WorldWideScience

Sample records for adult spinal cord

  1. Brain and Spinal Cord Tumors in Adults

    Science.gov (United States)

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available Experts \\ Spinal Cord Injury 101 Topics Adult Injuries Spinal Cord Injury 101 Spinal Cord Injury 101 The Basics of Spinal Cord Injury Rehabilitation ... in countries outside the US ? A spinal cord injury affects the entire family FacingDisability is designed to ...

  3. A Surgery Protocol for Adult Zebrafish Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Ping Fang; Jin-Fei Lin; Hong-Chao Pan; Yan-Qin Shen; Melitta Schachner

    2012-01-01

    Adult zebrafish has a remarkable capability to recover from spinal cord injury,providing an excellent model for studying neuroregeneration.Here we list equipment and reagents,and give a detailed protocol for complete transection of the adult zebrafish spinal cord.In this protocol,potential problems and their solutions are described so that the zebrafish spinal cord injury model can be more easily and reproducibly performed.In addition,two assessments are introduced to monitor the success of the surgery and functional recovery:one test to assess free swimming capability and the other test to assess extent of neuroregeneration by in vivo anterograde axonal tracing.In the swimming behavior test,successful complete spinal cord transection is monitored by the inability of zebrafish to swim freely for 1 week after spinal cord injury,followed by the gradual reacquisition of full locomotor ability within 6 weeks after injury.As a morphometric correlate,anterograde axonal tracing allows the investigator to monitor the ability of regenerated axons to cross the lesion site and increasingly extend into the gray and white matter with time after injury,confirming functional recovery.This zebrafish model provides a paradigm for recovery from spinal cord injury,enabling the identification of pathways and components of neuroregeneration.

  4. Protein composition and synthesis in the adult mouse spinal cord

    International Nuclear Information System (INIS)

    Properties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (less than 2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain

  5. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  6. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Psychological Realities After Spinal Cord Injury Psychology of Spinal Cord Injury Rehabilitation Psychology of Spinal Cord Injury Rehabilitation How Psychologists Help ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Psychological Realities after Spinal Cord Injury Psychology of Spinal Cord Injury Rehabilitation Psychology of Spinal Cord Injury Rehabilitation How Psychologists Help ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Psychological Issues After Spinal Cord Injury Psychological Health After Spinal Cord Injury Psychological Health After Spinal Cord Injury The Psychologist's Role After ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury 101 Spinal Cord Injury 101 The Basics of Spinal Cord Injury Rehabilitation The Basics of Spinal Cord Injury Rehabilitation Preventing Pressure Sores Preventing Pressure Sores Transition ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Substance Abuse and Spinal Cord Injury How Family Life Changes After Spinal Cord Injury How Family Life Changes After Spinal Cord Injury Empowering the Patient After Spinal ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury How does the spinal cord work? What is a spinal cord injury? Why is the level of a spinal cord ... stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... to Social Life in a Wheelchair Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal Cord Injury Substance Abuse and Spinal Cord Injury How Family Life Changes After Spinal Cord Injury How Family ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury 101 The Basics of Spinal Cord Injury Rehabilitation The Basics of Spinal Cord Injury Rehabilitation Preventing Pressure Sores Preventing Pressure Sores Transition from ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Workers Help Transitions How Social Workers Help Transitions Occupational Therapy After Spinal Cord Injury Occupational Therapy After Spinal Cord Injury How Occupational Therapists Work ...

  16. Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons

    OpenAIRE

    Doolen Suzanne; Blake Camille B; Smith Bret N; Taylor Bradley K

    2012-01-01

    Abstract Background Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobiliz...

  17. Repair of acutely injured spinal cord through constructing tissue-engineered neural complex in adult rats

    Institute of Scientific and Technical Information of China (English)

    PU Yu; GUO Qing-shan; WANG Ai-min; WU Si-yu; XING Shu-xing; ZHANG Zhong-rong

    2007-01-01

    Objective: To construct tissue-engineered neural complex in vitro and study its effect in repairing acutely injured spinal cord in adult rats. Methods: Neural stem cells were harvested from the spinal cord of embryo rats and propagated in vitro. Then the neural stem cells were seeded into polyglycolic acid scaffolds and co-cultured with extract of embryonic spinal cord in vitro. Immunofluorescence histochemistry and scanning electron microscope were used to observe the microstructure of this complex. Animal model of spine semi-transection was made and tissue-engineered neural complex was implanted by surgical intervention. Six weeks after transplantation, functional evaluation and histochemistry were applied to evaluate the functional recovery and anatomic reconstruction. Results: The tissue-engineered neural complex had a distinct structure, which contained neonatal neurons, oligodendrocytes and astrocytes. After tissue-engineered neural complex was implanted into the injured spinal cord, the cell components such as neurons, astrocytes and oligodendrocytes, could survive and keep on developing. The adult rats suffering from spinal cord injury got an obvious neurological recovery in motor skills. Conclusions: The tissue-engineered neural complex appears to have therapeutic effects on the functional recovery and anatomic reconstruction of the adult rats with spinal cord injury.

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Coping with a New Injury Adjusting to Social Life in a Wheelchair Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal ... Spinal Cord Injury How does the spinal cord work? What is a spinal cord injury? Why is ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the use of electrical stimulation for spinal cord injuries? What is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... injury? What is the "Spinal Cord Injury Model Systems" program? ... family FacingDisability is designed to provide Internet-based information and support for people with spinal cord injuries ...

  1. Spinal Cord Diseases

    Science.gov (United States)

    ... this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral ...

  2. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Patient Partnerships How Social Workers Help Transitions How Social Workers Help Transitions Occupational Therapy After Spinal Cord Injury Occupational Therapy After Spinal Cord Injury How Occupational Therapists Work How Occupational Therapists Work Occupational Therapy Enables Daily ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Coping with a New Injury Adjusting to Social Life in a Wheelchair Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal Cord ... Substance Abuse and Spinal Cord Injury How Family Life Changes After Spinal Cord Injury How Family Life ...

  5. Differential expression of Wnts after spinal cord contusion injury in adult rats.

    Directory of Open Access Journals (Sweden)

    Carmen María Fernández-Martos

    Full Text Available BACKGROUND: Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. FINDINGS: Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. CONCLUSIONS: Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.

  6. Cellular and axonal plasticity in the lesioned spinal cord of adult zebrafish

    OpenAIRE

    Kuscha, Veronika

    2011-01-01

    Zebrafish, in contrast to mammals, are capable of functional regeneration after complete transection of the spinal cord. In this system I asked: (1) Which spinal cell types regenerate in the lesioned spinal cord? (2) To what extent do the dopaminergic and 5-HT systems regenerate and (3) do dopaminergic axons from the brain influence cellular regeneration in the spinal cord? (1) Lost motor neurons are replaced by newly born motor neurons that mature and are integrated into the spinal cir...

  7. Influence of cryopreserved olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 殷德振; 唐勇; 吴燕峰; 程志安; 杨睿; 黄霖

    2004-01-01

    Objective: To observe the effects of cryopreserved olfactory ensheathing cells (OECs) transplantation on axonal regeneration and functional recovery following spinal cord injury in adult rats.Methods: Twenty-four rats were divided into experimental and control groups, each group having 12 rats. The spinal cord injury was established by transecting the spinal cord at T10 level with microsurgery scissors.OECs were purified from SD rat olfactory bulb and cultured in DMEM ( Dulbecco's minimum essential medium) and cryopreserved (-120℃) for two weeks.OECs suspension[(1-1.4)×105/ul] was transplanted into transected spinal cord, while the DMEM solution was injected instead in the control group. At 6 and 12 weeks after transplantation, the rats were evaluated with climbing test and MEP ( moter evoked potentials) monitoring. The samples of spinal cord were procured and studied with histological and immunohisto chemical stainings.Results: At 6 weeks after transplantation, all of the rats in both transplanted and control groups were paraplegic, and MEPs could not be recorded. Morphology of transplanted OECs was normal, and OECs were interfused with host well. Axons could regrow into gap tissue between the spinal cords. Both OECs and regrown axons were immunoreactive for MBP. No regrown axons were found in the control group. At 12 weeks after transplantation, 2 rats (2/7) had lower extremities muscle contraction, 2 rats (2/7) had hip and/or knee active movement, and MEP of 5 rats (5/7) could be recorded in the calf in the transplantation group. None of the rats (7/ 7) in the control group had functional improvement, and none had MEPs recorded. In the transplanted group,histological and immunohistochemical methods showed the number of transplanted OECs reduced and some regrown axons had reached the end of transected spinal cord.However, no regrown axons could be seen except scar formation in the control group.Conclusions: Cryopreserved OECs could integrated with the host and

  8. Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro.

    Science.gov (United States)

    Corcoran, Jonathan; So, Po-Lin; Barber, Robert D; Vincent, Karen J; Mazarakis, Nicholas D; Mitrophanous, Kyriacos A; Kingsman, Susan M; Maden, Malcolm

    2002-10-01

    Retinoic acid, acting through the nuclear retinoic acid receptor beta2 (RARbeta2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic acid also stimulates neurite outgrowth and RARbeta2 is upregulated. By contrast, in the adult mouse spinal cord, which cannot regenerate, no such upregulation of RARbeta2 by retinoic acid is observed and no neurites are extended in vitro. To test our hypothesis that the upregulation of RARbeta2 is crucial to neurite regeneration, we have transduced adult mouse or rat spinal cord in vitro with a minimal equine infectious anaemia virus vector expressing RARbeta2. After transduction, prolific neurite outgrowth occurs. Outgrowth does not occur when the cord is transduced with a different isoform of RARbeta nor does it occur following treatment with nerve growth factor. These data demonstrate that RARbeta2 is involved in neurite outgrowth, at least in vitro, and that this gene may in the future be of some therapeutic use. PMID:12235288

  9. Expression and role of PAK6 after spinal cord injury in adult rat

    Directory of Open Access Journals (Sweden)

    CHEN Xiang-dong

    2012-02-01

    Full Text Available 【Abstract】Objective: To observe p21-activated kinase 6 (PAK6 expression and its possible role after spinal cord injury (SCI in adult rat. Methods: Sprague-Dawley rats were subjected to spinal cord injury. To explore the pathological and physiological significance of PAK6, the expression patterns and distribution of PAK6 were observed by Western blot, immunohistochemistry and immunofluorescence. Results: Western blot analysis showed PAK6 protein level was significantly up-regulated on day 2 and day 4, then reduced and had no up-regulation till day 14. Immunohistochemistry analysis showed that the expression of PAK6 was significantly increased on day 4 compared with the control group. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and astrocytes in the control group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes were largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA and found its change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells on day 4 after injury. Conclusion: The up-regulation of PAK6 in the injured spinal cord may be associated with glial proliferation. Key words: PAK6 protein, human; p21-activated kinases; Spinal cord injury; Astrocytes

  10. Severed corticospinal axons recover electrophysiologic control of muscle activity after x-ray therapy in lesioned adult spinal cord.

    OpenAIRE

    Kalderon, N; Fuks, Z

    1996-01-01

    Mechanical injury to the adult mammalian spinal cord results in permanent loss of structural integrity at the lesion site and of the brain-controlled function distal to the lesion. Some of these consequences were permanently averted by altering the cellular constituents at the lesion site with x-irradiation delivered within a critical time window after injury. We have reported in a separate article that x-irradiation of sectioned adult rat spinal cord resulted in restitution of structural con...

  11. Adult-Onset Leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Normal Lactate: Case Report

    Directory of Open Access Journals (Sweden)

    Özdem Ertürk

    2010-06-01

    Full Text Available Leukoencephalopathy with brain stem and spinal cord involvement and high lactate (LBSL is a recently described leukoencephalopathy with a genetically proven underlying defect. Clinical features are slowly progressive pyramidal, cerebellar and dorsal column dysfunction with childhood or rarely adult onset. The genetic basis of the disease was recently identified, which concerned mutations in the DARS2 gene encoding mitochondrial aspartly-tRNA synthetase. The disease has distinct magnetic resonance imaging findings including inhomogeneous cerebral white matter abnormalities and selective brain stem and spinal cord tract involvement. Additionally, there are usually increased lactate levels on magnetic resonance spectroscopy (MRS of the abnormal white matter. In this case report, we describe the clinical and radiological features of a patient with genetically proven adult-onset LBSL and normal lactate levels on MRS.

  12. Alteration of Forebrain Neurogenesis after Cervical Spinal Cord Injury in the Adult Rat

    OpenAIRE

    ValeryAMatarazzo; PatrickGauthier

    2012-01-01

    Spinal cord injury (SCI) triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e. brain), remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neuron...

  13. Spinal Cord Infarction

    Science.gov (United States)

    ... treatments Functional and Dysfunctional Spinal Circuitry: Role for Rehabilitation and Neural Prostheses Summary of NINDS New Strategies in Spinal Cord Injury workshop held June, 2000. NINDS Workshop on Re- ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... for spinal cord injuries? What are the latest developments in the use of electrical stimulation for spinal ... provide medical advice, recommend or endorse health care products or services, or control the information found on ...

  15. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.

    Science.gov (United States)

    Stil, Aurélie; Drapeau, Pierre

    2016-06-01

    We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 642-660, 2016. PMID:26408263

  16. Transplantation of CNTF-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury

    OpenAIRE

    Cao, Qilin; He, Qian; Wang, Yaping; Cheng, Xiaoxin; Howard, Russell M.; Yiping ZHANG; DeVries, William H.; Shields, Christopher B.; Magnuson, David S.K.; Xu, Xiaoming; Kim, Dong H.; Whittemore, Scott R.

    2010-01-01

    Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressin...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal Cord Injury Substance Abuse and Spinal Cord Injury How Family Life Changes ... Patient Partnerships How Social Workers Help Transitions How Social Workers Help ... advice, recommend or endorse health care products or services, or control the information found on external websites. ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Fertility After Spinal Cord Injury Coping with a New Injury Coping with a New Injury Adjusting to Social Life in a Wheelchair ... after an injury? What are the most promising new treatments for spinal cord injuries? What are the ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... US ? A spinal cord injury affects the entire family FacingDisability is designed to provide Internet-based information ... spinal cord injuries and the members of their families. Our website has more than 1,500 videos ...

  20. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  1. Modeling spinal cord biomechanics

    Science.gov (United States)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  2. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Scott E Fraser

    2014-06-01

    Full Text Available “Dye-coupling”, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish. To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  3. Spinal cord trauma

    Science.gov (United States)

    ... and other rehabilitation after the injury has healed. Rehabilitation will help you cope with the disability from your spinal cord injury. Support Groups Seek out organizations for additional information ...

  4. Spinal Cord Injury Map

    Science.gov (United States)

    ... Videos Videos by Topic and Question Videos by Family Relationship Videos by Experts Resources The Short List Government ... Home Videos by Topic and Question Videos by Family Relationship Videos by Spinal Cord Experts Resources Forums Peer ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we expect stem-cell ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... family FacingDisability is designed to provide Internet-based information and support for people with spinal cord injuries ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  7. Spinal cord abscess

    Science.gov (United States)

    ... abscess: Back injuries or trauma, including minor ones Boils on the skin, especially on the back or ... of spinal cord abscess. Prevention Thorough treatment of boils, tuberculosis, and other infections decreases the risk. Early ...

  8. Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.

    Science.gov (United States)

    Frigon, Alain; Gossard, Jean-Pierre

    2010-05-19

    Locomotion and scratch are characterized by alternation of flexion and extension phases within one hindlimb, which are mediated by rhythm-generating circuitry within the spinal cord. By definition, the rhythm generator controls cycle period, phase durations, and phase transitions. The aim was to determine whether rhythm-generating mechanisms for locomotion and scratch are similar in adult decerebrate cats. The regulation of cycle period during fictive scratching was evaluated, as were the effects of specific sensory inputs on phase durations and transitions during spontaneous fictive locomotion and pinna-evoked fictive scratching. Results show that cycle period during fictive scratching varied predominantly with flexion phase duration, contrary to spontaneous fictive locomotion, where cycle period varied with extension phase duration. Ankle dorsiflexion greatly increased extension phase duration and cycle period during fictive locomotion but did not alter cycle period during scratching. Moreover, stimulating the plantaris (ankle extensor muscle) nerve during flexion reset the locomotor rhythm to extension but not the scratch rhythm. Stimulating the plantaris nerve during extension prolonged the extension phase and cycle period during fictive locomotion but not during fictive scratching. Stimulating the sartorius nerve (hip flexor muscle) during early flexion reduced the flexion phase and cycle period during fictive locomotion, but considerably prolonged the flexion phase and cycle period during fictive scratching. These data indicate that cycle period, phase durations, and phase transitions are not regulated similarly during fictive locomotion and scratching, with or without sensory inputs, providing evidence for specialized rhythm-generating mechanisms within the adult mammalian spinal cord. PMID:20484648

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Coping with a New Injury Adjusting to Social Life in a Wheelchair Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal ... is designed to provide Internet-based information and support for people with spinal cord injuries and the ...

  10. Pilomyxoid astrocytoma of the thoracic spinal cord in an adult: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Tamojit Chaudhuri

    2014-01-01

    Full Text Available We present a case of pilomyxoid astrocytoma (PMA in a 35-year-old Asian male with history of paraparesis for last 6 months. A contrast-enhanced magnetic resonance imaging of the spine revealed an intramedullary mass lesion occupying most of the thecal sac at the level of 10 th and 11 th dorsal vertebrae, with extensive contrast enhancement. Spinal PMA in an adult is an extremely rare entity, with only two reported cases in the literature, until date. This appears to be the first reported case of spinal PMA in an adult with isolated thoracic spinal cord involvement.

  11. Expression of CDc6 after acute spinal cord injury in adult rats.

    Science.gov (United States)

    Chen, Chen; Lu, Jian; Yu, Qin; Xiao, Jian-Ru; Wei, Hai-Feng; Song, Xin-Jian; Ge, Jian-Bing; Tao, Wei-Dong; Qian, Rong; Yu, Xiao-Wei; Zhao, Jian

    2016-04-01

    The cell division cycle 6 (CDc6) protein has been primarily investigated as a component of the pre-replicative complex for the initiation of DNA replication. Some studies have shown that CDc6 played a critical role in the development of human carcinoma. However, the expression and roles of CDc6 in the central nervous system remain unknown. We have performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of CDc6 expression in spinal cord. Western blot have found that CDc6 protein levels first significantly increase, reach a peak at day 3, and then gradually return to normal level at day 14 after SCI. Double immunofluorescence staining showed that CDc6 immunoreactivity was found in neurons, astrocytes, and microglia. Additionally, colocalization of CDc6/active caspase-3 has been detected in neurons and colocalization of CDc6/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, CDc6 depletion by short interfering RNA inhibits astrocyte proliferation and reduces cyclin A and cyclin D1 protein levels. CDc6 knockdown also decreases neuronal apoptosis. We speculate that CDc6 might play crucial roles in CNS pathophysiology after SCI. PMID:26899166

  12. Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons

    OpenAIRE

    SASAKI, MASANORI; HONMOU, OSAMU; Akiyama, Yukinori; Uede,Teiji; Hashi,Kazuo; Kocsis, Jeffery D.

    2001-01-01

    The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remov...

  13. Visual patch clamp recording of neurons in thick portions of the adult spinal cord

    DEFF Research Database (Denmark)

    Munch, Anders Sonne; Smith, Morten; Moldovan, Mihai; Perrier, Jean-Francois Marie

    2010-01-01

    enlargement of the spinal cord. With a conventional upright microscope in which the light condenser was carefully adjusted, we could visualize neurons present at the surface of the slice and record them with the whole-cell patch clamp technique. We show that neurons present in the middle of the preparation...... currents (IPSCs) remains constant. These preliminary data suggest that inhibitory and excitatory synaptic connections are balanced locally while excitation dominates long-range connections in the spinal cord....

  14. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue s

  15. Spinal cord injury pain.

    Science.gov (United States)

    Beric, Aleksandar

    2003-01-01

    Awareness that SCI pain is common emerged during the past decade. However, there are a number of unresolved issues. There is a need for variety of experimental models to reflect diversity of SCI pains. Current classification is not as user-friendly as it should be. More attention should be given to a condition of the spinal cord below and above the SCI lesion. A consensus for what is an optimal SCI functional assessment for patients with sensory complaints and pain should be developed. Further extensive SCI pain research is needed prior to spinal cord regeneration trials in order to be able to cope with a potential for newly developed pains that may appear during incomplete spinal cord regenerative attempts. PMID:12821403

  16. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  17. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  18. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  19. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...... pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...... controversial. SCS is not effective in relieving central neuropathic pain states....

  20. Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Doolen Suzanne

    2012-07-01

    Full Text Available Abstract Background Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. Results Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1 Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4 In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX- and AMPA (GYKI 52466-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5, kainate (UBP-301 and class I mGluRs (AIDA did not. Compared to sham controls, peripheral nerve injury

  1. Does social support impact depression in caregivers of adults ageing with spinal cord injuries?

    Science.gov (United States)

    Rodakowski, Juleen; Skidmore, Elizabeth R.; Rogers, Joan C.; Schulz, Richard

    2013-01-01

    Objective The objective of this study was to examine the role of social support in predicting depression in caregivers of adults aging with spinal cord injuries (SCI). Design Cross-sectional secondary data analyses were conducted for this study. Setting Participants were recruited from multiple community locations in Pittsburgh, PA and Miami, FL. Subjects Community-dwelling caregivers of aging adults with SCI (N=173) were interviewed as part of a multisite randomized clinical trial. Main measures The Center for Epidemiological Studies Depression Scale measured caregiver depression symptom levels. A hierarchical multiple regression analysis examined the effect of social support (social integration, received social support, and negative social interactions) on depressive symptoms levels for the caregivers of adults aging with SCI, controlling for demographic characteristics and caregiving characteristics. Results Caregivers were, on average, 53 years old (SD=15) and care-recipients were 55 years old (SD=13). Average Center for Epidemiological Studies Depression Scale scores indicated that sixty-nine (40%) caregivers had significant depressive symptoms (mean 8.69, SD=5.5). Negative social interactions (β̂ =.27, P<.01) and social integration (β̂ =−.25, P<.01) were significant independent predictors of depressive symptom levels in caregivers of adults aging with SCI. Conclusions Findings demonstrate that negative social interactions and social integration are associated with burden in caregivers of adults aging with SCI. Negative social interactions and social integration should be investigated in assessments and interventions intended to target caregiver depressive symptom levels. PMID:23117350

  2. A prospective evaluation of a pressure ulcer prevention and management E-Learning Program for adults with spinal cord injury.

    Science.gov (United States)

    Brace, Jacalyn A; Schubart, Jane R

    2010-08-01

    Pressure ulcers are a common complication of spinal cord injury (SCI). Pressure ulcer education programs for spinal cord injured individuals have been found to have a positive effect on care protocol adherence. A prospective study was conducted among hospitalized spinal cord-injured men and women to determine if viewing the Pressure Ulcer Prevention and Management Education for Adults with Spinal Cord Injury: E-Learning Program affects their knowledge scores. A 20-question multiple-choice pre-/post learning test was developed and validated by 12 rehabilitation nurses. Twenty (20) patients (13 men, seven women; mean age 49 years, [SD: 18.26] with injuries to the cervical [seven], thoracic [six], and lumbar [six] regions) volunteered. Most (42%) had completed high school and time since SCI ranged from 2 weeks to 27 years. Eighteen (18) participants completed both the pre- and post test. Of those, 16 showed improvement in pressure ulcer knowledge scores. The median scores improved from 65 (range 25 to 100) pre-program to 92.5 (range 75 to 100) post-program. Descriptive statistics, Student's t-test, and analysis of variance (ANOVA) were used to analyze the data. The results suggest that a single viewing of this e-learning program could improve pressure ulcer knowledge of hospitalized adults with SCI. Research to ascertain the effects of this and other educational programs on pressure ulcer rates is needed. PMID:20729562

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Home Videos by Topic and Question Videos by Family Relationship Videos by Spinal Cord Experts Resources Forums Peer Counseling Blog About Us Contact Donate Sitemap Privacy ... © 2011 – 2016 Hill Foundation for Families Living With Disabilities FacingDisability.com is an informational ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Home Videos by Topic and Question Videos by Family Relationship Videos by Spinal Cord Experts Resources Forums Peer Counseling Blog About Us Contact Donate Sitemap Privacy Statement Terms of Use © 2011 – 2016 Hill Foundation for Families Living With Disabilities FacingDisability.com is an informational ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  7. Spinal Cord Injury

    Science.gov (United States)

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  8. Combining Adult Learning Theory with Occupational Therapy Intervention for Bladder and Bowel Management after Spinal Cord Injury: A Case Report.

    Science.gov (United States)

    Gallagher, Gina; Bell, Alison

    2016-01-01

    Bladder and bowel management is an important goal of rehabilitation for clients with spinal cord injury. Dependence is these areas have been linked to a variety of secondary complications, including decreased quality of life, urinary tract infections and pressure ulcers (Hammell, 2010; Hicken et al, 2001). Occupational therapists have been identified as important members of the health care team in spinal cord injury rehabilitation; however, specific roles and interventions have not been clearly described. This case report will describe occupational therapy interventions embedded with principles of adult learning theory to address bladder and bowel management with an adult client who sustained an incomplete thoracic level spinal cord injury. PMID:26694910

  9. Factors that limit access to dental care for adults with spinal cord injury.

    Science.gov (United States)

    Yuen, Hon K; Wolf, Bethany J; Bandyopadhyay, Dipankar; Magruder, Kathryn M; Selassie, Anbesaw W; Salinas, Carlos F

    2010-01-01

    This study investigated dental care service utilization among adults with spinal cord injury (SCI) and identified barriers and other factors affecting utilization among this population. There were 192 subjects with SCI who participated in the oral health survey assessing dental care service utilization and they were compared with subjects from the 2004 Behavioral Risk Factors Surveillance System (BRFSS). There was no significant difference in the proportion of subjects with SCI who visited the dentist for any reason in the past year compared to the general population (65.5% vs. 68.8%, p= .350). However, subjects with SCI were less likely to go to the dentist for a dental cleaning in the past year compared to the general population (54.6% vs. 69.4%, p dental care were cost (40.1%), physical barriers (22.9%), and dental fear (15.1%). Multivariate modeling showed that physical barriers and fear of dental visits were the two significant factors deterring subjects from dental visits in the past year. Physical barriers preventing access to dental facilities and dental fear are prevalent and significantly impede the delivery of dental health care to adults with SCI. Dentists should undertake necessary physical remodeling of their facilities to accommodate wheelchair users and implement appropriate strategies for the management of dental fear among patients with SCI. PMID:20618781

  10. Complications of spinal cord injury

    OpenAIRE

    Dursun, Erbil; Hamamci, Nigar; Ozbey, Aydan; Cakci, Aytul

    2004-01-01

    Spinal cord injury and its complications cause important physical, psychosocial and economical problems. The purpose of this study was to evaluate the complications resulting from spinal cord injury, to show their adverse effects on the rehabilitation program, and to make related clinicians to call attention especially to preventable complications. Sixty-two spinal cord injured patients were included in the study. All the patients were evaluated regarding age, gender, etiology, time since inj...

  11. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico)); Rivera, F. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Babinski, E. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Berlanga, E. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Madrazo, M. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Franco-Bourland, R. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico)); Grijalva, I. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  12. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    International Nuclear Information System (INIS)

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  13. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat.

    Directory of Open Access Journals (Sweden)

    Marie-Solenne eFELIX

    2012-04-01

    Full Text Available Spinal cord injury (SCI triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e. brain, remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels, which could explain the SCI-mediated distant effects on forebrain neurogenesis. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.

  14. Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine.

    Science.gov (United States)

    Jiang, Shucui; Ballerini, Patrizia; Buccella, Silvana; Giuliani, Patricia; Jiang, Cai; Huang, Xinjie; Rathbone, Michel P

    2008-03-01

    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques. PMID

  15. Retraining the injured spinal cord

    Science.gov (United States)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  16. Spinal cord injury without radiographic abnormality

    Directory of Open Access Journals (Sweden)

    Singh Anil

    2006-01-01

    Full Text Available Spinal cord injury without radiological abnormality is rare in adults. Below we present a case report of 20 yrs old male with isolated cervical cord injury, without accompanying vertebral dislocation or fracture involving the spinal canal rim. He fell down on plain and smooth ground while carrying 40 kg weight overhead and developed quadriparesis with difficulty in respiration. Plain radiographs of the neck revealed no fractures or dislocations. MRI showed bulky spinal cord and an abnormal hyper intense signal on the T2W image from C2 vertebral body level to C3/4 intervertebral disc level predominantly in the anterior aspect of the cord The patient was managed conservatively with head halter traction and invasive ventilatory support for the initial 7 days period in the ICU. In our patient recovery was good and most of the neurological deficit improved over 4 weeks with conservative management.

  17. Response of Ependymal Progenitors to Spinal Cord Injury or Enhanced Physical Activity in Adult Rat

    Czech Academy of Sciences Publication Activity Database

    Čížková, D.; Nagyová, M.; Slovinská, L.; Novotná, I.; Radoňák, J.; Čížek, M.; Mechirová, E.; Tomori, Z.; Hlučilová, Jana; Motlík, Jan; Sulla, I.; Vanický, I.

    2009-01-01

    Roč. 29, 6-7 (2009), s. 999-1013. ISSN 0272-4340 R&D Projects: GA MŠk MEB0808108 Grant ostatní: Agentúra na podporu výskumu a vývoja(SK) APVV SK-CZ-0045-07; Agentúra na podporu výskumu a vývoja(SK) APVV SK-CZ-0682-07 Institutional research plan: CEZ:AV0Z50450515 Keywords : Spinal cord injury * Neural stem cells * BrdU Subject RIV: FH - Neurology Impact factor: 2.107, year: 2009

  18. The spinal cord

    International Nuclear Information System (INIS)

    The spinal cord develops initially as an invagination of the thickened ectodermal neural plate to form the neural groove. This is then closed over by the neural folds, which fuse first in the thoracic region, then progressively rostrad and caudad to form the neural tube. The neural tube is completely formed by the fourth fetal week and is separated from the overlying ectoderm by intervening mesoderm, part of which has simultaneously segmented into somites to become the vertebral column. The cartilaginous and ossifying neural arches of the vertebral column are completely developed and fused by the third month of fetal life. The fetal spine can be detected by US by 12 weeks of gestational age

  19. Radiation effects in brain and spinal cord

    International Nuclear Information System (INIS)

    Radiation sensitivity of both the brain and spinal cord in prenatal and postnatal stages, in infancy and adult age is represented also in consideration of a combined treatment with methotrexate. In adults, application of important doses of high-energy radiation increases the risk of injurious effects to the central nervous system. If the spinal cord is involved, more than 60% of the radiolesions have a progredient course ending with death. The pathogenesis and disposing factors are referred to, and the incidence of radiation necrosis with regard to age and sex, the degrees of injury and their frequence within different ranges of dosage are analyzed on the basis of data from universal literature. An examination of 'tolerance doses' for the spinal cord is made by means of Strandquist-diagrams and of the Ellis-formula. The slopes of regression lines are reported for various 'degrees of response' in skin, brain and spinal cord following radiation therapy. In the Strandquist-diagram, slopes of regression lines are dependent on the 'degree of response', flattening if skin and spinal cord are affected by radiation in the same degree, necroses having the same slope for both the organs. (orig./MG)

  20. Role of ERK1/2, Akt, and PLCy pathways in proliferation and neuronal differentiation in the adult rat spinal cord neural stem/progenitor cell culture

    Directory of Open Access Journals (Sweden)

    Wai Si eChan

    2013-08-01

    Full Text Available Proliferation of endogenous neural stem/progenitor cells (NSPCs has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2. We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2 over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2 or the phosphoinositide 3-kinase (PI3K/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase C gamma (PLCy pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCy signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs.

  1. Depression and Spinal Cord Injury

    Science.gov (United States)

    ... of Washington-operated SCI Clinics: Harborview Medical Center Rehabilitation Medicine Clinic 325 9th Ave., Seattle WA 98104 Spinal Cord Injury Clinic nurses: 206-744-5862 University of Washington ...

  2. Fixed cord in spinal stenosis

    International Nuclear Information System (INIS)

    This paper evaluates patients with cervical spinal canal compromise due to congenital anomalies (achondroplasia, Chiari malformation) and degenerative diseases using MR cord motion and cerebrospinal fluid (CSF) flow studies. Pulsatile longitudinal motion of the cervical cord was determined by means of cardiac-gated velocity phase contrast methods, including cine. Pathology included dwarfism (n = 15), Chiari malformation (n = 10), spondylosis (n = 10), and acute cord compression (n = 9). Symptomatic cases of congenital cervical stenosis had decreased cord motion, although CSF flow was not always significantly compromised. Postoperative cases demonstrated good cord and CSF motion, unless compression or obstruction was present

  3. What Is Spinal Cord Injury?

    Science.gov (United States)

    ... back. Generally speaking, SCI is damage to the spinal nerves, the body's central and most important nerve bundle, ... This, in turn, damages the axons—the long nerve cell "wires" that pass through ... point on the spinal cord below which sensory feeling and motor movement ...

  4. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  5. Ependymomas of the spinal cord

    International Nuclear Information System (INIS)

    Many patients with spinal cord ependymomas (SCE) undoubtedly benefit from post-operative radiation therapy; however, because of the wide variability in the total doses given, the optimal post-operative dose for SCE remains unclear. Several recent papers recommend total doses of 4000 rad to 5000 rad in 4-1/2 to 6 weeks. Unfortunately, only a small number of patients reported in the literature have been consistently treated to these high dose recommendations. Nine consecutive adult patients with SCE have been treated in a consistent way at Yale-New Haven Hospital with total doses of approximately 4500 rad to 5000 rad at 180 rad to 200 rad per day. The acute and chronic morbidity from such treatment has been minimal and no patient has had a local recurrence at 8 months to 8 years following treatment

  6. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa;

    2014-01-01

    confirmed by magnetic resonance imaging (MRI) and histological analysis. Animals were clinically observed for 6 months. RESULTS: Analysis confirmed homing of mNSCs into the injury site. Transplanted cells expressed neuronal markers (TubIII). Hind limb performance improved in trans- planted animals based on......, therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model was......OBJECTIVE: Currently, cellular transplantation for spinal cord injuries (SCI) is the subject of numerous preclinical studies. Among the many cell types in the adult brain, there is a unique subpopulation of neural stem cells (NSC) that can self-renew and differentiate into neurons. The study aims...

  7. Suicide in a spinal cord injured population

    DEFF Research Database (Denmark)

    Hartkopp, A; Brønnum-Hansen, Henrik; Seidenschnur, A M;

    1998-01-01

    To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI).......To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI)....

  8. Spinal cord trauma

    Science.gov (United States)

    ... that can be removed or reduced before the spinal nerves are completely destroyed, paralysis may improve. Surgery may be needed to: Realign the spinal bones (vertebrae) Remove fluid or tissue that presses ...

  9. FAQs about Spinal Cord Injury (SCI)

    Science.gov (United States)

    ... of Care? Emergency Medical Services Hospital (Acute) Care Rehabilitation More FAQs about Spinal Cord Injury (SCI) If you or a loved one is ... spinal cord injury? What recovery is expected following spinal cord injury? Where is the ... on Disability, Independent Living, and Rehabilitation Research (NIDILRR grant number 90SI5005). NIDILRR is a ...

  10. Evaluation of spinal cord injury animal models

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang; Marong Fang; Haohao Chen; Fangming Gou; Mingxing Ding

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies.

  11. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G;

    2015-01-01

    the final version. RESULTS: The data set consists of nine variables: (1) Intervention/Procedure Date and start time (2) Non-surgical bed rest and external immobilization, (3) Spinal intervention-closed manipulation and/or reduction of spinal elements, (4) Surgical procedure-approach, (5) Date and time...

  12. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael;

    2009-01-01

    The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...

  13. Spinal cord toxoplasmosis in AIDS

    International Nuclear Information System (INIS)

    Toxoplasmosis is the most common brain parasitic infection in acquired immunodeficiency syndrome (AIDS). Spinal cord localizations are still rare (2 cases with cerebral involvement, 2 cases without). A case of both spinal cord and cerebral involvement is reported. Magnetic resonance imaging (MR imaging) was performed because of sensory level (L 1). A focal conus medullaris enlargement was seen, iso intense on T 1 weighted images. This lesion was hyperintense on T 2 weighted sequence, and was homogeneously enhanced after Gadolinium on T 1 weighted images. A medullary oedema was noted. A toxoplasmosis treatment was initiated, without cortico therapy. MR imaging performed one month later (D 30), while important clinical improvements were seen, pointed out normal thickness of conus medullaris, without enhancement after Gadolinium. Disease lesions in AIDS with focal spinal cord processes are reviewed, and diagnostic work-up is discussed. Spinal cord single lesion, associated or not with brain involvements should be treated as a toxoplasmic infection, with MR imaging follow up. This work up should avoid medullary biopsy, still required in case of treatment failure. Cerebral involvements, with multiples lesions can mask medullary localization. (authors). 8 refs., 2 figs

  14. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  15. Nuclear magnetic imaging for MTRA. Spinal canal and spinal cord

    International Nuclear Information System (INIS)

    The booklet covers the following topics: (1) Clinical indications for NMR imaging of spinal cord and spinal canal; (2) Methodic requirements: magnets and coils, image processing, contrast media: (3) Examination technology: examination conditions, sequences, examination protocols; (4) Disease pattern and indications: diseases of the myelin, the spinal nerves and the spinal canal (infections, tumors, injuries, ischemia and bleedings, malformations); diseases of the spinal cord and the intervertebral disks (degenerative changes, infections, injuries, tumors, malformations).

  16. Illness experience of adults with cervical spinal cord injury in Japan: a qualitative investigation

    Directory of Open Access Journals (Sweden)

    Ide-Okochi Ayako

    2013-01-01

    Full Text Available Abstract Background There is growing recognition that healthcare policy should be guided by the illness experience from a layperson’s or insider’s perspective. One such area for exploration would include patient-centered research on traumatic Spinal Cord Injury (SCI, a condition associated with permanent physical disability requiring long-term and often complex health care. The chronicity of SCI can, in turn, affect individuals’ sense of self. Although previous research in Western countries suggests that people with SCI find a way to cope with their disability through social participation and family bonds, the process of adjustment among people with cervical SCI (CSCI living in Japan may be different because of the restrained conditions of their social participation and the excessive burden on family caregivers. The purpose of this study was to examine the impact of injury and the process of accommodation in people with CSCI in Japan. Methods Semi-structured home interviews were conducted with 29 participants who were recruited from a home-visit nursing care provider and three self-help groups. Interviews were recorded, transcribed and analyzed based on the grounded theory approach. Results Five core categories emerged from the interview data: being at a loss, discrediting self by self and others, taking time in performance, restoring competency, and transcending limitations of disability. Overall, the process by which participants adjusted to and found positive meaning in their lives involved a continuous search for comfortable relationships between self, disability and society. Conclusions The results of this study suggest that persons with CSCI do not merely have disrupted lives, but find positive meaning through meaningful interactions. Family members added to the discredit of self by making the injured person entirely dependent on them. Gaining independence from family members was the key to restoring competency in people with CSCI

  17. Leptomeningeal metastasis of spinal cord

    International Nuclear Information System (INIS)

    Ten patients with leptomeningeal metastases of spinal cord were studied with a 1.5-T MR imager. Six patients had primary central nervous system (CNS) tumors, and the other four had their primary tumor outside of the CNS. All patients had positive CSF cytologic findings, and cervical cords were generally examined. MR findings on T1-weighted images before and after gadolinium-DTPA administration were divided into three types. Type 1, the diffuse form (four cases), was characterized by (1) increased CSF intensity, (2) poor cord-CSF interface, and (3) perimedullary enhancement; type 2, the nodular form (one case) by discrete nodules adherent to the cord surface; and type 3, predominance of intramedullary metastases (three cases), by localized cord swelling with central enhancement. In two cases, no significant findings were found. In conclusion, T1-weighted images with Gd-DTPA enhancement were valuable in the MR imaging of spinal meningeal metastasis. The main route of intramedullary tumor spread is believed to be via arterial seeding, but the authors study suggests that intramedullary metastases resulting from direct extension from the CSF were not infrequent

  18. Isolated intramedullary spinal cord cysticercosis

    Directory of Open Access Journals (Sweden)

    Zeeshan Qazi

    2014-01-01

    Full Text Available Neurocysticercosis is a major cause of epilepsy in developing countries. Cysticercal involvement of the spinal cord is rare even in endemic areas and accounts for 0.7 to 5.85% of all cases. We present a 19-year-old man who presented with weakness of both lower limbs and urinary complaints in the form of straining of micturition with increased frequency, in whom preoperative MRI revealed a well-defined cystic lesion in dorso-lumber cord extending from D11 to L1 level, which on pathological examination was found to be intramedullary cysticercosis.

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the entire family FacingDisability is designed to provide Internet-based information and support for people with spinal ... Peer Counseling Blog About Us Contact Donate Sitemap Privacy Statement Terms of Use © 2011 – 2016 Hill Foundation ...

  20. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury

    OpenAIRE

    Neirinckx, Virginie; Agirman, Gulistan; Coste, Cécile; Marquet, Alice; Dion, Valérie; Rogister, Bernard; Franzen, Rachelle; Wislet, Sabine

    2015-01-01

    Introduction Stem cells from adult tissues were considered for a long time as promising tools for regenerative therapy of neurological diseases, including spinal cord injuries (SCI). Indeed, mesenchymal (MSCs) and neural crest stem cells (NCSCs) together constitute the bone marrow stromal stem cells (BMSCs) that were used as therapeutic options in various models of experimental SCI. However, as clinical approaches remained disappointing, we thought that reducing BMSC heterogeneity should be a...

  1. Nanomedicine for Treating Spinal Cord Injury

    OpenAIRE

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-01-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent use...

  2. Management of acute spinal cord injury.

    Science.gov (United States)

    Wagner, F C

    1977-06-01

    Based on the experience with 58 patients with acute spinal cord injuries, a system for rapidly evaluating such patients has been developed. With the knowledge that has been acquired clinically and experimentally of spinal cord injury and with the information provided by laminography and by either air or Pantopaque myelography, a reasonably certain diagnosis of the type of spinal cord injury may be made. Treatment designed to restore neurological function may then be instituted promptly. PMID:882906

  3. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    Science.gov (United States)

    2016-07-07

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  4. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP+ astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  5. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  6. Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine

    OpenAIRE

    Jiang, Shucui; Ballerini, Patrizia; Buccella, Silvana; Giuliani, Patricia; Jiang, Cai; Huang, Xinjie; Rathbone, Michel P.

    2008-01-01

    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotec...

  7. Subarachnoid disseminative hemangiopericytoma of the spinal cord

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-zhong; WANG Zhen-yu; LI Zhen-dong; ZHONG Yan-feng; WANG Lei-ming

    2010-01-01

    @@ Hemangiopericytomas (HPCs) originating from central nervous system were increasingly reported recently.1 Intravertebral HPCs are predominantly epidural. Primary intradural HPCs of spinal cord are rare.2-5 Little subarachnoid dissemination has been reported. We reported a HPC of the cervical spinal cord with subarachnoid dissemination.

  8. Cellular Scaling Rules for Primate Spinal Cords

    OpenAIRE

    Burish, Mark J.; Peebles, J. Klint; Baldwin, Mary K.; Tavares, Luciano; Kaas, Jon H.; Herculano-Houzel, Suzana

    2010-01-01

    The spinal cord can be considered a major sensorimotor interface between the body and the brain. How does the spinal cord scale with body and brain mass, and how are its numbers of neurons related to the number of neurons in the brain across species of different body and brain sizes? Here we determine the cellular composition of the spinal cord in eight primate species and find that its number of neurons varies as a linear function of cord length, and accompanies body mass raised to an expone...

  9. Neuroimaging for spine and spinal cord surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi [Hokkaido Neurosurgical Memorial Hospital (Japan); Iwasaki, Yoshinobu; Hida, Kazutoshi

    2001-01-01

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  10. Neuroimaging for spine and spinal cord surgery

    International Nuclear Information System (INIS)

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  11. Peripheral inflammation facilitates Abeta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord.

    Science.gov (United States)

    Baba, H; Doubell, T P; Woolf, C J

    1999-01-15

    Whole-cell patch-clamp recordings were made from substantia gelatinosa (SG) neurons in thick adult rat transverse spinal cord slices with attached dorsal roots to study changes in fast synaptic transmission induced by peripheral inflammation. In slices from naive rats, primary afferent stimulation at Abeta fiber intensity elicited polysynaptic EPSCs in only 14 of 57 (25%) SG neurons. In contrast, Abeta fiber stimulation evoked polysynaptic EPSCs in 39 of 62 (63%) SG neurons recorded in slices from rats inflamed by an intraplantar injection of complete Freund's adjuvant (CFA) 48 hr earlier (p < 0.001). Although the peripheral inflammation had no significant effect on the threshold and conduction velocities of Abeta, Adelta, and C fibers recorded in dorsal roots, the mean threshold intensity for eliciting EPSCs was significantly lower in cells recorded from rats with inflammation (naive: 33.2 +/- 15.1 microA, n = 57; inflamed: 22.8 +/- 11.3 microA, n = 62, p < 0.001), and the mean latency of EPSCs elicited by Abeta fiber stimulation in CFA-treated rats was significantly shorter than that recorded from naive rats (3.3 +/- 1.8 msec, n = 36 vs 6.0 +/- 3.5 msec, n = 12; p = 0.010). Abeta fiber stimulation evoked polysynaptic IPSCs in 4 of 25 (16%) cells recorded from naive rat preparations and 14 of 26 (54%) SG neurons from CFA-treated rats (p < 0.001). The mean threshold intensity for IPSCs was also significantly lower in CFA-treated rats (naive: 32.5 +/- 15.7 microA, n = 25; inflamed: 21. 9 +/- 9.9 microA, n = 26, p = 0.013). The facilitation of Abeta fiber-mediated input into the substantia gelatinosa after peripheral inflammation may contribute to altered sensory processing. PMID:9880605

  12. Acute Hydrocephalus Following Cervical Spinal Cord Injury

    OpenAIRE

    Son, Seong; Lee, Sang Gu; Park, Chan Woo; Kim, Woo Kyung

    2013-01-01

    We present a case of acute hydrocephalus secondary to cervical spinal cord injury in a patient with diffuse ossification of the posterior longitudinal ligament (OPLL). A 75-year-old male patient visited the emergency department with tetraparesis and spinal shock. Imaging studies showed cervical spinal cord injury with hemorrhage and diffuse OPLL from C1 to C4. We performed decompressive laminectomy and occipitocervical fusion. Two days after surgery, his mental status had deteriorated to drow...

  13. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  14. Mature teratoma of the spinal cord in adults: An unusual case

    OpenAIRE

    Li, Yuan; Yang, Bo; SONG, LAIJUN; Yan, Dongming

    2013-01-01

    Intraspinal mature teratomas rarely occur in adults. The present study describes an unusual case of adult intradural mature teratoma, which was completely resected. A 22-year-old female presented with an intermittent pinching pain in the lower right shank that had lasted for three months. Magnetic resonance imaging (MRI) results indicated a multicystic mass extending from the T12 to L2 vertebrae, and the tumors were certified as teratomas by a histopathological examination. The level of pain ...

  15. Curcumin protects against ischemic spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Jinhua Zhang; Hao Wei; Meimei Lin; Chunmei Chen; Chunhua Wang; Maobai Liu

    2013-01-01

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cellinjury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneal y injected with curcumin. Reverse transcrip-tion-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective ef-fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression.

  16. Adult human neural stem cells : Properties in vitro and as xenografts in the spinal cord

    OpenAIRE

    Westerlund, Ulf

    2005-01-01

    Though the presence of stem cells in the adult human brain has been presented earlier, much has yet to be discovered about these cells. However, the mere potential of these cells has had a significant impact of how we today evaluate the regenerative capacity of the central nervous system and, importantly, on the possible means for science to provide insights in neural repair. In this thesis a series of in vitro studies, based on the formation of neurospheres, was used to...

  17. Advance in spinal cord ischemia reperfusion injury: Blood-spinal cord barrier and remote ischemic preconditioning.

    Science.gov (United States)

    Yu, Qijing; Huang, Jinxiu; Hu, Ji; Zhu, Hongfei

    2016-06-01

    The blood-spinal cord barrier (BSCB) is the physiological and metabolic substance diffusion barrier between blood circulation and spinal cord tissues. This barrier plays a vital role in maintaining the microenvironment stability of the spinal cord. When the spinal cord is subjected to ischemia/reperfusion (I/R) injury, the structure and function of the BSCB is disrupted, further destroying the spinal cord homeostasis and ultimately leading to neurological deficit. Remote ischemic preconditioning (RIPC) is an approach in which interspersed cycles of preconditioning ischemia is followed by reperfusion to tissues/organs to protect the distant target tissues/organs against subsequent lethal ischemic injuries. RIPC is an innovation of the treatment strategies that protect the organ from I/R injury. In this study, we review the morphological structure and function of the BSCB, the injury mechanism of BSCB resulting from spinal cord I/R, and the effect of RIPC on it. PMID:27060223

  18. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury*

    OpenAIRE

    Xu, Kan; Chen, Qi-xin; Li, Fang-cai; Chen, Wei-Shan; Lin, Min; Wu, Qiong-hua

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Meth...

  19. Pain in spinal cord injury.

    Science.gov (United States)

    Baastrup, Cathrine; Finnerup, Nanna Brix

    2012-01-01

    SUMMARY An important and detrimental effect of spinal cord injury (SCI) is pain, which develops in approximately two-thirds of all SCI patients, while approximately half of SCI patients develop chronic neuropathic pain (NP). Thus far, there is no cure for SCI NP, and oral pharmacological intervention is often inadequate, commonly resulting in a pain reduction of only 20-30%. In this short review, we will present an overview of the important features of SCI pain including taxonomy, epidemiology and classification, as well as a suggested oral pharmacological treatment strategy for SCI NP and the current evidence available from randomized placebo-controlled trials. Considerations and evidence for the nonpharmacological treatment of SCI will be discussed briefly. PMID:24654622

  20. Effect of Regular Exercise on Cardiopulmonary Fitness in Males With Spinal Cord Injury

    OpenAIRE

    Lee, Young Hee; Oh, Kyung Joon; Kong, In Deok; Kim, Sung Hoon; Shinn, Jong Mock; Kim, Jong Heon; Yi, Dongsoo; Lee, Jin Hyeong; Chang, Jae Seung; Kim, Tae-ho; Kim, Eun Ju

    2015-01-01

    Objective To evaluate the cardiopulmonary endurance of subjects with spinal cord injury by measuring the maximal oxygen consumption with varying degrees of spinal cord injury level, age, and regular exercise. Methods We instructed the subjects to perform exercises using arm ergometer on healthy adults at 20 years of age or older with spinal cord injury, and their maximal oxygen consumption (VO2max) was measured with a metabolic measurement system. The exercise proceeded stepwise according to ...

  1. Recurrent Autonomic Dysreflexia due to Chronic Aortic Dissection in an Adult Male with Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Subramanian Vaidyanathan

    2008-01-01

    Full Text Available Autonomic dysreflexia is a hypertensive clinical emergency for persons with spinal cord injury at T-6 level or above. Recurrent autonomic dysreflexia is uncommon in spinal cord injury patients and is usually caused by noxious stimuli that cannot be removed promptly, e.g., somatic pain, abdominal distension. A 61-year-old man, who sustained tetraplegia at C-5 (ASIA-A 38 years ago, was admitted with chest infection. Computerised tomography (CT of the chest showed the ascending aorta to measure 4 cm in anteroposterior diameter; descending thoracic aorta measured 3.5 cm. No dissection was seen. Normal appearances of abdominal aorta were seen. He was treated with noninvasive ventilation, antibiotics, and diuretics. Nineteen days later, when there was sudden deterioration in his clinical condition, CT of the pulmonary angiogram was performed to rule out pulmonary embolism. This showed no pulmonary embolus, but the upper abdominal aorta showed some dissection with thrombosis of the false lumen. Blood pressure was controlled with perindopril 2 mg, once a day, doxazosin 4 mg, twice a day, and furosemide 20 mg, twice a day. Since this patient did not show clinical features of mesenteric or lower limb ischaemia, the vascular surgeon did not recommend subdiaphragmatic aortic replacement.

  2. Extramedullary haematopoeisis causing spinal cord compression

    Directory of Open Access Journals (Sweden)

    F Ismail

    2010-08-01

    Full Text Available Extramedullary haematopoeisis (EMH is a rare cause of spinal cord compression. However, in a patient with a haematological disorder and in particular thalassaemia, EMH with paraspinal masses should be considered and imaging planned appropriately.

  3. Early treatment of spinal cord injury

    OpenAIRE

    Feng, Ya-Ping

    2016-01-01

    With the rapid development of society, the incidence of spinal cord injury (SCI) is increasing year by year, and the treatment is very difficult with a high disability rate. Correct prehospital first aid transportation can greatly reduce secondary injury of spinal cord caused by improper transportation. Early application of high dose methylprednisolone, internal fixation by using screw-rod system, as well as intramedually and extramedually decompression can protect the residual neurolog...

  4. Male infertility in spinal cord trauma

    OpenAIRE

    Cristiano Utida; Jose C. Truzzi; Homero Bruschini; Rogerio Simonetti; Cedenho, Agnaldo P.; Miguel Srougi; Valdemar Ortiz

    2005-01-01

    Every year there are 10 thousand new cases of patients victimized by spinal cord trauma (SCT) in the United States and it is estimated that there are 7 thousand new cases in Brazil. Eighty percent of patients are fertile males. Infertility in this patient group is due to 3 main factors resulting from spinal cord lesions: erectile dysfunction, ejaculatory disorder and low sperm counts. Erectile dysfunction has been successfully treated with oral and injectable medications, use of vacuum device...

  5. A regeneration strategy for spinal cord injury

    OpenAIRE

    Nordblom, Jonathan

    2012-01-01

    A severe traumatic spinal cord injury (SCI) frequently leads to a devastating and permanent disability. Due to glial scarring and an inhibitory local environment, regrowth of disrupted axons in the injured spinal cord beyond a lesion is obstructed, thus preventing reconnection with neurons at the other side. Many experimental strategies have been presented to limit the damage and improve outcome after SCI, but few options are available for the patient. Neurons in the central nervous sys...

  6. Acute rehabilitation of spinal cord injury

    OpenAIRE

    KIDRIČ-SIVEC, Urška; SEDEJ, Bogdana; Marolt, Melita

    2015-01-01

    Traumatic spinal cord injury presents with loss of function of neuromuscular and other systems below the level of injury. Patients may suffer from minor loss of strength to complete quadriplegia with respiratory distress. All the patients with traumatic spinal cord injury who are admitted and treated in University Medical Centre Ljubljana are evaluated after admission and individualized plan of rehabilitation is made. The neurological level of injury is documented with international standa...

  7. Perturbed cholesterol homeostasis in aging spinal cord.

    Science.gov (United States)

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  8. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  9. Spinal Cord Meningioma: A Treatable Cause of Paraplegia

    OpenAIRE

    Mittal, Manoj K; Rabinstein, Alejandro A.

    2012-01-01

    Chondrocalcinosis associated with Gitelman syndrome (GS) presents in young adults with either no symptoms or joint pain, muscle weakness, muscle cramps, paresthesias, episodes of tetany, or hypokalemic paralysis. Spinal cord meningiomas present with gradual onset of lower extremities weakness, numbness, pain, or balance problem. We report a 76 year old gentleman who presented with gradually progressive leg weakness puzzling the treating physicians.

  10. Spinal Cord Involvement in Brachial Plexus Injury

    OpenAIRE

    J Gordon Millichap

    2004-01-01

    The role of spinal cord plasticity after birth injury and recovery from obstetric brachial plexus lesions was investigated in newborn rats with selective crush injury to spinal roots C5 and C6, in a study at University Clinics of Vienna School of Medicine, Austria.

  11. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury

    OpenAIRE

    Shah, Prithvi K.; Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2013-01-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as oppos...

  12. Enhancing physical activity guidelines: a needs survey of adults with spinal cord injury and health care professionals.

    Science.gov (United States)

    Foulon, Brianne L; Lemay, Valérie; Ainsworth, Victoria; Martin Ginis, Kathleen A

    2012-10-01

    The purpose of this study was to determine preferences of people with spinal cord injury (SCI) and health care professionals (HCP) regarding the content and format of a SCI physical activity guide to support recently released SCI physical activity guidelines. Seventy-eight people with SCI and 80 HCP completed a survey questionnaire. Participants with SCI identified desired content items and their preferences for format. HCP rated the helpfulness of content items to prescribe physical activity. All content items were rated favorably by participants with SCI and useful by HCP. The risks and benefits of activity and inactivity, and strategies for becoming more active, were rated high by both samples. Photographs and separate information for those with paraplegia versus tetraplegia were strongly endorsed. These data were used to guide the development of an SCI physical activity guide to enhance the uptake of physical activity guidelines for people with SCI. The guide was publically released November 11, 2011. PMID:23027146

  13. Detrusor function in suprasacral spinal cord injuries.

    Science.gov (United States)

    Light, J K; Beric, A

    1992-08-01

    A total of 21 patients with chronic, stable suprasacral spinal cord injuries underwent a comprehensive neurological evaluation. A second lumbosacral lesion was excluded. The urodynamic findings were relatively constant as 95% of the patients showed detrusor hyperreflexia with elevated pressures, sphincteric dyssynergia and a competent bladder neck during the filling phase. The urodynamic findings of unexpected detrusor function in high spinal cord injury, for example areflexia and hypocontractility, should raise the clinician's suspicion that there is a lesion or dysfunction involving the sacral cord. PMID:1635134

  14. MRI in spinal cord decompression sickness

    International Nuclear Information System (INIS)

    Spinal cord decompression sickness (DCS) is a rare condition that can lead to spinal cord infarction. Despite the low incidence of diving-related DCS, we have managed to collect the data and MRI findings of seven patients who have been diagnosed with and treated for DCS in our local hyperbaric facility. This study describes the clinical presentation, MRI spinal cord findings, treatment administered and outcome of these patients. The patient medical records, from 1997 to 2007, were retrospectively reviewed. All patients with a final diagnosis of DCS and who underwent examination were included. The images were independently reviewed by two radiologists who recorded the location and number of lesions within the spinal cord. The Frankel grading was used to assess the initial and clinical outcome response. Patchy-increased T2W changes affecting several levels at the same time were found. Contrary to the popular notion that venous infarction is the leading cause of DCS, most of our patients also demonstrated affliction of grey matter, which is typically seen in an arterial pattern of infarction. Initial involvement of multiple (>6) spinal cord levels was associated with a poor outcome. Patients who continued to have multiple neurological sequelae with less than 50% resolution of symptoms despite recompression treatment were also those who had onset of symptoms within 30 min of resurfacing. DCS is probably a combination of both arterial and venous infarction. Short latency to the onset of neurological symptoms and multilevel cord involvement may be associated with a poorer outcome.

  15. Vocational Rehabilitation of Persons with Spinal Cord Injuries

    Science.gov (United States)

    Poor, Charles R.

    1975-01-01

    Reviews historical development of organized vocational rehabilitation programming for the spinal cord injured in the United States. Significant factors that affect vocational rehabilitation outcomes with spinal cord injured persons are listed and discussed. (Author)

  16. Mechanisms of symptomatic spinal cord ischemia after TEVAR

    DEFF Research Database (Denmark)

    Czerny, Martin; Eggebrecht, Holger; Sodeck, Gottfried; Verzini, Fabio; Cao, Piergiorgio; Maritati, Gabriele; Riambau, Vicente; Beyersdorf, Friedhelm; Rylski, Bartosz; Funovics, Martin; Loewe, Christian; Schmidli, Jürg; Tozzi, Piergiorgio; Weigang, Ernst; Kuratani, Toru; Livi, Ugolino; Esposito, Giampiero; Trimarchi, Santi; van den Berg, Jos C; Fu, Weiguo; Chiesa, Roberto; Melissano, Germano; Bertoglio, Luca; Lönn, Lars; Schuster, Ingrid; Grimm, Michael

    2012-01-01

    To test the hypothesis that simultaneous closure of at least 2 independent vascular territories supplying the spinal cord and/or prolonged hypotension may be associated with symptomatic spinal cord ischemia (SCI) after thoracic endovascular aortic repair (TEVAR)....

  17. A Neonatal Mouse Spinal Cord Compression Injury Model.

    Science.gov (United States)

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  18. Making Human Neurons from Stem Cells after Spinal Cord Injury

    OpenAIRE

    Jun Yan; Leyan Xu; Welsh, Annie M; Glen Hatfield; Thomas Hazel; Karl Johe; Koliatsos, Vassilis E.

    2007-01-01

    Editors' Summary Background. Every year, spinal cord injuries, many caused by road traffic accidents, paralyze about 11,000 people in the US. This paralysis occurs because the spinal cord is the main communication highway between the body and the brain. Information from the skin and other sensory organs is transmitted to the brain along the spinal cord by bundles of neurons, nervous system cells that transmit and receive messages. The brain then sends information back down the spinal cord to ...

  19. Characteristics and rehabilitation for patients with spinal cord stab injury

    OpenAIRE

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; LI, XIANG; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-01-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting...

  20. Astrocytoma with involvement of medulla oblongata, spinal cord and spinal nerves in a raccoon (Procyon lotor)

    Science.gov (United States)

    Neoplasms affecting the central and peripheral nervous systems of wild animals are extremely rare. Described are clinical signs, pathologic and immunohistochemical findings in an adult female raccoon (Procyon lotor) with an astrocytoma which involved brainstem, cervical spinal cord and roots of the ...

  1. Acute care management of spinal cord injuries.

    Science.gov (United States)

    Mitcho, K; Yanko, J R

    1999-08-01

    Meeting the health care needs of the spinal cord-injured patient is an immense challenge for the acute care multidisciplinary team. The critical care nurse clinician, as well as other members of the team, needs to maintain a comprehensive knowledge base to provide the care management that is essential to the care of the spinal cord-injured patient. With the active participation of the patient and family in care delivery decisions, the health care professionals can help to meet the psychosocial and physical needs of the patient/family unit. This article provides an evidence-based, comprehensive review of the needs of the spinal cord-injured patient in the acute care setting including optimal patient outcomes, methods to prevent complications, and a plan that provides an expeditious transition to rehabilitation. PMID:10646444

  2. Radioisotope scanning for the spinal cord tumor

    International Nuclear Information System (INIS)

    Radioisotope scanning with sup(99m)Tc-pertechnetate or 67Ga-citrate for the spinal cord tumors are reported. Six patients with spinal cord tumors including 2 ependymomas, 1 neurinoma, 1 metastatic medulloblastoma, 1 metastatic astrocytoma, and 1 metastatic pinealoma as well as 6 patients with non-neoplastic lesions were examined by this method. Two out of 6 cases with tumors showed positive scans, and two showed equivocal scans. This new method is different from myeloscintigraphy or radioisotope angiography as already reported. It directly demonstrates the tumor itself like brain scanning does and is very useful as a nontraumatic method for screening spinal cord lesions, especially in poor risk patients. Both the usefulness and the limitations of this method are discussed. (auth.)

  3. Radiation-induced spinal cord hemorrhage (hematomyelia

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-12-01

    Full Text Available Intraspinal hemorrhage is very rare and intramedullary hemorrhage, also called hematomyelia, is the rarest form of intraspinal hemorrhage, usually related to trauma. Spinal vascular malformations such intradural arteriovenous malformations are the most common cause of atraumatic hematomyelia. Other considerations include warfarin or heparin anticoagulation, bleeding disorders, spinal cord tumors. Radiation-induced hematomyelia of the cord is exceedingly rare with only one case in literature to date. We report the case of an 8 year old girl with Ewing’s sarcoma of the thoracic vertebra, under radiation therapy, presenting with hematomyelia. We describe the clinical course, the findings on imaging studies and the available information in the literature. Recognition of the clinical pattern of spinal cord injury should lead clinicians to perform imaging studies to evaluate for compressive etiologies.

  4. Primary multifocal gliosarcoma of the spinal cord

    Directory of Open Access Journals (Sweden)

    Ramesh M. Kumar

    2016-03-01

    Full Text Available Gliosarcoma (GS is a rare and exceedingly malignant neoplasm of the central nervous system. It displays clinical features similar to glioblastoma, yet is histologically unique as it harbors both gliomatous and sarcomatous cellular components. Involvement of the neuroaxis is predominantly limited to the cerebral parenchyma and meninges. Primary GS of the spinal cord is rarely encountered. We report a case of a 54 year old male who presented with 2 months of progressive, bilateral lower extremity sensory deficits. Magnetic resonance imaging of the neuro-axis revealed multiple intradural lesions involving the cervical and thoracic spinal cord without evidence of intracranial involvement. Surgical resection of a dural based, extramedullary cervical lesion and two exophytic, intramedullary thoracic lesions revealed gliosarcoma, WHO grade IV. The patient died approximately 11 months after presentation. This report confirms that GS is not limited to supratentorial involvement and can primarily affect the spinal cord.

  5. Turkish Adaptation of Spinal Cord Independence Measure--Version III

    Science.gov (United States)

    Kesiktas, Nur; Paker, Nurdan; Bugdayci, Derya; Sencan, Sureyya; Karan, Ayse; Muslumanoglu, Lutfiye

    2012-01-01

    Various rating scales have been used to assess ability in individuals with spinal cord injury. There is no specific functional assessment scale for Turkish patients with spinal cord injury. The Spinal Cord Independence Measure (SCIM) is a specific test, which has become popular in the last decade. A study was conducted to validate and evaluate the…

  6. Spontaneous herniation of the thoracic spinal cord : a case report

    International Nuclear Information System (INIS)

    Spontaneous herniation of the spinal cord is a rare disease entity in which spinal cord substance is herniated through a previously uninjured and/or untouched dural. It is a cause of myelopathy that is treatable but difficult to diagnose. We report the CT and MR findings of a case of spontaneous thoracic spinal cord through a dural defect

  7. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    Science.gov (United States)

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. PMID:26611563

  8. Intramedullary sarcoidosis of the cervical spinal cord.

    OpenAIRE

    Vighetto, A; Fischer, G.; Collet, P.; Bady, B; Trillet, M

    1985-01-01

    A 26-year-old male with a history of pulmonary sarcoidosis showed clinical, myelographic and intra-operative evidence of a C5-C6 spinal cord tumour, which was diagnosed by biopsy as a pure intramedullary granuloma. Among the 29 published cases of histologically proven cord sarcoidosis, only five presented with pure parenchymatous infiltration without meningeal involvement. Corticosteroids are the most useful therapy, and surgery is indicated only for minimal biopsy when the parenchyma is inva...

  9. Imaging Techniques in Spinal Cord Injury

    OpenAIRE

    Ellingson, BM; Salamon, N.; Holly, LT

    2012-01-01

    © 2014 Elsevier Inc. Background Spinal imaging plays a critical role in the diagnosis, treatment, and rehabilitation of patients with spinal cord injury (SCI). In recent years there has been increasing interest in the development of advanced imaging techniques to provide pertinent microstructural and metabolic information that is not provided by conventional modalities. Methods This review details the pathophysiological structural changes that accompany SCI, as well as their imaging correlate...

  10. MR imaging evaluation of tethered spinal cord

    International Nuclear Information System (INIS)

    Seven cases of tethered cord underwent magnetic resonance imaging. The associated findings included the following: case 1: caudal regression, inperforated anus, cutaneovesical fistula, and diverticulum of the bladder; case 2: Arnold-Chiari malformation, hydromyelia, and urinary reflux; case 3; lipoma; case 4: postoperative syringomyelia and residual lipoma; case 5: diastematomyelia and spinal bifida; case 6: dysraphism, diastematomyelia, and myelomeningocele; and case 7: postoperative split cord T1-weighted axial and sagittal images are sufficient for evaluation of tethered cord and associated anomalies and are also useful for postoperative follow-up and the detection of possible complications

  11. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  12. Melatonin lowers edema after spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Cheng Li; Xiao Chen; Suchi Qiao; Xinwei Liu; Chang Liu; Degang Zhu; Jiacan Su; Zhiwei Wang

    2014-01-01

    Melatonin has been shown to diminish edema in rats. Melatonin can be used to treat spinal cord injury. This study presumed that melatonin could relieve spinal cord edema and examined how it might act. Our experiments found that melatonin (100 mg/kg, i.p.) could reduce the water content of the spinal cord, and suppress the expression of aquaporin-4 and glial ifbrillary acidic protein after spinal cord injury. This suggests that the mechanism by which melatonin alleviates the damage to the spinal cord by edema might be related to the expression of aquaporin-4 and glial ifbrillary acidic protein.

  13. Synaptic development in the injured spinal cord cavity following co-transplantation of fetal spinal cord cells and autologous activated Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Wendong Ruan; Yuan Xue; Ninghua Li; Xiaotao Zhao; Huajian Zhao; Peng Li

    2010-01-01

    Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In the present study, autologous Schwann cells in combination with a fetal spinal cord cell suspension were transplanted into adult Wistar rats with spinal cord injury, and newly generated axonal connections were observed ultrastructurally. Transmission electron microscopic observations showed that the neuroblast first presented cytoplasmic processes, followed by pre- and postsynaptic membranes with low electron density forming a dense projection. The number and types of synaptic vesicles were increased. Synaptic connections developed from single cell body-dendritic synapses into multiple cell body-dendritic anddendrite-dendritic synapses. In addition, the cell organs of the transplanted neuroblast, oligodendroblast and astroblast matured gradually. The blood-brain barrier appeared subsequently. Moreover, neurofilament, histamine, calcitonin-gene-related peptides, and glial fibrillary acidic protein positive fibers were observed in the transplant region. These findings demonstrate that fetal spinal cord cells in the presence of autologous activated Schwann cells can develop into mature synapses in the cavity of injured spinal cords, suggesting the possibility of information exchange through the reconstructed synapse between fetal spinal cord cells and the host.

  14. Spinal cord stimulation in chronic pain syndromes

    NARCIS (Netherlands)

    ten Vaarwerk, IAM; Staal, MJ

    1998-01-01

    Spinal cord stimulation (SCS) has been used for more than 30 years now, and although it has shown to be effective under certain well-described conditions of chronic pain, conclusive evidence on its effectiveness is still sparse. There is a need for more prospective and methodological good studies, i

  15. Staging Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro ...

  16. New trends in spinal cord tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka

    2015-01-01

    Roč. 10, č. 2 (2015), s. 129-145. ISSN 1479-6708 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : biomaterial * cell therapy * regenerative medicine * spinal cord injury * stem cells scaffold * tissue engineering Subject RIV: FH - Neurology

  17. Male infertility in spinal cord trauma

    Directory of Open Access Journals (Sweden)

    Cristiano Utida

    2005-08-01

    Full Text Available Every year there are 10 thousand new cases of patients victimized by spinal cord trauma (SCT in the United States and it is estimated that there are 7 thousand new cases in Brazil. Eighty percent of patients are fertile males. Infertility in this patient group is due to 3 main factors resulting from spinal cord lesions: erectile dysfunction, ejaculatory disorder and low sperm counts. Erectile dysfunction has been successfully treated with oral and injectable medications, use of vacuum devices and penile prosthesis implants. The technological improvement in penile vibratory stimulation devices (PVS and rectal probe electro-ejaculation (RPE has made such procedures safer and accessible to patients with ejaculatory dysfunction. Despite the normal number of spermatozoa found in semen of spinal cord-injured patients, their motility is abnormal. This change does not seem to be related to changes in scrotal thermal regulation, frequency of ejaculation or duration of spinal cord damage but to factors related to the seminal plasma. Despite the poor seminal quality, increasingly more men with SCT have become fathers through techniques ranging from simple homologous insemination to sophisticated assisted reproduction techniques such as intracytoplasmic sperm injection (ICSI.

  18. Anorgasmia in anterior spinal cord syndrome.

    OpenAIRE

    Berić, A; Light, J K

    1993-01-01

    Three male and two female patients with anorgasmia and dissociated sensory loss due to an anterior spinal cord syndrome are described. Clinical, neurophysiological and quantitative sensory evaluation revealed preservation of the large fibre dorsal column functions from the lumbosacral segments with concomitant severe dysfunction or absence of the small fibre neospinothalamic mediated functions. These findings indicate a role for the spinothalamic system in orgasm.

  19. Solitary fibrous tumour of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Mordani, J.P. [City General Hospital, Stoke-on-Trent (United Kingdom). Dept. of Radiology; Haq, I.U. [North Staffordshire Royal Infirmary, Stoke-on-Trent (United Kingdom). Dept. of Neuroradiology; Singh, J. [North Staffordshire Royal Infirmary, Stoke-on-Trent (United Kingdom). Dept. of Neurosurgery

    2000-09-01

    We report an intramedullary primary solitary fibrous tumour of the cervical spinal cord in a 33-year-old man. The tumour predominantly consisted of monomorphic spindle cells with a storiform pattern. MRI demonstrated an inhomogeneously enhancing cervical intramedullary tumour. The patient was well without recurrence 18 months after surgery. (orig.)

  20. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.

    Science.gov (United States)

    Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping; Deng, Lingxiao; Lu, Qing-Bo; Shields, Christopher B; Walker, Melissa J; Li, Jianan; Xu, Xiao-Ming

    2015-09-01

    Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the

  1. Development and Treatments of Inflammatory Cells and Cytokines in Spinal Cord Ischemia-Reperfusion Injury

    OpenAIRE

    Jian Zhuang; Xiao-Kang Li; Masayuki Fujino; Ping Zhu; Jia-xin Li

    2013-01-01

    During aortic surgery, interruption of spinal cord blood flow might cause spinal cord ischemia-reperfusion injury (IRI). The incidence of spinal cord IRI after aortic surgery is up to 28%, and patients with spinal cord IRI might suffer from postoperative paraplegia or paraparesis. Spinal cord IRI includes two phases. The immediate spinal cord injury is related to acute ischemia. And the delayed spinal cord injury involves both ischemic cellular death and reperfusion injury. Inflammation is a ...

  2. Simplified spinal cord phantom for evaluation of SQUID magnetospinography

    Science.gov (United States)

    Adachi, Y.; Oyama, D.; Somchai, N.; Kawabata, S.; Uehara, G.

    2014-05-01

    Spinal cord functional imaging by magnetospinography (MSG) is a noninvasive diagnostic method for spinal cord diseases. However, the accuracy and spatial resolution of lesion localization by MSG have barely been evaluated in detail so far. We developed a simplified spinal cord phantom for MSG evaluation. The spinal cord phantom is composed of a cylindrical vessel filled with saline water, which acts as a model of a neck. A set of modeled vertebrae is arranged in the cylindrical vessel, which has a neural current model made from catheter electrodes. The neural current model emulates the current distribution around the activated site along the axon of the spinal cord nerve. Our MSG system was used to observe the magnetic field from the phantom; a quadrupole-like pattern of the magnetic field distribution, which is a typical distribution pattern for spinal cord magnetic fields, was successfully reproduced by the phantom. Hence, the developed spinal cord phantom can be used to evaluate MSG source analysis methods.

  3. Spinal-cord swelling in acute multiple sclerosis

    International Nuclear Information System (INIS)

    Despite the frequent involvement of the spinal cord by multiple sclerosis, reports concerning neuroradiological findings regarding these lesions have been limited; most of them have demonstrated a normal or small spinal cord. Two cases of acute paraparesis showed evidence of spinal-cord swelling on myelography and CT myelography, initially suggesting the diagnosis of an intramedullary tumor. Spinal-cord swelling was demonstrated more clearly on CT myelography than on conventional myelography. The diagnosis of multiple sclerosis was made with the aid of the CSF findings, the clinical course, and the contracting-cord sign. The ''contracting-cord sign'' means the diminution of the spinal-cord diameter in the chronic stage. Since acute multiple sclerosis may produce spinal-cord swelling simulating a tumor, careful investigations are necessary to avoid unwarranted surgical interventions. (author)

  4. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep.

    Directory of Open Access Journals (Sweden)

    Oliver E Flouty

    Full Text Available The efficacy of spinal cord stimulators is dependent on the ability of the device to functionally activate targeted structures within the spinal cord, while avoiding activation of near-by non-targeted structures. In theory, these objectives can best be achieved by delivering electrical stimuli directly to the surface of the spinal cord. The current experiments were performed to study the influence of different stimulating electrode positions on patterns of spinal cord electrophysiological activation. A custom-designed spinal cord neurostimulator was used to investigate the effects of lead position and stimulus amplitude on cortical electrophysiological responses to spinal cord stimulation. Brain recordings were obtained from subdural grids placed in four adult sheep. We systematically varied the position of the stimulating lead relative to the spinal cord and the voltage delivered by the device at each position, and then examined how these variables influenced cortical responses. A clear relationship was observed between voltage and electrode position, and the magnitude of high gamma-band oscillations. Direct stimulation of the dorsal column contralateral to the grid required the lowest voltage to evoke brain responses to spinal cord stimulation. Given the lower voltage thresholds associated with direct stimulation of the dorsal column, and its possible impact on the therapeutic window, this intradural modality may have particular clinical advantages over standard epidural techniques now in routine use.

  5. Spinal Cord Injury Prevention Tips

    Science.gov (United States)

    ... age 1 should not be carried on a bicycle, because their necks are not strong enough to ... may contribute to falls. Secure rugs and loose electrical cords, put away toys, use safety gates, and ...

  6. Non-enhancing pilocytic astrocytoma of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [University of Colorado Health Sciences Center, Department of Radiology A-030, Denver, CO (United States); Hedlund, Gary L. [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake, Utah (United States)

    2006-12-15

    Pilocytic astrocytomas are among the most common intramedullary spinal cord tumors in the pediatric age group. The presence of contrast enhancement is a major factor used to distinguish these tumors from other spinal cord lesions. We present a case of histologically proved non-enhancing intramedullary spinal cord pilocytic astrocytoma in a 12-year-old girl. This case represents an exception to the conventional wisdom that pediatric spinal neoplasms enhance with administration of intravenous contrast material. (orig.)

  7. Non-enhancing pilocytic astrocytoma of the spinal cord

    International Nuclear Information System (INIS)

    Pilocytic astrocytomas are among the most common intramedullary spinal cord tumors in the pediatric age group. The presence of contrast enhancement is a major factor used to distinguish these tumors from other spinal cord lesions. We present a case of histologically proved non-enhancing intramedullary spinal cord pilocytic astrocytoma in a 12-year-old girl. This case represents an exception to the conventional wisdom that pediatric spinal neoplasms enhance with administration of intravenous contrast material. (orig.)

  8. Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study

    International Nuclear Information System (INIS)

    Spinal cord lesions in adults with multiple sclerosis (MS) are thought to contribute to disability. The magnetic resonance imaging (MRI) appearance and clinical correlates of spinal cord lesions in children with MS have not been reported. T1-weighted pre- and post-gadolinium and T2-weighted TSE/FSE spine MR images of 36 children (age, 14.3 ± 3.3) with relapsing-remitting MS (annualized relapse rate, 0.7; disease duration, 7.5 ± 3.3 years) were analyzed for total lesion count, lesion location and length, intramedullary extent, and gadolinium enhancement. Clinical, demographic, laboratory, and MRI data were correlated. Lesions preferentially involved the cervical region, were predominantly focal, and involved only a portion of the transverse cord diameter. However, ten of 36 patients demonstrated longitudinally extensive lesions. Children with the highest clinical relapse rate also tended to have more spinal cord lesions and were more likely to accrue new lesions on serial spinal scans. These preliminary data suggest that MS lesions of the spinal cord in children are radiographically similar to that of adult-onset MS - supporting a common biology of pediatric- and adult-onset disease. However, children with relapsing-remitting MS can also develop longitudinally extensive lesions, suggesting that such lesions may be less specific for diseases such as neuromyelitis optica in pediatric patients. All patients recovered well from spinal cord attacks, and the presence of spinal cord lesions in the first few years of disease did not correlate with physical disability. Measures of spinal cord atrophy and longer periods of observation are required to determine the impact of spinal cord involvement in pediatric-onset MS. (orig.)

  9. Gene therapy approaches for spinal cord injury

    Science.gov (United States)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  10. Central nociceptive sensitization vs. spinal cord training: opposing forms of plasticity that dictate function after complete spinal cord injury

    OpenAIRE

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D; Grau, James W.

    2012-01-01

    The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive) stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI) field in...

  11. Spinal cord magnetic resonance imaging in suspected multiple sclerosis

    International Nuclear Information System (INIS)

    We examined the value of spinal cord magnetic resonance imaging (MRI) in the diagnostic work-up of multiple sclerosis (MS). Forty patients suspected of having MS were examined within 24 months after the start of symptoms. Disability was assessed, and symptoms were categorized as either brain or spinal cord. Work-up further included cerebrospinal fluid analysis and standard proton-density, T2-, and T1-weighted gadolinium-enhanced brain and spinal cord MRI. Patients were categorized as either clinically definite MS (n = 13), laboratory-supported definite MS (n = 14), or clinically probable MS (n = 4); four patients had clinically probable MS, and in nine MS was suspected. Spinal cord abnormalities were found in 35 of 40 patients (87.5 %), consisting of focal lesions in 31, only diffuse abnormalities in two, and both in two. Asymptomatic spinal cord lesions occurred in six patients. All patients with diffuse spinal cord abnormality had clear spinal cord symptoms and a primary progressive disease course. In clinically definite MS, the inclusion of spinal imaging increased the sensitivity of MRI to 100 %. Seven patients without a definite diagnosis had clinically isolated syndromes involving the spinal cord. Brain MRI was inconclusive, while all had focal spinal cord lesions which explained symptoms and ruled out other causes. Two other patients had atypical brain abnormalities suggesting ischemic/vascular disease. No spinal cord abnormalities were found, and during follow-up MS was ruled out. Spinal cord abnormalities are common in suspected MS, and may occur asymptomatic. Although diagnostic classification is seldom changed, spinal cord imaging increases diagnostic sensitivity of MRI in patients with suspected MS. In addition, patients with primary progressive MS may possibly be earlier diagnosed. Finally, differentiation with atypical lesions may be improved. (orig.)

  12. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...... with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is...... dependent on wakefulness and sleep. Thus, it is important to be aware of basic mechanisms in the regulation and control of sleep and awake states. Supine position decreases the vital capacity in tetraplegic individuals, and diminished responsiveness to Pa(CO)(2) may further decrease ventilatory reserve...

  13. Radiation tolerance of the cervical spinal cord

    International Nuclear Information System (INIS)

    A total of 109 patients were studied after receiving radiation therapy that included a dose to the spinal cord. In addition to irradiation of the primary site, 59 patients received radiation to the lower neck. Transverse myelopathy developed in three patients; all three had been treated with fields to the lower neck. The dose to the spinal cord at the site of junctional fields was thought to be considerably higher because of the beam divergence from multiple fields employed. The authors stress that prolonged fractionation of treatment, fixation of the head during treatment, precise dosimetry, and close surveillance of the patient are important factors in avoiding radiation myelitis. The authors also stress the importance of controlling divergence of multiple beams by employing appropriate shields

  14. Radiation tolerance of the cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.H.; Fayos, J.V.

    1981-05-01

    A total of 109 patients were studied after receiving radiation therapy that included a dose to the spinal cord. In addition to irradiation of the primary site, 59 patients received radiation to the lower neck. Transverse myelopathy developed in three patients; all three had been treated with fields to the lower neck. The dose to the spinal cord at the site of junctional fields was thought to be considerably higher because of the beam divergence from multiple fields employed. The authors stress that prolonged fractionation of treatment, fixation of the head during treatment, precise dosimetry, and close surveillance of the patient are important factors in avoiding radiation myelitis. The authors also stress the importance of controlling divergence of multiple beams by employing appropriate shields.

  15. Spinal cord cysticercosis: a case report.

    Science.gov (United States)

    Bouree, Patrice; Dumazedier, Deborah; Bisaro, Francine; Resende, Paula; Comoy, Jean; Aghakhani, Nozar

    2006-12-01

    Cysticercosis caused by the infection with the larva of Taenia solium, common through out the world, is located in the muscles, the eyes and the central nervous system, but mostly in the brain. Spinal cord infection is rare. The authors report a case of a young girl, living in Paris who had traveled in Latin America, and complained of back pains and troublesome walking. MRI showed a cyst in spinal cord, but other examinations were normal. Diagnosis was confirmed by a pathologist. It was a pure intramedullary cysticercosis, the check-up to find other locations was negative. Only approximately 130 cases are reported in the literature, with motor and sensory disorders. The diagnosis was based on MRI and pathological examination. Antiparasitic medical treatment was useful when combined with surgery. PMID:17153691

  16. Spinal cord motion. Influence of respiration and cardiac cycle

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, S. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Schoth, F. [RWTH Aachen University Hospital (Germany). Dept. of Diagnostic Radiology; Stolzmann, P. [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Krings, T. [Toronto Western Hospital, ON (Canada). Div. of Neuroradiology; Mull, M.; Wiesmann, M. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Stracke, C.P. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Alfried-Krupp-Hospital, Essen (Germany). Dept. of Neuroradiology

    2014-11-15

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  17. Spinal cord motion. Influence of respiration and cardiac cycle

    International Nuclear Information System (INIS)

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  18. Treadmill step training promotes spinal cord neural plasticity after incomplete spinal cord injury**

    Institute of Scientific and Technical Information of China (English)

    Tiansheng Sun; Chaoqun Ye; Jun Wu; Zhicheng Zhang; Yanhua Cai; Feng Yue

    2013-01-01

    A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmil training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were sub-jected to either step training on a treadmil or used in the model (control) group. The treadmil training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmil was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmil training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury.

  19. Neural plasticity after spinal cord injury☆

    OpenAIRE

    Liu, Jian; Yang, Xiaoyu; Jiang, Lianying; Wang, Chunxin; Yang, Maoguang

    2012-01-01

    Plasticity changes of uninjured nerves can result in a novel neural circuit after spinal cord injury, which can restore sensory and motor functions to different degrees. Although processes of neural plasticity have been studied, the mechanism and treatment to effectively improve neural plasticity changes remain controversial. The present study reviewed studies regarding plasticity of the central nervous system and methods for promoting plasticity to improve repair of injured central nerves. T...

  20. Chronic complications of spinal cord injury

    OpenAIRE

    Sezer, Nebahat; Akkuş, Selami; Uğurlu, Fatma Gülçin

    2015-01-01

    Spinal cord injury (SCI) is a serious medical condition that causes functional, psychological and socioeconomic disorder. Therefore, patients with SCI experience significant impairments in various aspects of their life. The goals of rehabilitation and other treatment approaches in SCI are to improve functional level, decrease secondary morbidity and enhance health-related quality of life. Acute and long-term secondary medical complications are common in patients with SCI. However, chronic com...

  1. Biocompatible hydrogels in spinal cord injury repair

    Czech Academy of Sciences Publication Activity Database

    Hejčl, Aleš; Lesný, Petr; Přádný, Martin; Michálek, Jiří; Jendelová, Pavla; Štulík, J.; Syková, Eva

    2008-01-01

    Roč. 57, Suppl.3 (2008), S121-S132. ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR GA309/06/1246 Grant ostatní: GA ČR(CZ) 1A8697 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z40500505 Keywords : Spinal cord injury * Hydrogel * Tissue engineering Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  2. 45 Gy - tolerance dose spinal cord - dogma or the facts?

    International Nuclear Information System (INIS)

    Dose of 45 Gy as a tolerance dose for spinal cord was questioned based on review of clinical data. Some data show that for conventional fractionation with the dose per fraction of less than 2.0 Gy spinal cord tolerance dose may arise up to 50-55 Gy. This was the base for round-table discussion and the importance of clinical and physical risk factors of postirradiation spinal cord injury was discussed and previous diseases of spinal cord, size of dose per fraction and length of irradiated spinal cord were pointed out as high risk factors. It was concluded that from clinical point of view there is no reason and on need to verify and to increase tolerance dose for spinal cord. (author)

  3. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. PMID:26553817

  4. Neurogenic bladder in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Al Taweel W

    2015-06-01

    Full Text Available Waleed Al Taweel, Raouf SeyamDepartment of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi ArabiaAbstract: Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury.Keywords: neurogenic bladder, spinal cord injury, urodynamics, intestine, intermittent catheterization

  5. Concise Review: Bone Marrow for the Treatment of Spinal Cord Injury: Mechanisms and Clinical Applications

    OpenAIRE

    Wright, Karina T.; Masri, Wagih El; Osman, Aheed; Chowdhury, Joy; Johnson, William E.B.

    2010-01-01

    Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversi...

  6. Health Condition and Quality of Life in Persons with Spinal Cord Injury.

    OpenAIRE

    Sanja Trgovcevic; Milena Milicevic; Goran Nedovic; Goran Jovanic

    2014-01-01

    Abstract Background During the last few decades, focus of rehabilitation outcome has been redirected to the lifetime monitoring of quality of life. The purpose of this study was to investigate the differences in quality of life perceptions between participants with spinal cord injury and participants of typical population. Methods This cross-sectional controlled study of 100 adults aged 18-65 years was based on two questionnaires, Short Form-36 Health Survey (SF-36) and Spinal Cord Injury Qua...

  7. Substance P Depolarizes Lamprey Spinal Cord Neurons by Inhibiting Background Potassium Channels

    OpenAIRE

    Thörn Pérez, Carolina; Hill, Russell H.; Grillner, Sten

    2015-01-01

    Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the...

  8. Bone marrow stromal cell: mediated neuroprotection for spinal cord repair

    OpenAIRE

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic factors, enabling neuroprotection/tissue sparing in a rat model of spinal cord injury. In this model system, bone marrow stromal cell-mediated tissue sparing leads to motor and sensory function impr...

  9. A Neonatal Mouse Spinal Cord Compression Injury Model

    OpenAIRE

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facili...

  10. Aquaporin 1 – a novel player in spinal cord injury

    OpenAIRE

    Nesic, O.; Lee, J.; Unabia, G. C.; Johnson, K.; Z. Ye; Vergara, L.; Hulsebosch, C. E.; Perez-Polo, J. R.

    2008-01-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels ...

  11. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Kan XU; Qi-xin CHEN; Fang-cai LI; Wei-shan CHEN; Min LIN; Qiong-hua WET

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Methods: Experiments were conducted in male Spragne-Dawley rats (n=78) weighing 300-400 g. The spinal cord was compressed posteriorly at T10 level using a custom-made screw for 6 h, 24 h or continuously, followed by decompression by removal of the screw. The rats were sacrificed on Day 1 or 3 or in Week 1 or 4 post-decompression. The spinal cord was removed en bloc and examined at lesion site, rostral site and caudal site (7.5 mm away from the lesion). Results: The numbers of TUNEL-positive cells were significantly lower at the site of decompression on Day l, and also at the rostral and caudal sites between Day 3 and Week 4 post-decompression, compared with the persistently compressed group. The numbers of cells between Day 1 and Week 4 were immunoreactive to caspase-3 and B-cell lymphoma-2 (Bcl-2)-associated X-protein (Bax), but not to Bcl-2, correlated with those of TUNEL-positive cells. Conclusion: Our results suggest that decompression reduces neural cell apoptosis following spinal cord injury.

  12. Spinal cord diffusion imaging: Challenging characterization and prognostic value

    OpenAIRE

    Schneider, T

    2013-01-01

    The aim of this thesis is to explore the potential of quantitative imaging mark¬ers derived from diffusion-weighted MRI (DW MRI) in the spinal cord to char¬acterise healthy white matter pathways and provide sensitivity to axonal dam¬age, regeneration and collateral sprouting in spinal cord disease. With new innovative treatment strategies emerging for spinal cord patholo¬gies such as spinal cord injury and Multiple Sclerosis, there is a need for new in-vivo biomarkers that can be specific ...

  13. Does repair of spinal cord injury follow the evolutionary theory?

    Institute of Scientific and Technical Information of China (English)

    Zhicheng Zhang; Fang Li; Tiansheng Sun

    2012-01-01

    Lower vertebrates, such as fish and amphibians, and higher vertebrates in embryonic development can acquire complete regeneration of complex body structures, including the spinal cord, an important part of the central nervous system. However, with species evolution and development, this regenerative capacity gradually weakens and even disappears, but the cellular and molecular mechanisms remain poorly understood. We explored the differences in mechanisms of spinal cord regeneration capability between lower and higher vertebrates, investigated differences in their cellular and molecular mechanisms and between the spinal cord structures of lower vertebrates and mammals, such as rat and monkey, to search for theoretical evidence and therapeutic targets for nerve regeneration in human spinal cord.

  14. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Directory of Open Access Journals (Sweden)

    Steffen Franz

    Full Text Available After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord and unaltered in neurogenic regions (dentate gyrus and SVZ of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  15. Symptomatic epidural lipomatosis of the spinal cord in a child: MR demonstration of spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Alberto [Department of Radiology, Section of Neuroradiology, 505 Parnassus Av, L-371, University of California-San Francisco, CA 94143-0628 (United States); Servicio de Radiodiagnostico, Seccion de Neurorradiologia, Hospital Universitario ' ' 12 de Octubre' ' , 28040 Madrid (Spain); Barkovich, James A. [Department of Radiology, Section of Neuroradiology, 505 Parnassus Av, L-371, University of California-San Francisco, CA 94143-0628 (United States); Mateos, Fernando; Simon, Rogelio [Seccion de Neurpediatria, Servicio de Neurologia, Hospital Universitario ' ' 12 de Octubre' ' , 28041 Madrid (Spain)

    2002-12-01

    We report a case of symptomatic epidural lipomatosis in an 8-year-old girl with Cushing's syndrome secondary to longstanding high-dose steroid therapy for Crohn's disease. MR imaging of the spine revealed massive diffuse epidural fat compressing the entire spinal cord with T2 prolongation in the central gray matter of the cord suggesting ischemic myelopathy. This finding has not been previously demonstrated on imaging. A proposed mechanism underlying these findings is discussed. (orig.)

  16. Symptomatic epidural lipomatosis of the spinal cord in a child: MR demonstration of spinal cord injury

    International Nuclear Information System (INIS)

    We report a case of symptomatic epidural lipomatosis in an 8-year-old girl with Cushing's syndrome secondary to longstanding high-dose steroid therapy for Crohn's disease. MR imaging of the spine revealed massive diffuse epidural fat compressing the entire spinal cord with T2 prolongation in the central gray matter of the cord suggesting ischemic myelopathy. This finding has not been previously demonstrated on imaging. A proposed mechanism underlying these findings is discussed. (orig.)

  17. Central nociceptive sensitization vs. spinal cord training: Opposing forms of plasticity that dictate function after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training. Conversely intradermal formalin impaired future spinal learning (24 h post-injection. Because the NMDA receptor has been implicated in formalin-induced central sensitization, we tested whether pretreatment with NMDA affects spinal learning. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24h. These data provide strong evidence for an

  18. Nuclear magnetic imaging for MTRA. Spinal canal and spinal cord; Magnetresonanztomographie fuer MTRA. Spinalkanal und Wirbelsaeule

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Dominik; Hoffmann, Karl-Titus [Universitaetsklinikum Leipzig (Germany). Abt. fuer Neuroradiologie

    2011-07-01

    The booklet covers the following topics: (1) Clinical indications for NMR imaging of spinal cord and spinal canal; (2) Methodic requirements: magnets and coils, image processing, contrast media: (3) Examination technology: examination conditions, sequences, examination protocols; (4) Disease pattern and indications: diseases of the myelin, the spinal nerves and the spinal canal (infections, tumors, injuries, ischemia and bleedings, malformations); diseases of the spinal cord and the intervertebral disks (degenerative changes, infections, injuries, tumors, malformations).

  19. RhoA/Rho kinase in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xiangbing Wu

    2016-01-01

    Full Text Available A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.

  20. RhoA/Rho kinase in spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xiangbing Wu; Xiao-ming Xu

    2016-01-01

    A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury pro-cess involving inlfammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.

  1. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo

    OpenAIRE

    Talbott, Jason F.; Cao, Qilin; Bertram, James; Nkansah, Michael; Richard L. Benton; Lavik, Erin; Whittemore, Scott R.

    2006-01-01

    Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that although ...

  2. Perfusion assessment in rat spinal cord tissue using photoplethysmography and laser Doppler flux measurements

    Science.gov (United States)

    Phillips, Justin P.; Cibert-Goton, Vincent; Langford, Richard M.; Shortland, Peter J.

    2013-03-01

    Animal models are widely used to investigate the pathological mechanisms of spinal cord injury (SCI), most commonly in rats. It is well known that compromised blood flow caused by mechanical disruption of the vasculature can produce irreversible damage and cell death in hypoperfused tissue regions and spinal cord tissue is particularly susceptible to such damage. A fiberoptic photoplethysmography (PPG) probe and instrumentation system were used to investigate the practical considerations of making measurements from rat spinal cord and to assess its suitability for use in SCI models. Experiments to assess the regional perfusion of exposed spinal cord in anesthetized adult rats using both PPG and laser Doppler flowmetry (LDF) were performed. It was found that signals could be obtained reliably from all subjects, although considerable intersite and intersubject variability was seen in the PPG signal amplitude compared to LDF. We present results from 30 measurements in five subjects, the two methods are compared, and practical application to SCI animal models is discussed.

  3. Application of International Classification of Functioning, Disability and Health (ICF in individuals with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Janaina Vall

    2011-06-01

    Full Text Available After spinal cord injury is common functionality is affected. OBJECTIVE: To evaluate the functionality of patients with spinal cord injury. METHOD: Cross-sectional study by means of the International Classification of Functionality (ICF. 109 adults with spinal cord injury in the city of Curitiba, Brazil were evaluated. RESULTS: The categories most compromised in body were intestines and bladder, sexuality, energy, sleep, emotion and weight. In the domain activities and participation, there was greater difficulty in tasks of bathing, toilet and dressing, self care and leisure. In the domain environmental factors, the categories classified as facilitators were: medications, orthoses and wheelchair, attitude of family, transport, social foresight and health services. The categories classified as barriers were: attitude of authorities, social attitudes, education and work. CONCLUSION: The application of the ICF in persons with spinal cord injury demonstrated a series of disabilities and limitations.

  4. Brain-derived neurotrophic factor and neural plasticity in a rat model of spinal cord transection

    Institute of Scientific and Technical Information of China (English)

    Ruxin Xing; Jia Liu; Hua Jin; Ping Dai; Tinghua Wang

    2011-01-01

    The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-derived neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinase1/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinase1/2 signaling pathway in a rat model of adult spinal cord transection.

  5. Treatments of intramedullary spinal cord tumors

    International Nuclear Information System (INIS)

    In order to establish a treatment for intramedullary spinal cord tumors, histology, symptoms (preoperative, upon discharge from the hospital, and at the final follow-up examination), postoperative combination therapy, postoperative complications, and recurrence were assessed in patients with intramedullary spinal cord tumors treated in the author's hospital during the past 19 years. There were 26 subjects (astrocytoma in 8, ependymoma in 6, intramedullary neurinoma in 3, lipoma in 3, hemangioblastoma in 3, cavernous angioma in 1, capillary hemangioma in 1, and enterogenous cyst in 1). Surgery had been performed in 24 of them, and 7 of the tumors were completely resected, 6 were incompletely resected, and 3 were partially resected. Radiotherapy had been performed to treat 7 astrocytomas and 2 ependymomas. Kyphosis was noted as a postoperative complication in 1 patient with an astrocytoma who had received postoperative radiotherapy. Postoperative improvement was better in the patients who had the ependymomas, lipoma, and angioma, and in 1 patient with an astrocytoma. The astrocytomas were very difficult to completely remove surgically, and postoperative radiotherapy was thought to be indispensable. The ependymomas, hemangioblastomas, and angiomas could be surgically resected, but the surgeon must has to exercise sufficient care during the operation. The lipomas were also difficult to resect surgically and intratumoral decompression or decompression should be performed. For adolescents spinal deformity should be considered as one of the postoperative complications. (K.H.)

  6. Autonomic consequences of spinal cord injury.

    Science.gov (United States)

    Hou, Shaoping; Rabchevsky, Alexander G

    2014-10-01

    Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications. PMID:25428850

  7. Volume effects in Rhesus monkey spinal cord

    International Nuclear Information System (INIS)

    An experiment was conducted to test for the existence of a volume effect in radiation myelopathy using Rhesus monkeys treated with clinically relevant field sizes and fractionation schedules. Five groups of Rhesus monkeys were irradiated using 2.2 Gy per fraction to their spinal cords. Three groups were irradiated with 8 cm fields to total doses of 70.4, 77, and 83.6 Gy. Two additional groups were irradiated to 70.4 Gy using 4 and 16 cm fields. The incidence of paresis expressed within 2 years following the completion of treatment was determined for each group. Maximum likelihood estimation was used to determine parameters of a logistic dose response function. The volume effect was modeled using the probability model in which the probability of producing a lesion in an irradiated volume is governed by the probability of the occurrence of independent events. This is a two parameter model requiring only the estimates of the parameters of the dose-response function for the reference volume, but not needing any additional parameters for describing the volume effect. The probability model using a logistic dose-response function fits the data well with the D50 = 75.8 Gy for the 8-cm field. No evidence was seen for a difference in sensitivities for different anatomical levels of the spinal cord. Most lesions were type 3, combined white matter parenchymal and vascular lesions. Latent periods did not differ significantly from those of type 3 lesions in humans. The spinal cord exhibits a volume effect that is well described by the probability model. Because the dose response function for radiation myelopathy is steep, the volume effect is modest. The Rhesus monkey remains the animal model most similar to humans in dose response, histopathology, and latency for radiation myelopathy. 22 refs., 3 figs., 1 tab

  8. Prognosis and Treatment of Spinal Cord Astrocytoma

    International Nuclear Information System (INIS)

    Purpose: To identify the prognostic factors for spinal cord astrocytoma and determine the effects of surgery and radiotherapy on outcome. Methods and Materials: This retrospective study reviewed the cases of consecutive patients with spinal cord astrocytoma treated at Mayo Clinic Rochester between 1962 and 2005. Results: A total of 136 consecutive patients were identified. Of these 136 patients, 69 had pilocytic and 67 had infiltrative astrocytoma. The median follow-up for living patients was 8.2 years (range, 0.08-37.6), and the median survival for deceased patients was 1.15 years (range, 0.01-39.9). The extent of surgery included incisional biopsy only (59%), subtotal resection (25%), and gross total resection (16%). Patients with pilocytic tumors survived significantly longer than those with infiltrative astrocytomas (median overall survival, 39.9 vs. 1.85 years; p < 0.001). Patients who underwent resection had a worse, although nonsignificant, median survival than those who underwent biopsy only (pilocytic, 18.1 vs. 39.9 years, p = 0.07; infiltrative, 19 vs. 30 months, p = 0.14). Postoperative radiotherapy, delivered in 75% of cases, gave no significant survival benefit for those with pilocytic tumors (39.9 vs. 18.1 years, p = 0.33) but did for those with infiltrative astrocytomas (24 vs. 3 months; Wilcoxon p = 0.006). On multivariate analysis, pilocytic histologic type, diagnosis after 1984, longer symptom duration, younger age, minimal surgical extent, and postoperative radiotherapy predicted better outcome. Conclusion: The results of our study have shown that histologic type is the most important prognostic variable affecting the outcome of spinal cord astrocytomas. Surgical resection was associated with shorter survival and thus remains an unproven treatment. Postoperative radiotherapy significantly improved survival for patients with infiltrative astrocytomas but not for those with pilocytic tumors

  9. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  10. Treatment Option Overview (Childhood Brain and Spinal Cord Tumors)

    Science.gov (United States)

    ... membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest ... of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, ...

  11. Shriners Hospital Spinal Cord Injury Self Care Manual.

    Science.gov (United States)

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  12. Spinal Cord Diseases - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Spinal Cord Diseases URL of this page: https://www.nlm.nih. ... V W XYZ List of All Topics All Spinal Cord Diseases - Multiple Languages To use the sharing features on ...

  13. Cerebral and spinal cord involvement resulting from invasive aspergillosis

    International Nuclear Information System (INIS)

    Although central nervous system involvement in disseminated aspergillosis is known to occur in immunocompromised patients, particularly after bone marrow transplantation, localized involvement of the spinal cord is exceedingly rare. In this report we present and illustrate detailed imaging findings of central nervous system invasion by Aspergillus fumigatus in a 30-year-old woman, with emphasis on the spinal cord involvement. (orig.)

  14. Late effects of radiation on the spinal cord

    International Nuclear Information System (INIS)

    The author describes experiments concerned with the mechanisms of the development of late radiation damage in the spinal cord. Male rats were used in most of the experiments. The effects of 300 kV X-rays or 15 MeV neutrons were evaluated for different regions of the spinal cord. (Auth.)

  15. Spinal cord stimulation: Background and clinical application

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    treatment include pregnancy, coagulopathy, severe addiction to psychoactive substances, and lack of ability to cooperate (e.g. due to active psychosis or cognitive impairment). Most common complications to the treatment include lead migration, lead breakage, infection, pain over the implant, and dural......Background Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain refractory to conventional treatment. SCS treatment consists of one or more leads implanted in the epidural space of the spinal canal, connected to an implantable pulse generator (IPG). Each lead carries a...... pain syndrome (CRPS I), angina pectoris, and radicular pain after failed back surgery syndrome, and the treatment is also used to treat stump pain after amputation, and pain due to peripheral nerve injury, peripheral vascular disease, and diabetic neuropathy. Recommended contraindications for the...

  16. Upper limb rehabilitation after spinal cord injury

    OpenAIRE

    Dimbwadyo Terrer, Iris; Trincado-Alonso, Fernando; Reyes-Guzmán, Ana de los; Aznar, Miguel A.; Alcubilla, Cesar; Pérez Nombela, Soraya; Ama Espinosa, Antonio del; Polonio López, Begoña; Gil-Agudo, Angel

    2015-01-01

    Purpose state: The aim of this preliminary study was to test a data glove, CyberTouch ,combined with a virtual reality (VR) environment, for using in therapeutic training of reaching movements after spinal cord injury (SCI). Method: Nine patients with thoracic SCI were selected to perform a pilot study by comparing two treatments: patients in the intervention group (IG)conducted a VR training based on the use of a data glove, CyberTouch for 2 weeks, while patients in the control group (CG...

  17. Cell transplantation for spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Nataliya; Jendelová, Pavla; Syková, Eva

    Cambridge : Cambridge University Press, 2012 - (Morganti-Kossman, C. - Raghupathi, R. - Maas, A.), s. 280-291 ISBN 9781107007437 R&D Projects: GA AV ČR IAA500390902; GA MŠk 1M0538; GA MŠk(CZ) LC554; GA ČR GA203/09/1242 Grant ostatní: GA ČR(CZ) GAP108/10/1560 Institutional research plan: CEZ:AV0Z50390703 Keywords : spinal cord injury * stem cells Subject RIV: FH - Neurology

  18. Experimental reconstruction of the injured spinal cord

    Czech Academy of Sciences Publication Activity Database

    Hejčl, Aleš; Jendelová, Pavla; Syková, Eva

    Vol. Part 1. Wien : Springer-Verlag/Wien, 2011 - (Pickard, J.), s. 65-95 ISBN 978-3-7091-0672-3 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR IAA500390902 Grant ostatní: GA MŠk(CZ) 1M0538; GA ČR(CZ) GA203/09/1242; GA AV ČR(CZ) KAN200520804 Institutional research plan: CEZ:AV0Z50390703 Keywords : spinal cord injury * neurotrophic factors * stem cells Subject RIV: FH - Neurology

  19. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  20. Primary spinal cord glioblastoma multiforme presenting with transverse myelitis

    Directory of Open Access Journals (Sweden)

    Melikhan Cerci

    2014-06-01

    Full Text Available Primary spinal cord tumors are rarely encountered in childhood period. Ependymomas and pilocytic astrocytomas comprise the majority of spinal cord tumors in children. Spinal glioblastoma multiforme (GM (grade IV astrocytoma is a rare clinical entity accounting for only 1-3% of all pediatric intramedullary tumors. We report a 3- year-8- month-old male with primary spinal cord GM who presented with back pain, paraparesis, gait disturbance and loss of sphincter control and initially diagnosed as transverse myelitis. [Cukurova Med J 2014; 39(3.000: 606-610

  1. MR findings of spinal cord in decompression sickness

    International Nuclear Information System (INIS)

    To determine the MR imaging findings of spinal cord decompression sickness. We retrospectively analysed the spinal MR images of eight patients (M : 6, F : 2) with decompression sickness affecting the cervical spine (n=1) or thoracic spine (n=7). The observed extent, location, continuity, signal intensity and contrast enhancement pattern of spinal cord lesions were analysed. The chief MR finding was continuous (n=2) or non-continuous (n=3) high signal intensity on T2-weighted images in the posterior paramedian spinal cord. In three cases, additional T2 signal abnormality in the ventral horn of the gray matter was observed. There was no signal intensity abnormality on T1-weighted images or abnormal enhancement of post-Gadolinium T1-weighted images. In one case, cord swelling in addition to T2 signal abnormality was observed. MR imaging is useful for evaluating spinal cord lesions in patients with decompression sickness

  2. MRI diagnosis of acute spinal cord decompression sickness

    International Nuclear Information System (INIS)

    Objective: To describe MRI findings of acute spinal cord decompression sickness. Methods: MRI findings of 5 cases with clinical definite acute spinal cord decompression sickness were retrospectively analyzed. The main clinical informations included underwater performance history against regulations, short-term complete or incomplete spinal cord injury symptoms after fast going out of water, sensory disability and urinary and fecal incontinence, etc. Results: Spinal cord vacuole sign was found in all 5 cases. Iso-signal intensity (n=3), high signal intensity (n=1), and low signal intensity (n=1) was demonstrated on T1WI, and high signal intensity (n=5) was found on T2WI. Owl eye sign was detected in 3 cases, and lacune foci were seen in 2 cases. Conclusion: MRI findings of acute spinal cord decompression sickness had some characteristics, and it was easy to diagnose by combining diving history with clinical manifestations. (authors)

  3. 自体骨髓基质干细胞移植对大鼠脊髓损伤的疗效%EFFECTS OF TRANSPLANTATION OF AUTOLOGOUS BONE MARROW STROMAL CELLS ON REPAIR OF SPINAL CORD INJURY IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    沈肖方; 王延伟; 刘晓阳; 刘洪涛

    2011-01-01

    [目的]观察自体骨髓基质干细胞(bone marrow stromal cells,BMSCs)移植对大鼠脊髓损伤(SCI)的治疗效果.[方法]体外分离纯化大鼠骨髓基质干细胞,取46例Wistar大鼠采用改良的Allen's装置在TIl水平制成大鼠脊髓损伤模型,随机分成基质干细胞(MSCs)移植组(n=23)和对照组(n=23),分别于术后1、4周通过BBB评分观察大鼠SCI后功能的恢复情况.[结果]术前所有大鼠BBB评分均为21分,脊髓损伤后为0分,所有大鼠神经功能缺损症状随着时间的推移都有不同程度的减轻.两组术后4周时BBB评分均较术后1周时高,差异有统计学意义(P<0.05).移植组术后1、4周时BBB评分均高于对照组,差异有统计学意义(P<0.05).[结论]BMSCs移植有助予大鼠脊髓损伤后的修复重建和功能恢复.%[Objective] To observe the effects of transplantation of autologous bone marrow stromal cells (BMSCs) on repair of spinal cord injury (SCI) in adult rats. [Methods] Autologous bone marrow stromal cells were isolated and purified. 46 Wistar rats with spinal cord injury were randomly divided into two groups (n = 23, each). The BMSCs group was received transplantation of autologous bone marrow stromal cells, and the control group was only given spinal cord injury. At one and four weeks after surgery, the functional recovery of the hind limbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score. [Results] The spinal cord function BBB scores at 4 weeks after bone marrow stromal cell transplantation were significantly higher than those at one week after bone marrow stromal cell transplantation in the two groups. At one and four weeks after bone marrow stromal cell transplantation, the BBB scores in the BMSCs group were significantly higher than those in the control group (P < 0.05). [Conclusion] Autologous bone marrow stem cell transplantation is effective for treatment of spinal cord injury of adult rats.

  4. Spinal cord stimulation therapy for localized central pain

    International Nuclear Information System (INIS)

    We studied the pathophysiology of localized central pain and the surgical result of spinal cord stimulation. There were 10 cases; 7 males and 3 females from 24 to 77 years old. Pain was caused by peripheral nerve injury in one case, spinal cord injury in two cases and cerebrovascular disease (CVD) (thalamic pain) in 7 cases. All cases were treated by epidural spinal cord stimulation and followed from 0.8 to 8.8 years. Sufficient pain relief was achieved in one case of peripheral nerve and spinal cord injury and in 4 cases of CVD. Moderate pain control was achieved in 2 cases of CVD. In one each case of spinal cord injury and of CVD, pain control was ineffective. In cases with thalamic pain, we studied the correlation between the surgical result of spinal cord stimulation and the clinical features, MRI, fluoro-deoxyglucose (FDG)-positron emission tomography (PET), and somatosensory evoked potentials (SEP) findings before operation. MRI revealed a small to moderate sized lesion on the thalamus or putamen in each case. PET also showed decreased accumulation of FDG on the affected thalamus. In all cases without one fair responder to spinal cord stimulation, we could recognize definite SEP originating in the sensory cortex ipsilateral side to the CVD lesion during contralateral median or posterior tibial nerve stimulation. In the good responders, we could recognize SEP originating in the sensory cortex of the lesion side with less delayed latency or decreased amplitude than in the moderate responders. In this group, test stimulation with low voltage on the spinal cord evoked a sensory effect (paresthesia) over the painful part of the body. Spinal cord stimulation proved to be an effective treatment for localized central pain. In cases with localized central pain after CVD, we could expect to ameliorate the intractable pain in those cases in which SEP or spinal cord test stimulation revealed that the thalamo-cortical system was preserved. (author)

  5. Spinal Cord Injury without Radiographic Abnormality (SCIWORA) – Clinical and Radiological Aspects

    International Nuclear Information System (INIS)

    The acronym SCIWORA (Spinal Cord Injury Without Radiographic Abnormality) was first developed and introduced by Pang and Wilberger who used it to define “clinical symptoms of traumatic myelopathy with no radiographic or computed tomographic features of spinal fracture or instability”. SCIWORA is a clinical-radiological condition that mostly affects children. SCIWORA lesions are found mainly in the cervical spine but can also be seen, although much less frequently, in the thoracic or lumbar spine. Based on reports from different authors, SCIWORA is responsible for 6 to 19% and 9% to 14% of spinal injuries in children and adults, respectively. Underlying degenerative changes, including spondylosis or spinal canal stenosis, are typically present in adult patients. The level of spinal cord injury corresponds to the location of these changes. With recent advances in neuroimaging techniques, especially in magnetic resonance imaging, and with increasing availability of MRI as a diagnostic tool, the overall detection rate of SCIWORA has significantly improved

  6. Modeling the Connectome of a Simple Spinal Cord

    OpenAIRE

    Borisyuk, Roman; al Azad, Abul Kalam; Conte, Deborah; Roberts, Alan; Soffe, Stephen R.

    2011-01-01

    In this paper we develop a computational model of the anatomy of a spinal cord. We address a long-standing ambition of neuroscience to understand the structure–function problem by modeling the complete spinal cord connectome map in the 2-day old hatchling Xenopus tadpole. Our approach to modeling neuronal connectivity is based on developmental processes of axon growth. A simple mathematical model of axon growth allows us to reconstruct a biologically realistic connectome of the tadpole spinal...

  7. Caesarean section in a parturient with a spinal cord stimulator.

    LENUS (Irish Health Repository)

    Sommerfield, D

    2010-01-01

    A 35-year-old G2P1 parturient at 32 weeks of gestation with an implanted spinal cord stimulator was admitted for urgent caesarean section. Spinal anaesthesia was performed below the spinal cord stimulator leads at the L4-5 level, and a healthy female infant was delivered. A basic description of the technology and resulting implications for the parturient are discussed.

  8. Reproducibility of the MRI-defined spinal cord position in stereotactic radiotherapy for spinal oligometastases

    International Nuclear Information System (INIS)

    Purpose: To establish the reproducibility of the MRI-defined spinal cord position within the spinal canal. Materials and methods: We acquired T1- and T2-weighted MRI scans of 15 volunteers on spine levels C7, T8 or L2. The scan protocol was repeated several times for different postures and time intervals. We determined the spinal cord shift (LR, AP, CC) using a rigid, grey value, vertebral body registration, followed by a spinal cord registration. We tested the sensitivity of our method, introducing artificial spinal cord shifts by varying the size and direction of the water-fat-shift (WFS) of the MR sequences. Results: The spinal cord position on MRI is reproducible within approximately 0.2 mm SD (LR, AP) and 0.7 mm SD (CC) when reproducing the posture on the same day, as well as several weeks later. However, when comparing different postures, shifts of ∼1.5 mm were found. Varying the WFS difference between scans (0.6–3.0 mm) induced equivalent virtual spinal cord shifts (0.5–2.5 mm). Conclusions: Displacement of the spinal cord inside the spinal canal may occur as a result of posture change. Considering the total geometric accuracy of spine SBRT, MRI-defined spinal cord position is sufficiently reproducible and requires no addition to the typical setup-and-intrafraction motion PRV margin if posture is identical throughout the RT process

  9. Effects of Epidural Spinal Cord Stimulation and Treadmill Training on Locomotion Function and Ultrastructure of Spinal Cord Anterior Horn after Moderate Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WANG Yizhao; HUANG Xiaolin; XU Jiang; XU Tao; FANG Zhengyu; XU Qi; TU Xikai; YANG Peipei

    2009-01-01

    Objective:To investigate the effects of epidural spinal cord stimulation (ESCS) and treadmill training on the locomotion function and ultrastructure of spinal cord anterior horn after moderate spinal cord injury in rats. (IT, n=3). All rats received a moderate spinal cord injury surgery. Four weeks after surgery, rats in SE group received an electrode implantation procedure, with the electrode field covering spinal cord segments L2-S1. Four weeks after electrode implantation, rats received subthreshold ESCS for 30 min/d. Rats in TY group received 4cm/s treadmill training for 30min/d. Rats in SI group received no intervention, as a control group. All procedures in these three groups lasted four weeks.The open field Basso,Beattie and Bresnahan (BBB) scale was used before and after intervention to evaluate rats' hindlimb motor function. Result:After four weeks intervention, rats in TT group improved their open field locomotion scores to 20. In contrast, no significant improvement was observed in groups SI and SE. The morphology of synapses and neurons were similar regardless of whether rats had undergone ESCS, treadmill training or not. Conclusion:ESCS alone was not sufficient to improve the walking ability of spinal cord injured rats. ESCS or treadmill training alone might not contribute to the changes of ultrastructure in anterior horn of spinal cord that underlie the recovery of walking ability. Further research is needed to understand the contributions of combination of ESCS and treadmill training to the rehabilitation of spinal cord injured rats.

  10. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury

    DEFF Research Database (Denmark)

    Lundell, Hans Magnus Henrik; Barthelemy, Dorothy; Skimminge, A.;

    2011-01-01

    sensory and motor outcome in individuals with chronic incomplete spinal cord injury (SCI).Setting:Danish study on human SCI.Methods:We included 19 individuals with chronic incomplete SCI and 16 healthy controls. Participants underwent MRI and a neurological examination including sensory testing for light...... touch and pinprick, and muscle strength. Antero-posterior width (APW), left-right width (LRW) and cross-sectional spinal cord area (SCA) were extracted from MRI at the spinal level of C2. The angular variation of the spinal cord radius over the full circle was also extracted and compared with the...

  11. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    Directory of Open Access Journals (Sweden)

    A. Schiaveto-de-Souza

    2013-12-01

    Full Text Available Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  12. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Schiaveto-de-Souza, A. [Departamento de Morfofisiologia, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS (Brazil); Silva, C.A. da [Departamento de Morfologia,Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Defino, H.L.A. [Departamento de Orthopedia e Traumatologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Bel, E.A.Del [Departamento de Morfologia,Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-04-12

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  13. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    International Nuclear Information System (INIS)

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury

  14. Pain and spinal cord imaging measures in children with demyelinating disease

    Directory of Open Access Journals (Sweden)

    Nadia Barakat

    2015-01-01

    Full Text Available Pain is a significant problem in diseases affecting the spinal cord, including demyelinating disease. To date, studies have examined the reliability of clinical measures for assessing and classifying the severity of spinal cord injury (SCI and also to evaluate SCI-related pain. Most of this research has focused on adult populations and patients with traumatic injuries. Little research exists regarding pediatric spinal cord demyelinating disease. One reason for this is the lack of reliable and useful approaches to measuring spinal cord changes since currently used diagnostic imaging has limited specificity for quantitative measures of demyelination. No single imaging technique demonstrates sufficiently high sensitivity or specificity to myelin, and strong correlation with clinical measures. However, recent advances in diffusion tensor imaging (DTI and magnetization transfer imaging (MTI measures are considered promising in providing increasingly useful and specific information on spinal cord damage. Findings from these quantitative imaging modalities correlate with the extent of demyelination and remyelination. These techniques may be of potential use for defining the evolution of the disease state, how it may affect specific spinal cord pathways, and contribute to the management of pediatric demyelination syndromes. Since pain is a major presenting symptom in patients with transverse myelitis, the disease is an ideal model to evaluate imaging methods to define these regional changes within the spinal cord. In this review we summarize (1 pediatric demyelinating conditions affecting the spinal cord; (2 their distinguishing features; and (3 current diagnostic and classification methods with particular focus on pain pathways. We also focus on concepts that are essential in developing strategies for the detection, monitoring, treatment and repair of pediatric myelitis.

  15. Endovascular embolization for spinal cord vascular malformation

    International Nuclear Information System (INIS)

    Objective: To evaluate the efficacy of endovascular embolization for the treatment of spinal cord vascular malformation (SCVM). Methods: During the past ten years endovascular embolization was performed in 32 consecutive patients with SCVM, including 19 males and 13 females with a mean age of 47.2 years. The clinical data were retrospectively analyzed. The patients were followed up for 10 months to 6 years. The clinical efficacy was evaluated and the results were graded as full recovery, improvement, unchanged and aggravation. Results: The SCVMs in our series included spinal dural arteriovenous fistula (SDAVF, n = 16), perimedullary arteriovenous fistula (PMAVF, n = 9) and spinal arteriovenous malformation(SAVM, n = 7). Complete embolization was achieved in 20 cases and partial embolization in 12 cases, among them pure arterial aneurysm or venous aneurysm was occluded in 4. During an average follow-up period of 48 months, complete recovery was seen in 5 cases, marked improvement in 16 cases, unchanged condition in 8 cases and clinical aggravation in 3 cases. Recurrence was observed in 2 of the improved cases. No bleeding or re-bleeding occurred. Conclusion: Endovascular embolization is an effective and minimally-invasive treatment for SCVM with fewer complications. (J Intervent Radiol, 2010, 19: 933-935) (authors)

  16. Cell size and geometry of spinal cord motoneurons in the adult cat following the intramuscular injection of adriamycin: comparison with data from aged cats.

    Science.gov (United States)

    Liu, R H; Yamuy, J; Engelhardt, J K; Xi, M C; Morales, F R; Chase, M H

    1996-10-28

    of neurons on the control side. We conclude that significant geometrical changes were induced in lumbar motoneurons of adult cats after ADM was injected to their muscles. In old cats, spinal cord motoneurons exhibit similar patterns of changes in their electrophysiological characteristics which have also been suggested to be correlated with changes in cell geometry. The question then arises as to whether the response of motoneurons to ADM and the aging process reflects a stereotypic reaction of motoneurons to a variety of insults or whether the response to ADM mirrors specific aspects of the aging process. PMID:8949934

  17. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Shuquan Zhang; Min Luo; Yajun Li

    2014-01-01

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modiifcation of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve ifbers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our ifndings indicate that hyperbaric oxygen therapy reduces apop-tosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.

  18. Magnetic resonance imaging of spinal cord injury in chronic stage

    Energy Technology Data Exchange (ETDEWEB)

    Tobimatsu, Haruki; Nihei, Ryuichi; Kimura, Tetsuhiko; Yano, Hideo; Touyama, Tetsuo; Tobimatsu, Yoshiko; Suyama, Naoto; Yoshino, Yasumasa (National Rehabilitation Center for the Disabled, Tokorozawa, Saitama (Japan))

    1991-10-01

    Magnetic resonance (MR) images of a total of 195 patients with cervical (125) or thoracic (70) spinal cord injury were reviewed. The imaging studies of the spinal cord lesions were correlated with clinical manifestations. Sequential MR imaging revealed hypointensity on T1-weighted images (T1WI) and hyperintensity on T2-weighted images (T2WI) in all patients, except for five patients showing no signal changes and two showing isointensity, suggesting gliosis, myelomalacia, and syringomyelia. Spinal cord lesions were classified into four types: small lesions, large lesions, complete transverse, and longitudinal rupture. These lesions were well correlated with the severity of injury and paralysis. Complete paralysis was frequently associated with enlarged, complete transverse for cervical spinal cord injury, and longitudinal ruptured or thinned complete transverse for thoracic spinal cord injury. The height of paralysis was well in agreement with that of lesions. For incomplete paralysis, localized lesions were seen within the spinal cord, coinciding with the paralysis or severity. Traumatic syringomyelia was seen in 17 patients (8.7%)-- for the cervical site (10 patients, 8%) and the thoracic site (7 patients, 10%). When homogeneous and marginally clear hypointensity is shown on T1-weighted images and vacuolated hyperintensity is shown on T2-weighted images, in addition to lesions spreading two or more cords or 1.5 or more cords above the nervous root level of paralysis, traumatic syringomyelia is strongly suspected, requiring the follow up observation. (N.K.).

  19. Magnetic resonance imaging of spinal cord injury in chronic stage

    International Nuclear Information System (INIS)

    Magnetic resonance (MR) images of a total of 195 patients with cervical (125) or thoracic (70) spinal cord injury were reviewed. The imaging studies of the spinal cord lesions were correlated with clinical manifestations. Sequential MR imaging revealed hypointensity on T1-weighted images (T1WI) and hyperintensity on T2-weighted images (T2WI) in all patients, except for five patients showing no signal changes and two showing isointensity, suggesting gliosis, myelomalacia, and syringomyelia. Spinal cord lesions were classified into four types: small lesions, large lesions, complete transverse, and longitudinal rupture. These lesions were well correlated with the severity of injury and paralysis. Complete paralysis was frequently associated with enlarged, complete transverse for cervical spinal cord injury, and longitudinal ruptured or thinned complete transverse for thoracic spinal cord injury. The height of paralysis was well in agreement with that of lesions. For incomplete paralysis, localized lesions were seen within the spinal cord, coinciding with the paralysis or severity. Traumatic syringomyelia was seen in 17 patients (8.7%)-- for the cervical site (10 patients, 8%) and the thoracic site (7 patients, 10%). When homogeneous and marginally clear hypointensity is shown on T1-weighted images and vacuolated hyperintensity is shown on T2-weighted images, in addition to lesions spreading two or more cords or 1.5 or more cords above the nervous root level of paralysis, traumatic syringomyelia is strongly suspected, requiring the follow up observation. (N.K.)

  20. High-field MR imaging of spinal cord multiple sclerosis

    International Nuclear Information System (INIS)

    Fifty-one high-field MR imaging studies (1.5 T, General Electric Signa) of the spinal cord were performed in 42 patients (27 female, 15 male; mean age, 40 years) with clinically definitive (n = 34) or probable (n = 8) multiple sclerosis and suspected spinal cord lesions. MR imaging showed focal spinal cord abnormalities in 38 (75%) of 51 studies. T2-weighted images were abnormal (showing foci of high signal intensity) in 38 studies, T1-weighted images were abnormal (showing areas of low signal intensity or mass effect) in 16 (42%) of 38, and GRASS images were abnormal (showing foci of high signal intensity) in 9 (82%) of 11 cases. Brain MR imaging showed periventricular lesions typical of multiple sclerosis in 34 (81%) of 42 studies. Spinal cord studies were positive in eight cases with normal brain MR images, and brain studies were positive in 13 instances of normal spinal cord MR images. Four lesions were at the cervicomedullary junction, 44 in the cervical spinal cord, and three in the thoracic cord. Mass effect in cord lesions, simulating neoplasm, was seen in seven patients during the acute symptomatic phase. Serial studies in three patients with decreasing symptoms showed a reduction after 3-4 weeks and resolution of the mass effect after 2-6 months

  1. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassaemia: MRI

    International Nuclear Information System (INIS)

    Spinal epidural extramedullary haematopoiesis is very rare in thalassaemia. A 27-year-old man with thalassaemia intermedia presented with symptoms and signs of spinal cord compression. MRI showed a thoracic spinal epidural mass, representing extramedullary haematopoietic tissue, compressing the spinal cord. Following radiotherapy, serial MRI revealed regression of the epidural mass and gradual resolution of spinal cord oedema. (orig.)

  2. A short-term arm-crank exercise program improved testosterone deficiency in adults with chronic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Manuel Rosety-Rodriguez

    2014-06-01

    Full Text Available Purpose To determine the influence of arm-crank exercise in reproductive hormone levels in adults with chronic SCI. Further objectives were to assess the influence of arm-crank exercise on muscle strength and body composition. Materials and Methods Seventeen male adults with complete SCI at or below the 5th thoracic level (T5 volunteered for this study. Participants were randomly allocated to the intervention (n = 9 or control group (n = 8 using a concealed method. The participants in the intervention group performed a 12-week arm-crank exercise program, 3 sessions/week, consisting of warming-up (10-15 min followed by a main part in arm-crank (20-30 min [increasing 2 min and 30 seconds each three weeks] at a moderate work intensity of 50-65% of heart rate reserve (HRR (starting at 50% and increasing 5% each three weeks and by a cooling-down period (5-10 min. Serum follicle-stimulating hormone (FSH, luteinizing hormone (LH, testosterone and estradiol were determined by ELISA. Muscle strength (handgrip and body composition (waist circumference [WC] were assessed. Results After the completion of the training program, testosterone level was significantly increased (p = 0.0166;d = 1.14. Furthermore, maximal handgrip and WC were significantly improved. Lastly, a significant inverse correlation was found between WC and testosterone (r =- 0.35; p = 0.0377. Conclusion The arm-crank exercise improved reproductive hormone profile by increasing testosterone levels in adults with chronic SCI. A secondary finding was that it also significantly improved muscle strength and body composition in this group.

  3. Transient Spinal Cord Ischemia as Presenting Manifestation of Polycythemia Vera

    Directory of Open Access Journals (Sweden)

    Sónia Costa

    2011-10-01

    Full Text Available Spinal arterial vascularization is supplied by a large anastomotic net, making spinal ischemic events far less common than ischemic cerebral strokes. Polycythemia vera, due to blood hyperviscosity and activated platelet aggregation, is associated with a higher risk of arterial and venous thrombotic events. We report a patient with spinal cord transient ischemic attacks, a rarely presenting manifestation, and polycythemia vera, which highlights the thrombotic potential of this disease, and the requirement of exhaustive diagnostic workout of a spinal ischemic event.

  4. MR imaging of diseases of the spinal cord

    International Nuclear Information System (INIS)

    Spinal cord lesions are infrequently encountered in daily diagnostic imaging practice, although the spinal cord can be affected by various diseases. MR findings of diseases that can affect the spinal cord, including syringomyelia, vascular diseases, arteriovenous malformation, and demyelinating and inflammatory diseases, are reviewed. Because intramedullary lesions can be visualized on MR images, that imaging modality plays an important role in the diagnosis of these diseases. However, MR findings are sometimes nonspecific. Therefore integration of clinical history and laboratory data with MR findings is essential in making the final diagnosis. (author)

  5. Evaluation of Erectile Dysfunction in Spinal Cord Injured Patients

    OpenAIRE

    Berrin Gündüz; Salih Baran; Belgin Erhan; Ayşe Nur Bardak; Feride Savaş

    2010-01-01

    Objective: Spinal cord injuries affect sexual function and cause problems in erection, ejaculation, orgasm and fertility; erectile dysfunction is the most important one. The aim of this study is to evaluate the erectile dysfunction seen after spinal cord injury.Materials and Method: Sixty male patients with spinal cord injury, 20 above the level of T10, 20 between T11 and L2, 20 with conus/cauda equina lesions were included in this study. The patients were evaluated according to the American ...

  6. [Pre-hospital care management of acute spinal cord injury].

    Science.gov (United States)

    Hess, Thorsten; Hirschfeld, Sven; Thietje, Roland; Lönnecker, Stefan; Kerner, Thoralf; Stuhr, Markus

    2016-04-01

    Acute injury to the spine and spinal cord can occur both in isolation as also in the context of multiple injuries. Whereas a few decades ago, the cause of paraplegia was almost exclusively traumatic, the ratio of traumatic to non-traumatic causes in Germany is currently almost equivalent. In acute treatment of spinal cord injury, restoration and maintenance of vital functions, selective control of circulation parameters, and avoidance of positioning or transport-related additional damage are in the foreground. This article provides information on the guideline for emergency treatment of patients with acute injury of the spine and spinal cord in the preclinical phase. PMID:27070515

  7. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    OpenAIRE

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta...

  8. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI. PMID:27316370

  9. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  10. Acute injuries of the spinal cord and spine

    International Nuclear Information System (INIS)

    Spinal injuries may result in severe neurological deficits, especially if the spinal cord or spinal nerve roots are involved. Patients may even die of a spinal shock. Besides presenting the important embryologic and anatomical basis underlying the typical radiological findings of spinal trauma, the trauma mechanisms and the resulting injuries are correlated. Special situations, such as the involvement of the alar ligaments and typical injuries in children, will be discussed as well as specific traumatic patters relevant for imaging. Based on the actual literature and recommendations of professional organizations, an approach is provided to the radiologic evaluation of spinal injuries. Advantages and disadvantages of the individual imaging modalities are presented and discussed. (orig.)

  11. Parents with a spinal cord injury

    DEFF Research Database (Denmark)

    Rasul, A; Biering-Sørensen, F

    2016-01-01

    STUDY DESIGN: This is a cross-sectional questionnaire. OBJECTIVES: The objective of this study was to describe the impact of parenting young children with a spinal cord injury (SCI) on various life situations (for example, personal, vocational and social). SETTING: Community; Denmark. METHODS: A...... postal survey was designed to collect data in persons with SCI regarding the following: (1) socio-demographics, injury characteristics and parental status; (2) employment status; (3) environmental adjustments to support parenting roles; (4) childcare institution use and experiences; (5) network support...... for parenting; and (6) parenting advice for others. RESULTS: A total of 62 persons (58% men) responded to the survey, with 56% having paraplegia and 44% having tetraplegia. The majority of men (83%) and women (62%) were employed during the first 10 years of their child's lives. Half of the sample (50...

  12. Spinal cord injury pain: mechanisms and management.

    Science.gov (United States)

    Finnerup, Nanna Brix; Baastrup, Cathrine

    2012-06-01

    Patients with spinal cord injury (SCI) may experience several types of chronic pain, including peripheral and central neuropathic pain, pain secondary to overuse, painful muscle spasms, and visceral pain. An accurate classification of the patient's pain is important for choosing the optimal treatment strategy. In particular, neuropathic pain appears to be persistent despite various treatment attempts. In recent years, we have gained increasing knowledge of SCI pain mechanisms from experimental models and clinical studies. Nevertheless, treatment remains difficult and inadequate. In line with the recommendations for peripheral neuropathic pain, evidence from randomized controlled treatment trials suggests that tricyclic antidepressants and pregabalin are first-line treatments. This review highlights the diagnosis and classification of SCI pain and recent improvements in the understanding of underlying mechanisms, and provides an update on treatment of SCI pain. PMID:22392531

  13. Cardiac arrhythmias associated with spinal cord injury

    DEFF Research Database (Denmark)

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei; Biering-Sørensen, Fin

    2013-01-01

    CONTEXT/OBJECTIVES: To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). METHODS: Data source: MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1......) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. RESULTS: In the acute phase of SCI (1-14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus...... describing the chronic phase of SCI, showed that individuals with SCI did not have a higher incidence of cardiac arrhythmias compared with able-bodied controls. Furthermore, their heart rate did not differ significantly. Penile vibro-stimulation was the procedure investigated most likely to cause bradycardia...

  14. Outcome after incomplete spinal cord injury: central cord versus Brown-Sequard syndrome

    OpenAIRE

    Wirz, M.; Zörner, B; Rupp, R; Dietz, V.

    2010-01-01

    Study design : A retrospective analysis of prospectively collected data.Objective:A hemisection of the spinal cord is a frequently used animal model for spinal cord injury (SCI), the corresponding human condition, that is, the Brown-Sequard syndrome (BS), is relatively rare as compared with the central cord syndrome (CC). The time course of neurological deficit, functional recovery, impulse conductivity and rehabilitation length of stay in BS and CC subjects were compared.Setting:Nine Europea...

  15. Microsurgical treatment of intramedullary spinal cord tumor

    International Nuclear Information System (INIS)

    The clinical characteristics, diagnostic imaging by MRI, histological diagnosis, and clinical outcome of intramedullary spinal cord tumors were investigated, and problems in diagnosis and treatment were assessed. The subjects were 45 patients surgically treated for intramedullary spinal cord tumors between 1983 and 2000 (males 25, females 20; age 2-80 years; ependymoma in 11, astrocytoma in 11, hemangioma in 7, schwannoma in 4, hemangioblastoma in 3, ganglioma in 2, others in 7). Radiotherapy had been used in combination to treat 7 astrocytomas and 1 glioblastoma. Numbness was the initial symptom in many of the patients with ependymoma and hemangioma, and dyskinesia was the initial symptom in many of the astrocytoma patients. The duration of morbidity was significantly shorter in the astrocytoma and hemangioma patients than in the ependymoma patients. These results were useful for qualitative diagnosis. Preoperative MRI was performed in 24 patients. The rate of diagnosis by MRI was 37.5%, and the rate of agreement with the intra- and post-operative histological diagnosis was 58.1%. Some of the cases were difficult to diagnose, and as a result the diagnostic rate was low. The ependymomas and vascular tumors were able to be completely removed by surgery, and the surgical outcome was good in those patients, with no deterioration of motor function. None of the astrocytoma patients improved, and 6 ≥ grade II patients died an average of 14.2 months postoperatively. Diagnosis and treatment with close cooperation between radiologists and pathologists as well as progress in surgical technique appeared to be important in improving diagnosis and treatment outcome. (K.H.)

  16. Effect of electro-acupuncture on the expression of heat shock protein-70 gene in rat spinal cords following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:It is generally believed that the mechanism by which heat shock protein-70(HSP70) protects cells is related to its effectiveness in maintaining the normal stereochemical structure of intracellular proteins,and in participating in the process of cell apoptosis.Whether electro-acupuncture participates in HSP70 expression and produces neuroprotective effects remain unclear.OBJECTIVE:This study aimed at detecting HSP70 expression after electro-acupuncture in rats with transected spinal cord,in order to further validate the mechanism of electro-acupuncture-induced effects in the treatment of spinal cord injury.DESIGN:A controlled observational experiment.SETTING:Shanghai University of Traditional Chinese Medicine and Toho University,School of Medicine.MATERIALS:Seventy adult male Sprague-Dawley rats of SPF grade,weighing 200±20g,were provided by the Laboratory Animal Center of Shanghai University of Traditional Chinese Medicine,with permission No.SYXK(hu)2004-2005.The animals were handled in accordance with the requests from Animal Ethics Committees for guidance.A G6805-2 multiple purpose treatment machine was used (Shanghai Medical Instruments High-Tech Co.,Ltd.,Shanghai,China).METHODS:This study was carried out in the state level laboratories of Shanghai University of Traditional Chinese Medicine and Toho University,School of Medicine between January 2005 and July 2007.The rats were randomly divided into the electro-acupuncture treated group,which received electro-acupuncture treatment in addition to spinal cord surgery and the control group,which received only spinal cord surgery,with 35 rats in each group.All the rats underwent the same surgery consisting of spinal cord transection at the T10 level.If the spinal cord was completely transected and the two posterior limbs were completely paralyzed,then the surgery was considered successful and the animal was kept for further analysis and testing.After surgery,rats in the experimental group were electro

  17. Establishment and evaluation of a rat model of complete transected spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xuejun Li; Chunhai Huang; Shangming Liu; Xianrui Yuan

    2008-01-01

    BACKGROUND: The establishment of a rat model of complete transected spinal cord injury lacks technological specifications. The current models lack concordance and reliability, and the death rate of the experimental animals is high. Therefore, there is a great need for a reliable model to apply clinical applications of therapy.OBJECTIVE: To construct a rat model of complete transected spinal cord injury characterized by stability, reproducibility, and a high animal survival rate. DESIGN: Completely randomized controlled study.SETTING: Department of Neurosurgery, Xiangya Hospital of Central South University.MATERIALS: Fifty-five healthy specific pathogen free grade adult female Sprague Dawley rats were provided by the Experimental Animal Department, Xiangya Medical College, Central South University. Olympus BX51 imaging collecting analytic system was provided by Olympus Company, Japan; and SEN-7203 Nihon-Kohden electrical stimulator by Nihon Kohden, Japan. METHODS: This study was performed at the Laboratory of Neurosurgery, Xiangya Hospital of Central South University from April to June 2006. Experimental grouping: 55 rats were randomly divided into model group (n = 40) and sham surgery group (n = 15). In the model group, a self-made sliver hook was passed through the ventral side to support the spinal cord at the T12 segment and to shear it off. A complete transected spinal cord, 2 mm in length, was resected. In the sham surgery group, the spinal cord was identically exposed. The dura mater of the spinal cord was cut open, but the spinal cord was not damaged. MAIN OUTCOME MEASURES: Histopathological changes after spinal cord injury at L2 segment were observed subsequent to hematoxylin and eosin staining under optical microscopy. Olympus BX51 imaging collecting analytic system was used to count spinal cord ventral horn neurons. Motor function of rat hindlimb was evaluated with the Basso, Beattie and Bresnahan (BBB) scale. Paraplegia was evaluated as 0 point, and

  18. Hypocretinergic control of spinal cord motoneurons.

    Science.gov (United States)

    Yamuy, Jack; Fung, Simon J; Xi, Mingchu; Chase, Michael H

    2004-06-01

    Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin

  19. Features of spinal cord injury in Taiwan (1977-1989).

    Science.gov (United States)

    Yeh, Y S; Lee, S T; Lui, T N; Fairholm, D J; Chen, W J; Wong, M K

    1993-09-01

    In order to establish an etiological and statistical base for spinal cord injuries, 1,617 spinal cord injured patients admitted to the Chang Gung Memorial Hospital in Taiwan during the period of 1977 to 1989 were reviewed. The most common causes of injury were pedestrian (29.31%) and motorcycle (28.88%) accidents. The greatest incidence of injury was in the 26-35 year age group. The complete tetraplegic patients had the highest mortality rate (26.5%). Additional features studied were the time of occurrence and pattern of injury. Information gathered from this study suggest the need to establish a Spinal Cord Injury Prevention Program, to develop a Prehospital Care System and set up comprehensive Spinal Cord Injury Units in Taiwan. We expect this study to be adaptable to other similar developing countries. PMID:8221290

  20. Imaging of demyelinating and neoplastic diseases of the spinal cord

    International Nuclear Information System (INIS)

    The clinical symptoms of myelopathy are variable and non-specific. Demyelinating as well as neoplastic spinal cord diseases can cause paresthesia, progressive sensomotoric deficits and bowel and bladder dysfunction. Imaging of the spine, especially with magnetic resonance imaging (MRI), is an essential component in the diagnostic assessment of myelopathy and makes a substantial contribution to achieving the correct diagnosis. Although intramedullary neoplasms are far less common than demyelinating spinal cord diseases, radiologists should be familiar with the three most common entities, astrocytoma, ependymoma and hemangioblastoma, which represent over 70% of all spinal cord neoplasms. An early diagnosis and therapy is essential with neoplastic and demyelinating spinal cord diseases to hold residual neurological deficits as low as possible. (orig.)

  1. Syrinx of the Spinal Cord and Brain Stem

    Science.gov (United States)

    ... imaging (MRI) of the entire spinal cord and brain is done after paramagnetic contrast agent, such as ... neurosurgeon may make a hole in a syrinx to drain it and prevent it from expanding, but surgery ...

  2. The value of contrast media in spinal cord abnormalities

    International Nuclear Information System (INIS)

    The contents are intramedullary tumors, inflammatry lesions, demyelinating diseases - multiple sclerosis (MS), radiation myelitis, acute disseminated encephalomyelitis (ADEM); vascular lesions - spinal cord infarct, arteriovenous malformation, cavernous haemangioma (24 refs.)

  3. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

    Science.gov (United States)

    Awai, Lea; Bolliger, Marc; Ferguson, Adam R; Courtine, Grégoire; Curt, Armin

    2016-07-01

    Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI. PMID:26428035

  4. Protective effect of glutamine pretreatment on ischemia-reperfusion injury of spinal cord in rabbits

    Institute of Scientific and Technical Information of China (English)

    Shou-ping Gong; Da-lin Zhong; Jian Lü; Wen-tao Wang; Gang Xu; Qian Song; Feng Wu; Jin Che; Zhi-yuan Seng; Xi-jing He

    2009-01-01

    Objective To investigate the effect of glutamine (Gln) on the content of reduced glutathione hormone (GSH) and aminoglutaminic acid (Glu) of spinal cord following ischemia-reperfusion injury. Methods Totally 40 healthy adult male rabbits were randomly divided into five groups: sham-operation group (S group), ischemia-reperfusion injury group (I/R group), low-dose glutamine group (L Gln group), median-dose glutamine group (M Gln group) and high-dose glutamine group (H Gln group). After glutamine preconditioning, the model of spinal cord ischemia-reporfasion injury was established according to Zivin's method. The general status of animals was observed and the changes of Jacobs scoring were recorded in each group. Malondialdehydes (MDA), GSH, Glu and superoxide dismutase (SOD) activity in lumbar spinal cord tissues were determined using chemical colorimetry. The neuron number and deviation rate in spinal cord anterior horn were observed histopathologically. Results There was no significant difference between L Gin group and I/R group in behavior scoring, SOD activity, content of MDA and Glu, neuron number and deviation rate of spinal cord (P>0.05); however, there was a significant difference in GSH content of spinal cord (P0.05), whereas there was a significant difference in SOD activity and Giu content (P<0.05). Conclusion Pretreatment with medium-dose glutamine has a protective effect on spinal cord ischemia-reporfasion injury in rabbits, which may be related to the maintenance of GSH content, increase of SOD activity and reduction of MDA.

  5. Expression Profile of Tumor Endothelial Marker 7 and a Putative Ligand in the Rat Spinal Cord and Dorsal Root Ganglion

    OpenAIRE

    Wang, Lih; Lee, Kyu-Yeol; Park, Hwan-Tae; Kang, Dong-Sik

    2007-01-01

    Study Design To analyze the expression profile of tumor endothelial marker 7 (TEM7) in the spinal cord and dorsal root ganglion (DRG). Purpose To investigate the expression profile of TEM7 in the spinal cord and DRG of adult and developing rats. Overview of Literature Tumor endothelial marker 7 (TEM7) is a putative transmembrane protein that is highly expressed in the tumor endothelium and in cerebellar neurons. Methods In the present study, the expression profile of TEM7 in the spinal cord a...

  6. Epidemiologic Change of Patients With Spinal Cord Injury

    OpenAIRE

    Shin, Ji Cheol; Kim, Dae Hyun; Yu, Su Jin; Yang, Hea Eun; Yoon, Seo Yeon

    2013-01-01

    Objective To evaluate the epidemiologic change of patients with spinal cord injury who were admitted to a Rehabilitation Hospital, Yonsei University College of Medicine, during 1987-1996 and 2004-2008. Methods Medical records of 629 patients with spinal cord injury admitted to the Rehabilitation Hospital, Yonsei University College of Medicine, from 2004 to 2008 were collected and reviewed retrospectively. Results The male-to-female ratio decreased to 2.86:1, the mean age at injury increased, ...

  7. Spinal cord injury. Rehabilitation adds life to years.

    OpenAIRE

    De Vivo, M. J.; Richards, J S; Stover, S. L.; Go, B. K.

    1991-01-01

    The National Spinal Cord Injury Statistical Center data base contains information collected prospectively on 13,763 persons injured since 1973 and treated at model systems of care throughout the United States. These data clearly demonstrate improved neurologic status and independent function in activities of daily living following acute care and rehabilitation for most persons with spinal cord injuries. Decreased lengths of initial and subsequent hospital stays and increased survival rates ar...

  8. Clinical and Experimental Advances in Regeneration of Spinal Cord Injury

    OpenAIRE

    Jung Keun Hyun; Hae-Won Kim

    2010-01-01

    Spinal cord injury (SCI) is one of the major disabilities dealt with in clinical rehabilitation settings and is multifactorial in that the patients suffer from motor and sensory impairments as well as many other complications throughout their lifetimes. Many clinical trials have been documented during the last two decades to restore damaged spinal cords. However, only a few pharmacological therapies used in clinical settings which still have only limited effects on the regeneration, recovery ...

  9. International Spinal Cord Injury Urinary Tract Infection Basic Data Set

    DEFF Research Database (Denmark)

    Goetz, L L; Cardenas, D D; Kennelly, M;

    2013-01-01

    To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research.......To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research....

  10. Modelling the connectome of a simple spinal cord

    OpenAIRE

    Roman Borisyuk; Deborah Conte

    2011-01-01

    In this paper we develop a computational model of the anatomy of a spinal cord. We address a long-standing ambition of neuroscience to understand the structure-function problem by modelling the complete spinal cord connectome map in the two-day old hatchling Xenopus tadpole. Our approach to modelling neuronal connectivity is based on developmental processes of axon growth. A simple mathematical model of axon growth allows us to reconstruct a biologically realistic connectome of the tadpole ...

  11. International spinal cord injury pulmonary function basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; William Sheel, A; Wecht, J; Schilero, G J

    2012-01-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population.......To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population....

  12. Traumatic spinal cord lesions: impact of comprehensive nursing care

    OpenAIRE

    Roshanpour, Farah; Pourmirza, Reza; Khodarahmi, Reza; Saleki, Alireza

    2012-01-01

    Abstract: Background: In the United States, about 12,000 spinal cord injuries (SCIs) are reported each year. The mean age of involved individuals is 39.5 years and 80 percent of victims are men. Most of spinal cord injuries are accompanied with brain traumatic lesions. In this way, nursing care may be important in preventing of undesired injuries. Methods: In this paper, relevant literature published in various periodicals as well as book resources are reviewed. Results: The main goal of SCI ...

  13. Intra-arterial digital subtraction angiography of the spinal cord

    International Nuclear Information System (INIS)

    Digital subtraction angiography (DSA) of the spinal cord was performed in 6 patients using selective intra-arterial injections of contrast material. Two arteriovenous malformations of the spinal cord, 1 dural fistula, and 1 case of multiple hemangioblastomas were studied. Contrast and spatial resolution were satisfactory for defining normal and abnormal vascularity while reducing examination time, contrast dosage, patient discomfort, and film cost. The only significant limitation was misregistration artifacts seen on lateral views encompassing the diaphragm

  14. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  15. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Linard Filli; Martin E Schwab

    2015-01-01

    Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.

  16. The effect of microgene pSVPoMcat to modify Schwann cell on GAP- 43 expression after spinal cord injury in adult rats%微基因修饰雪旺氏细胞移植对大鼠脊髓损伤后GAP-43表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈礼刚; 高立达; 毛伯镛; 杨立斌; 李开慧

    2001-01-01

    Objective To study the effect of microgene pSVPoMcat implanted to modify schwann cell on growth associated protein-43(GAP-43) expression after spinal cord injury in adult rats.Method Hemisected of the T8 segment of the spinal cord was performed for all the experiment rats.The rats were randomly divided into three groups as follows:Group A with microgene pSVPoMcat implanted to genetically modify SC;Group B with SC implanted ;Group C with hemisection of the spinal cord only.The changes of expression of GAP-43 in spinal cord were observed by immunochemistry with antibodies against GAP-43 .Simultaneous,the combined behavioral scores(CBS)was measured.Result There were not any different(P >0.05)among the three groups in first week and 12 week.There were significant diffeence(P<0.05)among three groups in 2nd,8th,and more dxpression of GAP-43 at the 2nd week in group A.The neurofunctional recovery was best in group A.Conclusion The microgene pSVPoMcat implanted to modify schwann cell can promote the expression of GAP-43 in spinal cord and functional recovery in adults rats after SCI.

  17. Obtaining Employment after Spinal Cord Injury: Relationship with Pre- and Postinjury Education

    Science.gov (United States)

    Krause, James S.; Reed, Karla S.

    2009-01-01

    The authors identify the association of educational milestones obtained before and after spinal cord injury (SCI) with postinjury employment (PIE). Survey data were collected from 1,362 adults younger than 65, with traumatic SCI of at least 1 year duration who were not currently attending school. The sole outcome was obtaining PIE--whether the…

  18. Inhibition of motoneurons during the cutaneous silent period in the spinal cord of the turtle

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jørn Dybkjær; Alaburda, Aidas

    2012-01-01

    motoneurons in the isolated carapace-spinal cord preparation from adult turtles during rhythmic scratch-like reflex. Electrical stimulation of cutaneous nerves induced CSP-like suppression of motor nerve firing during rhythmic network activity. The stimulus that generated the CSP-like suppression of motor...

  19. Organization of projection-specific interneurons in the spinal cord of the red-eared turtle

    DEFF Research Database (Denmark)

    Nissen, Ulla Vig; Moldovan, Mihai; Hounsgaard, Jørn;

    2008-01-01

    Using differential retrograde axonal tracing, we identified motoneurons (MNs) and projection-specific interneuron (IN) classes in lumbar segment D9 of the adult red-eared turtle spinal cord. We characterized the distribution of these neurons in the transverse plane, and estimated their numbers and...

  20. Late effects of ionizing radiations on central nervous system, spinal cord and peripheral nerves

    International Nuclear Information System (INIS)

    Despite the lack of characteristic features, demyelination is the dominant feature of radiation induced late effects observed in cerebral nervous system and spinal cord. Acute, subacute and chronic changes are described in terms of pathological, clinical and radiological observations. Brain necrosis in adults is rarely noted below 60 Gy in conventional fractionation, while imaging changes are observed with lower doses. The most widely observed dose limit for the spinal cord is 45 Gy, in absence of dose modifying chemotherapy. Tumor progression may be hard to distinguish from radio-chemotherapy effects. The potential protective role of hyperfractionation is not yet clearly established. Peripheral nerves late effects, although rare, are described. (authors)

  1. Changes in activity after a complete spinal cord injury as measured by the Spinal Cord Independence Measure II (SCIM II)

    OpenAIRE

    Wirth, B.; van Hedel, H J A; Kometer, B; Dietz, V.; Curt, A

    2008-01-01

    BACKGROUND: The assessment of rehabilitation efficacy in spinal cord injury (SCI) should be based on a combination of neurological and functional outcome measures. The Spinal Cord Independence Measure II (SCIM II) is an independence scale that was specifically developed for subjects with SCI. However, little is known about the changes in SCIM II scores during and after rehabilitation. OBJECTIVE: The aims of this study were to evaluate changes in functional recovery during the first year after...

  2. Non-dysraphic intramedullary spinal cord lipoma: case report

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Eun; Lee, Sang Ho [Wooridul Spine Hospital, Seoul (Korea, Republic of); Jeong, Myeong Ja; Kim, Tae Hong [Sanggye Paik Hospital, Seoul (Korea, Republic of)

    2004-07-01

    Spinal cord lipomas are rare tumors with a reported incidence of 1% of all intraspinal tumors. We recently experienced a case of intramedullary lipoma without spinal dysraphism in a 58-year-old woman. MRI, CT, myelography and CT myelography showed the characteristic findings of a lipoma.

  3. High resolution CT of the cervical spinal cord

    International Nuclear Information System (INIS)

    High resolution CT demonstrates the anatomy of the spine, spinal canal and spinal cord. In many cases, the non-contrast HRCT images provide enough information to guide patient management. Where necessary, intravenously-enhanced HRCT and metrizamide HRCT may be employed to gain additional data. Other studies may be obviated in many cases. (orig.)

  4. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  5. Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

    International Nuclear Information System (INIS)

    Aim: We aim to check the safety of the standard palliative radiotherapy techniques by using the Linear quadratic model for a careful estimation of the doses received by the spinal cord, in all standard palliative lung radiotherapy fields and fractionation. Material and Methods: All patients surveyed at this prospective audit were treated with palliative chest radio-therapy for lung cancer over a period from January to June 2005 by different clinical oncology specialists within the department. Radiotherapy field criteria were recorded and compared with the recommended limits of the MRC trial protocols for the dose and fractionation prescribed. Doses delivered to structures off the field central axis were estimated using a standard CT scan of the chest. Dose estimates were made using an SLPLAN planning system. As unexpected spinal cord toxicity has been reported after hypo fractionated chest radiotherapy, a sagittal view was used to calculate the isodoses along the length of the spinal cord that could lie within the RT field. Equivalent dose estimates are made using the Linear Quadratic Equivalent Dose formula (LQED). The relative radiation sensitivity of spinal cord for myelopathy (the a/b dose) cord has been estimated as a/b = 1 Gy. Results: 17 Gy in 2 fraction and 39 Gy in 13 fraction protocols have spinal cord equivalent doses (using the linear-quadratic model) that lie within the conventional safe limits of 50 Gy in 25 fractions for the 100% isodose. However when the dosimetry is modelled for a 6 MV 100 cm isocentric linac in 3 dimensions, and altered separations and air space inhomogeneity are considered, the D-Max doses consistently fall above this limit on our 3 model patients. Conclusion: The 17 Gy in 2 fraction and 39 Gy in 13 fraction protocol would risk spinal cord damage if the radio therapist was unaware of the potential spinal cord doses. Alterative doses are suggested below 15.5 Gy/ 2 fractions (7 days apart) would be most acceptable

  6. TWIK-Related Spinal Cord K+ Channel Expression Is Increased in the Spinal Dorsal Horn after Spinal Nerve Ligation

    OpenAIRE

    Hwang, Hee Youn; Zhang, Enji; Park, Sangil; Chung, Woosuk; Lee, Sunyeul; Kim, Dong Woon; Ko, Youngkwon; Lee, Wonhyung

    2015-01-01

    Purpose The TWIK-related spinal cord K+ channel (TRESK) has recently been discovered and plays an important role in nociceptor excitability in the pain pathway. Because there have been no reports on the TRESK expression or its function in the dorsal horn of the spinal cord in neuropathic pain, we analyzed TRESK expression in the spinal dorsal horn in a spinal nerve ligation (SNL) model. Materials and Methods We established a SNL mouse model by using the L5-6 spinal nerves ligation. We used re...

  7. Fundamental experimentation of radiation damage to spinal cords in infantile mice

    International Nuclear Information System (INIS)

    In the multi-modal therapy, normal tissue damage is the limiting factor in the radiotherapy of cancer. Intraoperative irradiation resolves this problem by shielding critical organs. In the treatment of pediatric malignancies located in the abdomen, however, the spinal cord is inevitably irradiated. We here investigated and report effects of radiation damage to spinal cord of infantile mice. Materials and methods : Four week-old C3Hf/He male mice, weighing 21 ∼ 24 g, were used throughout experiments. Lumbar cord of spine (L1 ∼ L5) was irradiated with single fraction of X ray machine (20 mA, 25 cm FSD, 322 rad/min). Changes of neurological status after irradiation were scored by observing movements of mice. The scoring method has been employed by Goffinet, et al. Results : In the first place, we investigated the relationship between radiation dose and body weight gaining. Irradiation with large doses perturbed growth of infantile mice. The latent period between radiation and onset of paralysis in infantile mice was shorter than that in adult mice. In addition severe damage of spinal cord was observed in infantile mice by 30 ∼ 50 Gy. By the same dosage, mild damage was reported in adult mice. With 22 Gy, however, radiation did not result apparent damage. It is suggested that careful attention should be paid to radiation of spinal cord in young children. (author)

  8. [Magnetic resonance tomography in late sequelae of spinal and spinal cord injuries].

    Science.gov (United States)

    Kravtsov, A K; Akhadov, T A; Sachkova, I Iu; Belov, S A; Chernenko, O A; Panova, M M

    1993-01-01

    Magnetic-resonance tomography (MRT) helped obtain a high-resolution image characterized by high sensitivity in respect of soft tissue contrast visualization and providing direct imaging of the spinal cord and its radicles. This method is useful in the diagnosis of injuries to the spine and cord. A total of 64 patients of both sexes aged 6 to 67 were examined. The primary diagnosis of traumatic changes in the spine and cord was confirmed by MRT in only 62% of cases. Two groups of patients were singled out: with acute and chronic injuries, subdivided into subgroups with and without spinal cord dysfunction. The detected changes were divided into extramedullary (traumatic disk hernias, compression of the cord or radicles with a dislocated bone fragment, epidural hematoma) and intramedullary (edema, hemorrhages, spinal cord disruption); MRT diagnosis of intramedullary changes is particularly important, more so in the absence of bone injuries. In remote periods after the trauma the clinical picture was determined by spinal canal stenosis, cicatricial atrophic and adhesive changes eventually blocking the liquor space. Intramedullary changes presented as spinal cord cysts or syringomyelia. A classification of the detected changes by the types of injuries and their aftereffects is presented in the paper. The authors emphasize the desirability of MRT in spinal injuries with signs of cord dysfunction. PMID:7801568

  9. Transient Spinal Cord Ischemia as Presenting Manifestation of Polycythemia Vera

    OpenAIRE

    Costa, Sónia; Marques, Joana; Barradas, Anabela; Valverde, Ana

    2011-01-01

    Spinal arterial vascularization is supplied by a large anastomotic net, making spinal ischemic events far less common than ischemic cerebral strokes. Polycythemia vera, due to blood hyperviscosity and activated platelet aggregation, is associated with a higher risk of arterial and venous thrombotic events. We report a patient with spinal cord transient ischemic attacks, a rarely presenting manifestation, and polycythemia vera, which highlights the thrombotic potential of this disease, and the...

  10. Tethered spinal cord syndrome with symptomatic onset in adulthood

    Institute of Scientific and Technical Information of China (English)

    HE Shi-sheng; ZHAO Ying-chuan; SHI Zhi-cai; LI Ming; HOU Tie-sheng; ZHANG Ye; WU Yun-gang

    2009-01-01

    @@ Tethered spinal cord syndrome(TCS)is a condition of overstretching or compression of the caudal part of the spinal cord caused by various spinal lesions,such as a tight filum terminale or an intraspinal lipoma.~(1-9) Though it is a well-recognized cause of neurological deterioration in childhood,its symptomatic onset in adulthood is uncommon.~(10-23) Eleven cases of TCS are presented here.In addition,their related clinical features,surgical procedures and outcomes are investigated.

  11. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  12. 76 FR 33734 - Applications for New Awards; Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS Multi...

    Science.gov (United States)

    2011-06-09

    ... Rehabilitation Research Projects (DRRPs) and Special Projects and Demonstrations for Spinal Cord Injury Program... that provide comprehensive rehabilitation services to individuals with spinal cord injuries and... Applications for New Awards; Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS...

  13. [Spinal and spinal cord injuries. Therapeutic approach in Gabon].

    Science.gov (United States)

    Loembe, P M; Bouger, D; Dukuly, L; Ndong-Launay, M

    1991-01-01

    The authors present their experience with 81 cases (66.4%) of acute cervical spine injuries (C.S.I.) and 41 cases (33.6%) of acute thoracolumbar spine injuries (T.L.S.I.) treated by a multidisciplinary approach, at Jeanne Ebori Hospital (Libreville, Gabon) between the years 1981 and 1987. Traffic accidents were the leading cause of injury. The largest group consisted of patients in their third decade. The anatomic localizations were: upper cervical spine: 22 cases (27%); lower cervical spine: 56 (69%); upper thoracic spine: 11 (26.8%); lower thoracic spine or thoracolumbar area: 19 (46.3%); lumbar spine: 7 (17%). There were osteoligamental lesions in 3 cases (3.7%) of C.S.I. and 4 (9.7%) of T.L.S.I. Clinically, 44 patients (54.3%) with C.S.I. and 37 (90.2%) with T.L.S.I. had neurological deficits. Surgical indications depended upon the osseous as well as neurologic lesions. There were five important steps in the treatment of spinal injuries associated with neurological deficit: (1) immobilization, (2) medical stabilization, (3) spinal alignment (skeletal traction), (4) operative decompression if there was proven cord compression, and (5) spinal stabilization. Twenty patients (24.6%) with cervical injuries were treated conservatively (traction, collar, kinesitherapy); 53 (65.4%) underwent a surgical intervention (anterior approach - 21, posterior fusion - 30, combined approach - 2); and in 8 patients (9.8%) refraining from surgery seemed the best alternative. After lengthy multidisciplinary discussion, the authors elected not to operate on tetraplegic patients with respiratory problems that necessitated assisted ventilation, because of its fatal outcome. Of injuries to the thoracolumbar spine, 13 (31.7%) were treated conservatively (bedrest, orthopedic treatment). Twenty-eight patients (68.2%) with unstable thoracic and lumbar fractures associated with neurologic deficit required acute surgical intervention (stabilization with or without decompression of the neural

  14. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia

    International Nuclear Information System (INIS)

    Spinal cord infarction is a rare clinical diagnosis characterized by a sudden onset of paralysis, bowel and bladder dysfunction, and loss of pain and temperature perception, with preservation of proprioception and vibration sense. Magnetic resonance imaging (MRI) usually demonstrates intramedullary hyperintensity on T2-weighted MR images with cord enlargement. However, in approximately 45% of patients, MR shows no abnormality. Diffusion-weighted MR imaging (DWI) has been widely used for the evaluation of a variety of brain disorders, especially for acute stroke. Preliminary data suggest that DWI has the potential to be useful in the early detection of spinal infarction. We performed DWI, using navigated, interleaved, multishot echo planar imaging (IEPI), in a series of six patients with a clinical suspicion of acute spinal cord ischemia. In all patients, high signal was observed on isotropic DWI images with low ADC values (0.23 and 0.86 x 10-3 cm2/s), indicative of restricted diffusion. We analyzed the imaging findings from conventional MR sequences and diffusion-weighted MR sequences in six patients with spinal cord infarction, compared the findings with those in published series, and discuss the value of DWI in spinal cord ischemia based on current experience. Although the number of patients with described DWI findings totals only 23, the results of previously published studies and those of our study suggest that DWI has the potential to be a useful and feasible technique for the detection of spinal infarction. (orig.)

  15. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Neuroradiology Section, Vienna (Austria); Bammer, Roland [Stanford University, Lucas MRS/I Center, Department of Radiology, Stanford, CA (United States)

    2006-11-15

    Spinal cord infarction is a rare clinical diagnosis characterized by a sudden onset of paralysis, bowel and bladder dysfunction, and loss of pain and temperature perception, with preservation of proprioception and vibration sense. Magnetic resonance imaging (MRI) usually demonstrates intramedullary hyperintensity on T2-weighted MR images with cord enlargement. However, in approximately 45% of patients, MR shows no abnormality. Diffusion-weighted MR imaging (DWI) has been widely used for the evaluation of a variety of brain disorders, especially for acute stroke. Preliminary data suggest that DWI has the potential to be useful in the early detection of spinal infarction. We performed DWI, using navigated, interleaved, multishot echo planar imaging (IEPI), in a series of six patients with a clinical suspicion of acute spinal cord ischemia. In all patients, high signal was observed on isotropic DWI images with low ADC values (0.23 and 0.86 x 10{sup -3} cm{sup 2}/s), indicative of restricted diffusion. We analyzed the imaging findings from conventional MR sequences and diffusion-weighted MR sequences in six patients with spinal cord infarction, compared the findings with those in published series, and discuss the value of DWI in spinal cord ischemia based on current experience. Although the number of patients with described DWI findings totals only 23, the results of previously published studies and those of our study suggest that DWI has the potential to be a useful and feasible technique for the detection of spinal infarction. (orig.)

  16. MRI Findings of Juvenile Xanthogranuloma of the Spinal Cord: A Case Report

    International Nuclear Information System (INIS)

    Juvenile xanthogranuloma (JXG) is a proliferative histiocytic disorder experienced during childhood and adolescents. JXG commonly presents as a solitary cutaneous lesion. Despite the term 'juvenile', development of the disease during adulthood is possible, although spinal JXG is extremely rare in adults. We describe a 67-year-old female patient who presented with an intradural-extramedullary (IDEM) tumor of the spinal cord. Magnetic resonance imaging (MRI) findings indicative of JXG of the spinal cord were seen, which was then confirmed pathologically. A lumbar spinal MRI with contrast enhancement showed an oval-shaped, well-defined IDEM tumor at the L1 level. This tumor had mixed signal intensity on the T1-weighted image and high signal intensity on the T2-weighted image. Central homogenous enhancement was observed after contrast administration.

  17. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  18. Optical measurement of blood flow changes in spinal cord injury

    International Nuclear Information System (INIS)

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  19. Germline ablation of dermatan-4O-sulfotransferase1 reduces regeneration after mouse spinal cord injury.

    Science.gov (United States)

    Rost, S; Akyüz, N; Martinovic, T; Huckhagel, T; Jakovcevski, I; Schachner, M

    2016-01-15

    Chondroitin/dermatan sulfate proteoglycans (CSPGs/DSPGs) are major components of the extracellular matrix. Their expression is generally upregulated after injuries to the adult mammalian central nervous system, which is known for its low ability to restore function after injury. Several studies support the view that CSPGs inhibit regeneration after injury, whereas the functions of DSPGs in injury paradigms are less certain. To characterize the functions of DSPGs in the presence of CSPGs, we studied young adult dermatan-4O-sulfotransferase1-deficient (Chst14(-/-)) mice, which express chondroitin sulfates (CSs), but not dermatan sulfates (DSs), to characterize the functional outcome after severe compression injury of the spinal cord. In comparison to their wild-type (Chst14(+/+)) littermates, regeneration was reduced in Chst14(-/-) mice. No differences between genotypes were seen in the size of spinal cords, numbers of microglia and astrocytes neither in intact nor injured spinal cords after injury. Monoaminergic innervation and re-innervation of the spinal cord caudal to the lesion site as well as expression levels of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) were similar in both genotypes, independent of whether they were injured and examined 6weeks after injury or not injured. These results suggest that, in contrast to CSPGs, DSPGs, being the products of Chst14 enzymatic activity, promote regeneration after injury of the adult mouse central nervous system. PMID:26586562

  20. Acute complications of spinal cord injuries.

    Science.gov (United States)

    Hagen, Ellen Merete

    2015-01-18

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  1. Value of Micro-CT for Monitoring Spinal Microvascular Changes after Chronic Spinal Cord Compression

    Directory of Open Access Journals (Sweden)

    Hou-Qing Long

    2014-07-01

    Full Text Available Neurological degeneration can occur after compression of the spinal cord. It is widely accepted that spinal cord compression leads to ischemic lesions and ultimately neurological dysfunction due to a narrowed spinal canal. Therefore, an in-depth understanding of the pathogenesis of spinal cord compression injury is required to help develop effective clinical interventions. In the present study, we propose a new method of quantitative 3D micro-CT to observe microvascular events in a chronic spinal cord compression rat model. A total of 36 rats were divided into two groups: sham control group (n = 12 and compressive spinal cord injury group (n = 24. Rats were scarified at four weeks after surgery. In each group, CD34 micro-vessel immunohistochemical staining was performed in half of the animals, while micro-CT scanning was performed in the other half. Microvessel density (MVD was measured after immunohistochemical staining, while the vascular index (VI was measured in 3D micro-CT. In comparison with sham control, abnormal somatosensory evoked potentials (SEP can be seen in all 24 cases of the compression group, and VI shows the amount of microvessels reduced consistently and significantly (p < 0.01. A significant correlation is also found between MVD and VI (r = 0.95, p < 0.01. These data suggest that quantitative 3D micro-CT is a sensitive and promising tool for investigating microvascular changes during chronic compressive spinal cord injury.

  2. Neurological complications in adult spinal deformity surgery.

    Science.gov (United States)

    Iorio, Justin A; Reid, Patrick; Kim, Han Jo

    2016-09-01

    The number of surgeries performed for adult spinal deformity (ASD) has been increasing due to an aging population, longer life expectancy, and studies supporting an improvement in health-related quality of life scores after operative intervention. However, medical and surgical complication rates remain high, and neurological complications such as spinal cord injury and motor deficits can be especially debilitating to patients. Several independent factors potentially influence the likelihood of neurological complications including surgical approach (anterior, lateral, or posterior), use of osteotomies, thoracic hyperkyphosis, spinal region, patient characteristics, and revision surgery status. The majority of ASD surgeries are performed by a posterior approach to the thoracic and/or lumbar spine, but anterior and lateral approaches are commonly performed and are associated with unique neural complications such as femoral nerve palsy and lumbar plexus injuries. Spinal morphology, such as that of hyperkyphosis, has been reported to be a risk factor for complications in addition to three-column osteotomies, which are often utilized to correct large deformities. Additionally, revision surgeries are common in ASD and these patients are at an increased risk of procedure-related complications and nervous system injury. Patient selection, surgical technique, and use of intraoperative neuromonitoring may reduce the incidence of complications and optimize outcomes. PMID:27250041

  3. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury

    OpenAIRE

    Cheng, Hongbin; Liu, Xuebin; Hua, Rongrong; Dai, Guanghui; Wang, Xiaodong; Gao, Jianhua; An, Yihua

    2014-01-01

    Background Umbilical cord mesenchymal stem cells (UCMSCs) have a considerable advantage and potential in treating for central nervous system diseases and have become a novel alternative treatment for spinal cord injury. This study aims to compare the neurological function outcome of stem cell transplantation, rehabilitation therapy, and self-healing for sequelae of spinal cord injury. Methods Thirty-four cases of thoracolumbar spinal cord injury were randomly divided into three groups: the st...

  4. Distant microglial and astroglial activation secondary to experimental spinal cord lesion Ativação microglial e astroglial à distância secundárias a lesão da medula espinhal

    OpenAIRE

    Ricardo José de Almeida Leme; Gerson Chadi

    2001-01-01

    This paper analysed whether glial responses following a spinal cord lesion is restricted to a scar formation close to the wound or they might be also related to widespread paracrine trophic events in the entire cord. Spinal cord hemitransection was performed in adult rats at the thoracic level. Seven days and three months later the spinal cords were removed and submitted to immunohistochemistry of glial fibrillary acidic protein (GFAP) and OX42, markers for astrocytes and microglia, as well a...

  5. MRI of anterior spinal artery syndrome of the cervical spinal cord

    International Nuclear Information System (INIS)

    Cervical spinal cord lesions in the anterior spinal artery syndrome were delineated on magnetic resonance images (MRI) in four patients. The lesion was always seen anteriorly in the cervical cord. On T2-weighted images, the lesions appeared hyperintense relative to the normal spinal cord, while on T1-weighted images, two chronic lesions appeared hypointense, with local atrophy of the cord. In one case, repeated T1-weighted images showed no signal abnormality 4 days after the ictus, but the lesion became hypointense 18 days later, when contrast enhancement was also recognized after injection of Gd-DTPA; this sequence of intensity changes was similar to that of cerebral infarction. The extent of the lesion seen MRI correlated closely with neurological findings in all cases. Although the findings may not be specific, MRI is now the modality of choice for confirming the diagnosis in patients suspected of having an anterior spinal artery syndrome. (orig.)

  6. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks....... The intrinsic response properties of spinal neurones--determined by the particular set and distribution of voltage sensitive channels and their dynamic non-linear interactions--show a high degree of functional specialisation as reflected by the differences of intrinsic response patterns in different...

  7. In vivo NIRS monitoring in pig Spinal Cord tissues.

    Science.gov (United States)

    Tsiakaka, Olivier; Terosiet, Mehdi; Romain, Olivier; Histace, Aymeric; Benali, Habib; Pradat, Pierre-Franois; Vallette, Farouk; Feher, Michael; Feruglio, Sylvain

    2015-08-01

    Little is known about the processes occurring after Spinal Cord damage. Whether permanent or recoverable, those processes have not been precisely characterized because their mechanism is complex and information on the functioning of this organ are partial. This study demonstrates the feasibility of Spinal Cord activity monitoring using Near Infra-Red Spectroscopy in a pig animal model. This animal has been chosen because of its comparable size and its similarities with humans. In the first step, optical characterization of the Spinal Cord tissues was performed in different conditions using a spectrophotometer. Optical Density was evaluated between 3.5 and 6.5 in the [500; 950] nm range. Secondly, adapted light sources with custom probes were used to observe autonomic functions in the spine. Results on the measured haemodynamics at rest and under stimulation show in real time the impact of a global stimulus on a local section of the Spinal Cord. The photoplethysmogram signal of the Spinal Cord showed low AC-to-DC ratio (below to 1 %). PMID:26737236

  8. Neuroprotection and its molecular mechanism following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nai-Kui Liu; Xiao-Ming Xu

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed 'secondary injury', which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury.

  9. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    Directory of Open Access Journals (Sweden)

    Shahabeddin Vahdat

    2015-06-01

    Full Text Available The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  10. Automated identification of spinal cord and vertebras on sagittal MRI

    Science.gov (United States)

    Zhou, Chuan; Chan, Heang-Ping; Dong, Qian; He, Bo; Wei, Jun; Hadjiiski, Lubomir M.; Couriel, Daniel

    2014-03-01

    We are developing an automated method for the identification of the spinal cord and the vertebras on spinal MR images, which is an essential step for computerized analysis of bone marrow diseases. The spinal cord segment was first enhanced by a newly developed hierarchical multiscale tubular (HMT) filter that utilizes the complementary hyper- and hypo- intensities in the T1-weighted (T1W) and STIR MRI sequences. An Expectation-Maximization (EM) analysis method was then applied to the enhanced tubular structures to extract candidates of the spinal cord. The spinal cord was finally identified by a maximum-likelihood registration method by analysis of the features extracted from the candidate objects in the two MRI sequences. Using the identified spinal cord as a reference, the vertebras were localized based on the intervertebral disc locations extracted by another HMT filter applied to the T1W images. In this study, 5 and 30 MRI scans from 35 patients who were diagnosed with multiple myeloma disease were collected retrospectively with IRB approval as training and test set, respectively. The vertebras manually outlined by a radiologist were used as reference standard. A total of 422 vertebras were marked in the 30 test cases. For the 30 test cases, 100% (30/30) of the spinal cords were correctly segmented with 4 false positives (FPs) mistakenly identified on the back muscles in 4 scans. A sensitivity of 95.0% (401/422) was achieved for the identification of vertebras, and 5 FPs were marked in 4 scans with an average FP rate of 0.17 FPs/scan.

  11. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography

    Science.gov (United States)

    Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E. M.

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  12. Pregnancy after assisted ejaculation procedures in men with spinal cord injury

    DEFF Research Database (Denmark)

    Sønksen, J; Sommer, P; Biering-Sørensen, F;

    1997-01-01

    To present the results of fertility treatment in 28 men with spinal cord injury (SCI) and their partners.......To present the results of fertility treatment in 28 men with spinal cord injury (SCI) and their partners....

  13. Antispastic effect of penile vibration in men with spinal cord lesion

    DEFF Research Database (Denmark)

    Læssøe, Line; Nielsen, Jens Bo; Biering-Sørensen, F.;

    2004-01-01

    To evaluate the possible antispastic effect of penile vibratory stimulation (PVS) in men with spinal cord lesion (SCL).......To evaluate the possible antispastic effect of penile vibratory stimulation (PVS) in men with spinal cord lesion (SCL)....

  14. Effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions

    DEFF Research Database (Denmark)

    Laessøe, Line; Sønksen, Jens; Bagi, Per; Biering-Sørensen, Fin; Ohl, Dana A; McGuire, Edward J; Kristensen, Jørgen

    2003-01-01

    We examined the effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions.......We examined the effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions....

  15. A Danish survey of spinal cord stimulation baseline data: First results from a national neuromodulation database

    DEFF Research Database (Denmark)

    Meier, Kaare; Scherer, Christian; Rosenlund, Christina; Gulisano, Helga Angela; Enggaard, Thomas Peter; Willumsen, Lisette; Knudsen, Anne Lene Høst; Rasmusson, Mattias; Sørensen, Jens Christian Hedemann

    A Danish survey of spinal cord stimulation baseline data: First results from a national neuromodulation database......A Danish survey of spinal cord stimulation baseline data: First results from a national neuromodulation database...

  16. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through va

  17. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... yourself with information on what a spinal cord injury is, and what it means in terms of ... thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. There ...

  18. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury

    DEFF Research Database (Denmark)

    Waring, William P; Biering-Sorensen, Fin; Burns, Stephen;

    2010-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) were recently reviewed by the ASIA's Education and Standards Committees, in collaboration with the International Spinal Cord Society's Education Committee. Available educational materials for the ISNCSCI...

  19. Surgical treatment of primary intramedullary spinal cord tumors in adult patients Tratamento cirúrgico de tumores intramedulares primários em adultos

    Directory of Open Access Journals (Sweden)

    Mario Augusto Taricco

    2008-03-01

    Full Text Available BACKGROUND: Primary spinal cord intramedullary tumors are rare and present with insidious symptoms. Previous treatment protocols emphasized biopsy and radiation/chemotherapy but more aggressive protocols have emerged. OBJECTIVE: To report our experience. METHOD: Forty-eight patients were diagnosed with primary intramedullary tumors. The cervical cord was involved in 27% and thoracic in 42% of patients. Complete microsurgical removal was attempted whenever possible without added neurological morbidity. RESULTS: Complete resection was obtained in 33 (71% patients. Neurological function remained stable or improved in 32 patients (66.7%. Ependymoma was the most frequent tumor (66.7%. CONCLUSION: Neurological outcome is superior in patients with subtle findings; aggressive microsurgical resection should be pursued with acceptable neurological outcomes.INTRODUÇÃO: Tumores intramedulares primários são raros e apresentam-se com sintomas insidiosos. Protocolos de tratamento anteriores enfatizavam biópsia e radio/quimioterapia, mas protocolos mais agres-sivos têm surgido. OBJETIVO: Relatar nossa experiência. MÉTODO: Tumores intramedulares foram diagnosticados em 48 pacientes. O segmento cervical estava envolvido em 27% e torácico em 42% dos pacientes. Remoção completa foi tentada quando possível sem aumento da morbidade neurológica. RESULTADOS: Ressecção total foi obtida em 33 (71% pacientes. Função neurológica: permaneceu inalterada/melhorou em 32 (66,7% pacientes. O tumor mais freqüente foi ependimoma (66,7%. CONCLUSÃO: O prognóstico é melhor em pacientes oligossintomáticos; ressecção microcirúrgica agressiva deve ser tentada sempre, com resultados clínicos aceitáveis.

  20. Spinal cord ischemia: aetiology, clinical syndromes and imaging features

    International Nuclear Information System (INIS)

    The purpose of this study was to analyse MR imaging features and lesion patterns as defined by compromised vascular territories, correlating them to different clinical syndromes and aetiological aspects. In a 19.8-year period, clinical records and magnetic resonance imaging (MRI) features of 55 consecutive patients suffering from spinal cord ischemia were evaluated. Aetiologies of infarcts were arteriosclerosis of the aorta and vertebral arteries (23.6 %), aortic surgery or interventional aneurysm repair (11 %) and aortic and vertebral artery dissection (11 %), and in 23.6 %, aetiology remained unclear. Infarcts occurred in 38.2 % at the cervical and thoracic level, respectively, and 49 % of patients suffered from centromedullar syndrome caused by anterior spinal artery ischemia. MRI disclosed hyperintense pencil-like lesion pattern on T2WI in 98.2 %, cord swelling in 40 %, enhancement on post-contrast T1WI in 42.9 % and always hyperintense signal on diffusion-weighted imaging (DWI) when acquired. The most common clinical feature in spinal cord ischemia is a centromedullar syndrome, and in contrast to anterior spinal artery ischemia, infarcts in the posterior spinal artery territory are rare. The exclusively cervical location of the spinal sulcal artery syndrome seems to be a likely consequence of anterior spinal artery duplication which is observed preferentially here. (orig.)

  1. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H]Epibatid......The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H......]Epibatidine in concentrations of 1, 10 and 100 nM was dissolved in Ringer's solution and administered through the dialysis membrane into the dorsal region of the cervical spinal cord. First, the outflow of [(3)H]epibatidine from the probe into the spinal cord was examined with respect to different concentrations and changes....... The administered [(3)H]epibatidine was found to be distributed to the area closest to the dialysis probe and not dispersed along the spinal cord, and the distribution was equal for all concentrations. The data presented in this investigation provide information, which is important for interpretation of data from...

  2. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    OpenAIRE

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to...

  3. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  4. Spinal cord blood flow measured by 14C-iodoantipyrine autoradiography during and after graded spinal cord compression in rats

    International Nuclear Information System (INIS)

    The relations between degree of thoracic spinal cord compression causing myelographic block, reversible paraparesis, and extinction of the sensory evoked potential on one hand, and spinal cord blood flow on the other, were investigated. This was done in rats using the blocking weight-technique and 14C-iodoantipyrine autoradiography. A load of 9 g caused myelographic block. Five minutes of compression with that load caused a reduction of spinal cord blood flow to about 25%, but 5 and 60 minutes after the compression spinal cord blood flow was restored to 60% of the pretrauma value. A load of 35 g for 5 minutes caused transient paraparesis. Recovery to about 30% was observed 5 and 60 minutes thereafter. During compression at a load of 55 g, which caused almost total extinction of sensory evoked potential and irreversible paraplegia, spinal cord blood flow under the load ceased. The results indicate that myelographic block occurs at a load which does not cause irreversible paraparesis and that a load which permits sensory evoked potential to be elicited results in potentially salvageable damage

  5. Magnetic resonance imaging of spinal cord trauma: a pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, Philippe [University Hospitals Gasthuisberg, Department of Radiology, Leuven (Belgium)

    2006-04-15

    Assessing a patient with clinical signs of acute spinal cord trauma is an emergency. A radiological work-up is crucial in determining management, and magnetic resonance imaging (MRI) is the modality of choice. It should therefore be performed immediately, preferably within 3 hours, even when plain radiography does not show an abnormality. By choosing an appropriate imaging protocol, it is possible to assess the spinal cord, joints, muscles, ligaments and bone marrow of the spine. Moreover, early MRI findings assist in determining functional prognosis. A major limitation to early MRI is that the examination is usually restricted to stable trauma patients because of the difficulties in monitoring ventilated patients during scanning. However, when an anaesthesiologist with experience in MRI and MR-compatible monitoring equipment is available, even these patients can be safely examined. MRI is also indicated for the evaluation of patients with late complications and sequelae following spinal cord trauma, since many of these chronic lesions are potentially treatable. (orig.)

  6. Double-level Incomplete Spinal Cord Injuries: A case report

    Directory of Open Access Journals (Sweden)

    Saeed Bin Ayaz

    2014-04-01

    Full Text Available Brown-Séquard Syndrome is a type of Incomplete Spinal Cord Injury characterized by a relatively greater ipsilateral loss of proprioception and motor function, with contralateral loss of pain and temperature sensations. The residual deficits in balance produced by such injury may render a person liable to fall that may result in vertebral fracture and another injury to the spinal cord. We present here a case who initially had Brown-Séquard Syndrome due to penetrating knife injury to the neck and later on developed Cauda Equina Syndrome (another Incomplete Spinal Cord Injury due to fractured LV1 following a fall. The fracture was fixed through Pedicle Screws and the patient underwent effective rehabilitation to gain maximum achievable independence in functional activities. [Cukurova Med J 2014; 39(2.000: 392-398

  7. Spinal cord stimulation for neuropathic pain: current perspectives

    Directory of Open Access Journals (Sweden)

    Wolter T

    2014-11-01

    Full Text Available Tilman Wolter Interdisciplinary Pain Centre, University Hospital Freiburg, Freiburg, Germany Abstract: Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation. Keywords: spinal cord stimulation, neuropathic pain, neurostimulation

  8. Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain

    Directory of Open Access Journals (Sweden)

    Sarah Taves

    2013-01-01

    Full Text Available Microglia are regarded as macrophages in the central nervous system (CNS and play an important role in neuroinflammation in the CNS. Microglial activation has been strongly implicated in neurodegeneration in the brain. Increasing evidence also suggests an important role of spinal cord microglia in the genesis of persistent pain, by releasing the proinflammatory cytokines tumor necrosis factor-alpha (TNFα, Interleukine-1beta (IL-1β, and brain derived neurotrophic factor (BDNF. In this review, we discuss the recent findings illustrating the importance of microglial mediators in regulating synaptic plasticity of the excitatory and inhibitory pain circuits in the spinal cord, leading to enhanced pain states. Insights into microglial-neuronal interactions in the spinal cord dorsal horn will not only further our understanding of neural plasticity but may also lead to novel therapeutics for chronic pain management.

  9. Hydraulic spinal cord and cauda equina nerve injuries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Hydraulic spinal cord and cauda equina nerve injuries are very uncommon. Since 19 96, we have received and treated 4 patients with hydraulic spinal cord and cauda equina injuries. This report gives a detail description. Four patients with hydraulic spinal cord and cauda equina nerve injuries, male: 3, female: 1, aging 13-56 years have been treated in our hospital since 1996. E xtradural blocking injury was in 1 patient, extradural anaesthesia injury in 1 p atient and intraspinal canal myelography injury in 2 patients; the segments of i ntraspinal canal were L2-3 and L3-4. One patient was accompanied b y femoral fracture, 2 patients by intraspinal tumor and 1 patient had operat ion because of prolapse of lumbar intervertebral disc.

  10. Malnutrition in spinal cord injury: more than nutritional deficiency.

    Science.gov (United States)

    Dionyssiotis, Yannis

    2012-08-01

    Denervation of the spinal cord below the level of injury leads to complications producing malnutrition. Nutritional status affects mortality and pathology of injured subjects and it has been reported that two thirds of individuals enrolled in rehabilitation units are malnourished. Therefore, the aim should be either to maintain an optimal nutritional status, or supplement these subjects in order to overcome deficiencies in nutrients or prevent obesity. This paper reviews methods of nutritional assessment and describes the physiopathological mechanisms of malnutrition based on the assumption that spinal cord injured subjects need to receive adequate nutrition to promote optimal recovery, placing nutrition as a first line treatment and not an afterthought in the rehabilitation of spinal cord injury. PMID:22870169

  11. Magnetic resonance imaging of spinal cord trauma: a pictorial essay

    International Nuclear Information System (INIS)

    Assessing a patient with clinical signs of acute spinal cord trauma is an emergency. A radiological work-up is crucial in determining management, and magnetic resonance imaging (MRI) is the modality of choice. It should therefore be performed immediately, preferably within 3 hours, even when plain radiography does not show an abnormality. By choosing an appropriate imaging protocol, it is possible to assess the spinal cord, joints, muscles, ligaments and bone marrow of the spine. Moreover, early MRI findings assist in determining functional prognosis. A major limitation to early MRI is that the examination is usually restricted to stable trauma patients because of the difficulties in monitoring ventilated patients during scanning. However, when an anaesthesiologist with experience in MRI and MR-compatible monitoring equipment is available, even these patients can be safely examined. MRI is also indicated for the evaluation of patients with late complications and sequelae following spinal cord trauma, since many of these chronic lesions are potentially treatable. (orig.)

  12. [MR imaging of the spinal cord--with special emphasis on the factors influencing spinal cord measurement].

    Science.gov (United States)

    Miyasaka, K

    1992-03-01

    On MR images the spinal cord is seen differently in size depending on imaging parameters and displaying window; consequently the findings may be interpreted erroneously as swelling or atrophy of the spinal cord. The purpose of this paper was to evaluate factors influencing spinal cord size on images and to determine the optimal condition estimating the size of the spinal cord. At first we selected 4 cases suspected of cervical spinal disorders which had been examined by both MRI and myelography with tomography. Sagittal diameter of the spinal cord was measured on a film and it was significantly different of those three. That is, the measurement value was greater on T1 weighted image (T1WI) and smaller on T2 weighted image (T2WI) than myelo-tomography. To evaluate the effect of imaging parameters, image reconstruction and image displaying window quantitatively, studied were the cadaveric cervical spinal cord and gelatin phantom tube with a diameter of 13 mm and 9 mm placed in a saline-filled plastic tube. The measurement value was significantly greater on T1WI and smaller on T2WI than true size of the objects. Numbers of phase encoding (128 and 256) significantly affected the measurement value, both on T1WI and T2WI, as well. Ringing artifact of high or low signal was observed at the boundary area of the objects and saline (so-called truncation artifact). However, when the window-level of displaying image was raised stepwisely the measurement value was proportionally decreased and it reached to real value when the level was adjusted at the mean MR signal intensity of the object and saline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1591101

  13. Role of Matrix Metalloproteinases and Therapeutic Benefits of Their Inhibition in Spinal Cord Injury

    OpenAIRE

    Zhang, Haoqian; Chang, Mayland; Hansen, Christopher N; Basso, D. Michele; Noble-Haeusslein, Linda J.

    2011-01-01

    Summary This review will focus on matrix metalloproteinases (MMPs) and their inhibitors in the context of spinal cord injury (SCI). MMPs have a specific cellular and temporal pattern of expression in the injured spinal cord. Here we consider their diverse functions in the acutely injured cord and during wound healing. Excessive activity of MMPs, and in particular gelatinase B (MMP-9), in the acutely injured cord contributes to disruption of the blood-spinal cord barrier, and the influx of leu...

  14. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury.

    Science.gov (United States)

    Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A

    2015-11-15

    We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual. PMID:26341152

  15. Intramedullary Spinal Cord and Leptomeningeal Metastases from Intracranial Low-grade Oligodendroglioma

    OpenAIRE

    Verma, Nipun; Nolan, Craig; Hirano, Miki; Robert J. Young

    2014-01-01

    We present an unusual case of a patient with an intracranial low-grade oligodendroglioma who developed recurrence with an intramedullary spinal cord metastasis and multiple spinal leptomeningeal metastases. The intramedullary spinal cord metastasis showed mild enhancement similar to the original intracranial primary, while the multiple spinal leptomeningeal metastases revealed no enhancement. This is the seventh reported case of symptomatic intramedullary spinal cord metastasis from a low-gra...

  16. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassaemia: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aydingoez, Ue.; Oto, A.; Cila, A. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey)

    1997-12-01

    Spinal epidural extramedullary haematopoiesis is very rare in thalassaemia. A 27-year-old man with thalassaemia intermedia presented with symptoms and signs of spinal cord compression. MRI showed a thoracic spinal epidural mass, representing extramedullary haematopoietic tissue, compressing the spinal cord. Following radiotherapy, serial MRI revealed regression of the epidural mass and gradual resolution of spinal cord oedema. (orig.) With 3 figs., 6 refs.

  17. Antioxidation of melatonin against spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    刘锦波; 唐天驷; 杨惠林; 肖德生

    2004-01-01

    Background The iron catalyzed lipid peroxidation plays an important role in the autodestruction of the injured spinal cord. This study was to detect the antioxidation of melatonin against spinal cord injury (SCI) in rats.Methods Sity Sprague-Dawley rats were randomly divided into four groups: group A (n = 15) for laminectomyanly, group B (n = 15) for laminectomy with SCI, group C (n = 15) for SCI and intraperitoneal injection of a bolus of 100 mg/kg melatonin, and group D (n = 15) for SCI and intraperitoneal injection of saline containing 5% ethanol. The SCI of animal model was made using modified Allen's method on T12. Six rats of each group were sacrificed 4 hours after injury, and the levels of free iron and malondialdehyde (MDA) of the involved spinal cord segments were measured by the bleomycin assay and thiobarbituric acid (TBA) separately. Functional recovery of the spinal cord was assessed by Modified Tarlov's scale and the inclined plane method at 1,3, 7, 14, 21 days after SCI. The histologic changes of the damaged spinal cord were also examined at 7 days after SCl.Results After SCI, the levels of free iron and MDA were increased significantly and the modified Tarlov's score and inclined plane angle decreased significantly in groups B and D. In group C, the Tarlov's score and inclined plane angle were increased significantly at 7, 14 and 21 days, with histological improvement.Conclusion: Melatonin can reduce the level of lipid peroxidation and prevent damage to the spinal cord of rat.

  18. Aquaporin 1 - a novel player in spinal cord injury.

    Science.gov (United States)

    Nesic, O; Lee, J; Unabia, G C; Johnson, K; Ye, Z; Vergara, L; Hulsebosch, C E; Perez-Polo, J R

    2008-05-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1alpha was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  19. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.

    Science.gov (United States)

    Wong, Liang-Fong; Yip, Ping K; Battaglia, Anna; Grist, John; Corcoran, Jonathan; Maden, Malcolm; Azzouz, Mimoun; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D; McMahon, Stephen B

    2006-02-01

    The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration. PMID:16388307

  20. Neurological deficit following spinal anaesthesia: MRI and CT evidence of spinal cord gas embolism

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, E. [Naples Univ. (Italy). Dept. of Biomorphological and Functional Sciences]|[Parco Comola-Ricci, Naples (Italy); Marano, I.; Savarese, F.; Brunetti, A.; Sodano, A. [Naples Univ. (Italy). Dept. of Biomorphological and Functional Sciences; Olibet, G. [Naples Univ. (Italy). Intensive Care Unit; Di Salvo, E. [Naples Univ. (Italy). Dept. of General and Transplant Surgery

    1999-04-01

    A 62-year-old diabetic woman developed permanent neurological deficits in the legs following spinal anaesthesia. MRI showed oedema in the spinal cord and a small intramedullary focus of signal void at the T10 level, with negative density at CT. Intramedullary gas bubbles have not been reported previously among the possible neurological complications of spinal anaesthesia; a combined ischaemic/embolic mechanism is hypothesised. (orig.) With 2 figs., 10 refs.

  1. Neurological deficit following spinal anaesthesia: MRI and CT evidence of spinal cord gas embolism

    International Nuclear Information System (INIS)

    A 62-year-old diabetic woman developed permanent neurological deficits in the legs following spinal anaesthesia. MRI showed oedema in the spinal cord and a small intramedullary focus of signal void at the T10 level, with negative density at CT. Intramedullary gas bubbles have not been reported previously among the possible neurological complications of spinal anaesthesia; a combined ischaemic/embolic mechanism is hypothesised. (orig.)

  2. Functional electrical stimulation for incomplete spinal cord injury

    OpenAIRE

    Fazio, Christina

    2014-01-01

    This case report describes the early use of functional electrical stimulation on an individual with an incomplete spinal cord injury to assist with motor recovery and a return to ambulation. A 32-year-old woman sustained a C7 burst fracture after a fall, requiring anterior cervical fixation from C6 to T1 prior to transfer to acute rehabilitation. She presented as a C8 AIS B spinal cord injury, meaning she had some sensory function spared below the level of injury but not motor function. At di...

  3. Tumefactive demyelinating disease with isolated spinal cord involvement

    International Nuclear Information System (INIS)

    Tumefactive multiple sclerosis (TMS) is an unusual variant of demyelinating disease. TMS has a variable and unknown progression and presents with features similar to a neoplasm making the determination a diagnostic challenge to clinicians. This report presents one of the very few reported cases of isolated spinal cord TMS, and the second case to describe TMS of the lower spinal cord, given that the lesions are typically cervical. This case study presents a diagnostic approach based on clinical, laboratory, and imaging characteristics, as well as sheds some light on the response to therapy and disease evolution

  4. [Spinal cord stimulation for the management of chronic pain].

    Science.gov (United States)

    Perruchoud, Christophe; Mariotti, Nicolas

    2016-06-22

    Neuromodulation techniques modify the activity of the central or peripheral nervous system. Spinal cord stimulation is a reversible and minimally invasive treatment whose efficacy and cost effectiveness are recognized for the treatment of chronic neuropathic pain or ischemic pain. Spinal cord stimulation is not the option of last resort and should be considered among other options before prescribing long-term opioids or considering reoperation. The selection and regular follow-up of patients are crucial to the success of the therapy. PMID:27506068

  5. Spinal cord response to laser treatment of injured peripheral nerve

    Energy Technology Data Exchange (ETDEWEB)

    Rochkind, S.; Vogler, I.; Barr-Nea, L. (Ichilov Hospital, Tel-Aviv Medical Center (Israel))

    1990-01-01

    The authors describe the changes occurring in the spinal cord of rats subjected to crush injury of the sciatic nerve followed by low-power laser irradiation of the injured nerve. Such laser treatment of the crushed peripheral nerve has been found to mitigate the degenerative changes in the corresponding neurons of the spinal cord and induce proliferation of neuroglia both in astrocytes and oligodendrocytes. This suggests a higher metabolism in neurons and a better ability for myelin production under the influence of laser treatment.

  6. The calcium-binding protein Mtsl/S100A4 in normal, degenerating and demyelinated spinal cord of the adult mouse%The calcium-binding protein Mtsl/S100A4 in normal,degenerating and demyelinated spinal cord of the adult mouse

    Institute of Scientific and Technical Information of China (English)

    FANG Zhengyu; XIONG Liang; HUANG Xiaolin; ZHOU Ning; Kozlova-Aldskogius Elena

    2008-01-01

    目的:研究止常、退行性病变以及脱髓鞘小鼠脊髓内Mtsl/S100A4蛋白的表达模式,及其对胶质细胞反应的影响.方法:以野生型和Mtsl/S100A4基因敲除型小鼠为试验动物,采用背根损伤、坐骨神经损伤、溴乙啶局部微量注射的方法复制退行性病变及脱髓鞘脊髓动物模型,应用免疫荧光技术,检测S100A4、GFAP、NG2、Mac1的表达情况.结果:野生型小鼠脊髓内,仅白质星型胶质细胞表达S100A4蛋白,且主要分布于Lissauer束:背根或坐骨神经损伤后,白质星形胶质细胞内的S100A4及GFAP表达上调.野生型与S100A4基因敲除小鼠GFAP表达量无显著差异;溴乙啶注射7d后,野生型小鼠脊髓脱髓鞘区域内她S100A4呈云雾状分布,胶质细胞反应局限于注射侧,并且形成清晰的胶质瘢痕,而S100A4基凶敲除小鼠则未见上述病理变化.结论:S100A4蛋白在小鼠脊髓内的表达模式与大鼠相似;退行性变的脊髓内,细胞内上调的S100A4蛋白并不影响胶质细胞的反应;脱髓鞘脊髓内,细胞外的S100A4蛋白明显影响胶质细胞反应,包括胶质瘢痕的形成.%Objective:To investigate the expression pattern of Mtsl/S100A4 in mouse spinal cord;to investigate the effects of Mtsl/S100A4 on glial cell responses.Method:The study was carried out on Mtsl/S100A4 wild type and knock-out mice.The degenerative spinal cord model was established by dorsal root or sciatic nerve injury.The de-myelinated spinal cord model was established by ethidium bromide injections.Then the expressions of S100A4,GFA P,NG2 and Mael were measured.Result:The expressions of Mtsl/S100A4 in mice spinal cord were similar to that in rats.In WT mice this protein expressed in a thin layer of fiber bundles in the tract of Lissauer,and in white matter astrocytes.There was intracellular up-regulation of Mtsl/S100A4 in white matter astrocytes of WT mice after dorsal root or sciatic nerve injury,with no difference in glial cell response

  7. Neurological Outcome in Road Traffic Accidents with Spinal Cord Injury

    OpenAIRE

    Moslavac, Saša; DŽIDIĆ, Ivan; Kejla, Zvonko

    2008-01-01

    The aim of the study was to investigate neurological outcome in road traffic accidents (RTA) with spinal cord injury (SCI). The study was undertaken in National Spinal Unit of Special Medical Rehabilitation Hospital, in Vara`dinske Toplice, Croatia. Hospital records of 154 inpatient RTA SCI patients, in years 1991–2001 were reviewed. Six groups of patients were formed: car drivers, co-drivers, back seat passengers, motorcycle drivers, bicycle drivers and pedestrians. Neurological ...

  8. Primitive roles for inhibitory interneurons in developing frog spinal cord

    OpenAIRE

    Li, W-C; Higashijima, S-I; Parry, DM; Roberts, A.; Soffe, SR

    2004-01-01

    Understanding the neuronal networks in the mammal spinal cord is hampered by the diversity of neurons and their connections. The simpler networks in developing lower vertebrates may offer insights into basic organization. To investigate the function of spinal inhibitory interneurons in Xenopus tadpoles, paired whole-cell recordings were used.We show directly that one class of interneuron, with distinctive anatomy, produces lycinergic, negative feedback inhibition that can limit firing in moto...

  9. Motoneurons of the adult marmoset can grow axons and reform motor endplates through a peripheral nerve bridge joining the locally injured cervical spinal cord to the denervated biceps brachii muscle.

    Science.gov (United States)

    Emery, E; Rhrich-Haddout, F; Kassar-Duchossoy, L; Lyoussi, B; Tadié, M; Horvat, J C

    2000-12-15

    Reconnection of the injured spinal cord (SC) of the marmoset with the denervated biceps brachii muscle (BB) was obtained by using a peripheral nerve (PN) bridge. In 13 adult males, a 45 mm segment of the peroneal nerve was removed: one end was implanted unilaterally into the cervical SC of the same animal (autograft), determining a local injury, although the other end was either directly inserted into the BB (Group A) or, alternatively, sutured to its transected motor nerve, the musculocutaneous nerve (Group B). From 2-4 months post-surgery, eight out of the 10 surviving animals responded by a contraction of the BB to electrical stimulations of the PN bridge. All ten were then processed for a morphological study. As documented by retrograde axonal tracing studies using horse radish peroxidase or Fast Blue (FB), a mean number of 314 (Group A) or 45 (Group B) spinal neurons, mainly located close to the site of injury and grafting, re-expressed a capacity to grow and extend axons into the PN bridge. Most of these regenerated axons were able to grow up to the BB and form or reform functional motor endplates. Many of the spinal neurons that were retrogradely labeled with FB simultaneously displayed immunoreactivity for choline acetyl-transferase and consequently were assumed to be motoneurons. Reinnervation and regeneration of the BB were documented by methods revealing axon terminals, endplates and myofibrillary ATPase activity. Our results indicate that motoneurons of the focally injured SC of a small-sized primate can, following the example of the adult rat, re-establish a lost motor function by extending new axons all the way through a PN bridge connected to a denervated skeletal muscle. PMID:11107167

  10. [Acute ischemic spinal cord disease. Spinal cord infarction. A clinical study and MRI in 8 cases].

    Science.gov (United States)

    Pau Serradell, A

    1994-01-01

    Acute spinal cord infarction (ASCI) occurs infrequently and may have diverse causes. The diagnosis of ASCI, and particularly of an anterior spinal artery syndrome (ASAS) can be confirmed nowadays by MRI, whereas in the past only necropsy confirmation was possible. Pathophysiology and long-term prognosis may be better known at present and treatments more consistent. We present the longitudinal study and clinical features of 8 patients suffering from ASCI. All of them were personally studied and had MRI examinations, often with sequential studies. three groups must be considered: one included 4 cases of ASAS at cervical level, the second 2 cases of ASAS at thoracic level and the third group with infarction of the conus medullaris (ICM), one of them developed during surgical repair of an infrarenal aortic aneurysm. Motor and sensory sequelae were assessed in each case together with possible etiological factors. In conclusion, recovery after ASAS tends to be dependent on the severity of the initial deficit. At cervical level, clinical and morphological findings argue in favour of an extrinsic selective compression of the C7 right radiculo-medullary artery as responsible for the ASA. At thoracic level, the artery preferentially occluded seems to be the sulco-commisural artery as a consequence of disc compression. Finally, an underlying peculiarity of the pattern of arterial supply is a probable predisposing factor for ICM. Generally, the long-term prognosis of ASCI is not necessarily bad. PMID:7801036

  11. Locally transplanted enteric gila improve functional and structural recovery in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shucui Jiang; Mohammad I.Khan; James R.Bain; Cai Jiang; Christopher R.Hansebout; Zesheng Yu; Yuqing Liu; Michel P.Rathbone

    2009-01-01

    BACKGROUND: We have previously reported that adult enteric gila (EG) facilitate the growth of transected dorsal root axons into the uninjured spinal cord to form functional connections with their targets. OBJECTIVE: The present study investigated the effects of EG on spinal cord function, tissue injury, and axonal regeneration following transplantation into injured rat spinal cords, according to histological and functional outcomes. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at McMaster University, Canada from January 2006 to March 2008.MATERIALS: EG were isolated from rat intestine. METHODS: One week following spinal cord crush, female Wistar rats were injected with an EG suspension (2 μL, 1 x 10 5/μL, n=10) or with the same volume of fresh culture medium alone (control animals, n=11). The third group did not receive any injection following laminectomy and served as the sham-operated controls (n=5). MAIN OUTCOME MEASURES: Behavior was tested prior to transplantation and weekly following transplantation, with nine behavioral examinations in total. Open field, hind limb placement response, foot orientation response, and inclined plane test were utilized. Immediately following the final behavioral examination, spinal cord T9 to L1 segments were harvested for immunohistochemical and hematoxylin-eosin staining to determine astroglial scarring, axonal regeneration and spinal cord lesion size. RESULTS: Rats with EG transplantation exhibited significantly better locomotor function with reduced tissue damage, compared with the control rats. Cystic cavities were present 2 months after injury in spinal cords from both control groups. In contrast, rats injected with EG did not present with cystic lesions. In addition, the injury site consisted of cellular material and nerve fibers, and axonal regeneration was apparent, with dense labeling of neurofilament-positive axons within the injury site. Moreover, regenerating axons were

  12. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals

    DEFF Research Database (Denmark)

    Lundell, Henrik; Christensen, Mark Schram; Barthélemy, Dorothy;

    2011-01-01

    the width of the spinal cord in the left-right direction, where the corticospinal tract is located, but not in the antero-posterior direction. There was a tendency for a negative correlation between cerebral activation in ipsilateral S1, M1 and PMC and the amplitude of motor evoked potentials in the...... tibialis anterior muscle elicited by transcranial magnetic stimulation, but this did not reach statistical significance. There was no correlation between motor score or spinal cord dimensions and the volume of the cortical motor areas. The observations show that lesion of descending tracts in the lateral...

  13. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  14. Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain

    International Nuclear Information System (INIS)

    The autoregulatory capability of regional areas of the brain and spinal cord was demonstrated in 18 rats anesthetized with a continuous infusion of intravenous pentothal. Blood flow was measured by the injection of radioactive microspheres (Co57, Sn113, Ru103, Sc46). Blood flow measurements were made at varying levels of mean arterial pressure (MAP) which was altered by neosynephrine to raise MAP or trimethaphan to lower MAP. Autoregulation of the spinal cord mirrored that of the brain, with an autoregulatory range of 60 to 120 mm Hg for both tissues. Within this range, cerebral blood flow (CBF) was 59.2 +/- 3.2 ml/100 g/min (SEM) and spinal cord blood flow (SCBF) was 61.1 +/- 3.6. There was no significant difference in CBF and SCBF in the autoregulatory range. Autoregulation was also demonstrated regionally in the left cortex, right cortex, brainstem, thalamus, cerebellum, hippocampus and cervical, thoracic and lumbar cord. This data provides a coherent reference point in establishing autoregulatory curves under barbiturate anesthesia. Further investigation of the effects of other anesthetic agents on autoregulation of the spinal cord is needed. It is possible that intraspinal cord compliance, like intracranial compliance, might be adversely affected by the effects of anesthetics on autoregulation

  15. Timing of Decompressive Surgery of Spinal Cord after Traumatic Spinal Cord Injury: An Evidence-Based Examination of Pre-Clinical and Clinical Studies

    OpenAIRE

    Furlan, Julio C.; Noonan, Vanessa; Cadotte, David W.; Fehlings, Michael G.

    2011-01-01

    While the recommendations for spine surgery in specific cases of acute traumatic spinal cord injury (SCI) are well recognized, there is considerable uncertainty regarding the role of the timing of surgical decompression of the spinal cord in the management of patients with SCI. Given this, we sought to critically review the literature regarding the pre-clinical and clinical evidence on the potential impact of timing of surgical decompression of the spinal cord on outcomes after traumatic SCI....

  16. Collateral sprouting of uninjured primary afferent A-fibers into the superficial dorsal horn of the adult rat spinal cord after topical capsaicin treatment to the sciatic nerve.

    Science.gov (United States)

    Mannion, R J; Doubell, T P; Coggeshall, R E; Woolf, C J

    1996-08-15

    That terminals of uninjured primary sensory neurons terminating in the dorsal horn of the spinal cord can collaterally sprout was first suggested by Liu and Chambers (1958), but this has since been disputed. Recently, horseradish peroxidase conjugated to the B subunit of cholera toxin (B-HRP) and intracellular HRP injections have shown that sciatic nerve section or crush produces a long-lasting rearrangement in the organization of primary afferent central terminals, with A-fibers sprouting into lamina II, a region that normally receives only C-fiber input (Woolf et al., 1992). The mechanism of this A-fiber sprouting has been thought to involve injury-induced C-fiber transganglionic degeneration combined with myelinated A-fibers being conditioned into a regenerative growth state. In this study, we ask whether C-fiber degeneration and A-fiber conditioning are both necessary for the sprouting of A-fibers into lamina II. Local application of the C-fiber-specific neurotoxin capsaicin to the sciatic nerve has previously been shown to result in C-fiber damage and degenerative atrophy in lamina II. We have used B-HRP to transganglionically label A-fiber central terminals and have shown that 2 weeks after topical capsaicin treatment to the sciatic nerve, the pattern of B-HRP staining in the dorsal horn is indistinguishable from that seen after axotomy, with lamina II displaying novel staining in the identical region containing capsaicin-treated C-fiber central terminals. These results suggest that after C-fiber injury, uninjured A-fiber central terminals can collaterally sprout into lamina II of the dorsal horn. This phenomenon may help to explain the pain associated with C-fiber neuropathy. PMID:8756447

  17. The International Spinal Cord Injury Pain Basic Data Set

    DEFF Research Database (Denmark)

    Widerstrom-Noga, E.; Bryce, T.; Cardenas, D.D.;

    2008-01-01

    classification and questions related to the temporal pattern of pain for each specific pain problem. The impact of pain on physical, social and emotional function, and sleep is evaluated for each pain.Spinal Cord (2008) 46, 818-823; doi:10.1038/sc.2008.64; published online 3 June 2008 Udgivelsesdato: 2008/12...

  18. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    Science.gov (United States)

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  19. ADAM10 negatively regulates neuronal differentiation during spinal cord development.

    Directory of Open Access Journals (Sweden)

    Xin Yan

    Full Text Available Members of the ADAM (a disintegrin and metalloprotease family are involved in embryogenesis and tissue formation via their proteolytic function, cell-cell and cell-matrix interactions. ADAM10 is expressed temporally and spatially in the developing chicken spinal cord, but its function remains elusive. In the present study, we address this question by electroporating ADAM10 specific morpholino antisense oligonucleotides (ADAM10-mo or dominant-negative ADAM10 (dn-ADAM10 plasmid into the developing chicken spinal cord as well as by in vitro cell culture investigation. Our results show that downregulation of ADAM10 drives precocious differentiation of neural progenitor cells and radial glial cells, resulting in an increase of neurons in the developing spinal cord, even in the prospective ventricular zone. Remarkably, overexpression of the dn-ADAM10 plasmid mutated in the metalloprotease domain (dn-ADAM10-me mimics the phenotype as found by the ADAM10-mo transfection. Furthermore, in vitro experiments on cultured cells demonstrate that downregulation of ADAM10 decreases the amount of the cleaved intracellular part of Notch1 receptor and its target, and increases the number of βIII-tubulin-positive cells during neural progenitor cell differentiation. Taken together, our data suggest that ADAM10 negatively regulates neuronal differentiation, possibly via its proteolytic effect on the Notch signaling during development of the spinal cord.

  20. Spinal Cord Injury: Facts and Figures at a Glance

    Science.gov (United States)

    ... 1,517,806 $1,071,309 Data Source: Economic Impact of SCI published in the journal Topics in Spinal Cord Injury Rehabilitation Volume 16 ... South, SRC 515, Birmingham, AL 35233-7330 For Statistics: (205) 934-3342; For Business: (205) 934-3320; TDD: (205) 934-4642; FAX: ( ...

  1. Vocational reintegration following spinal cord injury : expectations, participation and interventions

    NARCIS (Netherlands)

    Schönherr, M.C.; Groothoff, J.W.; Mulder, G.A.; Schoppen, T.; Eisma, W.H.

    2004-01-01

    Study design: Survey. Objectives: To explore the process of reintegration in paid work following a traumatic spinal cord injury (SCI), including the role of early expectations of individual patients regarding return to work, indicators of success of job reintegration and a description of reintegrati

  2. Alterations of Spinal Cord in Japanese B Encephalitis

    OpenAIRE

    Kishikawa, Masao

    1993-01-01

    The cytopathologic changes of Japanese B encephalitis (JBE) are basically similar to those of other forms of arbovirus encephalitis. Because the entire central nervous system including the spinal cord is involved to varying degrees, the nomenclature of JBE should actually be Japanese B panencephalomyelitis.

  3. Peripheral nervous system involvement in chronic spinal cord injury

    DEFF Research Database (Denmark)

    Tankisi, Hatice; Pugdahl, Kirsten; Rasmussen, Mikkel Mylius;

    2015-01-01

    Introduction: Upper motor neuron disorders are believed to leave the peripheral nervous system (PNS) intact. In this study we examined whether there is evidence of PNS involvement in spinal cord injury (SCI). Methods: Twelve subjects with chronic low cervical or thoracic SCI were included...

  4. What Are Brain and Spinal Cord Tumors in Children?

    Science.gov (United States)

    ... tissues and cells, which can develop into different types of tumors. Neurons (nerve cells): These are the most important cells ... as long as several feet. Unlike many other types of cells that can grow and divide to repair damage from injury or disease, neurons in the brain and spinal cord largely stop ...

  5. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    Directory of Open Access Journals (Sweden)

    Ze-Min Ling

    Full Text Available Brachial plexus root avulsion (BPRA leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av treated with normal saline, Av+GM1 (treated with monosialoganglioside, and control. At time points of 3 day (d, 1 week (w, 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.

  6. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Peng; JIN Lian-hong; LIANG Tao; LIU En-zhong; ZHAO Shi-guang

    2006-01-01

    Background Axonal regeneration in lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. This paper studied the action of neural stem cell (NSC) in promoting corticospinal axons regeneration and synapse reformation in rats with injured spinal cord.Methods NSCs were isolated from the cortical tissue of spontaneous aborted human fetuses in accordance with the ethical request. The cells were discarded from the NSC culture to acquire NSC-conditioned medium. Sixty adult Wistar rats were randomly divided into four groups (n=15 in each): NSC graft, NSC medium, graft control and medium control groups. Microsurgical transection of the spinal cord was performed in all the rats at the T11. The NSC graft group received stereotaxic injections of NSCs suspension into both the spinal cord stumps immediately after transection; graft control group received DMEM injection. In NSC medium group,NSC-conditioned medium was administered into the spinal cord every week; NSC culture medium was administered to the medium control group. Hindlimb motor function was assessed using the BBB Locomotor Rating Scale. Regeneration of biotin dextran amine (BDA) labeled corticospinal tract was assessed. Differentiation of NSCs and the expression of synaptophysin at the distal end of the injured spinal cord were observed under a confocal microscope. Group comparisons of behavioral data were analyzed with ANOVA.Results NSCs transplantation resulted in extensive growth of corticospinal axons and locomotor recovery in adult rats after complete spinal cord transection, the mean BBB scores reached 12.5 in NSC graft group and 2.5 in graft control group (P< 0.05). There was also significant difference in BBB score between the NSC medium (11.7) and medium control groups (3.7, P< 0.05). BDA traces regenerated fibers sprouted across the lesion site and entered the caudal part of the spinal cord. Synaptophysin expression

  7. Nursing rehabilitation of patients with spin and spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Stavrou V.

    2012-04-01

    Full Text Available The injury of the Spine cord is a major problem because of the high mortality and morbidity in patients. Despite the advanced medical care and specialized rehabilitation the life expectancy of people with injuries of the spinal cord is lower than the general population. Hospitalization in modern rehabilitation centers reduces the mortality and severity of the complications with comprehensive programs which include the prevention of complications. It also educates the patient and his carer with psychological and social support. The nursing interventions have perhaps the most significant impact on the area of functional independence, rehabilitation and the quality of the patients life. The development of better rehabilitation programs will improve the life of people with injury of the spine and Spinal Cord.

  8. Syphilitic myelitis with diffuse spinal cord abnormality on MR imaging

    International Nuclear Information System (INIS)

    Syphilitic myelitis is a very rare manifestation of neurosyphilis. The MRI appearance of syphilitic myelitis is not well documented and only a few cases have been reported. We present a 52-year-old woman with acute onset of paraplegia. Magnetic resonance imaging of the spine showed diffuse high signal intensity in the whole spinal cord on T2-weighted images. Focal enhancement was observed in the dorsal aspect of the thoracic cord on T1-weighted gadolinium-enhanced images. To our knowledge, diffuse spinal cord abnormality in syphilitic myelitis has not been reported in the international literature. Disappearance of the diffuse high-signal lesions with residual focal enhancement was noted after antibiotic therapy. The patient suffered significant neurological deficit despite improvement in the MR images. In this article we present the imaging findings and review the literature of this rare condition. (orig.)

  9. International urodynamic basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Craggs, M.; Kennelly, M.; Schick, E.; Wyndaele, J.J.; Biering-Sørensen, Fin

    2008-01-01

    OBJECTIVE: To create the International Urodynamic Basic Spinal Cord Injury (SCI) Data Set within the framework of the International SCI Data Sets. SETTING: International working group. METHODS: The draft of the data set was developed by a working group consisting of members appointed by the...... Neurourology Committee of the International Continence Society, the European Association of Urology, the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the Executive Committee of the International SCI Standards and Data Sets. The final version...... of the data set was developed after review and comments by members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA Board, relevant and interested (international) organizations and societies (around 40) and persons and the ISCoS Council...

  10. International bowel function basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A;

    2008-01-01

    STUDY DESIGN: International expert working group. OBJECTIVE: To develop an International Bowel Function Basic Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on bowel function in daily practice or in research....... SETTING: Working group consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets, and later by ISCo......S Scientific Committee, Council and ASIA Board received the data set for final review and approval. RESULTS: The International Bowel Function Basic SCI Data Set includes the following 12 items: date of data collection, gastrointestinal or anal sphincter dysfunction unrelated to SCI, surgical procedures on the...

  11. International bowel function extended spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A;

    2008-01-01

    STUDY DESIGN: International expert working group.Objective:To develop an International Bowel Function Extended Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of an extended amount of information on bowel function. SETTING: Working group...... consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets and later by the ISCoS Scientific Committee...... or segmental colorectal transit times. CONCLUSION: An International Bowel Function Extended SCI Data Set has been developed. This Data Set is mainly for research purposes and it should be used in combination with the information obtained from the International SCI Core Data Set and the International...

  12. Chondroitinase ABC Improves Basic and Skilled Locomotion in Spinal Cord Injured Cats

    OpenAIRE

    Tester, Nicole J.; Howland, Dena R.

    2007-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are upregulated in the central nervous system following injury. Chondroitin sulfate glycosaminoglycan (CS GAG) side chains substituted on this family of molecules contribute to the limited functional recovery following injury by restricting axonal growth and synaptic plasticity. In the current study, the effects of degrading CS GAGs with Chondroitinase ABC (Ch’ase ABC) in the injured spinal cords of adult cats were assessed. Three groups were evaluate...

  13. Evidence-based treatment for acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zhouming Deng; Jiajia Su; Lin Cai; Ansong Ping; Wei Jin; Renxiong Wei; Yan Zhan

    2011-01-01

    OBJECTIVE: To formulate an evidence-based treatment for one patient with acute spinal cord injury and summarize evidence for evaluating acute spinal cord injury treatment. METHODS: Studies related to the treatment for acute spinal cord injury were identified via a search of National Guideline Clearinghouse (NGC, 2000-11), the Cochrane Library (Issue 1, 2011), TRIP Database (2000-11), and PubMed (1966-2011). Treatment strategies were formulated according to three basic principles: best evidence, doctor's professional experience, and wishes of the patient. RESULTS: A total of 34 articles were selected, including 1 NGC guideline, 22 systematic reviews, and 11 randomized controlled trials. Based on our review, we arrived at the following recommendations: no clinical evidence exists definitively to recommend the use of any of neuroprotective pharmaceuticals; surgery should be undertaken early; mechanical compression devices and low-molecular weight heparin should be employed to prevent thrombosis; respiratory muscle training is beneficial for pulmonary function and quality of life; and functional electrical stimulation and acupuncture can promote functional recovery. The patient accordingly underwent surgery 6 hours after trauma without receiving any neuroprotective pharmaceuticals; low-molecular weight heparin and intermittent pneumatic compression were applied to prevent thrombosis. He also underwent respiratory muscle training daily for 8 weeks and received functional electrical stimulation for 15 minutes and acupuncture for 30 minutes every day. After follow-up for 3 months, the above therapeutic regimen was confirmed efficacious for acute spinal cord injury.CONCLUSION: Evidence-based medicine provides an individualized treatment protocol for acute spinal cord injury, which can significantly improve the therapeutic effect and prognosis.

  14. Spinal cord ischaemia complicating meningococcal meningitis.

    OpenAIRE

    Swart, S. S.; Pye, I F

    1980-01-01

    An extensive ischaemic cord syndrome developed in a patient with meningococcal meningitis complicated by 2 respiratory arrests but not by any period of prolonged hypotension or other signs of cardiovascular collapse. Excellent functional recovery occurred after intensive rehabilitation.

  15. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    Science.gov (United States)

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal. PMID:23707737

  16. Injectable hydrogel materials for spinal cord regeneration: a review

    International Nuclear Information System (INIS)

    Spinal cord injury (SCI) presents a complex regenerative problem due to the multiple facets of growth inhibition that occur following trauma to the cord parenchyma and stroma. Clinically, SCI is further complicated by the heterogeneity in the size, shape and extent of human injuries. Many of these injuries do not breach the dura mater and have continuous viable axons through the injury site that can later lead to some degree of functional recovery. In these cases, surgical manipulation of the spinal cord by implanting a preformed scaffold or drug delivery device may lead to further damage. Given these circumstances, in situ-forming scaffolds are an attractive approach for SCI regeneration. These synthetic and natural polymers undergo a rapid transformation from liquid to gel upon injection into the cord tissue, conforming to the individual lesion site and directly integrating with the host tissue. Injectable materials can be formulated to have mechanical properties that closely match the native spinal cord extracellular matrix, and this may enhance axonal ingrowth. Such materials can also be loaded with cellular and molecular therapeutics to modulate the wound environment and enhance regeneration. This review will focus on the current status of in situ-forming materials for spinal cord repair. The advantages of, and requirements for, such polymers will be presented, and examples of the behavior of such systems in vitro and in vivo will be presented. There are helpful lessons to be learned from the investigations of injectable hydrogels for the treatment of SCI that apply to the use of these biomaterials for the treatment of lesions in other central nervous system tissues and in organs comprising other tissue types. (topical review)

  17. MR imaging findings in subacute combined degeneration of the spinal cord: a case report

    International Nuclear Information System (INIS)

    Vitamin B12 deficiency can cause neurologic complications in the spinal cord, brain, and optic and peripheral nerves. Subacute combined degeneration is a rare disease of demyelinating lesions of the spinal cord, affecting mainly the posterior and lateral columns of the thoracic cord. We report the MR imaging findings of a case of subacute combined degeneration of the spinal cord in a patient with vitamin B12 deficiency and mega loblastic anemia. (author)

  18. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science

    OpenAIRE

    Zou, Benjing; Zhang, Yongli; Li, Yucheng; WANG, ZANTAO; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; SONG, GUO; Yan WANG

    2012-01-01

    OBJECTIVE: To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words “spinal cord injury”, “spinal injury”, “neurogenic bladder”, “neuropathic bladder”, “neurogenic lower urinary tract dysfunction”, “neurogenic voiding dysfun...

  19. Selective Stimulation of the Spinal Cord Surface Using a Stretchable Microelectrode Array

    OpenAIRE

    Meacham, Kathleen Williams; Guo, Liang; DeWeerth, Stephen P.; Hochman, Shawn

    2011-01-01

    By electrically stimulating the spinal cord, it is possible to activate functional populations of neurons that modulate motor and sensory function. One method for accessing these neurons is via their associated axons, which project as functionally segregated longitudinal columns of white-matter funiculi (i.e., spinal tracts). To stimulate spinal tracts without penetrating the cord, we have recently developed technology that enables close-proximity, multi-electrode contact with the spinal cord...

  20. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells.

    Science.gov (United States)

    Rodriguez-Jimenez, Francisco Javier; Alastrue, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2016-08-01

    Ion channels included in the family of Connexins (Cx) have been reported to influence the secondary expansion of traumatic spinal cord injury (SCI) and neuropathic pain following SCI. However, Cxs also contribute to spinal cord neurogenesis during the remyelinating process and functional recovery after SCI. Certain Cxs have been recently related to the control of cell proliferation and the differentiation of neuronal progenitors. Adult spinal-cord-derived ependymal stem progenitor cells (epSPC) show high expression levels of Cx50 in non-pathological conditions and lower expression when they actively proliferate after injury (epSPCi). We explore the role of Cx50 in the ependymal population in the modulation of Sox2, a crucial factor of neural progenitor self-renewal and a promising target for promoting neuronal-cell-fate induction for neuronal tissue repair. Short-interfering-RNA ablation or over-expression of Cx50 regulates the expression of Sox2 in both epSPC and epSPCi. Interestingly, Cx50 and Sox2 co-localize at the nucleus indicating a potential role for this ion channel beyond cell-to-cell communication in the spinal cord. In vivo and in vitro experiments with Clotrimazole, a specific pharmacological modulator of Cx50, show the convergent higher expression of Cx50 and Sox2 in the isolated epSPC/epSPCi and in spinal cord tissue. Therefore, the pharmacological modulation of Cx50 might constitute an interesting mechanism for Sox2 induction to modulate the endogenous regenerative potential of neuronal tissue with a potential application in regenerative therapies. PMID:27221278

  1. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    Science.gov (United States)

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  2. Substance P mRNA expression in the rat spinal cord following selective brachial plexus injury

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Longju Chen; Feng Li; Wutian Wu

    2008-01-01

    BACKGROUND: The neuropeptide, substance P, has various bioactivities and is widely distributed in the central nervous system. Substance P participates in neural transmission in the spinal cord and plays an important role in regeneration and repair of nerve injury.OBJECTIVE: To investigate substance P mRNA expression in the anterior horn of the spinal cord following brachial plexus injury.DESIGN, TIME AND SETTING: A molecular cell biology randomized controlled study was performed at the Department of Anatomy, Zhongshan Medical College, Sun Yat-sen University and the DaAn Gene Laboratory in May 2005.MATERIALS: A total of 29 adult male Sprague Dawley rats were randomly assigned to a control group (n=5) and an injury group (n = 24).METHODS: The injury group was divided into three subgroups. In subgroup A, the right seventh cervical vertebra (C7) anterior root was avulsed, and the residual nerve root at the distal end was removed. In subgroup B, the right C7 anterior root was avulsed, and the right C5 first thoracic vertebrae (TO posterior root was incised. Thus afferent pathways of the posterior root that connected with the anterior horn motor neurons were blocked. In subgroup C, the right C7 anterior root was avulsed, and a right C5-6 hemisection was performed. Thus the descending fiber pathways of the cortex that connected with anterior horn motor neurons were blocked. In the control group, the C5-T1 vertebral plate was opened, and then the skin was sutured.MAIN OUTCOME MEASURE: Substance P mRNA expression in the anterior horn of the spinal cord was quantified using fluorescent quantitative reverse transcription-polymerase chain reaction.RESULTS: Substance P mRNA expression was low in the anterior horn of the rat spinal cord in the control group. Substance P mRNA expression in the anterior horn of the spinal cord was upregulated and was significantly higher in the injury group compared with the control group (P < 0.01 ). Substance P mRNA expression was highest in

  3. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury. PMID:25570002

  4. An Intermediate Animal Model of Spinal Cord Stimulation

    Science.gov (United States)

    Guiho, Thomas; Coste, Christine Azevedo; Delleci, Claire; Chenu, Jean-Patrick; Vignes, Jean-Rodolphe; Bauchet, Luc; Guiraud, David

    2016-01-01

    Spinal cord injuries (SCI) result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self-) catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session. PMID:27478570

  5. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  6. A clinicopathological analysis of unusual extraventricular neurocytoma of spinal cord

    Directory of Open Access Journals (Sweden)

    LI Zhi

    2013-08-01

    Full Text Available Background Extraventricular neurocytoma (EVN is an unusual tumor and has been recently accepted as a new brain tumor entity by World Health Organization (WHO classification. It has been reported in several locations outside the typical supratentorial ventricular system, including the cerebral hemispheres, cerebellum, pons, spinal cord, cauda equine and retina. Only a few cases have been described in the spinal cord in the literature. It is a diagnostic challenge for clinicians and histopathologists to differentiate EVN from other spinal tumors because of its similarities in histological and immunohistochemical findings, as well as its non-specific radiological manifestation. Herein we describe a case of unusual intramedullary EVN in spinal cord. The clinicopathology of this tumor and its differential diagnosis are discussed. Methods The clinical manifestation of a patient with primary EVN occurring C6-T3 level of spinal cord was presented retrospectively. Gross totally resected mass was routinely paraffin-embedded and stained with hematoxylin and eosin. Dako EnVision immunohistochemical staining system was used to detect the tumor antigen expressions, including vimentin (Vim, cytokeratin (CK, epithelial membrane antigen (EMA, glial fibrillary acidic protein (GFAP, S-100 protein (S-100, synaptophysin (Syn, chromogranin (CgA, neuron-specific enolase (NSE, Neuronal nuclei (NeuN, oligodendrocytes transcription factor-2 (Oligo-2 and Ki-67. Results A 47-year-old male patient presented with 1 year history of weakness in both upper limbs associated with an increasing neck back pain. There was no paraesthesia in limbs. MRI of the whole spine revealed a heterogeneous intramedullary mass resembling an ependymoma extending from the C6 to T3 level with heterogeneous enhancement after contrast administration. Laminectomy and midline opening of the dura were performed. The spinal lesion appeared to have no capsule and locate intramedullary. The lesion did not

  7. Efficacy of a metalloproteinase inhibitor in spinal cord injured dogs.

    Directory of Open Access Journals (Sweden)

    Jonathan M Levine

    Full Text Available Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35, dimethyl sulfoxide (n = 37, or saline (n = 41. Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0-4.0 that was significantly (P<0.05; generalized linear model less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0-8.0 or GM6001 (mean, 5; 95% CI 2.0-8.0. As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse

  8. Expression of nitric oxide synthase in the spinal cord after selective brachial plexus injury

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Feng Li; Longju Chen; Wutian Wu

    2006-01-01

    BACKGROUND: Some researches showed that motoneurons in spinal cord anterior horn wound die following brachial plexus injury, but the concrete mechanism of motoneurons death remains unclear.OBJECTIVE: To observe the expression of nitric oxide synthase (NOS) and survival of C7 motoneurons in spinal cord of rats after selective brachial plexus injury.DESIGN: A randomized controlled animal experiment.SETTING: Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University.MATERIALS: Totally 35 adult healthy male Sprague-Dawley rats with the body mass of 200-300 g were provided by Experimental Animal Center, Sun Yet-sen Medical College, Sun Yat-sen University. The rats were divided into control group (n =5) and experimental group (n=30) by random number table method, and the experimental group was divided into three injury subgroups: anterior root avulsion group, dorsal root transection group and spinal cord hemisection group, 10 rats in each group. There were horse anti-neuronal NOS (Nnos) polycolonal antibody (Sigma company) and nicotina mideadeninedinucleotide phosphate (NADPH-d) (SigmaCompany).METHODS: The experiment was performed at Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University between September 2004 and April 2005. ①After anesthetizing the rats, the spinous process of second thoracic vertebra as a marker, the vertebra was exposed from C5 to T1 and the lamina of vertebra was unclenched, and spinal dura mater was carved to expose the spinal nerve dorsal roots of C5-T1.The right ventral root of C7 was avulsed, and the residual root was removed in anterior root avulsion group. The right ventral root of C7 was avulsed and the right dorsal roots of brachial plexus (C5-T1) were cut off in dorsal root transection group. In spinal cord hemisection group, the hemisection between the C5 and C6 spinal segment on right side and avulsion of right ventral root of C7 were made. In the control group, the vertebra from C5 to T1 was

  9. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury.

    Science.gov (United States)

    Wu, Chunshuai; Cui, Zhiming; Liu, Yonghua; Zhang, Jinlong; Ding, Wensen; Wang, Song; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia

    2016-08-01

    Traumatic spinal cord injury is one of the most common and severe problems for using NGF to promote the neurite outgrowth of survival neurons. EHD1 regulates and controls the endocytosis and transportation of neurotrophins and transmembrane cargo via recycling endosome for neurite outgrowth. TrkA is particularly considered to be a functional specific recepter in the cell membrane for NGF and is activated upon NGF binding. The transcytosis of TrkA is dependent on Rab11 recycling endosomes and is promoted by NGF signaling itself at the axon terminal. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of EHD1 during the pathological process of SCI. Western blot analysis suggested that EHD1 expression was low in the sham-operated adult rat spinal cords and was significantly up-regulated 1d after injury. Immunohistochemical staining detected the general distribution of EHD1 protein in both the gray and white matter of adult rat spinal cords. Double immunofluorescent staining indicated that EHD1 was expressed in neurons, astrocytes and microglias in the adult rat spinal cord, and obvious changes of EHD1 expression occurred in neurons during SCI pathological process. Significant up-regulation of EHD1 expression was observed in MAP2 positive neurons at 1 day after SCI, in comparison with the sham-operated control, which indicated that EHD1 might play a vital role in neurite outgrowth. Our data indicated that EHD1 could interact with TrkA, and is in the upstream of TrkA. EHD1 up-regulated the expression of TrkA in the glutamate stimulated primary neurons. Based on our experimental data, we boldly conclude that EHD1 regulates the recycling of TrkA back to cell membrane, improving the utilization efficiency of the NGF, which is vital for neurite outgrowth and functional recovery after spinal cord injury. PMID:27211346

  10. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression.

    Science.gov (United States)

    Pfenninger, Cosima V; Steinhoff, Christine; Hertwig, Falk; Nuber, Ulrike A

    2011-01-01

    In contrast to ependymal cells located above the subventricular zone (SVZ) of the adult lateral ventricle wall (LVW), adult spinal cord (SC) ependymal cells possess certain neural stem cell characteristics. The molecular basis of this difference is unknown. In this study, antibodies against multiple cell surface markers were applied to isolate pure populations of SC and LVW ependymal cells, which allowed a direct comparison of their in vitro behavior and in vivo gene expression profile. Isolated CD133(+)/CD24(+)/CD45(-)/CD34(-) ependymal cells from the SC displayed in vitro self-renewal and differentiation capacity, whereas those from the LVW did not. SC ependymal cells showed a higher expression of several genes involved in cell division, cell cycle regulation, and chromosome stability, which is consistent with a long-term self-renewal capacity, and shared certain transcripts with neural stem cells of the embryonic forebrain. They also expressed several retinoic acid (RA)-regulated genes and responded to RA exposure. LVW ependymal cells showed higher transcript levels of many genes regulated by transforming growth factor-β family members. Among them were Dlx2, Id2, Hey1, which together with Foxg1 could explain their potential to turn into neuroblasts under certain environmental conditions. PMID:21046556

  11. Transcutaneous spinal stimulation as a therapeutic strategy for spinal cord injury: state of the art

    Directory of Open Access Journals (Sweden)

    Grecco LH

    2015-03-01

    Full Text Available Leandro H Grecco,1,3,4,* Shasha Li,1,5,* Sarah Michel,1,6,* Laura Castillo-Saavedra,1 Andoni Mourdoukoutas,7 Marom Bikson,7 Felipe Fregni1,21Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, 2Spaulding-Harvard Spinal Cord Injury Model System, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA; 3Special Laboratory of Pain and Signaling, Butantan Institute, 4Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; 5Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; 6Department of Pharmacy and Biomedical Sciences, University of Namur, Belgium; 7Department of Biomedical Engineering, The City College of New York, New York, NY, USA*These authors contributed equally to this workAbstract: Treatments for spinal cord injury (SCI still have limited effects. Electrical stimulation might facilitate plastic changes in affected spinal circuitries that may be beneficial in improving motor function and spasticity or SCI-related neuropathic pain. Based on available animal and clinical evidence, we critically reviewed the physiological basis and therapeutic action of transcutaneous spinal cord stimulation in SCI. We analyzed the literature published on PubMed to date, looking for the role of three main noninvasive stimulation techniques in the recovery process of SCI and focusing mainly on transcutaneous spinal stimulation. This review discusses the main clinical applications, latest advances, and limitations of noninvasive electrical stimulation of the spinal cord. Although most recent research in this topic has focused on transcutaneous spinal direct current stimulation (tsDCS, we also reviewed the technique of transcutaneous electric nerve stimulation (TENS and neuromuscular electrical stimulation (NMES as potential methods to modulate spinal cord

  12. Cecal bascule after spinal cord injury: A case series report

    Science.gov (United States)

    Ishida, Yuichi; McLean, Susan F.; Tyroch, Alan H.

    2016-01-01

    Introduction Cecal bascule is a rare cause of intestinal obstruction associated with upward and anterior folding of the ascending colon. We report three patients who presented with spinal cord injury complicated with a cecal bascule. Diagnosis and management of cecal bascule is discussed. Presentation of cases Patient 1: 59-year-old male sustained a traumatic brain injury and cervical spinal cord injury after a motorcycle crash. He had abdominal distension and the diagnosis of cecal bascule was made. Cecopexy was performed. Patient 2: 51-year-old male sustained an unstable C7 vertebral fracture with a cord contusion and quadriplegia after a diving incident. After an unsuccessful medical management of the colonic distension, the patient was taken for a laparotomy and cecal bascule was found. A cecostomy and a cecopexy were performed. Patient 3: 63-year-old male was transferred after a fall. He had diffuse degenerative changes in the thoracic and lumbar spine. He was found to have a perforated cecal bascule. He had a right hemicolectomy with an ileocolic anastomosis. Discussion We suggest the possibility of spinal cord injury being a risk factor for cecal bascule. Currently, right hemicolectomy is recommended for the treatment of cecal bascule. Cecopexy is also acceptable treatment option for a case in which the patient will be undergoing an operation with an insertion of hardware. Conclusion The diagnosis of cecal bascule should be considered for trauma patients with cecal distention without delay in order to prevent disastrous complications. PMID:27077698

  13. A Clinical Perspective and Definition of Spinal Cord Injury.

    Science.gov (United States)

    Kretzer, Ryan M

    2016-04-01

    Spinal cord injury (SCI) can be complete or incomplete. The level of injury in SCI is defined as the most caudal segment with motor function rated at greater than or equal to 3/5, with pain and temperature preserved. The standard neurological classification of SCI provided by the American Spinal Injury Association (ASIA) assigns grades from ASIA A (complete SCI) through ASIA E (normal sensory/motor), with B, C, and D representing varying degrees of injury between these extremes. The most common causes of SCI include trauma (motor vehicle accidents, sports, violence, falls), degenerative spinal disease, vascular injury (anterior spinal artery syndrome, epidural hematoma), tumor, infection (epidural abscess), and demyelinating processes (). (SDC Figure 1, http://links.lww.com/BRS/B91)(Figure is included in full-text article.). PMID:27015067

  14. The coding of cutaneous temperature in the spinal cord.

    Science.gov (United States)

    Ran, Chen; Hoon, Mark A; Chen, Xiaoke

    2016-09-01

    The spinal cord is the initial stage that integrates temperature information from peripheral inputs. Here we used molecular genetics and in vivo calcium imaging to investigate the coding of cutaneous temperature in the spinal cord in mice. We found that heating or cooling the skin evoked robust calcium responses in spinal neurons, and their activation threshold temperatures distributed smoothly over the entire range of stimulation temperatures. Once activated, heat-responding neurons encoded the absolute skin temperature without adaptation and received major inputs from transient receptor potential (TRP) channel V1 (TRPV1)-positive dorsal root ganglion (DRG) neurons. By contrast, cold-responding neurons rapidly adapted to ambient temperature and selectively encoded temperature changes. These neurons received TRP channel M8 (TRPM8)-positive DRG inputs as well as novel TRPV1(+) DRG inputs that were selectively activated by intense cooling. Our results provide a comprehensive examination of the temperature representation in the spinal cord and reveal fundamental differences in the coding of heat and cold. PMID:27455110

  15. Unilateral microinjection of acrolein into thoracic spinal cord produces acute and chronic injury and functional deficits.

    Science.gov (United States)

    Gianaris, Alexander; Liu, Nai-Kui; Wang, Xiao-Fei; Oakes, Eddie; Brenia, John; Gianaris, Thomas; Ruan, Yiwen; Deng, Ling-Xiao; Goetz, Maria; Vega-Alvarez, Sasha; Lu, Qing-Bo; Shi, Riyi; Xu, Xiao-Ming

    2016-06-21

    Although lipid peroxidation has long been associated with spinal cord injury (SCI), the specific role of lipid peroxidation-derived byproducts such as acrolein in mediating damage remains to be fully understood. Acrolein, an α-β unsaturated aldehyde, is highly reactive with proteins, DNA, and phospholipids and is considered as a second toxic messenger that disseminates and augments initial free radical events. Previously, we showed that acrolein increased following traumatic SCI and injection of acrolein induced tissue damage. Here, we demonstrate that microinjection of acrolein into the thoracic spinal cord of adult rats resulted in dose-dependent tissue damage and functional deficits. At 24h (acute) after the microinjection, tissue damage, motoneuron loss, and spinal cord swelling were observed on sections stained with Cresyl Violet. Luxol fast blue staining further showed that acrolein injection resulted in dose-dependent demyelination. At 8weeks (chronic) after the microinjection, cord shrinkage, astrocyte activation, and macrophage infiltration were observed along with tissue damage, neuron loss, and demyelination. These pathological changes resulted in behavioral impairments as measured by both the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and grid walking analysis. Electron microscopy further demonstrated that acrolein induced axonal degeneration, demyelination, and macrophage infiltration. These results, combined with our previous reports, strongly suggest that acrolein may play a critical causal role in the pathogenesis of SCI and that targeting acrolein could be an attractive strategy for repair after SCI. PMID:27058147

  16. Spinal cord injury and its association with blunt head trauma

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2011-09-01

    Full Text Available Wellingson S Paiva, Arthur MP Oliveira, Almir F Andrade, Robson LO Amorim, Leonardo JO Lourenço, Manoel J TeixeiraDivision of Neurosurgery, University of São Paulo, BrazilBackground: Severe and moderate head injury can cause misdiagnosis of a spinal cord injury, leading to devastating long-term consequences. The objective of this study is to identify risk factors involving spine trauma and moderate-to-severe brain injury.Methods: A prospective study involving 1617 patients admitted in the emergency unit was carried out. Of these patients, 180 with moderate or severe head injury were enrolled. All patients were submitted to three-view spine series X-ray and thin cut axial CT scans for spine trauma investigations.Results: 112 male patients and 78 female patients, whose ages ranged from 11 to 76 years (mean age, 34 years. The most common causes of brain trauma were pedestrians struck by motor vehicles (31.1%, car crashes (27.7%, and falls (25%. Systemic lesions were present in 80 (44.4% patients and the most common were fractures, and lung and spleen injuries. 52.8% had severe and 47.2% moderate head trauma. Fourteen patients (7.8% suffered spinal cord injury (12 in cervical spine, one in lumbar, and one thoracic spine. In elderly patients, the presence of associated lesions and Glasgow Coma Scale (GCS < 9 were statistically significant as risk factors (P < 0.05 for spine injury.Conclusion: Spinal cord injury related to moderate and severe brain trauma usually affects the cervical spine. The incidence of spinal lesions and GCS < 9 points were related to greater incidence of spinal cord injury.Keywords: head injury, spine trauma, risk factors

  17. Histochemical study of the pre—and postnatal development of acetylcholinesterase in the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    ZHANGQIN; XINWENDONG; 等

    1993-01-01

    The distribution of acetylcholinesterase(AChE)-positive structures in the developing rat spinal cord was studied with AChE-histochemistry.AChE-positive perikarya were first seen on embryonic day 14(E14) in the ventrolateral portion of the spinal cord.From that time onward.AChE=containing cells appeared gradually in the intermediate gray,dorsal horn and lateral spinal nucleus of the spinal cord in a ventral-to-dorsal,and lateral-to-medial order.No obvious rostral-to-caudal sequence was found.At birth,the distribution pattern of AChE-positive perikarya was basically similar to that in adults.After birth a dramatic increase in the AChE staining intensity extended from postnatal day 5(P5) to postnatal day 21(P21),In addition,two phases of transient AChE staining were observed in the external surface of the dorsal horn from embryonic day 15(E15) to embryonic day 21(E21) and in the marginal layer from embryonic day 21(E21) to postnatal day 14(P14),respectively.

  18. The natural history of transdural herniation of the spinal cord: case report

    International Nuclear Information System (INIS)

    We report a patient with a Brown-Sequard syndrome who developed ventral transdural spinal cord herniation, showing the imaging findings changing over time from two thoracic disc protrusions with a normal spinal cord to a cord trapped within a bony defect in a thoracic vertebra. (orig.)

  19. Spinal cord compression due to primary intramedullary tuberculoma of the spinal cord presenting as paraplegia: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2015-01-01

    Conclusion: This case illustrates the risk of misdiagnosis and the importance of histological confirmation of a pathological lesion as spinal cord tuberculoma prior to surgical therapy, which should be kept in mind as a differential diagnosis of the intramedullary spinal cord tumors.

  20. The delivery of specialist spinal cord injury services in Queensland and the potential for telehealth

    NARCIS (Netherlands)

    Pol, van de Eileen; Lucas, Karen; Geraghty, Timothy; Pershouse, Kiley; Harding, Sandra; Atresh, Sridhar; Smith, Anthony C.

    2016-01-01

    Background
    The Queensland Spinal Cord Injuries Service (QSCIS) is a statewide service in Brisbane at the Princess Alexandra Hospital (PAH). The QSCIS assists individuals with a spinal cord injury (SCI) through three services: the Spinal Injuries Unit (SIU), Transitional Rehabilitation Program (T

  1. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans

    OpenAIRE

    Angeli, Claudia A.; Edgerton, V. Reggie; Gerasimenko, Yury P.; Harkema, Susan J.

    2014-01-01

    A diagnosis of motor complete spinal cord injury carries a dim prognosis for recovery. However, Angeli et al. show that epidural stimulation of the spinal cord can modulate the spinal circuitry to enable completely paralysed individuals to voluntarily control muscles of their legs and recover intentional movement years after injury.

  2. Spinal cord compression due to metastases

    International Nuclear Information System (INIS)

    A study of 20 patients with medullary compression syndrome due to lesions not related to the central nervous system is presented. Plain films of the spine and myelography are made to determine the level of osseous involvement, the level of the spinal block and to planning radiotherapy. (Author)

  3. Gangliocytoma of the spinal cord: a case report

    International Nuclear Information System (INIS)

    We present a case of intramedullary spinal gangliocytoma in a 7-year-old girl who presented with scoliosis and progressive weakness of both legs. The tumour involved the whole spinal cord and medulla oblongata and was composed of inner cystic and outer solid components. On MRI, the solid portion of the lesion showed strong enhancement at the thoracolumbar level and mild enhancement at the cervical and medullary levels. Histological examination of the surgical specimen showed neoplastic ganglion cells arranged irregularly in benign normocellular glial background, which made a diagnosis of gangliocytoma. (orig.)

  4. Gangliocytoma of the spinal cord: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.H.; Kim, I.O.; Cheon, J.E.; Kim, W.S.; Yeon, K.M. [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea); Wang, K.C.; Cho, Byung-Kyu [Dept. of Neurosurgery, Seoul National Univ. College of Medicine, Seoul (Korea); Chi, Je Geun [Dept. of Pathology, Seoul National University College of Medicine, Seoul (Korea)

    2001-05-01

    We present a case of intramedullary spinal gangliocytoma in a 7-year-old girl who presented with scoliosis and progressive weakness of both legs. The tumour involved the whole spinal cord and medulla oblongata and was composed of inner cystic and outer solid components. On MRI, the solid portion of the lesion showed strong enhancement at the thoracolumbar level and mild enhancement at the cervical and medullary levels. Histological examination of the surgical specimen showed neoplastic ganglion cells arranged irregularly in benign normocellular glial background, which made a diagnosis of gangliocytoma. (orig.)

  5. Spine and spinal cord vascular malformations: pictorial essay

    International Nuclear Information System (INIS)

    Spine and spinal cord vascular malformations are an uncommon cause of acute, subacute, episodic or progressive myelopathy. They affect all age groups and constitute important clinical entities because of the high morbidity and even mortality associated with them if they are left untreated. These malformations are classified according to their anatomic location and angioarchitecture (Table 1). Today, magnetic resonance imaging (MRI) is the initial radiologic screening procedure of choice for acute or progressive myelopathy. This pictorial essay reviews the radiologic work-up and the imaging features of spinal vascular malformations, as well as the clinical presentation, the probable pathophysiology and the different treatment modalities. (author)

  6. Late effects of radiation on the lumbar spinal cord of guinea pigs: Re-treatment tolerance

    International Nuclear Information System (INIS)

    Using a guinea pig model of lumbar myelopathy, various factors affecting the tolerance of spinal cord to irradiation were assessed: (a) extent of initial injury; (b) time interval between priming and test doses; and (c) animal age at the time of initial radiation treatment. A 3 cm section of lumbar spinal cord of guinea pigs was irradiated with fractionated doses of 4.5 Gy gamma rays given as 9 fractions per week. Guinea pigs were primed with 9 x 4.5 Gy in 7 days which is 60% of the ED50 for a continuous course of treatment. After 28 or 40 weeks, animal were retreated with 6-14 fractions of 4.5 Gy. Animals were observed for 2 years following the priming dose and both the incidence and latency of myelopathy recorded. Young adult guinea pigs (8 wk old) showed both a decreased radiation tolerance and latency compared to old individuals (40 wk old). At 28 or 40 wk after 9 x 4.5 Gy, only about 8% of the initial injury was remembered in young adult guinea pigs. The amount of residual injury was dependent on the initial damage as a proportion of the tolerance dose. The spinal cord shows a greater capacity for long-term recovery than generally appreciated and re-treatment doses clinically prescribed may be lower than necessary. 8 refs., 3 figs., 2 tabs

  7. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Nishimura Soraya

    2013-01-01

    Full Text Available Abstract Background The transplantation of neural stem/progenitor cells (NS/PCs at the sub-acute phase of spinal cord injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address this question, NS/PC transplantation was performed after contusive spinal cord injury in adult mice at the sub-acute and chronic phases. Results Quantitative analyses using bio-imaging, which can noninvasively detect surviving grafted cells in living animals, revealed no significant difference in the survival rate of grafted cells between the sub-acute and chronic transplantation groups. Additionally, immunohistology revealed no significant difference in the differentiation phenotypes of grafted cells between the two groups. Microarray analysis revealed no significant differences in the expression of genes encoding inflammatory cytokines or growth factors, which affect the survival and/or fate of grafted cells, in the injured spinal cord between the sub-acute and chronic phases. By contrast, the distribution of chronically grafted NS/PCs was restricted compared to NS/PCs grafted at the sub-acute phase because a more prominent glial scar located around the lesion epicenter enclosed the grafted cells. Furthermore, microarray and histological analysis revealed that the infiltration of macrophages, especially M2 macrophages, which have anti-inflammatory role, was significantly higher at the sub-acute phase than the chronic phase. Ultimately, NS/PCs that were transplanted in the sub-acute phase, but not the chronic phase, promoted functional recovery compared with the vehicle control group. Conclusions The extent of glial scar formation and the characteristics of inflammation is the most remarkable difference in the injured spinal cord microenvironment between the sub-acute and chronic phases. To achieve

  8. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.

    Science.gov (United States)

    Hu, Jianzhong; Lang, Ye; Zhang, Tao; Ni, Shuangfei; Lu, Hongbin

    2016-07-22

    Peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) is a crucial neuronal regulator in the brain. However, its role in the spinal cord and the underlying regulating mechanisms remain poorly understood. Our previous study demonstrated that PGC-1α is significantly down-regulated following acute spinal cord injury (SCI) in rats. The current study aimed to explore the effects of PGC-1α overexpression on the injured spinal cord by establishing a contusive SCI model in adult Sprague-Dawley rats, followed by immediate intraspinal injection of lentiviral vectors at rostral and caudal sites 3mm from the lesion epicenter. Hindlimb motor function was monitored using the Basso-Beattie-Bresnahan Locomotor Rating Scale (BBB scores), and cords were collected. Transfection efficiency analysis showed that lentivirus successfully induced enhanced PGC-1α expression. This resulted in attenuated apoptotic changes and a greater number of surviving spinal neurons, as determined by transmission electron microscopy and Nissl staining, respectively. Western blot and immunofluorescence analyses revealed increased growth-associated protein 43 and 5-hydroxytryptamine expression, two key markers of axonal regeneration. Importantly, BBB scores showed improved hindlimb motor functional recovery. Moreover, quantitative real-time polymerase chain reaction analysis demonstrated significantly inhibited RhoA, ROCK1, and ROCK2 mRNA expression, revealing a potential mechanism of PGC-1α overexpression following traumatic SCI. Altogether, these results suggest that gene delivery of PGC-1α exerts a significant neuroprotective effect following traumatic SCI, which could serve as a promising treatment for repair of the injured cord, and RhoA-ROCK pathway inhibition may partially underlie this neuroprotection. PMID:27132229

  9. Collagen-omental graft in experimental spinal cord transection.

    Science.gov (United States)

    de la Torre, J C; Goldsmith, H S

    1990-01-01

    Spinal cord transection was induced in 3 groups of cats. The gap was surgically reconstructed using a collagen matrix bridge (Group COL), collagen matrix + pedicled omentum graft (Group COM), or gelfoam (Group GEF). After a variable observation period, animals underwent distal cord horse-radish peroxidase (HRP) injections, somatosensory evoked potentials recordings and polarographic measurement of local spinal cord blood flow (1SCBF) using the hydrogen clearance technique. The cord tissue was removed for histologic and immunohistochemical analysis. Results showed retrograde HRP labelling of proximal segmental cord neurons and somatosensory evoked potentials were present in group COM but not in COL or GEF treated animals. Local SCBF was 66% and 87% higher in COM than COL or GEF animals respectively but this increase could be reversed if flow from the pedicled omentum was clamped-off. Histologic examination of cord tissue after 45 days revealed the presence of catecholaminergic axons distal to the transection site in COM but not COL or GEF groups. Moreover, after 90 days, the rate and density of tyrosine hydroxylase immunoreactive (TH-IR) axons was 10-fold higher in COM than COL group and this was accompanied by a proportionate increase in the vascular density between the two groups. GEF treated animals showed no regeneration of transected fibers and poor blood flow pattern. These findings indicate that the placement of a pedicled omentum on a collagen matrix bridge results in near restoration of normal SCBF to the reconstructed cord region and is associated with marked regeneration of axons below the lesion site. PMID:2336984

  10. Oligodendrocyte-like cell transplantation for acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yongtao Xu; Anmin Chen; Feng Li; Hougeng Lu

    2011-01-01

    In this study, we used insulin-like growth factor-1 to induce bone marrow mesenchymal stem cells (MSCs) to differentiate into oligodendrocyte-like cells. Cell surface marker identification showed that they expressed myelin basic protein and galactosylceramide, two specific markers of oligodendrocytes. These cells were transplanted into rats with acute spinal cord injury at T10. At 8 weeks post-implantation, oligodendrocyte-like cells were observed to have survived at the injury site. The critical angle of the inclined plane, and Basso, Beattie and Bresnahan scores were all increased. Furthermore, latencies of motion-evoked and somatosensory-evoked potentials were decreased. These results demonstrate that transplantation of oligodendrocytic-induced MSCs promote functional recovery of injured spinal cord.

  11. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  12. Spinal cord injury rehabilitation outcome: the impact of age.

    Science.gov (United States)

    Yarkony, G M; Roth, E J; Heinemann, A W; Lovell, L L

    1988-01-01

    The effect of age on self-care and mobility skill performance after spinal cord injury was studied using a 15-task modified Barthel Index (MBI) to score functional abilities for 708 patients aged 6 through 88 years. Analysis of covariance showed no relationship between age and discharge MBI score; however, patients with paraplegia, incomplete lesions, and greater admission functional ratings had greater discharge functional scores than did those with quadriplegia, complete lesions, and lower admission scores, respectively. Advancing age was associated with increased dependence in only seven functional skills (bathing, upper and lower body dressing, stair climbing, and transfers to chair, toilet and bath) and only for patients with complete paraplegia. Other MBI component tasks and patients with complete quadriplegia, incomplete paraplegia and incomplete quadriplegia demonstrated no relationship between age and skill performance. Results of this study support the practice of providing comprehensive rehabilitation services to all patients following spinal cord injury regardless of age. PMID:3335882

  13. Nanomedicine strategies for treatment of secondary spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée; Shi, Riyi; Leary, James F

    2015-01-01

    Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. PMID:25673988

  14. Stem Cells: New Hope For Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Gazdic Marina

    2015-03-01

    Full Text Available Stem cell therapy offers several attractive strategies for spinal cord repair. The regenerative potential of pluripotent stem cells was confirmed in an animal model of Spinal Cord Injury (SCI; nevertheless, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of hESCs and iPSCs. Th e therapeutic effects of mesenchymal stem cells (MSCs in SCI result from neurotrophin secretion, angiogenesis, and antiinflammatory actions. Several preclinical SCI studies have reported that the occurrence of axonal extension, remyelination and neuroprotection occur after the transplantation of olfactory ensheathing cells (OECs. The transplantation of neural stem cells NSCs (NSCs promotes partial functional improvement after SCI because of their potential to differentiate into neurons, oligodendrocytes, and astrocytes. The ideal source of stem cells for safe and efficient cell-based therapy for SCI remains a challenging issue that requires further investigation.

  15. In Vivo Reprogramming for Brain and Spinal Cord Repair.

    Science.gov (United States)

    Chen, Gong; Wernig, Marius; Berninger, Benedikt; Nakafuku, Masato; Parmar, Malin; Zhang, Chun-Li

    2015-01-01

    Cell reprogramming technologies have enabled the generation of various specific cell types including neurons from readily accessible patient cells, such as skin fibroblasts, providing an intriguing novel cell source for autologous cell transplantation. However, cell transplantation faces several difficult hurdles such as cell production and purification, long-term survival, and functional integration after transplantation. Recently, in vivo reprogramming, which makes use of endogenous cells for regeneration purpose, emerged as a new approach to circumvent cell transplantation. There has been evidence for in vivo reprogramming in the mouse pancreas, heart, and brain and spinal cord with various degrees of success. This mini review summarizes the latest developments presented in the first symposium on in vivo reprogramming glial cells into functional neurons in the brain and spinal cord, held at the 2014 annual meeting of the Society for Neuroscience in Washington, DC. PMID:26730402

  16. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  17. Glycoconjugates Distribution during Developing Mouse Spinal Cord Motor Organizers

    OpenAIRE

    Vojoudi, Elham; Ebrahimi, Vahid; Ebrahimzadeh-Bideskan, Alireza; Fazel, Alireza

    2015-01-01

    Background: The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Methods: Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase -labeled specific lectins were used: N-acetylgalactosamine, including Dolichos biflorus, Wisteria floribunda agglutinin (WFA), ...

  18. Emerging Role of Spinal Cord TRPV1 in Pain Exacerbation

    OpenAIRE

    Seung-In Choi; Ji Yeon Lim; Sungjae Yoo; Hyun Kim; Sun Wook Hwang

    2016-01-01

    TRPV1 is well known as a sensor ion channel that transduces a potentially harmful environment into electrical depolarization of the peripheral terminal of the nociceptive primary afferents. Although TRPV1 is also expressed in central regions of the nervous system, its roles in the area remain unclear. A series of recent reports on the spinal cord synapses have provided evidence that TRPV1 plays an important role in synaptic transmission in the pain pathway. Particularly, in pathologic pain st...

  19. Training a Spinal Cord Injury Rehabilitation Team in Motivational Interviewing

    OpenAIRE

    Pilar Lusilla-Palacios; Carmina Castellano-Tejedor

    2015-01-01

    Background. An acute spinal cord injury (ASCI) is a severe condition that requires extensive and very specialized management of both physical and psychological dimensions of injured patients. Objective. The aim of the part of the study reported here was twofold: (1) to describe burnout, empathy, and satisfaction at work of these professionals and (2) to explore whether a tailored program based on motivational interviewing (MI) techniques modifies and improves such features. Methods. This pape...

  20. Spinal Cord Injury and Osteoporosis: Causes, Mechanisms, and Rehabilitation Strategies

    OpenAIRE

    Tan, Can Ozan; Battaglino, Ricardo A; Morse, Leslie R.

    2013-01-01

    Spinal cord injury (SCI) has a huge impact on the individual, society and the economy. Though advances in acute care resulted in greatly reduced co-morbidities, there has been much less progress preventing long-term sequelae of SCI. Among the long-term consequences of SCI is bone loss (osteoporosis) due to the mechanical unloading of the paralyzed limbs and vascular dysfunction below the level of injury. Though osteoporosis may be partially prevented via pharmacologic interventions during the...

  1. Malnutrition in Spinal Cord Injury: More Than Nutritional Deficiency

    OpenAIRE

    Dionyssiotis, Yannis

    2012-01-01

    Denervation of the spinal cord below the level of injury leads to complications producing malnutrition. Nutritional status affects mortality and pathology of injured subjects and it has been reported that two thirds of individuals enrolled in rehabilitation units are malnourished. Therefore, the aim should be either to maintain an optimal nutritional status, or supplement these subjects in order to overcome deficiencies in nutrients or prevent obesity. This paper reviews methods of nutritiona...

  2. FITNESS AND CONDITIONING DURING SPINAL CORD INJURY (SCI) REHABILITATION.

    OpenAIRE

    Van der Woude, Lucas HV; de Groot, Sonja

    2013-01-01

    Little is known of the outcome and effectiveness of clinical rehabilitation on physical activity, mobility, fitness, functioning in society or quality of life. A multi-disciplinary research collaboration and multicenter prospective cohort study (www.scionn.nl) was conducted and studied the course of restoration of mobility of persons with spinal cord injury (SCI). The International Classification of Functioning, Disability and Health (ICF) served as a conceptual framework. A total of 225 SCI ...

  3. Spinal cord involvement in a child with familial hemophagocytic lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Muge Gokce

    2012-01-01

    Full Text Available The involvement of the central nervous system (CNS in familial hemophagocytic lymphohistiocytosis (FHL has known to be limited to the brain, brain stem, and cerebellum. Herein, we report an 11-year-old boy who presented with neurological symptoms and was diagnosed as FHL by molecular diagnosis. The hemophagocytic lesions in the CNS were shown to extend to the thoracal level of spinal cord which completely disappeared after the completion of hemophagocytic lymphohistiocytosis-2004 protocol.

  4. Modulation by Substance P in the Lamprey Spinal Cord

    OpenAIRE

    Thörn Pérez, Carolina

    2013-01-01

    Neuromodulation is a key element for animal adaptation to environmental circumstances. Neuromodulators can alter the output of a physiological system by acting on the motor circuit by transforming intrinsic firing properties and altering synaptic strength. Substance P belongs to the family of tachykinin, which are peptidergic neuromodulators. The main focus of this thesis has been to characterize the effects of substance P in neurons and networks in the lamprey spinal cord. ...

  5. Sexual Health of Women with Spinal Cord Injury in Bangladesh

    OpenAIRE

    Huib Cornielje; Reshma Parvin Nuri; Noortje Pauline Maria Lubbers; van Brakel, Wim H.

    2012-01-01

    Purpose: To identify factors influencing the sexual health of women with spinal cord injury (SCI) in Bangladesh.Methods: This study used both qualitative and quantitative methods. The quantitative part used a case-control design. Cases were women with SCI and controls were age-matched women without SCI.  Questionnaires were used to collect data concerning the sexual health status of women. Multivariate logistic regression was done to determine which factors had an independent effect on sexual...

  6. Retinoic Acid Signaling during Early Spinal Cord Development

    OpenAIRE

    Ruth Diez del Corral; Morales, Aixa V

    2014-01-01

    Retinoic acid signaling is required at several steps during the development of the spinal cord, from the specification of generic properties to the final acquisition of neuronal subtype identities, including its role in trunk neural crest development. These functions are associated with the production of retinoic acid in specific tissues and are highly dependent on context. Here, we review the defects associated with retinoic acid signaling manipulations, mostly in chick and mouse models, tr...

  7. Respiratory Management in the Patient with Spinal Cord Injury

    OpenAIRE

    Rita Galeiras Vázquez; Pedro Rascado Sedes; Mónica Mourelo Fariña; Antonio Montoto Marqués; M. Elena Ferreiro Velasco

    2013-01-01

    Spinal cord injuries (SCIs) often lead to impairment of the respiratory system and, consequently, restrictive respiratory changes. Paresis or paralysis of the respiratory muscles can lead to respiratory insufficiency, which is dependent on the level and completeness of the injury. Respiratory complications include hypoventilation, a reduction in surfactant production, mucus plugging, atelectasis, and pneumonia. Vital capacity (VC) is an indicator of overall pulmonary function; patients with s...

  8. Morphine Self-Administration following Spinal Cord Injury

    OpenAIRE

    Woller, Sarah A.; Malik, Jamal S.; Aceves, Miriam; Hook, Michelle A.

    2014-01-01

    Neuropathic pain develops in up to two-thirds of people following spinal cord injury (SCI). Opioids are among the most effective treatments for this pain and are commonly prescribed. There is concern surrounding the use of these analgesics, however, because use is often associated with the development of addiction. Previous data suggests that this concern may not be relevant in the presence of neuropathic pain. Yet, despite the common prescription of opioids for the treatment of SCI-related p...

  9. Provocative Testing for Embolization of Spinal Cord AVMs

    OpenAIRE

    Niimi, Y.; Sala, F; Deletis, V; Berenstein, A.

    2000-01-01

    The purpose of this study is to evaluate efficacy and reliability of chemical provocative testing using neurophysiological monitoring prior to embolization of spinal cord AVMs (SCAVMs). We performed retrospective analysis of provocative testing using sodium amytal and lidocaine injected superselectively in 41 angiography and/ or embolization procedures in 26 patients with a SCAVM, including 23 amytal and 26 lidocaine injections. All procedures were performed under general anesthesia using neu...

  10. Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord

    OpenAIRE

    2015-01-01

    BACKGROUND: The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. METHODS: In experiment, there were four groups with medication and a control group. Rats were injected 15 µL saline or fentanyl 0.0005 µg/15 µL, levobupivacaine 0.25%/15 µL and fentanyl 0.0005 µg + le...

  11. Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yesim Cokay Abut

    2015-02-01

    Full Text Available BACKGROUND: The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. METHODS: In experiment, there were four groups with medication and a control group. Rats were injected 15 µL saline or fentanyl 0.0005 µg/15 µL, levobupivacaine 0.25%/15 µL and fentanyl 0.0005 µg + levobupivacaine 0.25%/15 µL intrathecally for four days. Hot plate test was performed to assess neurologic function after each injection at 5th, 30th and 60th min. Five days after last lumbal injection, spinal cord sections between the T5 and T6 vertebral levels were obtained for histologic analysis. A score based on subjective assessment of number of eosinophilic neurons - Red neuron - which means irreversible neuronal degeneration. They reflect the approximate number of degenerating neurons present in the affected neuroanatomic areas as follows: 1, none; 2, 1-20%; 3, 21-40%; 4, 41-60%; and 5, 61-100% dead neurons. An overall neuropathologic score was calculated for each rat by summating the pathologic scores for all spinal cord areas examined. RESULTS: In the results of HPT, comparing the control group, analgesic latency statistically prolonged for all four groups.In neuropathologic investment, the fentanyl and fentanyl + levobupivacaine groups have statistically significant high degenerative neuron counts than control and saline groups. CONCLUSIONS: These results suggest that, when administered intrathecally in rats, fentanyl and levobupivacaine behave similar for analgesic action, but fentanyl may be neurotoxic for spinal cord. There was no significant degeneration with levobupivacaine, but fentanyl group has had significant degeneration.

  12. Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain

    OpenAIRE

    Sarah Taves; Temugin Berta; Gang Chen; Ru-Rong Ji

    2013-01-01

    Microglia are regarded as macrophages in the central nervous system (CNS) and play an important role in neuroinflammation in the CNS. Microglial activation has been strongly implicated in neurodegeneration in the brain. Increasing evidence also suggests an important role of spinal cord microglia in the genesis of persistent pain, by releasing the proinflammatory cytokines tumor necrosis factor-alpha (TNF α ), Interleukine-1beta (IL-1 β ), and brain derived neurotrophic factor (BDNF). In this ...

  13. A review of spinal cord injury decompression in experimental animals

    OpenAIRE

    Vafa Rahimi-Movaghar

    2010-01-01

    Background: Traumatic spinal cord injury (SCI) is major permanent sequelae of trauma with high burden and low frequency. In the setting of SCI is there any correlation between the timing of surgical decompression and sensory-motor improvement.Material and Methods: A literature review was performed using PUBMED from 1966 to 25th January 2010. Cross referencing of discovered articles was also reviewed.Results: The results of animal studies have shown that aside from the kind of procedure and s...

  14. Amitriptyline pharmacokinetics in experimental spinal cord injury in the rabbit

    Directory of Open Access Journals (Sweden)

    Reihanikermani H

    2008-01-01

    Full Text Available Previous studies have demonstrated that pharmacokinetic behavior of several drugs such as paracetamol, theophylline, and aminoglycosides are significantly altered in spinal cord injured patients. No pharmacokinetic study of amitriptyline has been performed in patients and experimental models of spinal cord injury. Pharmacokinetic parameters of amitriptyline in orally treated rabbits subjected to laminectomy and spinal cord injury compared with those underwent laminectomy alone. Among twenty four male rabbits were included in this study, nine of them subjected to spinal cord injury at the 8 th thoracic level by knife severance method and six rabbits underwent laminectomy alone (sham group and nine rabbits treated as control. All received a single oral dose of amitriptyline (20 mg/kg 24 h after injury. Blood sampling were done at predetermined times to 36 h after drug administration. Amitriptyline concentration in serum samples was determined by high-performance liquid chromatography. Pharmacokinetic parameters including maximum concentration (C max , time to reach maximum concentration (T max , half life, and the area under the curve to last detectable concentration time point (AUC 0-t were directly determined from the concentration-time curve. Maximum concentration was observed at 6.5 h after administration in sham group with a concentration of 439.6 ng/ml, whereas in SCI group T max was at 2.7 h with a concentration of 2763.9 ng/ml. In control group it was 3.3 h and 396 ng/ml, respectively. In SCI group, AUC was 9465.6 ng.h/ml and half life was 6 h and for control group it was 2817.4 ng.h/ml and 6.4 h, respectively. Statistical analysis of data showed that SCI didn′t induce significant changes in amitriptyline pharmacokinetic parameters.

  15. Cellular Transplantation Strategies for Spinal Cord Injury and Translational Neurobiology

    OpenAIRE

    Reier, Paul J.

    2004-01-01

    Summary: Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Nota...

  16. Spinal cord compression secondary to malignant disease (Superior sulcus tumour)

    International Nuclear Information System (INIS)

    Spinal cord compression from malignant disease is a complication of cancer. A high index of suspicion is required to make an early clinical diagnosis, which can be confirmed by appropriate radiological investigation. Quality of life particularly ambulation can be preserved with radiotherapy and in some situations surgery. In few instances paralysis can be reversed with treatment. This may delay as long as 15 months. (author)

  17. A Neural Model of Demyelination of the Mouse Spinal Cord

    OpenAIRE

    Petreska, Biljana; Yovel, Yossi

    2008-01-01

    This paper presents a neural network model of demyelination of the mouse motor pathways, coupled to a central pattern generation (CPG) model for quadruped walking. Demyelination is the degradation of the myelin layer covering the axons which can be caused by several neurodegenerative autoimmune diseases such as multiple sclerosis. We use this model - to our knowledge first of its kind - to investigate the locomotion deficits that appear following demyelination of axons in the spinal cord. Our...

  18. Acute ketoprofen neurotoxicity in spinal cord of rats

    OpenAIRE

    Eric Roger Wroclawski; Maria Tereza Gianotti Galupo; Irimar de Paula Posso; Desiré Carlos Callegari

    2008-01-01

    Objective: To evaluate possible spinal cord injury in rats followingdifferent doses of intrathecal ketoprofen. Methods: Animalswere divided into four groups of five rats each; 10 μl of anintrathecal solution were injected into the L6-S1 intervertebralspace. Ketoprofen 1% was injected in the first group; ketoprofen0.1% was injected in the second group; ketoprofen 0.01% wasinjected in the third group; and a sodium chloride 0.9% solutionwas injected in the Control Group. Histological sections of...

  19. The Potential of Curcumin in Treatment of Spinal Cord Injury

    OpenAIRE

    Raghavendra Sanivarapu; Vijayalakshmi Vallabhaneni; Vivek Verma

    2016-01-01

    Current treatment for spinal cord injury (SCI) is supportive at best; despite great efforts, the lack of better treatment solutions looms large on neurological science and medicine. Curcumin, the active ingredient in turmeric, a spice known for its medicinal and anti-inflammatory properties, has been validated to harbor immense effects for a multitude of inflammatory-based diseases. However, to date there has not been a review on curcumin's effects on SCI. Herein, we systematically review all...

  20. Stimulation-induced optical signals in rat spinal cord slices

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka; Vargová, Lýdia; Syková, Eva

    2002-01-01

    Roč. 1, - (2002), s. 34. ISSN 0894-1491. [European Meeting on Glial Cell Function in Health and Disease.. Rome - Italy, 21.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111300004; CEZ:MSM 5011112 Keywords : spinal cord Subject RIV: FH - Neurology Impact factor: 4.600, year: 2002

  1. The design of an embedded spinal cord stimulator

    OpenAIRE

    YALÇINKAYA, Fikret; ERBAŞ, Ali

    2014-01-01

    Spinal cord stimulation is a physical therapy methodology utilizing electrical impulses, pulses, or a combination of various standard electrical waveforms to block pain. However, standard forms are not functioning effectively for each illness due to the unique conditions of the patient. Therefore, patient-specific waveforms (or user-defined waveforms) integrated with nondestructive, complete, or partially noninvasive and effective medical instruments to help relieve pain are required. In the ...

  2. The puerperium alters spinal cord plasticity following peripheral nerve injury

    OpenAIRE

    Gutierrez, Silvia; Hayashida, Ken-ichiro; Eisenach, James C.

    2012-01-01

    Tissue and nerve damage can result in chronic pain. Yet, chronic pain after cesarean delivery is remarkably rare in women and hypersensitivity from peripheral nerve injury in rats resolves rapidly if the injury occurs in the puerperium. Little is known regarding the mechanisms of this protection except for a reliance on central nervous system oxytocin signaling. Here we show that density of inhibitory noradrenergic fibers in the spinal cord is greater when nerve injury is performed in rats du...

  3. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  4. Symptomatic spinal cord deformity secondary to a redundant intramedullary shunt catheter

    International Nuclear Information System (INIS)

    Right arm pain, motor and sensory loss in the right arm and right facial numbness recurred in a 27 year old quadraplegic shortly after a posttraumatic spinal cord cyst (PTSCC) was shunted via a catheter into the adjacent subarachnoid space. Although shunt malfunction was clinically suspected, metrizamide computed tomography (MCT) suggested that redundancy of the catheter had caused deformity of the spinal cord. This hypothesis was confirmed at surgery when intraoperative spinal sonography (IOSS) showed that the spinal cord deformity at C1-C2 disappeared when the catheter was withdrawn. This case shows that new or recurrent spinal cord symptoms may be due to a mechanical deformity of the cord rather than shunt malfunction, that restricting the length of the shunt catheter which is used to decompress PTSCCs is important, and that IOSS is an indispensible tool for visualizing the changes in spinal cord morphology during shunting procedures. (orig.)

  5. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions.

    Science.gov (United States)

    Martirosyan, Nikolay L; Feuerstein, Jeanne S; Theodore, Nicholas; Cavalcanti, Daniel D; Spetzler, Robert F; Preul, Mark C

    2011-09-01

    The authors present a review of spinal cord blood supply, discussing the anatomy of the vascular system and physiological aspects of blood flow regulation in normal and injured spinal cords. Unique anatomical functional properties of vessels and blood supply determine the susceptibility of the spinal cord to damage, especially ischemia. Spinal cord injury (SCI), for example, complicating thoracoabdominal aortic aneurysm repair is associated with ischemic trauma. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic SCI causes complex changes in spinal cord blood flow, which are closely related to the severity of injury. Manipulating physiological parameters such as mean arterial blood pressure and intrathecal pressure may be beneficial for patients with an SCI. Studying the physiopathological processes of the spinal cord under vascular compromise remains challenging because of its central role in almost all of the body's hemodynamic and neurofunctional processes. PMID:21663407

  6. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Gass, Achim; Rocca, Maria A; Agosta, Federica; Ciccarelli, Olga; Chard, Declan; Valsasina, Paola; Brooks, Jonathan C W; Bischof, Antje; Eisele, Philipp; Kappos, Ludwig; Barkhof, Frederik; Filippi, Massimo

    2015-01-01

    techniques, findings of cord atrophy, intrinsic cord damage, and adaptation are shown to occur largely independently of focal spinal cord lesion load, which emphasises their relevance in depiction of the true burden of disease. Combinations of magnetisation transfer ratio or diffusion tension imaging indices......The spinal cord is a clinically important site that is affected by pathological changes in most patients with multiple sclerosis; however, imaging of the spinal cord with conventional MRI can be difficult. Improvements in MRI provide a major advantage for spinal cord imaging, with better signal......-to-noise ratio and improved spatial resolution. Through the use of multiplanar MRI, identification of diffuse and focal changes in the whole spinal cord is now routinely possible. Corroborated by related histopathological analyses, several new techniques, such as magnetisation transfer, diffusion tension imaging...

  7. Post-surgical thoracic pseudomeningocele causing spinal cord compression.

    Science.gov (United States)

    Macki, Mohamed; Lo, Sheng-fu L; Bydon, Mohamad; Kaloostian, Paul; Bydon, Ali

    2014-03-01

    Pseudomeningoceles are extradural cerebrospinal fluid collections categorized into three groups: traumatic, congenital, and iatrogenic. Iatrogenic pseudomeningoceles occur after durotomy, usually after cervical or lumbar spine surgery. Although many remain asymptomatic, pseudomeningoceles can compress or herniate the spinal cord and nerve roots. We present a 57-year-old woman who had a thoracic laminectomy and discectomy. Two weeks after surgery, she presented with lower extremity weakness and gait difficulty. Physical examination revealed hyperreflexia and a T11 sensory level. MRI revealed a pseudomeningocele compressing the thoracic spinal cord. The patient underwent surgical drainage of the cyst. On follow-up, she had complete resolution of her symptoms, and MRI did not show a residual lesion. To our knowledge, this is the second documented post-operative pseudomeningocele causing symptomatic spinal cord compression of the thoracic spine. In this article, a review of the literature is presented, including four reported patients with post-traumatic pseudomeningocele causing myelopathic symptoms and 20 patients with iatrogenic pseudomeningocele that resulted in neurological decline due to herniation or compression of neural tissue. Treatment options for these lesions include conservative management, epidural blood patch, lumbar subarachnoid drainage, and lumbo-peritoneal shunt placement. Surgical repair, usually by primary dural closure, remains the definitive treatment modality for iatrogenic symptomatic pseudomeningoceles. PMID:24210805

  8. Neuroarthropathy of the hip following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Bibek Banskota

    2011-01-01

    Full Text Available We present the case of a 33-year-old male who sustained a burst fracture D12 vertebrae with spinal cord injury (ASIA impairment scale A and a right mid-diaphysial femoral shaft fracture around 1.5 years back. The patient reported 1.5 years later with a swelling over the right buttock. Arthrotomy revealed serous fluid and fragmented bone debris. The biopsy showed a normal bony architecture with no evidence of infection and malignant cells. Hence, a diagnosis of Charcot′s hip was made. Charcot′s neuroarthropathy of the feet is a well-recognized entity in the setting of insensate feet resulting from causes such as diabetes or spina bifida. Although Charcot′s disease of the hips has been described, it is uncommon in association with spinal cord injury, syphilis and even with the use of epidural injection. The present case highlights the fact that neuroarthropathy of the hip can occur in isolation in the setting of a spinal cord injury, and this can lead to considerable morbidity.

  9. Nanomedicine strategies for treatment of secondary spinal cord injury

    Directory of Open Access Journals (Sweden)

    White-Schenk D

    2015-01-01

    Full Text Available Désirée White-Schenk,1,4 Riyi Shi,1–3 James F Leary1–4 1Interdisciplinary Biomedical Sciences Program, 2Weldon School of Biomedical Engineering, 3Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, 4Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA Abstract: Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. Keywords: spinal cord injury, acrolein, drug delivery, methylprednisolone, secondary injury

  10. Caffeine treatment aggravates secondary degeneration after spinal cord injury.

    Science.gov (United States)

    Yang, Cheng-Chang; Jou, I-Ming

    2016-03-01

    Spinal cord injury (SCI) often results in some form of paralysis. Recently, SCI therapy has been focused on preventing secondary injury to reduce both neuroinflammation and lesion size so that functional outcome after an SCI may be improved. Previous studies have shown that adenosine receptors (AR) are a major regulator of inflammation after an SCI. The current study was performed to examine the effect of caffeine, a pan-AR blocker, on spontaneous functional recovery after an SCI. Animals were assigned into 3 groups randomly, including sham, PBS and caffeine groups. The rat SCI was generated by an NYU impactor with a 10 g rod dropped from a 25 mm height at thoracic 9 spinal cord level. Caffeine and PBS were injected daily during the experiment period. Hind limb motor function was evaluated by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale at 1 week and 4 weeks after the SCI. Spinal cord segments were collected after final behavior evaluation for morphological analysis. The tissue sparing was evaluated by luxol fast blue staining. Immunofluorescence stain was employed to assess astrocyte activation and neurofilament positioning, while microglia activation was examined by immunohistochemistry stain.The results showed that spontaneous functional recovery was blocked after the animals were subjected caffeine daily. Moreover, caffeine administration increased the demyelination area, promoted astrocyte and microglia activation and decreased the quantity of neurofilaments. These findings suggest that the neurotoxicity effect of caffeine may be associated with the inhibition of neural repair and the promotion of neuroinflammation. PMID:26746340

  11. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury.

    Science.gov (United States)

    Bartus, Katalin; Galino, Jorge; James, Nicholas D; Hernandez-Miranda, Luis R; Dawes, John M; Fricker, Florence R; Garratt, Alistair N; McMahon, Stephen B; Ramer, Matt S; Birchmeier, Carmen; Bennett, David L H; Bradbury, Elizabeth J

    2016-05-01

    Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. However, this endogenous repair response is suboptimal and may account for the persistently compromised function of surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control, functional role and origin of these central remyelinating Schwann cells is currently unknown. The growth factor neuregulin-1 (Nrg1, encoded by NRG1) is a key signalling factor controlling myelination in the peripheral nervous system, via signalling through ErbB tyrosine kinase receptors. Here we examined whether Nrg1 is required for Schwann cell-mediated remyelination of central dorsal column axons and whether Nrg1 ablation influences the degree of spontaneous remyelination and functional recovery following spinal cord injury. In contused adult mice with conditional ablation of Nrg1, we found an absence of Schwann cells within the spinal cord and profound demyelination of dorsal column axons. There was no compensatory increase in oligodendrocyte remyelination. Removal of peripheral input to the spinal cord and proliferation studies demonstrated that the majority of remyelinating Schwann cells originated within the injured spinal cord. We also examined the role of specific Nrg1 isoforms, using mutant mice in which only the immunoglobulin-containing isoforms of Nrg1 (types I and II) were conditionally ablated, leaving the type III Nrg1 intact. We found that the immunoglobulin Nrg1 isoforms were dispensable for Schwann cell-mediated remyelination of central axons after spinal cord injury. When functional effects were examined, both global Nrg1 and immunoglobulin-specific Nrg1 mutants demonstrated reduced spontaneous locomotor recovery compared to injured controls, although global Nrg1 mutants were more impaired in

  12. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jung Hosung

    2011-02-01

    Full Text Available Abstract Background Stromal cell-derived factor-1 (SDF1 and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. Methods These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. Results In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI, the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. Conclusions These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the

  13. An unusual case of spinal cord compression from concomitant spinal epidural lipomatosis and Hodgkin's lymphoma

    Science.gov (United States)

    Ahmadzai, Hasib; Khalil, Ali; Mitchell, Ruth A.; Kwok, Bernard

    2016-01-01

    Spinal epidural lipomatosis (SEL) results from an abnormal accumulation of unencapsulated fat within the epidural space and is a rare cause of spinal cord compression, which needs to be considered with a high index of suspicion. It most commonly occurs secondary to chronic corticosteroid use and endocrinopathies. Idiopathic cases are highly associated with obesity. We report an unusual case of idiopathic thoracic SEL in a 69-year-old male, with an adjacent infiltrative Hodgkin's lymphoma and associated vertebral crush fracture, which resulted in ataxia and sensory loss. Magnetic resonance imaging scans displayed extensive SEL and an infiltrative disease process causing thoracic cord compression. Surgical decompression confirmed the presence of extensive epidural lipomatosis and Hodgkin's lymphoma and subsequently led to improvement in neurological symptoms. To our knowledge, this is the first reported case of concomitant SEL with an adjacent Hodgkin's lymphoma resulting in cord compression. PMID:26962199

  14. Pilot study: bone marrow stem cells as a treatment for dogs with chronic spinal cord injury

    OpenAIRE

    Sarmento, Carlos Alberto Palmeira; Rodrigues, Marcio Nogueira; Bocabello, Renato Zonzini; Mess, Andrea Maria; Miglino, Maria Angelica

    2014-01-01

    Background Chronic Spinal Cord injury is a common, severe, and medically untreatable disease. Since the functional outcomes of acute and experimental chronic spinal cord injury have been shown to improve with stem cell therapy, a case study was conducted to test if the application of stem cell also regenerates chronic SCI dysfunction. Transplantation of foetal bone marrow stem cells was applied in seven dogs with chronic spinal cord injury. Magnetic resonance images and assessments of symptom...

  15. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    OpenAIRE

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was...

  16. Effect of Spinal Cord Compression on Local Vascular Blood Flow and Perfusion Capacity

    OpenAIRE

    Mohammed Alshareef; Vibhor Krishna; Jahid Ferdous; Ahmed Alshareef; Mark Kindy; Kolachalama, Vijaya B.; Tarek Shazly

    2014-01-01

    Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was de...

  17. Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord

    OpenAIRE

    Preat, V. (Veronique); Clotman, F; Bailly, Ch. (Christian); Carmeliet, P; Blanco-Prieto, M.J. (María José); Feron, O.; Simon-Yarza, T. (Teresa); Auhl, D.; Bouzin, C; Audouard, E.; Schakman, O.; Jacobs, D.; Ucakar, B. (Bernard); E. Ansorena; Berdt, P. (Pauline) de

    2013-01-01

    We hypothesized that vascular endothelial growth factor (VEGF)-containing hydrogels that gelify in situ after injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% Pronova UPMVG MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, algina...

  18. Permissive Schwann Cell Graft/Spinal Cord Interfaces for Axon Regeneration

    OpenAIRE

    Williams, Ryan R.; Henao, Martha; Pearse, Damien D.; Bunge, Mary Bartlett

    2013-01-01

    The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of ...

  19. Morphological study of Schwann cells remyelination in contused spinal cord of rats

    OpenAIRE

    Li, Yue; Zhang, Lu; ZHANG Jie-yuan; Liu, Zheng; Duan, Zhao-Xia; Li, Bing-Cang

    2013-01-01

    【Abstract】Objective: To study the role and effect of Schwann cells (SCs) remyelination in contused spinal cord. Methods: Green fluorescence protein expressing-SCs were transplanted into the epicenter, rostral and caudal tis-sues of the injury site at 1 week after the spinal cords were contused. At 6 weeks, the spinal cords were removed for cryosections, semithin sections and ultrathin sections, and then immunocytochemical staining of myelin basic protein (MBP), P...

  20. Acute Spinal Cord Ischemia during Aortography Treated with Intravenous Thrombolytic Therapy

    OpenAIRE

    Restrepo, Lucas; Guttin, Jorge F.

    2006-01-01

    Acute anterior spinal cord ischemia is a rare but disastrous complication of endovascular aortic procedures. Although intravenous thrombolysis with recombinant tissue plasminogen activator is an effective treatment for acute brain ischemia, its use for the treatment of spinal cord ischemia has not previously been reported. We report the case of a patient who developed anterior spinal cord ischemia during diagnostic aortography. He was treated with intravenous recombinant tissue plasminogen ac...

  1. Puerarin Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2014-01-01

    Full Text Available Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.

  2. Anterior spinal cord syndrome after initiation of treatment with atenolol.

    Science.gov (United States)

    Schneider, Gregory S

    2010-06-01

    Anterior spinal cord syndrome is a rare condition with a variety of precipitating factors. Patients typically complain of weakness or paralysis of the extremities, often accompanied by pain, but frequently without a history of trauma. A 48-year-old man presented to the emergency department complaining of neck pain and inability to move his legs in the absence of trauma. Several hours prior he had seen his private physician and was given a dose of atenolol for elevated blood pressure. He had not previously been on medications for hypertension. His neurological examination revealed bilateral paralysis of the lower extremities. In the upper extremities he had weakness and sensory loss at the level of C6. Rectal tone was decreased and without sensation. Cervical and thoracic spine magnetic resonance imaging showed spondylotic disc disease, with disc herniation at C6-7 causing severe spinal canal stenosis. Despite i.v. methylprednisolone, pressors, and a prolonged intensive care unit course, the patient was discharged 5 weeks later with continued neurological deficits. Anterior spinal cord syndrome results from compression of the anterior spinal artery and often occurs in the absence of traumatic injury. The recognition, management, and prognosis of this condition are discussed. PMID:18597977

  3. Intermittent positive-pressure breathing effects in patients with high spinal cord injury. : Hyperinflation in Spinal Cord Injury

    OpenAIRE

    Laffont, Isabelle; Bensmail, Djamel; Lortat-Jacob, Sylvie; Falaize, Line; Hutin, Claudette; Le Bomin, Elisabeth; Ruquet, Maria; Denys, Pierre; Lofaso, Frédéric

    2008-01-01

    OBJECTIVE: To determine whether intermittent positive-pressure breathing (IPPB) improved lung compliance, work of breathing, and respiratory function in patients with recent high spinal cord injury (SCI). DESIGN: An unblinded randomized crossover trial. SETTING: Rehabilitation hospital. PARTICIPANTS: Patients (N=14) with SCI caused by trauma within the last 6 months and located between C5 and T6. INTERVENTION: Two months of IPPB and 2 months of conventional treatment were evaluated prospectiv...

  4. Blood-spinal cord barrier function and morphometry after single doses of x-rays in rat spinal cord

    International Nuclear Information System (INIS)

    Purpose: The effects of irradiation on blood-spinal cord barrier (BSCB) function and ultrastructure were evaluated using a rat spinal cord model. Methods and Materials: Rats received a single dose of 25 Gy to the cervical spinal cord (C2-T2). At various times following irradiation and before the onset of paralysis, BSCB function was assessed using horseradish peroxidase (HRP) as a vascular tracer, and barrier-related structural changes in the capillaries were evaluated using morphometric techniques. Results: Focal extravasation of HRP was seen at 93 days after irradiation, and extensive extravasation was apparent by 114 days in white matter, but not in gray matter. At 93 days, pathologic changes apparent by light microscopy were very minor in the white matter of the irradiated segment. By 107 days, myelin beading, Wallerian degeneration, edema, and histiocytes were apparent in white matter, and these features became increasingly prominent over the following weeks. No noteworthy changes were seen in gray matter at these times. Electron microscopic examination showed that, during the first 93 days following irradiation, more than half of the endothelial cells in white matter had disappeared (p < 0.05). In terms of the putative vascular pores, no abnormalities in endothelial junctions (the presumed small pore) were found, but there was an increase in the density of endothelial vesicles (a putative form of the large pore) in irradiated white matter (p < 0.001), but not in gray matter. Pericytes, thought to act as a second line of defence in the blood-brain barrier, increased in size but not in number in the irradiated white matter of the spinal cord. Conclusion: We suggest that radiation damage to endothelial cells, which form the BSCB prior to the onset of neurological deficit, may play an important role in the pathogenesis of white matter necrosis

  5. Spinal cord compression in β-thalassemia: follow-up after radiotherapy

    International Nuclear Information System (INIS)

    Spinal cord compression due to extramedullary hematopoiesis is a well-described bu rare syndrome encountered in several hematologic disorders, including β-thalassemia. We report a case of a patient with intermediate β-thalassemia and crural paraparesis due to spinal cord compression by a paravertebral extramedullary mass. She was successfully treated with low-dose radiotherapy and transfusions. After splenectomy, she was regularly followed up for over four years without transfusion or recurrence of spinal cord compression. Extramedullary hematopoiesis should be investigated in patients with hematologic disorders and spinal cord symptoms. The rapid recognition and treatment with radiotherapy can dramatically alleviate symptoms. (author)

  6. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    MR spectroscopy (MRS) of the brain in patients with multiple sclerosis has been well studied. However, in vivo MRS of the spinal cord in patients with MR spectroscopy has not been reported to our knowledge. We performed MRS of normal-appearing cervical spinal cords in multiple sclerosis patients and in healthy controls. N-acetyl aspartate was shown to be reduced within the cervical spinal cord of multiple sclerosis patients when compared with healthy controls. This finding supports axonal loss and damage within even normal-appearing spinal cords of multiple sclerosis patients. (orig.)

  7. Controlling selective stimulations below a spinal cord hemisection using brain recordings with a neural interface system approach

    Science.gov (United States)

    Panetsos, Fivos; Sanchez-Jimenez, Abel; Torets, Carlos; Largo, Carla; Micera, Silvestro

    2011-08-01

    In this work we address the use of realtime cortical recordings for the generation of coherent, reliable and robust motor activity in spinal-lesioned animals through selective intraspinal microstimulation (ISMS). The spinal cord of adult rats was hemisectioned and groups of multielectrodes were implanted in both the central nervous system (CNS) and the spinal cord below the lesion level to establish a neural system interface (NSI). To test the reliability of this new NSI connection, highly repeatable neural responses recorded from the CNS were used as a pattern generator of an open-loop control strategy for selective ISMS of the spinal motoneurons. Our experimental procedure avoided the spontaneous non-controlled and non-repeatable neural activity that could have generated spurious ISMS and the consequent undesired muscle contractions. Combinations of complex CNS patterns generated precisely coordinated, reliable and robust motor actions.

  8. Unpredicted spontaneous extrusion of a renal calculus in an adult male with spina bifida and paraplegia: report of a misdiagnosis. Measures to be taken to reduce urological errors in spinal cord injury patients

    OpenAIRE

    Singh Gurpreet; Soni Bhakul M; Hughes Peter L; Vaidyanathan Subramanian; Mansour Paul; Sett Pradipkumar

    2001-01-01

    Abstract Background A delay in diagnosis or a misdiagnosis may occur in patients with spinal cord injury (SCI) or spinal bifida as typical symptoms of a clinical condition may be absent because of their neurological impairment. Case presentation A 29-year old male, who was born with spina bifida and hydrocephalus, became unwell and developed a swelling and large red mark in his left loin eighteen months ago. Pyonephrosis or perinephric abscess was suspected. X-ray of the abdomen showed left-s...

  9. Selective Stimulation of the Spinal Cord Surface Using a Conformable Microelectrode Array

    OpenAIRE

    Kathleen Williams Meacham; Shawn Hochman

    2011-01-01

    By electrically stimulating the spinal cord, it is possible to activate functional populations of neurons that modulate motor and sensory function. One method for accessing these neurons is via their associated axons, which project as functionally-segregated longitudinal columns of white- matter funiculi (i.e., spinal tracts). To stimulate spinal tracts without penetrating the cord, we have recently developed technology that enables close-proximity, multi-electrode contact with the spinal ...

  10. KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons.

    Science.gov (United States)

    Schwale, Chrysovalandis; Schumacher, Stefanie; Bruehl, Claus; Titz, Stefan; Schlicksupp, Andrea; Kokocinska, Mirka; Kirsch, Joachim; Draguhn, Andreas; Kuhse, Jochen

    2016-06-01

    Synaptic inhibition in the spinal cord is mediated mainly by strychnine-sensitive glycine (GlyRs) and by γ-aminobutyric acid type A receptors (GABAAR). During neuronal maturation, neonatal GlyRs containing α2 subunits are replaced by adult-type GlyRs harboring α1 and α3 subunits. At the same time period of postnatal development, the transmembrane chloride gradient is changed due to increased expression of the potassium-chloride cotransporter (KCC2), thereby shifting the GABA- and glycine-mediated synaptic currents from mostly excitatory depolarization to inhibitory hyperpolarization. Here, we used RNA interference to suppress KCC2 expression during in vitro maturation of spinal cord neurons. Morphological analysis revealed reduced numbers and size of dendritic GlyR clusters containing α1 subunits but not of clusters harboring neonatal α2 subunits. The morphological changes were accompanied by decreased frequencies and amplitudes of glycinergic miniature inhibitory currents, whereas GABAergic synapses appeared functionally unaltered. Our data indicate that KCC2 exerts specific functions for the maturation of glycinergic synapses in cultured spinal cord neurons. PMID:26780567

  11. Delayed release particles from vascular endothelial growth factor for repairing spinal cord ischemic injury of rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Yang; LI Feng; XIAO Jian-de; LI Zhen-yu; YANG Lei; LUO Xin-le

    2007-01-01

    Objective:To study the effect of delayed release particles from vascular endothelial growth factor (VEGF)on the reparation of ischemic injury of spinal cord in rats. Methods:The spinal cord ischemia model of rats was established.The delayed release particles from VEGF were injected via the intubation of spinal subarachnoid space.The rehabilitation was observed by the assessment of unfold claw reflection,space between toes,spinal evoked potential (SEP) and motor evoked potential (MEP). Results:VEGF prompted SEP and MEP appearance,improved the motor function of hind limbs. Conclusions:VEGF can promote the rehabilitation of spinal cord ischemic injury of rats.

  12. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    International Nuclear Information System (INIS)

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor α. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system

  13. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rodriguez-Jimenez

    2015-11-01

    Full Text Available Ion channels included in the family of Connexins (Cx help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50 in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC. epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI (epSPCi. When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.

  14. Amikacin Dosing and Monitoring in Spinal Cord Injury Patients: Variation in Clinical Practice Between Spinal Injury Units and Differences in Experts' Recommendations

    OpenAIRE

    Subramanian Vaidyanathan; Charles Peloquin; Jean-Jacques Wyndaele; Buczynski, Andrew Z.; Yaniv Almog; Markantonis, Sophia L.; Vidya Jayawardena; Soni, Bakul M.; Joan Cannon; Joan Vidal

    2006-01-01

    The objective of this article was to determine the current practice on amikacin dosing and monitoring in spinal cord injury patients from spinal cord physicians and experts. Physicians from spinal units and clinical pharmacologists were asked to provide protocol for dosing and monitoring of amikacin therapy in spinal cord injury patients. In a spinal unit in Poland, amikacin is administered usually 0.5 g twice daily. A once-daily regimen of amikacin is never used and amikacin concentrations a...

  15. The impact of spinal cord injury on South African youth

    Directory of Open Access Journals (Sweden)

    E. Njoki

    2007-02-01

    Full Text Available Approximately 500 South Africans, mainly young people,sustain a spinal cord injury every year leading to severe lifetime physical disabilities. With advances in medicine and assistive technology, these young people are able to reach adulthood. The physical, social and  emotional adjustments, which determine the eventual successful outcome following injury, vary considerably from person to person. Some make satisfactory adjustments whereas others remain chronically distressed.This study aimed to determine the impact of SCI on youth in community settings after discharge from rehabilitation.  A qualitative approach, that utilised face-to-face interviews and focus group methods of data collection, was used. Data were drawn from ten participants selected at Conradie Spinal Rehabilitation Unit, using purposive sampling. Audiotape recorded interviews were transcribed verbatim. Strong themes that ran through the data were identified. The results of the study revealed that spinal cord injury impacts on more than just the physical capabilities of an individual. Participants identified issues such as social identity, intrapersonal and interpersonal factors, social support and employment opportunities as having a major impact on their lives once back in the community.  It is  recommended that rehabilitation professionals include issues such as identity and psychosocial adjustment into their health promotion interventions.

  16. Cellular transplantation strategies for spinal cord injury and translational neurobiology.

    Science.gov (United States)

    Reier, Paul J

    2004-10-01

    Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences. PMID:15717046

  17. Changes in Pain Processing in the Spinal Cord and Brainstem after Spinal Cord Injury Characterized by Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Stroman, Patrick W; Khan, Hamza S; Bosma, Rachel L; Cotoi, Andrea I; Leung, Roxanne; Cadotte, David W; Fehlings, Michael G

    2016-08-01

    Traumatic spinal cord injury (SCI) has a number of devastating consequences, including high prevalence of chronic pain and altered pain sensitivity. The causes of altered pain states vary depending on the injury and are difficult to diagnose and treat. A better understanding of pain mechanisms after SCI is expected to lead to better diagnostic capabilities and improved treatments. We therefore applied functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in a group of participants with previous traumatic SCI to characterize changes in pain processing as a result of their injuries. The same thermal stimulus was applied to the medial palm (C8 dermatome) as a series of repeated brief noxious thermal pulses in a group of 16 participants with a cervical (n = 14) and upper thoracic (n = 2) injuries. Functional MRI of the brainstem and spinal cord was used to determine the neuronal activity evoked by the noxious stimulation, and connectivity between regions was characterized with structural equation modeling (SEM). The results show that pain ratings, the location and magnitude of blood oxygenation-level dependent fMRI results, and connectivity assessed with SEM varied widely across participants. However, the results varied in relation to the perceived pain and the level/severity of injuries, particularly in terms of hypothalamus connectivity with other regions, and descending modulation via the periaqueductal gray matter-rostral ventromedial medulla-cord pathway. The results, therefore, appear to provide sensitive indicators of each individual's pain response, and information about the mechanisms of altered pain sensitivity. The ability to characterize changes in pain processing in individuals with SCI represents a significant technological advance. PMID:26801315

  18. Alterations in body composition and spasticity following subtetanic neuromuscular electrical stimulation training in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Louis Crowe, MB, BCh, BAO

    2013-04-01

    Full Text Available The objective of this prospective cohort study was to investigate alterations in body composition variables and spasticity following subtetanic neuromuscular electrical stimulation (NMES training in an adult population with spinal cord injury (SCI. Fourteen sedentary adults with SCI (thoracic [T]4–T11; American Spinal Injury Association Impairment Scale A/B; time since injury: 10.17 +/– 11.17 yr were recruited from the National SCI database. Four adhesive electrodes (175 cm2 each were placed bilaterally on the proximal and distal quadriceps and hamstrings muscle groups and subtetanic contractions were elicited using a handheld NMES device. Lean body mass (LBM and other body composition variables were measured using dual-energy X-ray absorptiometry. Spasticity was measured using the Spinal Cord Assessment Tool for Spastic Reflexes (SCATs and visual analog scales. Verbal and written feedback was obtained to subjectively evaluate spasticity. LBM and spasticity measurements were taken before and after an 8 wk NMES training program in order to assess change. A statistically significant increase in lower-limb LBM, i.e., muscle tissue (p > 0.001, and a reduction in SCATs (p < 0.001 score, indicating reduced spasticity, was observed. Subjective responses were positive. Improvements in body composition and SCATs scores indicate that subtetanic NMES training elicits favorable responses and may have important clinical implications for an SCI population.

  19. Induction of Functional Recovery by Co-transplantation of Neural Stem Cells and Schwann Cells in a Rat Spinal Cord Contusion Injury Model

    Institute of Scientific and Technical Information of China (English)

    JIN LI; CHONG-RAN SUN; HAN ZHANG; KAM-SZE TSANG; JUN-HUA LI; SHAO-DONG ZHANG; YI-HUA AN

    2007-01-01

    Objeetive To smdy the transplantation efficacy of neural stem cells(NSCs)and Schwann cells(SC)in a rat model of spinal cord contusion injury.Methods Multipotent neural stem cells(NSCs)and Schwann cells were harvested from the spinal cords of embryomc rats at 16 days post coitus and sciatic nerves of newborn rats,respectively.The differential characteristics of NSCs in vitro induced by either serunl-based culture or co-culture with SC were analyzed by immunofluorescence.NSCs and SCs were co-transplanted into adult rats having undergone spinal cord contusion at T9 level.The animals were weekly monitored using the Basso-Beattie-Bresnahan locomotor rating system to evaluate functional recovery from contusion-induced spinal cord injury.Migration and differentiation of transplanted NSCs were studied in tissue sections using immunohistochemical staining.Results Embryomc spinal cord-derived NSCs differentiated into a large number of oligodendrocytes in serum-based culture upon the withdrawal of mitogens.In cocultures with SCs,NSCs differentiated into neuron more readily.Rats with spinal cord contusion injury which had undergone transplantation of NSCs and SCs into the intraspinal cavity demonstrated a moderate improvement in momr functions.Conclusions SC may contribute to neuronal differentiation of NSCs in vitro and in vivo.Transplantation of NSCs and SCs into the affected area may be a feasible approach to promoting motor recovery in patients after spinal cordin jury.

  20. Roentgenosemiotics of GI tract functional obstruction determined by birth injuries of the spinal column and spinal cord in children

    International Nuclear Information System (INIS)

    Experiments on animals and the results of combined clinico-roentgenological investigation of 150 children with birth injuries of the spinal column and cord and 40 children with invagination and consequences of the cervical spine and cord, made it possible to study roentgenosemiotics and to establish pathogenetic interrelationship of natal injuries of the spinal column, spinal cord and GI tract functional obstruction in the form of polyspasm, spastic-hypo- and atonic intestinal dyskenesia, gastroesophageal reflux, aspiration pneumonia with the development of intestinal invagination

  1. Atypical Supernumerary Phantom Limb and Phantom Limb Pain in a Patient With Spinal Cord Injury: Case Report

    OpenAIRE

    Choi, Ja Young; Kim, Hyo In; Lee, Kil Chan; Han, Zee-A

    2013-01-01

    Supernumerary phantom limb (SPL) resulting from spinal cord lesions are very rare, with only sporadic and brief descriptions in the literature. Furthermore, the reported cases of SPL typically occurred in neurologically incomplete spinal cord patients. Here, we report a rare case of SPL with phantom limb pain that occurred after traumatic spinal cord injury in a neurologically complete patient. After a traffic accident, a 43-year-old man suffered a complete spinal cord injury with a C6 neurol...

  2. Evaluationof efficiency of methods of neuromodulation in the treatment of spastic syndromes in patients with spinal cord injury

    OpenAIRE

    Smolkin А.А.; Ninel V.G.; Korshunova G.A.

    2014-01-01

    Objective: to evaluate the efficiency of the neuromodulation methods and to determine their role in complex rehabilitation of patients with spastic syndromes after spinal cord injury. Material and methods: Based on the study and treatment of 105 patients with spastic syndromes after injury of the spinal cord, electrical stimulation of the spinal cord, epidural drug therapy in combination with electrical nerve stimulation and local hypothermia spinal cord have been consistently applied for the...

  3. Frequency of co-morbidities associated with spinal cord injury

    International Nuclear Information System (INIS)

    To determine the frequencies of comorbidities (dyslipidemias, diabetes mellitus, and hypertension) in patients with spinal cord injury (SCI) of duration > 1 year. Study Design: Case control. Place and Duration of Study: Spinal Cord Injury Department, Armed Forces Institute of Rehabilitation Medicine (AFIRM) Rawalpindi and Department of Chemical Pathology, Army Medical College, National University of Sciences and Technology (NUST), from October 2013 to March 2014. Patients and Methods: Thirty six patients with complete spinal cord injury (SCI), level C5 to T12 were included by non-probability, convenience sampling. Control group consisted of age and sex matched healthy individuals. A detailed medical history was obtained. Anthropometric measurements and blood pressure were recorded. Fasting blood samples were obtained and analyzed for plasma glucose and serum lipid profile. Results: Out of thirty six patients, 31 (86.1%) were male and 5 (13.9%) were females; their mean age was 36.6 ± 11 years. Mean duration of injury was 6.04 ± 3.35 years. Among cases, dyslipidemias were detected in 25 (69.4%) patients while 7 (19.4%) patients had diabetes mellitus. Whereas in control group, frequency of dyslipidemias and diabetes mellitus were significantly lower than cases i.e 13.8% and 5.5% respectively. Also no significant difference was found between blood pressures of study group when compared with control group. Conclusion: Individuals with chronic SCI had more frequent associated co-morbid conditions like dyslipidemias and diabetes mellitus than normal individuals. Early screening is recommended in patients having SCI >6 months for better patient care and reduction in long term comorbidities in such patients. (author)

  4. Differential Neuroproteomic and Systems Biology Analysis of Spinal Cord Injury.

    Science.gov (United States)

    Moghieb, Ahmed; Bramlett, Helen M; Das, Jyotirmoy H; Yang, Zhihui; Selig, Tyler; Yost, Richard A; Wang, Michael S; Dietrich, W Dalton; Wang, Kevin K W

    2016-07-01

    Acute spinal cord injury (SCI) is a devastating condition with many consequences and no known effective treatment. Although it is quite easy to diagnose traumatic SCI, the assessment of injury severity and projection of disease progression or recovery are often challenging, as no consensus biomarkers have been clearly identified. Here rats were subjected to experimental moderate or severe thoracic SCI. At 24h and 7d postinjury, spinal cord segment caudal to injury center versus sham samples was harvested and subjected to differential proteomic analysis. Cationic/anionic-exchange chromatography, followed by 1D polyacrylamide gel electrophoresis, was used to reduce protein complexity. A reverse phase liquid chromatography-tandem mass spectrometry proteomic platform was then utilized to identify proteome changes associated with SCI. Twenty-two and 22 proteins were up-regulated at 24 h and 7 day after SCI, respectively; whereas 19 and 16 proteins are down-regulated at 24 h and 7 day after SCI, respectively, when compared with sham control. A subset of 12 proteins were identified as candidate SCI biomarkers - TF (Transferrin), FASN (Fatty acid synthase), NME1 (Nucleoside diphosphate kinase 1), STMN1 (Stathmin 1), EEF2 (Eukaryotic translation elongation factor 2), CTSD (Cathepsin D), ANXA1 (Annexin A1), ANXA2 (Annexin A2), PGM1 (Phosphoglucomutase 1), PEA15 (Phosphoprotein enriched in astrocytes 15), GOT2 (Glutamic-oxaloacetic transaminase 2), and TPI-1 (Triosephosphate isomerase 1), data are available via ProteomeXchange with identifier PXD003473. In addition, Transferrin, Cathepsin D, and TPI-1 and PEA15 were further verified in rat spinal cord tissue and/or CSF samples after SCI and in human CSF samples from moderate/severe SCI patients. Lastly, a systems biology approach was utilized to determine the critical biochemical pathways and interactome in the pathogenesis of SCI. Thus, SCI candidate biomarkers identified can be used to correlate with disease progression or

  5. Ambulation following spinal cord injury and its correlates

    Directory of Open Access Journals (Sweden)

    Nitin Menon

    2015-01-01

    Full Text Available Objectives: To assess walking ability of spinal cord injury (SCI patients and observe its correlation with functional and neurological outcomes. Patients and Methods: The present prospective, observational study was conducted in a tertiary research hospital in India with 66 patients (46 males between January 2012 and December 2013. Mean age was 32.62 ± 11.85 years (range 16-65 years, mean duration of injury was 85.3 ± 97.6 days (range 14-365 days and mean length of stay in the rehabilitation unit was 38.08 ± 21.66 days (range 14-97 days in the study. Walking Index for spinal cord injury (WISCI II was used to assess ambulation of the SCI patients. Functional recovery was assessed using Barthel Index (BI and Spinal Cord Independence Measures (SCIM. Neurological recovery was assessed using ASIA impairment scale (AIS. We tried to correlate ambulatory ability of the patients with functional and neurological recovery. Results: Ambulatory ability of the patients improved significantly using WISCI II (P < 0.001 when admission and discharge scores were compared (1.4 ± 3.5 vs 7.6 ± 6.03. Similarly, functional (BI: 31.7 ± 20.5 vs 58.4 ± 23.7 and SCIM: 29.9 ± 15.1 vs 56.2 ± 20.6 and neurological recovery were found to be very significant (P < 0.001 when admission vs discharge scores were compared. Improvement in WISCI II scores was significantly correlated with improvement in neurological (using AIS scores and functional status (using BI and SCIM scores (P < 0.001. Conclusions: Significant improvement was seen in WISCI II, BI, and SCIM scores after in-patient rehabilitation. Improvement in WISCI II scores also significantly correlated with functional and neurological recovery.

  6. Religiosity and Spirituality among Persons with Spinal Cord Injury: Attitudes, Beliefs, and Practices

    Science.gov (United States)

    Marini, Irmo; Glover-Graf, Noreen M.

    2011-01-01

    A total of 157 persons with spinal cord injury completed the "Spirituality and Spinal Cord Injury Survey" in relation to their spiritual and/or religious attitudes, beliefs, and practices in terms of adapting to their disability. Factor analysis accounting for 69% of the variance revealed four factors related to Spiritual Help and Improvement…

  7. Spinal cord tolerance to reirradiation with single-fraction radiosurgery: a swine model.

    NARCIS (Netherlands)

    Medin, P.M.; Foster, R.D.; Kogel, A.J. van der; Sayre, J.W.; McBride, W.H.; Solberg, T.D.

    2012-01-01

    PURPOSE: This study was performed to determine swine spinal cord tolerance to single-fraction, partial-volume irradiation 1 year after receiving uniform irradiation to 30 Gy in 10 fractions. METHODS AND MATERIALS: A 10-cm length of spinal cord (C3-T1) was uniformly irradiated to 30 Gy in 10 consecut

  8. Spinal cord glioma after multiple fluoroscopies during artificial pneumothorax treatment of pulmonary tuberculosis: case report

    International Nuclear Information System (INIS)

    A patient is reported who developed multiple basal-cell carcinomas of the skin, a breast carcinoma, and astrocytoma of the spinal cord, and a bronchial carcinoid tumor following multiple fluoroscopies during artificial pneumothorax treatment for pulmonary tuberculosis. A review of the literature revealed no previously documented cases of radiation-induced gliomas of the spinal cord

  9. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury

    Science.gov (United States)

    Gao, Shuang; Zhang, Zhong-ming; Shen, Zhao-liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-mei

    2016-01-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14–42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function.

  10. Numerical model of the human cervical spinal cord--the development and validation.

    Science.gov (United States)

    Czyż, Marcin; Scigała, Krzysztof; Jarmundowicz, Włodzimierz; Będziński, Romuald

    2011-01-01

    The influence of mechanical load on the extent of nervous tissue damage in the spinal cord at the time of trauma is presently incontestable. Although numerical modelling cannot fully replace physical testing, it seems to be the perfect complement to experiments in terms of the analysis of such a complex phenomenon as traumatic spinal cord injury. Previous numerical models of the human cervical spinal cord have been limited by several factors: two-dimensional modelling, spinal cord geometry simplification and incomplete reflection of specific anatomical and biomechanical relations of the objects being modelled. The objective of this study was to develop and validate an accurate and universal numerical Finite Element Method (FEM) model of the human cervical spinal cord. Our survey focuses mainly on geometric, constraint and material aspects. Experimental validation was carried out based on a controlled compression of the porcine spinal cord specimens. Each stage of compression was simulated using the FEM model of the compressed segment. Our 3D numerical simulation results compared with experimental results show a good agreement. It is possible to use the developed numerical model of the human cervical spinal cord in the biomechanical analysis of the spinal cord injury phenomenon. However, further clinical evaluation is clearly justified. PMID:22339282

  11. Body composition of active persons with spinal cord injury and with poliomyelitis

    Science.gov (United States)

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  12. International standards to document remaining autonomic function after spinal cord injury

    DEFF Research Database (Denmark)

    Krassioukov, Andrei; Biering-Sørensen, Fin; Donovan, William; Kennelly, Michael; Kirshblum, Steven; Krogh, Klaus; Alexander, Marca Sipski; Vogel, Lawrence; Wecht, Jill

    2012-01-01

    This is the first guideline describing the International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI). This guideline should be used as an adjunct to the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) including the...

  13. CT scanning in two cases of lipoma of the spinal cord

    NARCIS (Netherlands)

    Dossetor, R.S.; Kaiser, M.; Veiga-Pires, J.A.

    1979-01-01

    Two cases of lipoma of the spinal cord are presented. CT gives a specific diagnosis in this condition without any contrast being given. It is important to make a preoperative diagnosis, as in lipoma of the spinal cord biopsy is dangerous and frequently makes the patient worse. CT is also valuable as

  14. Percutaneous vertebroplasty and spinal cord compression: a case report

    Directory of Open Access Journals (Sweden)

    Ilaria Morghen

    2009-03-01

    Full Text Available

    This report describes a 60-year-old woman with intensive back pain due to metastatic vertebral body collapse, who underwent  percutaneous vertebroplasty. Subsequently, the patient developed metastatic  lesion extrusion into the  spinal canal because of pressure of the cement, with compression of the left anterolateral spinal cord. During percutaneous vertebroplasty procedure in patient with malignant tumors, the complication rate increases owing to the risk of leakage of cement resulting from the vertebral body destruction, but as also seen in our case, for the extrusion of the neoplastic tissue  and increase of the pressure in the vertebral body due to the introduction of the cement.

  15. Spinal cord demyelination combined with hyperhomocysteinemia: a case report

    Directory of Open Access Journals (Sweden)

    Hao MM

    2014-11-01

    Full Text Available Meimei Hao, Yan Zhang, Shuangxing Hou, Yanling Chen, Ming Shi, Gang Zhao, Yanchun Deng Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China Abstract: Hyperhomocysteinemia (HHcy has been recognized as an independent risk factor for atherosclerotic vascular disease. Here we report a patient who suffered from spinal cord demyelination combined with HHcy. The patient was admitted to our hospital with a diagnosis of acute myelitis. However, hormone therapy was ineffective. Further investigations revealed that he had HHcy and a homozygous mutation of the gene encoding methylenetetrahydrofolate reductase (MTHFR c.677C>T, which is a key enzyme involved in homocysteine metabolism. In view of these findings, we treated the patient with B vitamins and his symptoms gradually improved. Spinal magnetic resonance imaging performed 3 months after onset showed near recovery of the lesion. To our knowledge, similar reports are rare. Keywords: demyelination, hyperhomocysteinemia, homocysteine, methylenetetrahydrofolate reductase, methylation

  16. Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, A.; Nystroem, B. (Department of Neurosurgery, University Hospital, Uppsala (Sweden)); Gerdin, B. (Department of General Surgery, University Hospital, Uppsala (Sweden))

    1989-01-01

    The ability of thyotropin releasing hormone (TRH) or naloxone to reduce the motor function deficit and to improve the spinal cord blood flow (SCBF) was investigated in a rat spinal cord compression injury model. Spinal cord injury was induced by compression for 5 min with a load of 35 g on a 2.2 x 5.0 mm sized compression plate causing a transient paraparesis. One group of animals was given TRH, one group naloxone and one group saline alone. Each drug was administered intravenously as a bolus dose of 2 mg/kg 60 min after injury followed by a continuous infusion of 2 mg/kg/h for 4 h. The motor performance was assessed daily on the inclined plant until Day 4, when SCBF was measured with the {sup 14}C-iodoantipyrine autoradiographic method. It was found that neither TRH nor naloxone had promoted motor function recovery or affected SCBF 4 days after spinal cord injury. (author).

  17. Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow

    International Nuclear Information System (INIS)

    The ability of thyotropin releasing hormone (TRH) or naloxone to reduce the motor function deficit and to improve the spinal cord blood flow (SCBF) was investigated in a rat spinal cord compression injury model. Spinal cord injury was induced by compression for 5 min with a load of 35 g on a 2.2 x 5.0 mm sized compression plate causing a transient paraparesis. One group of animals was given TRH, one group naloxone and one group saline alone. Each drug was administered intravenously as a bolus dose of 2 mg/kg 60 min after injury followed by a continuous infusion of 2 mg/kg/h for 4 h. The motor performance was assessed daily on the inclined plant until Day 4, when SCBF was measured with the 14C-iodoantipyrine autoradiographic method. It was found that neither TRH nor naloxone had promoted motor function recovery or affected SCBF 4 days after spinal cord injury. (author)

  18. Substance P release from rat hypothalamus and spinal cord

    International Nuclear Information System (INIS)

    A specific and sensitive radioimmunoassay for substance P has been developed to study the release of immunoreactive substance P from incubated rat hypothalamus and rat spinal cord in vitro. Release was significantly increased in the presence of two depolarizing stimuli (56 mM KCl and 75 μM veratrine) and was calcium-dependent. The released immunoreactive material diluted in parallel with synthetic substance P and showed close identity on Sephadex chromatography. A neuromodulator role for the peptide in the central nervous system is suggested

  19. Urinary tract infections in patients with spinal cord lesions

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Bagi, P; Høiby, N

    2001-01-01

    Even though the mortality due to urinary tract complications has decreased dramatically during the last decades in individuals with spinal cord lesions (SCL), urinary tract infections (UTI) still cause significant morbidity in this population. Complicated UTI are caused by a much wider variety of...... with SCL. There is no doubt that the greatest risk for complicated UTI in these individuals is the use of an indwelling catheter. Intermittent catheterisation during the rehabilitation phase has been shown to lower the rate of UTI, and virtually eliminate many of the complications associated with...

  20. Spinal-Cord-Injured Individual's Experiences of Having a Partner

    DEFF Research Database (Denmark)

    Angel, Sanne

    2015-01-01

    Having a partner is a strong factor in adaptation to the new life situation with a spinal cord injury (SCI). Still, more knowledge in detail about the partner's influences according to the experiences of individuals with SCI could contribute to the understanding of the situation after an injury....... The aim of this phenomenological-hermeneutic article is to achieve a deeper understanding of nine individuals' experiences the first 2 years after SCI. In rehabilitation after SCI, the partner supported the SCI individual's life spirit by not giving up and by still seeing possibilities in the future...