WorldWideScience

Sample records for advanced battery technology

  1. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  2. Reliability modelling system for analysis of advanced battery technologies

    Science.gov (United States)

    Imhoff, C. H.; Hostick, C. J.; Nakaoka, R. K.

    1985-05-01

    Key considerations in evaluating the reliability of advanced battery technologies include the impact of cell failures on battery performance and cost. Pacific Northwest Laboratory developed interactive microcomputer based simulation models to help battery developers use cell reliability data to calculate the expected performance of new battery technologies. Key benefits of this model include its capability to estimate the effect of cell failures upon: (1) battery system discharge performance, (2) system cycle life, and (3) system economic performance (tradeoffs between capital investment and lifetime operating costs).

  3. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO2 and SO2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  4. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  5. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  6. Electrochemical test methods for advanced battery and semiconductor technology

    Science.gov (United States)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  7. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  8. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  9. Advanced Battery Diagnosis for Electric Vehicles

    OpenAIRE

    Lamichhane, Chudamani

    2008-01-01

    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  10. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility

    Science.gov (United States)

    Rezvanizaniani, Seyed Mohammad; Liu, Zongchang; Chen, Yan; Lee, Jay

    2014-06-01

    As hybrid and electric vehicle technologies continue to advance, car manufacturers have begun to employ lithium ion batteries as the electrical energy storage device of choice for use in existing and future vehicles. However, to ensure batteries are reliable, efficient, and capable of delivering power and energy when required, an accurate determination of battery performance, health, and life prediction is necessary. This paper provides a review of battery prognostics and health management (PHM) techniques, with a focus on major unmet needs in this area for battery manufacturers, car designers, and electric vehicle drivers. A number of approaches are presented that have been developed to monitor battery health status and performance, as well as the evolution of prognostics modeling methods. The goal of this review is to render feasible and cost effective solutions for dealing with battery life issues under dynamic operating conditions.

  11. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 GDR Performance Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; Chinh D. Ho; Gary L. Henriksen; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed the performance evaluation of the second generation of lithium-ion cells (i.e., Gen 2 cells). This report documents the testing and analysis of the Gen 2 GDR cells, which were used to learn and debug the newly developed Technology Life Verification Test Manual. The purpose of the manual is to project a 15-year, 150,000 mile battery life capability with a 90% confidence interval using predictive models and short-term testing. The GDR cells were divided into two different matrices. The core-life test matrix consisted of calendar- and cycle-life cells with various changes to the four major acceleration factors (temperature, state-of-charge, throughput, and power rating). The supplemental-life test matrix consisted of cells subjected either to a path dependence study, or a comparison between the standard hybrid pulse power characterization test and the newly-developed minimum pulse power characterization test. Resistance and capacity results are reported.

  12. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    Science.gov (United States)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  13. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  14. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  15. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    Science.gov (United States)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  16. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  17. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  18. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  19. Technological Advancements

    Science.gov (United States)

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  20. Recycling readiness of advanced batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  1. 76 FR 18194 - Notice of Patent Application Deadline for Advanced Battery Technology Related Patents for...

    Science.gov (United States)

    2011-04-01

    ... Research Laboratory, Office of Research and Technology Applications, ATTN: ] RDRL-DB/Bldg. 434, Aberdeen Proving Ground, MD 21005-5425, Telephone: (410) 278-5028. SUPPLEMENTARY INFORMATION: None. Brenda S. Bowen... following listing of intellectual property in the Federal Register on January 19, 2011 (76 FR 3118)....

  2. Solid State Electrolyte for Li Battery Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  The fabrication technology developed in this project will aid GRC in advancing  Lithium Ion Batteries (LIB) technology by developing new electrode and...

  3. Battery packaging - Technology review

    Energy Technology Data Exchange (ETDEWEB)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  4. Battery packaging - Technology review

    International Nuclear Information System (INIS)

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production

  5. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  6. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  7. Advanced batteries materials science aspects

    CERN Document Server

    Huggins, Robert A

    2008-01-01

    Storage and conversion are critical components of important energy-related technologies. This title employs materials science concepts and tools to describe the features that control the behavior of advanced electrochemical storage systems. It focuses on the basic phenomena that determine the properties of the components.

  8. Advanced cell technology for high performance Li-A1/FeS{sub 2} secondary batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, G. L.

    1998-07-10

    In early 1993. Argonne National Laboratory (ANL) initiated a major R and D effort to develop bipolar Li-Al/LiCl-LiBr-KBr/FeS{sub 2} batteries for electric vehicles, targeting the USABC Long-Term Goals. Significant advancements were achieved in the areas of (i) chemical purity, (ii) electrode and electrolyte additives, and (iii) peripheral seals. It was determined that key chemical constituents contained undesirable impurities. ANL developed new chemical processes for preparing Li{sub 2}S, FeS, and CoS{sub 2} that were >98.5% pure. We evaluated a large variety of electrode and electrolyte additives for reducing cell area specific impedance (ASI). Candidate positive electrode additives offered increased electronic conductivity, enhanced reaction kinetics, and/or improved porous electrode morphology. CoS{sub 2}, CuFeS{sub 2}, MgO, and graphite (fibers) were identified as the most beneficial impedance-reducing positive electrode additives. Although electronically conductive carbon and graphite additives produced measurable ASI reductions in the negative electrode, they degraded its structural integrity and were deemed impractical. Lil and LiF were identified as beneficial electrolyte additives, that enhance positive electrode kinetics. ANL refined its baseline metal/ceramic peripheral seal and increased its strength by a factor of three (achieving a safety factor >10). In parallel, ANL developed a high-strength advanced metal/ceramic seal that offers appreciable cost reductions.

  9. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  10. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  11. Lead-acid battery technologies fundamentals, materials, and applications

    CERN Document Server

    Jung, Joey; Zhang, Jiujun

    2015-01-01

    Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications offers a systematic and state-of-the-art overview of the materials, system design, and related issues for the development of lead-acid rechargeable battery technologies. Featuring contributions from leading scientists and engineers in industry and academia, this book:Describes the underlying science involved in the operation of lead-acid batteriesHighlights advances in materials science and engineering for materials fabricationDelivers a detailed discussion of the mathematical modeling of lead-acid batteriesAnalyzes the

  12. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  13. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  14. Battery technologies for large-scale stationary energy storage.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2011-01-01

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical. PMID:22432629

  15. Advances and Future Challenges in Printed Batteries.

    Science.gov (United States)

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. PMID:26404647

  16. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  17. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  18. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  19. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  20. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  1. ACR-700 advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, R.L.; Turner, C.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Yu, S.K.W. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Olmstead, R.; Speranzini, R.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-12-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  2. Editorial: Advanced learning technologies

    OpenAIRE

    Yu-Ju Lan; Gang-Shan Fu; Stephen J.H. Yang; Jeff J.S. Huang

    2012-01-01

    Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile tech...

  3. Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells.

    Energy Technology Data Exchange (ETDEWEB)

    Crafts, Chris C.; Doughty, Daniel Harvey; McBreen, James. (Bookhaven National Lab, Upton, NY); Roth, Emanuel Peter

    2004-03-01

    Li-ion cells are being developed for high-power applications in hybrid electric vehicles currently being designed for the FreedomCAR (Freedom Cooperative Automotive Research) program. These cells offer superior performance in terms of power and energy density over current cell chemistries. Cells using this chemistry are the basis of battery systems for both gasoline and fuel cell based hybrids. However, the safety of these cells needs to be understood and improved for eventual widespread commercial application in hybrid electric vehicles. The thermal behavior of commercial and prototype cells has been measured under varying conditions of cell composition, age and state-of-charge (SOC). The thermal runaway behavior of full cells has been measured along with the thermal properties of the cell components. We have also measured gas generation and gas composition over the temperature range corresponding to the thermal runaway regime. These studies have allowed characterization of cell thermal abuse tolerance and an understanding of the mechanisms that result in cell thermal runaway.

  4. Recycling of Advanced Batteries for Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  5. Advanced Materials for Redox Flow Batteries

    OpenAIRE

    Friedl, Jochen

    2015-01-01

    We investigate two advanced materials electrochemically in order to see if they can be applied to improve energy- and power-density of Redox Flow Batteries (RFBs). First, multi-walled carbon nanotubes are analyzed as electrode material for the All-Vanadium RFB. We discovered that an enhanced activity assigned by previous studies was a misinterpretation caused by an apparent catalytic effect. Second, large inorganic molecules, polyoxometalates (POMs), were investigated as nano-sized el...

  6. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  7. Editorial: Advanced learning technologies

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lan

    2012-03-01

    Full Text Available Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile technologies and social media towards learner centered learning. This editorial note provides an overview of relevant issues discussed in this special issue.

  8. Biotemplated Nano-Structured Materials for Advanced Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified a critical need for pioneering advances in battery technology to give high performance, low-weight, durable and long-life power sources for...

  9. Battery Technology Life Verification Test Manual Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  10. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  11. Multilayer Approach for Advanced Hybrid Lithium Battery.

    Science.gov (United States)

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong

    2016-06-28

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode(-1) (vs the total mass of electrode) or 1866 mAh gs(-1) (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs(-1)). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode(-1) at 0.25C and 376 mAh gcathode(-1) at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. PMID:27268064

  12. Advanced uranium enrichment technologies

    International Nuclear Information System (INIS)

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described

  13. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  14. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  15. Bipolar batteries based on Ebonex ® technology

    Science.gov (United States)

    Loyns, A. C.; Hill, A.; Ellis, K. G.; Partington, T. J.; Hill, J. M.

    Continuing work by Atraverda on the production of a composite-laminate form of the Ebonex ® material, that can be cheaply formulated and manufactured to form substrate plates for bipolar lead-acid batteries, is described. Ebonex ® is the registered trade name of a range of titanium suboxide ceramic materials, typically Ti 4O 7 and Ti 5O 9, which combine electrical conductivity with high corrosion and oxidation resistance. Details of the structure of the composite, battery construction techniques and methods for filling and forming of batteries are discussed. In addition, lifetime and performance data obtained by Atraverda from laboratory bipolar lead-acid batteries and cells are presented. Battery production techniques for both conventional monopolar and bipolar batteries are reviewed. The findings indicate that substantial time and cost savings may be realised in the manufacture of bipolar batteries in comparison to conventional designs. This is due to the fewer processing steps required and more efficient formation. The results indicate that the use of Ebonex ® composite material as a bipolar substrate will provide lightweight and durable high-voltage lead-acid batteries suitable for a wide range of applications including advanced automotive, stationary power and portable equipment.

  16. U.S. DOE FreedomCAR and Vehicle Technologies Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; Chet Motloch; Ira D. Bloom; Vince Battaglia; Ganesan Nagasubramanian; Tien Q. Duong

    2003-02-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of Lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells consist of a baseline chemistry and one variant chemistry. These cells were distributed over a matrix consisting of three states-of-charge (SOC) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar-life cells are clamped at an opencircuit voltage corresponding to 60% SOC and undergo a once-per-day pulse profile. The cycle-life cells are continuously pulsed using a profile that is centered around 60% SOC. The accelerated-life cells are following the calendar-life test procedures, but using the cycle-life pulse profile. Life testing is interrupted every four weeks for reference performance tests (RPTs), which are used to quantify changes in capacity, resistance, and power. The RPTs consist of a C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy at 60% SOC. Capacity-, power-, and electrochemical impedance spectroscopy-based performance results are reported.

  17. NATO Conference on Materials for Advanced Batteries

    CERN Document Server

    Broadhead, J; Steele, B

    1980-01-01

    The idea of a NATO Science Committee Institute on "Materials for Advanced Batteries" was suggested to JB and DWM by Dr. A. G. Chynoweth. His idea was to bring together experts in the field over the entire spectrum of pure research to applied research in order to familiarize everyone with potentially interesting new systems and the problems involved in their development. Dr. M. C. B. Hotz and Professor M. N. Ozdas were instrumental in helping organize this meeting as a NATO Advanced Science Institute. An organlzlng committee consisting of the three of us along with W. A. Adams, U. v Alpen, J. Casey and J. Rouxel organized the program. The program consisted of plenary talks and poster papers which are included in this volume. Nearly half the time of the conference was spent in study groups. The aim of these groups was to assess the status of several key aspects of batteries and prospects for research opportunities in each. The study groups and their chairmen were: Current status and new systems J. Broadhead Hig...

  18. Technological advances transforming rheumatology

    OpenAIRE

    Robinson, William H.; Mao, Rong

    2015-01-01

    Technological advances over the past decade have revolutionized many areas of rheumatology, ranging from diagnosis, prognosis and therapeutic development to the mechanistic understanding of rheumatic diseases. This overview highlights key technological innovations and discusses the major impact that these developments are having on research and clinical practice.

  19. Advanced Cell Technology, Inc.

    Science.gov (United States)

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  20. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  1. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  2. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement

    Science.gov (United States)

    Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.

    2015-06-01

    Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.

  3. "Agile" Battery Technology Transfer-Lessons Learnt

    Science.gov (United States)

    Sabatini, P.; Annoni, G.; Grossi, R.; Alia, Sergio; Reulier, David

    2008-09-01

    AGILE, the high energy astrophysics mission of the Italian Space Agency launched on April 23rd 2007, is the first LEO satellite to be powered by Saft's commercially available space qualified MPS176065 rechargeable lithium ion batteries.Saft and Carlo Gavazzi Space (CGS) have achieved a successful technology transfer replacing Ni-H2 batteries with high energy lithium ion batteries in a full speed program (4 months) and with a cost effective approach. The battery system comprises 2 x 24 Saft MPS176065 space qualified Li-ion cells in an 8s3p configuration (3 parallel arrays each composed by 8 series cell) with a nominal capacity of 2 x 480 Wh and an integral autonomous cell balancing system that ensures the maximum possible battery life.The MPS176065 space qualified cell is based on Saft's well proven MP series of prismatic rechargeable Li-ion batteries. It offers an extremely high capacity made possible by the stainless steel prismatic container that makes use of the volume which is otherwise lost when conventional cylindrical cells are packed together. A single prismatic cell has about 20% more volumetric energy density than an equivalent pack of cylindrical cells.

  4. Thermal batteries: A technology review and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.A.

    1995-07-01

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couples that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.

  5. Overview of battery technology for HEV

    NARCIS (Netherlands)

    Smets, S.; Debal, P.; Conte, V.; Alaküla, M.; Santini, D.; Duvall, M.; Winkel, R.; Badin, F.

    2006-01-01

    Several electric energy storage systems exist with different principles and characteristics. On the other hand, there are also various hybrid electric vehicles with specific requirements. This paper gives an overview of the advantages/disadvantages and practical aspects of battery technologies and u

  6. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  7. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  8. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  9. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. ASAT will create an Advanced Situation...

  10. Advances in understanding mechanisms underpinning lithium-air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  11. Advances in understanding mechanisms underpinning lithium–air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium–air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium–air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium–air batteries.

  12. Advanced Surface Technology

    DEFF Research Database (Denmark)

    Møller, Per; Nielsen, Lars Pleht

    This new significant book on advanced modern surface technology in all its variations, is aimed at both teaching at engineering schools and practical application in industry. The work covers all the significant aspects of modern surface technology and also describes how new advanced techniques make...... it possible to examine surfaces all the way down to their atomic layers and also to perform realistic durability tests. The many surface techniques are described in clear and simple language, and the book is richly illustrated with detailed drawings and photos. It also deals with replacing environmentally...... of the components. It covers everything from biocompatible surfaces of IR absorbent or reflective surfaces to surfaces with specific properties within low friction, hardness, corrosion, colors, etc. The book includes more than 400 pages detailing virtually all analysis methods for examining at surfaces....

  13. Development of power storage system. Advanced battery power storage system. (The development results and research plan in 1988 fiscal year)

    Energy Technology Data Exchange (ETDEWEB)

    Kouda, Atsushi; Yazawa, Tetsuo

    1988-07-01

    The research and trial manufacture of 1kW battery on the electrode and battery construction, development of 10kW battery module, capacity enlarging and trial manufacturing as to four type batteries, that is, Na-S battery, Zn-Cl battery, Zn-Br battery and redox flow type battery were forwarded as the items to be developed in Japan for the advanced battery power storage system. The research and development of system technology was started in 1980 to verify the operating and controlling characteristics and the protection system. The technology of the 60kW class module for 1,000kW class battery system was established in 1987 and the total system research and development is forwarding. The 1,000kW class system test is continued; the 60kW class module batteries of Na-S battery and Zn-Br battery are operated; the fabrication of 1,000kW class pilot plant is initiated; and the reliability and safety of the power system are verified in 1988. (1 fig, 2 tabs)

  14. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. This powerful technology will also...

  15. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    Science.gov (United States)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  16. Used battery collection camping in central Mexico: statics and metal content report, advances in recycling technology and legislative/regulatory situation analysis

    International Nuclear Information System (INIS)

    Nowadays, environmental pollution produced by the disposal of used cells and batteries is a major concern in Mexico. The regulatory law proposal (NMX-AA-104-SCFI-2006) establish a content limit 20, 7.5 and 5 fold higher in Hg, Cd and Pb, respectively, than the European directive 2006/66/CE. Furthermore, transnational companies refused to have participation on the collection/recycling process, putting forward that pollution comes only from illegal market batteries. (Author)

  17. Used battery collection camping in central Mexico: statics and metal content report, advances in recycling technology and legislative/regulatory situation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Garcia, J. A.; Montiel-Corona, V.; Juarez Galindo, A.; Mendoza Sarmiento, G.; Munoz Lopez, F.; Papalotzi Juarez, S.; Cruz Diaz, R. de la

    2009-07-01

    Nowadays, environmental pollution produced by the disposal of used cells and batteries is a major concern in Mexico. The regulatory law proposal (NMX-AA-104-SCFI-2006) establish a content limit 20, 7.5 and 5 fold higher in Hg, Cd and Pb, respectively, than the European directive 2006/66/CE. Furthermore, transnational companies refused to have participation on the collection/recycling process, putting forward that pollution comes only from illegal market batteries. (Author)

  18. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al2O3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  19. Advanced finite element technologies

    CERN Document Server

    Wriggers, Peter

    2016-01-01

    The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

  20. Buildings for advanced technology

    CERN Document Server

    Teague, E; Murday, James

    2015-01-01

    This book deals with the design and construction of buildings for nanoscale science and engineering research. The information provided in this book is useful for designing and constructing buildings for such advanced technologies as nanotechnology, nanoelectronics and biotechnology. The book outlines the technology challenges unique to each of the building environmental challenges outlined below and provides best practices and examples of engineering approaches to address them: • Establishing and maintaining critical environments: temperature, humidity, and pressure • Structural vibration isolation • Airborne vibration isolation (acoustic noise) • Isolation of mechanical equipment-generated vibration/acoustic noise • Cost-effective power conditioning • Grounding facilities for low electrical interference • Electromagnetic interference (EMI)/Radio frequency interference (RFI) isolation • Airborne particulate contamination • Airborne organic and chemical contamination • Environment, safety a...

  1. State Technologies Advancement Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy

  2. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  3. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  4. Advanced Modular Inverter Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main

  5. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  6. Advances in lithium-ion batteries

    CERN Document Server

    van Schalkwijk, Walter

    2007-01-01

    From the reviews:""The book does serve as a guide for future development for most aspects of the chemistry lithium-ion system and is definitely a valuable snapshot of the state-of-the-by-no-means-finished-art of lithium-ion batteries.""(John B. Kerr, Lawrence Berkeley National Laboratory in Journal of the American Chemical Society, 125:12, 2003)

  7. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  8. Lithium ion rechargeable batteries materials, technology, and new applications

    CERN Document Server

    Ozawa, Kazunori

    2012-01-01

    Lithium ion batteries are both an established commercial market as well as a field of constant research and crucial for technological leadership. For example, battery duration is an extremely important selling point with almost any portable or handheld electronic device. Notebook computers, digital cameras, mobile phones, PDAs, mp3-players all rely on lithium ion batteries. Ultimately, powerful batteries are needed in vehicles to supplement or even entirely replace combustion engines. Starting out with an introduction to the fundamentals of lithium ion batteries, this book begins by descri

  9. Advanced Adaptive Optics Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  10. Advanced inorganic separators for alkaline batteries

    Science.gov (United States)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  11. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...

  12. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  13. Advances in FIV vaccine technology

    OpenAIRE

    Uhl, Elizabeth W.; Martin, Marcus; Coleman, James K.; Yamamoto, Janet K

    2008-01-01

    Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterizat...

  14. Nuclear propulsion technology advanced fuels technology

    Science.gov (United States)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  15. Advanced fuel technology and performance

    International Nuclear Information System (INIS)

    The purpose of the Advisory Group Meeting on Advanced Fuel Technology and Performance was to review the experience of advanced fuel fabrication technology, its performance, peculiarities of the back-end of the nuclear fuel cycle with regard to all types of reactors and to outline the future trends. As a result of the meeting recommendations were made for the future conduct of work on advanced fuel technology and performance. A separate abstract was prepared for each of the 20 papers in this issue

  16. Phase I Advanced Battery Materials for Rechargeable Advanced Space-Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy (up to 200...

  17. New advances in erectile technology

    OpenAIRE

    Stein, Marshall J.; Lin, Haocheng; Wang, Run

    2014-01-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants,...

  18. Advances in production technology

    CERN Document Server

    2015-01-01

    This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on “Integrative Production Technology for High-Wage Countries”,  held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.

  19. Advances in photovoltaic technology

    Science.gov (United States)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  20. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    Science.gov (United States)

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

  1. Advanced composites technology

    Energy Technology Data Exchange (ETDEWEB)

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  2. Advanced Metasearch Engine Technology

    CERN Document Server

    Meng, Weiyi

    2010-01-01

    Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned

  3. [Technological advances in neurorehabilitation].

    Science.gov (United States)

    Gutiérrez-Martínez, Josefina; Núñez-Gaona, Marco Antonio; Carrillo-Mora, Paul

    2014-07-01

    Neurological rehabilitation arose as formal method in the 60's, for the therapeutic treatment of patients with stroke or spinal cord injury, which develop severe sequelae that affect their motor and sensory abilities. Although the Central Nervous System has plasticity mechanisms for spontaneous recovery, a high percentage of patients should receive specialized therapies to regain motor function, such as Constraint Induced Movement Therapy or Upright physical Therapy. The neurorehabilitation has undergone drastic changes over the last two decades due to the incorporation of computer and robotic electronic devices, designed to produce positive changes in cortical excitability of the cerebral hemisphere damaged and so to improve neuroplasticity. Among equipment, we can mention those for electrotherapy devices, apparatus for transcranial magnetic stimulation, the robotic lower limb orthoses, robot for upper limb training, systems for functional electrical stimulation, neuroprosthesis and brain computer interfaces. These devices have caused controversy because of its application and benefits reported in the literature. The aim of Neurorehabilitation technologies is to take advantage of the functional neuromuscular structures preserved, and they compensate or re-learn the functions that previously made the damaged areas. The purpose of this article is to mention some clinical applications and benefits that these technologies offer to patients with neuronal injury.

  4. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  5. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  6. Advanced information technology

    International Nuclear Information System (INIS)

    The potential risk of critical situations at hazardous industrial plants has drawn increased attention to emergency organisations. The emphasis on these organisations is to minimise the environmental effects of serious, although unlikely, disturbances in operation. Experience gained from previous incidents and emergency drills has revealed the complexity that must be faced in making these organisations work properly. Modern information technology may be used in order to develop more reliable preparedness systems. These problems are being treated in a joint Nordic project, NKA/INF, with participating research institutes from Denmark, Finland, Norway, and Sweden. The project started in 1985 and is expected to be finished in 1989. This report gives an overview of the project and a short description of the conceptual ideas behind the project. (author)

  7. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  8. RUBIN Microsatellites for Advanced Space Technology Demonstration

    Science.gov (United States)

    Kalnins, Indulis

    The first new space technology demonstration payload BIRD-RUBIN was developed by OHB- System in co-operation with students from the University of Applied Sciences, Bremen, and was successfully launched July 15th, 2000 together with the scientific satellites CHAMP and MITA onboard a COSMOS 3M launcher. The BIRD-RUBIN mission has tested the telematics technology in space via ORBCOMM network. Small data packages were sent by the hatbox sized system to the ORBCOMM satellite net, then transmitted further on to the ground stations and from that point entered into the internet. The payload user could retrieve the data direct via email account and was able to send commands back to payload in orbit. The next micro satellite RUBIN-2 for advanced space technology demonstration will be launched at the end of 2002 as "secondary" payload on the Russian launcher DNEPR. The RUBIN-2 micro satellite platform will use again the inter-satellite communication mode via Orbcomm network and offers an orbital testbed with low cost, bi-directional and near real-time Internet access. In parallel to the further inter satellite link experiments using Orbcomm, several additional leading edge technology experiments will be done onboard Rubin-2 (electrical propulsion, two loop miniaturized thermal control system, GPS navigation, LI-Ion Battery, etc.). This paper provides an overview of RUBIN micro satellites for advanced space technology demonstrations. The main results of the first BIRD-RUBIN experiment and the goals of the second Rubin-2 mission are described. The potential of low cost technology demonstration missions using Internet and inter satellite communication technology via commercial satellite systems and the piggyback flight opportunities on Russian launchers are discussed.

  9. Advances in core drilling technology

    Science.gov (United States)

    Holdsworth, G.

    Some notable technical advances in drill design were reported at the meeting, held in Canada August 30-September 1, 1982, at the University of Calgary. Chief amongst these was a battery powered, computer assisted electromechanical core drill which has recently been used by the Danes in Greenland to continuously core to the base of the ice sheet at 2038 m. This is the deepest coring operation so far on the Greenland ice sheet. (The record for deep glacier drilling is held by the U.S. Army Cold Regions Research and Engineering Laboratory for the continuous coring through 2164 m of ice to bedrock at Byrd Station, Antarctica, in 1968). In early 1982, a current Soviet core drilling operation was reported to be at a depth of 2000 m at Vostok station, Antarctica, where the total ice thickness is about 4000 m; the goal of core drilling the entire ice thickness there could be achieved before the end of 1983.

  10. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  11. Advanced solar thermal receiver technology

    Science.gov (United States)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  12. Advanced Aerogel Technology

    Science.gov (United States)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  13. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  14. Energy Storage (II): Developing Advanced Technologies

    Science.gov (United States)

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  15. Advanced Space Power Systems (ASPS): High Specific Energy Li-ion Battery Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the High Specific Energy Battery project element is to develop high specific energy battery technologies that enable new capabilities for future...

  16. Utilization of a bipolar lead acid battery for the advanced launch system

    Science.gov (United States)

    Gentry, William O.; Vidas, Robin; Miles, Ronald; Eckles, Steven

    1991-01-01

    The development of a battery comprised of bipolar lead acid modules is discussed. The battery is designed to satisfy the requirements of the Advanced Launch System (ALS). The battery will have the following design features: (1) conventional lead acid chemistry; (2) thin electrode/active materials; (3) a thin separator; (4) sealed construction (gas recombinant); and (5) welded plastic frames for the external seal.

  17. Advances in PCB decontamination technologies

    International Nuclear Information System (INIS)

    Since 1985 several million kilograms of PCB equipment and millions of litres of PCB contaminated oil have been processed in Canada for reduction of PCB concentrations below government guidelines. Advances in extraction and metal recovery from electrical equipment, chemical dechlorination and distillation of PCB-contaminated oils were the significant technological options utilized. For example, using the Decontaksolv technology owners of PCB equipment in Canada have decontaminated three million kilograms of electrical equipment, which resulted in the reintegration of 2.7 million kilograms of useful metals (steel, copper, aluminium) into the economic circuit. The equipment decontaminated included transformers, electromagnets, relays, radiators, circuit breakers, tanks, pipes, valves, and drums. The most recent advances in this technology include improvements that makes the economical processing of capacitors, possible. Chemical dechlorination has virtually eliminated PCB-contaminated oils which are normally present in large transformers, to the point where some service companies have curtailed or discontinued their oil decontamination activities in Canada. Recent advances in this technology center around techniques for the decontamination of waste hydrocarbons, and to a lesser extent, dielectric fluids. Two example projects to illustrate recent advances have been briefly described

  18. Electric car batteries: Avoiding the environmental drawbacks via alternative technologies

    Science.gov (United States)

    Warlimont, Hans; Olper, Marco

    1996-07-01

    In this article, we address the question of whether air pollution resulting from the pyrometallurgical winning, recycling, and casting of lead for car batteries is a serious threat to the environmental acceptability of introducing electric cars. Specifically, we describe an alternative to pyrometallurgical processes—an electrochemical process called CX-EWS that can be used for the winning and recycling of lead. Also presented is a new manufacturing route for battery grids; it employs a combination of electroforming, the codeposition of dispersoids, and the electrowinning of spent batteries. The technology cannot only eliminate the casting of conventional or expanded metal grids but can also serve to reduce battery weight and, thus, increase energy density.

  19. Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    Wei-Dong He; Lu-Han Ye; Ke-Chun Wen; Ya-Chun Liang; Wei-Qiang Lv; Gao-Long Zhu; Kelvin H. L. Zhang

    2016-01-01

    The world has entered an era featured with fast transportations, instant communications, and prompt technological revolutions, the further advancement of which all relies fundamentally, yet, on the development of cost-effective energy resources allowing for durable and high-rate energy supply. Current battery and fuel cell systems are challenged by a few issues characterized either by insufficient energy capacity or by operation instability and, thus, are not ideal for such highly-demanded applications as electrical vehicles and portable electronic devices. In this mini-review, we present, from materials perspectives, a few selected important breakthroughs in energy resources employed in these applications. Prospectives are then given to look towards future research activities for seeking viable materials solutions for addressing the capacity, durability, and cost shortcomings associated with current battery/fuel cell devices.

  20. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses...... the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...

  1. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  2. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  3. SP-100 advanced technology program

    International Nuclear Information System (INIS)

    The goal of the triagency SP-100 Program is to develop long-lived, compact, lightweight, survivable nuclear reactor space power systems for application to the power range 50 kWe to 1 MWe. The successful development of these systems should enable or significantly enhance many of the future NASA civil and commercial missions. The NASA SP-100 Advanced Technology Program strongly augments the parallel SP-100 Ground Engineering System Development program and enhances the chances for success of the overall SP-100 program. The purpose of this paper is to discuss the key technical elements of the Advanced Technology Program and the progress made in the initial year and a half of the project

  4. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  5. Advanced tufted carpet patterning technology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    After a review of the tufting industry's development, and a brief introduction to available systems for producing patterned tufted carpets, the principle of ICN (Individually Controlled Needle) and the related advanced tufting technology Colortec are presented. Finally, Colortec machine, Axminster weaving machine, and Wilton loom are compared. It is believed that the Cobble Colortec machine is a significant jump forward in the tufted carpets industry as it now allows access to all major carpet markets in a competitive fashion.

  6. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation o...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  7. Second annual battery and electrochemical technology conference: agenda and technical presentations. [Arlington, Va. , June 5--7, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Papers were presented at this conference on the following topics: general overview of batteries and battery programs, near-term battery systems, fundamental research, advanced battery development, energy conservation in industrial electrochemical processes, and advanced battery research. This publication contains only the slides and viewgraphs used by the speakers in giving their presentations; there is no text. (RWR)

  8. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  9. Recent advances in inorganic solid electrolytes for lithium batteries

    Directory of Open Access Journals (Sweden)

    Can eCao

    2014-06-01

    Full Text Available The review presents an overview of the recent advances in inorganic solid lithium ion conductors, which are of great interest as solid electrolytes in all-solid-state lithium batteries. It is focused on two major categories: crystalline electrolytes and glass-based electrolytes. Important systems such as thio-LISICON Li10SnP2S12, garnet Li7La3Zr2O12, perovskite Li3xLa(2/3-xTiO3, NASICON Li1.3Al0.3Ti1.7(PO43 and glass-ceramic xLi2S•(1-xP2S5 and their progress are described in great detail. Meanwhile, the review discusses different on-going strategies on enhancing conductivity, optimizing electrolyte/electrode interface and improving cell performance.

  10. Advances in SIS receiver technology

    Science.gov (United States)

    Frerking, M. A.

    1988-01-01

    Significant advances in SIS receiver technology since the last Asilomar meeting include: superconductor materials, integrated inductive tuning elements, and planar mounting structures. The effect of these advances is to push the upper frequency operating limit from about 600 to 1500 GHz, and to enhance the feasibility of focal plane arrays of heterodyne receivers. A fundamental high frequency operating limit of SIS mixers is set by the superconducting energy gap. A practical limitation for high frequency operation of SIS junctions is their parasitic capacitance and resistance. The performance of the mixer will be degraded by the Resistor-Capacitor rolloff. Several designs were reported for inductive elements integrated on the same substrate as the SIS junctions to tune out the bulk junction capacitance. Most millimeter SIS-based heterodyne receivers have used waveguide coupling structures. Technology has advanced to the state where programs that have a high probability of success can be defined to produce arrays of SIS receivers for frequencies as high as 1500 GHz.

  11. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  12. Advanced USC technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masafumi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan). High Temperature Materials Center

    2010-07-01

    The 600deg-C class Ultra Super-Critical(USC) steam condition technology was mainly developed through projects led by J-Power in the '80s and 90s'. In 2001, the project was successfully finished with newly developed 9-12% chromium steels. These materials were selected for the major parts of the USC power plants in Japan and almost half of the coal power plants have the USC steam condition today. However, aged plants, which were built in the '70s and early '80s will reach the point where they will need to be rebuilt or refurbished in the near future. The steam temperatures of the older plants are 538 deg-C or 566deg-C. We did a case study, retrofitting these plants with the USC and an advanced USC technology that takes a 700deg-C class steam temperature to increase thermal efficiency and to reduce CO{sub 2} emissions. The study showed that the advanced USC Technology(A-USC) is suitable for the retrofitting of aged plants and can reduce CO{sub 2} emissions by about 15%. The Japanese government launched the ''Cool Earth-Innovative Energy Technology Program'' in 2008 March to promote international cooperation and actively contribute to substantial global greenhouse gas emissions reductions. 21 technologies that will contribute to substantial reductions in CO{sub 2} emissions by efficiency improvement and low carbonization were selected. The A-USC that aims at 46% (net, HHV) thermal efficiency of coal power generation is included in the technologies. We started a large-scale development project of the A-USC technology in 2008 August. 700deg-C class boiler, turbine and valve technologies, which include high temperature material technology, will be developed. Some candidate materials for boilers are being tested. Turbine rotor and casing materials are being developed and tested, as well. Two years from the beginning of the project, we have obtained some useful test results regarding the candidate materials. (orig.)

  13. Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

    Science.gov (United States)

    Rao, Gopalakishna M.; Stewart, Karen; Ameen, Syed; Banfield, Peter K.

    2005-01-01

    This document is a viewgraph presentation that reviews the Lithium Ion Battery for the Space Technology-5 (ST-5) mission. Included in the document is a review of the ST-5 Mission, a review of the battery requirements, a description of the battery and the battery materials. The testing and the integration and qualification data is reviewed.

  14. Advances in Genome Biology & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  15. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Science.gov (United States)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  16. Advances in nondestructive evaluation technology

    Science.gov (United States)

    Heyman, J. S.

    1982-01-01

    Research at NASA Langley's Materials Characterization Instrumentation Section has followed the philosophy of improving the science base of nondestructive evaluation and advancing the state of the art of quantitative interpretability of physical measurements of materials. Details of several R&D programs choosen to highlight the last several years are given. Applications of these technologies are presented in the area of stress measurement, characterization of metal heat treatment, and evaluation of material internal structure. A second focus of the program is on quantitative transducers/measurements that have resulted in better data in irregular inhomogeneous materials such as composites. Examples are presented of new capabilities resulting from these advances that include fatigue and impact damage evaluation.

  17. [Technological advances: the coming radiology].

    Science.gov (United States)

    García, César; Ortega, Dulia

    2002-06-01

    We are living in a changing world, acknowledging all kinds of changes: social, technological, and ethical. This is the environment encircling medical and radiological work: demanding, with high expectations and a cohort of amazing technological advances, in all areas of human knowledge. We need to make the necessary reflections about these faster and faster changes. Radiology, as an important part of clinical work, is facing no minor challenges: technological and other most prevalent like: Who will be specialists in the next future? How are we prepared to face the radiological teaching and formation of radiologists? How to finance this technological developments? Meanwhile, in our context of an underdeveloped country, this sounds as far as the Moon, but changes will reach us sooner or later. We must resolve some problems that are a little bit more basic, such as a good level of education and health care for our people, then we will be ready to incorporate some of these amazing new technologies. PMID:12194695

  18. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  19. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  20. Advances in traction drive technology

    Science.gov (United States)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  1. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  2. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  3. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  4. Advanced Electrolyte/Additive for Lithium-Ion Batteries with Silicon Anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuo; He, Meinan; Su, Chi-Cheung; Zhang, Zhengcheng

    2016-07-01

    State-of-the-art lithium-ion batteries (LIBs) are based on a lithium transition metal oxide cathode, a graphite anode and a nonaqueous carbonate electrolyte. To further increase the energy and power density of LIBs, silicon anodes have been intensively explored due to their high theoretical capacity, low operation potential, and low cost. However, the main challenges for Si anode are the large volume change during lithiation/delithiation process and the instability of the solid-electrolyte-interphase associated with this process. Recently, significant progress has been achieved via advanced material fabrication technologies and rational electrolyte design in terms of improving the Coulombic efficiency and capacity retention. In this paper, new developments in advanced electrolyte and additive for LIBs with Si anode were systematically reviewed, and perspectives over future research were suggested.

  5. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  6. Latest Technology Advances in Cosmaceuticals

    Directory of Open Access Journals (Sweden)

    Nageen Arora

    2012-07-01

    Full Text Available World consumers are looking for personal care products that supply multiple benefits with minimal efforts. They also expect the latest technology advances to be incorporated into innovative formulations. The trend toward therapeutic cosmetics will lead to a better understanding of modern ingredients and their assessment techniques. To obtain skin care formulations with real consumer-perceivable benefits and to optimize sensory attributes, formulators are resorting to technology that until recently was exclusively used in cosmetic products. Various formulations comes under special delivery systems like Vesicular, Particulate systems, emulsions type Particulate type and other delivery systems along with their applications are shown in this article, as it results in an economic uplift of cosmetic industry in various parts of the world. Little evidence is seen that nanoparticles in cosmetics and sunscreen might be a problem at this time and its need is further explored for a better understanding of these novel technologies. Thus, novel cosmaceutical delivery systems reviewed here possess enormous potential as next-generation smarter carrier systems.

  7. Advances in medical diagnostic technology

    CERN Document Server

    Lai, Khin Wee; Mohamad Salim, Maheza Irna; Ong, Sang-Bing; Utama, Nugraha Priya; Myint, Yin Mon; Mohd Noor, Norliza; Supriyanto, Eko

    2014-01-01

    This book provides the most recent findings and knowledge in advanced diagnostics technology, covering a wide spectrum including brain activity analysis, breast and lung cancer detection, echocardiography, computer aided skeletal assessment to mitochondrial biology imaging at the cellular level. The authors explored magneto acoustic approaches and tissue elasticity imaging for the purpose of breast cancer detection. Perspectives in fetal echocardiography from an image processing angle are included. Diagnostic imaging in the field of mitochondrial diseases as well as the use of Computer-Aided System (CAD) are also discussed in the book. This book will be useful for students, lecturers or professional researchers in the field of biomedical sciences and image processing.

  8. General survey of Korean advanced technology

    International Nuclear Information System (INIS)

    This book includes advanced technology, world trend of advanced technology, technological innovation study for strengthening international competitiveness, patterns of Korea industrialization and its causes, structures of Korea electronic equipment and development direction, middle and long-term prospects of home appliance, the world of computer, current situation and prospect of robot industry, homework for strengthening international competitiveness of machine industry, direction for rationalization of materials industry, current situations of technical textile, future technology of developed countries, and trend of Korea technological activities.

  9. Advanced Cathode for Ultra-High Energy Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced lithium-ion (Li-ion) batteries are currently under development for Extravehicular Activity Suits, Altair Lunar Landers, and Lunar Mobility Systems....

  10. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  11. 国外鱼雷电池应用进展%Advance of overseas torpedo battery

    Institute of Scientific and Technical Information of China (English)

    石治国

    2012-01-01

    The application of overseas torpedo battery was introduced, including the widely used Zn-Ag battery, Mg-AgCI battery, advanced AI-Ag2O battery and lithium battery. And the battery with high specific energy and high specific power is considered to be the power for torpedo.%针对国外鱼雷电池的应用进展情况进行了介绍,包括应用广泛的锌银电池、镁/氧化银海水电池,先进的铝/氧化银电池和锂电池等,认为具有高比能量、高比功率的电池才能作为鱼雷电源.

  12. Advanced Training Technologies and Learning Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  13. On the challenge of developing advanced technologies for electrochemical energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Hyun Deog Yoo

    2014-04-01

    Full Text Available The accelerated production of sophisticated miniaturized mobile electronic devices, challenges such as the electrochemical propulsion of electric vehicles (EVs, and the need for large-scale storage of sustainable energy (i.e. load-levelling applications motivate and stimulate the development of novel rechargeable batteries and super-capacitors. While batteries deliver high energy density but limited cycle life and power density, super-capacitors provide high power density and very prolonged cycling. Lithium-ion batteries are the focus of intensive R&D efforts because they promise very high energy density that may be suitable for electrical propulsion. Here, we review research on batteries with an emphasis on Li-ion battery technology, examining its suitability for EV applications. We also briefly examine other battery systems that may be of importance for load-levelling applications, including rechargeable magnesium batteries. We give a short review of the status of technologies beyond Li-ion batteries, including Li–sulfur and Li–oxygen systems. Finally, we briefly discuss recent progress in the R&D of advanced super-capacitors.

  14. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  15. Advancing High Energy Lithium-Sulfur Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-Ion batteries have been a main source of energy for many aerospace applications over the past decade. Future space missions are facing a number of...

  16. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  17. Design options for automotive batteries in advanced car electrical systems

    Science.gov (United States)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  18. LTE-advanced air interface technology

    CERN Document Server

    Zhang, Xincheng

    2012-01-01

    Opportunities are at hand for professionals eager to learn and apply the latest theories and practices in air interface technologies. Written by experienced researchers and professionals, LTE-Advanced Air Interface Technology thoroughly covers the performance targets and technology components studied by 3GPP for LTE-Advanced. Besides being an explanatory text about LTE-Advanced air interface technology, this book exploits the technical details in the 3GPP specification, and explains the motivation and implication behind the specifications.After a general description of wireless cellular techno

  19. The advanced lead-acid battery consortium—a worldwide cooperation brings rapid progress

    Science.gov (United States)

    Moseley, Patrick T.

    The development of valve regulated lead-acid (VRLA) batteries has, in recent years, been carried forward rapidly through the collaborative efforts of a worldwide consortium of battery manufacturers and related elements of industry; the Advanced Lead-Acid Battery Consortium (ALABC). This group has set aside its competitive instincts in order to achieve acceptable goals in respect of those parameters that are key factors controlling the marketability of electric vehicles (EVs): cost, cycle life, specific energy, specific power and rate of recharge. This paper provides an overview of the principal themes of the ALABC research and development programme.

  20. Advances in information technologies for electromagnetics

    CERN Document Server

    Tarricone, Luciano

    2006-01-01

    Talks about the achieved and potentially obtainable advances in electromagnetics with innovative IT technologies. This work contains tutorial chapters, which introduce technologies, such as parallel and distributed computing, object-oriented technologies, grid computing, semantic grids, agent based computing and service-oriented architectures.

  1. Advanced laptop and small personal computer technology

    Science.gov (United States)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  2. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  3. Isotope separation and advanced manufacturing technology

    Science.gov (United States)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  4. Low speed propellers: Impact of advanced technologies

    Science.gov (United States)

    Keiter, I. D.

    1980-01-01

    Sensitivity studies performed to evaluate the potential of several advanced technological elements on propeller performance, noise, weight, and cost for general aviation aircraft are discussed. Studies indicate that the application of advanced technologies to general aviation propellers can reduce fuel consumption in future aircraft an average of ten percent, meeting current regulatory noise limits. Through the use of composite blade construction, up to 25 percent propeller weight reduction can be achieved. This weight reduction in addition to seven percent propeller efficiency improvements through application of advanced technologies result in four percent reduction in direct operating costs, ten percent reduction in aircraft acquisition cost, and seven percent lower gross weight for general aviation aircraft.

  5. Review of storage battery system cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  6. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature manufacturing technology to enable fabrication of single-piece integrally-stiffened launch vehicle structures to replace expensive, heavy, and...

  7. Advanced location-based technologies and services

    CERN Document Server

    Karimi, Hassan A

    2013-01-01

    Due to the rapid increase in the number of mobile device users worldwide, location-based services (LBSs) have become pervasive, and the demand for them will continue to grow. Exploring recent changes in the technology and its uses, Advanced Location-Based Technologies and Services takes an in-depth look at new and existing technologies, techniques, applications, and opportunities. Under the editorial guidance of Hassan Karimi, with contributions from experts in the field, the book examines the breadth and depth of advanced LBS technologies and techniques. The book provides up-to-date informati

  8. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  9. Costs and Benefits of Advanced Aeronautical Technology

    Science.gov (United States)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  10. LTE-Advanced Relay Technology and Standardization

    CERN Document Server

    Yuan, Yifei

    2013-01-01

    LTE-Advanced Relay Technology and Standardization provides a timely reference work for relay technology with the finalizing of LTE Release 10 specifications. LTE-Advanced is quickly becoming the global standard for 4G cellular communications. The relay technology, as one of the key features in LTE-Advanced, helps not only to improve the system coverage and capacity, but also to save the costs of laying wireline backhaul. As a leading researcher in the field of LTE-Advanced standards, the author provides an in-depth description of LTE-A relay technology, and explains in detail the standard specification and design principles.     Readers from both academic and industrial fields can find sections of interest to them: Sections 2 & 4 could benefit researchers in academia and those who are engaged in exploratory work, while Sections 3 & 4 are more useful to engineers. Dr. Yifei Yuan is the Technical Director at the Standards Department of ZTE Inc.

  11. Innovative Experimental Particle Physics through Technological Advances

    OpenAIRE

    Cheung, Harry W. K.

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniq...

  12. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  13. Solar Battery Charger in CMOS 0.25 um Technology

    OpenAIRE

    Tao Wang; Chang-Ching Huang; Tian-Jen Wang

    2014-01-01

    A solar cell powered Li-ion battery charger in CMOS 0.25um is proposed. The solar battery charger consists of a DC/DC boost converter and a battery charger. The voltage generated by a solar cell is up converted from 0.65V to 1.8V, which is used as the VDD of the battery charger.  In this way, the solar battery charger automatically converts solar energy to electricity and stores it directly to a Li-ion rechargeable battery. In this system, a super capacitor is needed as a charge buffer betwee...

  14. Advanced technologies for remote handling

    International Nuclear Information System (INIS)

    Master slave manipulators (MSMs), in-cell cranes and power manipulators are the general-purpose remote handling tools used in nuclear industry. In-cell cranes and power manipulators can handle heavy objects; whereas MSMs can handle objects with precision and dexterity. The department had identified the importance of indigenising these technologies and developed a variety of mechanical MSMs and Servo Manipulators. This paper traces the history and evolution of these technologies. It also mentions about the telepresence technologies that are set to transform the operator's experience of manipulation by bringing in visual, haptic and aural immersion in the slave environment. (author)

  15. Rotorcraft technology at Boeing Vertol: Recent advances

    Science.gov (United States)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  16. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    Science.gov (United States)

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries. PMID:24844948

  17. ADVANCED TECHNOLOGY AND KNOWLEDGE TRANSFER

    OpenAIRE

    Tandon, Geetanjali; Sonka, Steven T.

    2002-01-01

    This paper reports on a specific project, employing new technological capabilities to better transfer expert knowledge. The specific project considered for the paper is the World Initiative for Soy in Human Health (WISHH), a Multi Organization Enterprise promoting the use of soy and soy products in humanitarian and development aid around the world. VisIT, which stands for Visualization of Information Technology, is a potentially powerful organizational tool. It is compared against the traditi...

  18. Technologies for reducing flare gas at oil wells and batteries

    International Nuclear Information System (INIS)

    A variety of new technologies available to reduce flare gas at oil wells and batteries are reviewed. The main problem associated with flaring gas at wells and oil batteries are low hydrocarbon destruction efficiency, wasted energy, air pollution, aesthetics, and public anxiety. Studies by the Alberta Research Council regarding flare gas have shown that hydrocarbon destruction efficiencies are between 60 and 80 per cent. Small quantities of the uncombusted hydrocarbons are polyaromatic hydrocarbons which are emitted to the atmosphere. Produced gas is flared usually because the produced gas is too low in pressure, or it is too low in quantity or it is too long of a distance to the nearest user. As the market value of gas is increasing, more effort is being made to capture the produced gas through clustering strategies and by the application of new technologies. Clustering strategies involve the gathering of gas from two or more flares in order to economically accumulate enough gas at only one point. The following new technologies to reduce flaring are briefly described: (1) the use of downhole separators to separate the vapour phase from the liquid phase down in the production formation, (2) the conversion of flare gas to electricity with small or micro-turbines, (3) the conversion of flare gas to usable heat, (4) the use of lower cost gas compression units, (5) the use of multi-phase pumps, (6) the re-injection of gas, particularly sour gas, (7) taking advantage of greenhouse gas offsets and credits, and (8) membrane separation of hydrocarbon liquids from methane. 5 figs

  19. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  20. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  1. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  2. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  3. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2013-03-01

    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  4. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  5. Technology roadmap for lithium ion batteries 2030; Technologie-Roadmap Lithium-Ionen-Batterien 2030

    Energy Technology Data Exchange (ETDEWEB)

    Thielmann, Axel; Isenmann, Ralf; Wietschel, Martin [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2010-07-01

    The technology roadmap for lithium ion batteries 2030 presents a graphical representation of the cell components, cell types and cell characteristics of lithium ion batteries and their connection with the surrounding technology field from today through 2030. This is a farsighted orientation on the way into the future and an implementation of the ''Roadmap: Batterieforschung Deutschland'' of the BMBF (Federal Ministry of Education and Science). The developments in lithium ion batteries are identified through 2030 form today's expert view in battery development and neighbouring areas. (orig.)

  6. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  7. Assurance Technology Challenges of Advanced Space Systems

    Science.gov (United States)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  8. TASTEX: Tokai Advanced Safeguards Technology Exercise

    International Nuclear Information System (INIS)

    During the years 1978 to 1981 the Governments of France, Japan and the United States of America cooperated with the International Atomic Energy Agency in the TASTEX (Tokai Advanced Safeguards Technology Exercise) programme. The aim of this programme was to improve the technology for the application of international safeguards at reprocessing facilities, and the results are presented in the present report

  9. Development of the advanced CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Na, Y. H.; Lee, S. Y.; Choi, J. H.; Lee, B. C.; Kim, S. N.; Jo, C. H.; Paik, J. S.; On, M. R.; Park, H. S.; Kim, S. R. [Korea Electric Power Co., Taejon (Korea, Republic of)

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs.

  10. Advanced Lost Foam Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  11. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  12. Recent advances in hypersonic technology

    Science.gov (United States)

    Dwoyer, Douglas L.

    1990-01-01

    This paper will focus on recent advances in hypersonic aerodynamic prediction techniques. Current capabilities of existing numerical methods for predicting high Mach number flows will be discussed and shortcomings will be identified. Physical models available for inclusion into modern codes for predicting the effects of transition and turbulence will also be outlined and their limitations identified. Chemical reaction models appropriate to high-speed flows will be addressed, and the impact of their inclusion in computational fluid dynamics codes will be discussed. Finally, the problem of validating predictive techniques for high Mach number flows will be addressed.

  13. Lewis Research Center battery overview

    Science.gov (United States)

    Odonnell, Patricia

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.

  14. Separators - Technology review: Ceramic based separators for secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C. [Technische Universität Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg (Germany); Schilm, Jochen [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstraße 28, 01277 Dresden (Germany); Leisegang, Tilmann [Fraunhofer-Technologiezentrum Halbleitermaterialien THM, Am St.-Niclas-Schacht 13, 09599 Freiberg (Germany)

    2014-06-16

    -based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.

  15. Separators - Technology review: Ceramic based separators for secondary batteries

    International Nuclear Information System (INIS)

    . Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells

  16. Advances in liquid phase technology

    Energy Technology Data Exchange (ETDEWEB)

    Jijin, P.J.A. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-12-31

    The liquid phase methanol (LPMEOH) process uses a slurry reactor to convert synthesis gas (primarily a mixture of hydrogen and carbon monoxide) to methanol. Through its superior heat management, the process is ultimately suitable to handle synthesis gas generated through gasification of natural gas and other materials, such as coal, petroleum coke, residual oil, wastes and other environmentally disadvantaged hydrocarbon feedstocks. Apart from production of chemical grade methanol, the process provides economic advantages in the Integrated Gasification Combined Cycle (IGCC) power generation application. Coproduction of power and methanol via the IGCC and the LPMEOH process provides opportunities for energy storage for peak-shaving of electrical demand and/or clean fuel for export. The LPMEOH technology has been developed since the 1980`s, extensively proven in a process development unit in LaPorte, Texas and elected for demonstration under The Clean Coal Technology Program. The slurry reactor being demonstrated is also suitable for other exothermic synthesis gas conversion reactions, like synthesis of Dimethyl Ether and other alcohols/oxygenates. This paper presents an overview of LPMEOH and other liquid phase technology aspects and highlights the demonstration project at Eastman Chemical Company`s coal gasification facility in Kingsport, Tennessee. Commercial aspects of the LPMEOH process are also discussed.

  17. 78 FR 292 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2013-01-03

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  18. 76 FR 59659 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2011-09-27

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  19. 77 FR 59592 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2012-09-28

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. ] SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  20. 76 FR 29195 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2011-05-20

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  1. Modern Imaging Technology: Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  2. Modern Imaging Technology: Recent Advances

    International Nuclear Information System (INIS)

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area

  3. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  4. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  5. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  6. Research Advances: Paper Batteries, Phototriggered Microcapsules, and Oil-Free Plastic Production

    Science.gov (United States)

    King, Angela G.

    2010-01-01

    Chemists continue to work at the forefront of materials science research. Recent advances include application of bioengineering to produce plastics from renewable biomass instead of petroleum, generation of paper-based batteries, and development of phototriggerable microcapsules for chemical delivery. In this article, the author provides summaries…

  7. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  9. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  10. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  11. Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management

    Science.gov (United States)

    Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.

    2008-09-01

    A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.

  12. Recent advances in CIM technology

    Directory of Open Access Journals (Sweden)

    Zlatkov B.S.

    2008-01-01

    Full Text Available In this article the PIM (Powder Injection Moulding technology is described in brief. After that the benefits and advantages were analyzed and summarized. Ceramic injection moulding (CIM process was analyzed in more detail: CIM- alumina, CIM-zirconia and CIM ferrites as the most common technical ceramics in CIM ceramic parts production, medical applications and accessories in chemical laboratories, and cores in electronic inductive components. After that our results for CIM barium hexaferrite and piezo ceramics (barium titanate are given. The main powder characteristics, the shrinkage and density and the main electrical characteristics of the sintered samples were compared for the isostatically pressed PM (powder metallurgy and CIM formed samples. SEM fractographs of CIM and PM samples are given for CIM green parts, debinded (white parts and sintered parts, and PM green parts and sintered parts. The results obtained were compared to literature data before they were applied in ceramic components production.

  13. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  14. Development of advanced PWR system analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y. D.; Kim, S. O.; Jung, B. D.; Kim, Y. I.; Chang, M. H.; Lee, Y. J.; Yun, J. H.

    1997-12-31

    The scope of this project is to establish the basic analysis technologies for the advanced designed with the passive and inherent safety concepts. The scope is extended to the application of these technologies to the performance and safety analysis of the passive reactor. Since the different design concepts are applied depending on the reactor power, the study is conducted for the small and medium sized integral reactor as well as the large scale passive reactors by focusing on the analysis technology development for the passive components. The design concepts which can be applied for the safety enhancement of the domestic advanced reactor are developed through evaluating the technical information of the overseas advanced reactor concepts.

  15. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  16. Technological Advances in Psychiatric Nursing: An update.

    Science.gov (United States)

    Bostrom, Andrea C

    2016-06-01

    Understanding and treating mental illness has improved in many ways as a result of the fast pace of technological advances. The technologies that have the greatest potential impact are those that (1) increase the knowledge of how the brain functions and changes based on interventions, (2) have the potential to personalize interventions based on understanding genetic factors of drug metabolism and pharmacodynamics, and (3) use information technology to provide treatment in the absence of an adequate mental health workforce. Technologies are explored for psychiatric nurses to consider. Psychiatric nurses are encouraged to consider the experiences of psychiatric patients, including poor health, stigmatization, and suffering.

  17. Technological advances for studying human behavior

    Science.gov (United States)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  18. Technologies for Advanced Induction Accelerators

    CERN Document Server

    Hernández, M A; Autrey, D; Duncan, G; Friedman, A; Grote, D P; Halaxa, E; Hanks, R; Kamin, G; Sangster, C; Sharp, W; Williams, C

    2000-01-01

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerato...

  19. Advances in software science and technology

    CERN Document Server

    Kakuda, Hiroyasu; Ohno, Yoshio

    1992-01-01

    Advances in Software Science and Technology, Volume 3 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 11 chapters, this volume begins with an overview of the development of a system of writing tools called SUIKOU that analyzes a machine-readable Japanese document textually. This text then presents the conditioned attribute grammars (CAGs) and a system for evaluating them that can be applied to natural-language processing. Other chapters c

  20. Advances in software science and technology

    CERN Document Server

    Ohno, Yoshio; Kamimura, Tsutomu

    1991-01-01

    Advances in Software Science and Technology, Volume 2 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into four parts encompassing 12 chapters, this volume begins with an overview of categorical frameworks that are widely used to represent data types in computer science. This text then provides an algorithm for generating vertices of a smoothed polygonal line from the vertices of a digital curve or polygonal curve whose position contains a certain amount of error. O

  1. Advances in software science and technology

    CERN Document Server

    Hikita, Teruo; Kakuda, Hiroyasu

    1993-01-01

    Advances in Software Science and Technology, Volume 4 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 10 chapters, this volume begins with an overview of the historical survey of programming languages for vector/parallel computers in Japan and describes compiling methods for supercomputers in Japan. This text then explains the model of a Japanese software factory, which is presented by the logical configuration that has been satisfied by

  2. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  3. Advanced sensing technology in environmental field.

    Science.gov (United States)

    Wakida, Shin-ichi

    2009-01-01

    Before the introduction of advanced sensing technology in environmental fields, environmental issues were discussed as several categories, such as local environmental issues in the 1970s, global environmental issues in the 1980s, living environmental issues in the 2000s and environmental stress issues in near future, which are of increasing interest in Japan. Using advanced sensing technologies, such as electrochemical sensors, chemically-sensitive field-effect transistors (ChemFETs) based on micro-electro mechanical system (MEMS) micromachining technology and subsequently electrophoretic separation and microfluidic Lab-on-a-Chip using MEMS technology, we have steered several kinds of environmental monitoring projects timely in response to the environmental issues for over the last 25 years. Among the local environmental issues, the global environmental issues and the living environmental issues, some fruits of R&D project will be introduced. Finally, our latest concern of the environmental stress monitoring was discussed and preliminary results were also introduced.

  4. 电池新技术的发展与应用%Development and application of battery technology

    Institute of Scientific and Technical Information of China (English)

    王宝辉; 陈颖

    2001-01-01

    This paper provides a review of advanced technology andapplication and updates recent research development of alkaline, lithium and super-iron batteries. Based on the electrochemistry, performance and growing history, application of new technologies of lithium-ion, green and smart cells will spur dramatic development of matured battery industry.%综述了电池工业的发展历程,介绍了一次电池、二次电池及锂电池的反应原理,评述了这些电池及新型铁基电池的性能,预测了电池技术的发展趋势,认为锂电池、绿色电池、智能电池等新技术的应用将会大大推动电池技术的发展.

  5. Graphene Nanocomposite Cathode for Advanced Space Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High efficiency power systems are needed for NASA's future human exploration of space and such power systems must have advanced safety feature and provide high...

  6. 75 FR 52472 - Spectrum Requirements for Advanced Medical Technologies

    Science.gov (United States)

    2010-08-26

    ... COMMISSION 47 CFR Part 95 Spectrum Requirements for Advanced Medical Technologies AGENCY: Federal... total of five megahertz of contiguous spectrum for advanced wireless medical radiocommunication devices... (1996). \\2\\ See Investigation of the Spectrum Requirements for Advanced Medical Technologies,...

  7. Advanced batteries and materials chemistry%先进电池与材料化学

    Institute of Scientific and Technical Information of China (English)

    万春荣

    2001-01-01

    The development of advanced batteries must be based on various advanced materials with high quality. And the materials chemistry could promote the supply of materials successfully. On the other hand, the development of advanced batteries must enhance the formation and development of the materials chemistry as a new hybrid academic area. The main progress in this area was reviewed .%先进的电池必须以高品质的材料为基础,而高品质的材料则必须依靠独特的化学工艺。反过来电池事业的发展也促进了材料化学这一新型交叉学科的形成与发展。扼要地介绍了这一领域的主要进展。

  8. Research results from the advanced lead-acid battery consortium point the way to longer life and higher specific energy for lead/acid electric-vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, P.T. [The International Lead Zinc Research Organization, Research Triangle Park, NC (United States)

    1998-05-18

    Amidst the welter of publicity devoted to the newer battery chemistries, the remarkable progress made by lead/acid battery technologists in response to the needs of the emerging electric-vehicle market has tended to be overlooked. The flooded design of battery, launched by Gaston Plante around 1860, has given way to a valve-regulated variant which has a history dating only from the 1970s. The key parameters of this `maintenance free` battery have been improved markedly during the course of the development programme of the advanced lead-acid battery consortium (ALABC), and it is likely that lead/acid will continue to feature strongly in motive-power applications as a result of its cost advantage and of its enhanced effectiveness. (orig.)

  9. Research results from the Advanced Lead-Acid Battery Consortium point the way to longer life and higher specific energy for lead/acid electric-vehicle batteries

    Science.gov (United States)

    Moseley, P. T.

    Amidst the welter of publicity devoted to the newer battery chemistries, the remarkable progress made by lead/acid battery technologists in response to the needs of the emerging electric-vehicle market has tended to be overlooked. The flooded design of battery, launched by Gaston Planté around 1860, has given way to a valve-regulated variant which has a history dating only from the 1970s. The key parameters of this `maintenance free' battery have been improved markedly during the course of the development programme of the Advanced Lead-Acid Battery Consortium (ALABC), and it is likely that lead/acid will continue to feature strongly in motive-power applications as a result of its cost advantage and of its enhanced effectiveness.

  10. Performance comparison of four lithium–ion battery technologies under calendar aging

    International Nuclear Information System (INIS)

    This work depicts the calendar aging results of four Li-ion battery technologies. The differences in the chemistry of Li-ion batteries was studied and revealed that cathodes containing manganese are more sensitive to state-of-charge and temperature increase than lithium–iron-phosphate or lithium–nickel–cobalt–aluminum batteries. The first step in presenting the differences in technology of the Li-ion battery is through the study of the battery voltage evolution versus the amount of charge at various states of health. This study revealed a significant increase in resistance on lithium–nickel–manganese–cobalt and lithium–manganese-oxide cells; a result which was confirmed through impedance spectroscopy measurements. Finally, a study of the comparison of the different types of Li-ion batteries was undertaken, based on the analysis of the evolution of energy efficiency with respect to aging. - Highlights: • Calendar aging results of four Li-ion battery technologies are presented. • High temperature and/or the increased state-of-charge accelerated battery aging. • We analyzed the evolution of energy efficiency with respect to aging. • Cathodes with manganese are more sensitive to SOC and temperature increase

  11. TECHcitement: Advances in Technological Education, 2004

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  12. Advanced Technological Education Survey 2010 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2010-01-01

    This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…

  13. Advanced Technological Education Survey 2012 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  14. Advanced Technological Education Survey 2011 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  15. Why Video? How Technology Advances Method

    Science.gov (United States)

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  16. TECHcitement: Advances in Technology Education, 2008

    Science.gov (United States)

    Patton, Madeline

    2008-01-01

    This publication presents the following articles: (1) Advanced Technological Education (ATE) Develops Student Recruitment and Retention Strategies; (2) Marketer Advises Tech Educators Appeal to Teens' Emotions, Desires to Do Something Important; (3) Digital Bridge Academy Gets At-Risk Students on Paths to Knowledge-Based Careers; (4) Project…

  17. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  18. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  19. Teach Battery Technology with Class-Built Wet Cells

    Science.gov (United States)

    Roman, Harry T.

    2011-01-01

    With some simple metal samples and common household liquids, teachers can build wet cell batteries and use them to teach students about batteries and how they work. In this article, the author offers information that is derived from some simple experiments he conducted in his basement workshop and can easily be applied in the classroom or lab. He…

  20. Advanced technologies: Trends and implications for security

    International Nuclear Information System (INIS)

    As the world moves towards the close of the twentieth century, three technological trends will strongly influence security. In order of importance they are: first, the increasing globalization of the ability to develop and use high technology, much of which has both civilian and military applications; secondly, the broad dissemination of militarily-relevant technology world-wide; and thirdly, the continued development by the United States and the USSR (and a few other nations) of advanced technology for military applications. The military balance between the super-Powers and their allies has been strongly rooted in advancing military technology. Great changes in technology have resulted in adjustments -mostly in limited aspects such as the armour/ anti-armour balance - but have not caused it to change wildly. This seems likely to remain the case for the foreseeable future. There are arguments that Western technology has been a prime causative factor behind Soviet willingness to engage in negotiations to reduce forces. They claim that fear of the Strategic Defense Initiative is behind progress in the Strategic Arms Reduction Talks, and that perceived Western mastery of the technology for systems combining quick reaction, deep strike and high kill probabilities led the Soviet Union to reassess its potential for a successful land campaign in Europe. If current arms control negotiations are successful, the momentum is maintained, and other political changes take hold, the military balance could be taken to a point where ft would not be very sensitive to technological change. One should be aware that the arms control negotiations are very complex, primarily because of technological issues, and we should not yet bank on it all working out well. If it fails, the military technical competition will heat up again. Even under a strict arms control regime we can expect the competition to continue as each side seeks to develop counters to what ft sees as the other side

  1. Huawei Introduces Advanced relecom Technology to Uzbekistan

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    SINCE entering Uzbekistan in 1999, Huawei has grown into the country's biggest supplier of telecommunications equipment. Not only has Huawei introduced 3G technology to Uzbekistan, in cooperation with a local tele- tom operator, it has also deployed the eountry's first LTE (Long Term Evo- lution) network. After moving its Central Asian headquarters to Uzbekistan, Huawei expanded its business and brought advanced telecom technology to the host coun- try, which has improved Uzbekistan's overall technological level and local economic development.

  2. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    Science.gov (United States)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  3. Batteries for sustainability selected entries from the encyclopedia of sustainability science and technology

    CERN Document Server

    Brodd, Ralph J

    2012-01-01

    This collection of selected peer-reviewed papers from Springer's Encyclopedia of Sustainability Science and Technology covers a wide range of battery types, materials and applications, and includes a thorough assessment of their relative sustainability.

  4. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  5. Recent advances in imaging technologies in dentistry

    Institute of Scientific and Technical Information of China (English)

    Naseem; Shah; Nikhil; Bansal; Ajay; Logani

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools,specially imaging methods, have become mandatory.From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation(brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  6. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  7. Polyphase alloys as rechargeable electrodes in advanced battery systems

    Science.gov (United States)

    Huggins, Robert A.

    1987-01-01

    The rechargeability of electrochemical cells is often limited by negative electrode problems. These may include loss of capacity, increased impedance, macroscopic shape change, dendrite growth, or a tendency for filamentary or whisker growth. In principle, these problems can be reduced or eliminated by the use of alloys that undergo either displacement or insertion reactions at reactant species activities less than unity, rather than pure elements. The fundamental reasons for some of these problems with elemental electrodes, as well as the basic principles involved in the different behavior of alloys, are briefly discussed. More information is now available concerning the thermodynamic and kinetic properties of a number of alloys of potential interest for use as electrodes in elevated temperature lithium battery systems. Recent results have extended these results down to ambient temperatures, indicating that some such materials may be of interest for use with new low temperature molten salt electrolytes, or with organic solvent electrolytes. The all solid mixed conductor matrix concept is also reviewed.

  8. Residual learning rates in lead-acid batteries: Effects on emerging technologies

    International Nuclear Information System (INIS)

    The low price of lead-acid, the most popular battery, is often used in setting cost targets for emerging energy storage technologies. Future cost reductions in lead acid batteries could increase investment and time scales needed for emerging storage technologies to reach cost-parity. In this paper the first documented model of cost reductions for lead-acid batteries is developed. Regression to a standard experience curve using 1989–2012 data yield a poor fit, with R2 values of 0.17 for small batteries and 0.05 for larger systems. To address this problem, battery costs are separated into material and residual costs, and experience curves developed for residual costs. Depending on the year, residual costs account for 41–86% of total battery cost. Using running-time averages to address volatility in material costs, a 4-year time average experience curve for residual costs yield much higher R2, 0.78 for small and 0.74 for large lead-acid batteries. The learning rate for residual costs in lead-acid batteries is 20%, a discovery with policy implications. Neglecting to consider cost reductions in lead-acid batteries could result in failure of energy storage start-ups and public policy programs. Generalizing this result, learning in incumbent technologies must be understood to assess the potential of emerging ones. -- Highlights: •We analyze potential cost reductions in lead-acid batteries. •Modified experience curve for non-material costs gives good empirical fit. •Historical learning rate for non-material costs from 1985–2012 is 19–24%. •Progress in incumbent technology raises barrier to new entrants

  9. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  10. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  11. Worldwide trends in battery separator technology and usage

    Science.gov (United States)

    Weighall, M. J.

    This paper reviews trends in battery separator usage for starting-lighting-and-ignition (SLI), motive power, and sealed valve-regulated lead/acid batteries. For SLI batteries, the dominant trend in the USA and Western Europe has been a dramatic increase in polyethylene envelope separator usage, with other countries now following this trend. This is at the expense of traditional leaf-type separators such as cellulose or sintered polyvinyl chloride (PVC). For motive power applications, several different types of separator materials are currently favoured, including polyethylene, microporous rubber, microporous PVC and resin-impregnated polyester fibres. Worldwide trends in the motive power battery and separator market are shown. For sealed valve-regulated lead/acid batteries, the favoured construction uses a recombinant battery separator mat, normally of 100% borosilicate glass (binder free). Alternative mats containing a proportion of polymeric fibres are now being investigated. Market trends and factors affecting growth in the use of recombinant battery separator mats (RBSM) are reviewed. Results of mercury-intrusion porosimetry data for different separator materials are shown and reviewed. This technique provides an interesting way of differentiating between different separator materials based on their pore size distribution.

  12. Developments in lithium-ion battery technology in the Peoples Republic of China.

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  13. Sustainability assessment of advanced wastewater treatment technologies.

    Science.gov (United States)

    Høibye, L; Clauson-Kaas, J; Wenzel, H; Larsen, H F; Jacobsen, B N; Dalgaard, O

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances and three advanced treatment methods; sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment is the most advantageous advanced treatment methods if the demands are restricted to pathogenic microorganisms. In terms of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals.

  14. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    Science.gov (United States)

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years.

  15. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    Science.gov (United States)

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. PMID:27113634

  16. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  17. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1966-01-01

    Advances in Nuclear Science and Technology, Volume 3 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book presents the advances in the atomic energy field.Organized into six chapters, this volume begins with an overview of the use of pulsed neutron sources for the determination of the thermalization and diffusion properties of moderating as well as multiplying media. This text then examines the effect of nuclear radiation on electronic circuitry and its components. Other chapters consider radiation effects in various inorganic solids, with empha

  18. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  19. Advances in Robotic Servicing Technology Development

    Science.gov (United States)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  20. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  1. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  2. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  3. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  4. Advances and trends in computational structures technology

    Science.gov (United States)

    Noor, A. K.; Venneri, S. L.

    1990-01-01

    The major goals of computational structures technology (CST) are outlined, and recent advances in CST are examined. These include computational material modeling, stochastic-based modeling, computational methods for articulated structural dynamics, strategies and numerical algorithms for new computing systems, multidisciplinary analysis and optimization. The role of CST in the future development of structures technology and the multidisciplinary design of future flight vehicles is addressed, and the future directions of CST research in the prediction of failures of structural components, the solution of large-scale structural problems, and quality assessment and control of numerical simulations are discussed.

  5. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  6. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  7. Advanced manufacturing: Technology and international competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  8. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment......, which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  9. Recent technological advancements in breast ultrasound.

    Science.gov (United States)

    Eisenbrey, John R; Dave, Jaydev K; Forsberg, Flemming

    2016-08-01

    Ultrasound is becoming increasingly common as an imaging tool for the detection and characterization of breast tumors. This paper provides an overview of recent technological advancements, especially those that may have an impact in clinical applications in the field of breast ultrasound in the near future. These advancements include close to 100% fractional bandwidth high frequency (5-18MHz) 2D and 3D arrays, automated breast imaging systems to minimize the operator dependence and advanced processing techniques, such as those used for detection of microcalcifications. In addition, elastography and contrast-enhanced ultrasound examinations that are expected to further enhance the clinical importance of ultrasound based breast tumor screening are briefly reviewed. These techniques have shown initial promise in clinical trials and may translate to more comprehensive clinical adoption in the future. PMID:27179143

  10. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2008-01-01

    with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances......As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand...

  11. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  12. Technological advances in radiotherapy for esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Milan; Vosmik; Jiri; Petera; Igor; Sirak; Miroslav; Hodek; Petr; Paluska; Jiri; Dolezal; Marcela; Kopacova

    2010-01-01

    Radiotherapy with concurrent chemotherapy and surgery represent the main treatment modalities in esophageal cancer.The goal of modern radiotherapy approaches,based on recent technological advances,is to minimize post-treatment complications by improving the gross tumor volume definition (positron emission tomography-based planning),reducing interfraction motion (image-guided radiotherapy) and intrafraction motion (respiratory-gated radiotherapy),and by better dose delivery to the precisely defined planning ...

  13. Medical technology advances from space research

    Science.gov (United States)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  14. Preliminary analysis of patent trends for sodium/sulfur battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, M.B.; Winter, C.; Ashton, W.B.

    1985-07-01

    This document summarizes development trends in sodium/sulfur battery technology based on data from US patents. Purpose of the study was to use the activity, timing and ownership of 285 US patents to identify and describe broad patterns of change in sodium/sulfur battery technology. The analysis was conducted using newly developed statistical and computer graphic techniques for describing technology development trends from patent data. This analysis suggests that for some technologies trends in patent data provide useful information for public and private R and D planning.

  15. Novel, low-cost alternative technologies to tackle practical, industrial conundrums – a case study of batteries

    Directory of Open Access Journals (Sweden)

    Chan Victor K. Y.

    2016-01-01

    Full Text Available Whereas batteries in comparison with most other means of energy storage are more environmentally friendly and economical in their operation, they are beset by low energy replenishment rates, low energy storage density, high capital cost of themselves, and high capital cost of energy replenishment infrastructures. Mainly based on ergonomics, this paper proposes a novel, low-cost alternative technology to practically and industrially make these weaknesses irrelevant to some extent without calling for revolutionary technological breakthroughs in material science, batteries’ microstructures, or battery manufacturing technologies. The technology takes advantage of modularization of battery systems, prioritization of charging and discharging of battery module(s according to ease of unloading and/or loading the battery module(s and/or ease of loading replacement battery module(s of the battery module(s.

  16. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  17. Assessment of Li/SOCl2 battery technology: Reserve, thin-cell design, volume 3

    Science.gov (United States)

    Mosier-Boss, P. A.; Szpak, S.

    1990-06-01

    In choosing and developing a battery system, extensive research, i.e., computer modeling and electrochemistry experiments is required. The kinetics of chemical and electrochemical reactions determine the operational characteristics of a battery, including discharge rate capability and shelf storage life. This in turn affects power output. Battery design also affects battery output, i.e., distance between the bipolar plates, thickness of the electrodes and spacers, materials used, uniformity of electrolyte flow, etc. To maximize the performance of a battery system, therefore, one must do basic research ot identify the electrochemical and chemical process occurring within the battery. Too often this has not been done with the expected results. With regards to Li/SOCl2 battery development program described in Volume 1 of TR 1154, this volume contains a compilation of technical papers and is a continuation of Volume 2 of TR 1154. These papers have appeared in referred journals and books. In addition, abstracts of presentations given at meetings and a table of contents for the previous two volumes of TR 1154 are included. This work was performed as part of the Naval Ocean Systems Center Independent Exploratory Development program and constitutes a portion of a program whose goal is to establish a technology base for high-discharge rate Li/SOCl2 batteries.

  18. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  19. National Advanced Drilling and Excavation Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-06-15

    The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

  20. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  1. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  2. Advances in Information Technology and Industry Applications

    CERN Document Server

    2012-01-01

    With success of ICEEE 2010 in Wuhan, China, and December 4 to 5, 2010, the second International Conference of Electrical and Electronics Engineering (ICEEE 2011) will be held in Macau, China, and December 1 to 2, 2011. ICEEE is an annual conference to call together researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Electrical and Electronics Engineering along with Computer Science and Technology, Communication Technology, Artificial Intelligence, Information Technology, etc.   This year ICEEE is sponsored by International Industrial Electronics Center, Hong Kong. And based on the deserved reputation, more than 750 papers have been submitted to ICEEE 2011, from which about 94 high quality original papers have been selected for the conference presentation and inclusion in the “Advanced Computer, Communication, and Control” book based on the referees’ comments from peer-refereed. All the papers wi...

  3. Advanced DNA assembly technologies in drug discovery.

    Science.gov (United States)

    Tsvetanova, Billyana; Peng, Lansha; Liang, Xiquan; Li, Ke; Hammond, Linda; Peterson, Todd C; Katzen, Federico

    2012-05-01

    Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.

  4. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  5. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  6. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  7. Advanced Education and Technology Business Plan, 2010-13

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  8. 10 CFR 611.3 - Advanced technology vehicle.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  9. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  10. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  11. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  12. Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries

    Science.gov (United States)

    Li, Yong; Yu, Shenglan; Yuan, Tianzhi; Yan, Mi; Jiang, Yinzhu

    2015-05-01

    Metal-oxide anodes represent a significant future direction for advanced lithium ion batteries. However, their practical applications are still seriously hampered by electrode disintegration and capacity fading during cycling. Here, we report a rational design of 3D-staggered metal-oxide nanocomposite electrode directly fabricated by pulsed spray evaporation chemical vapor deposition, where various oxide nanocomponents are in a staggered distribution uniformly along three dimensions and across the whole electrode. Such a special design of nanoarchitecture combines the advantages of nanoscale materials in volume change and Li+/electron conduction as well as uniformly staggered and compact structure in atom migration during lithiation/delithiation, which exhibits high specific capacity, good cycling stability and excellent rate capability. The rational design of metal-oxide nanocomposite electrode opens up new possibilities for high performance lithium ion batteries.

  13. Selection of battery technology to support grid-integrated renewable electricity

    Science.gov (United States)

    Leadbetter, Jason; Swan, Lukas G.

    2012-10-01

    Operation of the electricity grid has traditionally been done using slow responding base and intermediate load generators with fast responding peak load generators to capture the chaotic behavior of end-use demands. Many modern electricity grids are implementing intermittent non-dispatchable renewable energy resources. As a result, the existing support services are becoming inadequate and technological innovation in grid support services are necessary. Support services fall into short (seconds to minutes), medium (minutes to hours), and long duration (several hours) categories. Energy storage offers a method of providing these services and can enable increased penetration rates of renewable energy generators. Many energy storage technologies exist. Of these, batteries span a significant range of required storage capacity and power output. By assessing the energy to power ratio of electricity grid services, suitable battery technologies were selected. These include lead-acid, lithium-ion, sodium-sulfur, and vanadium-redox. Findings show the variety of grid services require different battery technologies and batteries are capable of meeting the short, medium, and long duration categories. A brief review of each battery technology and its present state of development, commercial implementation, and research frontiers is presented to support these classifications.

  14. Advanced Technology System Scheduling Governance Model

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoang, Thuc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vigil, Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  15. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  16. Recent advances in magnetostrictive particulate composite technology

    Science.gov (United States)

    Pulliam, Wade J.; McKnight, Geoffrey P.; Carman, Gregory P.

    2002-07-01

    Recently, there have been significant advances in using magnetostrictive particles in a polymer matrix; finding uses in many applications, both as an active transducer and a passive damper. Termed magnetostrictive particulate composites (MPC), the material provides capabilities identical or superior to the monolithic material. Fortis Technologies has been pursuing improvements in the application and fabrication of this innovative material. The MPC technology provides a passive, broadband, large temperature range, high stiffness, dampling material to be used where current technologies fall short. Damping applications of this technology include sporting goods, power/hand tools, space launch and satellite design, noise abatement and vibration isolation. Energy absorption of the composites has been measured and is approaching that of the monolithic material. The material can also be actively controlled by a magnetic field, producing a transducer that can be used for sonar applications. The advantage of this technology over those currently in use is the large power density at relatively low frequencies and the ease of fabrication, allowing less expensive and more effective conformal arrays. Effective strain output and piezomagnetic coefficients have been measured, as have its dynamic properties. The results show significant improvement of the strain output and piezomagnetic coefficients, approaching the monolithic material.

  17. Advanced Technology Development for Stirling Convertors

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  18. Physics and Advanced Technologies 2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  19. Physics and Advanced Technologies 2001 Annual Report

    International Nuclear Information System (INIS)

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  20. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  1. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  2. Technologies Advance UAVs for Science, Military

    Science.gov (United States)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  3. Systematic Discrimination of Advanced Hydrogen Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  4. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  5. Development of power storage system. Review of development for advanced battery technique in Yuasa Battery Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Yuasa Battery Co., Ltd. selected the ceramic battery (Na/S) for power storage to establish the basic technique, to enlarge the capacity and to develop the 50kW/400kWh battery system. The ceramic battery is one where Na and S are combined and the beta alumina, that is, a special solid hydrolyte is utilized as the Na ion conductor. The battery system under development consists of 1120 batteries in which each nominal capacity is 540Wh, and which are connected to series and parallel and is put in a insulating electric furnace. The 76-77% energy efficiency in the constant power charging and discharging per every 8 hours specified, was established at the initial test of NO. 1 50kW/400kW power system. Other tests are conducting. (1 fig, 1 tab, 2 photo)

  6. Assessment of high power HEV lead-acid battery advancements by comparative benchmarking with a European test procedure

    Science.gov (United States)

    Conte, Mario; Pede, Giovanni; Sglavo, Vincenzo; Macerata, Diego

    The technical and practical suitability of lead-acid batteries for applications in vehicles with electrical drivetrains (battery-powered or hybrid electric) has been experimentally investigated in a variety of testing programmes. Under the direction and funding support of the Commission of the European Community, since early 1990s, the R&D Organisation EUCAR, a collaborative partnership of most European car manufacturers, has been conducting battery technological assessment projects, through bench tests carried out by different independent laboratories throughout Europe, using agreed test procedures. In this framework, ENEA acted as independent testing institute and tested, among others, three high power lead-acid batteries of various technologies (flat plate electrodes and spiral wound) for EV and HEV applications. In addition, different battery sizes and operating conditions have been tested at ENEA in a separate collaboration with ALTRA-IRISBUS. This paper intends to trace technological and performance improvements of high power lead-acid battery technology through the analysis of experimental data during parameter and life cycle tests, including the effects of battery sizes, charge/discharge profiles and testing procedures, with special emphasis on the reduction of the internal resistance and the variation of peak power and cycle life.

  7. Advances in material capsule technology in HANARO

    International Nuclear Information System (INIS)

    A material capsule system has been developed for irradiation tests of non-fissile materials in HANARO. This capsule system has been actively utilized for various material irradiation tests requested by users from research institutes, universities, and the industries. Based on the accumulated experience and the user's sophisticated requirements, several advances in material capsule technologies were obtained recently for a more precise control and analysis of the neutron irradiation effect in HANARO. New instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen, irrespective of the reactor operation, have been developed and out-pile tested. The OR/IP capsule technologies for an irradiation test in the HANARO OR and IP test holes with a relatively lower neutron flux than the CT and IR test holes have also been developed and in-pile tested, successfully. A high temperature irradiation technology up to 1000degC is under development. An evaluation of the DPA (Displacement Per Atom) and activation of irradiated specimens was attempted by using the SPECTOR and ORIGEN2 codes, respectively. A new fluence monitor with a decreased activity was designed to measure the thermal and fast neutron fluences of the irradiated specimens. A friction welded tube using STS304 and Al1050 alloys was introduced to prevent a coolant leakage into a capsule during a capsule cutting process after an irradiation. (author)

  8. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  9. Advanced technologies for power and fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U.; Mann, A.N. [US Department of Energy/National Energy Technology Lab., Pittsburgh, PA (United States)

    2001-07-01

    The Clean Coal Technology Program (CCT) being conducted by the United States Department of Energy (DOE) is a government and industry co-funded effort. The program's purpose is to demonstrate new generation of innovative, environmentally friendly processes that enhance the utilization of coal to meet increasing demand for electric power and fuels. Program demonstration areas include environmental control, advanced power generation, fuels production, and industrial applications. The CCT Program has now grown to maturity, with over 50% of the projects selected having successfully completed their demonstration goals and objectives. Under the CCT Program, nine advanced electric power generation projects and five coal processing for clean fuels projects were selected for full scale commercial demonstration. This paper provides the status, accomplishments and results of the most widely accepted technologies currently being commercialized under these two categories. The projects are (1) Atmospheric Fluidized-Bed Combustion (AFBC) at Jacksonville Electric Authority; (2) Integrated Gasification Combined-cycle (IGCC) at Wabash River, Tampa Electric and Kentucky Pioneer; and (3) Eastman Chemical's production of methanol via coal gasification using the LPMEOH{trademark} process. 7 figs., 7 tabs.

  10. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  11. Advancement in Textile Technology for Defence Application

    Directory of Open Access Journals (Sweden)

    Ramdayal

    2013-05-01

    Full Text Available The early development of textiles involved use of natural materials like cotton, wool and flax. The advent of the new technology revolutionized textiles which enables to develop synthetic fibers like lycra®, a segmented polyurethane-urea, which has exceptional elastic properties, Kevlar®, which has ultra high strength properties and is used as bulletproof vest. For the improvement of personal mobility, health care and rehabilitation, it requires to integrate novel sensing and actuating functions to textiles. Fundamental challenge in the development of smart textile is that drapability and manufacturability of smart textiles should not be affected. Textile fabrics embedded with sensors, piezoelectric materials, flame retardant materials, super hydrophobic materials, controlled drug release systems and temperature adaptable materials can play major role in the development of advanced and high-tech military clothes. Advancement in the textile materials has the capacity of improving comfort, mobility and protection in diverse hostile environment. In this study, the advancement in energy harvesting textiles, controlled release textiles and engineering textiles are presented.

  12. Advancement in Textile Technology for Defence Application

    Directory of Open Access Journals (Sweden)

    Balasubramanian Kandasubramanian

    2013-05-01

    Full Text Available The early development of textiles involved use of natural materials like cotton, wool and flax. The advent of the new technology revolutionized textiles which enables to develop synthetic fibers like lycra®, a segmented polyurethane-urea, which has exceptional elastic properties, Kevlar®, which has ultra high strength properties and is used as bulletproof vest. For the improvement of personal mobility, health care and rehabilitation, it requires to integrate novel sensing and actuating functions to textiles. Fundamental challenge in the development of smart textile is that drapability and manufacturability of smart textiles should not be affected. Textile fabrics embedded with sensors, piezoelectric materials, flame retardant materials, super hydrophobic materials, controlled drug release systems and temperature adaptable materials can play major role in the development of advanced and high-tech military clothes. Advancement in the textile materials has the capacity of improving comfort, mobility and protection in diverse hostile environment. In this study, the advancement in energy harvesting textiles, controlled release textiles and engineering textiles are presented.Defence Science Journal, 2013, 63(3, pp.331-339, DOI:http://dx.doi.org/10.14429/dsj.63.2756

  13. Advanced fuel technology - A UK perspective

    International Nuclear Information System (INIS)

    The nuclear power industry in the United Kingdom is perhaps more diverse than in any other country. The diversity in design of stations is matched by a diversity in operating responsibility. The SGHWR and PFR are operated by the United Kingdom Atomic Energy Authority (UKAEA), 2 of the Magnox stations are owned and run by BNFL, 2 of the AGR stations and 1 Magnox station are controlled by the South of Scotland Electricity Board (SSEB), and the remaining reactors (including the Sizewell 'B' PWR) currently come under the responsibility of the Central Electricity Generating Board (CEGB) but will pass into the control of a new state-run company when the rest of the CEGB is privatized in 1990. Against this background of a variety of designs and operational responsibilities, there is clearly a great deal of scope for advances in fuel and fuel component technology. It should be noted, however, that the nuclear energy policy within the United Kingdom, particularly with regard to PWR plants, has been to adopt well proven designs wherever possible. Emphasis is therefore directed towards achieving the successful operation of conservative systems, with research and development work on advanced options for future implementation. The following sections give an overview of the areas where advanced designs are either in production or under development for each of the UK reactor systems in turn, together with an indication of possible future developments

  14. Advanced Electric Traction System Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  15. Zebra battery technologies for all electric smart car

    OpenAIRE

    O'Sullivan, T M; Bingham, Chris; Clark, R E

    2006-01-01

    This paper describes the operational behaviour and advantages of the high temperature, sodium nickel chloride (Zebra) battery, for use in all electric urban (city) vehicles. It is shown that an equivalent parallel electrical circuit can be employed to accurately simulate the electrochemical behaviour inherent in the most recent generation of Zebra cells. The experimental procedure is outlined and summary attributes of the investigation validated by both simulation studies, and experimentally,...

  16. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  17. Advances in riser and pipeline technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Wan C.; Mortazavi, Mehrdad; Weir, Michael S. [ExxonMobil Development Company, Dallas, TX (United States)

    2009-12-19

    As oil and gas production continues to move into new frontier areas, novel applications of the existing riser and pipeline technologies need to be developed to meet the often more stringent requirements encountered in these environments. The challenges include ultra deep water, harsh environments, aggressive fluid conditions, and local content objectives, etc. They will require industry to constantly extend, expand, and enhance the broad range of solution options. Also, the existing design criteria in industry may need to be revised or new criteria may need to be developed to satisfy these needs. Exxon Mobil (Em) employs, and works with others in industry to promote robust design and operating practices. This approach requires in-depth understanding, sound engineering principles, advanced analysis, uncertainty management, and supportive qualification test data. It enables confident selection, extrapolation, and innovation of technologies to address new riser system and pipeline challenges. Focus on fundamental is imperative to ensure integrity of the selected systems during fabrication, installation, and operation phases. Recent and past project experience in deep water Gulf of Mexico and West Africa provides many successful examples of this approach. This paper reviews several examples of the key riser system and pipeline technology enhancements recently achieved by EM to provide confidence in addressing technical and project application challenges. Riser system technology enhancements addressed in this paper include steel catenary riser (SCR) application on turret-moored FPSO with severe motions, pipe-in-pipe (PIP) hybrid production riser to effectively manage gas lift and flow assurance requirements, irregular wave analysis methodology for flexible risers and umbilicals to reduce conservatism, and qualification of riser and pipeline VIV prediction and mitigation methods. Pipeline technology enhancements detailed in this paper include lateral buckling prediction

  18. Advances in space technology: the NSBRI Technology Development Team

    Science.gov (United States)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  20. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  1. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  2. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  3. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    OpenAIRE

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01

    This report discusses the development of advanced batteries for plug-in hybrid electric vehicle (PHEV) applications. We discuss the basic design concepts of PHEVs, compare three sets of influential technical goals, and explain the inherent trade-offs in PHEV battery design. We then discuss the current state of several battery chemistries, including nickel-metal hydride (NiMH) and lithium-ion (Li-Ion), comparing their abilities to meet PHEV goals, and potential trajectories for further improve...

  4. 75 FR 40857 - Webinar About Advanced Defense Technologies RFP

    Science.gov (United States)

    2010-07-14

    ... ADMINISTRATION Webinar About Advanced Defense Technologies RFP AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of open webinar meeting to discuss Advanced Defense Technologies (ADT) Request for... webinar it is hosting to answer questions from potential Offerors about the Advanced Defense...

  5. Advanced Education and Technology Business Plan, 2010-13. Highlights

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  6. Technological advances in electrospinning of nanofibers

    Directory of Open Access Journals (Sweden)

    Wee-Eong Teo, Ryuji Inai and Seeram Ramakrishna

    2011-01-01

    Full Text Available Progress in the electrospinning techniques has brought new methods for the production and construction of various nanofibrous assemblies. The parameters affecting electrospinning include electrical charges on the emerging jet, charge density and removal, as well as effects of external perturbations. The solvent and the method of fiber collection also affect the construction of the final nanofibrous architecture. Various techniques of yarn spinning using solid and liquid surfaces as well as surface-free collection are described and compared in this review. Recent advances allow production of 3D nanofibrous scaffolds with a desired microstructure. In the area of tissue regeneration and bioengineering, 3D scaffolds should bring nanofibrous technology closer to clinical applications. There is sufficient understanding of the electrospinning process and experimental results to suggest that precision electrospinning is a real possibility.

  7. Advanced information technology: Building stronger databases

    Energy Technology Data Exchange (ETDEWEB)

    Price, D. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    This paper discusses the attributes of the Advanced Information Technology (AIT) tool set, a database application builder designed at the Lawrence Livermore National Laboratory. AIT consists of a C library and several utilities that provide referential integrity across a database, interactive menu and field level help, and a code generator for building tightly controlled data entry support. AIT also provides for dynamic menu trees, report generation support, and creation of user groups. Composition of the library and utilities is discussed, along with relative strengths and weaknesses. In addition, an instantiation of the AIT tool set is presented using a specific application. Conclusions about the future and value of the tool set are then drawn based on the use of the tool set with that specific application.

  8. Advanced monolithic pixel sensors using SOI technology

    Science.gov (United States)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  9. Development and Testing of an UltraBattery-Equipped Honda Civic

    Energy Technology Data Exchange (ETDEWEB)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  10. Genome engineering in cattle: recent technological advancements.

    Science.gov (United States)

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  11. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    Science.gov (United States)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  12. Advanced Life Support Technologies and Scenarios

    Science.gov (United States)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  13. Advancing colloidal quantum dot photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Cheng Yan

    2016-06-01

    Full Text Available Colloidal quantum dots (CQDs are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  14. CCSDS - Advancing Spaceflight Technology for International Collaboration

    Science.gov (United States)

    Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

  15. Advancing colloidal quantum dot photovoltaic technology

    Science.gov (United States)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  16. Advanced Technology for Isolating Payloads in Microgravity

    Science.gov (United States)

    Alhorn, Dean C.

    1997-01-01

    advances in isolation technology for that particular component. The final section presents some concluding thoughts and a summary of anticipated advances in research and development for isolating microgravity experiments.

  17. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). FINAL REPORT

    International Nuclear Information System (INIS)

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  18. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery

    OpenAIRE

    Mohamed Daowd; Mailier Antoine; Noshin Omar; Philippe Lataire; Peter Van Den Bossche; Joeri Van Mierlo

    2014-01-01

    Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small ...

  19. Lithium-ion Battery Demonstration for the 2007 NASA Desert Research and Technology Studies (Desert RATS) Program

    Science.gov (United States)

    Bennett, William; Baldwin, Richard

    2007-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.

  20. Advanced Technology MEMS-based Acoustic Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation proposes a technological advancement of current state-of-the-art acoustic energy harvester for harsh environment...

  1. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    International Nuclear Information System (INIS)

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between α, βrays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between β ray and material, shielding for β ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared

  2. NANO-BATTERY TECHNOLOGY FOR EV-HEV PANEL: A PIONEERING STUDY

    Directory of Open Access Journals (Sweden)

    Ataur Rahman

    2015-11-01

    Full Text Available Global trends toward CO2 reduction and resource efficiency have significantly increased the importance of lightweight materials for automobile original equipment manufacturers (OEM. CO2 reduction is a fundamental driver for a more lightweight automobile. The introduction of Electrical Vehicles (EVs is one initiative towards this end. However EVs are currently facing several weaknesses: limited driving range, battery pack heaviness, lack of safety and thermal control, high cost, and overall limited efficiency. This study presents a panel-style nano-battery technology built into an EV with CuO filler solid polymer electrolyte (SPE sandwiched by carbon fiber (CF and lithium (Li plate. In addition to this, an aluminum laminated polypropylene film is used as the electromagnetic compatibility (EMC shield. The proposed battery body panel of the EV would reduce the car weight by about 20%, with a charge and discharge capacity of 1.5 kWh (10% of car total power requirement, and provide the heat insulation for the car which would save about 10% power consumption of the air conditioning system. Therefore, the EV would be benefited by 30% in terms of energy reduction by using the proposed body. Furthermore, the proposed body is considered environmental-friendly since it is recyclable for use in a new product. However, the main limiting factors of the SPE are its thermal behavior and moderate ionic conductivity at low temperatures. The SPE temperature is maintained by controlling the battery panel charging/discharge rate. It is expected that the proposed panel-style nano-battery use in an EV would save up to 6.00 kWh in battery energy, equivalent to 2.81 liters of petrol and prevent 3.081 kg of CO2 emission for a travel distance of 100 km. KEYWORDS: epoxy resin; carbon fiber; lithium thin plate; energy generation; solid electrolyte battery

  3. Technological advances in the hemostasis laboratory.

    Science.gov (United States)

    Lippi, Giuseppe; Plebani, Mario; Favaloro, Emmanuel J

    2014-03-01

    Automation is conventionally defined as the use of machines, control systems, and information technologies to optimize productivity. Although automation is now commonplace in several areas of diagnostic testing, especially in clinical chemistry and immunochemistry, the concept of extending this process to hemostasis testing has only recently been advanced. The leading drawbacks are still represented by the almost unique biological matrix because citrated plasma can only be used for clotting assays and few other notable exceptions, and by the highly specific pretreatment of samples, which is particularly distinct to other test systems. Despite these important limitations, a certain degree of automation is also now embracing hemostasis testing. The more relevant developments include the growing integration of routine hemostasis analyzers with track line systems and workcells, the development of specific instrumentation tools to enhance reliability of testing (i.e., signal detection with different technologies to increase test panels, plasma indices for preanalytical check of interfering substances, failure patterns sensors for identifying insufficient volume, clots or bubbles, cap-piercing for enhancing operator safety, automatic reflex testing, automatic redilution of samples, and laser barcode readers), preanalytical features (e.g., positive identification, automatic systems for tube(s) labeling, transillumination devices), and postphlebotomy tools (pneumatic tube systems for reducing turnaround time, sample transport boxes for ensuring stability of specimens, monitoring systems for identifying unsuitable conditions of transport). Regardless of these important innovations, coagulation/hemostasis testing still requires specific technical and clinical expertise, not only in terms of measurement procedures but also for interpreting and then appropriately utilizing the derived information. Thus, additional and special caution has to be used when designing projects of

  4. Recent advances in airborne radiometric technology

    International Nuclear Information System (INIS)

    Since its inception, the DOE Remote Sensing Laboratory has made dramatic innovations in airborne radiometric technology. In the past few years there have been at least four major changes in operational philosophy. (1) The helicopter is now the prime radiation survey vehicle. Surveys are conducted at low speed and low altitude, with lines spaced only a few hundred feet apart. Radiation anomalies and subtle changes in background can be readily identified. (2) Much greater emphasis is now placed on accurate, detailed analysis and interpretation of radiation data. Dramatic improvements in survey hardware and software provide much more data of considerably better quality. (3) Recent Laboratory research has been concentrated on error-free, positive identification of point radiation sources. In the past, the extent and magnitude of dispersed sources were the major concerns. (4) Integrated remote sensing has been strongly emphasized at the Laboratory in recent years. This involves the simultaneous use of radiation detectors, aerial cameras, and the multispectral scanner imagery. The synergistic effects of such data correlation are of significantly greater value in analyzing the terrestrial environment. Many of the changes in operational philosophy are directly traceable to new or dramatically improved hardware and software employed at the Laboratory. Six items have been instrumental in the above technological advances: (1) the UHF Transponder System and its predecessor, the Microwave Ranging System; (2) Model IC of the REDAR data acquisition system; (3) the development of the search algorithm; (4) continued improvements in the REDACA data analysis system; (5) deployment of polyscin sodium iodide radiation detectors; and (6) development of the Graphic Overview System

  5. Physics and Advanced Technologies 2003 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004

  6. 锂电池充电技术综述%Review of lithium battery charging technology

    Institute of Scientific and Technical Information of China (English)

    何秋生; 徐磊; 吴雪雪

    2013-01-01

    在二次锂电池问世以来,凭借其循环寿命长、比能量高等优良的性能被应用在生产生活的各个领域.充电作为锂电池使用过程中最重要的一环,直接影响着电池的寿命及循环性能.在锂电池最佳充电曲线的基础上,分析了锂电池的各种不同充电方法,比较各自的充电速度、应用范围、电池寿命和循环性能等特性,最后提出了今后研究的方向.%The rechargeable lithium battery with the advantages of long cycle life,high energy density and other excellent performance has been widely used since its development in 1970s.As one of the most important process,charging directly affects the battery life and cycling performance.On the basis of the best lithium battery charging curve,the performance of various lithium battery charging methods was analyzed.Finally,the future investigation on lithium battery charging technology was discussed.

  7. The technology behind Colgate Total Advanced Fresh.

    Science.gov (United States)

    Williams, Malcolm I; Cummins, Diane

    2003-09-01

    In the early 1990s, a breakthrough toothpaste, Colgate Total, was launched with documented long-lasting activity against plaque, gingivitis, calculus, tooth decay, and bad breath. The technology behind this toothpaste is the combination of triclosan, a polyvinylmethylether/maleic acid copolymer, and sodium fluoride. The copolymer ensures maximal oral retention and subsequent release of the antibacterial triclosan. Effective levels of triclosan have been observed in the oral cavity 12 hours after brushing the teeth, allowing prolonged control of oral bacteria that may cause the most common dental problems, including bad breath. Similarly, the enhanced retention of triclosan to oral surfaces after using this revolutionary toothpaste for up to 2 years has led to significantly reduced incremental coronal caries compared to an American Dental Association-Approved anticavity fluoride toothpaste. Furthermore, significantly less calcium remained in dental plaque after brushing the teeth with the triclosan/copolymer toothpaste, resulting in the formation of less tartar. In keeping with the multiple oral health benefits provided by Colgate Total, consumers are now offered a new dentifrice, Colgate Total Advanced Fresh, which provides the numerous therapeutic and esthetic benefits that are the hallmark of Colgate Total. The new dentifrice, which contains an impactful breath-freshening flavor, has been documented to provide sustained control of bad breath over 12 hours.

  8. Advanced Lost Foam Casting Technology - Phase V

    Energy Technology Data Exchange (ETDEWEB)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  9. Advanced ignition and propulsion technology program

    Energy Technology Data Exchange (ETDEWEB)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  10. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  11. Status of the lead/acid battery industry in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J. (Jaya Raya Chloride Standby Power Sdn Bld, Hicom Industrial Estate, Selangor (Malaysia))

    1992-03-15

    The Malaysian automotive battery industry has an over-capacity and is experiencing a highly competitive situation in the domestic market. In the medium term, therefore, the industry will concentrate on making advances in battery design and technology, and on improving productivity. The manufacture of industrial batteries is similarly under pressure, particularly from foreign products. At present, it is not feasible to produce locally all the various types of industrial batteries required by the home market. (orig.).

  12. DISK BATTERIES IN THE ESOPHAGUS OF NIGERIAN CHILDREN: CASE SERIES

    OpenAIRE

    LUCKY OBUKOWHO ONOTAI; ADAOBI ELIZABETH OSUJI

    2015-01-01

    Foreign body (FB) ingestion is common in clinical practice especially in children. Its impaction in the esophagus constitutes an important cause of morbidity and mortality in our environment. Due to technological advancement and increase use of disk batteries to power children toys and remote control gadgets, ingestion of disk batteries is now commonplace. In our environment there is paucity of information on disk batteries hence we decided to present case series of disk batteries in the esop...

  13. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  14. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    Science.gov (United States)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  15. Advanced Education and Technology Business Plan, 2009-12

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many…

  16. Advanced Education and Technology Business Plan, 2008-11

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The Ministry of Advanced Education and Technology's 2008-11 business plan identifies how it plans to work over the next three years to enhance advanced learning opportunities and innovation for all Albertans. Alberta's advanced learning system is composed of public board-governed institutions, the apprenticeship and industry training system,…

  17. Advanced technology's impact on compressor design and development - A perspective

    Science.gov (United States)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  18. Advanced technologies impact on compressor design and development: A perspective

    Science.gov (United States)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  19. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  20. Recent advancements in prosthetic hand technology.

    Science.gov (United States)

    Saikia, Angana; Mazumdar, Sushmi; Sahai, Nitin; Paul, Sudip; Bhatia, Dinesh; Verma, Suresh; Rohilla, Punit Kumar

    2016-07-01

    Recently, significant advances over the past decade have been made in robotics, artificial intelligence and other cognitive related fields, allowing development of highly sophisticated bio-mimetic robotics systems. In addition, enormous number of robots have been designed and assembled by explicitly realising their biological oriented behaviours. To enhance skill behaviours and adequate grasping abilities in these devices, a new phase of dexterous hands has been developed recently with bio-mimetically oriented and bio-inspired functionalities. The aim in writing this review paper is to present a detailed insight towards the development of the bio-mimetic based dexterous robotic multi-fingered artificial hand. An "ideal" upper limb prosthesis should be perceived as a part of their natural body by the amputee and should replicate sensory-motor capabilities of the amputated limb. Upper-limb amputations are most often the result of sudden trauma to the body, although they also can be caused by malignancy, congenital deficiencies and vascular diseases. This paper discusses the different bio-mimetic approaches using a framework that permits for a common description of biological and technical based hand manipulation behaviour. In particular, the review focuses on a number of developments in the inspired robotic systems. In conclusion, the study found that a huge amount of research efforts in terms of kinematics, dynamics, modelling and control methodologies are being put in to improve the present hand technology, thereby providing more functionality to the prosthetic limb of the amputee. This would improve their quality-of-life and help in performing activities of daily living (ADL) tasks with comparative ease in the near future. PMID:27098838

  1. Plan for advanced microelectronics processing technology application

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  2. TECHNOLOGICAL ADVANCES IN AGRICULTURAL ECONOMICS CURRICULA

    OpenAIRE

    Schurle, Bryan W.; Comer, Dorothy A.

    1995-01-01

    The potential use of computers and electronic technology have created considerable interest among educators in agricultural economics. This paper provides an overview of the use of electronic technology within agricultural economics curricula; examines areas in which technological development offers promise and examines issues associated with adoption of the technology.

  3. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  4. Determination of the lead-acid battery's dynamic response using Butler-Volmer equation for advanced battery management systems in automotive applications

    Science.gov (United States)

    Piłatowicz, Grzegorz; Budde-Meiwes, Heide; Kowal, Julia; Sarfert, Christel; Schoch, Eberhard; Königsmann, Martin; Sauer, Dirk Uwe

    2016-11-01

    Micro-hybrid vehicles (μH) are currently starting to dominate the European market and seize constantly growing share of other leading markets in the world. On the one hand, the additional functionality of μH reduces the CO2 emissions and improves the fuel economy, but, on the other hand, the additional stress imposed on the lead-acid battery reduces significantly its expected service life in comparison to conventional vehicles. Because of that μH require highly accurate battery state detection solutions. They are necessary to ensure the vehicle reliability requirements, prolong service life and reduce warranty costs. This paper presents an electrical model based on Butler-Volmer equation. The main novelty of the presented approach is its ability to predict accurately dynamic response of a battery considering a wide range of discharge current rates, state-of-charges and temperatures. Presented approach is fully implementable and adaptable in state-of-the-art low-cost platforms. Additionally, shown results indicate that it is applicable as a supporting tool for state-of-charge and state-of-health estimation and scalable for the different battery technologies and sizes. Validation using both static pulses and dynamic driving profile resulted in average absolute error of 124 mV regarding cranking current rate of 800 A respectively.

  5. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  6. Technological advances in self-insurance and self-protection

    OpenAIRE

    Chang-Ming Lee

    2015-01-01

    This study investigates how technological advances in self-insurance (or self-protection) affect the optimal level of self-insurance (or self-protection) and that of insurance, if insurance is also taken into account. Conditions are derived for determining the signs of changes in the optimal levels of decision variables due to improved technology. Two cross-derivatives are found to be the key factors. Classification of technological advances is suggested based on the two cross-derivatives. Th...

  7. The State Prize for 1991 Science and Technology Advance

    Institute of Scientific and Technical Information of China (English)

    LINantion; FENGYilun

    1992-01-01

    According to the report in Science and Technology Daily on 10 July 1991, prize winners for the State Prize for 1991 Science and Technology Advance in China have been selected by the Evaluation Committee of the State Prize for 1991 Science and Technology Advance. Among the prizes, eight programs were concerned with rice research: Pathogenetic Types of Rice Bacterial Leaf Blight in China and the Application in Disease-resistant Breeding, by FANG Zhongda,

  8. 75 FR 106 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2010-01-04

    ...Pursuant to the Federal Advisory Committee Act (5 U.S.C., App.), notice is hereby given that the Visiting Committee on Advanced Technology (VCAT), National Institute of Standards and Technology (NIST), will meet Tuesday, February 2, 2010, from 8:30 a.m. to 5 p.m. and Wednesday, February 3, 2010, from 8:30 a.m. to 11:30 a.m. The Visiting Committee on Advanced Technology is composed of fifteen......

  9. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  10. Technological Advances in Nursing Care Delivery.

    Science.gov (United States)

    Sullivan, Debra Henline

    2015-12-01

    Technology is rapidly changing the way nurses deliver patient care. The Health Information Technology for Economic and Clinical Health Act of 2009 encourages health care providers to implement electronic health records for meaningful use of patient information. This development has opened the door to many technologies that use this information to streamline patient care. This article explores current and new technologies that nurses will be working with either now or in the near future.

  11. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  12. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  13. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of

  14. Production of Construction Materials Using Advanced Recycling Technologies

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Waste reduction, material reuse, and use of recycle-content products can be focused on the management system somewhat. In contrast, material recycling is the technical issue how to create new materials using wastes. Thus, three advanced recycling technologies; 1) Synthetic Lightweight Aggregate technology (SLA), 2) Clean Coal Technology (CCT), and 3) RP-1 Polymer Identification System are introduced.

  15. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  16. Advanced Technology Training Program for the Apparel Industry. Final Report.

    Science.gov (United States)

    El Paso Community Coll., TX.

    A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The…

  17. 2004 Physics and Advanced Technologies In the News

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  18. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  19. Managing the Perception of Advanced Technology Risks in Mission Proposals

    Science.gov (United States)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  20. Development of essential system technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others

    1999-03-01

    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  1. Advancement in Engineering Technology: A Novel Perspective

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas but to...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected......In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...

  2. Schedule Risks Due to Delays in Advanced Technology Development

    Science.gov (United States)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  3. A review of advanced manufacturing technology

    Science.gov (United States)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  4. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  5. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  6. Optimized synthesis technology of LiFePO4 for Li-ion battery

    Institute of Scientific and Technical Information of China (English)

    QU Tao; TIAN Yan-wen; DING Yang; ZHONG Can-yun; ZHAI Yu-chun

    2005-01-01

    The influence of factors of the carbon black content, sintering temperature, sintering time, molar ratio of Li to Fe, as well as the electrochemical properties of LiFePO4 for lithium ion battery were studied. The only technology was obtained by using range analysis through Latin orthogonal experiment of L44 (16). The results show that the optimization synthesis technology of LiFePO4 is content of 5% doping carbon, sintering temperature of 700 ℃,molar ratio of Li to Fe of 1.03 : 1 and sintering time of 16 h. The optimized cathode synthesis techniques can make LiFePO4 have good electrochemical properties.

  7. ICONE-4: Proceedings. Volume 1 -- Part B: Basic technological advances

    International Nuclear Information System (INIS)

    The proceedings of this conference are divided into 5 volumes. Volume one is divided into Parts A and B. Here in Part B, the following subjects are covered: advances in thermal hydraulic computer codes for reactor analysis; human health effects of low level radiation; advances in liquid metal reactor technology; computational and experimental developments; two-phase flow and heat transfer fundamentals; advances in flow field analysis and testing; advanced reactor thermal hydraulic safety; thermal hydraulics of nuclear safety and reliability; advances in numerical simulation of steam explosions; and computational and experimental two-phase flow developments. Separate abstracts were prepared for most papers in this volume

  8. Advanced manufacturing technologies on color plasma displays

    Science.gov (United States)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  9. A study of advanced vitrification technology

    International Nuclear Information System (INIS)

    JNFL have developed the vitrification technology of a high level liquid waste with a modification in discharge performance of the noble metal by changing the bottom structure and adding heating means. Cold test was conducted by using a full scale mock-up melter which introduced the new vitrification technology. In the cold test, we confirmed the discharge performance of the noble metal. (author)

  10. Value analysis for advanced technology products

    Science.gov (United States)

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  11. Recent Advances in Solar Cell Technology

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  12. JTEL Winter School for Advanced Technologically Enhanced Learning

    NARCIS (Netherlands)

    Glahn, Christian; Gruber, Marion

    2010-01-01

    Glahn, C., & Gruber, M. (2010). JTEL Winter School for Advanced Technologically Enhanced Learning. In ~mail. Das Magazin des Tiroler Bildungsinstituts, 01/10, März (p. 3-4). Innsbruck: Grillhof, Medienzentrum.

  13. Appropriate battery technology for a new, rechargeable, micro-solar lantern

    Science.gov (United States)

    Lambert, D. W. H.; Holland, R.; Crawley, K.

    A detailed market survey in Kenya has assessed the performance of currently available domestic lighting systems, for example, kerosene 'hurricane` lamps and (generally poorly constructed) solar lanterns, against end-user expectations. Following this survey, the UK Government's Department for International Development approved a project to design and develop an affordable, reliable and efficient solar lantern, which would provide improved lighting to rural households. This paper provides an overview of the end-user requirements, and corresponding lantern design features. The suitability of three commercially available alternative battery technologies, viz., nickel-metal-hydride, nickel-cadmium, and valve-regulated lead-acid (VRLA), for use in this PV application are discussed. Finally, improvements to the VRLA batteries are proposed, which would further enhance their cycle-life and reduce the energy cost per cycle.

  14. Carbon honeycomb grids for advanced lead-acid batteries. Part II: Operation of the negative plates

    Science.gov (United States)

    Kirchev, A.; Dumenil, S.; Alias, M.; Christin, R.; de Mascarel, A.; Perrin, M.

    2015-04-01

    The article presents the recent progress in the carbon honeycomb grid technology for valve-regulated lead-acid batteries with absorptive glass-mat separators (AGM-VRLAB). The work is focused on the development of negative current collectors using industrial grade composite honeycomb precursors. The developed model AGM-VRLA cells comprised of one prototype honeycomb negative electrode and two conventional traction positive counter-electrodes show high utilisation of the negative active material and long cycle life both in high-rate partial state of charge (HRPSoC) cycling mode and in deep cycling mode. The analysis of the results from the cycle-life tests and the tear-down analysis indicate that the benefits delivered by the novel grids can be related to the low mesh size of the grid, low γ-coefficient, as well as the use of milled carbon fibre additive. The combination of the three, results in the reversibility of the negative active material sulfation process when the electrolyte concentration in the cells is lower than the one traditionally used in the AGM-VRLAB technology. The negative plates show no signs of irreversible degradation after more than 900 cycles in deep cycling mode and more than 2000 capacity turnovers (equivalent cycles) in HRPSoC cycling mode.

  15. Advances in Liquid Phase{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.R.; Heydorn, E.C.; Moore, R.B.; Tijm, P.J.A.

    1998-07-01

    The Liquid Phase{trademark} Technology builds on the successful development by Air Products and Chemicals, Inc. of the slurry phase bubble column technology. Air Products and Chemicals Liquid Phase{trademark} technology embodies several chemical processes including Liquid Phase Methanol{trademark} (LPMEOH{trademark}) and the Liquid Phase DiMethyl Ether{trademark} (LPDME{trademark}) and other alcohols/oxygenates. The LPMEOH{trademark} technology was developed during the 1980's with the financial support of the US department of Energy (DOE). The concept was proven in over 7,400 hours of test operation in a DOE-owned, 3,200 gallons (US) of methanol per day process development unit located at LaPorte, Texas. The first commercial-scale demonstration plant for the technology has been constructed, commissioned, and is now being operated at Eastman Chemical Company's coal gasification facility in Kingsport, Tennessee under the DOE's Clean Coal Technology Program. Construction began in October of 1995 and was completed in January of 1997. After commissioning and startup activities were completed, operation began in April of 1997. Currently, the LPMEOH{trademark} plant is producing 80,000 gallons of methanol per day. Over the next four years, a program of operation will demonstrate the commercial advantages of the technology to include simulations of the integrated gasification combined cycle (IGCC) coproduction of power and methanol application. This paper reviews the: Commercial Application for the LPMEOH{trademark} process technology; Operational Plans to demonstrate the commercial advantages of the plant; LPMEOH{trademark} Plant-Status, highlighting the integration of the LPMEOH{trademark} plant at Kingsport, and the accomplishments during the initial operating period; and Highlights of other Liquid Phase{trademark} Technology Developments.

  16. Technology advances for Space Shuttle processing

    Science.gov (United States)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  17. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  18. Advanced electric powertrain technology: ADEPT platform overview

    NARCIS (Netherlands)

    Stipetic, S.; Miebach, W.; Wilkins, S.; Lomonova, E.A.; Paulides, J.J.H.; Tegenbosch, J.

    2016-01-01

    Design of high performance, low cost and clean propulsion systems requires multiple disciplines such as physics, mathematics, electrical engineering, mechanical engineering and specialisms like control engineering and safety. This paper details the program of EU FP7 Multi-ITN project ADvanced Electr

  19. Advanced Education and Technology Business Plan, 2011-14

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. Its core businesses are to: (1) provide strategic leadership for Campus Alberta and Alberta Innovates; and (2) engage learners, industry and the community in learning…

  20. Advances in induction-heated plasma torch technology

    Science.gov (United States)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  1. Advancement of Multifunctional support structure technologies (AMFSST)

    CERN Document Server

    John, R; Frerker, H J; Newerla, A

    2008-01-01

    The multifunctional support structure (MFSS) technology is promising a reduction of overall mass and packing volume for spacecraft (S/C) electronic components. This technology eliminates the electronic box chassis and the cabling between the boxes by integrating the electronics, thermal control and the structural support into one single element. The ultimate goal of the MFSS technology is to reduce size, weight, power consumption, cost and production time for future spacecraft components. The paper focus on the main challenges and solutions related to the thermal management within the MFSS technology based on the selected charge regulator (CR) application. Starting with the main set of thermal requirements for the CR the paper will include, conceptual and detailed design based on highconductivity carbon fibre CFRP, description and results of the thermal material sample test program ; parameter and results for the performed first thermal simulation

  2. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  3. Status of advanced light-duty transportation technologies in the US

    International Nuclear Information System (INIS)

    The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R and D targets and technology validation programs of the US government. - Highlights: ► Summary of the current status of LDVs and fuels. ► Overview of government policies and incentives for advanced vehicles and fuels. ► Technical and infrastructure barriers for biofuels, PHEVs, and FCEVs. ► Cost targets and research challenges for batteries and fuel cells. ► Summary of near- to mid-term market considerations for vehicles and fuels.

  4. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  5. Hierarchical porous carbon toward effective cathode in advanced zinc-cerium redox flow battery

    Institute of Scientific and Technical Information of China (English)

    谢志鹏; 杨斌; 蔡定建; 杨亮

    2014-01-01

    Advanced zinc-cerium redox flow battery (ZCRFB) is a large-scale energy storage system which plays a significant role in the application of new energy sources. The requirement of superior cathode with high acitivity and fast ion diffusion is a hierarchical porous structure, which was synthesized in this work by a method in which both hard template and soft template were used. The structure and the performance of the cathode prepared here were characterized and evaluated by a variety of techniques such as scan-ning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltam-metry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA). There were mainly three types of pore size within the hierarchical porous carbon:2μm, 80 nm, and 10 nm. The charge capacity of the cell using hierarchical porous carbon (HPC) as posi-tive electrode was obviously larger than that using carbon felt;the former was 665.5 mAh with a coulombic efficiency of 89.0%and an energy efficiency of 79.0%, whereas the latter was 611.1 mAh with a coulombic efficiency of 81.5%and an energy efficiency of 68.6%. In addition, performance of the ZCRFB using HPC as positive electrode showed a good stability over 50 cycles. These results showed that the hierarchical porous carbon was superior over the carbon felt for application in ZCRFB.

  6. Nano-structures Enhanced Novel Composite Electrode Material for Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode material for use in Li-ion batteries while maintaining high level of...

  7. Advances in Liquid Phase{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.R.; Heydorn, E.C.; Moore, R.B.; Tijm, P.J.A.

    1998-04-01

    The {open_quotes}Liquid Phase{trademark} Technology{close_quotes} builds on the successful development by Air Products and Chemicals, Inc. of the slurry phase bubble column technology. Air Products and Chemicals Liquid Phase{trademark} technology embodies several chemical processes including Liquid Phase Methanol{trademark} (LPMEOH{trademark}) and the Liquid Phase DiMethyl Ether{trademark} (LPDME{trademark}) and other alcohols/oxygenates. The LPMEOH{trademark} technology was developed during the 1980`s with the financial support of the U.S. Department of Energy (DOE). The concept was proven in over 7,400 hours of test operation in a DOE-owned, 3,200 gallons (U.S.) of methanol per day process development unit located at LaPorte, Texas. The first commercial-scale demonstration plant for the technology has been constructed, commissioned, and is now being operated at Eastman Chemical Company`s coal gasification facility in Kingsport, Tennessee under the DOE`s Clean Coal Technology Program. Construction began in October of 1995 and was completed in January of 1997. After commissioning and startup activities were completed, operation began in April of 1997. Currently, the LPMEOH{trademark} plant is producing 80,000 gallons of methanol per day. Over the next four years, a program of operation will demonstrate the commercial advantages of the technology to include simulations of the integrated gasification combined cycle (IGCC) coproduction of power and methanol application. Air Products and Eastman formed the {open_quotes}Air Products Liquid Phase Conversion Co., L.P.{close_quotes} partnership to execute the commercial-scale demonstration project. Most of the product methanol is refined to chemical-grade quality (99.85 wt% purity via distillation) and used by Eastman as chemical feedstock in the commercial facility. A portion of the product methanol will be withdrawn prior to purification (about 98 wt% purity) and used in off-site product-use tests.

  8. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  9. 9 Waste Rubber Technologies Passed the Review on Advanced Applicable Technologies by MIIT

    Institute of Scientific and Technical Information of China (English)

    Qiart Bozhang

    2012-01-01

    To promote the development of integrative utilization technologies of industrial solid wastes and to enhance the level of integrative utilization, the Ministry of Industry and Information Technology (MIIT) held Reviewing Meeting of Advanced Applicable Technologies for the Integrative Utilization of Industrial Solid Wastes on April 27. 9 integrative utilization technologies of waste rubber passed this review.

  10. Advances in software science and technology

    CERN Document Server

    Kamimura, Tsutomu

    1994-01-01

    This serial is a translation of the original works within the Japan Society of Software Science and Technology. A key source of information for computer scientists in the U.S., the serial explores the major areas of research in software and technology in Japan. These volumes are intended to promote worldwide exchange of ideas among professionals.This volume includes original research contributions in such areas as Augmented Language Logic (ALL), distributed C language, Smalltalk 80, and TAMPOPO-an evolutionary learning machine based on the principles of Realtime Minimum Skyline Detection.

  11. Advance Power Technology Demonstration on Starshine 3

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  12. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  13. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  14. [Technological advances and hospital-at-home care].

    Science.gov (United States)

    Tibaldi, Vittoria; Aimonino Ricauda, Nicoletta; Rocco, Maurizio; Bertone, Paola; Fanton, Giordano; Isaia, Giancarlo

    2013-05-01

    Advances in the miniaturization and portability of diagnostic technologies, information technologies, remote monitoring, and long-distance care have increased the viability of home-based care, even for patients with serious conditions. Telemedicine and teleradiology projects are active at the Hospital at Home Service of Torino.

  15. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  16. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  17. They watch and wonder. Public attitudes toward advanced technology

    Science.gov (United States)

    Laporte, T.; Metlay, D.

    1975-01-01

    The relationship of technological development to individual and community response was investigated to provide a general conceptual, as well as empirical basis, for an understanding of the impact of advanced technologies on social life. Results of the surveys are presented in tables and graphs.

  18. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  19. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  20. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  1. IMPACT OF TECHNOLOGICAL ADVANCEMENT ON PEDAGOGY

    Directory of Open Access Journals (Sweden)

    Mounia ABIK

    2012-01-01

    Full Text Available To improve the quality of learning, pedagogues have prescribed different pedagogical approaches (constructivist, cognitivist…. However, the effective implementation of the majority of these approaches has not been possible only after the advent of new forms of learning (E_learning, M-learning.... These forms are closely related to technological development. Later with the emergence of technology (pervasive computing, Artificial Intelligent ... a new form of learning is established. It is called Pervasive Learning "P-Learning”. P-Learning is a social process that connects learners to communities of devices, people, and situations in a transparent and independent manner. This learning form goes far beyond the predictions suggested by pedagogue. Learning can then take part outside the learner via technology, which will be an extension of his brain by unloading the cognitive practices he performs. The aim of this paper is to answer the following questions: What alliance is there between pedagogy and technology? Are we in need of a new pedagogical approach in the new learning environment "P-Learning"? What are the new pedagogical challenges to resolve?

  2. Technological advances in radiotherapy of rectal cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L; Sebag-Montefiore, David

    2016-01-01

    , selective sparing of specific organs to enable chemotherapy escalation, and nonsurgical management. SUMMARY: Few prospective studies of IMRT and VMAT exist, which causes uncertainty not just in regards to the clinical benefit of these technologies but also in the optimal use. The priority for future...

  3. CNPC's Diversification Business Boosted by Advanced Technology

    Institute of Scientific and Technical Information of China (English)

    Yao Xuemin

    1996-01-01

    @@ The Eighth Five-Year Plan period witnessed rapid the development in the diversification business of China's onshore petroleum industry for five consecutive years mainly as a result of intensified efforts to develop new products and foreign- exchange- earning products by making full use of science and technology. In particular, great achievements were recorded in the following aspects.

  4. Advanced core monitoring technology for WWER reactors

    International Nuclear Information System (INIS)

    The Westinghouse BEACON online monitoring system has been developed to provide continuous core monitoring and operational support for pressurized water reactor using movable detectors (fission chamber) and core thermocouples. The basic BEACON core monitoring methodology is described. Traditional WWER reactors use rhodium fixed in-core detectors as the means to provide detailed core power distribution for surveillance purposes. An adapted version of the BEACON advanced core monitoring and support system is described which seems to be, due to the different demand/response requirements, the optimal solution (for routine surveillance and anomaly detection) for WWER reactors with existing fixed in-core detectors. (Z.S.) 4 refs

  5. Technological advances in extracorporeal membrane oxygenation for respiratory failure.

    Science.gov (United States)

    Rehder, Kyle J; Turner, David A; Bonadonna, Desiree; Walczak, Richard J; Rudder, Robert J; Cheifetz, Ira M

    2012-08-01

    Extracorporeal membrane oxygenation (ECMO) for neonatal and pediatric cardiac and/or respiratory failure is well established, and its use for adult respiratory failure is rapidly increasing. Management strategies developed over the past 30 years coupled with significant recent technological advances have led to improved ECMO survival. These new technologies are expanding the potential applications for ECMO in exciting ways, including new patient populations and the ability to make ECMO mobile for both intra- and inter-hospital transport. In this article, we highlight some of the recent technological advances and their impact on the utilization of ECMO in increasingly diverse patient populations.

  6. 9th International Conference on Advanced Computing & Communication Technologies

    CERN Document Server

    Mandal, Jyotsna; Auluck, Nitin; Nagarajaram, H

    2016-01-01

    This book highlights a collection of high-quality peer-reviewed research papers presented at the Ninth International Conference on Advanced Computing & Communication Technologies (ICACCT-2015) held at Asia Pacific Institute of Information Technology, Panipat, India during 27–29 November 2015. The book discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academia and industry present their original work and exchange ideas, information, techniques and applications in the field of Advanced Computing and Communication Technology.

  7. "ATLAS" Advanced Technology Life-cycle Analysis System

    Science.gov (United States)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  8. MIMO Technologies in 3GPP LTE and LTE-Advanced

    Directory of Open Access Journals (Sweden)

    Zhang Jianzhong(Charlie

    2009-01-01

    Full Text Available Abstract 3rd Generation Partnership Project (3GPP has recently completed the specification of the Long Term Evolution (LTE standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item "LTE-Advanced" to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R. In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  9. Prospect of advanced generation technologies in a competitive market place

    Energy Technology Data Exchange (ETDEWEB)

    Guha, M.; Singh, A.

    1999-07-01

    The US Electric utility industry is undergoing tremendous changes for meeting the challenge of deregulation and customer demands for a free competitive market. Two major forces are driving this market: the deregulation of the industry and customer demands for achieving the lowest cost for electricity, forcing utility companies to position themselves as the low-cost producers. This paper will briefly discuss the status of various advanced generation technologies with respect to their costs, applicability and limitations, where these technologies are expected to be cost-effective and how they compare with the combined cycle plants. Advanced generation technologies may benefit as the environment regulations are tightened. This paper will examine how, when and where the advanced generation technologies would play a role in penetrating the market on their own merits.

  10. Crash Models for Advanced Automotive Batteries: A Review of the Current State of the Art

    Energy Technology Data Exchange (ETDEWEB)

    Turner, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allu, Srikanth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gorti, Sarma B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalnaus, Sergiy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kumar, Abhishek [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lebrun-Grandie, Damien T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pannala, Sreekanth [Saudi Arabia Basic Industries Corporation (SABIC), Houston, TX (United States); Simunovic, Srdjan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Slattery, Stuart R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hsin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Safety is a critical aspect of lithium-ion (Li-ion) battery design. Impact/crash conditions can trigger a complex interplay of mechanical contact, heat generation and electrical discharge, which can result in adverse thermal events. The cause of these thermal events has been linked to internal contact between the opposite electrodes, i.e. internal short circuit. The severity of the outcome is influenced by the configuration of the internal short circuit and the battery state. Different loading conditions and battery states may lead to micro (soft) shorts where material burnout due to generated heat eliminates contact between the electrodes, or persistent (hard) shorts which can lead to more significant thermal events and potentially damage the entire battery system and beyond. Experimental characterization of individual battery components for the onset of internal shorts is limited, since it is impractical to canvas all possible variations in battery state of charge, operating conditions, and impact loading in a timely manner. This report provides a survey of modeling and simulation approaches and documents a project initiated and funded by DOT/NHTSA to improve modeling and simulation capabilities in order to design tests that provide leading indicators of failure in batteries. In this project, ORNL has demonstrated a computational infrastructure to conduct impact simulations of Li-ion batteries using models that resolve internal structures and electro-thermo-chemical and mechanical conditions. Initial comparisons to abuse experiments on cells and cell strings conducted at ORNL and Naval Surface Warfare Center (NSWC) at Carderock MD for parameter estimation and model validation have been performed. This research has provided insight into the mechanisms of deformation in batteries (both at cell and electrode level) and their relationship to the safety of batteries.

  11. Advanced coal-fired power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, F. [Babcock Borsig Power Energy GmbH (Germany)

    2001-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{degree}C PF Power Plant'. Net efficiences of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{degree}C. The principal efforts are based on development of creep resistent nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. The Advanced 700{degree}C PF Power Plant project will improve the competitiveness of coal-fired power generation. Furthermore, it will provide a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. The demonstration programme will leave the possibility of any plant output between 400 and 1000 MW. The project will run to the end of 2003. 8 figs.

  12. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries

    Science.gov (United States)

    Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M.; Tarascon, Jean-Marie

    2016-01-01

    Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P′2-Na1[Fe0.5Mn0.5]O2 and C/‘Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology. PMID:26777573

  13. Advanced casting technologies for lightweight automotive applications

    Directory of Open Access Journals (Sweden)

    Alan A. Luo

    2010-11-01

    Full Text Available This paper provides an overview of alloy and process developments in aluminum and magnesium castings for lightweight automotive applications. Wear-resistant aluminum alloys, creep-resistant and high strength/ductility magnesium alloys have been developed for automotive applications. On the process front, vacuum-assisted die casting and high vacuum die casting technologies have been developed for high-integrity body and chassis applications. Thin-wall and hollow casting components are being produced by low-pressure die casting processes for structural applications. Overcasting technology is gaining traction and has enabled mixed material designs for automotive sub-systems such as engine cradles and instrument panel beams. Simulation tools developed to predict the interfacial interactions of the dissimilar components and the structural integrity of the overcast systems are being validated in the casting trials.

  14. Recent advances in magnetic heat pump technology

    Science.gov (United States)

    Uherka, Kenneth L.; Hull, John R.; Scheihing, Paul E.

    Magnetic heat pump (MHP)/refrigeration systems, incorporating state-of-the-art superconducting magnet technology, were assessed for industrial applications ranging from the liquefaction of gases (20 K to 100 K range) to cold storage refrigeration for food preservation (250 K to 320 K range). Initial market penetration of MHP technology is anticipated to occur in the gas liquefaction sector, since the performance advantages of magnetic refrigeration cycles relative to gas compression cycles and other conventional systems are more pronounced in the lower temperature ranges. Design options for rotary MHP devices include alternative regeneration schemes to obtain the temperature spans necessary for industrial applications. The results of preliminary design assessment studies indicate that active magnetic regenerator concepts, in which the magnetic working material also serves as the regenerative medium, offer advantages over alternative MHP designs for industrial applications.

  15. Advances in technology for integrated route analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carey, N.T.; George, P.J.; Khamhawi, K. [SAGE Engineering Ltd., Bath (United Kingdom)

    1998-12-31

    Pipeline and cable routes are becoming ever complex with routes being chosen in increasingly remote and technically demanding areas. Clients now demand greater information and analysis from the surveys and interpretations. By utilising a range of leading edge equipment, greater information can be obtained, visualised and analysed than ever before. Three case studies are presented, indicating how such technology has been employed to provide the client with a greater understanding of complex engineering projects, and what additional technology could have been utilised to further enhance the project. Examples of data, systems and project management used on two major pipe routes and one major cable route are presented. Swath Bathymetry (ISIS), 3D visualisation (Fledermaus), cone penetrometer testing (SAGE Miniature CPT), GIS databases (INfoXProfessional), and the use of pipeline stress analysis, upheaval buckling and rock dump optimisation software (SAFE Profile) are all examined. (author)

  16. Advanced Optical Technologies for Space Exploration

    Science.gov (United States)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  17. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  18. Recent advances in PIM technology I

    OpenAIRE

    Zlatkov B.S.; Griesmayer E.; Loibl H.; Aleksić O.S.; Danninger H.; Gierl C.; Lukić L.S.

    2008-01-01

    In this article the state of art of the PIM (Powder Injection Moulding) technology is given in brief. The main process flow diagram consisting of four steps: feedstock preparation, injection moulding (green samples forming), the debinding (binder removing) procedure and the sintering process was described. After that the materials for binders and additives for the surface active agents were mentioned in brief. The metal injection moulding (MIM) process was analysed in more detail: MIM- stainl...

  19. Advanced technologies in web application design

    OpenAIRE

    Peruš, Blaž

    2016-01-01

    The main goal of this diploma thesis is a presentation of Autocommerce web project development. All used technologies are described. On the basis of the project we also present agile methodologies for software development which helps us to efficiently build the whole information system from the idea to the first version. Such methodologies are mostly used by startups, because they are perfect for building and testing products in a very short time & for adapting with the provided feedback from...

  20. Ethical aspects of advanced reproductive technologies.

    Science.gov (United States)

    Schenker, Joseph G

    2003-11-01

    The progress achieved during the last 25 years in the assisted reproductive technology field has been phenomenal. Many countries currently practice genetic material donation, human embryo cryopreservation, selective embryo reduction, preimplantation genetic diagnosis, and surrogacy. While embryo research and therapeutic cloning are carried out only in a few centers, thus far human cloning has been universally condemned. Nonetheless, the rapid evolution and progress of these various techniques of assisted reproduction has opened a Pandora's box of ethical issues that must be urgently addressed.

  1. DISK BATTERIES IN THE ESOPHAGUS OF NIGERIAN CHILDREN: CASE SERIES

    Directory of Open Access Journals (Sweden)

    LUCKY OBUKOWHO ONOTAI

    2015-07-01

    Full Text Available Foreign body (FB ingestion is common in clinical practice especially in children. Its impaction in the esophagus constitutes an important cause of morbidity and mortality in our environment. Due to technological advancement and increase use of disk batteries to power children toys and remote control gadgets, ingestion of disk batteries is now commonplace. In our environment there is paucity of information on disk batteries hence we decided to present case series of disk batteries in the esophagus of children highlighting the peculiarities of disk batteries, the dangers posed by them, the mode of retrieval, complications encountered, and possible recommendations to curtail the increasing occurrence.

  2. Advances in brazing science, technology and applications

    CERN Document Server

    2013-01-01

    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  3. Commercialization of Australian advanced infrared technology

    Science.gov (United States)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  4. Ethical aspects of advanced reproductive technologies.

    Science.gov (United States)

    Schenker, Joseph G

    2003-11-01

    The progress achieved during the last 25 years in the assisted reproductive technology field has been phenomenal. Many countries currently practice genetic material donation, human embryo cryopreservation, selective embryo reduction, preimplantation genetic diagnosis, and surrogacy. While embryo research and therapeutic cloning are carried out only in a few centers, thus far human cloning has been universally condemned. Nonetheless, the rapid evolution and progress of these various techniques of assisted reproduction has opened a Pandora's box of ethical issues that must be urgently addressed. PMID:14644805

  5. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  6. [Technology development as social process: prospects and frontiers of social scientific elucidation of technological advancement].

    Science.gov (United States)

    Dierkes, M

    1990-05-01

    This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.

  7. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    CERN Document Server

    Ramakrishnan, S; Jeyakumar, A Ebenezer

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

  8. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  9. Advanced metal-membrane technology-commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, D.J.

    1995-06-01

    The gasification of coal offers a potentially significant source of hydrogen for use in clean power generation and as a primary chemical feedstock. However, hydrogen derived from coal continues to be more expensive than hydrogen derived from natural gas or petroleum, due in large part to the expense of separating hydrogen from the mixture of gases produced during gasification. At Bend Research, we have been developing a novel hydrogen-permeable metal membrane that promises to be economical for hydrogen separation and purification, including the purification of hydrogen derived from gasifying coal. Furthermore, the membrane is ideally suited for use at high temperatures (200{degrees} to 500{degrees}C), making it feasible to produce pure hydrogen directly from hot gas streams. Through a partnership with Teledyne Wah Chang, we are proceeding with scale-up of prototype membrane modules and field tests to demonstrate the technology to potential users. Additionally, we are working with potential customers to estimate capital savings and operating costs for integrated systems. In this paper, we present some of the operating characteristics of the metal membrane, including its use to drive equilibrium-limited reactions toward complete conversion (e.g., the water-gas-shift reaction). We also describe our activities for commercializing this technology for a variety of applications.

  10. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  11. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  12. Brazil advances subsea technology in Marlim pilot

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19 MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.

  13. On-wall locomotion technology for advanced robot technology research

    International Nuclear Information System (INIS)

    The robots for extremely severe operation are those doing works in place of men in the environment to which men are unaccessible, for example the high radiation area in nuclear power plants, deep sea where diving is difficult and the high temperature sites due to fires. Agency of Industrial Science and Technology of Ministry of International Trade and Industry has carried out the technical development research on them for eight years from 1983, and the results were published. Wall surface moving technology was studied and developed as one of the elementary technologies for the robots for practical workings in nuclear power facilities. The target of development was the speed of moving on a wall surface of 2 km/h carrying 40 kg load. The development of the elementary technology, the research on the total system and the performance verification test were carried out. The dynamic examination of running adhesion, vacuum seals, the maintenance of stable vacuum, running suckers, the function of the joint trunk, the mechanism of moving on wall surfaces, the handling of the control system for moving on wall surfaces and the control of the transfer from floor to wall, the maintenance of negative pressure and the prevention of fall and the concept of a wall surface robot are reported. (K.I.)

  14. Major technological advances and trends in cheese.

    Science.gov (United States)

    Johnson, M E; Lucey, J A

    2006-04-01

    Over the last 25 yr, cheese production in the United States has more than doubled with most of the increase due to production in the western states. Processing large volumes of milk into cheese has necessitated changes in vat size and design, reliance on computer software, and milk standardization, including use of membrane concentration of milk either at the cheese plant or on the farm. There has been increased interest in specialty cheeses including cheese made from sheep, goat, and organic milks. In addition, membrane processing of whey into various value-added components has become routine. Changes in cheese manufacturing protocols have resulted in a reduction of the manufacturing time and the necessity for consistent and reliable starter activity. Major advances in the genetics of microorganisms have not only resulted in widespread use of fermentation-produced chymosin but also in starter bacteria with improved resistance to bacteriophage infection. Genomics and proteomics have increased the likelihood of the development of nonstarter adjuncts with specific enzymatic activity. Indeed, the use of adjunct microorganisms to produce cheese with a unique flavor profile or to produce cheese with more consistent or better quality flavor has gained almost universal acceptance.

  15. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  16. Progress in diagnosis of breast cancer: Advances in radiology technology

    Directory of Open Access Journals (Sweden)

    J Mari Beth Linder

    2015-01-01

    Full Text Available Breast cancer is the leading cause of cancer in females between the ages of 15 and 54, and the second leading cause of cancer death in women in the United States. Diagnosis begins with detection by breast examination (clinical breast exam or breast self-exam or by radiologic studies, like mammography. Many advances in the diagnosis of breast cancer have taken place in recent years. This article will review the history of radiologic advances in the diagnosis of breast cancer. Use of technological advancements in digital breast tomosynthesis, magnetic resonance imaging, and ultrasound in breast cancer diagnosis will be presented. Advantages and disadvantages of these diagnostic interventions when compared to older, traditional X-ray films will be discussed. It is important for all nurses, including radiology and oncology nurses, to be well informed about these varied diagnostic modalities, and appreciate the fact that advances in radiologic imaging technologies can yield improved outcomes for breast cancer patients.

  17. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  18. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation. PMID:17855217

  19. Advances in lightweight nickel electrode technology

    Science.gov (United States)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  20. Advanced technologies in the meat industry.

    Science.gov (United States)

    Longdell, G R

    1994-01-01

    New Zealand has invested heavily in the development of slaughter dressing and deboning equipment and machinery for sheep and lamb. In total some thirteen machines have been developed to date and all are now commercially available and many examples are working within New Zealand and overseas. Significant economic savings have been derived from the introduction of these machines. The Australian meat industry is funding a major programme in beef slaughter technology development. Eleven modules have been developed and at present they are being incorporated into a commercial plant at Kilcoy in Queensland, Australia. The Netherlands have a programme named Slaughterline 2000 which includes a number of pork slaughtering and processing initiations. Stunning, sticking and an automatic carcass opener are developments within this programme.

  1. Development of advanced LWR fuel pellet technology

    International Nuclear Information System (INIS)

    A UO2 pellet was designed to have a grain size of larger than 12 μm, and a new duplex design that UO2-Gd2O3 is in the core and UO2-Er2O3 in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO2 and additives. The open porosity of UO2 pellet was reduced by only mixing AUC-UO2 powder with ADU-UO2 or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO2 sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO2-U3O8 powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U3O8 single crystals were added to UO2 powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 μm. In UO2-Gd2O3 sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO2 pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  2. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT. PMID:26295765

  3. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  4. A comparison of battery testing protocols: Those used by the U.S. advanced battery consortium and those used in China

    Science.gov (United States)

    Robertson, David C.; Christophersen, Jon P.; Bennett, Taylor; Walker, Lee K.; Wang, Fang; Liu, Shiqiang; Fan, Bin; Bloom, Ira

    2016-02-01

    Two testing protocols, QC/T 743 and those used by the U.S. Advanced Battery Consortium (USABC), were compared using cells based on LiFePO4/graphite chemistry. Differences in the protocols directly affected the data and the performance decline mechanisms deduced from the data. In all cases, the rate of capacity fade was linear with time. Overall, the testing protocols produced very similar data when the testing conditions and metrics used to define performance were similar. The choice of depth of discharge and pulse width had a direct effect on the apparent rate of resistance increased and estimated cell life. At greater percent depth of discharge (%DOD) and pulse width, the estimated life was shorter that at lower %DOD and shorter pulse width. This indicates that cells which were at the end of life based on the USABC protocol were not at end of life based on the QC/T 743 protocol by a large margin.

  5. Advanced CO2 Removal Technology Development

    Science.gov (United States)

    Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas

    2001-01-01

    The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.

  6. Nano-Engineered Materials for Rapid Rechargeable Space Rated Advanced Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy, energy density...

  7. Advanced Li/CFx Primary Batteries with Non-Flammable Electrolytes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks to develop high specific energy primary batteries that are safe and capable of performing under a wide temperature range, for manned space missions. To...

  8. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  9. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  10. Interoperable Technologies for Advanced Petascale Simulations (ITAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Shephard, Mark S

    2010-02-05

    Efforts during the past year have contributed to the continued development of the ITAPS interfaces and services as well as specific efforts to support ITAPS applications. The ITAPS interface efforts have two components. The first is working with the ITAPS team on improving the ITAPS software infrastructure and level of compliance of our implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is being involved with the discussions on the design of the iField fields interface. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. The development of parallel unstructured mesh methods has considered the need to scale unstructured mesh solves to massively parallel computers. These efforts, summarized in section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2 and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count machine available. The ITAPS developments that have contributed to the scaling and performance of PHASTA include an iterative migration algorithm to improve the combined region and vertex balance of the mesh partition, which increases scalability, and mesh data reordering, which improves computational performance. The other developments are associated with the further development of the ITAPS parallel unstructured mesh

  11. Batteries. Fundamentals and theory, present state of the art of technology and trends of development. 4. compl. rev. ed.; Batterien. Grundlagen und Theorie, aktueller technischer Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Kiehne, H.A.; Berndt, D.; Fischer, W. [and others

    2000-07-01

    This volume gives a comprehensive survey of the present state of the electrochemical power storage with special consideration of their technical characteristics of application. The volume is structured as follows: 1) Electrochemical energy storage, general fundamentals; 2) Batteries for electric-powered industrial trucks; 3) Energy supply concepts for driverless industrial trucks; 4) Batteries for electric-powered road vehicles; 5) Battery-fed electric drive from the user's point of view (=charging, maintenance); 6) Safety standards for stationary batteries and battery systems; 7) Batteries for stationary power supplies; 8) Battery operation from the user's point of view; 9) Starter batteries of vehicles; 10) High-energy batteries (e.g. Zn/Br{sub 2}-, Na/S-, Li/FeS-cells, fuel cells); 11) Solar-electric power supply with batteries; 12) Charging methods and charging technique; 13) Technology of battery chargers and current transformer, monitoring methods; 14) Standards and regulations for batteries and battery systems.

  12. Batteries. Fundamentals and theory, present state of the art of technology and trends of developments. 5. ed.; Batterien. Grundlagen und Theorie, aktueller technischer Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Kiehne, H.A.; Berndt, D.; Fischer, W.; Franke, H.; Koenig, W.; Koethe, H.K.; Preuss, P.; Sassmannshausen, G.; Stahl, U.C.; Wehrle, E.; Will, G.; Willmes, H.

    2003-07-01

    This volume gives a comprehensive survey of the present state of the electrochemical power storage with special consideration of their technical characteristics of application. The volume is structured as follows: 1) Electrochemical energy storage, general fundamentals; 2) Batteries for electric-powered industrial trucks; 3) Energy supply concepts for driverless industrial trucks; 4) Batteries for electric-powered road vehicles; 5) Battery-fed electric drive from the user's point of view (=charging, maintenance); 6) Safety standards for stationary batteries and battery systems; 7) Batteries for stationary power supplies; 8) Battery operation from the user's point of view; 9) Starter batteries of vehicles; 10) High-energy batteries (e.g. Zn/Br{sub 2}-, Na/S-, Li/FeS-cells, fuel cells); 11) Solar-electric power supply with batteries; 12) Charging methods and charging technique; 13) Technology of battery chargers and current transformer, monitoring methods; 14) Standards and regulations for batteries and battery systems.

  13. Recent advances in PIM technology I

    Directory of Open Access Journals (Sweden)

    Zlatkov B.S.

    2008-01-01

    Full Text Available In this article the state of art of the PIM (Powder Injection Moulding technology is given in brief. The main process flow diagram consisting of four steps: feedstock preparation, injection moulding (green samples forming, the debinding (binder removing procedure and the sintering process was described. After that the materials for binders and additives for the surface active agents were mentioned in brief. The metal injection moulding (MIM process was analysed in more detail: MIM- stainless steels, MIM-copper and MIM-aluminium as the most metals common in MIM metal parts production. After that our results of MIM stainless steel 316 L and MIM copper are given. The main powder characteristics, the shrinkage and density of the sintered samples were compared for isostatically pressed PM (powder metallurgy samples and MIM formed samples. The SEM fractographs of MIM and PM samples are given for MIM green parts, debinded (brown parts and sintered parts, and PM green parts and sintered parts. The results obtained were compared with literature data before they were applied in metal parts production.

  14. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  15. Image transfer technology in health care advancing

    International Nuclear Information System (INIS)

    Instead of recording images used in medicine, such as x-ray images, on film, it is now increasingly often possible to record them digitally in a computer. Using open and integrated information systems, digital images and the related data can in future be processed simultaneously, for instance, at x-ray units, in laboratories and at hospital wards. The data are fed into an open and integrated information system only once. Users may search for and combine data easily and any way they wish. Images are stored in the computer system at the location where they are generated, and transferred in the network only when they are needed elsewhere. In future, it will be possible to obtain information from a database using, for instance, sound as a means of communication. Data may be stored in the network as graphs, as sound or even as films. Despite all this , the introduction of new information technology still requires much consideration, resources and time. An open information system also needs standardised concepts and services so that different pieces of equipment and programmes are able to work together. (orig.)

  16. ICONE-4: Proceedings. Volume 1 -- Part A: Basic technological advances

    International Nuclear Information System (INIS)

    The proceedings of this conference are divided into 5 volumes. Volume one is subdivided into Parts A and B. Here in Part A, the following subjects are covered: fundamental thermal hydraulics; structural analysis and design of nuclear facilities; numerical and experimental two-phase flow developments; advances in reactor pressure vessel technology; advances in computational thermal hydraulics; thermal hydraulics of nuclear safety and reliability; advanced reactors thermal hydraulic safety--natural circulation; advances in numerical simulation of steam explosions; computational and experimental two-phase flow developments; two-phase flow and heat transfer fundamentals; advances in stability analysis; and material issues in nuclear applications. Separate abstracts were prepared for most papers in this volume

  17. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  18. Weather Prediction Improvement Using Advanced Satellite Technology

    Science.gov (United States)

    Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.

    2001-01-01

    We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common

  19. Cycle update : advanced fuels and technologies for emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, G. [National Research Council of Canada, Ottawa, ON (Canada)

    2009-07-01

    This paper provided a summary of key achievements of the Program of Energy Research and Development advanced fuels and technologies for emissions reduction (AFTER) program over the funding cycle from fiscal year 2005/2006 to 2008/2009. The purpose of the paper was to inform interested parties of recent advances in knowledge and in science and technology capacities in a concise manner. The paper discussed the high level research and development themes of the AFTER program through the following 4 overarching questions: how could advanced fuels and internal combustion engine designs influence emissions; how could emissions be reduced through the use of engine hardware including aftertreatment devices; how do real-world duty cycles and advanced technology vehicles operating on Canadian fuels compare with existing technologies, models and estimates; and what are the health risks associated with transportation-related emissions. It was concluded that the main issues regarding the use of biodiesel blends in current technology diesel engines are the lack of consistency in product quality; shorter shelf life of biodiesel due to poorer oxidative stability; and a need to develop characterization methods for the final oxygenated product because most standard methods are developed for hydrocarbons and are therefore inadequate. 2 tabs., 13 figs.

  20. MIMO Technologies in 3GPP LTE and LTE-Advanced

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2009-01-01

    Full Text Available 3rd Generation Partnership Project (3GPP has recently completed the specification of the Long Term Evolution (LTE standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item “LTE-Advanced” to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R. In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  1. Advanced information technology for training and emergency management

    International Nuclear Information System (INIS)

    Modern information technology provides many possibilities for improving both the safety and the availability of nuclear installations. A Nordic research programme was started in 1977, in which several organizations in Denmark, Finland, Norway and Sweden has been participating. The work has on a general level been addressing control rooms, human reliability and information technology for nuclear power plants. The research has had impact on the development of the control room solutions and the training simulators in Finland and also in the other Nordic countries. The present phase of the Nordic cooperation is investigating the use of advanced information technology in emergency management. The paper gives a brief introduction to the use of advance information technology for training and emergency management, which is based on the experience from the Nordic projects and other similar application projects in Finland. The paper includes also references to results from several of the projects. (author)

  2. Applications and Advances in Electronic-Nose Technologies

    OpenAIRE

    Manuela Baietto; Wilson, Alphus D.

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arr...

  3. Recent technological advances in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  4. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  5. Tall Buildings and Elevators: A Review of Recent Technological Advances

    OpenAIRE

    Kheir Al-Kodmany

    2015-01-01

    Efficient vertical mobility is a critical component of tall building development and construction. This paper investigates recent advances in elevator technology and examines their impact on tall building development. It maps out, organizes, and collates complex and scattered information on multiple aspects of elevator design, and presents them in an accessible and non-technical discourse. Importantly, the paper contextualizes recent technological innovations by examining their implementation...

  6. 78 FR 29704 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2013-05-21

    ...The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards and Technology (NIST), will meet in open session on Tuesday, June 11, 2013, from 8:00 a.m. to 5:00 p.m. Eastern Time and Wednesday, June 12, 2013, from 8:30 a.m. to 11:45 a.m. Eastern Time. The VCAT is composed of fifteen members appointed by the Under Secretary of Commerce for Standards and......

  7. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  8. Advanced technology for space communications, tracking, and robotic sensors

    Science.gov (United States)

    Krishen, Kumar

    1989-01-01

    Technological advancements in tracking, communications, and robotic vision sensors are reviewed. The development of communications systems for multiple access, broadband, high data rate, and efficient operation is discussed. Consideration is given to the Tracking and Data Relay Satellite systems, GPS, and communications and tracking systems for the Space Shuttle and the Space Station. The use of television, laser, and microwave sensors for robotics and technology for autonomous rendezvous and docking operations are examined.

  9. Development of advanced technologies for biomass pyrolysis

    Science.gov (United States)

    Xu, Ran

    the entering vapors and gases to spin, providing good heat transfer and driving the condensed droplets to the wall through cyclonic action. This condenser design has been successfully demonstrated for the application on the pilot fluidized bed pyrolysis unit. After condensation, a stable aerosol is also typically formed which is difficult to be efficiently captured with conventional technologies. A pilot scale helicoidal rotary demister, a novel technology for removing persistent fine bio-oil droplets from gases using dynamic centrifugal forces, has been developed. The demister uses a helicoidal element, which consists of a metal sheet wound as a spiral, designed to rotate at high speeds within a cyclone body. Larger droplets are separated as they enter the cyclone housing, while the smaller droplets are carried by the gas into the helicoidal path of the rotating element, where they are centrifuged towards the outer collecting walls and, as a result of a specially designed baffle, may flow counter-currently to the gas and are drained out from the bottom of the rotating element. The mist-free gas leaves through a channel located at the center of the spiral. This unique demister design has demonstrated a high separation efficiency when tested offline with artificial submicron mist and tested online for demisting bio-oil aerosol on the pyrolysis unit. Bio-oil Upgrading: Very often, phase separation of bio-oil occurs naturally upon condensation of the bio-oil vapors, typically through the use of cyclonic condensers. The bio-oil is separated into an organic phase and an aqueous phase. Research has been conducted on the possibility to enhance the fuel properties and energy performance of the organic phase by reducing its water content, enhancing its heating value and improving its stability. Through the use of drying agents, a remarkable reduction of water content and an increase of heating value can be achieved. Moreover, the volumetric energy density can be greatly

  10. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  11. Sodium-Oxygen Battery: Steps Toward Reality.

    Science.gov (United States)

    Landa-Medrano, Imanol; Li, Chunmei; Ortiz-Vitoriano, Nagore; Ruiz de Larramendi, Idoia; Carrasco, Javier; Rojo, Teófilo

    2016-04-01

    Rechargeable metal-oxygen batteries are receiving significant interest as a possible alternative to current state of the art lithium ion batteries due to their potential to provide higher gravimetric energies, giving significantly lighter or longer-lasting batteries. Recent advances suggest that the Na-O2 battery, in many ways analogous to Li-O2 yet based on the reversible formation of sodium superoxide (NaO2), has many advantages such as a low charge overpotential (∼100 mV) resulting in improved efficiency. In this Perspective, we discuss the current state of knowledge in Na-O2 battery technology, with an emphasis on the latest experimental studies, as well as theoretical models. We offer special focus on the principle outstanding challenges and issues and address the advantages/disadvantages of the technology when compared with Li-O2 batteries as well as other state-of-the-art battery technologies. We finish by detailing the direction required to make Na-O2 batteries both commercially and technologically viable. PMID:26961215

  12. Cardiovascular genetics : Technological advancements and applicability for dilated cardiomyopathy

    NARCIS (Netherlands)

    Kummeling, G. J M; Baas, A. F.; Harakalova, M.; van der Smagt, J. J.; Asselbergs, F. W.

    2015-01-01

    Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained

  13. Computer-Assisted Foreign Language Teaching and Learning: Technological Advances

    Science.gov (United States)

    Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.

    2013-01-01

    Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…

  14. Technological Advances and Information Education 1982-2007: Some Perspectives

    Science.gov (United States)

    Guy, Fred

    2007-01-01

    The paper considers technological advances in relation to information education over the 25 years of existence of the journal, "Education for Information." Some key developments before 1980 such as the appearance of MARC and library co-operatives are mentioned along with key post-1980 developments including networking, the World Wide Web, and…

  15. Exploring the evolution of investment pattern on advanced manufacturing technology

    DEFF Research Database (Denmark)

    Yang, Cheng; Matthiesen, Rikke Vestergaard; Johansen, John

    2014-01-01

    This paper explores the evolution of investment pattern on advanced manufacturing technology in a manner that builds on a longitudinal perspective. Based on the data of investments in AMTs from 567 manufacturing companies this paper develops a longitudinal taxonomy defined by the evolution...

  16. Advances in Games Technology: Software, Models, and Intelligence

    Science.gov (United States)

    Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai

    2009-01-01

    Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…

  17. Blending Technology and Face-to-Face: Advanced Students' Choices

    Science.gov (United States)

    Trinder, Ruth

    2016-01-01

    It has been suggested that current research in computer-assisted language learning (CALL) should seek to understand the conditions and circumstances that govern students' use of technology (Steel & Levy, 2013). This paper attempts to identify critical factors accounting for student choices, first, by investigating advanced learners' reported…

  18. Data Protection Issues in Higher Education with Technological Advancements

    Science.gov (United States)

    McKelvey, Nigel

    2014-01-01

    Adhering to laws whilst working or studying in an educational establishment is often fraught with challenges. The Irish Data Protection Act 1988 (Amendment 2003) strives to protect the individual where their personal data is potentially being abused. The advancements in technologies have facilitated educational establishments by improving…

  19. Advanced Education and Technology Business Plan, 2009-12. Highlights

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    Advanced Education and Technology provides strategic leadership for the development of the next generation economy in Alberta through the provision of accessible, affordable and quality learning opportunities for all Albertans and support for a dynamic and integrated innovation system. This paper provides the highlights of the business plan of the…

  20. Impact of advanced technologies on rural trauma care

    Science.gov (United States)

    McGrane, Michael J.; Gainor, Dia; Buttrey, Jan M.; Taska, John D.; Pierce, Gregg E.; Wolff, Barack

    1994-03-01

    The high incidence of traumatic injury and death is significant among the western, rural United States. A number of characteristics and factors contribute to this concern, among them extremes in population, distance, terrain, and resources. Opportunity exists to apply current and future advanced technology to impact trauma prevention, communication, emergency response, trauma system support and monitor trauma outcome.