea.edu.cn; Sheng Guogang [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China); Bansal, Pradeep Kumar [Department of Mechanical Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Li, Guang [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China)

    2008-09-15

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure.

  1. Absorber performance of a water/lithium-bromide absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guozhen; Sheng, Guogang; Li, Guang [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China); Bansal, Pradeep Kumar [Department of Mechanical Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2008-09-15

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure. (author)

  2. Inferring Absorbing Organic Carbon Content from AERONET Data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  3. Optimally tuned vibration absorbers to control sound transmission

    Science.gov (United States)

    Grissom, Michael; Belegundu, Ashok; Koopmann, Gary

    2002-05-01

    A design optimization method is proposed for controlling broadband vibration of a structure and it concomitant acoustic radiation using multiple-tuned absorbers. A computationally efficient model of a structure is developed and coupled with a nonlinear optimization search algorithm. The eigenvectors of the original structure are used as repeated basis functions in the analysis of the structural dynamic re-analysis problem. The re-analysis time for acoustic power computations is reduced by calculating and storing modal radiation resistance matrices at discrete frequencies. The matrices are then interpolated within the optimization loop for eigenvalues that fall between stored frequencies. The method is demonstrated by applying multiple-tuned vibration absorbers to an acoustically-excited composite panel. The absorber parameters are optimized with an objective of maximizing the panel's sound power transmission loss. It is shown that in some cases the optimal solution includes vibration absorbers that are tuned very closely in frequency, thus acting effectively as a broadband vibration absorber (BBVA). The numerical model and design optimization method are validated experimentally, and the BBVA is found to be an effective noise abatement tool.

  4. Colorful solar selective absorber integrated with different colored units.

    Science.gov (United States)

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage. PMID:26832602

  5. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  6. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    Science.gov (United States)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  7. Evaluation of absorber worth measurements in SNEAK 12C2

    International Nuclear Information System (INIS)

    Due to the difficulties encountered in former evaluations of the absorber experiments in SNEAK 12C, a re-evaluation had been performed. It was found that the difficulties were caused by the use of erroneous number densities for the absorbers on one side and by an incorrect modelling of the buffer and driver zones, surrounding the test zone, on the other. After correction of the absorber number densities and by application of three-dimensional calculational methods, consistent results could be obtained. The calculation-to-experiment values (C/E) are now in the range of 0.85 to 0.90 and are sufficiently close to the values for the uranium core SNEAK 12A (0.89 to 0.93)

  8. A checkerboard selective absorber with excellent spectral selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: optyang@zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); School of Electrical, Computer, and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Mo, Lei; Chen, Tuo [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Forsberg, Erik [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, JORCEP, Roy Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2015-11-14

    A selective absorber with excellent spectral selectivity is proposed and analyzed. The absorber is based on a germanium (Ge) checkerboard on top of a tantalum (Ta) substrate. At wavelengths shorter than the 1.2 μm cutoff, a very high absorption is achieved due to strong cavity resonances in the Ge nanosquares, and their interactions with adjacent nanocavities and the bottom Ta substrate. At longer wavelengths, absorption is greatly suppressed due to destructive interference between the transparent checkerboard layer and the highly reflective Ta substrate. To better describe the superior selectivity of our configuration, a new figure of merit (FOM) is introduced. We observe a FOM value of 0.88 compared to 0.69 for its planar counterpart. We also conduct a thermal analysis to verify the excellent selectivity of our absorber. A high temperature can be achieved and maintained, promising good potential for applications in solar thermophotovoltaic systems.

  9. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  10. An effective absorbing boundary algorithm for acoustical wave propagator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, Berenger's perfectly matched layer (PML) absorbing boundary condition for electromagnetic waves is introduced as the truncation area of the computational domain to absorb one-dimensional acoustic wave for the scheme of acoustical wave propagator (AWP). To guarantee the efficiency of the AWP algorithm, a regulated propagator matrix is derived in the PML medium.Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustraze the efficiency of the combination of PML and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the PML configurations are also discussed.

  11. Design of electromagnetic shock absorbers for automotive suspensions

    Science.gov (United States)

    Amati, Nicola; Festini, Andrea; Tonoli, Andrea

    2011-12-01

    Electromechanical dampers seem to be a valid alternative to conventional shock absorbers for automotive suspensions. They are based on linear or rotative electric motors. If they are of the DC-brushless type, the shock absorber can be devised by shunting its electric terminals with a resistive load. The damping force can be modified by acting on the added resistance. To supply the required damping force without exceeding in size and weight, a mechanical or hydraulic system that amplifies the speed is required. This paper illustrates the modelling and design of such electromechanical shock absorbers. This paper is devoted to describe an integrated design procedure of the electrical and mechanical parameters with the objective of optimising the device performance. The application to a C class front suspension car has shown promising results in terms of size, weight and performance.

  12. Characteristics of New-type Energy Absorber for Vehicle Collision

    Institute of Scientific and Technical Information of China (English)

    XU Qing-xin; SHEN Rong-ying; ZHOU Hai-ting

    2008-01-01

    A new type energy absorber was introduced, which is composed of thousands of thin ring plates with different diameters. Because it can switch the impact to thousands of shearing actions among thin ring plates inside the absorber, the impact energy is decentralized and dissipated gradually, the impact acting time is extended and the peak of acceleration is reduced obviously. Numerical simulations by finite element method (FEM) coupled with smoothed particle hydrodynamics (SPH) method were preformed to predict the energy absorption characteristics. Energy absorption ability with different impact velocities was studied and the effects of thickness and material of ring plates were discussed. The sled crash test was carried out to validate the result of simulations. The new type absorber is effective for collision that impact velocity is lower than 40 km/h.

  13. Scattering properties of heterogeneous mineral particles with absorbing inclusions

    International Nuclear Information System (INIS)

    We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented polydisperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz–Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures. - Highlights: • Scattering and absorption characteristics of heterogeneous particles are studied. • Computations are performed using the superposition T-matrix method. • Internal aggregation modifies optical properties of heterogeneous mixtures

  14. An Elastic Absorber Theory for a Thin Fabric Sheet

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-nan

    2007-01-01

    The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model is only useful for a quanlitative understanding of effects in a porous material but not for calculation of the acoustical properties of real absorbent. In this paper, a new vibration sound absorption theory which is totally different from classical theory was put forward. The specific acoustic impedance of fiber layers have been derived from the membrane vibration equation and the sound absorption coefficient calculated agree with test results. The new theory can explain the phenomenon that thin fiber layers exhibit less sound absorption coefficient when it was as the cover fabric of sound absorber, but it is mare efficient to sound absorption when it was hang as the curtains or have back cavity behind it.

  15. Constraining MHD Disk-Winds with X-ray Absorbers

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  16. A principle of similarity for nonlinear vibration absorbers

    CERN Document Server

    Habib, Giuseppe

    2016-01-01

    This paper develops a principle of similarity for the design of a nonlinear absorber, the nonlinear tuned vibration absorber (NLTVA), attached to a nonlinear primary system. Specifically, for effective vibration mitigation, we show that the NLTVA should feature a nonlinearity possessing the same mathematical form as that of the primary system. A compact analytical formula for the nonlinear coefficient of the absorber is then derived. The formula, valid for any polynomial nonlinearity in the primary system, is found to depend only on the mass ratio and on the nonlinear coefficient of the primary system. When the primary system comprises several polynomial nonlinearities, we demonstrate that the NLTVA obeys a principle of additivity, i.e., each nonlinear coefficient can be calculated independently of the other nonlinear coefficients using the proposed formula.

  17. MAGIICAT I. The MgII Absorber-Galaxy Catalog

    CERN Document Server

    Nielsen, Nikole M; Kacprzak, Glenn G; Murphy, Michael T

    2013-01-01

    We describe the MgII Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 0.3 Angstroms], low redshift (z zmed), where zmed = 0.359 is the median galaxy redshift. We find no differences between the luminosity function subsamples, except for a ~0.5 magnitude dimming with decreasing redshift in the B-band for weak absorbing M_B < -18 galaxies. Rest-frame color B-K correlates with M_K at the 8 sigma level for the whole sample but is driven by the strong absorbing, high redshift subsample (6 sigma). We find possible faint-end "roll offs" in both the B- and K-band luminosity functions. Using M_K as a proxy for stellar mass, we infer that in low stellar mass galaxies, MgII absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  18. Infrared imaging video bolometer with a double layer absorbing foil

    International Nuclear Information System (INIS)

    The object of the present paper is an infrared video bolometer with a bolometer foil consisting of two layers: the first layer is constructed of radiation absorbing blocks and the second layer is a thermal isolating base. The absorbing blocks made of a material with a high photon attenuation coefficient (gold) were spatially separated from each other while the base should be made of a material having high tensile strength and low thermal conductance (stainless steel). Such a foil has been manufactured in St. Petersburg and calibrated in NIFS using a vacuum test chamber and a laser beam as an incident power source. A finite element method (FEM) code was applied to simulate the thermal response of the foil. Simulation results are in good agreement with the experimental calibration data. The temperature response of the double layer foil is a factor of two higher than that of a single foil IR video bolometer using the same absorber material and thickness. (author)

  19. Terahertz metamaterials perfect absorbers for sensing and imaging

    Science.gov (United States)

    Wilbert, David S.; Hokmabadi, Mohammad P.; Martinez, Joshua; Kung, Patrick; Kim, Seongsin M.

    2013-02-01

    Devices operating at THz frequencies have been continuously expanded in many areas of application and major research field, which requires materials with suitable electromagnetic responses at THz frequency ranges. Unlike most naturally occurring materials, novel THz metamaterials have proven to be well suited for use in various devices due to narrow and tunable operating ranges. In this work, we present the results of two THz metamaterial absorber structures aiming two important device aspects; polarization sensitivity and broad band absorption. The absorbers were simulated by finite element method and fabricated through the combination of standard lift-off photolithography and electron beam metal deposition. The fabricated devices were characterized by reflection mode THz time domain spectroscopy. The narrow band absorber structures exhibit up to 95% absorption with a bandwidth of 0.1 THz to 0.15 THz.

  20. Neutron absorbed dose determination by calculations of recoil energy.

    Science.gov (United States)

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  1. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine a......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement.......The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine...

  2. Preparation and Characterization of Super Absorbent Resin from Natural Cellulose

    Institute of Scientific and Technical Information of China (English)

    李杰; 马凤国; 谭惠民

    2003-01-01

    The grafting polyacrylamide onto wood pulp cellulose (cell-g-PAM) was performed with cerous ammonium nitrate as the initiator and hydrolyzed to produce the super absorbent resin. The FTIR shows that the polyacrylamide is grafted on the cellulose. After hydrolyzation, part of acrylamino groups are transformed into carboxyl groups. The XRD analysis shows that the graft polymerization occurred at the amorphous section and the surface of the crystal section of cellulose. The SEM graph reveals that there is a layer of polymer on the surface of cellulose fiber and the fibril structure of the cellulose surface is covered. After hydrolyzation, the surface of the product is different from that of cell-g-PAM's and the surface is scraggy. The technical conditions to prepare high water absorbent resin were confirmed. Through the radical graft copolymerization, the high water absorbent resin can be produced from wood pulp cellulose.

  3. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  4. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  5. Energy Deposition and Radiological Studies for the LBNF Hadron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tropin, I. S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Eidelman, Y. I. [Euclid Techlabs LLC., Cleveland, OH (United States)

    2015-06-25

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  6. Energy deposition and radiological studies for the LBNF Hadron Absorber

    CERN Document Server

    Rakhno, I L; Tropin, I S; Eidelman, Y I

    2015-01-01

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  7. The dynamics analysis of a ferrofluid shock absorber

    Science.gov (United States)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-03-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology.

  8. Preparation of A New Type of Stress-absorbed Material

    Institute of Scientific and Technical Information of China (English)

    WU Shao-peng; YANG Tao; YUAN Hai-qing

    2004-01-01

    Neoprene latex modified emulsified bitumen and fine aggregate are used to prepare a new type of stress-absorbed material, which has strong ability of anti-reflective cracking on asphalt concrete over layer-constructed upon a semi-rigid type base course or cement concrete pavement block. Experimental results demonstrate the stress-absorbed material have excellent mechanical properties including a low modulus of elasticity, high ultimate tensile stress and strain, and a strong distortion ability. Stress concentration in asphalt over layer originated by temperature changes and traffic loads can be alleviated.

  9. Bistability By Self-Reflection In A Saturable Absorber

    Science.gov (United States)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  10. Photophoretic trampoline - Interaction of single airborne absorbing droplets with light

    CERN Document Server

    Esseling, Michael; Alpmann, Christina; Denz, Cornelia

    2012-01-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids - just like their solid counterparts - can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  11. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  12. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  13. Integrity of neutron-absorbing components of LWR fuel systems

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs.

  14. ANALYSIS OF THE DEFLECTION OF REEDS INAUTOMOTIVE HYDRAULIC SHOCK ABSORBERS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The deformation of reeds in automotive hydraulic shock absorbers is analyzed with the finite element method Combination of different thick reeds mounted on different supports is studied The computational results show that deformation of the overlapped reeds is not always equal to the sum of deflection of single reed under any conditions Experimental results prove computational results to be correct and computational method effective The method of analysis and view of point can provide reference to the design and manuf acture of hydraulic shock absorbers using reeds

  15. Design of Absorbing Wave Maker based on Digital Filters

    DEFF Research Database (Denmark)

    Christensen, Morten; Frigaard, Peter

    An absorbing wave maker operated by means of on-line signals from digital FIR filters is presented. Surface elevations are measured in two positions in front of the wave maker. The reflected wave train is seperated by the sum of the incident and reflected wave trains by means of digital filtering...... and subsequent superposition of the measured surface elevations. The motion of the wave paddle required to absorb reflected waves is determined and added to the original wave paddle control signal. Irregular wave tests involving test structures with different degrees of reflection show that excellent absorption...

  16. Brown carbon: a significant atmospheric absorber of solar radiation?

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2013-09-01

    Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC. Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE, increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0 for strongly (moderately absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3% at 550 nm and 56% (38% at 380 nm for strongly (moderately absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly inserts a warming effect at the top of the atmosphere (TOA (0.04 to 0.11 W m−2, while the effect at the surface is a reduction (−0.06 to −0.14 W m−2. Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2 to warming (+0.025 W m−2. Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.

  17. Extending the Bandwidth of Electric Ring Resonator Metamaterial Absorber

    Institute of Scientific and Technical Information of China (English)

    LUO Hao; WANG Tao; GONG Rong-Zhou; NIE Yan; WANG Xian

    2011-01-01

    An efficient method is proposed to extend the bandwidth of a metamaterial absorber with multi-resonance structure. The basic unit cell of a metamaterial absorber consists of the electric ring resonator, dielectric substrate (FR-4)and split-wire. By assembling five sandwiched structures with different geometric dimensions into a unit cell, we obtain the superposition of five different absorption peaks.Finally the bandwidth of metamaterial absorption is extended and the full width at half maximum is up to 1.3 GHz. The simulated and experimental results are consistent.

  18. Highly effective metal vapor absorbents based on carbon nanotubes

    Science.gov (United States)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  19. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali

    2012-01-01

    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  20. A randomised controlled trial of absorbable versus non-absorbable sutures for skin closure after open carpal tunnel release.

    LENUS (Irish Health Repository)

    Theopold, C

    2012-05-01

    We compared the aesthetic outcome of scars after closure of open carpal tunnel incisions with either absorbable 4-0 Vicryl Rapide or non-absorbable 4-0 Novafil. Patients were recruited in a randomized controlled trial and scars were scored at 6 weeks using a modified Patient and Observer Scar Assessment Scale. Scores demonstrated differences only for pain, vascularity and cross-hatching between both groups, though none of these were statistically significant. The dissolving and falling out of Vicryl Rapide was significantly more comfortable than removal of 4-0 Novafil sutures, assessed on a numerical analogue scale. There was no difference in infection rate between both study groups, supporting overall the use of Vicryl Rapide for the closure of palmar hand incisions, in light of the convenience and cost savings associated with absorbable sutures.

  1. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  2. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  3. Development of the FracTherm absorber - simulations and experiments; Entwicklung des FracTherm-Absorbers - Simulationen und Experimente

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, M. [Fraunhofer Inst. fuer Solare Energiesysteme, Freiburg (Germany)

    2005-07-01

    The energy efficiency of a solar absorber is strongly influenced by the flow of the heat transfer fluid. In order to obtain a high thermal efficiency (expressed by a high collector efficiency factor F'), the volume flow distribution should be uniform all over the absorber. Moreover, the pressure drop should be low in order to reduce the primary energy which is needed to drive the pump. Conventional absorber designs often show disadvantages (e.g. high pressure drop for serial connection, non-uniform flow distribution for parallel connection). This paper describes an alternative, ''bionic'' approach with a multiple branched, ''fractal'' channel design for solar absorbers. The aim of a current research work, which is sponsored by the Scholarship Programme of the German Federal Environmental Foundation (DBU), is to compare these structures with conventional ones concerning the pressure drop and the thermal efficiency. In order to achieve a fractal channel design on a given area, an algorithm (patent pending) and a simulation programme called FracTherm were developed. FracTherm allows to calculate the volume flow distribution, the pressure drop as well as the distribution of the collector efficiency factor F' and the fluid temperature. The simulations show that rather high F' values (about 0.97) can be expected (water; about 50 l/(m{sup 2}h)). Flow experiments with ink and thermography with an absorber model also revealed a uniform flow distribution and indicate a high thermal efficiency. Three aluminium test absorbers (590 mm x 1000 mm) were built by the Pechiney Rhenalu Chambery Company using the rollbond process. (orig.)

  4. Fission life-time calculation using a complex absorbing potential

    Directory of Open Access Journals (Sweden)

    Scamps Guillaume

    2016-01-01

    Full Text Available A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.

  5. UV-absorbing compounds in subarctic herbarium bryophytes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)]. E-mail: satu.huttunen@oulu.fi; Lappalainen, N.M. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland); Turunen, J. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A{sub 280-320nm}) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time.

  6. ABSORBING BOUNDARY TECHNIQUE FOR OPEN CHANNEL FLOWS. (R825200)

    Science.gov (United States)

    An absorbing boundary condition is formulated and applied to the one-dimensional open channel flow equations in conjunction with an explicit MacCormack scheme. The physical flow domain has been truncated by introducing an artificial pseudo-boundary. By using an appropriate bounda...

  7. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-09-01

    Full Text Available To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT and activated partial thromboplastin time (APTT blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds.

  8. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  9. DESIGN METHOD OF MAGNETORHEOLOGICAL FLUID SHOCK ABSORBER FOR CAR SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    LIAO Changrong; ZHANG Honghui; YU Miao; CHEN Weimin

    2008-01-01

    The Bingham constitutive model, which is previously used in depiction of magnetorheological (MR) fluids rheological behaviors for design devices, exhibits discontinuous characteristics in representation of pre-yield behaviors and post-yield behaviors. A Biviscous constitutive model is presented to depict rheological behaviors of MR fluids and design automotive shock absorber. Quasi-static flow equations of MR fluids in annular channels are set theoretically up based on Navier-Stokes equations and several rational simplifications are made. And both flow boundary conditions and flow compatibilities conditions are established. Meantime, analytical velocity profiles of MR fluids though annular channels are obtained via solution of the quasi-static flow equations using Biviscous constitutive model. The prediction methodology of damping force offered by MR fluid shock absorber is formulated and damping performances are predicated in order to determine design parameters. MR fluid shock absorber for Mazda 323 car suspension is designed and fabricated in Chongqing University, China. Measurements from sinusoidal displacement cycle by Shanchuan Shock Absorber Ltd. of China North Industry Corporation reveal that the analytical methodology and design theory are reasonable.

  10. Ultra-broad band absorber made by tungsten and aluminium

    Science.gov (United States)

    Wang, Wei; Zhao, Ding; Li, Qiang; Qiu, Min

    2016-01-01

    A broadband absorber comprising tungsten cubic arrays, a alumina layer and a tungsten film, is numerically and experimentally investigated, which exhibits near-unity absorption of visible and near-infrared light from 400 nm to 1150 nm. Benefiting from high melting points of tungsten and alumina, this device has great application potential in solar cells and thermal emission.

  11. Role of the Absorbing Area in Chaotic Synchronization

    DEFF Research Database (Denmark)

    Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.;

    1998-01-01

    When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area...... for the emergence of local vs global riddling and for controlling the dynamics, once synchronization breaks down....

  12. The warm absorber in NGC 5548 : the lean years

    NARCIS (Netherlands)

    Detmers, R.G.; Kaastra, J.S.; Costantini, E.; McHardy, I.M.; Verbunt, F.W.M.

    2008-01-01

    We study the variability of the warm absorber and the gas responsible for the emission lines in the Seyfert 1 galaxy NGC 5548 to constrain the location and physical properties of these components. Using X-ray spectra acquired using the Chandra-LETGS in 2002 and 2005, we study the variability of the

  13. The Kinematic Evolution of Strong MgII Absorbers

    CERN Document Server

    Mshar, Andrew C; Lynch, Ryan S; Churchill, Chris; Kim, Tae-Sun

    2007-01-01

    We consider the evolution of strong (W_r(2796) > 0.3A) MgII absorbers, most of which are closely related to luminous galaxies. Using 20 high resolution quasar spectra from the VLT/UVES public archive, we examine 33 strong MgII absorbers in the redshift range 0.3 < z < 2.5. We compare and supplement this sample with 23 strong MgII absorbers at 0.4 < z < 1.4 observed previously with HIRES/Keck. We find that neither equivalent width nor kinematic spread (the optical depth weighted second moment of velocity) of MgII2796 evolve. However, the kinematic spread is sensitive to the highest velocity component, and therefore not as sensitive to additional weak components at intermediate velocities relative to the profile center. The fraction of absorbing pixels within the full velocity range of the system does show a trend of decreasing with decreasing redshift. Most high redshift systems (14/20) exhibit absorption over the entire system velocity range, which differs from the result for low redshift systems ...

  14. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  15. Correlations between O VI Absorbers and Galaxies at Low Redshift

    CERN Document Server

    Ganguly, Rajib; Fang, Taotao; Sembach, Kenneth

    2008-01-01

    We investigate the relationship between galaxies and metal-line absorption systems in a large-scale cosmological simulation with galaxy formation. Our detailed treatment of metal enrichment and non-equilibrium calculation of oxygen species allow us, for the first time, to carry out quantitative calculations of the cross-correlations between galaxies and O VI absorbers. We find the following: (1) The cross-correlation strength depends weakly on the absorption strength but strongly on the luminosity of the galaxy. (2) The correlation distance increases monotonically with luminosity from ~0.5-1h^-1 Mpc for 0.1L* galaxies to ~3-5h^-1 Mpc for L* galaxies. (3) The correlation distance has a complicated dependence on absorber strength, with a luminosity-dependent peak. (4) Only 15% of O VI absorbers lie near >=Lz* galaxies. The remaining 85%, then, must arise ``near'' lower-luminosity galaxies, though, the positions of those galaxies is not well-correlated with the absorbers. This may point to pollution of intergala...

  16. A compact analytic solution describing optoacoustic phenomenon in absorbing fluid

    CERN Document Server

    Cundin, Luisiana; Barsalou, Norman; Voss, Shannon

    2012-01-01

    Derivation of an analytic, closed-form solution for Q-switched laser induced optoacoustic phenomenon in absorbing fluid media is presented. The solution assumes spherical symmetry as well for the forcing function, which represents heat deposition from Q-switched lasers. The Greens solution provided is a suitable kernel to generate more complex solutions arising in optoacoustics, optoacoustic spectroscopy, photoacoustic and photothermal problems.

  17. Gravitational lensing by damped Ly-alpha absorbers

    NARCIS (Netherlands)

    Smette, A; Claeskens, JF; Surdej, J

    1997-01-01

    Assuming that (i) damped Ly-alpha absorbers (DLAs) arise in present-day-like spiral galaxies which are immersed in isothermal dark matter halos, (ii) that these galaxies obey the Tully-Fisher sigma/sigma* = (L/L*)(1/alpha TF) and the Holmberg R-L/R* = (L/L*)(alpha H) relations, and (iii) that they f

  18. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.;

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...

  19. Warm absorber in Seyfert-1 galaxies observed with ASCA.

    Science.gov (United States)

    Otani, C.; Kii, T.; Fabian, A. C.; Reynolds, C. S.; Iwasawa, K.; Inoue, H.; Tanaka, Y.; Matsuoka, M.

    1996-02-01

    The authors present the results of ASCA observations of the warm absorber in five Seyfert-1 galaxies and one quasar. The most important result is the detection of the continuous increase in O VIII absorption depth in MCG -6-30-15 within half a day with the continuum decrease. If this change is due to the recombination of O IX ions, the density and radius for increased O VIII ions should be n ⪆ 106cm-3 and R ⪉ 1017cm, respectively. It is also shown that the filling factor of the matter should be very small, implying that the warm absorber is probably clumpy. These results suggest this warm absorber as some link to the broad line region (BLR). On the other hand, no significant change in O VII was observed in MCG -6-30-15. These results are explained by two distinct warm absorbers in the line-of-sight unless some unknown reason causes the stability of O VII near the BLR; one of them corresponding to O VIII is located near the BLR, and another corresponding to O VII is located far outside from the BLR.

  20. Oxygen Radical Absorbance Capacity (ORAC) of Selected Food – 2007

    Science.gov (United States)

    Interest of the scientific community in the Oxygen Radical Absorbance Capacity (ORAC) of foods continues because reactive oxygen species (ROS) are important in the aging process and also because of growing evidence regarding beneficial effects of dietary antioxidants in reducing oxidative-stress-ind...

  1. On the diversity of O vi absorbers at high redshift

    CERN Document Server

    Draganova, Nadya

    2015-01-01

    In this thesis, we systematically analyze the properties of intergalactic \\Ovi absorbing gas structures at high redshift using optical spectra with intermediate ($\\sim 6.6$ \\kms FWHM) and high ($\\sim 4.0$ \\kms FWHM) resolution, obtained with UVES/VLT. We complement our analysis with synthetic spectra obtained from extensive cosmological simulations that are part of the OWLS project (Schaye et al. 2010). Our main conclusions are: 1) Both the observations and simulations imply that \\Ovi absorbers at high redshift arise in structures spanning a broad range of scales and different physical conditions. When the \\Ovi components are characterized by small Doppler parameters, the ionizing mechanism is most likely photoionization; otherwise, collisional ionization is the dominant mechanism. 2) The baryon- and metal-content of the \\Ovi absorbers at $z\\approx2$ is less than one per cent of the total mass-density of baryons and metals at that redshift. Therefore, \\Ovi absorbers do not trace the bulk of baryons and metals...

  2. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  3. Sensors of absorbed dose of ionizing radiation based on mosfet

    OpenAIRE

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  4. New urea-absorbing polymers for artificial kidney machines

    Science.gov (United States)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr.

    1975-01-01

    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia.

  5. Tests of absorbents and solidification techniques for oil wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.; MacKenzie, D. R.

    1983-11-01

    A representative of each of six classes of commonly used adsorbents was chosen for a series of tests. After reviewing ASTM and other related standard tests, uncomplicated procedures were developed for carrying out specific tests to determine absorbency for simulated oil waste and for water, under static and simulated transportation (repetitive shock) conditions. The tests were then applied to the six representative absorbents. Solidification tests were performed using these absorbents saturated with oil and loaded to 50% of saturation. The binders used were Portland I cement and Delaware Custom Material (DCM) cement shale silicate. Samples were checked for proper set, and the amounts of free liquid were measured. Another series of tests was performed on samples of simulated oil waste without absorbent, using Portland cement and DCM cement shale silicate. Samples were checked for proper set, free liquid was measured, and compressive strengths were determined. The state-of-the-art parameters were identified which satisfy NRC disposal criteria for solidified radioactive waste. The literature was reviewed for alternative methods of managing oil wastes. Conclusions are drawn on the relative utility of the various methods. 17 references, 3 tables.

  6. Tests of absorbents and solidification techniques for oil wastes

    International Nuclear Information System (INIS)

    A representative of each of six classes of commonly used adsorbents was chosen for a series of tests. After reviewing ASTM and other related standard tests, uncomplicated procedures were developed for carrying out specific tests to determine absorbency for simulated oil waste and for water, under static and simulated transportation (repetitive shock) conditions. The tests were then applied to the six representative absorbents. Solidification tests were performed using these absorbents saturated with oil and loaded to 50% of saturation. The binders used were Portland I cement and Delaware Custom Material (DCM) cement shale silicate. Samples were checked for proper set, and the amounts of free liquid were measured. Another series of tests was performed on samples of simulated oil waste without absorbent, using Portland cement and DCM cement shale silicate. Samples were checked for proper set, free liquid was measured, and compressive strengths were determined. The state-of-the-art parameters were identified which satisfy NRC disposal criteria for solidified radioactive waste. The literature was reviewed for alternative methods of managing oil wastes. Conclusions are drawn on the relative utility of the various methods. 17 references, 3 tables

  7. Super absorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch

    International Nuclear Information System (INIS)

    Full text: Super absorbent was synthesized by radiation-induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage and germination energy were determined in order to evaluate the possibility of super absorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by FTIR. Results indicated that the sand mixed with 0.1%wt super absorbent can absorb more water than the sand without super absorbent. The germination energy of corn seeds mixed with 0.5% super absorbent was obviously higher than those without super absorbent. These experimental results showed that the super absorbent has considerable effect on seed germination and the growth of young plants. Keywords: Super absorbent, Radiation, Acrylic acid, Cassava starch

  8. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: The ABSORB trial

    NARCIS (Netherlands)

    D. Dudek (Dariusz); Y. Onuma (Yoshinobu); J.A. Ormiston (John); L. Thuesen (Leif); K. Miquel-Hébert (Karine); P.W.J.C. Serruys (Patrick)

    2012-01-01

    textabstractAims: The first-in-man ABSORB Cohort A trial demonstrated the bioresorption of the ABSORB BVS (Abbott Vascular, Santa Clara, CA, USA) at two years. This report describes the 4-year clinical outcomes. Methods and results: The ABSORB Cohort A trial enrolled 30 patients with a single de nov

  9. Characterization and Modeling of Microwave Absorbers in the RF and Antenna Projects

    Directory of Open Access Journals (Sweden)

    B. R. Nikolov

    2009-11-01

    Full Text Available Some practical problems concerning the characterization and modeling of microwave absorbers are discussed in this paper. First, a number of measurement methods are considered for determination of the relative and absolute absorbing ability of the most popular absorbing materials – foams, rubber sheets, coatings and thin films. Next, several more complicated methods for characterization of the complex dielectric parameters of the absorbers are presented and discussed. Finally, examples for modeling of microwave absorbers by 3D simulators are given.

  10. Optimization of spectrally-selective coatings for solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Z.C.; Gunde, M.K. [National Inst. of Chemistry, Ljubljana (Slovenia)

    2000-07-01

    The inexpensive selective surfaces for solar absorbers were prepared by application of black paint on the high-reflective substrate. The layers have to be transparent in the infrared in order to support the low thermal emittance of the substrate. For this purpose, the optical properties of coatings have to be optimized to minimize the expense of the final product. The selectivity was attained by the mutual effect of a highly absorptive black paint layer and low emitting (i.e., infrared reflecting) metal substrate. Optimized paint coatings are not thicker than a few micrometers and exhibit high opacity, leading to energy-efficient selective coatings for solar collector applications. The painted samples are characterized by high absorption, finite sample thickness, nonideal support material, and smooth front surface. These properties distinguish our samples from those of other studies in this field. To design a functional pigmented layer, the optical properties of all constituents have to be known separately. Due to this reason the diffuse reflectance of black thickness-sensitive spectrally selective (TSSS) paints was analyzed. For theoretical consideration of paint layers, the simple Kubelka-Munk (KM) theory was used. It is the almost universally applied theoretical approach within the color using industry (1). It relates diffuse reflectance of a pigmented layer to two phenomenological coefficients, absorption (K) and scattering (S), thickness of the layer, and reflectance of the substrate. The optical properties of layer material are involved in both coefficients. This enables optimal thickness calculation (2), i.e. the theoretical prediction of the best thickness value that will give the highest solar absorptance and simultaneously, the lowest thermal emittance of the respective paint. The KM coefficients depend also upon addition of fumed silica (dispersive agent). Applying KM theory, the degree of pigment dispersion was quantified (3). This approach was an

  11. Leaf venation, as a resistor, to optimize a switchable IR absorber.

    Science.gov (United States)

    Alston, M E; Barber, R

    2016-01-01

    Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature's vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber. PMID:27554786

  12. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    Science.gov (United States)

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

  13. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    Science.gov (United States)

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces. PMID:26871736

  14. Leaf venation, as a resistor, to optimize a switchable IR absorber

    Science.gov (United States)

    Alston, M. E.; Barber, R.

    2016-08-01

    Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature’s vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber.

  15. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  16. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  17. Technological Advancements

    Science.gov (United States)

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  18. Advanced ferroelectricity

    CERN Document Server

    Blinc, R

    2011-01-01

    Advances in the field of ferroelectricity have implications both for basic physics and for technological applications such as memory devices, spintronic applications and electro-optic devices, as well as in acoustics, robotics, telecommunications and medicine. This book provides an account of recent developments in the field.

  19. Reactor column and neutron absorber and method of manufacturing the same

    International Nuclear Information System (INIS)

    The present invention concerns a neutron absorbing member of a pulse column for use in purification of highly level radioactive solutions generated in a spent fuel reprocessing plant. The neutron absorbing member comprises a cylindrical member supported by a large-diameter cylindrical portion and a core comprising a neutron moderator contained in the inside. The cylindrical member consists of a neutron absorber, and a neutron absorbing layer having a highly neutron absorbing performance is disposed between the neutron absorber. Since the cylindrical member is constituted by disposing neutron absorbing layer between the neutron absorbers, neutrons generated from the liquid in the inside are absorbed by the absorbing layer, and since neutrons not absorbed are absorbed by the neutron absorbing member after being moderated by the core, the neutron absorbing performance can be improved. The neutron moderating performance can be improved by constituting the core with polyethylene, and since it is light in weight, the cost for the construction of the fixed structural members can be reduced. In addition, if cadmium is used, the performance can be further improved. (N.H.)

  20. Acoustic metasurface-based perfect absorber with deep subwavelength thickness

    Science.gov (United States)

    Li, Yong; Assouar, Badreddine M.

    2016-02-01

    Conventional acoustic absorbers are used to have a structure with a thickness comparable to the working wavelength, resulting in major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in an extremely low frequency region. The metasurface possessing a deep subwavelength thickness down to a feature size of ˜ λ / 223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have an high impact on amount of applications due to the extremely thin thickness, easy fabrication, and high efficiency of the proposed structure.

  1. ABSORBENT MATERIALS BASED ON KRAFT PULP: PREPARATION AND MATERIAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Fredrik Wernersson Brodin,

    2012-02-01

    Full Text Available Today, petroleum-based superabsorbents are widely used, but interest in renewable alternatives is on the rise. This study presents two wood-based absorbent materials suitable for various absorption applications as an alternative to petroleum-based products. Never-dried bleached kraft pulp was treated with TEMPO-oxidation, and new carboxylate and aldehyde groups were introduced. It was found that the aldehyde groups contributed to the wet integrity of the absorbent materials, possibly by the formation of hemiacetal bonds. After oxidation, the pulp fibers were gradually disintegrated, and size analysis showed that the disintegration rate was enhanced by an increase in the charge of the oxidant. Freeze drying produced a porous foam with a large surface area that enabled a rapid absorption rate as well as a reasonably high absorption capacity even for absorption under load. Air drying formed a compact film with a slow absorption rate but with a high final capacity for absorption.

  2. Simulasi Peredaman Getaran Mesin Rotasi Menggunakan Dynamic Vibration Absorber (DVA

    Directory of Open Access Journals (Sweden)

    Yudhkarisma Fitri

    2013-09-01

    Full Text Available Suatu mesin jika mendapatkan gangguan maka akan menghasilkan getaran. Pada mesin rotasi gangguan tersebut ditimbulkan dari rotornya. Untuk meredam getaran ini digunakan peredam dynamic vibration absorber (DVA. Dynamic vibration absorber (DVA adalah sebuah peredam getaran dinamik yang bergerak secara bersama-sama dengan sistem utama guna membantu meredam getaran yang terjadi pada sistem utama tersebut. Dalam tugas akhir ini penggunaan DVA dipasang dengan posisi tergantung dibawah sistem utama kemudian dibuat pemodelan matematisnya. Mensimulasikan sistem ini yaitu dengan memvariasikan nilai pegas, damper dan massa pada DVA. Sementara nilai pegas dan damper pada sistem utama sudah ditentukan berturut-turut yaitu 35000 N/m dan 2700 Ns/m. Dari hasil simulasi didapatkan nilai parameter DVA terbaik yang mampu meredam getaran mesin rotasi ini yaitu pegas 10000 N/m, damper 2000 Ns/m dan massa 783,845 kg. DVA ini mampu meredam getaran sebesar 16,6% untuk max overshoot dan 65,5% untuk min overshoot.

  3. Seeking new growth hotspots in absorbing foreign direct investment

    Institute of Scientific and Technical Information of China (English)

    裴长洪

    2009-01-01

    In recent years, China’s service industries have absorbed an increasing amount of foreign direct investment (FDI); foreign investors have taken wholly foreign-owned enterprise (WFOE) as the most preferred vehicle of making investment in China; free ports have become a major source of FDI inflows to China; China’s FDI inflows as a percentage of global FDI inflows have been in decline. In the export-oriented or import-substitution manufacturing industries, China still needs to vigorously absorb FDI in the future. In addition, China should continue opening its infrastructure and social service industries. It is therefore imperative to further improve the institutional and policy environment for foreign investment utilization.

  4. Can absorbable stabilizers be used routinely in the Nuss procedure?

    DEFF Research Database (Denmark)

    Pilegaard, Hans K; Licht, Peter B

    2009-01-01

    OBJECTIVE: During minimal invasive surgical correction of pectus excavatum the metal bar is rotated 180 degrees and fixed by one or two stabilisers. Previously, all stabilisers were made from metal, but they often caused chronic pain and had to be removed. Recently, a slowly absorbable stabiliser...... made from Lactosorb has been introduced. METHODS: From 2001 to 2008 a total of 507 patients underwent minimally invasive repair of pectus excavatum at Aarhus University Hospital. Since February 2007 we routinely used absorbable stabilisers made by Lactosorb. We always used shorter pectus bars than...... metal stabiliser while 85 patients received a Lactosorb stabilizer. Seven patients received two stabilisers. During the follow-up period one metal stabiliser broke after 2(1/2) years (0.2%), but within 6 weeks after surgery three Lactosorb stabilizers broke (3.5%) and another three dislocated laterally...

  5. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires. After annealing, the values increased to 291.0 Oe and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  6. PARAMETRIC MATCHING SELECTION OF MULTI-MEDIUM COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theoretical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime,the optimum model of the parameters matching selection for design of the shock absorber is built.The example design is illustrated to confirm the validity of the modeling method and the theoretical solution.

  7. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  8. Hysteresis of transient populations in absorbing-state systems

    Science.gov (United States)

    Kapitanchuk, Oleksiy L.; Marchenko, Oleksij M.; Teslenko, Victor I.

    2016-06-01

    A nonequilibrium density matrix theory is used in order to explicitly describe the hysteresis interrelation between populations of nonstationary states in an absorbing multi-stage chain system in the one-particle approximation. As an illustrative example, we restrict ourselves to consideration of the 3-stage absorbing case for which we identify three types of the hysteresis; that is, the causal time dependent hysteresis with leaf-like and triangle-like closed loops, the hidden hysteresis with broken-line loops and the true hysteresis with open loops. Furthermore, we observe a common critical threshold for the hysteresis types and ascertain a reciprocal correspondence of this threshold as between the types as well with the experiment.

  9. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Low size, weight, power and price split Stirling linear cryocooler usually comprises electro-dynamically driven compressor and pneumatically driven expander which are side-by-side fixedly mounted upon the common frame and interconnected by the configurable transfer line. Vibration export produced by such a cryocooler comprises of a pair of tonal forces, the frequency of which essentially equals fixed driving frequency. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber, having one translational and two tilting modes essentially tuned to the driving frequency. Dynamic analysis shows that the dynamic reactions (force and moment) produced by such a dynamic absorber are capable of simultaneous attenuation of translational and tilting components of cryocooler induced vibration. The authors reveal the preferable design, the method of fine tuning and outcomes of numerical simulation on attainable performance.

  10. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  11. Analysis of heat and mass transfer on helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, O.K.; Kim, S.C.; Yun, J.H. [Korea Institute of Industrial Technology, Chonan (Korea); Lim, J.K.; Yoon, J.I. [Pukyong National University, Pusan (Korea)

    2000-11-01

    The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LiBr-H{sub 2}O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature, the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux. (author). 10 refs., 14 figs., 2 tabs.

  12. A Pair of Light Emitting Diodes for Absorbance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongyong; Eom, Inyong [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of)

    2013-10-15

    Two same wavelength LEDs (i. e. an emitter LED and a detector LED, respectively) were successfully used to measure absorbance of BTB solution. A linear calibration with r-squared value of 0.9945 was achieved. 0.03 μM of LOD was observed with a noise level of 2 Χ 10{sup -4} absorbance unit. We are now examining relative sensitivities of different LEDs with distinct wavelength. In the future, building a spectrophotometer equipped with LEDs is quite interesting both in scientifically and pedagogically (i. e. undergraduate lab course). Light emitting diodes (LEDs) have a semiconductor chip (∼1 mm{sup 2} area) mounted on a concave mirror and emit narrow band of wavelengths when forward biased. LEDs have been widely used in many fields. Conventional light bulbs are being replaced by LED bulbs.

  13. Research on the Relationship Between Absorbed Slack and Technology Innovation

    Institute of Scientific and Technical Information of China (English)

    刘益; 方润生

    2003-01-01

    This paper divides the absorbed slack into dispersed slack and combined slack from the point of view of control right and analyzes the affection these two kinds of slacks have on the innovation. This research build a model of structural equation reflecting the relationship among the slack, absorbed capacity and innovation and proved this model with the data get from 607 enterprises by questionnaire. The result indicates that the dispersed slack and combined slack have positive relationship respectively with product innovation and process innovation and different slacks have some matching relationship with different absorptive capacities, which can result in different innovative output. This shows that the slack in Chinese enterprises can also promote the innovative output just like the western enterprises; so reducing the staff according to simple principles perhaps cannot be the most efficient way to improve the effectiveness in Chinese enterprises.

  14. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    GUI XuChun; WANG KunLin; WEI JinQuan; L(U) RuiTao; SHU QinKe; JIA Yi; WANG Chen; ZHU HongWei; WU DeHai

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires.After annealing, the values increased to 291.00e and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  15. [Shaping of electron radiation fields using homogeneous absorbent materials].

    Science.gov (United States)

    Eichhorn, M; Reis, A; Kraft, M

    1990-01-01

    Proof of shielding and forming by absorbers was done in water phantom dosimetrically. Alterations of isodose course were measured in dependence of primary energy, as well as of thickness and density of the absorber materials. Piacryl or aluminium are not suitable for forming of irregular electron fields. They only effect a reduction of therapeutic range. For primary energies of 10.0 less than or equal to MeV less than or equal to E0- less than or equal to 20.0 MeV lead rubber and wood metal are to recommended in a thickness of less than or equal to 10 mm or less than or equal to 8 mm respectively.

  16. Application Of Shape Memory Alloy In Harvesto-Absorber System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2015-09-01

    Full Text Available This paper presents a conception of the harvester-absorber system consisting of two parts. The first is the pendulum attached to the main system (oscillator, which is suspended on the linear damper and the nonlinear spring made of shape memory alloy. The spring is modelled as a polynomial function based on Landau–Ginzburg theory of phase transitions (similar as ferroelectric and ferromagnets. The obtained results show, that SMA element can increase harvesting energy level, while the absorber effect can be impaired (but not loss. Additionally, introducing SMA element causes changes in dynamics, introduces a new unstable solutions and bifurcations. The analysis was done by classical integration and continuation solution methods.

  17. Resonance scattering of canonical elastic shells in absorbing fluid medium

    Institute of Scientific and Technical Information of China (English)

    ZHUO Linkai; FAN Jun; TANG Weilin

    2008-01-01

    Resonance scattering of elastic spherical shell and cylindrical shell while the sur-rounding fluid medium has absorption is studied. The normal mode solution derived using exact elastic theory and the separation of variables is still applicable. However, the scattering form function has to be modified for the absorbing medium, otherwise the unreasonable resul twould be obtained. The backscattering form function in the absorbing medium is redefined, and the form function of elastic spherical and cylindrical shell with vacuum or solid matter filled is calculated in various absorption conditions. The results show that the absorption of surround-ing fluid leads to notable attenuation of the coincidence resonances in the mid-frequency, but it has a little in fluence on the low-frequency resonance scattering induced by the filler inside the shell.

  18. Preparation and Property of the Water Absorbent Hybrid Resin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Water absorption material has been attracted much more attention for its wide use in soil and water conservation, agriculture, etc. But this material will actually apply in agriculture, soil and water conservation only when it is cheap enough. Pulp fiber and starch to prepare high absorbing-water resin is a good method for decreasing the cost [1,2]. However, it still has a long way to turn it into reality. Now the montmorillonite is widely used in preparing nanocomposites [3]. But used it in preparing absorbing-water resin has little report. In this article the water absorption hybrid resin has been prepared by one step intercalation polymerization method. In the process of intercalation the partly neutralization acrylic acid and urea have been used as intercalating reagent. Beside that, the urea also has been used as cross-linking agent.

  19. Preparation and Property of the Water Absorbent Hybrid Resin

    Institute of Scientific and Technical Information of China (English)

    WANG; YunPu

    2001-01-01

    Water absorption material has been attracted much more attention for its wide use in soil and water conservation, agriculture, etc. But this material will actually apply in agriculture, soil and water conservation only when it is cheap enough. Pulp fiber and starch to prepare high absorbing-water resin is a good method for decreasing the cost [1,2]. However, it still has a long way to turn it into reality.  Now the montmorillonite is widely used in preparing nanocomposites [3]. But used it in preparing absorbing-water resin has little report. In this article the water absorption hybrid resin has been prepared by one step intercalation polymerization method. In the process of intercalation the partly neutralization acrylic acid and urea have been used as intercalating reagent. Beside that, the urea also has been used as cross-linking agent.   ……

  20. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  1. Single-photon absorber based on strongly interacting Rydberg atoms

    CERN Document Server

    Tresp, Christoph; Mirgorodskiy, Ivan; Gorniaczyk, Hannes; Paris-Mandoki, Asaf; Hofferberth, Sebastian

    2016-01-01

    Removing exactly one photon from an arbitrary input pulse is an elementary operation in quantum optics and enables applications in quantum information processing and quantum simulation. Here we demonstrate a deterministic single-photon absorber based on the saturation of an optically thick free-space medium by a single photon due to Rydberg blockade. Single-photon subtraction adds a new component to the Rydberg quantum optics toolbox, which already contains photonic logic building-blocks such as single-photon sources, switches, transistors, and conditional $\\pi$-phase shifts. Our approach is scalable to multiple cascaded absorbers, essential for preparation of non-classical light states for quantum information and metrology applications, and, in combination with the single-photon transistor, high-fidelity number-resolved photon detection.

  2. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  3. Improved Single-Source Precursors for Solar-Cell Absorbers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  4. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles

    OpenAIRE

    Pitsillides, Costas M; Joe, Edwin K.; Wei, Xunbin; Anderson, R. Rox; Lin, Charles P.

    2003-01-01

    We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, without the need for photochemical intermediates (particularly singlet oxygen). The mechanism of light-particle interaction was investigated by nanosecond ...

  5. Vibroacoustics of thin micro-perforated sound absorbers

    OpenAIRE

    Maury, Cédric; Bravo, Teresa; Pinhède, Cédric

    2012-01-01

    ISBN 978-2-919340-01-9 International audience Lightweight Micro-Perforated Panels (MPP) backed by an air cavity constitute compact sound absorbing resonators, mostly efficient in the mid-frequency range, and that may be constructed using transparent, fibreless and recyclable materials. These soundproof devices have been intensively studied due to their important applications in building acoustics and the aeronautic, astronautic and automotive industries. However, MPPs have been often co...

  6. Theoretical Research of Magnetorheological Shock Absorber Damping Force

    Directory of Open Access Journals (Sweden)

    Andrius Klevinskis

    2014-02-01

    Full Text Available In the article an overview of magnetorheological shock absorbertypes is presented, theoretical calculations of heat dispersion,magnetic field strength produced by shock absorber as well asmaximum power of electromagnet are provided. The article alsoprovides device damping force in line with a change of devicetemperature. In the end of the research the results of experimentare presented in the graph format as well as the conclusions.

  7. Quantum-state input-output relations for absorbing cavities

    International Nuclear Information System (INIS)

    The quantized electromagnetic field inside and outside an absorbing high-Q cavity is studied, with special emphasis on the absorption losses in the coupling mirror and their influence on the outgoing field. Generalized operator input-output relations are derived, which are used to calculate the Wigner function of the outgoing field. To illustrate the theory, the preparation of the outgoing field in a Schroedinger cat-like state is discussed

  8. On the dual symmetry between absorbing and amplifying random media

    Indian Academy of Sciences (India)

    S Anantha Ramakrishna

    2004-06-01

    We re-examine the dual symmetry between absorbing and amplifying random media. By analysing the physically allowed choice of the sign of the square root to determine the complex wave vector in a medium, we draw a broad set of conclusions that enables us to resolve the apparent paradox of the dual symmetry and also to anticipate the large local electromagnetic field enhancements in amplifying random media.

  9. Absorbed radiation by various tissues during simulated endodontic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  10. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  11. Shock Absorbers Save Structures and Lives during Earthquakes

    Science.gov (United States)

    2015-01-01

    With NASA funding, North Tonawanda, New York-based Taylor Devices Inc. developed fluidic shock absorbers to safely remove the fuel and electrical connectors from the space shuttles during launch. The company is now employing the technology as seismic dampers to protect structures from earthquakes. To date, 550 buildings and bridges have the dampers, and not a single one has suffered damage in the wake of an earthquake.

  12. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  13. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  14. Flexible metamaterial absorbers for stealth applications at terahertz frequencies

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew; Fan, K.;

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small...... frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. (C)2011 Optical Society of America...

  15. Absorbed radiation by various tissues during simulated endodontic radiography

    International Nuclear Information System (INIS)

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures

  16. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  17. Perfect Impedance-Matched Isolators and Unidirectional Absorbers

    CERN Document Server

    Lee, M J; Ramezani, H; Ellis, F M; Kovanis, V; Vitebskiy, I; Kottos, T

    2013-01-01

    A broad-band reflectionless channel which supports unidirectional wave propagation originating from the interplay between gyrotropic elements and symmetrically placed gain and loss constituents is proposed. Interchange of the active elements together with a gyrotropic inversion turns the same structure to a unidirectional absorber where incoming waves from a specific direction are annihilated. When disorder is introduced asymmetric Anderson localization is found. Realizations of such multi-functional architectures in the frame of electronic and photonic circuitry are discussed.

  18. Microwave absorbing properties of activated carbon fibre polymer composites

    Indian Academy of Sciences (India)

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  19. Characterization of diethylenetriamine (DETA) as absorbent for CO2

    OpenAIRE

    Hartono, Ardi

    2009-01-01

    Absorption of CO2 with amine-based absorbents is an established and proven technology. Unfortunately, it is still very energy intensive and has high capital costs. The overall challenge when aiming at using this technology for world wide CO2 capture, is to bring these two factors down with new and environmentally acceptable solvents. The search forward can be carried out by process design improvements or by finding new and better solvents. An ideal solvent should have a high capacity, high ab...

  20. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm3). 15 references, 7 figures, 6 tables

  1. Application of Absorbable Hemostatic Materials Observed in Thyroid Operation

    Science.gov (United States)

    Li, Yan-Ming; Liang, Zhen-Zhen; Song, Yan

    2016-05-01

    To observe the application effects of the absorbable hemostatic materials in thyroid operation. Methods: From May 2014 to January 2015, 100 patients with thyroid surgery in our university affiliated hospital were selected as the research object. Randomly divided into experimental group and control group, 50 cases in each group. Application of absorbable hemostatic hemostatic materials in the experimental group during the operation, the control group using the traditional mechanical methods of hemostasis hemostasis to observe the operation time, bleeding volume, postoperative drainage volume, complications and hospital stay of the two groups. Results: The operation time, bleeding volume, postoperative drainage and hospital stay in the experimental group were significantly lower in the study group than in the control group, and the difference between the two groups was statistically significant (P 0.05). Conclusion: Absorbable hemostatic materials can effectively shorten the operation time, reduce intraoperative blood loss and postoperative drainage, reduce the length of hospital stay and improve the success rate of surgery and patient satisfaction, which is worthy to be popularized in clinical thyroid surgery.

  2. Fabrication and microwave absorbing properties of NixPy nanotubes

    International Nuclear Information System (INIS)

    Materials possessing microwave absorbing properties have been a researching hotspot for their important applications amid a high frequency electromagnetic waves environment. This paper focuses on the preparation of a series of NixPy(x:y = 2.65–2.73) nanotubes (NTs) and their corresponding microwave absorbing properties. After being heat-treated, different NixPy phases would appear, without damaging their initial hollow morphologies. These processes were accompanied with the alteration of related physical properties. Low enough minimum reflection loss (RL) has been achieved in all of these samples, with −48.63 dB as the lowest one being obtained at the non-heat-treated sample. Besides, a large proportion of the microwave frequency band could be covered on the 450 °C heat-treated sample (over a 4.5 GHz bandwidth). These are indicative of the superior microwave absorbing nature of NixPy NTs. (paper)

  3. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  4. Metamaterial absorbers realized in an X-band rectangular waveguide

    Institute of Scientific and Technical Information of China (English)

    Huang Yong-Jun; Wen Guang-Jun; Li Jian; Zhong Jing-Ping; Wang Ping; Sun Yuan-Hua; O.Gordon; Zhu Wei-Ren

    2012-01-01

    In this paper,we demonstrate six types of metamaterial absorbers (MMAs) by measuring their absorptivities in an X-band (8-12 GHz) rectangular waveguide.Some of the MMAs have been demonstrated previously by using the free space measurement method,and the others are proposed firstly in this paper.The measured results show that all of the six MMAs exhibit high absorptivities above 98%,which have similar absorbing characteristics to those measured in the free space.The numerically obtained surface current densities for each MMA show that the absorbing mechanism is the same as that under the free space conditions.Such a demonstration method is superior to the conventional free space measurement method due to the small-scale test samples required,the simple measure device,and its low cost.Most importantly,the proposed method opens a way to enable MMAs to be used in microwave applications such as matched terminations.

  5. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  6. Fast ionized X-ray absorbers in AGNs

    Science.gov (United States)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  7. Sound absorption characteristics of microperforated absorbers for random incidence

    Institute of Scientific and Technical Information of China (English)

    MAA Dah-You; LIU Ke

    2000-01-01

    Based on previous work on "Statistical absorption coefficient of microperforated absorbers", in which it was shown that theoretical results agree well with experiments on the absorption characteristics of microperforated absorbers (MPA) for random incidence. Further work was carried out in this investigation of the statistical absorption coefficients of MPA in random fields by computation, in order to find the best structure of MPA. It is established that ordinarily the absorption curves of MPA for random incidence and that for normal incidence are quite alike, only that the absorption coefficients are more or less reduced and the whole curve is shifted to higher frequencies without any change of shape. But when the perforate constant k = d/ωρο/4η where d is the diameters of perforations in mm and fo, the absorbers resonance frequency is reduced below 2, say, secondary absorption bands start to play more important role. Pretty soon, they merge with the main absorption band and form a long tail of the latter,extending the absorption far into high frequencies, raising the resulting absorption band to three, four or more octaves. The behavior of the secondary absorption bands is discussed.

  8. Thermal radiation absorbed by dairy cows in pasture

    Science.gov (United States)

    da Silva, Roberto Gomes; Guilhermino, Magda Maria; de Morais, Débora Andréia E. Façanha

    2010-01-01

    The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein-0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as {R_{abs}} = 640.0 ± 3.1 W.{m^{ - 2}} . Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 ± 2.7 W m-2; long wave (from the sky and from terrestrial surfaces) averaged 342.1 ± 1.5 W m-2. It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature ( {T_{mr}^* } ) . Average T_{mr}^* was 101.4 ± 1.2°C, in contrast to the usual mean radiant temperature, {T_{mr}} = 65.1 ± 0.5° C . Estimates of T_{mr}^* were considered as more reliable than those of T mr in evaluating the thermal environment in the open field, because T mr is almost totally associated only with long wave radiation.

  9. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2016-01-01

    Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

  10. Method of manufacturing neutron shielding and absorbing material

    International Nuclear Information System (INIS)

    Purpose: To manufacture neutron shielding and absorbing material uniformly dispersed with boron carbide. Method: Boron carbide particles are coated with copper, nickel or alloys thereof. Coating is preferably carried out by vacuum deposition or electroless plating. While the powder coated with a predetermined amount is molded and sintered, if the sintering density is low, reduction in the strength and the lowering in the heat conductivity are generally resulted to reduce the neutron shielding and absorbing performance. Therefore, a hot pressing is employed so as to obtain a composite product which is high in the density and uniformly dispersed. Hot isostatic pressing may also be used instead of hot pressing. For the mass production at an reduced cost, rolling of the composite product at a temperature higher than 300 0C is preferred since it can increase the density with preferred results. In this way, neutron shielding and absorbing material having a density of higher than 98 % of the theoretical level and uniformly dispersed can be manufactured. (Kamimura, M.)

  11. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  12. Parametric design of an electrorheological shock absorber with the mixed-mode

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ling; DENG Zhaoxiang; LI Yinong

    2003-01-01

    A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.

  13. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  14. Advanced Nanoemulsions

    Science.gov (United States)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  15. Advanced LIGO

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O.; Ain, A.

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recyc...

  16. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  17. The thermal instability of the warm absorber in NGC 3783

    Science.gov (United States)

    Goosmann, R. W.; Holczer, T.; Mouchet, M.; Dumont, A.-M.; Behar, E.; Godet, O.; Gonçalves, A. C.; Kaspi, S.

    2016-05-01

    Context. The X-ray absorption spectra of active galactic nuclei frequently show evidence of winds with velocities in the order of 103 km s-1 extending up to 104 km s-1 in the case of ultra-fast outflows. At moderate velocities, these winds are often spectroscopically explained by assuming a number of absorbing clouds along the line of sight. In some cases it was shown that the absorbing clouds are in pressure equilibrium with each other. Aims: We assume a photo-ionized medium with a uniform total (gas+radiation) pressure. The irradiation causes the wind to be radiation pressure compressed (RPC). We attempt to reproduce the observed spectral continuum shape, ionic column densities, and X-ray absorption measure distribution (AMD) of the extensively observed warm absorber in the Seyfert galaxy NGC 3783. Methods: We compare the observational characteristics derived from the 900 ks Chandra observation to radiative transfer computations in pressure equilibrium using the radiative transfer code titan. We explore different values of the ionization parameter ξ of the incident flux and adjust the hydrogen-equivalent column density, NH0, of the warm absorber to match the observed soft X-ray continuum. From the resulting models we derive the column densities for a broad range of ionic species of iron and neon and a theoretical AMD that we compare to the observations. Results: We find an extension of the degeneracy between ξ and NH0 for the constant pressure models previously discussed for NGC 3783. Including the ionic column densities of iron and neon in the comparison between observations and data we conclude that a range of ionization parameters between 4000 and 8000 erg cm s-1 is preferred. For the first time, we present theoretical AMDs for a constant pressure wind in NGC 3783 that correctly reproduces the observed level and is in approximate agreement with the observational appearance of an instability region. Conclusions: Using a variety of observational indicators, we

  18. Radiative signature of absorbing aerosol over the Eastern Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2014-01-01

    Full Text Available The effects of absorbing aerosols on the atmospheric radiation budget and dynamics over the Eastern Mediterranean region are studied using satellites and ground-based observations, and model calculations, under summer conditions. Climatology of aerosol optical depth (AOD, single scattering albedo (SSA and size parameters were analyzed using multi-year (1999–2012 observations from MODIS, MISR and AERONET. CALIOP-derived aerosol vertical distributions and their classifications are used to calculate the AOD of 4 dominant aerosol types: dust, polluted dust, polluted continental and marine aerosol over the region. The seasonal mean (June–August 2010 AODs are 0.22 ± 0.02, 0.11 ± 0.04, 0.10 ± 0.04 and 0.06 ± 0.01 for polluted dust, polluted continental, dust and marine aerosol, respectively. Changes in the atmospheric temperature profile as a function of absorbing aerosol loading were derived for the same period using observations from the AIRS satellite. We inferred heating rates in the aerosol layer of ~1.7 ± 0.8 K day−1 between 925 and 850 hPa, which is attributed to aerosol absorption of incoming solar radiation. Radiative transfer model (RTM calculations show significant atmospheric warming for dominant absorbing aerosol over the region. A maximum atmospheric forcing of +16.5 ± 7.5 W m−2 is calculated in the case of polluted dust, followed by polluted continental (+7.6 ± 4.4 W m−2 and dust (+7.1 ± 4.3 W m−2. RTM-derived heating rate profiles for dominant absorbing aerosol show warming of 0.1–0.9 K day−1 in the aerosol layer (< 3.0 km altitudes, which primarily depend on AODs of the different aerosol types. Diabatic heating due to absorbing aerosol stabilizes the lower atmosphere, which could significantly reduce the atmospheric ventilation. These conditions can enhance the "pollution pool" over the Eastern Mediterranean.

  19. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    Directory of Open Access Journals (Sweden)

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  20. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    Science.gov (United States)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  1. Simulation of absorbed dose rate due to synchrotron radiation and shielding thickness for radiation safety at Indus-2 using FLUKA

    International Nuclear Information System (INIS)

    Indus-2 is a 2.5 GeV electron synchrotron radiation source at Raja Ramanna Centre for Advanced Technology (RRCAT), India. 26 synchrotron radiation (SR) beam lines are planned in Indus-2 for various research applications, of several are in operation and many are in installation stage. For experiments SR beam is brought in air. Due to intense flux of SR and low energy, the dose rate in the direct beam is high and there is a potential for radiation exposure. Appropriate shielding hutches are needed to house the beamlines and protect the workers from the radiation hazard. Simulations were carried out using computer code FLUKA to find out the absorbed dose in water due to SR and required shielding thickness in the forward direction to reduce dose within acceptable limits. SR spectrum from Indus-2 in the range 4-100 keV was used for simulating the absorbed dose and shielding thickness. It was found that the absorbed dose rate is of the order of 105 Gy/h for the design parameters of Indus-2 (2.5 GeV and 300 mA). Forward shielding thickness of 3 mm lead was found to be sufficient to reduce the dose rate to acceptable level for continuously occupied area (<1μSv/h). The details of the simulation and results are presented in the paper. (author)

  2. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  3. Advanced DVI+

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Soon; Lee, S. T.; Euh, D. J.; Chu, I. C.; Youn, Y. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    A new advanced safety feature of DVI+ (Direct Vessel Injection Plus) for the APR+ (Advanced Power Reactor Plus), to mitigate the ECC (Emergency Core Cooling) bypass fraction and to prevent switching an ECC outlet to a break flow inlet during a DVI line break, is presented for an advanced DVI system. In the current DVI system, the ECC water injected into the downcomer is easily shifted to the broken cold leg by a high steam cross flow which comes from the intact cold legs during the late reflood phase of a LBLOCA (Large Break Loss Of Coolant Accident). For the new DVI+ system, an ECBD (Emergency Core Barrel Duct) is installed on the outside of a core barrel cylinder. The ECBD has a gap (From the core barrel wall to the ECBD inner wall to the radial direction) of 3/25-7/25 of the downcomer annulus gap. The DVI nozzle and the ECBD are only connected by the ECC water jet, which is called a hydrodynamic water bridge, during the ECC injection period. Otherwise these two components are disconnected from each other without any pipes inside the downcomer. The ECBD is an ECC downward isolation flow sub-channel which protects the ECC water from the high speed steam crossflow in the downcomer annulus during a LOCA event. The injected ECC water flows downward into the lower downcomer through the ECBD without a strong entrainment to a steam cross flow. The outer downcomer annulus of the ECBD is the major steam flow zone coming from the intact cold leg during a LBLOCA. During a DVI line break, the separated DVI nozzle and ECBD have the effect of preventing the level of the cooling water from being lowered in the downcomer due to an inlet-outlet reverse phenomenon at the lowest position of the outlet of the ECBD.

  4. New chaos-geometric and information technology analysis of chaotic generation regime in a single-mode laser system with absorbing cell

    Directory of Open Access Journals (Sweden)

    Georgy Prepelitsa

    2015-10-01

    Full Text Available Here we present the results of application of a new chaos-geometric approach and some information technology algorithms to analysis of chaotic generation regime in a single-mode laser system with absorbing cell. Earlier developed chaos-geometric approach to  modelling and analysis of nonlinear processes dynamics of the complex systems combines together application of the advanced mutual information approach, correlation integral analysis, Lyapunov exponent's analysis etc.

  5. New chaos-geometric and information technology analysis of chaotic generation regime in a single-mode laser system with absorbing cell

    OpenAIRE

    Georgy Prepelitsa

    2015-01-01

    Here we present the results of application of a new chaos-geometric approach and some information technology algorithms to analysis of chaotic generation regime in a single-mode laser system with absorbing cell. Earlier developed chaos-geometric approach to  modelling and analysis of nonlinear processes dynamics of the complex systems combines together application of the advanced mutual information approach, correlation integral analysis, Lyapunov exponent's analysis etc.

  6. The Dry-filling System for the Shock Absorber of Car Engine

    Directory of Open Access Journals (Sweden)

    Du Rong

    2016-01-01

    Full Text Available The shock absorber is considered as an important component of the suspension system. In its production process, the liquid filling for the shock absorber is a very important part. This paper introduced one kind of shock absorber stem–filling system, which achieved liquid dry-filling in the shock absorber for the car engine. The results showed that this system is stable and reliable.

  7. Advanced mathematics

    CERN Document Server

    Gupta, CB; Kumar, V

    2009-01-01

    About the Book: This book `Advanced Mathematics` is primarily designed for B.Tech., IV Semester (EE and EC branch) students of Rajasthan Technical University. The subject matter is discussed in a lucid manner. The discussion is covered in five units: Unit I: deals with Numerical Analysis, Unit-II: gives different aspects of Numerical Analysis, Unit-III: Special Function, Unit-IV:Statistics and Probability, Calculus of Variation and Transforms are discussed in Unit V. All the theoretical concepts are explained through solved examples. Besides, a large number of unsolved problems on each top

  8. Advanced trigonometry

    CERN Document Server

    Durell, C V

    2003-01-01

    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  9. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  10. The impact of absorbed photons on antimicrobial photodynamic efficacy.

    Science.gov (United States)

    Cieplik, Fabian; Pummer, Andreas; Regensburger, Johannes; Hiller, Karl-Anton; Späth, Andreas; Tabenski, Laura; Buchalla, Wolfgang; Maisch, Tim

    2015-01-01

    Due to increasing resistance of pathogens toward standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB) may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS)-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively. Consequently, in the present study two strategies for adjustment of irradiation parameters were evaluated: (i) matching energy doses applied by respective light sources (common practice) and (ii) by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule. In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB) regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies. PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii), or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a photophysical point

  11. The impact of absorbed photons on antimicrobial photodynamic efficacy

    Directory of Open Access Journals (Sweden)

    Fabian eCieplik

    2015-07-01

    Full Text Available Due to increasing resistance of pathogens towards standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively.Consequently, in the present study two strategies for adjustment of irradiation parameters are evaluated: (i matching energy doses applied by respective light sources (common practice and (ii by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule.In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies.PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii, or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a

  12. Emitter/absorber interface of CdTe solar cells

    Science.gov (United States)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.

  13. Recurrence rate after absorbable tack fixation of mesh in laparoscopic incisional hernia repair

    DEFF Research Database (Denmark)

    Christoffersen, Mette W; Brandt, E; Helgstrand, F;

    2015-01-01

    absorbable or non-absorbable tacks for mesh fixation. METHODS: This was a nationwide consecutive cohort study based on data collected prospectively concerning perioperative information and clinical follow-up. Patients undergoing primary, elective, laparoscopic incisional hernia repair with absorbable or non...

  14. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Science.gov (United States)

    Chevalier, Paul; Bouchon, Patrick; Jaeck, Julien; Lauwick, Diane; Bardou, Nathalie; Kattnig, Alain; Pardo, Fabrice; Haïdar, Riad

    2015-12-01

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3-5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  15. Spray CVD for Making Solar-Cell Absorber Layers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  16. An Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection

    DEFF Research Database (Denmark)

    Gustafsson, Omar; Mogensen, Klaus Bo; Ohlsson, Pelle Daniel;

    2008-01-01

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date...... to the waveguides. The entire oxidized silicon microchip structure is sealed with a glass lid. Reversed phase electrochromatographic separation of three neutral compounds is demonstrated using UV absorbance detection at 254 nm. Baseline separation of the analytes is achieved in less than two minutes....

  17. Turbulent particle flux to a perfectly absorbing surface

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pecseli, H.L.;

    2005-01-01

    The feasibility of an experimental method for investigations of the particle flux to an absorbing surface in turbulent flows is demonstrated in a Lagrangian as well as an Eulerian representation. A laboratory experiment is carried out, where an approximately homogeneous and isotropic turbulent flow...... is generated by two moving grids. The simultaneous trajectories of many small approximately neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analysis, we select one of these as the centre of a ‘sphere of interception’, and obtain estimates for the time variation of the...

  18. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    A neutron absorbing article is described which comprises boron carbide particles and an irreversibly-cured phenol aldehyde condensation polymer cured to a continuous matrix about the boron carbide particles. Such an article may be used in spent fuel storage racks. It can be manufactured by mixing together a curable phenolic resin with boron carbide particles, compacting the mixture to an article of desired shape, curing the resin at an elevated temperature, impregnating the cured article with curable phenolic resin in liquid state, and curing the article again

  19. Thin Film Absorbers Based on Plasmonic Phase Resonances

    CERN Document Server

    Cui, Yanxia; Xu, Jun; He, Sailing; Fang, Nicholas X

    2010-01-01

    We demonstrate an efficient double-layer light absorber by exciting plasmonic phase resonances. We show that the addition of grooves can cause mode splitting of the plasmonic waveguide cavity modes and all the new resonant modes exhibit large absorptivity greater than 90%. Some of the generated absorption peaks have wide-angle characteristics. Furthermore, we find that the proposed structure is fairly insensitive to the alignment error between different layers. The proposed plasmonic nano-structure designs may have exciting potential applications in thin film solar cells, thermal emitters, novel infrared detectors, and highly sensitive bio-sensors.

  20. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA; Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA

    2016-06-17

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (..delta..EC >/= 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted

  1. Electromagnetic and microwave absorbing properties of hollow carbon nanospheres

    Indian Academy of Sciences (India)

    Tianchun Zou; Haipeng Li; Naiqin Zhao; Chunsheng Shi

    2013-04-01

    A mass of hollow carbon nanospheres (HCNSs) was fabricated by chemical vapour deposition of methane over Ni/Al2O3 catalyst at 600 °C. The products were characterized with high-resolution transmission electron microscope images, and the results showed that the external diameter of the HCNSs was 5–90nm and the thickness of wall was about 10 nm. Microwave absorption of HCNSs/paraffin composites was mainly attributed to dielectric loss. The microwave-absorbing peaks of composites containing HCNSs shifts to low frequencies, and the bandwidth below −10 dB and minimum RL decrease with increasing thickness of HCNSs/paraffin composites.

  2. Redesign of a Shock Absorber Piston Using Sintering

    OpenAIRE

    Kus, Ömer; Mojtabavi, Hamed

    2012-01-01

    The main objective of this report is to re-design of a product by substituting for another manufacturing process in order to get a cheaper product with the same function and quality. The current shock absorber piston is manufactured by the machining process at Öhlins Racing AB Company. Power Metallurgy (P/M) method could be a good substitute process to meet the technical requirements of the current piston with total lower cost. In this case, the whole process of product development gets invol...

  3. Effect of absorbing grounds on acoustic radiation of tyres

    OpenAIRE

    Duhamel, D.; HAMET,JF; Klein, P; ANFOSSO,F; YIN, HP; GAUTIER,JL; MAUNIER,Y

    2006-01-01

    Tyre noise is generated by surface vibrations or by air pumping and can be amplified by the horn effect which is the increase in radiation by the geometric horn between the tyre and the ground. The global efficiency of this radiation depends on the absorbing properties of the ground and an accurate model of tyre noise radiation must take this effect into account. Here the results of a detailed boundary element model including three dimensional real geometries and the impedance of the ground a...

  4. Effect of absorbing grounds on acoustic radiation of tyres

    OpenAIRE

    Duhamel, D.; HAMET,JF; Klein, P; ANFOSSO LEDEE, F; Yin , H.; GAUTIER,JL; Meunier, Y.

    2006-01-01

    Tyre noise is generated by surface vibrations or by air pumping and can be amplified by the horn effect which is the increase in radiation by the geometric horn between the tyre and the ground. The global efficiency of this radiation depends on the absorbing properties of the ground and an accurate model of tyre noise radiation must take this effect into account. Here the results of a detailed element model including three dimensional real geometries and the impedance of the ground are presen...

  5. The absorbed dose to blood from blood-borne activity

    Science.gov (United States)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  6. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...

  7. Propagation of squeezed radiation through amplifying or absorbing random media

    CERN Document Server

    Patra, M

    2000-01-01

    We analyse how nonclassical features of squeezed radiation (in particular the sub-Poissonian noise) are degraded when it is transmitted through an amplifying or absorbing medium with randomly located scattering centra. Both the cases of direct photodetection and of homodyne detection are considered. Explicit results are obtained for the dependence of the Fano factor (the ratio of the noise power and the mean current) on the degree of squeezing of the incident state, on the length and the mean free path of the medium, the temperature, and on the absorption or amplification rate.

  8. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Paul [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr; Jaeck, Julien; Lauwick, Diane; Kattnig, Alain [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Bardou, Nathalie; Pardo, Fabrice [Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Haïdar, Riad [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); École Polytechnique, Département de Physique, 91128 Palaiseau (France)

    2015-12-21

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  9. A broadband micro-machined far-infrared absorber

    Science.gov (United States)

    Wollack, E. J.; Datesman, A. M.; Jhabvala, C. A.; Miller, K. H.; Quijada, M. A.

    2016-05-01

    The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is >0.95 from 1 to 20 THz (300-15 μm) over a temperature range spanning 5-300 K. The meta-material, realized from an array of tapers ≈100 μm in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

  10. MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nikole M.; Churchill, Christopher W. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Murphy, Michael T., E-mail: nnielsen@nmsu.edu [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-10-20

    We describe the Mg II Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 ≤ z ≤ 1.1) galaxies with measurements of Mg II λλ2796, 2803 absorption from their circumgalactic medium within projected distances of 200 kpc from background quasars. In this work, we present 'isolated' galaxies, which are defined as having no spectroscopically identified galaxy within a projected distance of 100 kpc and a line of sight velocity separation of 500 km s{sup –1}. We standardized all galaxy properties to the ΛCDM cosmology and galaxy luminosities, absolute magnitudes, and rest-frame colors to the B- and K-band on the AB system. We present galaxy properties and rest-frame Mg II equivalent width, W{sub r} (2796), versus galaxy redshift. The well-known anti-correlation between W{sub r} (2796) and quasar-galaxy impact parameter, D, is significant to the 8σ level. The mean color of MAGIICAT galaxies is consistent with an Sbc galaxy for all redshifts. We also present B- and K-band luminosity functions for different W{sub r} (2796) and redshift subsamples: 'weak absorbing' [W{sub r} (2796) < 0.3 Å], 'strong absorbing' [W{sub r} (2796) ≥ 0.3 Å], low redshift (z < (z)), and high redshift (z ≥ (z)), where (z) = 0.359 is the median galaxy redshift. Rest-frame color B – K correlates with M{sub K} at the 8σ level for the whole sample but is driven by the strong absorbing, high-redshift subsample (6σ). Using M{sub K} as a proxy for stellar mass and examining the luminosity functions, we infer that in lower stellar mass galaxies, Mg II absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  11. Identifying universality classes of absorbing phase transitions by block renormalization

    International Nuclear Information System (INIS)

    We propose a renormalization scheme that can be used as a reliable method to identify universality classes of absorbing phase transitions. Following the spirit of Wilson's block-spin renormalization group, the lattice is divided into blocks, assigning to them an effective state by a suitable Boolean function of the interior degrees of freedom. The effective states of adjacent blocks form certain patterns which are shown to occur with universal probability ratios if the underlying process is critical. Measuring these probability ratios in the limit of large block sizes, one obtains a set of universal numbers as an individual fingerprint for each universality class

  12. Deep-groove nickel gratings for solar thermal absorbers

    Science.gov (United States)

    Ahmad, N.; Núñez-Sánchez, S.; Pugh, J. R.; Cryan, M. J.

    2016-10-01

    This paper presents measured and modelled optical absorptance and reflectance for deep-groove nickel nano-gratings in the 450-950 nm wavelength range. The structures have been fabricated using focused ion beam etching and characterised using Fourier spectroscopy and the field distributions on the gratings have been studied using finite difference time domain modelling. Realistic grating structures have been modelled based on focused ion beam cross sections and these results are in good agreement between measured and modelled results. The roles of surface plasmon polaritons and slot modes are highlighted in the strong broadband absorbance that can be achieved with these structures.

  13. A Broadband Micro-machined Far-Infrared Absorber

    CERN Document Server

    Wollack, Edward J; Jhabvala, Christine A; Miller, Kevin H; Quijada, Manuel A

    2016-01-01

    The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is $>\\,0.95$ from ${\\rm 1-20\\,THz}$ (${\\rm 300-15\\,\\mu m}$) over a temperature range spanning ${\\rm 5-300\\,K}$. The meta-material, realized from an array of tapers ${\\rm \\approx 100\\,\\mu m}$ in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

  14. Dual-band uncooled infrared sensors employing Fano resonance in plasmonic absorbers

    Science.gov (United States)

    Ogawa, Shinpei; Takagawa, Yousuke; Kimata, Masafumi

    2016-05-01

    Wavelength-selective uncooled infrared (IR) sensors have significant advantages with regard to applications such as fire detection, gas analysis, hazardous materials recognition, and biological analysis. We have previously demonstrated an uncooled IR sensor based on a two-dimensional plasmonic absorber (2D PLA) that exhibited wavelength-selective absorption over a wide range spanning the middle and long-wavelength IR regions. This device had a Au-based 2D periodic dimple-array structure, in which surface plasmon modes were induced, leading to wavelength-selective absorption, such that the absorption wavelength was determined by the period of the surface dimples. However, dual-band operation based on this concept has not yet been investigated, even though the ability to absorb in two different wavelength bands is extremely important for object recognition. In the present study, a dual-band uncooled IR sensor was developed using a 2D PLA with asymmetric dimple periods (2-D PLA-AP). To achieve multiband absorption, the Au-based dimples in this device were fabricated so as to have different periods in the orthogonal x and y directions. Theoretical calculations predicted asymmetric absorption spectra, attributed to Fano resonance in the 2-D PLA-AP. A sensor was subsequently fabricated using complementary metal oxide semiconductor and micromachining techniques. Measurement of the spectral responsivity demonstrated that selective absorption occurred in two different wavelength bands, determined by the dimple periods in the x and y directions. The results obtained in this study will be applicable to the development of advanced sensors capable of multiband detection in the IR region.

  15. Advanced LIGO

    CERN Document Server

    ,

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, ...

  16. Discovery of dense absorbing clouds in Cygnus X-2

    Science.gov (United States)

    Balucinska-Church, Monika; Schulz, Norbert S.; Church, Michael; Wilms, Joern; Hanke, Manfred

    We report results of several day-long observation of Cygnus X-2 using Chandra and XMM-Newton. The source displayed extensive dipping events in the lightcurve often seen before in the source and causing an additional track in the hardness-intensity Z-track diagram. For the first time we are able to investigate these events using both high efficiency CCD continuum spectra and highly-resolved grating data. In the XMM PN instrument, the dips are 30% deep and resemble those in the low mass X-ray binary dip sources. However, remarkably, in the Chandra HEG and MEG no absorption or edge features can be seen corresponding to expected increases of column density in excess of the interstellar column. Non-dip and dip PN spectra are fitted well with a model containing point-like blackbody emission which we associate with the neutron star plus Comptonized emission of the ADC which must be extended. Dipping can be explained without absorption of the blackbody emission, but by covering 40% of the extended ADC emission by dense absorber. In the covered fraction almost no flux remains and so no significant additional optical depths appear in the neutral K edges in the grating spectra. The dipping appears not to be explicable by absorption in the outer disk, but requires large, dense blobs of absorber that do not overlap the neutron star in the line-of-sight. The nature of these blobs is unknown.

  17. The thermal instability of the warm absorber in NGC 3783

    CERN Document Server

    Goosmann, R W; Mouchet, M; Dumont, A -M; Behar, E; Godet, O; Goncalves, A C; Kaspi, S

    2016-01-01

    We model the observed X-ray spectral continuum shape, ionic column densities, and absorption measure distribution (AMD) of the warm absorber in the Seyfert galaxy NGC 3783. We assume a photo-ionized medium with a uniform total (gas+radiation) pressure. The irradiation causes the wind to be radiation pressure compressed (RPC). We compare the observational characteristics derived from the 900 ksec Chandra observation to radiative transfer computations in pressure equilibrium using the radiative transfer code TITAN. We explore different values of the ionization parameter xi of the incident flux and adjust the hydrogen-equivalent column density, N_H0 of the warm absorber to match the observed soft X-ray continuum. We derive theoretical column densities for a broad range of ionic species of iron and neon and an AMD that we compare to the observations. We find an extension of the degeneracy between xi and N_H0 for the constant pressure models previously discussed for NGC 3783. Including the ionic column densities o...

  18. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders;

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include plan...... of the dye Bromothymol Blue. The influence of three different bonding procedures on the spectrally resolved propagation loss of the integrated waveguides between 500 nm and 900 nm was furthermore determined.......A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar...... waveguides and fiber-to-waveguide coupler structures, are defined in the same processing step. This results in self-alignment of all components and enables a fabrication and packaging time of only one day. The fabrication scheme has recently been presented elsewhere for fluorescence excitation of beads...

  19. Selection and characterization of new absorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Ma' mun, Sholeh

    2005-09-01

    Removal of acidic gases, in particular CO2, is an important industrial operation. Carbon dioxide is produced in large quantities by fossil-fuel-fired power plants, steel production, the production of petrochemicals, cement production, and natural gas purification. The global climate change, where CO2 is found to be a major contributor, is one of the most important and challenging environmental issues facing the world community. This has motivated intensive research on CO2 capture and storage. Carbon dioxide capture by an absorption process is one of the most common industrial technologies today. Recent economic studies indicate that the process will also remain competitive in the future. One of the key improvements under development is new, faster and more energy-efficient absorbents. A chemical to be used as a commercial absorbent must have high net cyclic capacity, high absorption rate for CO2 and good chemical stability. Alkanolamines are the most commonly used chemical absorbents for the removal of acidic gases today. In the first part of this thesis, an experimental screening of new absorbents for CO2 capture was performed by absorption of CO2 into both single absorbents and absorbent mixtures for amine-based and non-amine-based systems at 40 deg. Celsius From testing of approx. 30 systems, it was found that an aqueous 30 mass % AEEA (2-(2-aminoethyl-amino)ethanol) solution seems to be a potentially good absorbent for capturing CO2 from atmospheric flue gases. It offers high absorption rate combined with high absorption capacity. In addition toAEEA, MMEA (2-(methylamino)ethanol) also needs to be considered. It could have a good potential when used in contactors where the two phases are separated, like in membrane contactors, whereas indications from the study showed foaming tendencies that will make it difficult to use in ordinary towers. AEEA as the selected absorbent obtained from the screening tests was further investigated to determine its vapor

  20. Water Absorbing Plantation Clay for Vertical Greenery System

    Directory of Open Access Journals (Sweden)

    Yu Lih-Jiun

    2016-01-01

    Full Text Available With the arises of environmental conscious, the usage of vertical garden system has become more popular in urban cities. Citizens can enjoys the benefits of energy and cost saving besides ornamental effect. More investigations have been conducted on green facades led to the cities ecological enhancement.However, limited plants species can be planted for green facades systems as this system does not provide sufficient soil and nutrients for common plants. Alternative plantation methods such as planted box and felt system required additional maintenance attention. The idea of using clay composite which consists of nutritious soil, water absorbing polymer and flexible cement clay potentially become alternative vertical greenery systems that offers economic and sustainable plantation platform for more variety of plants.The fabricating of clay composite involved three processes, they are: mixing, moulding and drying. Physical properties characterisation (density, pH, compression test, aging test and water immersion test were tested on the dried fabricated clay composite to ensure their sustainability in tropical climate. The results showed that clay composite with 1.5 wt% of cement and 0.3 wt% superabsorbent polymer shows optimum water absorbing properties. This system are expected to enable more agriculture activities in urban living.