WorldWideScience

Sample records for advanced biomaterials characterization tissue

  1. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  2. Advancing biomaterials of human origin for tissue engineering

    OpenAIRE

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking in...

  3. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  4. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  5. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  6. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  8. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.

    Science.gov (United States)

    Jammalamadaka, Udayabhanu; Tappa, Karthik

    2018-03-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  9. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Udayabhanu Jammalamadaka

    2018-03-01

    Full Text Available Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  10. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  11. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  12. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  13. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  14. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    OpenAIRE

    Udayabhanu Jammalamadaka; Karthik Tappa

    2018-01-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the abi...

  15. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  16. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

    Science.gov (United States)

    Kelly, Cambre N; Miller, Andrew T; Hollister, Scott J; Guldberg, Robert E; Gall, Ken

    2018-04-01

    3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  18. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  19. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  20. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  1. Silk fibroin as biomaterial for bone tissue engineering.

    Science.gov (United States)

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  3. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  4. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  5. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  7. Handheld skin printer: in situ formation of planar biomaterials and tissues.

    Science.gov (United States)

    Hakimi, Navid; Cheng, Richard; Leng, Lian; Sotoudehfar, Mohammad; Ba, Phoenix Qing; Bakhtyar, Nazihah; Amini-Nik, Saeid; Jeschke, Marc G; Günther, Axel

    2018-05-15

    We present a handheld skin printer that enables the in situ formation of biomaterial and skin tissue sheets of different homogeneous and architected compositions. When manually positioned above a target surface, the compact instrument (weight <0.8 kg) conformally deposits a biomaterial or tissue sheet from a microfluidic cartridge. Consistent sheet formation is achieved by coordinating the flow rates at which bioink and cross-linker solution are delivered, with the speed at which a pair of rollers actively translate the cartridge along the surface. We demonstrate compatibility with dermal and epidermal cells embedded in ionically cross-linkable biomaterials (e.g., alginate), and enzymatically cross-linkable proteins (e.g., fibrin), as well as their mixtures with collagen type I and hyaluronic acid. Upon rapid crosslinking, biomaterial and skin cell-laden sheets of consistent thickness, width and composition were obtained. Sheets deposited onto horizontal, agarose-coated surfaces were used for physical and in vitro characterization. Proof-of-principle demonstrations for the in situ formation of biomaterial sheets in murine and porcine excisional wound models illustrate the capacity of depositing onto inclined and compliant wound surfaces that are subject to respiratory motion. We expect the presented work will enable the in situ delivery of a wide range of different cells, biomaterials, and tissue adhesives, as well as the in situ fabrication of spatially organized biomaterials, tissues, and biohybrid structures.

  8. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.

    Science.gov (United States)

    Chaudhari, Atul A; Vig, Komal; Baganizi, Dieudonné Radé; Sahu, Rajnish; Dixit, Saurabh; Dennis, Vida; Singh, Shree Ram; Pillai, Shreekumar R

    2016-11-25

    Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.

  9. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    OpenAIRE

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (?-TCP, without coating or ...

  10. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Atul A. Chaudhari

    2016-11-01

    Full Text Available Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL, and poly-ethylene-glycol (PEG, etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.

  11. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  12. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Thakur, Ashish; Pennisi, Christian Pablo

    2017-01-01

    , mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle......Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs...

  13. Advanced biomaterials and their potential applications in the treatment of periodontal disease.

    Science.gov (United States)

    Chen, Xi; Wu, Guofeng; Feng, Zhihong; Dong, Yan; Zhou, Wei; Li, Bei; Bai, Shizhu; Zhao, Yimin

    2016-08-01

    Periodontal disease is considered as a widespread infectious disease and the most common cause of tooth loss in adults. Attempts for developing periodontal disease treatment strategies, including drug delivery and regeneration approaches, provide a useful experimental model for the evaluation of future periodontal therapies. Recently, emerging advanced biomaterials including hydrogels, films, micro/nanofibers and particles, hold great potential to be utilized as cell/drug carriers for local drug delivery and biomimetic scaffolds for future regeneration therapies. In this review, first, we describe the pathogenesis of periodontal disease, including plaque formation, immune response and inflammatory reactions caused by bacteria. Second, periodontal therapy and an overview of current biomaterials in periodontal regenerative medicine have been discussed. Third, the roles of state-of-the-art biomaterials, including hydrogels, films, micro/nanofibers and micro/nanoparticles, developed for periodontal disease treatment and periodontal tissue regeneration, and their fabrication methods, have been presented. Finally, biological properties, including biocompatibility, biodegradability and immunogenicity of the biomaterials, together with their current applications strategies are given. Conclusive remarks and future perspectives for such advanced biomaterials are discussed.

  14. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

    Science.gov (United States)

    Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2016-04-15

    Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.

  15. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    International Nuclear Information System (INIS)

    Skopinska-Wisniewska, J.; Sionkowska, A.; Kaminska, A.; Kaznica, A.; Jachimiak, R.; Drewa, T.

    2009-01-01

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in biomaterial

  16. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Skopinska-Wisniewska, J., E-mail: joanna@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Sionkowska, A.; Kaminska, A. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kaznica, A.; Jachimiak, R.; Drewa, T. [Collegium Medicum, Nicolaus Copernicus University, Karlowicz 24, 85-092 Bydgoszcz (Poland)

    2009-07-15

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in

  17. Mechanics of Biological Tissues and Biomaterials : Current Trends (editorial)

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the

  18. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  19. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  20. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Science.gov (United States)

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  1. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    Science.gov (United States)

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  2. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  3. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  4. A Review of Injectable and Implantable Biomaterials for Treatment and Repair of Soft Tissues in Wound Healing

    Directory of Open Access Journals (Sweden)

    Shih-Feng Chou

    2017-01-01

    Full Text Available The two major topics concerning the development of nanomedicine are drug delivery and tissue engineering. With the advance in nanotechnology, scientists and engineers now have the ability to fabricate functional drug carriers and/or biomaterials that deliver and release drugs locally as well as promote tissue regeneration. In this short review, we address the use of nanotechnology in the fabrication of biomaterials (i.e., nanoparticles and nanofibers and their therapeutic function in wound healing as dressing materials. Furthermore, we discuss the use of surface nanofeatures to regulate cell adhesion, migration, proliferation, and differentiation, which is a crucial step in wound healing associated with tissue regeneration. Given that nanotechnology-based biomaterials exhibit superior pharmaceutical performance as compared to the traditional medicine, this short review provides current status and future directions of how nanotechnology is and will be used in biomedical field, especially in wound healing.

  5. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  6. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  7. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  8. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  10. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  11. Current Methods Applied to Biomaterials - Characterization Approaches, Safety Assessment and Biological International Standards.

    Science.gov (United States)

    Oliveira, Justine P R; Ortiz, H Ivan Melendez; Bucio, Emilio; Alves, Patricia Terra; Lima, Mayara Ingrid Sousa; Goulart, Luiz Ricardo; Mathor, Monica B; Varca, Gustavo H C; Lugao, Ademar B

    2018-04-10

    Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physicalchemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  14. Studies by nuclear and physico-chemical methods of tissue's metallic contamination located around biomaterials. Toxicity measurements of several biomaterials residual radioactivity

    International Nuclear Information System (INIS)

    Guibert, Geoffroy

    2004-01-01

    Implants used as biomaterials fulfill conditions of functionality, compatibility and occasionally bio-activity. There are four main families of biomaterials: metals and metal alloys, polymers, bio-ceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. These debris develop different problems: toxicity, inflammatory reactions, prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters which have an influence on tissue response. We characterize metallic contamination coming from knee prosthesis into surrounding capsular tissue by depth migration, in vivo behaviours, content, size and nature of debris. The PIXE-RBS and STEM-EDXS methods, that we used, are complementary, especially about characterization scale. Debris contamination distributed in the whole articulation is very heterogeneous. Debris migrate on several thousands μm in tissue. Solid metallic particles, μm, are found in the most polluted samples, for both kinds of alloys TA6V and CrCoMo. In the mean volume analysed by PIXE, the in vivo mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TA6V debris and chemical evolution of CrCoMo debris. Complementary measures of TA6V grains, on a nano-metric scale by STEM-EDXS, show a dissolution of coarse grain (μm) in smaller grains (nm). Locally, TA6V grains of a phase are detected and could indicate a preferential dissolution of β phase (grain boundaries) with dropping of Al and V, both toxic and carcinogenic elements. A thin target protocol development correlates PIXE and histological analysis on the same zone. This protocol allows to locate other pathologies in relationship with weaker metal contamination, μg/g, thanks to the great sensitivity of PIXE method. Harmlessness with respect to the residual radioactivity of several natural or synthetic biomaterials is established, using ultra low background noise γ detection system. (author)

  15. Research in Biomaterials and Tissue Engineering: Achievements and perspectives.

    Science.gov (United States)

    Ventre, Maurizio; Causa, Filippo; Netti, Paolo A; Pietrabissa, Riccardo

    2015-01-01

    Research on biomaterials and related subjects has been active in Italy. Starting from the very first examples of biomaterials and biomedical devices, Italian researchers have always provided valuable scientific contributions. This trend has steadily increased. To provide a rough estimate of this, it is sufficient to search PubMed, a free search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics, with the keywords "biomaterials" or "tissue engineering" and sort the results by affiliation. Again, even though this is a crude estimate, the results speak for themselves, as Italy is the third European country, in terms of publications, with an astonishing 3,700 products in the last decade.

  16. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  17. A high throughput array microscope for the mechanical characterization of biomaterials

    Science.gov (United States)

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-02-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.

  18. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  19. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    Science.gov (United States)

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  1. Characterization of Human Dental Pulp Tissue Under Oscillatory Shear and Compression.

    Science.gov (United States)

    Ozcan, Burak; Bayrak, Ece; Erisken, Cevat

    2016-06-01

    Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1-100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1 ± 20.4 kPa and 5.5 ± 2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.

  2. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  3. Molecular Characterization of Macrophage-Biomaterial Interactions.

    Science.gov (United States)

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  4. [Cartilage tissue reconstruction by the polymer biomaterials--early macroscopic and histological results].

    Science.gov (United States)

    Scierski, Wojciech; Polok, Aleksandra; Namysłowski, Grzegorz; Nozyński, Jerzy; Turecka, Lucyna; Urbaniec, Natalia; Pamuła, Elzbieta

    2009-09-01

    The surgical treatment of large cartilage defects in the region of head and neck is often impossible because of the atrophy of surrounding tissues and lack of suitable material for reconstruction. In the surgical treatment many of methods and reconstructive materials have been used. For many years the suitable synthetic material for the cartilage defects reconstruction has been searched for. Was to evaluate two different biomaterials with proper mechanical and biological features for the cartilage replacement. Two type of biomaterials in this study were used: resorbable polymer - poly(L-lactide-co-glycolide) (PLG) acting as a supportive matrix. A thin layer of sodium hyaluronate (Hyal) was also deposited on the surface as well in the pore walls of PLG scaffolds in order to provide biologically active molecules promoting differentiation and regeneration of the tissue. The studies were performed on the 50 animals--rabbits divided into 2 groups. The animals were operated in the general anaesthesia. The incision was done along the edge of the rabbit's auricle. Perichondrium and cartilage of the auricle on the surface 4 x 3 cm were prepared. Subperichondrically 1 x 1 cm fragment of the cartilage was removed by the scissors. This fragment was then replaced by the biomaterials: PLG in first group of 25 rabbits and PLG-Hyal in second group 25 rabbits. The tissues were sutured with polyglycolide Safil 3-0. The animals obtained Enrofloxacin for three days after the operation. Then 1, 4 and 12 weeks after the surgery the animals were painlessly euthanized by an overdose of Morbital. Implants and surrounding tissues were excised and observed macroscopically and using an optical microscope. In all the observation periods we observed proper macroscopic healing process of biomaterials. We didn't stated strong inflammatory process and necrosis around the implanted biomaterials. The histological and macroscopic examinations indicated that both materials developed in this study have

  5. Biomaterials in Relation to Dentistry.

    Science.gov (United States)

    Deb, Sanjukta; Chana, Simran

    2015-01-01

    Dental caries remains a challenge in the improvement of oral health. It is the most common and widespread biofilm-dependent oral disease, resulting in the destruction of tooth structure by the acidic attack from cariogenic bacteria. The tooth is a heavily mineralised tissue, and both enamel and dentine can undergo demineralisation due to trauma or dietary conditions. The adult population worldwide affected by dental caries is enormous and despite significant advances in caries prevention and tooth restoration, treatments continue to pose a substantial burden to healthcare. Biomaterials play a vital role in the restoration of the diseased or damaged tooth structure and, despite providing reasonable outcomes, there are some concerns with clinical performance. Amalgam, the silver grey biomaterial that has been widely used as a restorative material in dentistry, is currently in throes of being phased out, especially with the Minimata convention and treaty being signed by a number of countries (January 2013; http://mercuryconvention.org/Convention/) that aims to control the anthropogenic release of mercury in the environment, which naturally impacts the use of amalgam, where mercury is a component. Thus, the development of alternative restoratives and restoration methods that are inexpensive, can be used under different climatic conditions, withstand storage and allow easy handling, the main prerequisites of dental biomaterials, is important. The potential for using biologically engineered tissue and consequent research to replace damaged tissues has also seen a quantum leap in the last decade. Ongoing research in regenerative treatments in dentistry includes alveolar ridge augmentation, bone tissue engineering and periodontal ligament replacement, and a future aim is bioengineering of the whole tooth. Research towards developing bioengineered teeth is well underway and identification of adult stem cell sources to make this a viable treatment is advancing; however, this

  6. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations

    Directory of Open Access Journals (Sweden)

    Christopher M. Mahoney

    2018-05-01

    Full Text Available Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  7. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations.

    Science.gov (United States)

    Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G

    2018-01-01

    Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  8. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  9. Gradient biomaterials and their influences on cell migration

    Science.gov (United States)

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  10. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.

    Science.gov (United States)

    Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J

    2015-10-01

    A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  12. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    Science.gov (United States)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  13. Determination of optical properties of tissue and other bio-materials

    CSIR Research Space (South Africa)

    Singh, A

    2008-11-01

    Full Text Available appears less diffusively scattered. Determination of optical properties of tissue and other bio-materials A SINGH, AE KARSTEN, JS DAM CSIR National Laser Centre, Biophotonics Group PO Box 395, Pretoria, 0001, South Africa Email: ASingh1@csir.co.za K...

  14. A new approach to the rationale discovery of polymeric biomaterials

    Science.gov (United States)

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  15. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  17. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    Science.gov (United States)

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2011-09-01

    Full Text Available The implantation of biomaterials into the human body has become an indispensable part of almost all fields of modern medicine. Accordingly, there is an increasing need for appropriate approaches, which can be used to evaluate the suitability of different biomaterials for distinct clinical indications. The dorsal skinfold chamber is a sophisticated experimental model, which has been proven to be extremely valuable for the systematic in vivo analysis of the dynamic interaction of small biomaterial implants with the surrounding host tissue in rats, hamsters and mice. By means of intravital fluorescence microscopy, this chronic model allows for repeated analyses of various cellular, molecular and microvascular mechanisms, which are involved in the early inflammatory and angiogenic host tissue response to biomaterials during the initial 2-3 weeks after implantation. Therefore, the dorsal skinfold chamber has been broadly used during the last two decades to assess the in vivo performance of prosthetic vascular grafts, metallic implants, surgical meshes, bone substitutes, scaffolds for tissue engineering, as well as for locally or systemically applied drug delivery systems. These studies have contributed to identify basic material properties determining the biocompatibility of the implants and vascular ingrowth into their surface or internal structures. Thus, the dorsal skinfold chamber model does not only provide deep insights into the complex interactions of biomaterials with the surrounding soft tissues of the host but also represents an important tool for the future development of novel biomaterials aiming at an optimisation of their biofunctionality in clinical practice.

  19. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing.

    Science.gov (United States)

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-08-04

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.

  20. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  1. Additive Manufacturing of Biomaterials, Tissues, and Organs.

    Science.gov (United States)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.

  2. Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Amanda L. Baillargeon

    2014-01-01

    Full Text Available Degradable biomaterials continue to play a major role in tissue engineering and regenerative medicine as well as for delivering therapeutic agents. Although the chemistry of polyphosphazenes has been studied extensively, a systematic review of their applications for a wide range of biomedical applications is lacking. Polyphosphazenes are synthesized through a relatively well-known two-step reaction scheme which involves the substitution of the initial linear precursor with a wide range of nucleophiles. The ease of substitution has led to the development of a broad class of materials that have been studied for numerous biomedical applications including as scaffold materials for tissue engineering and regenerative medicine. The objective of this review is to discuss the suitability of poly(amino acid esterphosphazene biomaterials in regard to their unique stimuli responsive properties, tunable degradation rates and mechanical properties, as well as in vitro and in vivo biocompatibility. The application of these materials in areas such as tissue engineering and drug delivery is discussed systematically. Lastly, the utility of polyphosphazenes is further extended as they are being employed in blend materials for new applications and as another method of tailoring material properties.

  3. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Olfat Gsib

    2017-12-01

    Full Text Available Interpenetrating polymer networks (IPNs have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO. First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%. The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues and migration (skin, intestine than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  5. Biomaterials innovation for next generation ex vivo immune tissue engineering.

    Science.gov (United States)

    Singh, Ankur

    2017-06-01

    Primary and secondary lymphoid organs are tissues that facilitate differentiation of B and T cells, leading to the induction of adaptive immune responses. These organs are present in the body from birth and are also recognized as locations where self-reactive B and T cells can be eliminated during the natural selection process. Many insights into the mechanisms that control the process of immune cell development and maturation in response to infection come from the analysis of various gene-deficient mice that lack some or all hallmark features of lymphoid tissues. The complexity of such animal models limits our ability to modulate the parameters that control the process of immune cell development, differentiation, and immunomodulation. Engineering functional, living immune tissues using biomaterials can grant researchers the ability to reproduce immunological events with tunable parameters for more rapid development of immunotherapeutics, cell-based therapy, and enhancing our understanding of fundamental biology as well as improving efforts in regenerative medicine. Here the author provides his review and perspective on the bioengineering of primary and secondary lymphoid tissues, and biomaterials innovation needed for the construction of these immune organs in tissue culture plates and on-chip. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  7. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  8. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction.

    Science.gov (United States)

    Lucaciu, Ondine; Băciuţ, Mihaela; Băciuţ, G; Câmpian, R; Soriţău, Olga; Bran, S; Crişan, B; Crişan, Liana

    2010-01-01

    This research was developed in order to demonstrate the tissue engineering method as an alternative to conventional methods for bone reconstruction, in order to overcome the frequent failures of alloplastic commercial biomaterials, allografts and autografts. Tissue engineering is an in vitro method used to obtain cell based osteoinductive bone grafts. This study evaluated the feasibility of creating tissue-engineered bone using mesenchymal cells seeded on a scaffold obtained from the deciduous red deer antler. We have chosen mesenchymal stem cells because they are easy to obtain, capable to differentiate into cells of mesenchymal origin (osteoblasts) and to produce tissue such as bone. As scaffold, we have chosen the red deer antler because it has a high level of porosity. We conducted a case control study, on three groups of mice type CD1--two study groups (n=20) and a control group (n=20). For the study groups, we obtained bone grafts through tissue engineering, using mesenchymal stem cells seeded on the scaffold made of deciduous red deer antler. Bone defects were surgically induced on the left parietal bone of all subjects. In the control group, we grafted the bone defects with commercial biomaterials (OsteoSet, Wright Medical Technology, Inc., Arlington, Federal USA). Subjects were sacrificed at two and four months, the healing process was morphologically and histologically evaluated using descriptive histology and the golden standard - histological scoring. The grafts obtained in vivo through tissue engineering using adult stem cell, seeded on the scaffold obtained from the red deer antler using osteogenic medium have proven their osteogenic properties.

  9. Wear Characteristics of Metallic Biomaterials: A Review

    Science.gov (United States)

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  10. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  11. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  12. Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

    OpenAIRE

    Kuo Catherine K; Marturano Joseph E; Tuan Rocky S

    2010-01-01

    Abstract Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics criti...

  13. Semi-confined compression of microfabricated polymerized biomaterial constructs

    International Nuclear Information System (INIS)

    Moraes, Christopher; Likhitpanichkul, Morakot; Simmons, Craig A; Sun, Yu; Zhao, Ruogang

    2011-01-01

    Mechanical forces are critical parameters in engineering functional tissue because of their established influence on cellular behaviour. However, identifying ideal combinations of mechanical, biomaterial and chemical stimuli to obtain a desired cellular response requires high-throughput screening technologies, which may be realized through microfabricated systems. This paper reports on the development and characterization of a MEMS device for semi-confined biomaterial compression. An array of these devices would enable studies involving mechanical deformation of three-dimensional biomaterials, an important parameter in creating physiologically relevant microenvironments in vitro. The described device has the ability to simultaneously apply a range of compressive mechanical stimuli to multiple polymerized hydrogel microconstructs. Local micromechanical strains generated within the semi-confined hydrogel cylinders are characterized and compared with those produced in current micro- and macroscale technologies. In contrast to previous work generating unconfined compression in microfabricated devices, the semi-confined compression model used in this work generates uniform regions of strain within the central portion of each hydrogel, demonstrated here to range from 20% to 45% across the array. The uniform strains achieved simplify experimental analysis and improve the utility of the compression platform. Furthermore, the system is compatible with a wide variety of polymerizable biomaterials, enhancing device versatility and usability in tissue engineering and fundamental cell biology studies

  14. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  15. Application of biomaterials to advance induced pluripotent stem cell research and therapy

    Science.gov (United States)

    Tong, Zhixiang; Solanki, Aniruddh; Hamilos, Allison; Levy, Oren; Wen, Kendall; Yin, Xiaolei; Karp, Jeffrey M

    2015-01-01

    Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation. PMID:25766254

  16. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  17. Biomaterials and their applications

    Science.gov (United States)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  18. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering.

    Science.gov (United States)

    Bettinger, Christopher J; Bruggeman, Joost P; Misra, Asish; Borenstein, Jeffrey T; Langer, Robert

    2009-06-01

    The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties. This study evaluates the potential use of melanin films as a semiconducting material for tissue engineering applications. Melanin thin films were produced by solution processing and the physical properties were characterized. Films were molecularly smooth with a roughness (R(ms)) of 0.341 nm and a conductivity of 7.00+/-1.10 x 10(-5)S cm(-1) in the hydrated state. In vitro biocompatibility was evaluated by Schwann cell attachment and growth as well as neurite extension in PC12 cells. In vivo histology was evaluated by examining the biomaterial-tissue response of melanin implants placed in close proximity to peripheral nerve tissue. Melanin thin films enhanced Schwann cell growth and neurite extension compared to collagen films in vitro. Melanin films induced an inflammation response that was comparable to silicone implants in vivo. Furthermore, melanin implants were significantly resorbed after 8 weeks. These results suggest that solution-processed melanin thin films have the potential for use as a biodegradable semiconducting biomaterial for use in tissue engineering applications.

  19. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  20. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    Science.gov (United States)

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  1. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    Science.gov (United States)

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  2. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    Science.gov (United States)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-01-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951

  3. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    Science.gov (United States)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-06-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.

  4. Biomaterials Out of Thin Air: in Situ, On-Demand Printing of Advanced Biocomposites

    Science.gov (United States)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley

    2015-01-01

    Upmass is the single most significant limitation of our current space mission capability. Although biomaterials and biocomposites have mass, strength, flexibility, and self-healing properties that could significantly reduce upmass, their use is limited by the following drawbacks: Expensive, specific production. Many biomaterials can only be produced as part of significant support ecosystem; Inaccessible functional customization. The grain of wood, the porosity of bone, and so on are an integral part of the materials' desired mechanical properties, but are not deterministic when the material is naturally grown; Limited compositions. Most biomaterials (unlike metal, plastic, etc.) cannot be easily combined or modified to produce new materials. This project builds on recent advances in: Synthetic biology. Libraries of standardized genetic parts which can be used for controlled cellular material production, delivery, and binding; 3D printing. Commercial off-the-shelf components which can be used to make of a pico- to nanoliter cell deposition system; Tissue engineering. Proven cell-compatible support hydrogels and scaffolds can be modified to bind the deposited biomaterials of interest. Objectives: Feasibility and benefit analysis. Two mission contexts span the concept's scope (see below); Proof-of-concept demonstration. A simple grid of two proteins, fluorescent for easy detection, to validate the core technology concept; Proposed implementations for follow-on work. Avenues for future work on each core component (host cell, production control, material delivery, material binding, etc.); Complementary studies exploration. A survey of other emerging areas (in situ resource utilization, protein engineering, etc.) with the potential to multiply our technology's impact. Potential Impacts: This application could dramatically expand manufacturing capabilities on Earth and in space: In situ resource utilization. A far greater range of materials and products will be available

  5. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Juan Antonio Marchal

    2013-03-01

    Full Text Available Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i skin; (ii cartilage; (iii bone; (iv nerve; and (v cardiac.

  6. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  7. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biomaterials science an introduction to materials in medicine

    CERN Document Server

    Ratner, Buddy D; Lemons, Jack E; Yaszemski, Michael J; Yaszemski, Michael

    2004-01-01

    The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemi...

  9. Synthesis of a nanocomposite biomaterial for implant tissue engineering

    OpenAIRE

    Santos Montes, Angélica

    2015-01-01

    In order to improve health and quality of life, the challenge to develop new biomaterials has become extremely relevant. In this project, our main objective is to obtain a nanocomposite biopolymer that serves as a temporal synthetic extracellular matrix for cell growth and tissue regeneration. This matrix consists of a hydrogel lm of chitosan or agarose doped with di erent ceramic nanoparticles: titanium dioxide (TiO2) and aluminum oxide (Al2O3). Once developed, this composite will be tested...

  10. On the nature of biomaterials.

    Science.gov (United States)

    Williams, David F

    2009-10-01

    The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.

  11. Biomaterial applications in neural therapy and repair

    Institute of Scientific and Technical Information of China (English)

    Harmanvir Ghuman; Michel Modo

    2017-01-01

    The use of biomaterials,such as hydrogels,as a scaffold to deliver cells and drugs is becoming increasingly common to treat neurological conditions,including stroke.With a limited intrinsic ability to regenerate after injury,innovative tissue engineering strategies have shown the potential of biomaterials in facilitating neural tissue regeneration and functional recovery.Using biomaterials can not only promote the survival and integration of transplanted cells in the existing circuitry,but also support controlled site specific delivery of therapeutic drugs.This review aims to provide the reader an understanding of the brain tissue microenvironment after injury,biomaterial criteria that support tissue repair,commonly used natural and synthetic biomaterials,benefits of incorporating cells and neurotrophic factors,as well as the potential of endogenous neurogenesis in repairing the injured brain.

  12. Advances in Proximal Interphalangeal Joint Arthroplasty: Biomechanics and Biomaterials.

    Science.gov (United States)

    Zhu, Andy F; Rahgozar, Paymon; Chung, Kevin C

    2018-05-01

    Proximal interphalangeal (PIP) joint arthritis is a debilitating condition. The complexity of the joint makes management particularly challenging. Treatment of PIP arthritis requires an understanding of the biomechanics of the joint. PIP joint arthroplasty is one treatment option that has evolved over time. Advances in biomaterials have improved and expanded arthroplasty design. This article reviews biomechanics and arthroplasty design of the PIP joint. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  14. [Materials/Biomaterials in Clinical Practice - a Short Review and Current Trends].

    Science.gov (United States)

    Bolle, T; Meyer, F; Walcher, F; Lohmann, C; Jockenhövel, S; Gries, T; Hoffmann, W

    2017-04-01

    Biomaterials play a major role in interventional medicine and surgery. However, the development of biomaterials is still in its early phases in spite of the huge progress made within the last decades. On the one hand, this is because our knowledge of the molecular and cellular processes associated with biomaterials is still increasing exponentially. On the other hand, a wide variety of advanced materials with highly interesting properties is being developed currently. This review provides a short introduction into the variety of materials in use as well as their application in interventional medicine and surgery. Also the importance of biomaterials for tissue engineering in the field of regenerative medicine and the functionalisation of biomaterials, including sterilisation methods are discussed. For the future, an even broader interdisciplinary scientific collaboration is necessary in order to develop novel biomaterials and facilitate their translation into clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  15. A Trifunctional, Modular Biomaterial Coating : Nonadhesive to Bacteria, Chlorhexidine-Releasing and Tissue-Integrating

    NARCIS (Netherlands)

    Sjollema, Jelmer; Keul, Heidrun; van der Mei, Henny; Dijkstra, Rene; Rustema-Abbing, Minie; de Vries, Joop; Loontjens, Ton; Dirks, Ton; Busscher, Henk

    Various potential anti-infection strategies can be thought of for biomaterial implants and devices. Permanent, tissue-integrated implants such as artificial joint prostheses require a different anti-infection strategy than, for instance, removable urinary catheters. The different requirements set to

  16. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  17. Advances in Porous Biomaterials for Dental and Orthopaedic Applications

    Directory of Open Access Journals (Sweden)

    Arndt F. Schilling

    2010-04-01

    Full Text Available The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.

  18. Biomaterials for artificial organs

    CERN Document Server

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  19. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    functional components are not generally considered to be biomaterials since by definition they are not in ... The requirements in these cases will be varied depending upon the stress transfer system within the ... few widely used biomaterials in clinical practice but rather a whole range of metals and alloys, ceramic and ...

  20. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  1. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.

    Science.gov (United States)

    Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J

    2011-09-01

    This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Advances and perspectives in tooth tissue engineering.

    Science.gov (United States)

    Monteiro, Nelson; Yelick, Pamela C

    2017-09-01

    Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  4. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  5. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  6. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  7. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Deepti Singh

    2016-01-01

    Full Text Available Injury or damage to tissue and organs is a major health problem, resulting in about half of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs and biomaterials processing have provided a tremendous leap for researchers to manipulate the dynamics between these two, and obtain a skin substitute that can completely heal the wounded areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins and growth factors, the most important players in this process are the endogenous SCs, which activate the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM proteins are activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in artificial three-dimensional (3D constructs, tissue engineered biomaterials are fabricated using more advanced techniques such as bioprinting and laser assisted printing of the organs. This review provides a concise summary of the most recent advances that have been made in the area of polymer bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within this system that can heal wounds and aid in skin regeneration.

  8. Biomaterials and mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Zippel, Nina; Schulze, Margit; Tobiasch, Edda

    2010-01-01

    The reconstruction of hard and soft tissues is a major challenge in regenerative medicine, since diseases or traumas are causing increasing numbers of tissue defects due to the aging of the population. Modern tissue engineering is increasingly using three-dimensional structured biomaterials in combination with stem cells as cell source, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds are developed that not only serve as cell carriers providing mechanical support, but actively influence cellular responses including cell attachment and proliferation. Chemical modifications such as the incorporation of chemotactic factors or cell adhesion molecules are examined for their ability to enhance tissue development successfully. E.g. growth factors have been investigated extensively as substances able to support cell growth, differentiation and angiogenesis. Thus, continuously new patents and studies are published, which are investigating the advantages and disadvantages of different biomaterials or cell types for the regeneration of specific tissues. This review focuses on biomaterials, including natural and synthetic polymers, ceramics and corresponding composites used as scaffold materials to support cell proliferation and differentiation for hard and soft tissues regeneration. In addition, the local delivery of drugs by scaffold biomaterials is discussed.

  9. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  10. Inhibition of the tissue reaction to a biodegradable biomaterial by monoclonal antibodies to IFN-gamma

    NARCIS (Netherlands)

    Khouw, IMSL; van Wachem, PB; de Leij, LFMH; van Luyn, MJA

    Biomaterials are increasingly used for clinical applications. However, loss of function may occur owing to tissue reactions, which are mainly caused by a variety of inflammatory reactions. Recently, we demonstrated that macrophages (MO) and T cells play key roles in these reactions. Since

  11. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.

    Science.gov (United States)

    Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali

    2013-05-01

    This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  12. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    Science.gov (United States)

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  13. Biomaterials: An Introduction for Librarians.

    Science.gov (United States)

    Bush, Renee B.

    1996-01-01

    Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…

  14. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆

    Science.gov (United States)

    Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan

    2016-01-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875

  15. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.

    Science.gov (United States)

    Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan

    2016-04-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would

  16. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.

    Science.gov (United States)

    Ma, Hongshi; Luo, Jian; Sun, Zhe; Xia, Lunguo; Shi, Mengchao; Liu, Mingyao; Chang, Jiang; Wu, Chengtie

    2016-12-01

    Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface. Taking advantage of biocompatibility, biodegradability and the excellent photothermal effect of polydopamine, the bifunctional scaffolds with mussel-inspired nanostructures could be used as a satisfactory and controllable photothermal agent, which effectively induced tumor cell death in vitro, and significantly inhibited tumor growth in mice. In addition, owing to the nanostructured surface, the prepared polydopamine-modified bioceramic scaffolds could support the attachment and proliferation of rabbit bone mesenchymal stem cells (rBMSCs), and significantly promoted the formation of new bone tissues in rabbit bone defects even under photothermal treatment. Therefore, the mussel-inspired nanostructures in 3D-printed bioceramic exhibited a remarkable capability for both cancer therapy and bone regeneration, offering a promising strategy to construct bifunctional biomaterials which could be widely used for therapy of tumor-induced tissue defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Immobilization of Murine Anti-BMP-2 Monoclonal Antibody on Various Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sahar Ansari

    2014-01-01

    Full Text Available Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR. The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks, de novo bone formation was assessed using micro-CT and histomorphometric analyses. Results showed de novo bone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffolds via AMOR.

  18. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  19. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    Science.gov (United States)

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    space. Results capture the shift in geometry and mechanical properties between as-designed and as-manufactured biomaterials induced by additive manufacturing. Characterization of this shift is crucial to ensure appropriate manufacturing of bone replacement implants that enable biological fixation through bone ingrowth as well as mechanical property harmonization with the native bone tissue. In addition, we propose a method to include manufacturing imperfections in the numerical models that can reduce the discrepancy between predicted and tested properties. The results give insight into the use of structurally porous biomaterials for the design and additive fabrication of load-bearing implants for bone replacement. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    Science.gov (United States)

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effective atomic numbers (Z_e_f_f) of based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    Fernandes Zenobio, Madelon Aparecida; Gonçalves Zenobio, Elton; Silva, Teógenes Augusto da; Socorro Nogueira, Maria do

    2016-01-01

    This study determined the interaction of radiation parameters of four biomaterials as attenuators to measure the transmitted X-rays spectra, the mass attenuation coefficient and the effective atomic number by spectrometric system comprising the CdTe detector. The biomaterial BioOss"® presented smaller mean energy than the other biomaterials. The μ/ρ and Z_e_f_f of the biomaterials showed their dependence on photon energy. The data obtained from analytical methods of x-ray spectra, µ/ρ and Z_e_f_f_, using biomaterials as attenuators, demonstrated that these materials could be used as substitutes for dentin, enamel and bone. Further, they are determinants for the characterization of the radiation in tissues or equivalent materials. - Highlights: • Measure of the transmitted x-rays spectra using based calcium phosphate biomaterials as attenuators. • Determination effective atomic number using four dental biomaterials. • Determination of the mass attenuation coefficient (µ/ρ) of the biomaterials samples calculated by the WinXCOM software. • Determination of the chemical composition of calcium phosphate biomaterials.

  2. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  3. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  4. Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials

    Science.gov (United States)

    Osborne, Lukas Dylan

    Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive

  5. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    Science.gov (United States)

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  6. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China.

    Science.gov (United States)

    Zou, Qingsong; Fu, Qiang

    2018-04-01

    Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.

  7. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray...... crystallography and X-ray absorption spectroscopy (XAS) applied to studying different hexameric insulin conformations. (iii) The structures of polymorphs of strontium ranelate and the distribution of strontium in bone tissue. A procedure for fast identification and verification of protein powders using XRPD...... was correction for disordered bulk-solvent, but also correction for background and optimization of unit cell parameters have to be taken into account. A sample holder was designed for collecting powder diffraction data on a standard laboratory X-ray powder diffractometer. The background was reduced by use...

  9. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.

    Science.gov (United States)

    Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X

    2016-05-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  11. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    OpenAIRE

    Christo, Susan N.; Diener, Kerrilyn R.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestati...

  12. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  13. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  14. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  15. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  16. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage

  17. Devising tissue ingrowth metrics: a contribution to the computational characterization of engineered soft tissue healing.

    Science.gov (United States)

    Alves, Antoine; Attik, Nina; Bayon, Yves; Royet, Elodie; Wirth, Carine; Bourges, Xavier; Piat, Alexis; Dolmazon, Gaëlle; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte; Gritsch, Kerstin

    2018-03-14

    The paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues. For example, metrics provide the tissue ingrowth rate (TIR) which integrates two separate indicators; the cell ingrowth rate (CIR) and the total collagen content (TCC) as featured in the equation, TIR% = CIR% + TCC%. Moreover a subset of quantitative indicators describing the directional organization of the collagen (relating structure and mechanical function of tissues), the ratio of collagen I to collagen III (remodeling quality) and the optical anisotropy property of the collagen (maturity indicator) was automatically assessed as well. Using an image analyzer, all metrics were extracted from only two serial sections stained with either Feulgen & Rossenbeck (cell specific) or Picrosirius Red F3BA (collagen specific). To validate this new procedure, three-dimensional (3D) scaffolds were intraperitoneally implanted in healthy and in diabetic rats. It was hypothesized that quantitatively, the healing tissue would be significantly delayed and of poor quality in diabetic rats in comparison to healthy rats. In addition, a chemically modified 3D scaffold was similarly implanted in a third group of healthy rats with the assumption that modulation of the ingrown tissue would be quantitatively present in comparison to the 3D scaffold-healthy group. After 21 days of implantation, both hypotheses were verified by use of this novel computerized approach. When the two methods were run in parallel, the quantitative results revealed fine details and

  18. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis.

    Science.gov (United States)

    Peela, Nitish; Truong, Danh; Saini, Harpinder; Chu, Hunghao; Mashaghi, Samaneh; Ham, Stephanie L; Singh, Sunil; Tavana, Hossein; Mosadegh, Bobak; Nikkhah, Mehdi

    2017-07-01

    Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials

    NARCIS (Netherlands)

    Babo, P.S.; Klymov, A.; Riet, J. te; Reis, R.L.; Jansen, J.A.; Gomes, M.E.; Walboomers, X.F.

    2016-01-01

    Micro- and nanotextured biomaterial surfaces have been widely studied for their capacity to drive the regeneration of organized tissues. Nanotopographical features in the shape of groove-ridge patterns aim at mimicking the extracellular matrix organization. However, to date, a wide array of groove

  1. The RAPIDOS project—European and Chinese collaborative research on biomaterials

    Directory of Open Access Journals (Sweden)

    David Eglin

    2015-04-01

    Full Text Available The research project entitled “rapid prototyping of custom-made bone-forming tissue engineering constructs” (RAPIDOS is one of the three unique projects that are the result of the first coordinated call for research proposals in biomaterials launched by the European Union Commission and the National Natural Science Foundation of China in 2013 for facilitating bilateral translational research. We formed the RAPIDOS European and Chinese consortium with the aim of applying technologies creating custom-made tissue engineered constructs made of resorbable polymer and calcium phosphate ceramic composites specifically designed by integrating the following: (1 imaging and information technologies, (2 biomaterials and process engineering, and (3 biological and biomedical engineering for novel and truly translational bone repair solutions. Advanced solid free form fabrication technologies, precise stereolithography, and low-temperature rapid prototyping provide the necessary control to create innovative high-resolution medical implants. The use of Chinese medicine extracts, such as the bone anabolic factor icaritin, which has been shown to promote osteogenic differentiation of stem cells and enhance bone healing in vivo, is a safe and technologically relevant alternative to the intensely debated growth factors delivery strategies. This unique initiative driven by a global consortium is expected to accelerate scientific progress in the important field of biomaterials and to foster strong scientific cooperation between China and Europe.

  2. Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy

    Science.gov (United States)

    Kim, Hyeongmin; Lee, Jaehwi

    2016-01-01

    Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases. PMID:26821034

  3. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco

    2014-01-01

    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

  4. Biphasic calcium phosphates (BCP of hydroxyapatite (HA and tricalcium phosphate (TCP as bone substitutes: Importance of physicochemical characterizations in biomaterials studies

    Directory of Open Access Journals (Sweden)

    Mehdi Ebrahimi

    2017-02-01

    Full Text Available The data presented in this article are related to the research article entitled “Biphasic calcium phosphates bioceramics (HA/TCP: Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research” [1]. This article provides in depth study of BCP bone substitutes as valuable option in the field of tissue engineering. However, there are discrepancies in the literature regarding the ideal physicochemical properties of BCP and the ideal balance between different phase compositions for enhanced bone tissue engineering (M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, 2016; M. Ebrahimi, P. Pripatnanont, S. Suttapreyasri, N. Monmaturapoj, 2014 [1,2]. This is found to be mainly because of improper characterization of BCP bioceramics in basic studies and lack of standard study protocols in in vitro and in vivo research. This data article along with original article provide the basic data required for ideal characterization of BCP and other bioceramics in an attempt to provide basic standardized protocols for future studies.

  5. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  6. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    Directory of Open Access Journals (Sweden)

    Ke Yang

    2017-12-01

    Full Text Available Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1 mechanical properties that mimic the host tissues; (2 sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3 a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  7. Bio-Functional Design, Application and Trends in Metallic Biomaterials.

    Science.gov (United States)

    Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong

    2017-12-22

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  8. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  9. Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: Through molecular control of interfaces

    Science.gov (United States)

    Verma, Devendra

    In this dissertation, novel biomaterials are designed for bone biomaterials and bone tissue engineering applications. Novel biomaterials of hydroxyapatite with synthetic and natural polymers have been fabricated using a combination of processing routes. Initially, we investigated hydroxyapatite-polycaprolactone-polyacrylic acid composites and observed that minimal interfacial interactions between polymer and mineral led to inadequate improvement in the mechanical properties. Bioactivity experiments on these composites showed that the presence of functional groups, such as carboxylate groups, influence bioactivity of the composites. We have developed and investigated composites of hydroxyapatite with chitosan and polygalacturonic acid (PgA). Chitosan and PgA are biocompatible, biodegradable, and also electrostatically complementary to each other. This strategy led to significant improvement in mechanical properties of new composites. The nanostructure analysis using atomic force microscopy revealed a multilevel organization in these composites. Enhancement in mechanical response was attributed to stronger interfaces due to strong electrostatic interaction between oppositely charged chitosan and PgA. Further analysis using the Rietveld method showed that biopolymers have marked impact on hydroxyapatite crystal growth and also on its crystal structure. Significant changes were observed in the lattice parameters of hydroxyapatite synthesized by following biomineralization method (organics mediated mineralization). For scaffold preparation, chitosan and PgA were mixed first, and then, nano-hydroxyapatite was added. Oppositely charged polyelectrolytes, such as chitosan and PgA, spontaneously form complex upon mixing. The poly-electrolyte complex exists as nano-sized particles. Chitosan/PgA scaffolds with and without hydroxyapatite were prepared by the freeze drying method. By controlling the rate of cooling and concentration, we have produced both fibrous and sheet

  10. Materiomics for Oral Disease Diagnostics and Personal Health Monitoring: Designer Biomaterials for the Next Generation Biomarkers

    Science.gov (United States)

    Zhang, Wenjun; Wang, Ming L.; Khalili, Sammy

    2016-01-01

    Abstract We live in exciting times for a new generation of biomarkers being enabled by advances in the design and use of biomaterials for medical and clinical applications, from nano- to macro-materials, and protein to tissue. Key challenges arise, however, due to both scientific complexity and compatibility of the interface of biology and engineered materials. The linking of mechanisms across scales by using a materials science approach to provide structure–process–property relations characterizes the emerging field of ‘materiomics,’ which offers enormous promise to provide the hitherto missing tools for biomaterial development for clinical diagnostics and the next generation biomarker applications towards personal health monitoring. Put in other words, the emerging field of materiomics represents an essentially systematic approach to the investigation of biological material systems, integrating natural functions and processes with traditional materials science perspectives. Here we outline how materiomics provides a game-changing technology platform for disruptive innovation in biomaterial science to enable the design of tailored and functional biomaterials—particularly, the design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. Rigorous and complementary computational modeling and experimental techniques will provide an efficient means to develop new clinical technologies in silico, greatly accelerating the translation of materiomics-driven oral health diagnostics from concept to practice in the clinic. PMID:26760957

  11. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  12. Tissue Engineering-based Therapeutic Strategies for Vocal Fold Repair and Regeneration

    Science.gov (United States)

    Li, Linqing; Stiadle, Jeanna M.; Lau, Hang K.; Zerdoum, Aidan B.; Jia, Xinqiao; L.Thibeault, Susan; Kiick, Kristi L.

    2016-01-01

    Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice. PMID:27619243

  13. Biomaterials and bone mechanotransduction

    Science.gov (United States)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  14. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  15. Recent advances in 3D printing of biomaterials.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.

  16. Human mesenchymal stem cells and biomaterials interaction: a promising synergy to improve spine fusion.

    Science.gov (United States)

    Barbanti Brodano, G; Mazzoni, E; Tognon, M; Griffoni, C; Manfrini, M

    2012-05-01

    Spine fusion is the gold standard treatment in degenerative and traumatic spine diseases. The bone regenerative medicine needs (i) in vitro functionally active osteoblasts, and/or (ii) the in vivo induction of the tissue. The bone tissue engineering seems to be a very promising approach for the effectiveness of orthopedic surgical procedures, clinical applications are often hampered by the limited availability of bone allograft or substitutes. New biomaterials have been recently developed for the orthopedic applications. The main characteristics of these scaffolds are the ability to induce the bone tissue formation by generating an appropriate environment for (i) the cell growth and (ii) recruiting precursor bone cells for the proliferation and differentiation. A new prototype of biomaterials known as "bioceramics" may own these features. Bioceramics are bone substitutes mainly composed of calcium and phosphate complex salt derivatives. In this study, the characteristics bioceramics bone substitutes have been tested with human mesenchymal stem cells obtained from the bone marrow of adult orthopedic patients. These cellular models can be employed to characterize in vitro the behavior of different biomaterials, which are used as bone void fillers or three-dimensional scaffolds. Human mesenchymal stem cells in combination with biomaterials seem to be good alternative to the autologous or allogenic bone fusion in spine surgery. The cellular model used in our study is a useful tool for investigating cytocompatibility and biological features of HA-derived scaffolds.

  17. Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales

    Science.gov (United States)

    Walters, Brandan D.; Stegemann, Jan P.

    2013-01-01

    Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608

  18. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  19. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  20. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shichao Zhang

    2018-06-01

    Full Text Available Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.

  1. The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages

    NARCIS (Netherlands)

    G.S.A. ter Hoeve-Boersema (Simone); N. Grotenhuis (Nienke); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractActivation of macrophages is critical in the acute phase of wound healing after implantation of surgical biomaterials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide range of biomaterials is currently used in the clinics, we

  2. Biomaterials and host versus graft response: A short review

    Science.gov (United States)

    Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija

    2016-01-01

    Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284

  3. Innate Immunity and Biomaterials at the Nexus: Friends or Foes.

    Science.gov (United States)

    Christo, Susan N; Diener, Kerrilyn R; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical "antigen." In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a "combined" immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  4. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    Directory of Open Access Journals (Sweden)

    Susan N. Christo

    2015-01-01

    Full Text Available Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  5. Effects of sterilization and storage on the properties of ALP-grafted biomaterials for prosthetic and bone tissue engineering applications

    International Nuclear Information System (INIS)

    Ferraris, S; Pan, G; Vernè, E; Spriano, S; Cassinelli, C; Mazzucco, L

    2012-01-01

    Grafting of the biomaterial surfaces with biomolecules is nowadays a challenging research field for prosthetic and bone tissue engineering applications. On the other hand, very few research works investigate the effect of the sterilization processes on the properties of functionalized biomaterials. In this study, the effects of different sterilization techniques (e.g. gamma and electron beam irradiation, ethylene oxide) on the enzymatic activity of bioactive glasses and Ti6Al4V grafted with alkaline phosphatase (ALP) have been analyzed. Sterility maintenance and in vitro bioactivity of the sterilized surfaces have also been investigated. Finally the effect of packaging and storage conditions has been considered. (paper)

  6. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    Science.gov (United States)

    Guarino, Vincenzo; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi

    2015-12-01

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial's manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell-biomaterial and cell- cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.

  7. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  8. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  9. Metallic Biomaterials: Current Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Karthika Prasad

    2017-07-01

    Full Text Available Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.

  10. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue.

    Science.gov (United States)

    Fernandes, João S; Gentile, Piergiorgio; Pires, Ricardo A; Reis, Rui L; Hatton, Paul V

    2017-09-01

    Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag + , Cu + , and Sr 2+ , are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin

  11. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    Science.gov (United States)

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  12. Synthesis, characterization and in vitro biocompatibility assessment of a novel tripeptide hydrogelator, as a promising scaffold for tissue engineering applications.

    Science.gov (United States)

    Pospišil, Tihomir; Ferhatović Hamzić, Lejla; Brkić Ahmed, Lada; Lovrić, Marija; Gajović, Srećko; Frkanec, Leo

    2016-10-20

    We have synthesized and characterized a self-assembling tripeptide hydrogelator Ac-l-Phe-l-Phe-l-Ala-NH2. A series of experiments showed that the hydrogel material could serve as a stabile and biocompatible physical support as it improves the survival of HEK293T cells in vitro, thus being a promising biomaterial for use in tissue engineering applications.

  13. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  14. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Rouwkema, Jeroen; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A.

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in

  15. The pathology of the foreign body reaction against biomaterials.

    Science.gov (United States)

    Klopfleisch, R; Jung, F

    2017-03-01

    The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017. © 2016 Wiley Periodicals, Inc.

  16. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    Science.gov (United States)

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  17. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.

    Science.gov (United States)

    Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten

    2016-10-01

    Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    Directory of Open Access Journals (Sweden)

    Hilary Jane Anderson

    2016-05-01

    Full Text Available Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson.1@research.gla.ac.ukKeywords: mesenchymal stem cells, bioengineering, materials synthesis, nanotopography, stimuli responsive material□AbstractThe materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behaviour. This is important as the ability to ‘engineer’ complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate.

  19. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering.

    Science.gov (United States)

    Galler, Kerstin M; Brandl, Ferdinand P; Kirchhof, Susanne; Widbiller, Matthias; Eidt, Andreas; Buchalla, Wolfgang; Göpferich, Achim; Schmalz, Gottfried

    2018-02-01

    Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.

  20. Tissue engineering: technological advances to improve its applications in reconstructive surgery.

    Science.gov (United States)

    Alberti, C

    2012-01-01

    Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. The purpose of this article is to highlight the significant new knowledges regarding this matter. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.

  1. A computational modeling approach for the characterization of mechanical properties of 3D alginate tissue scaffolds.

    Science.gov (United States)

    Nair, K; Yan, K C; Sun, W

    2008-01-01

    Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.

  2. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1982-01-01

    In present-day surgery and medicine use is increasingly made of materials foreign to the organism in order to remedy a physiological defect either temporarily or permanently. These materials, known as ''biomaterials'', take widely varying forms: plastics, metals, cements, ceramics, etc. Biomaterials can be classified in accordance with their function: (a) Devices designed to be fully implanted in the human body in order to replace an anatomical structure, either temporarily or permanently, such as articular, vascular, mammary and osteosynthetic prostheses, etc.; (b) Devices having prolonged contact with mucous tissues, such as intra-uterine devices, contact lenses, etc.; (c) Extracorporeal devices designed to treat blood such as artificial kidneys, blood oxygenators, etc.; and (d) Biomaterials can also be taken to mean chemically inert, implantable materials designed to produce a continuous discharge of substances containing pharmacologically active molecules, such as contraceptive devices or ocular devices (for treating glaucoma). The two most important criteria for a biomaterial are those of biological compatibility and biological functionality. Techniques using ionizing radiation as an energy source provide an excellent tool for synthesizing or modifying the properties of plastics. The properties of polymers can be improved, new polymers can be synthesized without chemical additives (often the cause of incompatibility with tissue or blood) and without increased temperature, and polymerization can be induced in the solid state using deep-frozen monomers. Also, radiation-induced modifications in polymers can be applied to semi-finished or finished products. Examples are also given of marketed biomaterials that have been produced using radiation chemistry techniques

  3. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  4. Development of advanced antimicrobial and sterilized plasma polypropylene grafted muga (Antheraea assama) silk as suture biomaterial.

    Science.gov (United States)

    Gogoi, Dolly; Choudhury, Arup Jyoti; Chutia, Joyanti; Pal, Arup Ratan; Khan, Mojibur; Choudhury, Manash; Pathak, Pallabi; Das, Gouranga; Patil, Dinkar S

    2014-04-01

    Surface modification of silk fibroin (SF) materials using environmentally friendly and non-hazardous process to tailor them for specific application as biomaterials has drawn a great deal of interest in the field of biomedical research. To further explore this area of research, in this report, polypropylene (PP) grafted muga (Antheraea assama) SF (PP-AASF) suture is developed using plasma treatment and plasma graft polymerization process. For this purpose, AASF is first sterilized in argon (Ar) plasma treatment followed by grafting PP onto its surface. AASF is a non-mulberry variety having superior qualities to mulberry SF and is still unexplored in the context of suture biomaterial. AASF, Ar plasma treated AASF (AASFAr) and PP-AASF are subjected to various characterization techniques for better comparison and the results are attempted to correlate with their observed properties. Excellent mechanical strength, hydrophobicity, antibacterial behavior, and remarkable wound healing activity of PP-AASF over AASF and AASFAr make it a promising candidate for application as sterilized suture biomaterial. Copyright © 2013 Wiley Periodicals, Inc.

  5. Special Issue “Biomaterials and Bioprinting”

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2016-09-01

    Full Text Available The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.

  6. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  7. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering.

    Science.gov (United States)

    Farraro, Kathryn F; Kim, Kwang E; Woo, Savio L-Y; Flowers, Jonquil R; McCullough, Matthew B

    2014-06-27

    In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2mm and 5mm, respectively, of the intact joint at 30°, 60°, and 90° of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. © 2013 Published by Elsevier Ltd.

  8. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    Directory of Open Access Journals (Sweden)

    Ting Gong

    2016-01-01

    Full Text Available Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration.

  9. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    Science.gov (United States)

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  10. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  11. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  13. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    effects on peptide conformation. pi-orbital interactions at the molecular level were observed to be very sensitive to intermolecular distance and orientation of the chromophores attached to the alpha-helical peptide templates. When the methylstilbene or Oxa-PPV molecules were arranged on the same side of the helix with intermolecular spacing of 6A, the chromophores interacted strongly with each other forming excimers. Such interactions were absent when the molecules were arranged on the opposite side of the helix. These peptide-templated systems therefore offer enormous opportunities for the elucidation of complex photophysical phenomena that occur in relatively aggregated morphologies of conjugated species, but under dilute solution conditions in which the number of chromphores in the aggregate can be manipulated. Part 2. Synthesis and characterization of biocompatible polypeptide elastomer. Lately, the significance of mechanical forces and biological cues involved in tissue remodeling are highly valued; thus the capacity of a biomaterial to present a fitting mechanical and biological environment for optimal tissue generation has become a key parameter for biomaterial design. In addition to having suitable mechanical properties, materials used for these applications need to be biologically active, i.e. trigger dynamic interactions with cells and stimulate explicit cell and tissue responses. Thus, we have designed a resilin-based modular biomaterial incorporating both mechanically and biologically active domains to sense and aptly respond to the bio-mechanical demand or changes in their environment. The use of resilin-like polypeptides offers access to a class of hydrophilic elastomers with excellent resilience and high frequency responsiveness, which can be used for encapsulating hydrophilic drugs like proteins for drug delivery, and provides hydrophilic extracellular matrix mimicking cell adhesive and enzyme degradable substrate for tissue engineering. Hence, we have

  15. Biomaterials innovation bundling technologies and life

    CERN Document Server

    Styhre, A

    2014-01-01

    Rapid advances in the life sciences means that there is now a far more detailed understanding of biological systems on the cellular, molecular and genetic levels. Sited at the intersection between the life sciences, the engineering sciences and the design sciences, innovations in the biomaterials industry are expected to garner increasing attention and play a key role in future development. This book examines the biomaterials innovations taking place in corporations and in academic research settings today.

  16. Synthesis and characterization of α-alumina col-gel nanometric: elaboration of biomaterials nanostructured for biomedical applications

    International Nuclear Information System (INIS)

    Passoni, L.S.; Feit, G.; Camargo, N.H.A.

    2010-01-01

    The production of nanostructured biomaterials are research themes for these present new characteristics of biocompatibility and bioactivity. The sol-gel process allows obtaining α-alumina nanometric with purity 99.99%. The use of nanoparticles of Al 2 O 3 -α, SiO 2 and TiO 2 are being employed as a second stage in the development of nanocomposites biomaterials. The presence of the second phase within a ceramic matrix leads to obtaining nanomaterials with micropores in micro and nanostructures interconnected, what contributes within the processes of osseous integration, osseous induction. The goal of this work focused on synthesis and characterization of an α- alumina by sol-gel process. Characterization studies were conducted using the various techniques: X-ray diffraction, scanning electron microscopy, exploratory differential scanning calorimetry and infrared spectrometry by Fourier transforms. The preliminary results showed the attainment the nanometric α-alumina powder. (author)

  17. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation.

    Science.gov (United States)

    Cui, Zhi; Ni, Nathan C; Wu, Jun; Du, Guo-Qing; He, Sheng; Yau, Terrence M; Weisel, Richard D; Sung, Hsing-Wen; Li, Ren-Ke

    2018-01-01

    Background: The post-myocardial infarction (MI) scar interrupts electrical impulse propagation and delays regional contraction, which contributes to ventricular dysfunction. We investigated the potential of an injectable conductive biomaterial to restore scar tissue conductivity and re-establish synchronous ventricular contraction. Methods: A conductive biomaterial was generated by conjugating conductive polypyrrole (PPY) onto chitosan (CHI) backbones. Trypan blue staining of neonatal rat cardiomyocytes (CMs) cultured on biomaterials was used to evaluate the biocompatibility of the conductive biomaterials. Ca 2+ imaging was used to visualize beating CMs. A cryoablation injury rat model was used to investigate the ability of PPY:CHI to improve cardiac electrical propagation in the injured heart in vivo . Electromyography was used to evaluate conductivity of scar tissue ex vivo . Results: Cell survival and morphology were similar between cells cultured on biomaterials-coated and uncoated-control dishes. PPY:CHI established synchronous contraction of two distinct clusters of spontaneously-beating CMs. Intramyocardial PPY:CHI injection into the cryoablation-induced injured region improved electrical impulse propagation across the scarred tissue and decreased the QRS interval, whereas saline- or CHI-injected hearts continued to have delayed propagation patterns and significantly reduced conduction velocity compared to healthy controls. Ex vivo evaluation found that scar tissue from PPY:CHI-treated rat hearts had higher signal amplitude compared to those from saline- or CHI-treated rat heart tissue. Conclusions: The PPY:CHI biomaterial is electrically conductive, biocompatible and injectable. It improved synchronous contraction between physically separated beating CM clusters in vitro . Intra-myocardial injection of PPY:CHI following cardiac injury improved electrical impulse propagation of scar tissue in vivo .

  18. Trends in prosthetic biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Saranjit Singh Bhasin

    2015-01-01

    Full Text Available The most important criterion for the success of dental implants is the selection of a suitable implant biomaterial. To improve the biologic performance of an implant, it is necessary to select a material that does not elicit any negative biological response and at the same time maintains adequate function. It is mandatory for a dentist to have a comprehensive knowledge of various biomaterials used for dental implants. The material of choice for fabrication of the dental implant till date is titanium. With the advancements in the field of implants, zirconia seems to be propitious in the future. However, more advanced in vitro and in vivo studies are required before reaching any such conclusion. To increase the success of zirconia implants, care should be taken to reduce the incidence of mechanical failures. Such failures can be taken care of by having a thorough technical knowledge of implant designing and manufacturing defects. This article attempts to compare the advantages and disadvantages of various dental implant biomaterials. Focus is placed on the recent advances in this field with the recently introduced zirconia and its comparison to conventional titanium.

  19. The influence of biomaterials on endothelial cell thrombogenicity

    Science.gov (United States)

    McGuigan, Alison P.; Sefton, Michael V.

    2007-01-01

    Driven by tissue engineering and regenerative medicine, endothelial cells are being used in combination with biomaterials in a number of applications for the purpose of improving blood compatibility and host integration. Endothelialized vascular grafts are beginning to be used clinically with some success in some centers, while endothelial seeding is being explored as a means of creating a vasculature within engineered tissues. The underlying assumption of this strategy is that when cultured on artificial biomaterials, a confluent layer of endothelial cells maintain their non-thrombogenic phenotype. In this review the existing knowledge base of endothelial cell thrombogenicity cultured on a number of different biomaterials is summarized. The importance of selecting appropriate endpoint measures that are most reflective of overall surface thrombogenicity is the focus of this review. Endothelial cells inhibit thrombosis through three interconnected regulatory systems (1) the coagulation cascade (2) the cellular components of the blood such as leukocytes and platelets and (3) the complement cascade, and also through effects on fibrinolysis and vascular tone, the latter which influences blood flow. Thus, in order to demonstrate the thromobgenic benefit of seeding a biomaterial with EC, the conditions under which EC surfaces are more likely to exhibit lower thrombogenicity than unseeded biomaterial surfaces need to be consistent with the experimental context. The endpoints selected should be appropriate for the dominant thrombotic process that occurs under the given experimental conditions. PMID:17316788

  20. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    Science.gov (United States)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  1. Regenerative dentistry: translating advancements in basic science research to the dental practice.

    Science.gov (United States)

    Garcia-Godoy, Franklin; Murray, Peter

    2010-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. This review provides an assessment of how tissue engineering, stem cell, genetic transfer, biomaterial and growth factor therapies can be integrated into clinical dental therapies to restore and regenerate oral tissues. In parallel to the creation of a new field in general medicine called "regenerative medicine," we call this field "regenerative dentistry." While the problems of introducing regenerative therapies are substantial, the potential benefits to patients and the profession are equally ground-breaking. In this review, we outline a few areas of interest for the future of oral and dental medicine in which advancements in basic science have already been adapted to fit the goals of 21st century dentistry.

  2. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    Objective To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Methods Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. Results HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after

  3. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after implanting n

  4. Advances in the development of supramolecular polymeric biomaterials

    NARCIS (Netherlands)

    Goor, O.J.G.M.; Dankers, P.Y.W.

    2016-01-01

    Regenerative medicine applications aim to recreate or repair the living functional environment of the human body. Many biomaterials that are designed and synthesized in recent years are inspired by the extracellular matrix (ECM) that is responsible for mechanical, structural, and biochemical support

  5. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  6. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.

    Science.gov (United States)

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-02-13

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).

  7. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marica Marrese

    2017-02-01

    Full Text Available Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles.

  8. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  9. Design strategies and applications of nacre-based biomaterials.

    Science.gov (United States)

    Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian

    2017-05-01

    The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the

  10. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    Science.gov (United States)

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Engineering tolerance using biomaterials to target and control antigen presenting cells.

    Science.gov (United States)

    Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M

    2016-05-01

    Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.

  12. EPR analysis of biomaterials

    International Nuclear Information System (INIS)

    Sukhodub, L.

    2001-01-01

    There is the review of electron spin resonance application for paramagnetic individual investigation in biomaterials. Especially the bone tissue and tooth enamel can be taken into account. The material composition (e.g. Mn 2+ and Cr 3+ ions) can be measured, also after irradiation (X, γ radiations) when paramagnetic signal appears as a result of physical radiation effects

  13. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials

    NARCIS (Netherlands)

    Da Silva Domingues, Joana; Roest, Steven; Wang, Yi; van der Mei, Henny C.; Libera, Matthew; van Kooten, Theo G.; Busscher, Henk J.

    Biomaterial-associated-infection causes failure of biomaterial implants. Many new biomaterials have been evaluated for their ability to inhibit bacterial colonization and stimulate tissue-cell-integration, but neglect the role of immune cells. This paper compares macrophage phagocytosis of adhering

  14. An Overview of Biomaterials in Periodontology and Implant Dentistry

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2017-01-01

    Full Text Available Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted.

  15. Plant Products for Innovative Biomaterials in Dentistry

    Directory of Open Access Journals (Sweden)

    Elena M. Varoni

    2012-07-01

    Full Text Available Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

  16. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  17. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  18. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy

    Directory of Open Access Journals (Sweden)

    Huailan Wang

    2018-04-01

    Full Text Available Summary: Lumbar laminectomy often results in failed back surgery syndrome. Most scholars support the three-dimensional theory of adhesion: Fibrosis surrounding the epidural tissues is based on the injured sacrospinalis behind, fibrous rings and posterior longitudinal ligaments. Approaches including using the minimally invasive technique, drugs, biomaterial and nonbiomaterial barriers to prevent the postoperative epidural adhesion were intensively investigated. Nevertheless, the results are far from satisfactory. Our review is based on various implant biomaterials that are used in clinical applications or are under study. We show the advantages and disadvantages of each method. The summary will help us to figure out ideas towards new techniques.The translational potential of this article: This review summarises recent biomaterials-related clinical and basic research that focuses on prevention of epidural adhesion after lumbar laminectomy. We also propose a novel possible translational method where a soft scaffold acts as a physical barrier in the early stage, engineered adipose tissue acts as a biobarrier in the later stage in the application of biomaterials and adipose-derived mesenchymal stem cells are used for prevention of epidural adhesion. Keywords: Adhesion, Biomaterials, Fibrosis, Implant, Laminectomy

  19. Evaluation of egg white ovomucin-based porous scaffold as an implantable biomaterial for tissue engineering.

    Science.gov (United States)

    Carpena, Nathaniel T; Abueva, Celine D G; Padalhin, Andrew R; Lee, Byong-Taek

    2017-10-01

    Studies have shown the technological and functional properties of ovomucin (OVN) in the food-agricultural industry. But research has yet to explore its potential as an implantable biomaterial for tissue engineering and regenerative medicine. In this study we isolated OVN from egg white by isoelectric precipitation and fabricated scaffolds with tunable porosity by utilizing its foaming property. Gelatin a known biocompatible material was introduced to stabilize the foams, wherein different ratios of OVN and gelatin had a significant effect on the degree of porosity, pore size and stability of the formed hydrogels. The porous scaffolds were crosslinked with EDC resulting in stable scaffolds with prolonged degradation. Improved cell proliferation and adhesion of rat bone marrow-derived mesenchymal stem cells were observed for OVN containing scaffolds. Although, scaffolds with 75% OVN showed decrease in cell proliferation for L929 fibroblast type of cells. Further biocompatibility assessment as implant material was determined by subcutaneous implantation in rats of selected scaffold. H&E staining showed reasonable vascularization over time and little evidence of severe fibrosis at the implant site. Persistent polarization of classically activated macrophage was not observed, potentially reducing inflammatory response, and showed increased expression of alternatively activated macrophage cells that is favorable for tissue repair. Analysis of IgE levels in rat serum after implantation indicated minimal and resolvable allergic response to the OVN implants. The results demonstrate OVN as an acceptable implant scaffold that could provide new opportunities as an alternative natural biocompatible and functional biomaterial in various biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2107-2117, 2017. © 2016 Wiley Periodicals, Inc.

  20. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    Science.gov (United States)

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  1. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  2. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances

    Directory of Open Access Journals (Sweden)

    Soroosh Derakhshanfar

    2018-06-01

    Full Text Available 3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV. We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks.

  3. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  4. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis.

    Science.gov (United States)

    Zhang, Douglas; Lee, Junmin; Kilian, Kristopher A

    2017-10-01

    Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Yslas, Edith; Marini, Yazmin Amar; Vásquez-Quitral, Patricio; Sánchez, Marianela; Riveros, Ana; Yáñez, Diego; Cavallo, Pablo; Kogan, Marcelo J; Acevedo, Diego

    2016-09-01

    Inorganic materials contain remarkable properties for drug delivery, such as a large surface area and nanoporous structure. Among these materials, CaCO3 microparticles (CMPs) exhibit a high encapsulation efficiency and solubility in acidic media. The extracellular pH of tumor neoplastic tissue is significantly lower than the extracellular pH of normal tissue facilitating the release of drug-encapsulating CMPs in this area. Conducting polyaniline (PANI) absorbs light energy and transforms it into localized heat to produce cell death. This work aimed to generate hybrid CMPs loaded with PANI for photothermal therapy (PTT). The hybrid nanomaterial was synthesized with CaCO3 and carboxymethyl cellulose in a simple, reproducible manner. The CMP-PANI-Cys particles were developed for the first time and represent a novel type of hybrid biomaterial. Resultant nanoparticles were characterized utilizing scanning electron microscopy, dynamic light scattering, zeta potential, UV-vis, FTIR and Raman spectroscopy. In vitro HeLa cells in dark and irradiated conditions showed that CMP-PANI-Cys and PANI-Cys are nontoxic at the assayed concentrations. Hybrid biomaterials displayed high efficiency for potential PTT compared with PANI-Cys. In summary, hierarchical hybrid biomaterials composed of CMPs and PANI-Cys combined with near infrared irradiation represents a useful alternative in PTT. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    Science.gov (United States)

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  7. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    Science.gov (United States)

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-09-20

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.

  8. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The application of radiation technology in the field of medical biomaterials

    International Nuclear Information System (INIS)

    Jin Huanyu; An Yan; Yin Hua

    2011-01-01

    The radiation technology has been applied extensively in the fields of biological engineering, tissue engineering, medical industry and so on. It also plays an important role in the sterilization and modification of biomaterials. This work reviews the development of irradiation technology and absorbed doses for the sterilization and modification of medical biomaterials. (authors)

  10. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art.

    Science.gov (United States)

    Kyle, Stuart; Jessop, Zita M; Al-Sabah, Ayesha; Whitaker, Iain S

    2017-08-01

    Regenerative medicine has been highlighted as one of the UK's 8 'Great Technologies' with the potential to revolutionize patient care in the 21st Century. Over the last decade, the concept of '3D bioprinting' has emerged, which allows the precise deposition of cell laden bioinks with the aim of engineering complex, functional tissues. For 3D printing to be used clinically, there is the need to produce advanced functional biomaterials, a new generation of bioinks with suitable cell culture and high shape/print fidelity, to match or exceed the physical, chemical and biological properties of human tissue. With the rapid increase in knowledge associated with biomaterials, cell-scaffold interactions and the ability to biofunctionalize/decorate bioinks with cell recognition sequences, it is important to keep in mind the 'printability' of these novel materials. In this illustrated review, we define and refine the concept of 'printability' and review seminal and contemporary studies to highlight the current 'state of play' in the field with a focus on bioink composition and concentration, manipulation of nozzle parameters and rheological properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In vitro and in vivo assessment of magnetically actuated biomaterials and prospects in tendon healing.

    Science.gov (United States)

    Santos, Lívia; Silva, Marta; Gonçalves, Ana I; Pesqueira, Tamagno; Rodrigues, Márcia T; Gomes, Manuela E

    2016-05-01

    To expand our understanding on the effect of magnetically actuated biomaterials in stem cells, inflammation and fibrous tissue growth. Magnetic biomaterials were obtained by doping iron oxide particles into starch poly-ϵ-caprolactone (SPCL) to create two formulations, magSPCL-1.8 and 3.6. Stem cell behavior was assessed in vitro and the inflammatory response, subcutaneously in Wistar rats. Metabolic activity and proliferation increased significantly overtime in SPCL and magSPCL-1.8. Electromagnetic fields attenuated the presence of mast cells and macrophages in tissues surrounding SPCL and magSPCL-1.8, between weeks 1 and 9. Macrophage reduction was more pronounced for magSPCL-1.8, which could explain why this material prevented growth of fibrous tissue overtime. Magnetically actuated biomaterials have potential to modulate inflammation and the growth of fibrous tissue.

  12. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

    Science.gov (United States)

    Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo

    2015-09-14

    Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.

  13. Toward biomaterial-based implantable photonic devices

    Directory of Open Access Journals (Sweden)

    Humar Matjaž

    2017-03-01

    Full Text Available Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  14. Surface modification of biomaterials and biomedical devices using additive manufacturing.

    Science.gov (United States)

    Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit

    2018-01-15

    The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs

    DEFF Research Database (Denmark)

    Pedde, R. Daniel; Mirani, Bahram; Navaei, Ali

    2017-01-01

    , outlines the use of common biomaterials and advanced hybrid scaffolds, and describes several design considerations including the structural, physical, biological, and economical parameters that are crucial for the fabrication of functional, complex, engineered tissues. Finally, the applications...... of these biofabrication strategies in neural, skin, connective, and muscle tissue engineering are explored.......The demand for organ transplantation and repair, coupled with a shortage of available donors, poses an urgent clinical need for the development of innovative treatment strategies for long-term repair and regeneration of injured or diseased tissues and organs. Bioengineering organs, by growing...

  16. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  17. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  18. Trends in biomaterials

    CERN Document Server

    Kothiyal, G P

    2016-01-01

    Biomaterials research requires the union of materials scientists, engineers, biologists, biomedical doctors, and surgeons. Societal implications have invoked tremendous interest in this area of research in recent years. What started as a search for strong and durable implant materials has now led to path-breaking developments in tissue engineering, targeted drug delivery, and tissue scaffolds. Viable applications of mesoporous structures, polymer biocomposites, and fibers (synthetic and natural) in the areas of clinical orthopedics, controlled drug delivery, tissue engineering, orthodontics, etc., have emerged as relatively recent concepts. This book presents recent results related to both materials aspects and implant issues. The focus is on structural, magnetic, antibacterial, bioactivity/compatibility, mechanical, and other related properties and the implication of these results on biomedical applications. The book discusses technical problems faced by the surgeon during implant fixation in total hip repla...

  19. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  20. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  1. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  2. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  3. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  4. Biomaterial Substrate-Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering.

    Science.gov (United States)

    Tseng, Ting-Chen; Wong, Chui-Wei; Hsieh, Fu-Yu; Hsu, Shan-Hui

    2017-12-01

    Three-dimentional (3D) multicellular aggregates (spheroids), compared to the traditional 2D monolayer cultured cells, are physiologically more similar to the cells in vivo. So far there are various techniques to generate 3D spheroids. Spheroids obtained from different methods have already been applied to regenerative medicine or cancer research. Among the cell spheroids created by different methods, the substrate-derived spheroids and their forming mechanism are unique. This review focuses on the formation of biomaterial substrate-mediated multicellular spheroids and their applications in tissue engineering and tumor models. First, the authors will describe the special chitosan substrate-derived mesenchymal stem cell (MSC) spheroids and their greater regenerative capacities in various tissues. Second, the authors will describe tumor spheroids derived on chitosan and hyaluronan substrates, which serve as a simple in vitro platform to study 3D tumor models or to perform cancer drug screening. Finally, the authors will mention the self-assembly process for substrate-derived multiple cell spheroids (co-spheroids), which may recapitulate the heterotypic cell-cell interaction for co-cultured cells or crosstalk between different types of cells. These unique multicellular mono-spheroids or co-spheroids represent a category of 3D cell culture with advantages of biomimetic cell-cell interaction, better functionalities, and imaging possibilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  6. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  7. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Directory of Open Access Journals (Sweden)

    Dai ZY

    2015-10-01

    Full Text Available Zhenyu Dai,1,2,* Yue Li,3,* Weizhong Lu,2,* Dianming Jiang,4 Hong Li,1 Yonggang Yan,1 Guoyu Lv,1 Aiping Yang1 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, 3Department of Clinical Laboratory, the Second Affiliated Hospital, 4Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Objective: To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA complex biomaterials with muscle and bone tissue in an in vivo model.Methods: Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining.Results: HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that

  8. New Models for Patient-specific Evaluation of the Effect of Biomaterials on Macrophages

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke)

    2017-01-01

    markdownabstractBiomaterials are often used in many fields of medicine to restore or replace tissue. These biomaterials always elicit a reaction of the immune system, called the foreign body reaction, which can lead to complications in patients and failure of the device. Macrophages are key players

  9. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.

    Science.gov (United States)

    Friedman, C D; Costantino, P D; Takagi, S; Chow, L C

    1998-01-01

    BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.

  10. Future potentials for using osteogenic stem cells and biomaterials in orthopedics.

    Science.gov (United States)

    Oreffo, R O; Triffitt, J T

    1999-08-01

    Ideal skeletal reconstruction depends on regeneration of normal tissues that result from initiation of progenitor cell activity. However, knowledge of the origins and phenotypic characteristics of these progenitors and the controlling factors that govern bone formation and remodeling to give a functional skeleton adequate for physiological needs is limited. Practical methods are currently being investigated to amplify in in vitro culture the appropriate autologous cells to aid skeletal healing and reconstruction. Recent advances in the fields of biomaterials, biomimetics, and tissue engineering have focused attention on the potentials for clinical application. Current cell therapy procedures include the use of tissue-cultured skin cells for treatment of burns and ulcers, and in orthopedics, the use of cultured cartilage cells for articular defects. As mimicry of natural tissues is the goal, a fuller understanding of the development, structures, and functions of normal tissues is necessary. Practically all tissues are capable of being repaired by tissue engineering principles. Basic requirements include a scaffold conducive to cell attachment and maintenance of cell function, together with a rich source of progenitor cells. In the latter respect, bone is a special case and there is a vast potential for regeneration from cells with stem cell characteristics. The development of osteoblasts, chondroblasts, adipoblasts, myoblasts, and fibroblasts results from colonies derived from such single cells. They may thus, theoretically, be useful for regeneration of all tissues that this variety of cells comprise: bone, cartilage, fat, muscle, tendons, and ligaments. Also relevant to tissue reconstruction is the field of genetic engineering, which as a principal step in gene therapy would be the introduction of a functional specific human DNA into cells of a patient with a genetic disease that affects mainly a particular tissue or organ. Such a situation is pertinent to

  11. Design of a hybrid biomaterial for tissue engineering: Biopolymer-scaffold integrated with an autologous hydrogel carrying mesenchymal stem-cells.

    Science.gov (United States)

    Weinstein-Oppenheimer, Caroline R; Brown, Donald I; Coloma, Rodrigo; Morales, Patricio; Reyna-Jeldes, Mauricio; Díaz, María J; Sánchez, Elizabeth; Acevedo, Cristian A

    2017-10-01

    Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  13. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations

    NARCIS (Netherlands)

    Bruining, MJ; Blaauwgeers, HGT; Kuijer, R; Jongsma, FHM; de Brabander, J; Nuijts, RMMA; Koole, LH

    2000-01-01

    The aim of this study was to investigate whether polymeric biomaterials can be designed such that they become suitable for surgical closure of medium-sized perforations in the cornea, the transparent tissue in the front of the eye. Such a biomaterial must meet stringent requirements in terms of

  14. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei [Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China); Ningbo Medical Science Research Institute, Ningbo, Zhejiang 315020 (China); Zhang, Chi; Cheng, Mengjie; Gu, Qiaoqiao [Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China); Zhao, Jiyuan, E-mail: zhaojiyuan@nbu.edu.cn [Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2017-06-01

    SIS is an acellular, naturally occurring collagenous extracellular matrix (ECM) material with various bioactive factors, which broadly applied in tissue engineering in clinic. Several studies have applied SIS in bone tissue engineering to enhance bone regeneration in animal models. However, the mechanism was rarely investigated. The aim of the current study was to investigate the osteoconductivity and osteoinductivity of SIS scaffold to bone regeneration systematically and the potential mechanism. Our results showed that SIS scaffold with excellent biocompatibility was beneficial for cell attachment, proliferation, migration and osteogenic differentiation of various cells contributing to bone repair. In mouse calvarial defect model, bone regeneration was significantly enhanced in the defects implanted with SIS scaffolds, along with the up-regulation of BMP-2 and CD31 expression. Accordingly, ID-1, the downstream target gene of BMPs, was increased in BMSCs cultured on SIS scaffolds. The results of this study suggest that SIS scaffold is a potential osteoconductive and osteoinductive biomaterial which plays multiple roles to various cells during process of bone regeneration. - Highlights: • SIS facilitates cell adhesion of BMSCs, osteoblasts and fibroblasts. • SIS promotes cell proliferation of osteoblasts and fibroblasts. • SIS promotes osteogenic differentiation of BMSCs and osteoblasts via BMP-2 pathway. • Synergistic effects of SIS to multiple cells enhance bone regeneration in vivo.

  15. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering

    International Nuclear Information System (INIS)

    Li, Mei; Zhang, Chi; Cheng, Mengjie; Gu, Qiaoqiao; Zhao, Jiyuan

    2017-01-01

    SIS is an acellular, naturally occurring collagenous extracellular matrix (ECM) material with various bioactive factors, which broadly applied in tissue engineering in clinic. Several studies have applied SIS in bone tissue engineering to enhance bone regeneration in animal models. However, the mechanism was rarely investigated. The aim of the current study was to investigate the osteoconductivity and osteoinductivity of SIS scaffold to bone regeneration systematically and the potential mechanism. Our results showed that SIS scaffold with excellent biocompatibility was beneficial for cell attachment, proliferation, migration and osteogenic differentiation of various cells contributing to bone repair. In mouse calvarial defect model, bone regeneration was significantly enhanced in the defects implanted with SIS scaffolds, along with the up-regulation of BMP-2 and CD31 expression. Accordingly, ID-1, the downstream target gene of BMPs, was increased in BMSCs cultured on SIS scaffolds. The results of this study suggest that SIS scaffold is a potential osteoconductive and osteoinductive biomaterial which plays multiple roles to various cells during process of bone regeneration. - Highlights: • SIS facilitates cell adhesion of BMSCs, osteoblasts and fibroblasts. • SIS promotes cell proliferation of osteoblasts and fibroblasts. • SIS promotes osteogenic differentiation of BMSCs and osteoblasts via BMP-2 pathway. • Synergistic effects of SIS to multiple cells enhance bone regeneration in vivo.

  16. Hard and Soft Tissue Management of a Localized Alveolar Ridge Atrophy with Autogenous Sources and Biomaterials: A Challenging Clinical Case

    Directory of Open Access Journals (Sweden)

    C. Maiorana

    2016-01-01

    Full Text Available Particularly in the premaxillary area, the stability of hard and soft tissues plays a pivotal role in the success of the rehabilitation from both a functional and aesthetic aspect. The present case report describes the clinical management of a localized alveolar ridge atrophy in the area of the upper right canine associated with a thin gingival biotype with a lack of keratinized tissue. An autogenous bone block harvested from the chin associated with heterologous bone particles was used to replace the missing bone, allowing for a prosthetic driven implant placement. Soft tissues deficiency was corrected by means of a combined epithelialized and subepithelial connective tissue graft. The 3-year clinical and radiological follow-up demonstrated symmetric gingival levels of the upper canines, with physiological peri-implant probing depths and bone loss. Thus, the use of autogenous tissues combined with biomaterials might be considered a reliable technique in case of highly aesthetic demanding cases.

  17. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  18. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-08-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.

  20. Microgel Mechanics in Biomaterial Design

    OpenAIRE

    Saxena, Shalini; Hansen, Caroline E.; Lyon, L. Andrew

    2014-01-01

    Conspectus The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels a...

  1. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

    Science.gov (United States)

    Valvano, J. W.; Cochran, J. R.; Diller, K. R.

    1985-05-01

    This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.

  2. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    Energy Technology Data Exchange (ETDEWEB)

    Tadayyon, Hadi [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Sadeghi-Naini, Ali; Czarnota, Gregory, E-mail: Gregory.Czarnota@sunnybrook.ca [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1P5 (Canada); Wirtzfeld, Lauren [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Wright, Frances C. [Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada)

    2014-01-15

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  3. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    International Nuclear Information System (INIS)

    Tadayyon, Hadi; Sadeghi-Naini, Ali; Czarnota, Gregory; Wirtzfeld, Lauren; Wright, Frances C.

    2014-01-01

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  4. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.

    Science.gov (United States)

    Boyd-Moss, Mitchell; Fox, Kate; Brandt, Milan; Nisbet, David; Williams, Richard

    2017-01-01

    The ability to fabricate artificial tissue constructs through the controlled organisation of cells, structures and signals within a biomimetic scaffold offers significant promise to the field of regenerative medicine, drug delivery and tissue engineering. Advances in additive manufacturing technologies have facilitated the printing of spatially defined cell-laden artificial tissue constructs capable of providing biomimetic spatiotemporal presentation of biological and physical cues to cells in a designed multicomponent structure. Despite significant progress in the field of bioprinting, a key challenge remains in developing and utilizing materials that can adequately recapitulate the complexities of the native extracellular matrix on a nanostructured, chemical level during the printing process. This gives rise to the need for suitable materials - particularly in establishing effective control over cell fate, tissue vascularization and innervation. Recently, significant interested has been invested into developing candidate materials using protein and peptide-derived biomaterials. The ability of these materials to form highly printable hydrogels which are reminiscent of the native ECM has seen significant use in a variety of regenative applications, including both organ bioprinting and non-organ bioprinting. Here, we discuss the emerging technologies for peptide-based bioprinting applications, highlighting bioink development and detailing bioprinter processors. Furthermore, this work presents application specific, peptide-based bioprinting approaches, and provides insight into current limitations and future perspectives of peptide-based bioprinting techniques.

  5. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery.

    Science.gov (United States)

    Ceccarelli, Gabriele; Presta, Rossella; Benedetti, Laura; Cusella De Angelis, Maria Gabriella; Lupi, Saturnino Marco; Rodriguez Y Baena, Ruggero

    2017-01-01

    Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

  6. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery

    Directory of Open Access Journals (Sweden)

    Gabriele Ceccarelli

    2017-01-01

    Full Text Available Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA, polylactic acid (PLA, and polycaprolactone. This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

  7. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding.

    Science.gov (United States)

    Hickman, DaShawn A; Pawlowski, Christa L; Sekhon, Ujjal D S; Marks, Joyann; Gupta, Anirban Sen

    2018-01-01

    Bleeding complications arising from trauma, surgery, and as congenital, disease-associated, or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Therefore, stoppage of bleeding (hemostasis) is of paramount clinical significance in prophylactic, surgical, and emergency scenarios. For externally accessible injuries, a variety of natural and synthetic biomaterials have undergone robust research, leading to hemostatic technologies including glues, bandages, tamponades, tourniquets, dressings, and procoagulant powders. In contrast, treatment of internal noncompressible hemorrhage still heavily depends on transfusion of whole blood or blood's hemostatic components (platelets, fibrinogen, and coagulation factors). Transfusion of platelets poses significant challenges of limited availability, high cost, contamination risks, short shelf-life, low portability, performance variability, and immunological side effects, while use of fibrinogen or coagulation factors provides only partial mechanisms for hemostasis. With such considerations, significant interdisciplinary research endeavors have been focused on developing materials and technologies that can be manufactured conveniently, sterilized to minimize contamination and enhance shelf-life, and administered intravenously to mimic, leverage, and amplify physiological hemostatic mechanisms. Here, a comprehensive review regarding the various topical, intracavitary, and intravenous hemostatic technologies in terms of materials, mechanisms, and state-of-art is provided, and challenges and opportunities to help advancement of the field are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomaterials based strategies for rotator cuff repair.

    Science.gov (United States)

    Zhao, Song; Su, Wei; Shah, Vishva; Hobson, Divia; Yildirimer, Lara; Yeung, Kelvin W K; Zhao, Jinzhong; Cui, Wenguo; Zhao, Xin

    2017-09-01

    Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced functional polymers for regenerative and therapeutic dentistry.

    Science.gov (United States)

    Lai, W-F; Oka, K; Jung, H-S

    2015-07-01

    Use of ceramics and polymers continues to dominate clinical procedures in modern dentistry. Polymers have provided the basis for adhesives, tissue void fillers, and artificial replacements for whole teeth. They have been remarkably effective in the clinic at restoration of major dental functions after damage or loss of teeth. With the rapid development of polymer science, dental materials science has significantly lagged behind in harnessing these advanced polymer products. What they offer is new and unique properties superior to traditional polymers and crucially a range of properties that more closely match natural biomaterials. Therefore, we should pursue more vigorously the benefits of advanced polymers in dentistry. In this review, we highlight how the latest generation of advanced polymers will enhance the application of materials in the dental clinic using numerous promising examples. Polymers have a broad range of applications in modern dentistry. Some major applications are to construct frameworks that mimic the precise structure of tissues, to restore tooth organ function, and to deliver bioactive agents to influence cell behavior from the inside. The future of polymers in dentistry must include all these new enhancements to increase biological and clinical effectiveness beyond what can be achieved with traditional biomaterials. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering.

    Science.gov (United States)

    Santos, Lívia J; Reis, Rui L; Gomes, Manuela E

    2015-08-01

    Mechanical stimulus is of upmost importance in tissues developmental and regeneration processes as well as in maintaining body homeostasis. Classical physiological reactions encompass an increase of blood vessel diameter upon exposure to high blood pressure, or the expansion of cortical bone after continuous high-impact exercise. At a cellular level, it is well established that extracellular stiffness, topography, and remote magnetic actuation are instructive mechanical signals for stem cell differentiation. Based on this, biomaterials and their properties can be designed to act as true stem cell regulators, eventually leading to important advances in conventional tissue engineering techniques. This review identifies the latest advances and tremendous potential of magnetic actuation within the scope of regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2013-11-01

    Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. The important social, clinical and economic impacts of implant-related infections are promoting the efforts to obviate these severe diseases. In this context, the development of anti-infective biomaterials and of infection-resistant surfaces is being regarded as the main strategy to prevent the establishment of implant colonisation and biofilm formation by bacteria. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  12. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment

    OpenAIRE

    Pritchard, Eleanor M.; Valentin, Thomas; Panilaitis, Bruce; Omenetto, Fiorenzo; Kaplan, David L.

    2012-01-01

    Effective treatment of infections in avascular and necrotic tissues can be challenging due to limited penetration into the target tissue and systemic toxicities. Controlled release polymer implants have the potential to achieve the high local concentrations needed while also minimizing systemic exposure. Silk biomaterials possess unique characteristics for antibiotic delivery including biocompatibility, tunable biodegradation, stabilizing effects, water-based processing and diverse material f...

  13. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

    Science.gov (United States)

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-03-03

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  14. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that

  15. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  16. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  17. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    International Nuclear Information System (INIS)

    Qin Ling; Leung, Kwok Sui; Griffith, J.F.

    2007-01-01

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  18. Tissue engineering in the treatment of cartilage lesions

    Directory of Open Access Journals (Sweden)

    Jakob Naranđa

    2013-11-01

    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  19. Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications - A brief review.

    Science.gov (United States)

    Naghieh, Saman; Sarker, Md; Izadifar, Mohammad; Chen, Xiongbiao

    2018-02-01

    Over the past decades, significant progress has been achieved in the field of tissue engineering (TE) to restore/repair damaged tissues or organs and, in this regard, scaffolds made from biomaterials have played a critical role. Notably, recent advances in biomaterials and three-dimensional (3D) printing have enabled the manipulation of two or more biomaterials of distinct, yet complementary, mechanical and/or biological properties to form so-called hybrid scaffolds mimicking native tissues. Among various biomaterials, hydrogels synthesized to incorporate living cells and/or biological molecules have dominated due to their hydrated tissue-like environment. Moreover, dispensing-based bioprinting has evolved to the point that it can now be used to create hybrid scaffolds with complex structures. However, the complexities associated with multi-material bioprinting and synthesis of hydrogels used for hybrid scaffolds pose many challenges for their fabrication. This paper presents a brief review of dispensing-based bioprinting of hybrid scaffolds for TE applications. The focus is on the design and fabrication of hybrid scaffolds, including imaging techniques, potential biomaterials, physical architecture, mechanical properties, cell viability, and the importance of vessel-like channels. The key issues and challenges for dispensing-based bioprinting of hybrid scaffolds are also identified and discussed along with recommendations for future research directions. Addressing these issues will significantly enhance the design and fabrication of hybrid scaffolds to and pave the way for translating them into clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials.

    Science.gov (United States)

    Mondal, Dibakar; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2017-11-01

    Organic-inorganic class II hybrid materials have domain sizes at the molecular level and chemical bonding between the organic and inorganic phases. We have previously reported the synthesis of class II hybrid biomaterials from alkoxysilane-functionalized polycaprolactone (PCL) and borophosphosilicate (B 2 O 3 -P 2 O 5 -SiO 2 ) glass (BPSG) through a non-aqueous sol-gel process. In the present study, the mechanical properties and degradability of these PCL/BPSG hybrid biomaterials were studied and compared to those of their conventional composite counterparts. The compressive strength, modulus and toughness of the hybrid biomaterials were significantly greater compared to the conventional composites, likely due to the covalent bonding between the organic and inorganic phases. A hybrid biomaterial (50wt% PCL and 50wt% BPSG) exhibited compressive strength, modulus and toughness values of 32.2 ± 3.5MPa, 573 ± 85MPa and 1.54 ± 0.03MPa, respectively; whereas the values for composite of similar composition were 18.8 ± 1.6MPa, 275 ± 28MPa and 0.76 ± 0.03MPa, respectively. Degradation in phosphate-buffered saline was slower for hybrid biomaterials compared to their composite counterparts. Thus, these hybrid materials possess superior mechanical properties and more controlled degradation characteristics compared to their corresponding conventional composites. To assess in vitro cytocompatibility, MC3T3-E1 pre-osteoblastic cells were seeded onto the surfaces of hybrid biomaterials and polycaprolactone (control). Compared to polycaprolactone, cells on the hybrid material displayed enhanced spreading, focal adhesion formation, and cell number, consistent with excellent cytocompatibility. Thus, based on their mechanical properties, degradability and cytocompatibility, these novel biomaterials have potential for use as scaffolds in bone tissue engineering and related applications. Copyright © 2017. Published by Elsevier Ltd.

  1. Localized immunosuppressive environment in the foreign body response to implanted biomaterials.

    Science.gov (United States)

    Higgins, David M; Basaraba, Randall J; Hohnbaum, April C; Lee, Eric J; Grainger, David W; Gonzalez-Juarrero, Mercedes

    2009-07-01

    The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-beta, tumor necrosis factor-alpha, interferon-gamma, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-beta were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant.

  2. Platelet-rich plasma to improve the bio-functionality of biomaterials.

    Science.gov (United States)

    Anitua, Eduardo; Tejero, Ricardo; Alkhraisat, Mohammad H; Orive, Gorka

    2013-04-01

    Growth factors and cytokines are active players in controlling the different stages of wound healing and tissue regeneration. Recent trends in personalized regenerative medicine involve using patient's own platelet-rich plasma for stimulating wound healing and tissue regeneration. This technology provides a complex cocktail of growth factors and even a fibrin scaffold with multiple biologic effects. In the last few years, an increasing number of studies provide evidence of the potential of combining platelet-rich plasma with different biomaterials in order to improve their properties, including handling, administration, bioactivity, and level of osseointegration, among others. In this review, we discuss the use of platelet-rich plasma as an alternative, easy, cost-effective, and controllable strategy for the release of high concentrations of many endogenous growth factors. Additionally, we provide an overview of the current progress and future directions of research combining different types of biomaterials with platelet-rich plasma in tissue engineering and regenerative medicine.

  3. Novel biomaterials: plasma-enabled nanostructures and functions

    International Nuclear Information System (INIS)

    Levchenko, Igor; Ostrikov, Kostya; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua

    2016-01-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials. (topical review)

  4. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    Science.gov (United States)

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  6. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.

    Science.gov (United States)

    Lv, Fang; Wang, Jie; Xu, Peng; Han, Yiming; Ma, Hongshi; Xu, He; Chen, Shijie; Chang, Jiang; Ke, Qinfei; Liu, Mingyao; Yi, Zhengfang; Wu, Chengtie

    2017-09-15

    Diabetic wound is a common complication of diabetes. Biomaterials offer great promise in inducing tissue regeneration for chronic wound healing. Herein, we reported a conducive Poly (caprolactone) (PCL)/gelatin nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) for diabetic wound healing. NAGEL bioceramic particles were well distributed in the inner of PCL/gelatin nanofibers via co-electrospinning process and the Si ions maintained a sustained release from the composite scaffolds during the degradation process. The nanofibrous scaffolds significantly promoted the adhesion, proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human keratinocytes (HaCaTs) in vitro. The in vivo study demonstrated that the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization in the wound sites of diabetic mice model, as well as inhibited inflammation reaction. The mechanism for nanofibrous composite scaffolds accelerating diabetic wound healing is related to the activation of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vivo and in vitro. Our results suggest that the released Si ions and nanofibrous structure of scaffolds have a synergetic effect on the improved efficiency of diabetic wound healing, paving the way to design functional biomaterials for tissue engineering and wound healing applications. In order to stimulate tissue regeneration for chronic wound healing, a new kind of conducive nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) were prepared via co-electrospinning process. Biological assessments revealed that the NAGEL bioceramic particles could active epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vitro and in vivo. The new composite scaffold

  7. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method.

    Directory of Open Access Journals (Sweden)

    Miguel Gonzalez-Andrades

    Full Text Available Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM for measuring functional optical blurring and transparency in corneal surface grafts.Plastic compressed collagen scaffolds (PCCS and multilayered amniotic membranes (AM samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD technique, which is the gold standard method.All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR value of 80.3 ± 2.8%, with a blurring index (BI of 50.6 ± 4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6| with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005. The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring.This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair.

  8. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  9. Orbital implants: State-of-the-art review with emphasis on biomaterials and recent advances.

    Science.gov (United States)

    Baino, Francesco; Potestio, Isabel

    2016-12-01

    In the treatment of severe oculo-orbital traumas, intraocular malignancies or other life-threatening conditions it is sometimes necessary to surgically remove the patient's diseased eye. Following the removal of the eye, an orbital implant is inserted into the anophthalmic socket in order to provide satisfactory volume replacement and restore the aesthetic appearance of a normal eye. Over the last decades, the implant design and the criteria of materials selection evolved from simple non-porous polymeric sphere to devices with more complex shape and functionalities for ensuring better clinical outcomes in the long-term. Polymeric and ceramic porous implants have gained prominence since their highly interconnected porous architecture allows them to act as a passive framework for fibrovascular in-growth offering reduced complication rates and the possibility of pegging to enhance the motility of the artificial eye. However, there are still drawbacks to these materials. Some critical aspects of today's orbital implants include the risk of migration and extrusion, postoperative infections and low motility transmitted to the aesthetic ocular prosthesis. Hence, the development of novel biomaterials with enhanced functionalities (e.g. angiogenesis, antibacterial effect, in situ mouldability) which enable an improved outcome of eye replacement is more than ever desirable and represents one of the most challenging topics of research in the field of ocular implants. This review summarizes the evolution of orbital implants and provides an overview of the most recent advances in the field as well as some critical remarks for materials design, selection, characterization and translation to clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrospun silk-elastin-like fibre mats for tissue engineering applications

    International Nuclear Information System (INIS)

    Machado, Raul; Da Costa, André; Padrão, Jorge; Gomes, Andreia; Casal, Margarida; Sencadas, Vitor; Costa, Carlos M; Lanceros-Méndez, Senentxu; Garcia-Arévalo, Carmen; Rodríguez-Cabello, José Carlos

    2013-01-01

    Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing its dependence on the concentration and solvent used. Treatment with methanol-saturated air was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570–720%), water vapour transmission rate (1083 g/m 2 /day) and mechanical properties (modulus of elasticity ∼126 MPa). Furthermore, the methanol-treated SELP fibre mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fibre mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications. (paper)

  11. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    Science.gov (United States)

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  12. Some Biomaterials based on Collagen in Human Health care

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Some Biomaterials based on Collagen in Human Health care. Ophthalmology. Wound healing. Burn Dressing. Tumor Treatment. Tissue Engineered devices. for cardio-vascular functions; For managing chronic illnesses including diabetic ulcers and foot. Smart shoe.

  13. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2016-03-01

    Full Text Available The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  14. Synthesis and characterization of nanostructured CaSiO3 biomaterial

    Science.gov (United States)

    Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.

    2013-04-01

    Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.

  15. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.

    Science.gov (United States)

    Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L

    2017-07-01

    Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and

  16. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  17. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  18. Tissue engineering: state of the art in oral rehabilitation.

    Science.gov (United States)

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  19. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    Science.gov (United States)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-04-15

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  20. The quest for anti-inflammatory and anti-infective biomaterials in clinical translation

    Directory of Open Access Journals (Sweden)

    May Griffith

    2016-09-01

    Full Text Available Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multi-functional biomaterials with combined properties that can combat infections, modulate inflammation and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC, to silver nanoparticles that have anti-bacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is

  1. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations.

    Science.gov (United States)

    Janardhanan, Sathyanarayana; Wang, Martha O; Fisher, John P

    2012-08-01

    The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.

  2. Trends in polymeric electrospun fibers and their use as oral biomaterials.

    Science.gov (United States)

    Meireles, Agnes B; Corrêa, Daniella K; da Silveira, João Vw; Millás, Ana Lg; Bittencourt, Edison; de Brito-Melo, Gustavo Ea; González-Torres, Libardo A

    2018-05-01

    Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials

  3. Advances and Perspectives on Tissue Repair and Healing

    Science.gov (United States)

    Pinheiro, Antonio L. B.; Marques, Aparecida M. C.; de Sousa, Ana Paula C.; Aciole, Jouber M. S.; Soares, Luiz G. P.

    2011-08-01

    Wound healing involves local and systemic responses that reflect the etiology of the lesion, type of tissue, systemic condition and others. Despite being essentially the same for different wounds, the pattern of healing may change due to intrinsic and/or extrinsic factors. The type of tissue has also to be considered. Several therapeutic approaches have been used to improve healing including phototherapies such as Laser, LEDs and Lamps. Their effects on soft and mineralized tissues are well reported. The choice of appropriated parameters is essential for the results of the treatment and includes wavelength, power density, energy, duration and frequency of application and others. We studied the effects of different types of light on the healing of both soft and mineralized tissues using different models. We found that the use of Laser and polarized light are effective on improving the healing of diabetic and undernourished animals. We also found that Laser light is capable of improving the healing of drug-induced impairment and on increasing the survival rate of flaps on both diabetic and non-diabetic animals. We have also studied and shown the influence of the laser parameters on the healing of surgical and laser wounds. Lately we verified the positive effect of LEDs on healing. We used Laser/LED light for improving bone healing in conditions such as in dental implants, autologous grafts, biomaterials and fractures. From these reports and our own experience we have no doubt whatsoever that the use of phototherapies, carried out with appropriate parameters, promotes quicker tissue repair.

  4. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.

    Science.gov (United States)

    Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu

    2013-01-01

    Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.

  5. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    Science.gov (United States)

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  6. Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior

    Science.gov (United States)

    Meco, Edi; Lampe, Kyle J.

    2018-02-01

    Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  7. CRYOPRESERVATION STRATEGY FOR TISSUE ENGINEERING CONSTRUCTS CONSISTING OF HUMAN MESENHYMAL STEM CELLS AND HYDROGEL BIOMATERIALS.

    Science.gov (United States)

    Wu, Y; Wen, F; Gouk, S S; Lee, E H; Kuleshova, L

    2015-01-01

    The development of vitrification strategy for cell-biomaterial constructs, particularly biologically inspired nanoscale materials and hydrogels mimicking the in vivo environment is an active area. A cryopreservation strategy mimicking the in vivo environment for cell-hydrogel constructs may enhance cell proliferation and biological function. To demonstrate the efficacy of vitrification as a platform technology involving tissue engineering and human mesenchymal stem cells (hMSCs). Microcarriers made from alginate coated with chitosan and collagen are used. Conventional freezing and vitrification were compared. The vitrification strategy includes 10 min step-wise exposure to a vitrification solution (40% v/v EG, 0.6M sucrose) and immersion into liquid nitrogen. Confocal imaging of live/dead staining of hMSCs cultured on the surface of microcarriers demonstrated that vitrified cells had excellent appearance and prolonged spindle shape morphology. The proliferation ability of post-vitrified cells arbitrated to protein Ki-67 gene expression was not significantly different in comparison to untreated control, while that of post-freezing cells was almost lost. The ability of hMSCs cultured on the surface of microcarriers to proliferate has been not affected by vitrification and it was significantly better after vitrification than after conventional freezing during continuous culture. Collagen II related mRNA expression by 4 weeks post-vitrification and post-freezing showed that ability to differentiate into cartilage was sustained during vitrification and reduced during conventional freezing. No significant difference was found between control and vitrification groups only. Vitrification strategy coupled with advances in hMSC-expansion platform that completely preserves the ability of stem cells to proliferate and subsequently differentiate allows not only to reach a critical cell number, but also demonstrate prospects for effective utilization and transportation of cells

  8. Biomaterials and scaffolds in reparative medicine

    Science.gov (United States)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  9. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction.

    Science.gov (United States)

    Nayyer, Leila; Jell, Gavin; Esmaeili, Ali; Birchall, Martin; Seifalian, Alexander M

    2016-05-01

    Current biomaterials for auricular replacement are associated with high rates of infection and extrusion. The development of new auricular biomaterials that mimic the mechanical properties of native tissue and promote desirable cellular interactions may prevent implant failure. A porous 3D nanocomposite scaffold (NS) based on POSS-PCU (polyhedral oligomeric silsesquioxane nanocage into polycarbonate based urea-urethane) is developed with an elastic modulus similar to native ear. In vitro biological interactions on this NS reveal greater protein adsorption, increased fibroblast adhesion, proliferation, and collagen production compared with Medpor (the current synthetic auricular implant). In vivo, the POSS-PCU with larger pores (NS2; 150-250 μm) have greater tissue ingrowth (≈5.8× and ≈1.4 × increase) than the POSS-PCU with smaller pores (NS1; 100-50 μm) and when compared to Medpor (>100 μm). The NS2 with the larger pores demonstrates a reduced fibrotic encapsulation compared with NS1 and Medpor (≈4.1× and ≈1.6×, respectively; P response for all materials may indicate that the elastic modulus and pore size of the implant scaffold could be important design considerations for influencing fibrotic responses to auricular and other soft tissue implants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bladder tissue engineering through nanotechnology.

    Science.gov (United States)

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  11. Bioresorption and degradation of biomaterials.

    Science.gov (United States)

    Das, Debarun; Zhang, Ziyang; Winkler, Thomas; Mour, Meenakshi; Gunter, Christina; Morlock, Michael; Machens, Hans-Gunther; Schilling, Arndt F

    2012-01-01

    The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

  12. Solid-phase based synthesis of ureidopyrimidinone-peptide conjugates for supramolecular biomaterials

    NARCIS (Netherlands)

    Feijter, de I.; Goor, O.J.G.M.; Hendrikse, S.I.S.; Comellas Aragones, M.; Sontjens, S.H.M.; Zaccaria, S.; Fransen, P.P.K.H.; Peeters, J.W.; Milroy, L.G.; Dankers, P.Y.W.

    2015-01-01

    Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the

  13. Liver regenerative medicine: advances and challenges.

    Science.gov (United States)

    Chistiakov, Dimitry A

    2012-01-01

    Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver. Copyright © 2012 S. Karger AG, Basel.

  14. Atomic force microscopy for university students: applications in biomaterials

    International Nuclear Information System (INIS)

    Kontomaris, S V; Stylianou, A

    2017-01-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM. (review)

  15. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  16. Curriculum in biomedical optics and laser-tissue interactions

    Science.gov (United States)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  17. Injectable biomaterials for adipose tissue engineering

    International Nuclear Information System (INIS)

    Young, D A; Christman, K L

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  18. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    Science.gov (United States)

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.

  19. Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis.

    Science.gov (United States)

    Yuan, G-H; Tanaka, M; Masuko-Hongo, K; Shibakawa, A; Kato, T; Nishioka, K; Nakamura, H

    2004-01-01

    To identify the characteristics of cells isolated from pannus-like soft tissue on osteoarthritic cartilage (OA pannus cells), and to evaluate the role of this tissue in osteoarthritis (OA). OA pannus cells were isolated from pannus-like tissues in five joints obtained during arthroplasty. The phenotypic features of the isolated cells were characterized by safranin-O staining and immunohistochemical studies. Expression of MMP-1, MMP-3 and MMP-13 was also assessed using reverse transcriptase-polymerase chain reactions (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Foci and plaque formation of pannus-like tissue over cartilage surface were found in 15 of 21 (71.4%) OA joints macroscopically, and among them, only five samples had enough tissue to be isolated. OA pannus cells were positive for type I collagen and vimentin, besides they also expressed type II collagen and aggrecan mRNA. Spontaneous expression of MMP-1, MMP-3 and MMP-13 was detected in OA pannus cells. Similar or higher levels of MMPs were detected in the supernatant of cultured OA pannus cells compared to OA chondrocytes, and among these MMP-3 levels were relatively higher in OA pannus cells. Immunohistochemically, MMP-3 positive cells located preferentially in pannus-like tissue on the border of original hyaline cartilage. Our results showed that OA pannus cells shared the property of mesenchymal cells and chondrocytes; however, their origin seemed different from chondrocytes or synoviocytes. The spontaneous expression of MMPs suggests that they are involved in the articular degradation in OA.

  20. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  1. A review of the biomaterials technologies for infection-resistant surfaces.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2013-11-01

    Anti-infective biomaterials need to be tailored according to the specific clinical application. All their properties have to be tuned to achieve the best anti-infective performance together with safe biocompatibility and appropriate tissue interactions. Innovative technologies are developing new biomaterials and surfaces endowed with anti-infective properties, relying either on antifouling, or bactericidal, or antibiofilm activities. This review aims at thoroughly surveying the numerous classes of antibacterial biomaterials and the underlying strategies behind them. Bacteria repelling and antiadhesive surfaces, materials with intrinsic antibacterial properties, antibacterial coatings, nanostructured materials, and molecules interfering with bacterial biofilm are considered. Among the new strategies, the use of phages or of antisense peptide nucleic acids are discussed, as well as the possibility to modulate the local immune response by active cytokines. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. Many of them exhibit a great potential in preclinical models. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of anti-infective biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  2. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    Science.gov (United States)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior

    Directory of Open Access Journals (Sweden)

    Edi Meco

    2018-02-01

    Full Text Available Biomaterial scaffolds mimic aspects of the native central nervous system (CNS extracellular matrix (ECM and have been extensively utilized to influence neural cell (NC behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and three-dimensional (3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  4. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo; Kim, Jong Young

    2011-01-01

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  5. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers.

    Science.gov (United States)

    Klopfleisch, R

    2016-10-01

    The foreign body reaction (FBR) is a response of the host tissue against more or less degradation-resistant foreign macromolecular material. The reaction is divided into five different phases which involve most aspects of the innate and the adaptive immune system: protein adsorption, acute and chronic inflammation, foreign body giant cell formation and fibrosis. It is long known, that macrophages play a central role in all of these phases except for protein adsorption. Initially it was believed that the macrophage driven FBR has a complete negative effect on biocompatibility. Recent progress in biomaterial and macrophage research however describe macrophages as more than pure antigen phagocytosing and presenting cells and thus pro-inflammatory cells involved in biomaterial encapsulation and failure. Quite contrary, both, pro-inflammatory M1 macrophages, the diverse regulatory M2 macrophage subtypes and even foreign body giant cells (FBGC) are after necessary for integration of non-degradable biomaterials and degradation and replacement of degradable biomaterials. This review gives a comprehensive overview on the taxonomy of the currently known macrophage subtypes. Their diverging functions, metabolism and markers are summarized and the relevance of this more diverse macrophage picture for the design of biomaterials is shortly discussed. The view on role of macrophages in the foreign body reaction against biomaterials is rapidly changing. Despite the initial idea that macrophage are mainly involved in undesired degradation and biomaterial rejection it becomes now clear that they are nevertheless necessary for proper integration of non-degradable biomaterials and degradation of placeholder, degradable biomaterials. As a pathologist I experienced a lack on a good summary on the current taxonomy, functions and phenotypes of macrophages in my recent projects on the biocompatibility of biomaterials in the mouse model. The submitted review therefore intends to gives a

  6. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, Vincenzo, E-mail: vguarino@unina.it; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology, National Research Council of Italy, V.le Kennedy 54, Naples (Italy)

    2015-12-17

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.

  7. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    International Nuclear Information System (INIS)

    Guarino, Vincenzo; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi

    2015-01-01

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues

  8. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    Science.gov (United States)

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Current Status of Tissue Engineering in the Management of Severe Hypospadias

    Directory of Open Access Journals (Sweden)

    Tariq O. Abbas

    2018-01-01

    Full Text Available Hypospadias, characterized by misplacement of the urinary meatus in the lower side of the penis, is a frequent birth defect in male children. Because of the huge variation in the anatomic presentation of hypospadias, no single urethroplasty procedure is suitable for all situations. Hence, many surgical techniques have emerged to address the shortage of tissues required to bridge the gap in the urethra particularly in the severe forms of hypospadias. However, the rate of postoperative complications of currently available surgical procedures reaches up to one-fourth of the patients having severe hypospadias. Moreover, these urethroplasty techniques are technically demanding and require considerable surgical experience. These limitations have fueled the development of novel tissue engineering techniques that aim to simplify the surgical procedures and to reduce the rate of complications. Several types of biomaterials have been considered for urethral repair, including synthetic and natural polymers, which in some cases have been seeded with cells prior to implantation. These methods have been tested in preclinical and clinical studies, with variable degrees of success. This review describes the different urethral tissue engineering methodologies, with focus on the approaches used for the treatment of hypospadias. At present, despite many significant advances, the search for a suitable tissue engineering approach for use in routine clinical applications continues.

  10. Biomaterials in orthopaedics

    Science.gov (United States)

    Navarro, M; Michiardi, A; Castaño, O; Planell, J.A

    2008-01-01

    At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387

  11. Biomaterial Characterization of Off-the-Shelf Decellularized Porcine Pericardial Tissue for use in Prosthetic Valvular Applications.

    Science.gov (United States)

    Choe, Joshua A; Jana, Soumen; Tefft, Brandon J; Hennessy, Ryan S; Go, Jason; Morse, David; Lerman, Amir; Young, Melissa D

    2018-05-10

    Fixed pericardial tissue is commonly used for commercially available xenograft valve implants, and has proven durability, but lacks the capability to remodel and grow. Decellularized porcine pericardial tissue has the promise to outperform fixed tissue and remodel, but the decellularization process has been shown to damage the collagen structure and reduce mechanical integrity of the tissue. Therefore, a comparison of uniaxial tensile properties was performed on decellularized, decellularized-sterilized, fixed, and native porcine pericardial tissue, versus native valve leaflet cusps. The results of non-parametric analysis showed statistically significant differences (ptesting of the tissues showed no statistical difference between decellularized or decell-sterilized tissue compared to native cusps (p>0.05). SEM confirmed that valvular endothelial and interstitial cells colonized the decellularized pericardial surface when seeded and grown for 30 days in static culture. Collagen assays and TEM analysis showed limited reductions in collagen with processing; yet, GAG assays showed great reductions in the processed pericardium relative to native cusps. Decellularized pericardium had comparatively lower mechanical properties amongst the groups studied; yet, the stiffness was comparatively similar to the native cusps and demonstrated a lack of cytotoxicity. Suture retention, accelerated wear, and hydrodynamic testing of prototype decellularized and decell-sterilized valves showed positive functionality. Sterilized tissue could mimic valvular mechanical environment in vitro, therefore making it a viable potential candidate for off-the-shelf tissue engineered valvular applications. KEYTERMS Decellularization, Sterilization, Pericardial Tissue, Heart Valves, Tissue Engineering, Biomechanics. This article is protected by copyright. All rights reserved.

  12. Structural analysis and application to biomaterials of the silk fibroins

    International Nuclear Information System (INIS)

    Nakazawa, Yasumoto

    2010-01-01

    Silk fibroin from Bombyx mori silkworm has outstanding mechanical properties despite being spun from aqueous solution. I have clarified two distinct structures in the solid state; silk I and silk II, which mean the structures before and after spinning, by using solid state NMR. Moreover, I have been developing several kinds of biomaterials, such as bone regeneration materials and vascular grafts. In this paper, I present two topics: one is the structural analyses of the silk fibroin in detail, the other is applications of silk fibroins to tissue engineering. In the case of vascular regeneration, I have developed the small diameter vascular grafts made by silk fibroins. The new grafts from silk fibroins have good patency, and these grafts were commonly covered with cells and platelets at 4 weeks after implantation. For bone tissue engineering, I performed structural analyses of a new silk-like peptide, E n (AGSGAG) 4 , in order to consider the molecular design of biomaterials for bone regeneration. (author)

  13. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  14. Biomimetic strategies for fracture repair: engineering the cell microenvironment for directed tissue formation

    OpenAIRE

    Vas, Wollis J.; Shah, Mittal; Al Hosni, Rawiya; Owen, Helen C.; Roberts, Scott J.

    2017-01-01

    Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing abili...

  15. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    Full Text Available Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found. For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies was assessed and outcome data were collected for meta-analysis (151 studies. Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular

  16. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  17. 3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures.

    Science.gov (United States)

    Luo, Yongxiang; Lin, Xin; Huang, Peng

    2018-04-24

    It is promising that artificial tissues/organs for clinical application can be produced via 3D bioprinting of living cells and biomaterials. The construction of microstructures biomimicking native tissues is crucially important to create artificial tissues with biological functions. For instance, the fabrication of vessel-like networks to supply cells with initial nutrient and oxygen, and the arrangement of multiple types of cells for creating lamellar/complex tissues through 3D bioprinting are widely reported. The current advances in 3D bioprinting of artificial tissues from the view of construction of biomimetic microstructures, especially the fabrication of lamellar, vascular, and complex structures are summarized. In the end, the conclusion and perspective of 3D bioprinting for clinical applications are elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In silico design of anti-atherogenic biomaterials.

    Science.gov (United States)

    Lewis, Daniel R; Kholodovych, Vladyslav; Tomasini, Michael D; Abdelhamid, Dalia; Petersen, Latrisha K; Welsh, William J; Uhrich, Kathryn E; Moghe, Prabhas V

    2013-10-01

    Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. First step toward near-infrared continuous glucose monitoring: in vivo evaluation of antibody coupled biomaterials

    Science.gov (United States)

    Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven

    2015-01-01

    Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314

  20. From molecular structure to macromolecular organization : keys to design supramolecular biomaterials

    NARCIS (Netherlands)

    Hutin, M.C.; Burakowska-Meise, E.A.; Appel, W.P.J.; Dankers, P.Y.W.; Meijer, E.W.

    2013-01-01

    In the past decade, significant progress has been made in the field of biomaterials, for potential applications in tissue engineering or drug delivery. We have recently developed a new class of thermoplastic elastomers, based on ureidopyrimidinone (UPy) quadruple hydrogen bonding motifs. These

  1. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    Science.gov (United States)

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  2. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    Science.gov (United States)

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  3. Bone grafting with granular biomaterial in segmental maxillary osteotomy: A case report

    Directory of Open Access Journals (Sweden)

    Orion Luiz Haas Junior

    2016-01-01

    Conclusion: This is the first report of bone grafting with a granular biomaterial in segmental maxillary osteotomy. Successful formation of new bone with density greater than that of the surrounding tissue was achieved, preventing pseudarthrosis and postoperative instability.

  4. Cell-cycle control in cell-biomaterial interactions : Expression of p53 and Ki67 in human umbilical vein endothelial cells in direct contact and extract testing of biomaterials

    NARCIS (Netherlands)

    van Kooten, TG; Klein, CL; Kirkpatrick, CJ

    2000-01-01

    Current biocompatibility testing involves the demonstration of cell proliferation, which is usually interpreted as a sign of positive biocompatibility when the materials sustain cell proliferation. As the field of biomaterials research is rapidly moving toward tissue-engineered devices and hybrid

  5. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  6. New biomaterials for orthopedic implants

    Directory of Open Access Journals (Sweden)

    Ong KL

    2015-09-01

    Full Text Available Kevin L Ong, Brian Min Yun, Joshua B WhiteExponent, Inc., Philadelphia, PA, USAAbstract: With the increasing use of orthopedic implants worldwide, there continues to be great interest in the development of novel technologies to further improve the effective clinical performance of contemporary treatment modalities and devices. Continuing research interest also exists in developing novel bulk biomaterials (eg, polycarbonate urethanes, silicon or novel formulations of existing but less widely used biomaterials (eg, polyaryletherketones, polyetheretherketone. There is also growing focus on customizing the material properties of bioabsorbables and composite materials with fillers such as bioactive ceramics. In terms of tissue engineering, more recent developments have focused on basic engineering and biological fundamentals to use cells, signaling factors, and the scaffold material itself to better restore tissue and organ structure and function. There has also been recent controversy with the use of injectables as a nonsurgical approach to treat joint disorders, but more attention is being directed toward the development of newer formulations with different molecular weights. The industry has also continuously sought to improve coatings to supplement the function of existing implants, with the goal of improving their osseointegrative qualities and incorporating antimicrobial properties. These include the use of bone morphogenetic protein, bisphosphonates, calcium phosphate, silicon nitride, and iodine. Due to the widespread use of bone graft materials, recent developments in synthetic graft materials have explored further development of bioactive glass, ceramic materials, and porous titanium particles. This review article provides an overview of ongoing efforts in the above research areas.Keywords: coatings, scaffolds, bioabsorbables, bone graft, injectables

  7. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  9. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  10. Obtaining and characterization of chitosan biocomposites / HAP for application as biomaterial

    International Nuclear Information System (INIS)

    Leal, R.C.A.; Nascimento, I.V.S.R.; Fook, M.V.L.; Furtado, G.T.F.S.

    2011-01-01

    The hydroxyapatite is one of the most biocompatible materials known by encouraging bone growth. However, the main drawback it is the poor mechanical strength. A method to overcome this problem is the addition of the biopolymer chitosan, suitable for applications as biomaterials. In this study was obtained a hydroxyapatite - chitosan biocomposites for application as a biomaterial. In the FTIR analysis it was identified characteristic bands of hydroxyapatite and a possible overlap of the amino group of chitosan by carbonate. XRD analysis showed that there was no change in the profile of HA after chitosan incorporation. In SEM analysis of the biocomposites HA / chitosan, it is observed that there wasn't a complete dispersion of HA particles in the chitosan. In the image of calcined biocomposite, it was found that after heat treatment at 900 ° C chitosan was eliminated, resulting in a porous material. The analysis has shown that the presence of chitosan did not cause significant changes in the phase of hydroxyapatite. (author)

  11. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  12. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production.

    Science.gov (United States)

    Russell, Lauren N; Lampe, Kyle J

    2016-01-01

    Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo. © 2016 S. Karger AG, Basel.

  13. Olaratumab for advanced soft tissue sarcoma.

    Science.gov (United States)

    Tobias, Alexander; O'brien, Michael P; Agulnik, Mark

    2017-07-01

    Olaratumab is a humanized IgG1 monoclonal antibody that blocks the platelet-derived growth factor receptor alpha (PDGFRα). Its antagonistic behavior inhibits the receptor's tyrosine kinase activity, thereby, turning off the downstream signaling cascades responsible for soft tissue sarcoma tumorigenesis. In October 2016, olaratumab received Food and Drug Administration (FDA) approval for its use in combination with doxorubicin for treatment of advanced soft tissue sarcoma. Areas covered: This drug profile takes a comprehensive look at the clinical studies leading to FDA approval of olaratumab as well as its safety and efficacy as a front-line treatment option for sarcoma patients. The literature search was primarily conducted using PubMed. Expert commentary: The combination of olaratumab plus doxorubicin has provided a new front-line therapeutic option for soft tissue sarcoma patients. An open-label phase Ib and randomized phase II trial in patients with advanced soft tissue sarcoma demonstrated that the addition of olaratumab to doxorubicin prolonged progression-free survival by 2.5 months and overall survival by 11.8 months when compared to doxorubicin alone. Of importance, this clinically meaningful increase in overall survival did not come at the expense of a significantly greater number of toxicities. A phase III confirmatory trial (ClinicalTrials.gov Identifier NCT02451943) will be completed in 2020.

  14. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    Science.gov (United States)

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  15. Advances in biologic augmentation for rotator cuff repair

    Science.gov (United States)

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  16. In Vitro and In Vivo Characterization of Biodegradable Reactive Isocyanate-Terminated Three-Armed- and Hyperbranched Block Copolymeric Tissue Adhesives

    NARCIS (Netherlands)

    Bochynska, Agnieszka I.; Hannink, Gerjon; Rongen, Jan J.; Grijpma, Dirk W.; Buma, Pieter

    2017-01-01

    Tissue adhesives are an attractive class of biomaterials, which can serve as a treatment for meniscus tears. In this study, physicochemical and adhesive properties of novel biodegradable three-armed- and hyperbranched block copolymeric adhesives are evaluated. Additionally, their degradation in

  17. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  18. Mimicking the micro-environment. Construction and evaluation of complex collagen-based scaffolds for tissue engineering

    NARCIS (Netherlands)

    Nillesen, S.T.M.

    2012-01-01

    The ultimate goal in tissue engineering is to create biomaterials that mimic normal tissue or are able to encourage cells cells to generate new functional tissue. For these biomaterials, it is important to use highly purified components in order to moderate the tissue response and to control the

  19. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay

    International Nuclear Information System (INIS)

    Azzarello, Joseph; Ihnat, Michael A; Kropp, Bradley P; Warnke, Linda A; Lin, H.-K.

    2007-01-01

    The angiogenic potential of a biomaterial is a critical factor for successful graft intake in tissue engineering. We developed a modified, rapid and reproducible chicken embryo chorioallantoic membrane (CAM) assay to evaluate the ability of biomaterials in inducing blood vessel density. Five biomaterials including one-layer porcine small intestinal submucosa (SIS), two-layer SIS, four-layer vacuum pressed (VP) SIS, polyglycolic acid (PGA) and PGA modified with poly(lactic-co-glycolic acid) (PLGA) were analyzed. A circular section (1.2 mm diameter) of each biomaterial was placed near a group of blood vessels in the CAM. Blood vessels around the biomaterials were captured with black and white images at 96 h post implantation; and the images were subjected to densitometry evaluation. One-layer SIS induced a significant increase in blood vessel density as compared to the cellulose nitrate negative control, and had the greatest increase in blood vessel density as compared to four-layer VP SIS, PGA, or PLGA modified PGA. Although two-layer SIS has enhanced physical structure for surgical manipulation, its induction in blood vessel density was significantly lower than the one-layer SIS. Stripping the SIS proteins or incubating one-layer SIS with neutralizing antibodies against basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) resulted in decreased angiogenesis. Consistent with results obtained from bladder augmentation animal models, these results confirmed that angiogenic growth factors were present in SIS and affected the angiogenic potential of biomaterials. These data also demonstrated that the CAM assay can be used to ascertain methodically the angiogenic potential of biomaterials

  20. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  1. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Umesh D. Wankhade

    2016-01-01

    Full Text Available Obesity is a complex, multifactorial disease that has been extensively researched in recent times. Obesity is characterized by excess deposition of adipose tissue in response to surplus energy. Despite the negative connotations of adipose tissue (AT, it serves as a critical endocrine organ. Adipose tissue is a source of several adipokines and cytokines which have been deemed important for both normal metabolic function and disease formation. The discoveries of metabolically active brown AT in adult humans and adipose tissue derived stem cells (ADSC have been key findings in the past decade with potential therapeutic implications. ADSCs represent an enticing pool of multipotent adult stem cells because of their noncontroversial nature, relative abundance, ease of isolation, and expandability. A decade and a half since the discovery of ADSCs, the scientific community is still working to uncover their therapeutic potential in a wide range of diseases. In this review, we provide an overview of the recent developments in the field of ADSCs and examine their potential use in transplantation and cell-based therapies for the regeneration of diseased organs and systems. We also hope to provide perspective on how to best utilize this readily available, powerful pool of stem cells in the future.

  2. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  3. A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students

    Science.gov (United States)

    Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2015-01-01

    The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology…

  4. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy.

    Science.gov (United States)

    Hinderer, Svenja; Layland, Shannon Lee; Schenke-Layland, Katja

    2016-02-01

    Regenerative strategies such as stem cell-based therapies and tissue engineering applications are being developed with the aim to replace, remodel, regenerate or support damaged tissues and organs. In addition to careful cell type selection, the design of appropriate three-dimensional (3D) scaffolds is essential for the generation of bio-inspired replacement tissues. Such scaffolds are usually made of degradable or non-degradable biomaterials and can serve as cell or drug carriers. The development of more effective and efficient drug carrier systems is also highly relevant for novel cancer treatment strategies. In this review, we provide a summary of current approaches that employ ECM and ECM-like materials, or ECM-synthetic polymer hybrids, as biomaterials in the field of regenerative medicine. We further discuss the utilization of such materials for cell and drug delivery, and highlight strategies for their use as vehicles for cancer therapy. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  6. A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio.

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    Full Text Available Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR. NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts.

  7. Stem cells in skin regeneration: biomaterials and computational models

    Directory of Open Access Journals (Sweden)

    Daniele eTartarini

    2016-01-01

    Full Text Available The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles, has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells have been proposed for the treatment of these wounds, thanks to the ability of stem cells to self-renew and specifically differentiate in response to the target bimolecular environment. Here we discuss how advanced biomedical devices can be developed by combining stem cells with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bio-constructs, reducing the need of expensive, time-consuming and ethically controversial animal experimentation.

  8. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  9. An in vitro evaluation of various biomaterials for the development of a tissue-engineered lacrimal gland

    Science.gov (United States)

    Selvam, Shivaram

    The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland. The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport. The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology. The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion. The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA

  10. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  11. Interleukin-1 receptor type I gene-deficient mice are less susceptible to Staphylococcus epidermidis biomaterial-associated infection than are wild-type mice

    NARCIS (Netherlands)

    Boelens, J. J.; van der Poll, T.; Zaat, S. A.; Murk, J. L.; Weening, J. J.; Dankert, J.

    2000-01-01

    Elevated concentrations of interleukin-1 (IL-1) were found in tissue surrounding biomaterials infected with Staphylococcus epidermidis. To determine the role of IL-1 in biomaterial-associated infection (BAI), IL-1 receptor type I-deficient (IL-1R(-/-)) and wild-type mice received subcutaneous

  12. Evaluation of the in vitro biocompatibility of polymeric materials for the regeneration of cutaneous tissue

    International Nuclear Information System (INIS)

    Escudero Castellanos, A.

    2016-01-01

    The problems associated with medical cases of functional tissue loss or organ failure are destructive and expensive, even more frequent than could be perceived, sometime if not properly treated, even deathly. Tissue engineering is an interdisciplinary field that emerged to address these clinical problems, it is based on researching and development of biomaterials that have evolved along with areas such as cell biology, molecular and materials science and engineering. Today, the technique is based on seeding cells onto prefabricated scaffold biomaterials, like the hydrogels, that are three-dimensional networks with hydrophilic properties. These materials are characterized as being porous and sticky, favoring the support for the proliferation of certain cells in order to lead the regeneration of injured tissue. As a prerequisite for the use of materials in tissue engineering is testing biocompatibility which is the ability of the bio material to allow contact with any tissue, existing a favorable host response, accepting it as their own and restoring previously lost function. The first step for evaluating biocompatibility is to perform the in vitro assays. These assays have been demonstrated more reproducibility and predictability than in vivo assays, therefore the in vitro assays are used to produce high quality scaffolds and testing on animals as less as possible. This test is essential to establish the benefits and limitations of biomaterials tested in order to improve the scaffolds. This work will focus on assessing the biocompatibility of three polymeric materials with potential use in tissue engineering by means of cytological compatibility tests and hemo compatibility tests. Furthermore, disinfection techniques and gamma sterilization were evaluated to produce sterile materials that can be used in tissue engineering. (Author)

  13. Biomaterial-mediated strategies targeting vascularization for bone repair.

    Science.gov (United States)

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  14. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  15. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  16. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    Science.gov (United States)

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  17. Obtaining new composite biomaterials by means of mineralization of methacrylate hydrogels using the reaction–diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Yousof [Department of Physical Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid (Spain); González-Sánchez, M. Isabel [Department of Physical Chemistry, School of Industrial Engineering, Castilla-La Mancha University, 02071 Albacete (Spain); Hawkins, Karl [Centre of Nanohealth, Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, Wales (United Kingdom); Rubio-Retama, Jorge [Department of Physical Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid (Spain); Valero, Edelmira [Department of Physical Chemistry, School of Industrial Engineering, Castilla-La Mancha University, 02071 Albacete (Spain); Perni, Stefano [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF103NB (United Kingdom); Department of Biological Engineering, MA Institute of Technology, Cambridge (United States); Prokopovich, Polina [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF103NB (United Kingdom); Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University, Cardiff (United Kingdom); Department of Biological Engineering, MA Institute of Technology, Cambridge (United States); López-Cabarcos, Enrique, E-mail: cabarcos@farm.ucm.es [Department of Physical Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid (Spain)

    2014-09-01

    The present paper describes the synthesis and characterization of a new polymeric biomaterial mineralized with calcium phosphate using the reaction–diffusion method. The scaffold of this biomaterial was a hydrogel constituted by biocompatible polyethylene glycol methyl ether methacrylate (PEGMEM) and 2-(dimethylamino)ethyl methacrylate (DMAEM), which were cross-linked with N-N’-methylenebisacrylamide (BIS). The cross-linking content of the hydrogels was varied from 0.25% to 15% (w/w). The gels were used as matrix where two reactants (Na{sub 2}HPO{sub 4} and CaCl{sub 2}) diffused from both ends of the gel and upon encountering produced calcium phosphate crystals that precipitated within the polymer matrix forming bands. The shape of the crystals was tuned by modifying the matrix porosity in such a way that when the polymer matrix was slightly reticulated the diffusion reaction produced round calcium phosphate microcrystals, whilst when the polymer matrix was highly reticulated the reaction yielded flat calcium phosphate crystals. Selected area electron diffraction performed on the nanocrystals that constitute the microcrystals showed that they were formed by Brushite (CaHPO{sub 4}.2H{sub 2}O). This new composite material could be useful in medical and dentistry applications such as bone regeneration, bone repair or tissue engineering. - Highlights: • New polymeric biomaterial mineralized with calcium phosphate using the reaction-diffusion method.-Growing of brushite nanocrystals within a polymeric matrix. • Mineralization by reaction diffusion method controls the crystal growth within gels.

  18. Obtaining new composite biomaterials by means of mineralization of methacrylate hydrogels using the reaction–diffusion method

    International Nuclear Information System (INIS)

    Ramadan, Yousof; González-Sánchez, M. Isabel; Hawkins, Karl; Rubio-Retama, Jorge; Valero, Edelmira; Perni, Stefano; Prokopovich, Polina; López-Cabarcos, Enrique

    2014-01-01

    The present paper describes the synthesis and characterization of a new polymeric biomaterial mineralized with calcium phosphate using the reaction–diffusion method. The scaffold of this biomaterial was a hydrogel constituted by biocompatible polyethylene glycol methyl ether methacrylate (PEGMEM) and 2-(dimethylamino)ethyl methacrylate (DMAEM), which were cross-linked with N-N’-methylenebisacrylamide (BIS). The cross-linking content of the hydrogels was varied from 0.25% to 15% (w/w). The gels were used as matrix where two reactants (Na 2 HPO 4 and CaCl 2 ) diffused from both ends of the gel and upon encountering produced calcium phosphate crystals that precipitated within the polymer matrix forming bands. The shape of the crystals was tuned by modifying the matrix porosity in such a way that when the polymer matrix was slightly reticulated the diffusion reaction produced round calcium phosphate microcrystals, whilst when the polymer matrix was highly reticulated the reaction yielded flat calcium phosphate crystals. Selected area electron diffraction performed on the nanocrystals that constitute the microcrystals showed that they were formed by Brushite (CaHPO 4 .2H 2 O). This new composite material could be useful in medical and dentistry applications such as bone regeneration, bone repair or tissue engineering. - Highlights: • New polymeric biomaterial mineralized with calcium phosphate using the reaction-diffusion method.-Growing of brushite nanocrystals within a polymeric matrix. • Mineralization by reaction diffusion method controls the crystal growth within gels

  19. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  20. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Piezoelectric polymers as biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    Science.gov (United States)

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  3. Study of surface phenomena in biomaterials: The influence of physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Sachelarie, Liliana, E-mail: lisachero@yahoo.com; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-15

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  4. Of cells and surfaces for bone tissue engineering

    NARCIS (Netherlands)

    Barradas, A.M.C.

    2012-01-01

    New biomaterials are being developed to meet the bone healing needs of patients. When these biomaterials encounter cells in the tissues within the body, their physico-chemical properties (namely their chemical composition and structural properties) will impact the way cells behave and consequently

  5. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.

    Science.gov (United States)

    Karanasiou, Georgia S; Papafaklis, Michail I; Conway, Claire; Michalis, Lampros K; Tzafriri, Rami; Edelman, Elazer R; Fotiadis, Dimitrios I

    2017-04-01

    Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

  6. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    International Nuclear Information System (INIS)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2015-01-01

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml −1 and 0.156–2.500 mg ml −1 , respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml −1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  7. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial.

    Science.gov (United States)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2014-12-23

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078-1.250 mg ml(-1) and 0.156-2.500 mg ml(-1), respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml(-1) of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation.

  8. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture

    Science.gov (United States)

    Ruskowitz, Emily R.; Deforest, Cole A.

    2018-02-01

    Biological signalling is regulated through a complex and tightly choreographed interplay between cells and their extracellular matrix. The spatiotemporal control of these interactions is essential for tissue function, and disruptions to this dialogue often result in aberrant cell fate and disease. When disturbances are well understood, correct biological function can be restored through the precise introduction of therapeutics. Moreover, model systems with modifiable physiochemical properties are needed to probe the effects of therapeutic molecules and to investigate cell-matrix interactions. Photoresponsive biomaterials benefit from spatiotemporal tunability, which allows for site-specific therapeutic delivery in vivo and 4D modulation of synthetic cell culture platforms to mimic the dynamic heterogeneity of the human body in vitro. In this Review, we discuss how light can be exploited to modify different biomaterials in the context of photomediated drug delivery and phototunable cell culture platforms. We survey various photochemistries for their applicability in vitro and in vivo and for the biochemical and biophysical modification of materials. Finally, we highlight emerging tools and provide an outlook for the field of photoresponsive biomaterials.

  9. Patterning biomaterials for the spatiotemporal delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Silvia eMinardi

    2016-06-01

    Full Text Available The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors, and stem cells has been at the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Towards this aim, the combination of scaffolds and growth factors is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.

  10. Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology

    Directory of Open Access Journals (Sweden)

    Deborah Meleo

    2012-01-01

    Full Text Available In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (<10 micron pixel size. For a correct analysis, samples need not be altered or treated in any way, as micro-CT is a non-invasive and non-destructive technique. It shows promising results in biomaterial studies and tissue engineering. This work shows the potential applications of this microtomographic technique by means of an in vitro analysis system, in characterizing morphometric features of human bone tissue, and contributes to the use of this technique in studies concerning biomaterials and bioscaffolds inserted in bone tissue.

  11. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  12. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    Science.gov (United States)

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  13. Designing protein-based biomaterials for medical applications.

    Science.gov (United States)

    Gagner, Jennifer E; Kim, Wookhyun; Chaikof, Elliot L

    2014-04-01

    Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A methodology based on the "anterior chamber of rabbit eyes" model for noninvasively determining the biocompatibility of biomaterials in an immune privileged site.

    Science.gov (United States)

    Lu, Pei-Lin; Lai, Jui-Yang; Tabata, Yasuhiko; Hsiue, Ging-Ho

    2008-07-01

    In this study, a novel methodology based on the anterior chamber of rabbit eyes model was developed to evaluate the in vivo biocompatibility of biomaterials in an immune privileged site. The 7-mm-diameter membrane implants made from either a biological tissue material (amniotic membrane, AM group) or a biomedical polymeric material (gelatin, GM group) were inserted in rabbit anterior chamber for 36 months and characterized by biomicroscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The noninvasive ophthalmic parameters were scored to provide a quantitative grading system. In this animal model, both AM and GM implants were visible in an ocular immune privileged site during clinical observations. The implants of the AM group appeared as soft tissue patches and have undergone a slow dissolution process resulting in a partial reduction of their size. Additionally, the AM implants did not induce any foreign body reaction or change in ocular tissue response for the studied period. By contrast, in the GM groups, significant corneal edema, elevated intraocular pressure, and increased corneal thickness were noted in the early postoperative phase (within 3 days), but resolved rapidly with in vivo dissolution of the gelatin. The results from the ocular grading system showed that both implants had good long-term biocompatibility in an ocular immune privileged site for up to 3 years. It is concluded that the anterior chamber of rabbit eyes model is an efficient method for noninvasively determining the immune privileged tissue/biomaterial interactions. (c) 2007 Wiley Periodicals, Inc.

  15. The 23rd Annual Meeting of the European Tissue Repair Society (ETRS) in Reims, France

    DEFF Research Database (Denmark)

    Von den Hoff, Johannes W; Ågren, Sven Per Magnus; Coulomb, Bernard

    2014-01-01

    The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns.......The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns....

  16. Nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Characterization of poly (L-co-D,L Lactic Acid and a study of polymer-tissue interaction in subcutaneous implants in wistar rats

    Directory of Open Access Journals (Sweden)

    Giuliano Serafino Ciambelli

    2012-01-01

    Full Text Available Poly (L-co-D,L lactic acid (PLDLA is an important biomaterial because of its biocompatibility properties that promote cellular regeneration and growth. The aim of this study was to evaluate the polymer-tissue interaction of PLDLA implants in the dorsal subcutaneous tissue of male Wistar rats at various intervals (2, 7, 15, 30, 60 and 90 days after implantation. Physical properties such as the glass transition point (Tg, degradation behavior and other mechanical properties were characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, gel permeation chromatography (GPC, scanning electron microscopy (SEM and tension tests. Analysis of the degradation of PLDLA membranes in vitro showed that the polymer became crystalline as a function of the degradation time. Mechanical tension tests showed that the polymer behaved like a ductile material: when subjected to constant tension it initially suffered deformation, then elongation and finally ruptured. TGA/MEV provided evidence of PLDLA membrane degradation. For histological analysis, samples from each group were processed in xylol/paraffin, except for the 60 - and 90 - day samples. Each of the latter samples was divided in two: one half was treated with xylol/paraffin and the other with historesin. Light microscopy showed the adhesion of cells to the biomaterial, the formation of a conjunctive capsule around the implant, the presence of epithelioid cells, the formation of foreign body giant cells and angiogenesis. During degradation, the polymer showed a 'lace' - like appearance when processed in xylol/paraffin compared to the formation of "centripetal cracks in the form of glove fingers" when embedded in historesin.

  18. Interactions between bone cells and biomaterials: An update.

    Science.gov (United States)

    Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie

    2016-06-01

    As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.

  19. Nanoscale hydroxyapatite particles for bone tissue engineering.

    Science.gov (United States)

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. The role of biomaterials in the treatment of meniscal tears

    Directory of Open Access Journals (Sweden)

    Crystal O. Kean

    2017-11-01

    Full Text Available Extensive investigations over the recent decades have established the anatomical, biomechanical and functional importance of the meniscus in the knee joint. As a functioning part of the joint, it serves to prevent the deterioration of articular cartilage and subsequent osteoarthritis. To this end, meniscus repair and regeneration is of particular interest from the biomaterial, bioengineering and orthopaedic research community. Even though meniscal research is previously of a considerable volume, the research community with evolving material science, biology and medical advances are all pushing toward emerging novel solutions and approaches to the successful treatment of meniscal difficulties. This review presents a tactical evaluation of the latest biomaterials, experiments to simulate meniscal tears and the state-of-the-art materials and strategies currently used to treat tears.

  1. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  2. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.

    Science.gov (United States)

    Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin

    2018-06-01

    Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy

  3. [Engineered spider silk: the intelligent biomaterial of the future. Part I].

    Science.gov (United States)

    Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna

    2011-06-17

    The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution.

  4. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.

    Science.gov (United States)

    Wang, Martha O; Vorwald, Charlotte E; Dreher, Maureen L; Mott, Eric J; Cheng, Ming-Huei; Cinar, Ali; Mehdizadeh, Hamidreza; Somo, Sami; Dean, David; Brey, Eric M; Fisher, John P

    2015-01-07

    There is an unmet need for a consistent set of tools for the evaluation of 3D-printed constructs. A toolbox developed to design, characterize, and evaluate 3D-printed poly(propylene fumarate) scaffolds is proposed for vascularized engineered tissues. This toolbox combines modular design and non-destructive fabricated design evaluation, evaluates biocompatibility and mechanical properties, and models angiogenesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biocompatibility evaluation in vitro. Part I: Morphology expression and proliferation of human and rat osteoblasts on the biomaterials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The biocompatibility evaluation of calcium phosphate based biomaterials is performed by tissue culture in vitro model. Three kinds of bioceramic materials which are potential to deal with bone trauma and/or conduct tissue growth are recommodated. The biological research results show that human and animal osteoblast cells anchor the materials surface in two hours in culture. Confocal laser scanning microscopy (CLSM) demonstrated the normal cell distribution and proliferation on both of dense and porous biomaterials. Hydroxyapatite and tricalcium phosphate stimulate cell proliferation. However, DNA and protein synthesis were considerably limited and the apoptosis phenomenon would be present on the hydroxyapatite (HA) materials by adding Al, Mg elements. Several important methods of biocompatibility evaluation of implant materials are described and the related biological molecular techniques such as tissue culture, cell transfection, cellular DNA stain, and Lowry assay are involved in the present research.

  6. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications.

    Directory of Open Access Journals (Sweden)

    Daniel W Youngstrom

    Full Text Available Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS, trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.

  7. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.

    Science.gov (United States)

    Valentin, Thomas M; Leggett, Susan E; Chen, Po-Yen; Sodhi, Jaskiranjeet K; Stephens, Lauren H; McClintock, Hayley D; Sim, Jea Yun; Wong, Ian Y

    2017-10-11

    3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.

  8. Osteoinduction of calcium phosphate biomaterials in small animals

    International Nuclear Information System (INIS)

    Cheng, Lijia; Shi, Yujun; Ye, Feng; Bu, Hong

    2013-01-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca 3 (PO 4 ) 2 , CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation

  9. Osteoinduction of calcium phosphate biomaterials in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lijia; Shi, Yujun [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Ye, Feng [Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China); Bu, Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China)

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca{sub 3}(PO{sub 4}){sub 2}, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  10. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.

    Science.gov (United States)

    Lee, Dae Hoon; Tripathy, Nirmalya; Shin, Jae Hun; Song, Jeong Eun; Cha, Jae Geun; Min, Kyung Dan; Park, Chan Hum; Khang, Gilson

    2017-02-01

    Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  11. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  12. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?

    Science.gov (United States)

    Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O

    2016-12-01

    Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.

  13. Use of radiation in biomaterials science

    International Nuclear Information System (INIS)

    Benson, Roberto S.

    2002-01-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue

  14. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Use of radiation in biomaterials science

    Science.gov (United States)

    Benson, Roberto S.

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  16. Inflammatory cell response to calcium phosphate biomaterial particles: an overview.

    Science.gov (United States)

    Velard, Frédéric; Braux, Julien; Amedee, Joëlle; Laquerriere, Patrice

    2013-02-01

    Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  18. [Modern biomaterials as hemostatic dressings in kidney nephron sparing surgery (NSS)--murine model. A preliminary report].

    Science.gov (United States)

    Nowacki, Maciej; Jundziłł, Arkadiusz; Bieniek, Miłosz; Kowalczyk, Tomasz; Kloskowski, Tomasz; Drewa, Tomasz

    2012-01-01

    Kidney cancer is now days, one of the main problems in oncological urology. More frequent cases detection of this type of cancer and the implementation of modern methods of treatment, involves the public and good diagnostic radiological imaging methods. Approximately 40% of renal tumors are detected clinically as a changes in T1N0M0 stage. This means that in these patients, surgery can be performed using the method of nephron sparing surgery (NSS), far from consisting the implementation of radical nephrectomy. Unfortunately, despite the saving nature of this type of treatment, NSS methods are associated with local recurrence of tumor formation. Another problem is intra operative bleeding, that's why in order to stop this negative process surgeons currently use hemostatic dressings. Potentially and clinically significant solution could be a combination of this two main problematics points of concern, through the use of modern biomaterials coated on oncostatic substances as a haemostatic dressings, to the prevention of tumor recurrence. The aim of this work, was to present preliminary report of the use of advanced biomaterials, as haemostatic dressings in an experimental technique of nephron sparing surgery on an murine model. In the experiment we use two types of biomaterials and the standard haemostatic dressing used in the nephron sparing surgery (NSS) as a control. We use a polycaprolactone biomaterial obtained by electrospinning. As a second type of biomaterial, we use a homogeneous material with a structure similar to wool, also obtained from medical polycaprolactone by electrospinning. As an murine (in vivo) model in the study, we use 10 C57BL/J mice (with the local ethical committee permission). 8 mice were used in the present study, 2 mice were constituted as a separate control for obtaining the bleeding data. Kidney melanoma cells were implanted under the C57B1/J B16 mouse kidney fibrous capsule, one week before NSS. After 3 weeks the animals were

  19. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  20. Histological evaluation of bovine tunica albuginea as biomaterial conserved in 98% glycerin and in 0.625% glutaraldehyde

    Directory of Open Access Journals (Sweden)

    Leticia Leal Oliveira

    2015-12-01

    Full Text Available ABSTRACT. Oliveira L.L., Barata J.S., Silva A.V.P., Caravalho E.C.Q., Nunes L.C. & Abílio E.J. [Histological evaluation of bovine tunica albuginea as biomaterial conserved in 98% glycerin and in 0.625% glutaraldehyde.] Avaliação histológica da túnica albugínea bovina como biomaterial conservada em glicerina a 98% e em glutaraldeído a 0,625%. Revista Brasileira de Medicina Veterinária, 37(4:309-315, 2015. Departamento de Medicina Veterinária, Universidade Federal do Espírito Santo, Alto Universitário s/n, Guararema, Alegre, ES 29500-000, Brasil. E-mail: leticialealolive@hotmail.com Biomaterials have long been studied in reconstructive surgery, both natural and synthetic origin. It can be used as support to host tissue cells development and an efficient bed of stem cells for tissue engineering and regeneration of tissues and organs. The aim of this study was to evaluate the tunica albuginea as biomaterial preserved in glycerin 98% and glutaraldehyde 0.625% and analyze its integrity for use in grafting therapy by microscopic examinations. Tunica albuginea were obtained from healthy adults crossbred cattle from slaughterhouse, tunicas albugineas were preserved in 98% glycerin and 0.625% glutaraldehyde for a period of 30 days at least. Tunica albuginea was fixed in 10% formalin, histologically processed and stained by hematoxylin-eosin, Masson’s trichrome and red picrosisrius polarization. Macroscopically there was a difference in the texture and color of tunica albuginea and in glutaraldehyde group were more firm and thick. Microscopic evaluation revealed that both the glycerin and the glutaraldehyde can be used as conservation medium in function of preserving the basic architecture tissue of the tunica albuginea, however, the glycerin was more efficient preservation of cellular structures. Histochemical techniques have highlighted the collagen and elastic fibers present in tunicas albugineas and highlight the predominance of type I

  1. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats.

    Science.gov (United States)

    Jebahi, S; Oudadesse, H; Jardak, N; Khayat, I; Keskes, H; Khabir, A; Rebai, T; El Feki, H; El Feki, A

    2013-07-01

    New synthetic biomaterials are constantly being developed for wound repair and regeneration. Bioactive glasses (BG) containing strontium have shown successful applications in tissue engineering account of their biocompatibility and the positive biological effects after implantation. This study aimed to assess whether BG-Sr was accepted by the host tissue and to characterize oxidative stress biomarker and antioxidant enzyme profiles during muscle and skin healing. Wistar rats were divided into five groups (six animals per group): the group (I) was used as negative control (T), after ovariectomy, groups II, III, IV and V were used respectively as positive control (OVX), implanted tissue with BG (OVX-BG), BG-Sr (OVX-BG-Sr) and presented empty defects (OVX-NI). Soft tissues surrounding biomaterials were used to estimate superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) concentration. Our results show that 60 days after operation, treatment of rats with BG-Sr significantly increased MDA concentration and caused an increase of SOD, CAT and GPx activities in both skin and muscular tissues. BG-Sr revealed maturation of myotubes followed a normal appearance of muscle regenerated with high density and mature capillary vessels. High wound recovery with complete re-epithelialization and regeneration of skin was observed. The results demonstrate that the protective action against reactive oxygen species (ROS) was clearly observed in soft tissue surrounding BG-Sr. Moreover, the potential use of BG-Sr rapidly restores the wound skin and muscle structural and functional properties. The BG advantages such as ion release might make BG-Sr an effective biomaterial choice for antioxidative activity. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania; Tirinato, Luca; Pagliari, Francesca; Giugni, Andrea; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2016-01-01

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  3. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania

    2016-09-02

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  4. Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.

    Science.gov (United States)

    Jakus, Adam E; Rutz, Alexandra L; Jordan, Sumanas W; Kannan, Abhishek; Mitchell, Sean M; Yun, Chawon; Koube, Katie D; Yoo, Sung C; Whiteley, Herbert E; Richter, Claus-Peter; Galiano, Robert D; Hsu, Wellington K; Stock, Stuart R; Hsu, Erin L; Shah, Ramille N

    2016-09-28

    Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic "bone" (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm(3)/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32 to 67% strain to failure, ~4 to 11 MPa elastic modulus), was highly absorbent (50% material porosity), supported cell viability and proliferation, and induced osteogenic differentiation of bone marrow-derived human mesenchymal stem cells cultured in vitro over 4 weeks without any osteo-inducing factors in the medium. We evaluated HB in vivo in a mouse subcutaneous implant model for material biocompatibility (7 and 35 days), in a rat posterolateral spinal fusion model for new bone formation (8 weeks), and in a large, non-human primate calvarial defect case study (4 weeks). HB did not elicit a negative immune response, became vascularized, quickly integrated with surrounding tissues, and rapidly ossified and supported new bone growth without the need for added biological factors. Copyright © 2016, American Association for the Advancement of Science.

  5. New method of synthesis and in vitro studies of a porous biomaterial

    International Nuclear Information System (INIS)

    Wers, E.; Lefeuvre, B.; Pellen-Mussi, P.; Novella, A.; Oudadesse, H.

    2016-01-01

    Biomaterials for bone reconstruction represent a widely studied area. In this paper, a new method of synthesis of a porous glass–ceramic obtained by thermal treatment is presented. The prepared biomaterial was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and induced couple plasma-optical emission spectroscopy (ICP-OES), mercury porosimetry and by the Archimedes method. In vitro evaluations in a simulated body fluid (SBF) and in contact with SaOS_2 human osteoblasts were also carried out. The porous glass–ceramic is composed of a total porous network of 60% suitable for body fluid and cell infiltration, with pore sizes varying from 60 nm to 143 μm. The presence of two crystalline phases decreases the kinetic of bioactivity compared to an amorphous biomaterial (bioactive glass). A hydroxyapatite layer appears from 15 days of immersion on the surface and inside the pores, showing a biodegradation and a bioactivity in four steps. Cytotoxicity assessments present an increase of the cellular viability after 72 h proving the non-cytotoxic effect of the glass–ceramic. Thus, the results of these different studies indicate that the porous biomaterial may have a potential application for the bone regeneration. This paper also presents the novelty of this method. It is a rapid synthesis which combines simplicity and low cost. This represents an advantage for an eventual industrialization. - Highlights: • The new method of synthesis of a porous glass–ceramic is reproducible. • The porous glass–ceramic possesses a total porosity of 60%. • The biomaterial shows a bioactivity in four steps with hydroxyapatite formation. • 82% of cellular viability is observed on the surface of the biomaterial.

  6. New method of synthesis and in vitro studies of a porous biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Wers, E., E-mail: wers.eric@hotmail.com [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France); Lefeuvre, B. [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France); Pellen-Mussi, P.; Novella, A. [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35042 Rennes Cedex (France); Oudadesse, H. [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France)

    2016-04-01

    Biomaterials for bone reconstruction represent a widely studied area. In this paper, a new method of synthesis of a porous glass–ceramic obtained by thermal treatment is presented. The prepared biomaterial was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and induced couple plasma-optical emission spectroscopy (ICP-OES), mercury porosimetry and by the Archimedes method. In vitro evaluations in a simulated body fluid (SBF) and in contact with SaOS{sub 2} human osteoblasts were also carried out. The porous glass–ceramic is composed of a total porous network of 60% suitable for body fluid and cell infiltration, with pore sizes varying from 60 nm to 143 μm. The presence of two crystalline phases decreases the kinetic of bioactivity compared to an amorphous biomaterial (bioactive glass). A hydroxyapatite layer appears from 15 days of immersion on the surface and inside the pores, showing a biodegradation and a bioactivity in four steps. Cytotoxicity assessments present an increase of the cellular viability after 72 h proving the non-cytotoxic effect of the glass–ceramic. Thus, the results of these different studies indicate that the porous biomaterial may have a potential application for the bone regeneration. This paper also presents the novelty of this method. It is a rapid synthesis which combines simplicity and low cost. This represents an advantage for an eventual industrialization. - Highlights: • The new method of synthesis of a porous glass–ceramic is reproducible. • The porous glass–ceramic possesses a total porosity of 60%. • The biomaterial shows a bioactivity in four steps with hydroxyapatite formation. • 82% of cellular viability is observed on the surface of the biomaterial.

  7. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    Science.gov (United States)

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  8. Albumin grafting on biomaterial surfaces using gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls

  9. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  10. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  11. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  12. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    Science.gov (United States)

    Hu, Wei-Wen; Wang, Zhuo; Krebsbach, Paul H

    2016-02-01

    To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin-biotin-material (VBABM) arrangement. The tethered viral particles were stably maintained within scaffolds and SEM images illustrated that viral particles were evenly distributed in three-dimensional (3D) gelatin sponges. An in vivo study demonstrated that transgene expression was restricted to the implant sites only and transduction efficiency was improved using this conjugation method. For an orthotopic bone regeneration model, adenovirus encoding BMP-2 (AdBMP2) was immobilized to gelatin sponges before implanting into critical-sized bone defects in rat calvaria. Compared to gelatin sponges with AdBMP2 loaded in a freely suspended form, the VBABM method enhanced gene transfer and bone regeneration was significantly improved. These results suggest that biotin-avidin immobilization of viral vectors to biomaterial scaffolds may be an effective strategy to facilitate tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.

    Science.gov (United States)

    Liu, Zhongmin; Tang, Mingliang; Zhao, Jinping; Chai, Renjie; Kang, Jiuhong

    2018-04-01

    Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2018-02-01

    Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.

  15. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    Science.gov (United States)

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    Science.gov (United States)

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Calcium-based biomaterials for diagnosis, treatment, and theranostics.

    Science.gov (United States)

    Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng

    2018-01-22

    Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.

  18. Current concepts of regenerative biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Annapurna Ahuja

    2015-01-01

    Full Text Available The primary objective of any implant system is to achieve firm fixation to the bone and this could be influenced by biomechanical as well as biomaterial selection. An array of materials is used in the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants. Thus the clinician needs to have adequate knowledge of the various biomaterials and their properties for their judicious selection and application in his/her clinical practice. The recent materials such as bioceramics and composite biomaterials that are under consideration and investigation have a promising future. For optimal performance, implant biomaterials should have suitable mechanical strength, biocompatibility, and structural biostability in the physiological environment. This article reviews the various implant biomaterials and their ease of use in implant dentistry.

  19. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  20. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  1. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  2. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    Directory of Open Access Journals (Sweden)

    K Ishihara

    2000-01-01

    Full Text Available Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma protein and suppression of denaturation of adsorbed proteins, that is the MPC polymers interact with blood components very mildly. As the molecular structure of the MPC polymer was easily designed by changing the monomer units and their composition, it could be applied to surface modification of artificial organs and biomedical devices for improving blood and tissue compatibility. Thus, the MPC polymers are useful polymer biomaterials for manufacturing high performance artificial organs and biomedical devices to provide safe medical treatments.

  3. [Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering].

    Science.gov (United States)

    Yang, Zechuan; Li, Chunde; Sun, Haolin

    2016-03-01

    Three-dimensional (3D) printing technology is characterized by "inside-out" stack manufacturing. Compared with conventional technologies, 3D printing has the advantage of personalization and precision. Therefore, the shape and internal structure of the scaffolds made by 3D printing technology are highly biomimetic. Besides, 3D bioprinting can precisely deposit the biomaterials, seeding cells and cytokines at the same time, which is a breakthrough in printing technique and material science. With the development of 3D printing, it will make great contributions to the reconstruction of vertebrae and intervertebral disc in the future.

  4. Translating Regenerative Biomaterials Into Clinical Practice.

    Science.gov (United States)

    Stace, Edward T; Dakin, Stephanie G; Mouthuy, Pierre-Alexis; Carr, Andrew J

    2016-01-01

    Globally health care spending is increasing unsustainably. This is especially true of the treatment of musculoskeletal (MSK) disease where in the United States the MSK disease burden has doubled over the last 15 years. With an aging and increasingly obese population, the surge in MSK related spending is only set to worsen. Despite increased funding, research and attention to this pressing health need, little progress has been made toward novel therapies. Tissue engineering and regenerative medicine (TERM) strategies could provide the solutions required to mitigate this mounting burden. Biomaterial-based treatments in particular present a promising field of potentially cost-effective therapies. However, the translation of a scientific development to a successful treatment is fraught with difficulties. These barriers have so far limited translation of TERM science into clinical treatments. It is crucial for primary researchers to be aware of the barriers currently restricting the progression of science to treatments. Researchers need to act prospectively to ensure the clinical, financial, and regulatory hurdles which seem so far removed from laboratory science do not stall or prevent the subsequent translation of their idea into a treatment. The aim of this review is to explore the development and translation of new treatments. Increasing the understanding of these complexities and barriers among primary researchers could enhance the efficiency of biomaterial translation. © 2015 Wiley Periodicals, Inc.

  5. Preparation and characterization of chitosan-heparin composite matrices for blood contacting tissue engineering

    International Nuclear Information System (INIS)

    He Qing; Gong Kai; Gong Yandao; Zhang Xiufang; Ao Qiang; Zhang Lihai; Hu Min

    2010-01-01

    Chitosan has been widely used for biomaterial scaffolds in tissue engineering because of its good mechanical properties and cytocompatibility. However, the poor blood compatibility of chitosan has greatly limited its biomedical utilization, especially for blood contacting tissue engineering. In this study, we exploited a polymer blending procedure to heparinize the chitosan material under simple and mild conditions to improve its antithrombogenic property. By an optimized procedure, a macroscopically homogeneous chitosan-heparin (Chi-Hep) blended suspension was obtained, with which Chi-Hep composite films and porous scaffolds were fabricated. X-ray photoelectron spectroscopy and sulfur elemental analysis confirmed the successful immobilization of heparin in the composite matrices (i.e. films and porous scaffolds). Toluidine blue staining indicated that heparin was distributed homogeneously in the composite matrices. Only a small amount of heparin was released from the matrices during incubation in normal saline for 10 days. The composite matrices showed improved blood compatibility, as well as good mechanical properties and endothelial cell compatibility. These results suggest that the Chi-Hep composite matrices are promising candidates for blood contacting tissue engineering.

  6. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    Science.gov (United States)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  7. Soft X-ray emission studies of biomaterials

    International Nuclear Information System (INIS)

    Kurmaev, E.Z.; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M.

    2004-01-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B 12 and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B 12 is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair π-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon Kα emission spectra of a caries lesion suggest that the CaCO 3 like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack

  8. Defining a turnover index for the correlation of biomaterial degradation and cell based extracellular matrix synthesis using fluorescent tagging techniques.

    Science.gov (United States)

    Bardsley, Katie; Wimpenny, Ian; Wechsler, Roni; Shachaf, Yonatan; Yang, Ying; El Haj, Alicia J

    2016-11-01

    Non-destructive protocols which can define a biomaterial's degradation and its associated ability to support proliferation and/or promote extracellular matrix deposition will be an essential in vitro tool. In this study we investigate fluorescently tagged biomaterials, with varying rates of degradation and their ability to support cell proliferation and osteogenic differentiation. Changes in fluorescence of the biomaterials and the release of fluorescent soluble by-products were confirmed as accurate methods to quantify degradation. It was demonstrated that increasing rates of the selected biomaterials' degradation led to a decrease in cell proliferation and concurrently an increase in osteogenic matrix production. A novel turnover index (TI), which directly describes the effect of degradation of a biomaterial on cell behaviour, was calculated. Lower TIs for proliferation and high TIs for osteogenic marker production were observed on faster degrading biomaterials, indicating that these biomaterials supported an upregulation of osteogenic markers. This TI was further validated using an ex vivo chick femur model, where the faster degrading biomaterial, fibrin, led to an increased TI for mineralisation within an epiphyseal defect. This in vitro tool, TI, for monitoring the effect of biomaterial degradation on extracellular matrix production may well act as predictor of the selected biomaterials' performance during in vivo studies. This paper outlines a novel metric, Turnover Index (TI), which can be utilised in tissue-engineering for the comparison of a range of biomaterials. The metric sets out to define the relationship between the rate of degradation of biomaterials with the rate of cell proliferation and ECM synthesis, ultimately allowing us to tailor material for set clinical requirements. We have discovered some novel comparative findings that cells cultured on biomaterials with increased rates of degradation have lower rates of proliferation but alternatively

  9. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  10. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Wenjuan eGao

    2012-08-01

    Full Text Available Abstract: As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures.

  11. Biomaterial thin film deposition and characterization by means of MAPLE technique

    International Nuclear Information System (INIS)

    Bloisi, F.; Vicari, L.; Papa, R.; Califano, V.; Pedrazzani, R.; Bontempi, E.; Depero, L.E.

    2007-01-01

    Polyethylene glycol (PEG) is a polymer with technologically important applications, especially as a biomaterial. Several biomedical applications (such as tissue engineering, spatial patterning of cells, anti-biofouling and biocompatible coatings) require the application of high quality PEG thin films. In order to have a good adhesion to substrate chemically modified polymer molecules have been used, but for some 'in vivo' applications it is essential to deposit a film with the same chemical and structural properties of bulk PEG. Pulsed laser deposition (PLD) technique is generally able to produce high quality thin films but it is inadequate for polymer/organic molecules. MAPLE (Matrix Assisted Pulsed Laser Evaporation) is a recently developed PLD based thin film deposition technique, particularly well suited for organic/polymer thin film deposition. Up to now MAPLE depositions have been carried out mainly by means of modified PLD systems, using excimer lasers operating in UV, but the use of less energetic radiations can minimize the photochemical decomposition of the polymer molecules. We have used a deposition system explicitly designed for MAPLE technique connected to a Q-switched Ng:YAG pulsed laser which can be operated at different wavelength ranging from IR to UV in order to optimise the deposition parameters. The capability of MAPLE technique to deposit PEG has been confirmed and preliminary results show that visible (532 nm wavelength) radiation gives better results with respect to UV (355 nm) radiation. Despite usually UV wavelengths have been used and even if more systematic tests must be performed, it is important to underline that the choice of laser wavelength plays an important role in the application of MAPLE thin film deposition technique

  12. Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.

    Science.gov (United States)

    Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C

    2014-09-01

    Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue

  13. A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering

    International Nuclear Information System (INIS)

    Lenaghan, S C; Xia, L; He, W; Zhang, M; Serpersu, K

    2011-01-01

    In recent years advances have been made in the design of novel materials for tissue engineering through the use of polysaccharides. This study evaluated the ability of a naturally secreted polysaccharide adhesive from the Sundew (Drosera capensis) as a support for cell growth. The Sundew adhesive has several advantages including its high elasticity and antibiotic nature. By coating glass cover slips with the Sundew adhesive, a network of nanofibers was generated that was capable of promoting attachment and differentiation of a model neuronal cell line, PC-12. We also demonstrated the potential of this material for repairing bone and soft tissue injuries, by testing attachment of osteoblasts and endothelial cells. Finally, it was determined that the Sundew biomaterial was stable through testing by atomic force microscopy and prolonged cell growth. This work has proven the capabilities of using a nanomaterial derived from the Sundew adhesive for the purpose of tissue engineering.

  14. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  15. Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery.

    Science.gov (United States)

    Tanzi, Maria Cristina; Bozzini, Sabrina; Candiani, Gabriele; Cigada, Alberto; De Nardo, Luigi; Farè, Silvia; Ganazzoli, Fabio; Gastaldi, Dario; Levi, Marinella; Metrangolo, Pierangelo; Migliavacca, Francesco; Osellame, Roberto; Petrini, Paola; Raffaini, Giuseppina; Resnati, Giuseppe; Vena, Pasquale; Vesentini, Simone; Zunino, Paolo

    2011-01-01

    The present article reviews on different research lines, namely: drug and gene delivery, surface modification/modeling, design of advanced materials (shape memory polymers and biodegradable stents), presently developed at Politecnico di Milano, Italy. For gene delivery, non-viral polycationic-branched polyethylenimine (b-PEI) polyplexes are coated with pectin, an anionic polysaccharide, to enhance the polyplex stability and decrease b-PEI cytotoxicity. Perfluorinated materials, specifically perfluoroether, and perfluoro-polyether fluids are proposed as ultrasound contrast agents and smart agents for drug delivery. Non-fouling, self-assembled PEG-based monolayers are developed on titanium surfaces with the aim of drastically reducing cariogenic bacteria adhesion on dental implants. Femtosecond laser microfabrication is used for selectively and spatially tuning the wettability of polymeric biomaterials and the effects of femtosecond laser ablation on the surface properties of polymethylmethacrylate are studied. Innovative functionally graded Alumina-Ti coatings for wear resistant articulating surfaces are deposited with PLD and characterized by means of a combined experimental and computational approach. Protein adsorption on biomaterials surfaces with an unlike wettability and surface-modification induced by pre-adsorbed proteins are studied by atomistic computer simulations. A study was performed on the fabrication of porous Shape Memory Polymeric structures and on the assessment of their potential application in minimally invasive surgical procedures. A model of magnesium (alloys) degradation, in a finite element framework analysis, and a bottom-up multiscale analysis for modeling the degradation mechanism of PLA matrices was developed, with the aim of providing valuable tools for the design of bioresorbable stents.

  16. Hierarchical Design of Tissue Regenerative Constructs.

    Science.gov (United States)

    Rose, Jonas C; De Laporte, Laura

    2018-03-01

    The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bioinspired surface functionalization of metallic biomaterials.

    Science.gov (United States)

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  19. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The dynamics of a non-equilibrium bubble near bio-materials

    International Nuclear Information System (INIS)

    Ohl, S W; Klaseboer, E; Khoo, B C

    2009-01-01

    In many medical treatments oscillating (non-equilibrium) bubbles appear. They can be the result of high-intensity-focused ultrasound, laser treatments or shock wave lithotripsy for example. The physics of such oscillating bubbles is often not very well understood. This is especially so if the bubbles are oscillating near (soft) bio-materials. It is well known that bubbles oscillating near (hard) materials have a tendency to form a high speed jet directed towards the material during the collapse phase of the bubble. It is equally well studied that bubbles near a free interface (air) tend to collapse with a jet directed away from this interface. If the interface is neither 'free' nor 'hard', such as often occurs in bio-materials, the resulting flow physics can be very complex. Yet, in many bio-applications, it is crucial to know in which direction the jet will go (if there is a jet at all). Some applications require a jet towards the tissue, for example to destroy it. For other applications, damage due to impacting jets is to be prevented at all cost. This paper tries to address some of the physics involved in these treatments by using a numerical method, the boundary element method (BEM), to study the dynamics of such bubbles near several bio-materials. In the present work, the behaviour of a bubble placed in a water-like medium near various bio-materials (modelled as elastic fluids) is investigated. It is found that its behaviour depends on the material properties (Young's modulus, Poisson ratio and density) of the bio-material. For soft bio-materials (fat, skin, brain and muscle), the bubble tends to split into smaller bubbles. In certain cases, the resulting bubbles develop opposing jets. For hard bio-materials (cornea, cartilage and bone), the bubble collapses towards the interface with high speed jets (between 100 and about 250 m s -1 ). A summary graph is provided identifying the combined effects of the dimensionless elasticity (κ) and density ratio (α) of

  2. Multimodality instrument for tissue characterization

    Science.gov (United States)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  3. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  4. Long-term culture of human liver tissue with advanced hepatic functions.

    Science.gov (United States)

    Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S

    2017-06-02

    A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.

  5. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    Science.gov (United States)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  6. Technical advances in the sectioning of dental tissue and of on-section cross-linked collagen detection in mineralized teeth.

    Science.gov (United States)

    Singhrao, Sim K; Sloan, Alastair J; Smith, Emma L; Archer, Charles W

    2010-08-01

    Immunohistochemical detection of cross-linked fibrillar collagens in mineralized tissues is much desired for exploring the mechanisms of biomineralization in health and disease. Mineralized teeth are impossible to section when embedded in conventional media, thus limiting on-section characterization of matrix proteins by immunohistochemistry. We hypothesized that by using an especially formulated acrylic resin suitable for mineralized dental tissues, not only sectioning of teeth would be possible, but also our recently developed immunofluorescence labeling technique would be amenable to fully calcified tissues for characterization of dentinal fibrillar collagens, which remains elusive. The hypothesis was tested on fixed rodent teeth embedded in Technovit 9100 New. It was possible to cut thin (1 mum) sections of mineralized teeth, and immunofluorescence characterization of cross-linked type I fibrillar collagen was selected due to its abundance in dentine. Decalcified samples of teeth embedded in paraffin wax were also used to compare immunolabeling from either method using the same immunoreagents in equivalent concentrations. In the decalcified tissue sections, type I collagen labeling in the dentine along the tubules was "patchy" and the signal in the predentine was very weak. However, enhanced signal in mineralized samples with type I collagen was detected not only in the predentine but also at the limit between intertubular dentine, within the elements of the enamel organ and subgingival stroma. This report offers advances in sectioning mineralized dental tissues and allows the application of immunofluorescence not only for on-section protein detection but importantly for detecting cross-linked fibrous collagens in both soft and mineralized tissue sections.

  7. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  8. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  10. Postgraduate programme in tissue banking

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    1999-01-01

    In 1992 in the Project Formulation Meeting of IAEA, the masters degree programme was proposed by Dr. Youngyudh Vajaradul, Thailand to upgrade the personnel of tissue bank and the person who had been working and involving in tissue banking. After The Bangkok Biomaterial Center proposed the degree programme and presented to Mahidol University, this programme was accepted by Ministry of University Affairs in 1998 and the masters degree programme under the name of 'Masters of Science in Biomaterial for Implantation' will be started in April 1999. IAEA will support the fellowship candidates from the region to study in masters degree programme. The programme includes 6 months of course work in Bangkok that is 12 credits and 24 is for the dissertation work which would be done in any country. The time of validity is 5 years

  11. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    Science.gov (United States)

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  12. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    Science.gov (United States)

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  13. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Science.gov (United States)

    Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218

  14. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  15. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink

    Science.gov (United States)

    Yu, Yin; Moncal, Kazim K.; Li, Jianqiang; Peng, Weijie; Rivero, Iris; Martin, James A.; Ozbolat, Ibrahim T.

    2016-01-01

    Recent advances in bioprinting have granted tissue engineers the ability to assemble biomaterials, cells, and signaling molecules into anatomically relevant functional tissues or organ parts. Scaffold-free fabrication has recently attracted a great deal of interest due to the ability to recapitulate tissue biology by using self-assembly, which mimics the embryonic development process. Despite several attempts, bioprinting of scale-up tissues at clinically-relevant dimensions with closely recapitulated tissue biology and functionality is still a major roadblock. Here, we fabricate and engineer scaffold-free scalable tissue strands as a novel bioink material for robotic-assisted bioprinting technologies. Compare to 400 μm-thick tissue spheroids bioprinted in a liquid delivery medium into confining molds, near 8 cm-long tissue strands with rapid fusion and self-assemble capabilities are bioprinted in solid form for the first time without any need for a scaffold or a mold support or a liquid delivery medium, and facilitated native-like scale-up tissues. The prominent approach has been verified using cartilage strands as building units to bioprint articular cartilage tissue. PMID:27346373

  16. An update on the Application of Nanotechnology in Bone Tissue Engineering.

    Science.gov (United States)

    Griffin, M F; Kalaskar, D M; Seifalian, A; Butler, P E

    2016-01-01

    Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Future studies to improve the application of nanomaterials for bone tissue engineering are needed.

  17. Self-propelled nanotools drilling into cells and tissues

    International Nuclear Information System (INIS)

    Sanchez, Samuel; Xi, Wang; Solovev, Alexander; Schmidt, Oliver

    2013-01-01

    We designed nanoscale tools in the form of autonomous and remotely guided catalytically and magnetically self-propelled micro- and nanotools. Asymmetrically rolled-up nanotools move in a corkscrewlike trajectory, allowing these tiny tubes to drill and embed themselves into biomaterials (fixed HeLa cells and tissues). First, we designed the smallest self-propelled nanojet engine (InGaAs/GaAs/(Cr)Pt) with diameters in the range of 280-600 nm, which move in hydrogen peroxide solutions with speeds as high as 180 μm.s -1 and perform advanced tasks such as drilling into cancer cells. Also, we demonstrated that tubular fuelfree Ti/Cr/Fe micro-drillers containing sharp tips can be applied for mechanical drilling operations of porcine liver tissue ex vivo. An external rotational magnetic field is used to remotely locate and actuate the micro-drillers in a solution with a viscosity comparable to that of biological fluids (e.g., blood). (authors)

  18. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    International Nuclear Information System (INIS)

    Santos, Maria Helena; Silva, Rafael M.; Dumont, Vitor C.; Neves, Juliana S.; Mansur, Herman S.; Heneine, Luiz Guilherme D.

    2013-01-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: ► Type I collagen was obtained from bovine pericardium, an abundant tissue resource. ► A simple and feasible processing technique was developed to purify bovine collagen. ► The appropriate process may be performed on industrial scale. ► The pure collagen presented appropriate morphological and molecular characteristics. ► The purify collagen has shown potential use as a biomaterial in tissue engineering.

  19. Contributions of human paleohistology to the study of biomaterials

    International Nuclear Information System (INIS)

    Nacarino Meneses, C.; Cambra-Moo, O.; Rodriguez Barbero, M. A.; Gonzalez Martin, A.

    2012-01-01

    The deep study of archaeological human bone could provide relevant information to biomaterials science, as it could tell how the implant process of bio glasses and bioresorbable ceramics is. In this paper, we propose to study, by means of different microscopic, spectroscopic, and X-ray diffraction techniques, the histological and mineral bone variability throughout ontogeny. Extrapolating this data, we could have a better knowledge of biodegradable materials implant. In different ages, we could notice different tissues in cortical bone: fibrolamellar bone is characteristic of early stages of life while secondary or harvesian bone is in adult individuals. Raman and infrared spectroscopy suggest an increase of critallinity in the inorganic matrix during live. Finally, the X-ray diffraction study of bone tissue shows β-calcium phosphate and hydroxyapatite as the main mineral bone components. (Author) 31 refs.

  20. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of