WorldWideScience

Sample records for adult rat spinal

  1. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.

    2010-01-01

    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was e

  2. Repair of acutely injured spinal cord through constructing tissue-engineered neural complex in adult rats

    Institute of Scientific and Technical Information of China (English)

    PU Yu; GUO Qing-shan; WANG Ai-min; WU Si-yu; XING Shu-xing; ZHANG Zhong-rong

    2007-01-01

    Objective: To construct tissue-engineered neural complex in vitro and study its effect in repairing acutely injured spinal cord in adult rats. Methods: Neural stem cells were harvested from the spinal cord of embryo rats and propagated in vitro. Then the neural stem cells were seeded into polyglycolic acid scaffolds and co-cultured with extract of embryonic spinal cord in vitro. Immunofluorescence histochemistry and scanning electron microscope were used to observe the microstructure of this complex. Animal model of spine semi-transection was made and tissue-engineered neural complex was implanted by surgical intervention. Six weeks after transplantation, functional evaluation and histochemistry were applied to evaluate the functional recovery and anatomic reconstruction. Results: The tissue-engineered neural complex had a distinct structure, which contained neonatal neurons, oligodendrocytes and astrocytes. After tissue-engineered neural complex was implanted into the injured spinal cord, the cell components such as neurons, astrocytes and oligodendrocytes, could survive and keep on developing. The adult rats suffering from spinal cord injury got an obvious neurological recovery in motor skills. Conclusions: The tissue-engineered neural complex appears to have therapeutic effects on the functional recovery and anatomic reconstruction of the adult rats with spinal cord injury.

  3. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  4. Differentiation of endogenous neural precursors following spinal cord injury in adult rats

    Institute of Scientific and Technical Information of China (English)

    Bin Zhao; Hua Han; Shuanke Wang; Bingren Gao; Zhengyi Sun

    2008-01-01

    BACKGROUND:Studies have shown that cell death can activate proliferation of endogenous neural stem cells and promote newly generated cells to migrate to a lesion site.OBJECTIVE:To observe regeneration and differentiation of neural cells following spinal cord injury in adult rats and to quantitatively analyze the newly differentiated cells.DESIGN,TIME AND SETTING:A cell biology experiment was performed at the Institute of Orthopedics and Medical Experimental Center,Lanzhou University.between August 2005 and October 2007.MATERIALS:Fifty adult,Wistar rats of both sexes;5-bromodeoxyuridine(BrdU,Sigma,USA);antibodies against neuron-specific enolase,glial fibrillary acidic protein,and myelin basic protein(Chemicon,USA).METHODS:Twenty-five rats were assigned to the spinal cord injury group and received a spinal cord contusion injury.Materials were obtained at day 1,3,7,15,and 29 after injury,with 5 rats for each time point.Twenty-five rats were sham-treated by removing the lamina of the vertebral arch without performing a contusion.MAIN OUTCOME MEASURES:The phenotype of BrdU-labeled cells,i.e.,expression and distribution of surface markers for neurons(neuron-specific enolase),astrocytes(glial fibrillary acidic protein),and oligodendrocytes(myelin basic protein),were identified with immunofluorescence double-labeling.Confocal microscopy was used to detect double-labeled cells by immunofluorescence.Quantitative analysis of newly generated cells was performed with stereological counting methods.RESULTS:There was significant cell production and differentiation after adult rat spinal cord injury.The quantity of newly-generated BrdU-labeled cells in the spinal cord lesion was 75-fold greater than in the corresponding area of control animals.Endogenous neural precursor cells differentiated into astrocytes and oligodendrocytes,however spontaneous neuronal difierentiation was not detected.Between 7 and 29 d after spinal cord injury,newly generated cells expressed increasingly more

  5. Influence of cryopreserved olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 殷德振; 唐勇; 吴燕峰; 程志安; 杨睿; 黄霖

    2004-01-01

    Objective: To observe the effects of cryopreserved olfactory ensheathing cells (OECs) transplantation on axonal regeneration and functional recovery following spinal cord injury in adult rats.Methods: Twenty-four rats were divided into experimental and control groups, each group having 12 rats. The spinal cord injury was established by transecting the spinal cord at T10 level with microsurgery scissors.OECs were purified from SD rat olfactory bulb and cultured in DMEM ( Dulbecco's minimum essential medium) and cryopreserved (-120℃) for two weeks.OECs suspension[(1-1.4)×105/ul] was transplanted into transected spinal cord, while the DMEM solution was injected instead in the control group. At 6 and 12 weeks after transplantation, the rats were evaluated with climbing test and MEP ( moter evoked potentials) monitoring. The samples of spinal cord were procured and studied with histological and immunohisto chemical stainings.Results: At 6 weeks after transplantation, all of the rats in both transplanted and control groups were paraplegic, and MEPs could not be recorded. Morphology of transplanted OECs was normal, and OECs were interfused with host well. Axons could regrow into gap tissue between the spinal cords. Both OECs and regrown axons were immunoreactive for MBP. No regrown axons were found in the control group. At 12 weeks after transplantation, 2 rats (2/7) had lower extremities muscle contraction, 2 rats (2/7) had hip and/or knee active movement, and MEP of 5 rats (5/7) could be recorded in the calf in the transplantation group. None of the rats (7/ 7) in the control group had functional improvement, and none had MEPs recorded. In the transplanted group,histological and immunohistochemical methods showed the number of transplanted OECs reduced and some regrown axons had reached the end of transected spinal cord.However, no regrown axons could be seen except scar formation in the control group.Conclusions: Cryopreserved OECs could integrated with the host and

  6. EXCITATORY CONNECTIONS BETWEEN SPINAL MOTONEURONS IN THE ADULT RAT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives. Dendro-dendritic and dendro-somatic projections are common between spinal motoneurons. We attempted to clarify whether there are functional connections through these projections.Methods. Motoneurons were antidromically stimulated by the muscle nerve and recorded intracellularly to examine the direct interaction between them, after the related dorsal roots had been cut.Results. Excitatory connections, demonstrated by depolarizing potentials in response to muscle nerve stimulation, were found between motoneurons innervating the same muscle or synergistic muscles, but never between motoneurons innervating antagonistic muscles. These potentials were finely graded in response to a series of increasing stimuli and resistant to high frequency (50Hz) stimulation.Conclusions.These results indicate that excitatory connections, with certain specificity of spatial and temporal distribution, occur in the spinal motoneurons. It is also suggested that electrical coupling should be involved in these connections and this mechanism should improve the excitability of the motoneurons in the same column.

  7. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2007-02-01

    Full Text Available BACKGROUND: Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC transplants have shown either poor differentiation or a preferential choice of glial lineages. METHODS AND FINDINGS: In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. CONCLUSIONS: NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major

  8. Expression and role of PAK6 after spinal cord injury in adult rat

    Directory of Open Access Journals (Sweden)

    CHEN Xiang-dong

    2012-02-01

    Full Text Available 【Abstract】Objective: To observe p21-activated kinase 6 (PAK6 expression and its possible role after spinal cord injury (SCI in adult rat. Methods: Sprague-Dawley rats were subjected to spinal cord injury. To explore the pathological and physiological significance of PAK6, the expression patterns and distribution of PAK6 were observed by Western blot, immunohistochemistry and immunofluorescence. Results: Western blot analysis showed PAK6 protein level was significantly up-regulated on day 2 and day 4, then reduced and had no up-regulation till day 14. Immunohistochemistry analysis showed that the expression of PAK6 was significantly increased on day 4 compared with the control group. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and astrocytes in the control group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes were largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA and found its change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells on day 4 after injury. Conclusion: The up-regulation of PAK6 in the injured spinal cord may be associated with glial proliferation. Key words: PAK6 protein, human; p21-activated kinases; Spinal cord injury; Astrocytes

  9. Vascularized peripheral nerve trunk autografted in the spinal cord: a new experimental model in adult rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the effect of vascularized peripheral nerve trunk autografted in spinal cord. Methods: With modern microsurgical technique,vascularized peripheral median and ulnar nerve trunk autografted in the upper thoracic region of the spinal cord were established in 20 female adult rats. The origin and the termination of axons in the graft were studied by retrograde neuronal labeling with horseradish peroxidase (HRP).Cord, nerve grafts and some normal median and ulnar nerves in the right upper limb were removed and sectioned for Bielschowsky's silver stain and haematoxylin and eosin (H&E) stain. Light and electron microscopic examination and electrophysiological examination were applied.Results: The grafts were innervated by many new fibers. Studies with HRP indicated that new axons in graft were originated from intrinsic central nervous system (CNS) neurons with their cell bodies from brain stem to sacral segments of spinal cord. Other axons arose from dorsal root ganglia at the level of graft and at least 19 distal segments to them. Together with electron microscopy, electrophysiological examination, silver and H&E stain, the results demonstrated that vascularized peripheral nerve trunk grafted in spinal cord attracted many neurons to grow into the nerve grafts.Conclusions: The findings implicate that CNS is able to regenerate much better in vascularized nerve autografted in spinal cord.

  10. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico)); Rivera, F. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Babinski, E. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Berlanga, E. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Madrazo, M. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Franco-Bourland, R. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico)); Grijalva, I. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  11. Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons

    OpenAIRE

    SASAKI, MASANORI; HONMOU, OSAMU; Akiyama, Yukinori; Uede,Teiji; Hashi,Kazuo; Kocsis, Jeffery D.

    2001-01-01

    The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remov...

  12. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue s

  13. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat.

    Directory of Open Access Journals (Sweden)

    Marie-Solenne eFELIX

    2012-04-01

    Full Text Available Spinal cord injury (SCI triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e. brain, remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels, which could explain the SCI-mediated distant effects on forebrain neurogenesis. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.

  14. The Effects of Cyclosporin-A on Functional Outcome and Axonal Regrowth Following Spinal Cord Injury in Adult Rats

    Directory of Open Access Journals (Sweden)

    Hamdollah Delaviz

    2012-04-01

    Full Text Available It has been shown that the immunophilin ligands have the special advantage in spinal cord repair. In this study, the effects of cyclosporine A (CsA on functional recovery and histological outcome were evaluated following spinal cord injury in rats. After spinal cord hemisection in thirty six adult female Sprague-Dawley rats (200- 250 g, treatment groups received CsA (2.5 mg/kg i.p. at 15min and 24h after lesion (CsA 15min group and CsA 24h group daily, for 8 weeks. Control and sham groups received normal saline and in sham operated animals the spinal cord was exposed in the same manner as treatment groups, but was not hemisected. Hindlimb motor function was assessed in 1, 3, 5 and 7 weeks after lesion, using locomotive rating scale developed by Basso, Bresnahan and Beattie (BBB. Motor neurons were counted within the lamina IX of ventral horn and lesion size was measured in 5 mm of spinal lumbar segment with the epicenter of the lesion site. The mean number of motor neurons and the mean BBB scale in 3, 5 and 7 weeks in CsA 15min groups significantly increased compared to the control group. Although, the lesion size reduced in rats with CsA treatment compared to the control group, no significant difference was observed. Thus, it can be concluded that CsA can improve locomotor function and histological outcome in the partial spinal cord injury.

  15. Differential expression of Wnts after spinal cord contusion injury in adult rats.

    Directory of Open Access Journals (Sweden)

    Carmen María Fernández-Martos

    Full Text Available BACKGROUND: Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. FINDINGS: Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. CONCLUSIONS: Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.

  16. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats.

    Science.gov (United States)

    Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami

    2014-02-01

    Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.

  17. Morphological and electrophysiological evidence for regeneration of transected spinal cord fibers and restoration of motor functions in adult rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    After 2/3 transection of the right ninth thoracic spinal cord of an adult rat, a chitosan tube seeded with L-poly-lysine was implanted between the rostral and caudal end of the lesioned cord. Twelve months after the operation, regeneration of myelinated and non-myelinated axons and new blood vessels were observed along the wall of the chitosan tube implanted under an electron microscope. Somatosensory evoked potentials (SEP) could be consistently recorded from the left somatosensory cortex following electrical stimulation of the right hind limb, while transcranial magnetic stimulation of the left motor cortex could also evoke motor activity from the right hind limb. The present result suggests that implanted chitosan tube might be useful in regeneration of injured nerve fibers of the spinal cord resulting in a long-term restoration of motor functions.

  18. EXPRESSION OF NESTIN AND GLIAL FIBRILLARY ACIDIC PROTEIN IN DIFFERENT PERIOD AFTER SPINAL INJURY IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    屈建强; 贺西京; 杨平林; 师蔚; 李浩鹏; 兰宾尚; 袁普卫; 王国毓

    2004-01-01

    Objective To study the expression of Nestin and glial fibrillary acidic protein (GFAP) in different period after spinal injury in adult rats. Methods Animal moels were created by artery clamp. Expression of Nestin and GFAP in different period (1,3,5days;1-8 weeks) and different area(injury locus and its surrounding tissue ) after spinal injury were observed pathologicaly using immunofluorescence and LeicaQ500IW imaging processing system. Results There was expression of Nestin and GFAP in injured area 1 day after injury.The expression increased not only in in injured area but its sourrounding 3-7 days later and gradually got to peak value. As the time went on, expression of Nestin and GFAP dereased. Conclusion Spinal injury can induce the expression of Nestin. Nerve stem cell has response to spinal injury. There is positive correlation between expression of Nestin and hyperplasia of reactivity astrocyte. Nerve stem cell maybe invovled in the repair of central nervous system (CNS).

  19. Upregulation of S100A4 after spinal cord transection in adult rats

    Institute of Scientific and Technical Information of China (English)

    Kai-hua ZHANG; Shu HAN; Pei-hua LU; Xiao-ming XU

    2004-01-01

    AIM: To investigate whether spinal cord transection induces changes of gene expression of S 100A4 protein.METHODS: In a spinal cord transection model, S 100A4 expression and cellular localization were examined using cDNA microarray, Northern blot, immunohistochemistry, and immunofluorescence double-labeling methods.RESULTS: There was very limited S 100A4 mRNA expression in the control spinal cord. However, S 100A4 mRNA expression was increased significantly in both the rostral and caudal spinal cord segments adjacent to the injury site.Specifically, S100A4 gene expression was substantially increased at d 2, peaked at d 7 and d 14, and remained high up to 28 d post-injury. During its peak expression, S100A4 protein was localized in astrocytes of the spinal cord within 5 mm from the site of spinal transection. CONCLUSION: Spinal cord transection induces prolonged S 100A4 expression at both mRNA and protein levels in areas close to the injury site. Increased expression of S100A4 in astrocytes after spinal cord transection may indicate that this molecule may play a role in astrocytic responses to injury.

  20. Studies on repairing of hemisected thoracic spinal cord of adult rats by using a chitosan tube filled with alginate fibers

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoguang; YANG Zhaoyang; YANG Yi

    2006-01-01

    A chitosan tube filled with alginate fibers was implanted into the injured spinal cord of a rat for repairing the damaged tissue. Twelve months after the operation, the morphological observation demonstrated that this chitosan tube could induce regeneration of myelinated and non-myelinated axons and blood vessels. The Basso-Beattie-Bresnahan (BBB) behavioral evaluation confirmed that the implants played a key role in the long-term restoration of rats motor functions. It is a promising start in the treatment of the patients with the injury of the spinal cord.

  1. Upregulation of heparin-binding growth-associated molecule after spinal cord injury in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yan-ting WANG; Shu HAN; Kai-hua ZHANG; Yu JIN; Xiao-ming XU; Pei-hua LU

    2004-01-01

    AIM: To investigate whether traumatic spinal cord injury (SCI) induces changes of gene expression of heparinbinding growth-associated molecule (HB-GAM). METHODS: In a spinal cord transection model, HB-GAM expression and cellular localization were examined using Northern blot, RT-PCR, immunohistochemistry and immunofluorescence double-labeling methods. RESULTS: HB-GAM mRNA was significantly upregulated in spinal cord tissues rostral and caudal to the injury at 7 d after SCI. HB-GAM gene expression was markedly increased at 3 d,peaked at 7 d, and declined to the baseline level at 28 d post-injury. During its peak expression, HB-GAM was colocalized in astrocytes, oligodendrocytes, and neurons in spinal cord tissues within 7 mm from the site of spinal transection. CONCLUSION: SCI induces HB-GAM expression at both mRNA and protein levels in areas close to the injury. Both neurons and glial cells expressed HB-GAM implying that HB-GAM played a role in the process of injury and/or repair following SCI.

  2. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    Science.gov (United States)

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. PMID:26611563

  3. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    Science.gov (United States)

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury.

  4. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat.

    Science.gov (United States)

    Leanza, G; Cataudella, T; Dimauro, R; Monaco, S; Stanzani, S

    1999-05-01

    Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a

  5. Effects of C8 ventral root avulsion or transection on spinal alpha motoneurons in adult rats A qualitative light and electron microscopic study

    Institute of Scientific and Technical Information of China (English)

    Khulood M.AL-Khater; Bassem Y.Sheikh

    2008-01-01

    BACKGROUND:Nerve root avulsion is a frequent finding in patients with brachial plexus injury following road traffic accidents or as a result of severe arm traction during complicated deliveries.This injury constitutes a challenging clinical and surgical problem.The orphological characteristics of motoneurons after nerve root avulsion deserve further analysis.OBJECTIVE:To study the different morphological changes of u -motoneurons under light and electron microscopy after C8 spinal ventral rootlets avulsion and transection at various stages.DESIGN:Controlled animal study.SETTING:Department of Anatomy,King Faisal University.MATERIALS:The experiment was carried out at the Department of Anatomy,College of Medicine,King Faisal University between January 2005 and March 2006.Six adult Sprague Dawley rats weighing 200-350 g, irrespective of gender,were used for this study.The animals were bred at the animal house,College of Medicine,King Faisal University,and fed on rat maintenance diet.Water and standard diet were supplied ad libitum.Animal interventions were carried out according to animal ethical standards.METHODS:Three animals were randomly chosen for avulsion of the right ventral rootlets of C8 spinal nerves.The other three received transection of the right ventral rootlets of C8 spinal nerves.①Avulsion experiment:After rats were anesthetized,the right ventral rootlets of C8 spinal nerves were identified.The ventral rootlets were avulsed from the spinal cord by traction with a fine hook(Fine Science Tools Inc.,No. 10031-13,Germany).Traction was exerted in a direction parallel to the course of the spinal root.Under the operating microscope,the Cs segment was exactly located.After checking the successfulness of the surgical procedure,the Ca segment was separated from the spinal cord.The outcome of the avulsion procedure was as follows:two animals had true avulsion,i.e.,no remaining stump was attached to the spinal cord surface.One rat had a stump still attached

  6. Brain and Spinal Cord Tumors in Adults

    Science.gov (United States)

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  7. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord.

    Science.gov (United States)

    Fan, Xin Yan Susan; Mothe, Andrea J; Tator, Charles H

    2013-02-01

    Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (Pinjured spinal cord compared with the infusion of PBS (Pinjured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.

  8. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    Science.gov (United States)

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  9. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations

    OpenAIRE

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2007-01-01

    Some rats spinalized P1/P2 achieve autonomous weight supported locomotion and quiet stance as adults. We used force platforms and robot applied perturbations to test such spinalized rats (n=6) which exhibited both weight supporting locomotion and stance, and also normal rats (n=8). Ground reaction forces in individual limbs, and the animals’ center of pressure were examined. In normal rats, both forelimbs and hindlimbs participated actively to control horizontal components of ground reaction ...

  10. Role of ERK1/2, Akt, and PLCy pathways in proliferation and neuronal differentiation in the adult rat spinal cord neural stem/progenitor cell culture

    Directory of Open Access Journals (Sweden)

    Wai Si eChan

    2013-08-01

    Full Text Available Proliferation of endogenous neural stem/progenitor cells (NSPCs has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2. We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2 over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2 or the phosphoinositide 3-kinase (PI3K/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase C gamma (PLCy pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCy signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs.

  11. Vitamin A deficiency induces congenital spinal deformities in rats.

    Directory of Open Access Journals (Sweden)

    Zheng Li

    Full Text Available Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58 in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis.

  12. APOPTOSIS AFTER SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To confirm the role played by apoptosis in spinal cord injury. Methods 36 rats models of spinal cord injury were made by Allen method. Histological examinations using HE staining and in situ end-labeling were used to observe apoptosis in spinal cord tissues from 1h to 21d after injury. Results HE staining sections showed hemorrhage and necrosis, neuronal degeneration and gliai cell proliferation. In situ end-labeling sections showed the appearance of apoptosis in both gray and white matter as well as in both central and surrounding region. The number of apoptotic cells increased from 12h after injury, increased to the peak at 4d and declined to normal at 21d. Conclu sion The results suggest that apoptosis, especially glial apoptosis, plays a role in the pathogenesis of spinal cord in jury.

  13. Neurological complications in adult spinal deformity surgery.

    Science.gov (United States)

    Iorio, Justin A; Reid, Patrick; Kim, Han Jo

    2016-09-01

    The number of surgeries performed for adult spinal deformity (ASD) has been increasing due to an aging population, longer life expectancy, and studies supporting an improvement in health-related quality of life scores after operative intervention. However, medical and surgical complication rates remain high, and neurological complications such as spinal cord injury and motor deficits can be especially debilitating to patients. Several independent factors potentially influence the likelihood of neurological complications including surgical approach (anterior, lateral, or posterior), use of osteotomies, thoracic hyperkyphosis, spinal region, patient characteristics, and revision surgery status. The majority of ASD surgeries are performed by a posterior approach to the thoracic and/or lumbar spine, but anterior and lateral approaches are commonly performed and are associated with unique neural complications such as femoral nerve palsy and lumbar plexus injuries. Spinal morphology, such as that of hyperkyphosis, has been reported to be a risk factor for complications in addition to three-column osteotomies, which are often utilized to correct large deformities. Additionally, revision surgeries are common in ASD and these patients are at an increased risk of procedure-related complications and nervous system injury. Patient selection, surgical technique, and use of intraoperative neuromonitoring may reduce the incidence of complications and optimize outcomes. PMID:27250041

  14. 自体骨髓基质干细胞移植对大鼠脊髓损伤的疗效%EFFECTS OF TRANSPLANTATION OF AUTOLOGOUS BONE MARROW STROMAL CELLS ON REPAIR OF SPINAL CORD INJURY IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    沈肖方; 王延伟; 刘晓阳; 刘洪涛

    2011-01-01

    [目的]观察自体骨髓基质干细胞(bone marrow stromal cells,BMSCs)移植对大鼠脊髓损伤(SCI)的治疗效果.[方法]体外分离纯化大鼠骨髓基质干细胞,取46例Wistar大鼠采用改良的Allen's装置在TIl水平制成大鼠脊髓损伤模型,随机分成基质干细胞(MSCs)移植组(n=23)和对照组(n=23),分别于术后1、4周通过BBB评分观察大鼠SCI后功能的恢复情况.[结果]术前所有大鼠BBB评分均为21分,脊髓损伤后为0分,所有大鼠神经功能缺损症状随着时间的推移都有不同程度的减轻.两组术后4周时BBB评分均较术后1周时高,差异有统计学意义(P<0.05).移植组术后1、4周时BBB评分均高于对照组,差异有统计学意义(P<0.05).[结论]BMSCs移植有助予大鼠脊髓损伤后的修复重建和功能恢复.%[Objective] To observe the effects of transplantation of autologous bone marrow stromal cells (BMSCs) on repair of spinal cord injury (SCI) in adult rats. [Methods] Autologous bone marrow stromal cells were isolated and purified. 46 Wistar rats with spinal cord injury were randomly divided into two groups (n = 23, each). The BMSCs group was received transplantation of autologous bone marrow stromal cells, and the control group was only given spinal cord injury. At one and four weeks after surgery, the functional recovery of the hind limbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score. [Results] The spinal cord function BBB scores at 4 weeks after bone marrow stromal cell transplantation were significantly higher than those at one week after bone marrow stromal cell transplantation in the two groups. At one and four weeks after bone marrow stromal cell transplantation, the BBB scores in the BMSCs group were significantly higher than those in the control group (P < 0.05). [Conclusion] Autologous bone marrow stem cell transplantation is effective for treatment of spinal cord injury of adult rats.

  15. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nowruz Najafzadeh; Maliheh Nobakht; Bagher Pourheydar; Mohammad Ghasem Golmohammadi

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair fol icle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair fol icle stem celltransplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa fol icles was isolated, cultivated and characterized with nestin as a stem cellmarker. 5-Bromo-2′-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks fol owing celltransplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demon-strate that the grafted hair fol icle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair fol icle stem cells can promote the recovery of spinal cord injury.

  16. Perfusion assessment in rat spinal cord tissue using photoplethysmography and laser Doppler flux measurements

    Science.gov (United States)

    Phillips, Justin P.; Cibert-Goton, Vincent; Langford, Richard M.; Shortland, Peter J.

    2013-03-01

    Animal models are widely used to investigate the pathological mechanisms of spinal cord injury (SCI), most commonly in rats. It is well known that compromised blood flow caused by mechanical disruption of the vasculature can produce irreversible damage and cell death in hypoperfused tissue regions and spinal cord tissue is particularly susceptible to such damage. A fiberoptic photoplethysmography (PPG) probe and instrumentation system were used to investigate the practical considerations of making measurements from rat spinal cord and to assess its suitability for use in SCI models. Experiments to assess the regional perfusion of exposed spinal cord in anesthetized adult rats using both PPG and laser Doppler flowmetry (LDF) were performed. It was found that signals could be obtained reliably from all subjects, although considerable intersite and intersubject variability was seen in the PPG signal amplitude compared to LDF. We present results from 30 measurements in five subjects, the two methods are compared, and practical application to SCI animal models is discussed.

  17. The effect of microgene pSVPoMcat to modify Schwann cell on GAP- 43 expression after spinal cord injury in adult rats%微基因修饰雪旺氏细胞移植对大鼠脊髓损伤后GAP-43表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈礼刚; 高立达; 毛伯镛; 杨立斌; 李开慧

    2001-01-01

    Objective To study the effect of microgene pSVPoMcat implanted to modify schwann cell on growth associated protein-43(GAP-43) expression after spinal cord injury in adult rats.Method Hemisected of the T8 segment of the spinal cord was performed for all the experiment rats.The rats were randomly divided into three groups as follows:Group A with microgene pSVPoMcat implanted to genetically modify SC;Group B with SC implanted ;Group C with hemisection of the spinal cord only.The changes of expression of GAP-43 in spinal cord were observed by immunochemistry with antibodies against GAP-43 .Simultaneous,the combined behavioral scores(CBS)was measured.Result There were not any different(P >0.05)among the three groups in first week and 12 week.There were significant diffeence(P<0.05)among three groups in 2nd,8th,and more dxpression of GAP-43 at the 2nd week in group A.The neurofunctional recovery was best in group A.Conclusion The microgene pSVPoMcat implanted to modify schwann cell can promote the expression of GAP-43 in spinal cord and functional recovery in adults rats after SCI.

  18. The Cotransplantation of Olfactory Ensheathing Cells with Bone Marrow Mesenchymal Stem Cells Exerts Antiapoptotic Effects in Adult Rats after Spinal Cord Injury

    OpenAIRE

    Shifeng Wu; Guanqun Cui; Hua Shao; Zhongjun Du; Ng, Jack C.; Cheng Peng

    2015-01-01

    The mechanisms behind the repairing effects of the cotransplantation of olfactory ensheathing cells (OECs) with bone marrow mesenchymal stromal cells (BMSCs) have not been fully understood. Therefore, we investigated the effects of the cotransplantation of OECs with BMSCs on antiapoptotic effects in adult rats for which the models of SCI are induced. We examined the changes in body weight, histopathological changes, apoptosis, and the expressions of apoptosis-related proteins after 14 days an...

  19. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Directory of Open Access Journals (Sweden)

    Steffen Franz

    Full Text Available After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord and unaltered in neurogenic regions (dentate gyrus and SVZ of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  20. Decision Making Algorithm for Adult Spinal Deformity Surgery.

    Science.gov (United States)

    Kim, Yongjung J; Hyun, Seung-Jae; Cheh, Gene; Cho, Samuel K; Rhim, Seung-Chul

    2016-07-01

    Adult spinal deformity (ASD) is one of the most challenging spinal disorders associated with broad range of clinical and radiological presentation. Correct selection of fusion levels in surgical planning for the management of adult spinal deformity is a complex task. Several classification systems and algorithms exist to assist surgeons in determining the appropriate levels to be instrumented. In this study, we describe our new simple decision making algorithm and selection of fusion level for ASD surgery in terms of adult idiopathic idiopathic scoliosis vs. degenerative scoliosis. PMID:27446511

  1. Injury-induced class 3 semaphorin expression in the rat spinal cord

    NARCIS (Netherlands)

    Gispen, W.H.; Winter, F. de; Oudega, M.; Lankhorst, A.J.; Hamers, F.P.; Blits, B.; Ruitenberg, M.J.; Pasterkamp, R.J.; Verhaagen, J.

    2002-01-01

    In this study we evaluate the expression of all members of the class 3 semaphorins and their receptor components following complete transection and contusion lesions of the adult rat spinal cord. Following both types of lesions the expression of all class 3 semaphorins is induced in fibroblast in th

  2. Brain-derived neurotrophic factor and neural plasticity in a rat model of spinal cord transection

    Institute of Scientific and Technical Information of China (English)

    Ruxin Xing; Jia Liu; Hua Jin; Ping Dai; Tinghua Wang

    2011-01-01

    The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-derived neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinase1/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinase1/2 signaling pathway in a rat model of adult spinal cord transection.

  3. Complications after spinal anesthesia in adult tethered cord syndrome.

    Science.gov (United States)

    Liu, Jing-Jie; Guan, Zheng; Gao, Zhen; Xiang, Li; Zhao, Feng; Huang, Sheng-Li

    2016-07-01

    Since little has been reported about complications of spinal anesthesia in adult tethered cord syndrome (TCS), we sought to delineate the characteristics of the condition.A total of 4 cases of adult TCS after spinal anesthesia were reviewed. The medical charts of the patients were obtained. Anesthesia, which was combined spinal and epidural anesthesia or spinal anesthesia was performed, and follow-up were carried out in all patients.The most common neurological symptom of adult TCS before surgery was occasional severe pain in back, perineal region, or legs. Frequent micturition, diminished knee and ankle reflexes, and difficulty in bending were exhibited in partial patients. Paraesthesia of perineal region or/and lower extremities existed 2 to 3 days after spinal anesthesia in all the cases. Weakness of lower extremities existed in 1 case. Lumbar magnetic resonance imaging showed the low location of conus medullaris. At follow-up, 3 cases recovered completely within 3 weeks, and 1 case underwent permanent disability.These cases suggest anesthesiologists and surgeons alert to the association of adult TCS and spinal anesthesia. Spinal anesthesia should be prohibited in patients with adult TCS to prevent neurological damages. PMID:27442670

  4. Trigeminally induced cardiovascular reflex responses in spinalized rats.

    Science.gov (United States)

    Ideguchi, S; Hotta, H; Suzuki, A; Umino, M

    2000-03-15

    The effects on cardiovascular functions of noxious stimulation to the orofacial areas innervated by trigeminal afferent nerves were analyzed in urethane-anesthetized, spinal cord-intact rats and in rats acutely spinalized at the second cervical level. In the spinal cord-intact rats, pinching of the upper lip produced increases in both heart rate (HR) and mean arterial pressure (MAP). Both responses were considered to be due to activation of sympathetic efferent nerves to the cardiovascular organs. Both responses were attenuated but did not disappear after spinalization at the C2 level. In spinalized rats, sympathetic preganglionic neurons emerging from the thoracolumbar spinal cord could not receive any neural influences from the brain. The HR response in the spinal rats was abolished after either bilateral vagotomy or intravenous injection of a peripherally acting muscarinic cholinergic receptor antagonist, methylatropine. This suggests that the increase in HR was elicited via vagal cholinergic efferent fibers, probably by decreasing tonic activity of vagus nerves to the heart. In spinal rats, neither vagotomy nor cholinergic blockade affected the increase in MAP, but i.v. injection of the vasopressin V1 receptor antagonist, OPC-21268, abolished the response of MAP. This suggests that the response of MAP was due to peripheral vasoconstriction elicited by vasopressin secreted from the posterior pituitary lobe. The present study demonstrated that, in rats acutely spinalized at the C2 level, noxious stimulation of orofacial areas innervated by the trigeminal nerve could produce reflex increases both in HR, by decreasing cholinergic vagal nerve activity to the heart, and blood pressure, by secreting vasopressin from the pituitary gland, even though sympathetic efferent innervation to the cardiovascular organs could not be directly affected by trigeminal afferent nerve excitation.

  5. Establishment and evaluation of a rat model of complete transected spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xuejun Li; Chunhai Huang; Shangming Liu; Xianrui Yuan

    2008-01-01

    BACKGROUND: The establishment of a rat model of complete transected spinal cord injury lacks technological specifications. The current models lack concordance and reliability, and the death rate of the experimental animals is high. Therefore, there is a great need for a reliable model to apply clinical applications of therapy.OBJECTIVE: To construct a rat model of complete transected spinal cord injury characterized by stability, reproducibility, and a high animal survival rate. DESIGN: Completely randomized controlled study.SETTING: Department of Neurosurgery, Xiangya Hospital of Central South University.MATERIALS: Fifty-five healthy specific pathogen free grade adult female Sprague Dawley rats were provided by the Experimental Animal Department, Xiangya Medical College, Central South University. Olympus BX51 imaging collecting analytic system was provided by Olympus Company, Japan; and SEN-7203 Nihon-Kohden electrical stimulator by Nihon Kohden, Japan. METHODS: This study was performed at the Laboratory of Neurosurgery, Xiangya Hospital of Central South University from April to June 2006. Experimental grouping: 55 rats were randomly divided into model group (n = 40) and sham surgery group (n = 15). In the model group, a self-made sliver hook was passed through the ventral side to support the spinal cord at the T12 segment and to shear it off. A complete transected spinal cord, 2 mm in length, was resected. In the sham surgery group, the spinal cord was identically exposed. The dura mater of the spinal cord was cut open, but the spinal cord was not damaged. MAIN OUTCOME MEASURES: Histopathological changes after spinal cord injury at L2 segment were observed subsequent to hematoxylin and eosin staining under optical microscopy. Olympus BX51 imaging collecting analytic system was used to count spinal cord ventral horn neurons. Motor function of rat hindlimb was evaluated with the Basso, Beattie and Bresnahan (BBB) scale. Paraplegia was evaluated as 0 point, and

  6. A Surgery Protocol for Adult Zebrafish Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Ping Fang; Jin-Fei Lin; Hong-Chao Pan; Yan-Qin Shen; Melitta Schachner

    2012-01-01

    Adult zebrafish has a remarkable capability to recover from spinal cord injury,providing an excellent model for studying neuroregeneration.Here we list equipment and reagents,and give a detailed protocol for complete transection of the adult zebrafish spinal cord.In this protocol,potential problems and their solutions are described so that the zebrafish spinal cord injury model can be more easily and reproducibly performed.In addition,two assessments are introduced to monitor the success of the surgery and functional recovery:one test to assess free swimming capability and the other test to assess extent of neuroregeneration by in vivo anterograde axonal tracing.In the swimming behavior test,successful complete spinal cord transection is monitored by the inability of zebrafish to swim freely for 1 week after spinal cord injury,followed by the gradual reacquisition of full locomotor ability within 6 weeks after injury.As a morphometric correlate,anterograde axonal tracing allows the investigator to monitor the ability of regenerated axons to cross the lesion site and increasingly extend into the gray and white matter with time after injury,confirming functional recovery.This zebrafish model provides a paradigm for recovery from spinal cord injury,enabling the identification of pathways and components of neuroregeneration.

  7. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    OpenAIRE

    Marcol, Wiesław; Slusarczyk, Wojciech; SIEROŃ, ALEKSANDER L.; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cor...

  8. Locally transplanted enteric gila improve functional and structural recovery in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shucui Jiang; Mohammad I.Khan; James R.Bain; Cai Jiang; Christopher R.Hansebout; Zesheng Yu; Yuqing Liu; Michel P.Rathbone

    2009-01-01

    BACKGROUND: We have previously reported that adult enteric gila (EG) facilitate the growth of transected dorsal root axons into the uninjured spinal cord to form functional connections with their targets. OBJECTIVE: The present study investigated the effects of EG on spinal cord function, tissue injury, and axonal regeneration following transplantation into injured rat spinal cords, according to histological and functional outcomes. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at McMaster University, Canada from January 2006 to March 2008.MATERIALS: EG were isolated from rat intestine. METHODS: One week following spinal cord crush, female Wistar rats were injected with an EG suspension (2 μL, 1 x 10 5/μL, n=10) or with the same volume of fresh culture medium alone (control animals, n=11). The third group did not receive any injection following laminectomy and served as the sham-operated controls (n=5). MAIN OUTCOME MEASURES: Behavior was tested prior to transplantation and weekly following transplantation, with nine behavioral examinations in total. Open field, hind limb placement response, foot orientation response, and inclined plane test were utilized. Immediately following the final behavioral examination, spinal cord T9 to L1 segments were harvested for immunohistochemical and hematoxylin-eosin staining to determine astroglial scarring, axonal regeneration and spinal cord lesion size. RESULTS: Rats with EG transplantation exhibited significantly better locomotor function with reduced tissue damage, compared with the control rats. Cystic cavities were present 2 months after injury in spinal cords from both control groups. In contrast, rats injected with EG did not present with cystic lesions. In addition, the injury site consisted of cellular material and nerve fibers, and axonal regeneration was apparent, with dense labeling of neurofilament-positive axons within the injury site. Moreover, regenerating axons were

  9. Calreticulin expression in spinal motoneurons of the rat

    NARCIS (Netherlands)

    Copray, JCVM; Liem, RSB; Kernell, D

    1996-01-01

    We have examined the expression of calreticulin in rat spinal motoneurons in order to reveal the occurrence and distribution of Ca2+-storage organelles in these neurons. Calreticulin, the non-muscle equivalent of calsequestrin, is the low-affinity, high-capacity calcium-binding protein responsible f

  10. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M;

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  11. Antioxidation of melatonin against spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    刘锦波; 唐天驷; 杨惠林; 肖德生

    2004-01-01

    Background The iron catalyzed lipid peroxidation plays an important role in the autodestruction of the injured spinal cord. This study was to detect the antioxidation of melatonin against spinal cord injury (SCI) in rats.Methods Sity Sprague-Dawley rats were randomly divided into four groups: group A (n = 15) for laminectomyanly, group B (n = 15) for laminectomy with SCI, group C (n = 15) for SCI and intraperitoneal injection of a bolus of 100 mg/kg melatonin, and group D (n = 15) for SCI and intraperitoneal injection of saline containing 5% ethanol. The SCI of animal model was made using modified Allen's method on T12. Six rats of each group were sacrificed 4 hours after injury, and the levels of free iron and malondialdehyde (MDA) of the involved spinal cord segments were measured by the bleomycin assay and thiobarbituric acid (TBA) separately. Functional recovery of the spinal cord was assessed by Modified Tarlov's scale and the inclined plane method at 1,3, 7, 14, 21 days after SCI. The histologic changes of the damaged spinal cord were also examined at 7 days after SCl.Results After SCI, the levels of free iron and MDA were increased significantly and the modified Tarlov's score and inclined plane angle decreased significantly in groups B and D. In group C, the Tarlov's score and inclined plane angle were increased significantly at 7, 14 and 21 days, with histological improvement.Conclusion: Melatonin can reduce the level of lipid peroxidation and prevent damage to the spinal cord of rat.

  12. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat.

    Science.gov (United States)

    Saxena, Tarun; Gilbert, Jeremy; Stelzner, Dennis; Hasenwinkel, Julie

    2012-06-10

    The glial scar formed at the site of traumatic spinal cord injury (SCI) has been classically hypothesized to be a potent physical and biochemical barrier to nerve regeneration. One longstanding hypothesis is that the scar acts as a physical barrier due to its increased stiffness in comparison to uninjured spinal cord tissue. However, the information regarding the mechanical properties of the glial scar in the current literature is mostly anecdotal and not well quantified. We monitored the mechanical relaxation behavior of injured rat spinal cord tissue at the site of mid-thoracic spinal hemisection 2 weeks and 8 weeks post-injury using a microindentation test method. Elastic moduli were calculated and a modified standard linear model (mSLM) was fit to the data to estimate the relaxation time constant and viscosity. The SLM was modified to account for a spectrum of relaxation times, a phenomenon common to biological tissues, by incorporating a stretched exponential term. Injured tissue exhibited significantly lower stiffness and elastic modulus in comparison to uninjured control tissue, and the results from the model parameters indicated that the relaxation time constant and viscosity of injured tissue were significantly higher than controls. This study presents direct micromechanical measurements of injured spinal cord tissue post-injury. The results of this study show that the injured spinal tissue displays complex viscoelastic behavior, likely indicating changes in tissue permeability and diffusivity.

  13. Effect of electro-acupuncture on the expression of heat shock protein-70 gene in rat spinal cords following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:It is generally believed that the mechanism by which heat shock protein-70(HSP70) protects cells is related to its effectiveness in maintaining the normal stereochemical structure of intracellular proteins,and in participating in the process of cell apoptosis.Whether electro-acupuncture participates in HSP70 expression and produces neuroprotective effects remain unclear.OBJECTIVE:This study aimed at detecting HSP70 expression after electro-acupuncture in rats with transected spinal cord,in order to further validate the mechanism of electro-acupuncture-induced effects in the treatment of spinal cord injury.DESIGN:A controlled observational experiment.SETTING:Shanghai University of Traditional Chinese Medicine and Toho University,School of Medicine.MATERIALS:Seventy adult male Sprague-Dawley rats of SPF grade,weighing 200±20g,were provided by the Laboratory Animal Center of Shanghai University of Traditional Chinese Medicine,with permission No.SYXK(hu)2004-2005.The animals were handled in accordance with the requests from Animal Ethics Committees for guidance.A G6805-2 multiple purpose treatment machine was used (Shanghai Medical Instruments High-Tech Co.,Ltd.,Shanghai,China).METHODS:This study was carried out in the state level laboratories of Shanghai University of Traditional Chinese Medicine and Toho University,School of Medicine between January 2005 and July 2007.The rats were randomly divided into the electro-acupuncture treated group,which received electro-acupuncture treatment in addition to spinal cord surgery and the control group,which received only spinal cord surgery,with 35 rats in each group.All the rats underwent the same surgery consisting of spinal cord transection at the T10 level.If the spinal cord was completely transected and the two posterior limbs were completely paralyzed,then the surgery was considered successful and the animal was kept for further analysis and testing.After surgery,rats in the experimental group were electro

  14. Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk

    OpenAIRE

    Pull ter Gunne, Albert F.; Laarhoven, C.J.H.M. van; Cohen, David B.

    2010-01-01

    Surgical site infection (SSI) following spinal surgery is a frequent complication and results in higher morbidity, mortality and healthcare costs. Patients undergoing surgery for spinal deformity (scoliosis/kyphosis) have longer surgeries, involving more spinal levels and larger blood losses than typical spinal procedures. Previous research has identified risk factors for SSI in spinal surgery, but few studies have looked at adult deformity surgeries. We retrospectively performed a large case...

  15. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    Science.gov (United States)

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  16. Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro.

    Science.gov (United States)

    Corcoran, Jonathan; So, Po-Lin; Barber, Robert D; Vincent, Karen J; Mazarakis, Nicholas D; Mitrophanous, Kyriacos A; Kingsman, Susan M; Maden, Malcolm

    2002-10-01

    Retinoic acid, acting through the nuclear retinoic acid receptor beta2 (RARbeta2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic acid also stimulates neurite outgrowth and RARbeta2 is upregulated. By contrast, in the adult mouse spinal cord, which cannot regenerate, no such upregulation of RARbeta2 by retinoic acid is observed and no neurites are extended in vitro. To test our hypothesis that the upregulation of RARbeta2 is crucial to neurite regeneration, we have transduced adult mouse or rat spinal cord in vitro with a minimal equine infectious anaemia virus vector expressing RARbeta2. After transduction, prolific neurite outgrowth occurs. Outgrowth does not occur when the cord is transduced with a different isoform of RARbeta nor does it occur following treatment with nerve growth factor. These data demonstrate that RARbeta2 is involved in neurite outgrowth, at least in vitro, and that this gene may in the future be of some therapeutic use. PMID:12235288

  17. Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury

    Directory of Open Access Journals (Sweden)

    George Tharion

    2011-01-01

    Full Text Available Background: Olfactory ensheathing cells (OEC are considered to be the most suitable cells for transplantation therapy in the central nervous system (CNS because of their unique ability to help axonal regrowth and remyelination in the CNS. However, there are conflicting reports about the success rates with OEC. Aim: This study was undertaken to evaluate the therapeutic effect of OEC in rat models using different cell dosages. Material and Methods: OECs harvested from the olfactory mucosa of adult white Albino rats were cultured. Spinal cord injury (SCI was inflicted at the lower thoracic segment in a control and test group of rats. Two weeks later, OECs were delivered in and around the injured spinal cord segment of the test group of the rats. The outcome in terms of locomotor recovery of limb muscles was assessed on a standard rating scale and by recording the motor-evoked potentials from the muscles during transcranial electrical stimulation. Finally, the animals were sacrificed to assess the structural repair by light microscopy. Statistical Analysis: Wilcoxon signed rank test and Mann-Whitney U-test were used to compare the data in the control and the test group of animals. A P value of <0.05 was considered significant. Results: The study showed a moderate but significant recovery of the injured rats after OEC transplantation (P=0.005. Conclusion: Transplantation of OECs along with olfactory nerve fibroblasts improved the motor recovery in rat models with SCI.

  18. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Kan XU; Qi-xin CHEN; Fang-cai LI; Wei-shan CHEN; Min LIN; Qiong-hua WET

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Methods: Experiments were conducted in male Spragne-Dawley rats (n=78) weighing 300-400 g. The spinal cord was compressed posteriorly at T10 level using a custom-made screw for 6 h, 24 h or continuously, followed by decompression by removal of the screw. The rats were sacrificed on Day 1 or 3 or in Week 1 or 4 post-decompression. The spinal cord was removed en bloc and examined at lesion site, rostral site and caudal site (7.5 mm away from the lesion). Results: The numbers of TUNEL-positive cells were significantly lower at the site of decompression on Day l, and also at the rostral and caudal sites between Day 3 and Week 4 post-decompression, compared with the persistently compressed group. The numbers of cells between Day 1 and Week 4 were immunoreactive to caspase-3 and B-cell lymphoma-2 (Bcl-2)-associated X-protein (Bax), but not to Bcl-2, correlated with those of TUNEL-positive cells. Conclusion: Our results suggest that decompression reduces neural cell apoptosis following spinal cord injury.

  19. Effects of Epidural Spinal Cord Stimulation and Treadmill Training on Locomotion Function and Ultrastructure of Spinal Cord Anterior Horn after Moderate Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WANG Yizhao; HUANG Xiaolin; XU Jiang; XU Tao; FANG Zhengyu; XU Qi; TU Xikai; YANG Peipei

    2009-01-01

    Objective:To investigate the effects of epidural spinal cord stimulation (ESCS) and treadmill training on the locomotion function and ultrastructure of spinal cord anterior horn after moderate spinal cord injury in rats. (IT, n=3). All rats received a moderate spinal cord injury surgery. Four weeks after surgery, rats in SE group received an electrode implantation procedure, with the electrode field covering spinal cord segments L2-S1. Four weeks after electrode implantation, rats received subthreshold ESCS for 30 min/d. Rats in TY group received 4cm/s treadmill training for 30min/d. Rats in SI group received no intervention, as a control group. All procedures in these three groups lasted four weeks.The open field Basso,Beattie and Bresnahan (BBB) scale was used before and after intervention to evaluate rats' hindlimb motor function. Result:After four weeks intervention, rats in TT group improved their open field locomotion scores to 20. In contrast, no significant improvement was observed in groups SI and SE. The morphology of synapses and neurons were similar regardless of whether rats had undergone ESCS, treadmill training or not. Conclusion:ESCS alone was not sufficient to improve the walking ability of spinal cord injured rats. ESCS or treadmill training alone might not contribute to the changes of ultrastructure in anterior horn of spinal cord that underlie the recovery of walking ability. Further research is needed to understand the contributions of combination of ESCS and treadmill training to the rehabilitation of spinal cord injured rats.

  20. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Peng; JIN Lian-hong; LIANG Tao; LIU En-zhong; ZHAO Shi-guang

    2006-01-01

    Background Axonal regeneration in lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. This paper studied the action of neural stem cell (NSC) in promoting corticospinal axons regeneration and synapse reformation in rats with injured spinal cord.Methods NSCs were isolated from the cortical tissue of spontaneous aborted human fetuses in accordance with the ethical request. The cells were discarded from the NSC culture to acquire NSC-conditioned medium. Sixty adult Wistar rats were randomly divided into four groups (n=15 in each): NSC graft, NSC medium, graft control and medium control groups. Microsurgical transection of the spinal cord was performed in all the rats at the T11. The NSC graft group received stereotaxic injections of NSCs suspension into both the spinal cord stumps immediately after transection; graft control group received DMEM injection. In NSC medium group,NSC-conditioned medium was administered into the spinal cord every week; NSC culture medium was administered to the medium control group. Hindlimb motor function was assessed using the BBB Locomotor Rating Scale. Regeneration of biotin dextran amine (BDA) labeled corticospinal tract was assessed. Differentiation of NSCs and the expression of synaptophysin at the distal end of the injured spinal cord were observed under a confocal microscope. Group comparisons of behavioral data were analyzed with ANOVA.Results NSCs transplantation resulted in extensive growth of corticospinal axons and locomotor recovery in adult rats after complete spinal cord transection, the mean BBB scores reached 12.5 in NSC graft group and 2.5 in graft control group (P< 0.05). There was also significant difference in BBB score between the NSC medium (11.7) and medium control groups (3.7, P< 0.05). BDA traces regenerated fibers sprouted across the lesion site and entered the caudal part of the spinal cord. Synaptophysin expression

  1. Intrathecal MK-801 inhibits formalin-induced activation of spinal p38-MAPK in rats

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Peng; Xin Zhao; Xing Jin; Xiaochun Yan; Xiaorong Yang; Ce Zhang

    2008-01-01

    BACKGROUND: p38 mitogen-activated protein kinase (MAPK) plays an instrumental role in signal transduction from the cell surface to the nucleus, while subcutaneous injection of formalin can induce increased activation of spinal p38 MAPK. However, the mechanisms underlying the formalin-induced activation of spinal p38 MAPK in rats are unclear. OBJECTIVE: To observe the effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 on the formalin-induced activation of spinal p38 MAPK in rats. DESIGN, TIME AND SETTING: This randomized grouping, controlled animal experiment was performed at the Department of Physiology and Neurobiology, Shanxi Medical University between May and November 2007. MATERIALS: Forty eight healthy, adult Wistar rats were randomly divided into two groups: formalin + normal saline (n = 12) and formalin + MK-801 (n = 36). The formalin + MK-801 group was further divided into three subgroups according to the dosage of MK-801 (10, 50, and 100 nmol/L, 12 rats for each subgroup) METHODS: Following anesthesia, polyethylene tubing filled with sterile normal saline was implanted into the subarachnoid cavity. On postoperative days 5-8, rats received a 15 minute perfusion of normal saline or MK-801 (10, 50, and 100 nmol/L) in the formalin + normal saline and formalin + MK-801 groups, respectively, followed by formalin injection for the induction of nociceptive behavior. MAIN OUTCOME MEASURES: Detection of total p38 MAPK and of phosphorylated p38 MAPK by western Blot analysis; observation of nociceptive behaviors in the 1 hour after formalin injection. RESULTS: Western Blot analysis revealed that injection of formalin had no effect on total p38 MAPK expression but resulted in increased phosphorylation of p38 MAPK in the spinal cord. This increase was apparent after 5 minutes, peaked at 20 minutes, and thereafter descended and reached control levels after 45 minutes. Pretreatment with MK-801 (10, 50, 100 nmol/L) resulted in a dose-dependent reduction

  2. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Sharyn L Rossi

    Full Text Available BACKGROUND: Motor neuron loss is characteristic of cervical spinal cord injury (SCI and contributes to functional deficit. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP derived from human embryonic stem cells (hESCs. In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI. CONCLUSIONS/SIGNIFICANCE: These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.

  3. Delayed release particles from vascular endothelial growth factor for repairing spinal cord ischemic injury of rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Yang; LI Feng; XIAO Jian-de; LI Zhen-yu; YANG Lei; LUO Xin-le

    2007-01-01

    Objective:To study the effect of delayed release particles from vascular endothelial growth factor (VEGF)on the reparation of ischemic injury of spinal cord in rats. Methods:The spinal cord ischemia model of rats was established.The delayed release particles from VEGF were injected via the intubation of spinal subarachnoid space.The rehabilitation was observed by the assessment of unfold claw reflection,space between toes,spinal evoked potential (SEP) and motor evoked potential (MEP). Results:VEGF prompted SEP and MEP appearance,improved the motor function of hind limbs. Conclusions:VEGF can promote the rehabilitation of spinal cord ischemic injury of rats.

  4. Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yesim Cokay Abut

    2015-02-01

    Full Text Available BACKGROUND: The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. METHODS: In experiment, there were four groups with medication and a control group. Rats were injected 15 µL saline or fentanyl 0.0005 µg/15 µL, levobupivacaine 0.25%/15 µL and fentanyl 0.0005 µg + levobupivacaine 0.25%/15 µL intrathecally for four days. Hot plate test was performed to assess neurologic function after each injection at 5th, 30th and 60th min. Five days after last lumbal injection, spinal cord sections between the T5 and T6 vertebral levels were obtained for histologic analysis. A score based on subjective assessment of number of eosinophilic neurons - Red neuron - which means irreversible neuronal degeneration. They reflect the approximate number of degenerating neurons present in the affected neuroanatomic areas as follows: 1, none; 2, 1-20%; 3, 21-40%; 4, 41-60%; and 5, 61-100% dead neurons. An overall neuropathologic score was calculated for each rat by summating the pathologic scores for all spinal cord areas examined. RESULTS: In the results of HPT, comparing the control group, analgesic latency statistically prolonged for all four groups.In neuropathologic investment, the fentanyl and fentanyl + levobupivacaine groups have statistically significant high degenerative neuron counts than control and saline groups. CONCLUSIONS: These results suggest that, when administered intrathecally in rats, fentanyl and levobupivacaine behave similar for analgesic action, but fentanyl may be neurotoxic for spinal cord. There was no significant degeneration with levobupivacaine, but fentanyl group has had significant degeneration.

  5. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  6. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    Directory of Open Access Journals (Sweden)

    Ze-Min Ling

    Full Text Available Brachial plexus root avulsion (BPRA leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av treated with normal saline, Av+GM1 (treated with monosialoganglioside, and control. At time points of 3 day (d, 1 week (w, 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.

  7. Immune therapy with cultured microglia grafting into the injured spinal cord promoting the recovery of rat's hind limb motor function

    Institute of Scientific and Technical Information of China (English)

    YU Teng-bo; CHENG Yong-shuai; ZHAO Peng; KOU De-wei; SUN Kang; CHEN Bo-hua; WANG Ai-min

    2009-01-01

    Objective: To study the effect of activated microglia grafting on rats' hind limb motor function recovery after spinal cord injury.Methods: Microglia were separated from primary culture and subcultured for 3 generations. Lipopolysaccharide was added to the culture medium with the terminal concentrition of 10 μl/L for microglia activation 3 days before transplantation. Totally 80 adult Wistar rats were divided into transplantation group and control group, with 40 rats in each group. Spinal cord injury model of rats was set by hitting onto the spinal cord using a modified Allen impactor. With a 5 μl micro-syringe, the activated microglia suspension was injected into the injured area 7 days after the first operation. Basso, Beattie and Bresnahan (BBB) scoring for hind limb motor function was taken on the 1st, 7th, 14th, 21st, and 28th day after microglia transplantation, and 8 rats were sacrificed at each time point mentioned above, respectively. Frozen sections of the spinal cord were made for haematoxylin-eosin (HE) and Naoumenko-Feigin stainings. SPSS 11.0 software was used for statistical analysis.Results: BBB scores for hind limb motor function on the 14th, 21 st, and 28th day were significantly higher compared with the control group. Most liquefaction necrosis areas disappeared and only a few multicystic cavities surrounded by aggregated microglia remained in the transplantation group. Naoumenko-Feigin staining for microglia showed that the transplantation group had significantly more positive cells (P<0.05).Conclusions: Grafting of activated microglia into the injured spinal cord can significantly promote the hind limb motor function recovery in rats with spinal cord injury and reduce the size of liquefaction necrosis area. The extent of lower limb motor function improvement has a positive correlation with the number of aggregated microglia.

  8. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-yuan; HUI Guo-zhen; LU Yi; WU Xin; GUO Li-he

    2006-01-01

    Background Human amniotic epithelial cells (HAECs), which have several characteristics similar to stem cells,therefore could possibly be used in cell therapy without creating legal or ethical problems. In this study, we transplanted HEACs into the injured spinal cord of rats to investigate if the cells can improve the rats' hindlimb motor function.Methods HAECs were obtained from a piece of fresh amnion, labeled with Hoechst33342, and transplanted into the site of complete midthoracic spinal transections in adult rats. The rats (n=21) were randomly divided into three groups: Sham-operation group (n=7), cells-graft group (n=7), and PBS group (n=7). One rat of each group was killed for histological analysis at the second week after the transplantation. The other six rats of each group were killed for histological analysis after an 8-week behavioral testing. Hindlimb motor function was assessed by using the open-field BBB scoring system. Survival rate of the graft cells was observed at second and eighth weeks after the transplantation. We also detected the myelin sheath fibers around the lesions and the size of the axotomized red nucleus. A one-way ANOVA was used to compare the means among the groups. The significance level was set at P<0.05.Results The graft HAECs survived for a long time (8 weeks) and integrated into the host spinal cord without immune rejection. Compared with the control group, HAECs can promote the regeneration and sprouting of the axons, improve the hindlimb motor function of the rats (BBB score: cells-graft group 9.0± 0.89 vs PBS group 3.7± 1.03, P<0.01), and inhibit the atrophy of axotomized red nucleus [cells-graft group (526.47 ± 148.42) μm2 vs PBS group (473.69±164.73) μm2, P<0.01].Conclusion Transplantation of HAECs can improve the hindlimb motor function of rats with spinal cord injury.

  9. Substance P mRNA expression in the rat spinal cord following selective brachial plexus injury

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Longju Chen; Feng Li; Wutian Wu

    2008-01-01

    BACKGROUND: The neuropeptide, substance P, has various bioactivities and is widely distributed in the central nervous system. Substance P participates in neural transmission in the spinal cord and plays an important role in regeneration and repair of nerve injury.OBJECTIVE: To investigate substance P mRNA expression in the anterior horn of the spinal cord following brachial plexus injury.DESIGN, TIME AND SETTING: A molecular cell biology randomized controlled study was performed at the Department of Anatomy, Zhongshan Medical College, Sun Yat-sen University and the DaAn Gene Laboratory in May 2005.MATERIALS: A total of 29 adult male Sprague Dawley rats were randomly assigned to a control group (n=5) and an injury group (n = 24).METHODS: The injury group was divided into three subgroups. In subgroup A, the right seventh cervical vertebra (C7) anterior root was avulsed, and the residual nerve root at the distal end was removed. In subgroup B, the right C7 anterior root was avulsed, and the right C5 first thoracic vertebrae (TO posterior root was incised. Thus afferent pathways of the posterior root that connected with the anterior horn motor neurons were blocked. In subgroup C, the right C7 anterior root was avulsed, and a right C5-6 hemisection was performed. Thus the descending fiber pathways of the cortex that connected with anterior horn motor neurons were blocked. In the control group, the C5-T1 vertebral plate was opened, and then the skin was sutured.MAIN OUTCOME MEASURE: Substance P mRNA expression in the anterior horn of the spinal cord was quantified using fluorescent quantitative reverse transcription-polymerase chain reaction.RESULTS: Substance P mRNA expression was low in the anterior horn of the rat spinal cord in the control group. Substance P mRNA expression in the anterior horn of the spinal cord was upregulated and was significantly higher in the injury group compared with the control group (P < 0.01 ). Substance P mRNA expression was highest in

  10. The Long Term Effects of Chronic Spinal Cord Injury on Sperm Parameters in Rats

    Directory of Open Access Journals (Sweden)

    MA Khalili

    2004-07-01

    Full Text Available Introduction: Spinal cord injury (SCI is a serious public health problem which seriously affects the victim, family, and even the society. Research studies have shown that 80% of SCI victims are men. In recent years, there have been extensive research works on the effect of SCI (acute and/or chronic on fertility potential of sperm and spermatogenesis in laboratory animals. SCI may disturb the spermatogenic cell lines in laboratory animals. The objective of this experimental study was to investigate the effect of chronic spinal cord injury (CSCI on sperm parameters in adult rats. Materials & Methods: Adult Wistar rats weighing between 225-275g were divided into 3groups of control (n=5, sham (n=10, and experimental CSCI (n=10. No surgery was done on control animals. Only laminectomy was done in the sham animals at T10. CSCI was developed in experimental rats using 10g weight dropped 5cm above the exposed T10 level. All animals were sacrificed 50 days post experiment to extract epididymal samples. Sperm parameters of count, motility, morphology, as well as number of round cells were evaluated with the aid of Makler chamber and Geimsa staining. Results: Progressive motility was significantly reduced in CSCI group (P<0.05. The percentage of normal morphology of spermatozoa was 99.0±1.0 in control rats which was significantly reduced to 74.90±37.64 in CSCI animals In addition, sperm counts in control and CSCI rats were 69.20±12.43 and 25.0±13.68, respectively (P<0.01. Round cell concentration was increased in CSCI group as compared to controls. Conclusion: The results suggest that reduction in parameters of progressive motility, morphology, as well as sperm count following CSCI in rats may disturb the fertility potential of spermatozoa.

  11. Induction of Functional Recovery by Co-transplantation of Neural Stem Cells and Schwann Cells in a Rat Spinal Cord Contusion Injury Model

    Institute of Scientific and Technical Information of China (English)

    JIN LI; CHONG-RAN SUN; HAN ZHANG; KAM-SZE TSANG; JUN-HUA LI; SHAO-DONG ZHANG; YI-HUA AN

    2007-01-01

    Objeetive To smdy the transplantation efficacy of neural stem cells(NSCs)and Schwann cells(SC)in a rat model of spinal cord contusion injury.Methods Multipotent neural stem cells(NSCs)and Schwann cells were harvested from the spinal cords of embryomc rats at 16 days post coitus and sciatic nerves of newborn rats,respectively.The differential characteristics of NSCs in vitro induced by either serunl-based culture or co-culture with SC were analyzed by immunofluorescence.NSCs and SCs were co-transplanted into adult rats having undergone spinal cord contusion at T9 level.The animals were weekly monitored using the Basso-Beattie-Bresnahan locomotor rating system to evaluate functional recovery from contusion-induced spinal cord injury.Migration and differentiation of transplanted NSCs were studied in tissue sections using immunohistochemical staining.Results Embryomc spinal cord-derived NSCs differentiated into a large number of oligodendrocytes in serum-based culture upon the withdrawal of mitogens.In cocultures with SCs,NSCs differentiated into neuron more readily.Rats with spinal cord contusion injury which had undergone transplantation of NSCs and SCs into the intraspinal cavity demonstrated a moderate improvement in momr functions.Conclusions SC may contribute to neuronal differentiation of NSCs in vitro and in vivo.Transplantation of NSCs and SCs into the affected area may be a feasible approach to promoting motor recovery in patients after spinal cordin jury.

  12. Histochemical study of the pre—and postnatal development of acetylcholinesterase in the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    ZHANGQIN; XINWENDONG; 等

    1993-01-01

    The distribution of acetylcholinesterase(AChE)-positive structures in the developing rat spinal cord was studied with AChE-histochemistry.AChE-positive perikarya were first seen on embryonic day 14(E14) in the ventrolateral portion of the spinal cord.From that time onward.AChE=containing cells appeared gradually in the intermediate gray,dorsal horn and lateral spinal nucleus of the spinal cord in a ventral-to-dorsal,and lateral-to-medial order.No obvious rostral-to-caudal sequence was found.At birth,the distribution pattern of AChE-positive perikarya was basically similar to that in adults.After birth a dramatic increase in the AChE staining intensity extended from postnatal day 5(P5) to postnatal day 21(P21),In addition,two phases of transient AChE staining were observed in the external surface of the dorsal horn from embryonic day 15(E15) to embryonic day 21(E21) and in the marginal layer from embryonic day 21(E21) to postnatal day 14(P14),respectively.

  13. Research progress in three-dimensional reconstruction of the rat spinal tract

    Institute of Scientific and Technical Information of China (English)

    Huiqun Wu; Guangming Lü

    2008-01-01

    BACKGROUND: Recently, three-dimensional (3D) reconstruction of the corticospinal tract has been attempted in treatment for corticospinal tract injury. However, results remain unsatisfactory. OBJECTIVE: This manuscript reviews technique progress and problems in 3D reconstruction of rat spinal tracts, as well as 3D reconstruction of human spinal tracts. RETRIEVAL STRATEGY: Using the keywords "rat, spinal tracts, three-dimensional reconstruction", the PubMed database was searched for English articles pertaining to 3D reconstruction of the rat spinal tract that were published between January 1996 and January 2007. Meanwhile, the above-mentioned keywords in Chinese were also used to search the CNKI database for articles that were published between January 1999 and January 2007. Inclusion criteria: manuscripts that addressed the study of 3D reconstruction of the rat spinal tract and review articles. Exclusion criteria: old and repetitive articles. All manuscripts were initially evaluated, followed by extensive review.LITERATURE EVALUATION: A total of 154 related manuscripts were collected; a total of 27 were evaluated and reviewed for the present review. One manuscript assessed rat behavioral functions, four were experimental reports addressing micro-3D reconstruction techniques, ten were experiment reports about image analysis of rat corticospinal tracts, and twelve were experiment articles related to image processing of serial spinal cord sections. DATA SYNTHESIS: Rat spinal cord sections were obtained through section staining or magnetic resonance imaging (MRI) techniques, specifically localizing the inner tracts. Software was used to construct 3D reconstruction from the serial sections to observe and analyze rat spinal cord structures. The rat spinal cord is small, with complicated inner tracts, which makes accurate 3D reconstruction difficult.CONCLUSION: The assembly of 3D reconstructions from rat spinal cord serial sections and the visualization of the inner tracts

  14. The Effect of Fetal Olfactory Mucosa on Tissue Sparing and Locomotor Recovery after Spinal Cord Hemisection in Rats

    Directory of Open Access Journals (Sweden)

    Hamdollah Delaviz

    2008-01-01

    Full Text Available Objective: Olfactory ensheathing cells (OECs has been shown to have a neuroprotectiveeffect after transplanted in brain and spinal cord injury (SCI. This study was conductedto determine the possible beneficial results of transplantation of fetal olfactorymucosa (FOM that was the source of OECs in the recovery of locomotor function andin spinal tissue sparing after spinal cord hemisection.Materials and Methods: Forty-eight adult female Sprague-Dawley rats were spinallyhemisected at the L1 level and were randomized into the three groups of 16 animals.The first group, immunosuppressed injured animals were received cyclosporine A (CsAand FOM graft. The second group was received CsA and fetal respiratory mucosa(FRM graft, and the control group; non-immunosuppressed rats were received salineand gel foam. Locomotor performance was assessed weekly for 8 weeks after lesion,using locomotive rating scale developed by Basso, Bresnahan and Beattie (BBB. Afterbehavioral assessment, the spinal cord was examined by a histologist for spinal tissuesparing.Results: From weeks 6-8, the functional recovery of the FOM rats significantly increasedin comparison to the FRM, although a significant difference in tissue sparing was not apparent.From weeks, 2-8 the functional recovery of the FOM and FRM groups as well astissue sparing of the FOM group increased significantly compared to the control group.Conclusion: Thus, the FOM treatment may be effective to promote functional recoveryand partially preserving tissue sparing.

  15. Diffusion Tensor Imaging in Rat Spinal Cord In-Vivo

    Science.gov (United States)

    Al-Rekabi, Zeinab

    2008-05-01

    Diffusion Tensor Imaging (DTI), an MRI technique based on probing the structure of tissues at a microscopic level is used to determine regional values of Fractional Anisotropy (FA) and mean diffusivity (Dav) of excised and in-vivo rat spinal cords. Two pulse sequences: Spin Echo (SE) and Echo Planar Imaging (EPI) are optimized to provide the best image quality, signal-to-noise ratio (SNR) and the greatest spatial resolution at reasonable acquisition times in the rat spinal cord. The study was conducted using a 7T BRUKER BioSpec MRI animal scanner. In the ex-vivo experiments images with the spatial resolution of 100 μm and the SNR of 1.938 ± 0.010 were acquired in 2 minutes. After optimization both methods were applied in-vivo. The values of FA and Dav acquired in this study showed good correlation with the literature values. Furthermore, results from these studies should provide the necessary baseline data for serial DTI in injured spinal cord in future studies.

  16. GENETIC ENGINEERING NEURAL STEM CELL MODIFIED BY LENTIVIRUS FOR REPAIR OF SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To explore the feasibility for therapy of spinal cord injury (SCI) by genetic engineering neural stem cell (NSC) modified by lentiviral vector.Methods Following the construction of the genetic engineering NSC modified by lentivirus to secrete both neurotrophic factor-3 ( NT-3 ) and green fluorescence protein (GFP), hemisection of spinal cord at the level of T10 was performed in 56 adult Wistar rats that were randomly divided into 4 groups (n=14), namely 3 therapeutic groups and 1 control group. The therapeutic groups were dealed with NSC, genetic engineering NSC, and concentrated lentiviral supernatant which carries both GFP and NT-3, respectively. Then used fluorescence microscope to detect the transgenic expression in vitro and in vivo, migration of the grafted cells in vivo, and used the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test to assess the recovery of function.Results The transplanted cells could survive for long time in vivo and migrate for long distance. The stable transgenic expression could be detected in vivo. The hindlimb function of the injured rats in 3 therapeutic groups, especially those dealed with genetic engineering NSC, improved obviously.Conclusion It is feasible to combine NSC with lentivirus for the repair of SCL NSC modified by lentivirus to deliver NT-3, acting as a source of neurotrophic factors and function cell in vivo, has the potential to participate in spinal cord repair.

  17. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    Science.gov (United States)

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  18. Expression of PirB in Normal and Injured Spinal Cord of Rats

    Institute of Scientific and Technical Information of China (English)

    周迎春; 迁荣军; 饶竞; 翁密霞; 易序霞

    2010-01-01

    The expression of paired immunoglobulin-like receptor B (PirB) in normal and injured spinal cord of rats was investigated. The SD rat hemi-sectioned spinal cord injury (SCI) model was established. Before and 1, 3, 7, 10 days after SCI, the spinal cord tissues were harvested, and Western blot and immunohistochemistry were used to examine the expression and location of PirB. The results showed that the expression level of PirB in the normal spinal cord of SD rats was low. At the first day after SCI, the expre...

  19. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

    Science.gov (United States)

    Liu, Jia; Chen, Jian; Liu, Bin; Yang, Cuilan; Xie, Denghui; Zheng, Xiaochen; Xu, Song; Chen, Tianyu; Wang, Liang; Zhang, Zhongmin; Bai, Xiaochun; Jin, Dadi

    2013-02-15

    The stem cell-based experimental therapies are partially successful for the recovery of spinal cord injury (SCI). Recently, acellular spinal cord (ASC) scaffolds which mimic native extracellular matrix (ECM) have been successfully prepared. This study aimed at investigating whether the spinal cord lesion gap could be bridged by implantation of bionic-designed ASC scaffold alone and seeded with human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) respectively, and their effects on functional improvement. A laterally hemisected SCI lesion was performed in adult Sprague-Dawley (SD) rats (n=36) and ASC scaffolds seeded with or without hUCB-MSCs were implanted into the lesion immediately. All rats were behaviorally tested using the Basso-Beattie-Bresnahan (BBB) test once a week for 8weeks. Behavioral analysis showed that there was significant locomotor recovery improvement in combined treatment group (ASC scaffold and ASC scaffold+hUCB-MSCs) as compared with the SCI only group (pspinal cord cavity and promote long-distance axon regeneration and functional recovery in SCI rats.

  20. Sex Difference in Oxytocin-Induced Anti-Hyperalgesia at the Spinal Level in Rats with Intraplantar Carrageenan-Induced Inflammation.

    Science.gov (United States)

    Chow, Lok-Hi; Chen, Yuan-Hao; Wu, Wan-Chuan; Chang, En-Pei; Huang, Eagle Yi-Kung

    2016-01-01

    Previously, we demonstrated intrathecal administration of oxytocin strongly induced anti-hyperalgesia in male rats. By using an oxytocin-receptor antagonist (atosiban), the descending oxytocinergic pathway was found to regulate inflammatory hyperalgesia in our previous study using male rats. The activity of this neural pathway is elevated during hyperalgesia, but whether this effect differs in a sex-dependent manner remains unknown. We conducted plantar tests on adult male and female virgin rats in which paw inflammation was induced using carrageenan. Exogenous (i.t.) application of oxytocin exerted no anti-hyperalgesic effect in female rats, except at an extremely high dose. Female rats exhibited similar extent of hyperalgesia to male rats did when the animals received the same dose of carrageenan. When atosiban was administered alone, the severity of hyperalgesia was not increased in female rats. Moreover, insulin-regulated aminopeptidase (IRAP) was expressed at higher levels in the spinal cords of female rats compared with those of male rats. Oxytocin-induced anti-hyperalgesia exhibits a sex-dependent difference in rats. This difference can partially result from the higher expression of IRAP in the spinal cords of female rats, because IRAP functions as an enzyme that degrades oxytocin. Our study confirms the existence of a sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats. PMID:27606886

  1. Selective control by posterior spinal nerve roots of micturition and erection in rats

    Institute of Scientific and Technical Information of China (English)

    Wenting Wang; Mouwang Zhou; Genying Zhu; Tao Li; Nan Liu

    2012-01-01

    The posterior rootlets in L6 and S1 spinal cord of adult male Sprague-Dawley rats underwent electrostimulation. The bladder pressure, urethral perfusion pressure and intracavernous pressure were recorded. When some posterior rootlets of L6 and S1 were electrostimulated, the intracavernous pressure peaked rapidly, but the bladder pressure and the urethral perfusion pressure curve did not show great change. When other rootlets were stimulated, the bladder pressure changed greatly, but the urethral perfusion pressure and the intracavernous pressure did not show great change. When different rootlets were stimulated, the urethral perfusion pressure changed maximally, but there were no great changes in bladder pressure or intracavernous pressure. Furthermore, stimulation of some rootlets produced simultaneous changes in two or three different pressure measures mentioned above. The results demonstrate that regulation by L6 and S1 posterior rootlets of the rat bladder detrusor, external urethral sphincter and penis cavernous body are significantly distinct. Different rootlets can be distinguished by electrostimulation.

  2. FUNCTIONAL AND STRUCTURAL RECOVERY OF INJURED SPINAL CORD FOLLOWING DELAYED X-IRRADIATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    Xin-gang Li; De-ze Jia; Dong-hai Wang; Yu-hang Su; Qing-lin Zhang

    2007-01-01

    Objective To test the hypothesis that delayed X-irradiation can enhance the functional and structural recovery of the injured spinal cord in rats,Methods Seventy Sprague-Dawley rats were randomly divided into two groups, 35 rats in each. The control group sustained a one-minute clip compression (force of clip was 30 g) injury of the spinal cord at the T2 level, without X-irradiation. The experimental group received X-irradiation 14 days after injury. Neurological function was assessed by the modified Tarlov method, including hind limbs movement, inclined plane, and pain withdrawal. These tests were performed in a blinded fashion at 3, 7, 14, 21, 28, 35 , and 42 days after injury. At 43 days after injury, histological examination of the injured spinal cord was performed following decapitation of the rats.Results Sixty-two rats met the experimental requirements (spinal cord injury was similar), 32 rats in experimental group and 30 rats in control group. Statistically significant difference was observed between the two groups in hind limbs movement and inclined plane (P <0.01), but not in the pain withdrawal test The edema and necrosis areas of injured spinal cords in experimental group were less than those in control group, and axons in experimental group were significantly more than those in control group (P < 0.01).Conclusion Delayed X-irradiation following spinal cord injury may enhance functional recovery by improving and restoring structural integrity of the injured spinal cord in rats.

  3. Potentiation of excitatory transmission in substantia gelatinosa neurons of rat spinal cord by inhibition of estrogen receptor alpha

    Directory of Open Access Journals (Sweden)

    Li Kai-Cheng

    2010-12-01

    Full Text Available Abstract Background It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER subtypes, estrogen receptor alpha (ERα, is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II. However, it is unclear how ERs are involved in the modulation of nociceptive transmission. Results In the present study, a selective ERα antagonist, methyl-piperidino-pyrazole (MPP, was used to test the potential functional roles of spinal ERα in the nociceptive transmission. Using the whole-cell patch-clamp technique, we examined the effects of MPP on SG neurons in the dorsal root-attached spinal cord slice prepared from adult rats. We found that MPP increased glutamatergic excitatory postsynaptic currents (EPSCs evoked by the stimulation of either Aδ- or C-afferent fibers. Further studies showed that MPP treatment dose-dependently increased spontaneous EPSCs frequency in SG neurons, while not affecting the amplitude. In addition, the PKC was involved in the MPP-induced enhancement of synaptic transmission. Conclusions These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.

  4. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D. [Brookhaven National Laboratory, Medical Department, Upton, NY (United States); Morris, G.M. [University of Oxford, Research Institute, Oxford (United Kingdom)

    2000-10-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED{sub 50}) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  5. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED50) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  6. Spinal metastasis of medulloblastoma in adults: A case report

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2014-01-01

    Full Text Available Introduction. Medulloblastoma is a primitive neuro-ectodermal malignant tumor most commonly seen in childhood and rarely and uncommonly in adult age. Treatment consists of surgery followed by radiotherapy. In the case of a relapse there is no overall accepted treatment. Tumor metastasis can be seen along the neural axis, lymph nodes, soft tissues, bones and distant organs. Case Outline. In this paper we present a 45-year-old female patient with a thoraco-spinal extramedullary metastatic medulloblastoma and progressive neurological deterioration seen 11 months after the first operation and description of magnetic resonance and intraoperative finding. Conclusion. Although rare, the presence of metastasis is a poor prognostic factor. The treatment options for patients with metastases are limited and their prognosis continues to remain poor.

  7. A non-opioid pathway for dynorphin-caused spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Yu Chen; Liangbi Xiang; Jun Liu; Dapeng Zhou; Hailong Yu; Qi Wang; Wenfeng Han; Mingming Guo

    2012-01-01

    Intrathecal injection of dynorphin into rats via subarachnoid catheter induces damage to spinal cord tissue and motor function. Injection of the kappa opioid receptor antagonist nor-binaltorphine, or the excitatory amino acid N-methyl-D-aspartate receptor antagonist MK-801 into rats alleviated the pathological changes of dynorphin-caused spinal cord tissue injury and reduced the acid phosphatase activity in the spinal cord. The experimental findings indicate that there are opioid and non-opioid pathways for dynorphin-induced spinal cord injury, and that the non-opioid receptor pathway may be mediated by the excitatory amino acid N-methyl-D-aspartate receptor.

  8. FOS EXPRESSION IN LUMBARSACRAL SPINAL CORD AND MEDULLA OBLONGATA INDUCED BY CHRONIC COLONIC INFLAMMATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate Fos expression in rat lumbarsacral spinal cord and medulla oblongata induced by chronic colonic inflammation. Methods Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group: colonic inflammation was induced in seventeen rats by intraluminal administration of trinitrobenzenesulfonic acid (TNBS); control group: saline was administered intraluminally in sixteen rats; After 3, 7, 14 and 28 days of administration, lumbarsacral spinal cord and medulla oblongata were removed and processed for Fos immunohistochemistry. Results Fos-immunoreactive (Fos-IR) neurons induced by TNBS administration were primarily distributed in deep laminae (laminae Ⅲ-Ⅳ,Ⅴ-Ⅵ) in the spinal dorsal horn and in medullary visceral zone (MVZ) in the medulla oblongata. The number of Fos-IR cells in the spinal cord and MVZ in rats after 7 and 14 days of TNBS administration were significantly higher than that in the control rats (P<0.05). After 28 days of TNBS instillation, the number of Fos-IR neurons in MVZ decreased and became comparable to the control group. However, the number of Fos cells in the spinal cord in some rats were still significantly increased compared with the control rats (P<0.05). Conclusion Fos-IR neurons after colonic inflammation recovery may play an important role in the development of visceral hypersensitivity. Medulla oblongata was a less important structure than the spinal cord in inducing visceral hypersensitivity after chronic colonic inflammation.

  9. Robust upregulation of serotonin 2A receptors after chronic spinal transection of rats: An immunohistochemical study

    DEFF Research Database (Denmark)

    Kong, Xiang-Yu; Wienecke, Jacob; Hultborn, Hans;

    2010-01-01

    of the sacrocaudal spinal cord. The results show that in the spinalized rats the immunoreactivity of 5-HT2A receptors below the lesion is dramatically increased in the motoneuron soma and its proximal dendritic territory, most likely also in their distal dendritic territory, to a level 3-5-fold higher than...

  10. Expression of PirB in normal and injured spinal cord of rats.

    Science.gov (United States)

    Zhou, Yingchun; Qian, Rongjun; Rao, Jing; Weng, Mixia; Yi, Xuxia

    2010-08-01

    The expression of paired immunoglobulin-like receptor B (PirB) in normal and injured spinal cord of rats was investigated. The SD rat hemi-sectioned spinal cord injury (SCI) model was established. Before and 1, 3, 7, 10 days after SCI, the spinal cord tissues were harvested, and Western blot and immunohistochemistry were used to examine the expression and location of PirB. The results showed that the expression level of PirB in the normal spinal cord of SD rats was low. At the first day after SCI, the expression of PirB was obviously increased, and that in the injured spinal cord from the first day to the 10th day was significantly higher than in the normal spinal cord. The positive expression of PirB in neurons from different regions of gray matter of the injured spinal cord was seen. It was concluded that the expression of PirB in the normal spinal cord of rats was low. The expression of PirB in SCI was significantly increased till at least the 10th day.

  11. Evaluation of the excopula ejaculatory potentials of Bersama engleriana in spinal male rats

    Institute of Scientific and Technical Information of China (English)

    Pierre Watcho; Miguel Carro-Juarez

    2009-01-01

    tive ejaculation in spinal male rat is mediated through dopaminergic and oxytocinergic pathways. This prolonged ejaculatory latency caused by B. Engleriana could support its potential use in patients with rapid ejaculation.

  12. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  13. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation

    OpenAIRE

    Chen, Yu-Bing; Jia, Quan-Zhang; Li, Dong-Jun; Sun, Jing-Hai; Xi, Shuang; Liu, Li-ping; Gao, De-Xuan; Jiang, Da-Wei

    2015-01-01

    The aim of this study was to observe the effects of bone marrow mesenchymal stem-cell transplantation (BMSCs) in repairing acute spinal cord damage in rats and to examine the potential beneficial effects. 192 Wistar rats were randomized into 8 groups. Spinal cord injury was created. Behavior and limb functions were scored. Repairing effects of BMSCs transplantation was evaluated and compared. In vitro 4’,6-diamidino-2-phenylindole (DAPI)-tagged BMSCs were observed, and whether they migrated t...

  14. Four-Point Bending as a Method for Quantitatively Evaluating Spinal Arthrodesis in a Rat Model

    OpenAIRE

    Robinson, Samuel T.; Mark T Svet; Kanim, Linda A; Metzger, Melodie F.

    2015-01-01

    The most common method of evaluating the success (or failure) of rat spinal fusion procedures is manual palpation testing. Whereas manual palpation provides only a subjective binary answer (fused or not fused) regarding the success of a fusion surgery, mechanical testing can provide more quantitative data by assessing variations in strength among treatment groups. We here describe a mechanical testing method to quantitatively assess single-level spinal fusion in a rat model, to improve on the...

  15. Ginkgo biloba leaf extract effects on inducible nitric oxide synthase, Bcl-2, and Bax expression in rat models of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Jiejun Jiao; Bin Du

    2008-01-01

    BACKGROUND: Ginkgo biloba leaf extract exhibits neuroprotective effects in spinal cord injury. However,the mechanisms of action remain unclear.OBJECTIVE: To investigate inducible nitric oxide synthase (iNOS) and Bcl-2/Bax expression in the injured spinal cord, and to explore the neuroprotective mechanisms of ginkgo biloba leaf extract in rats with spinal cord injury.DESIGN, TIME AND SETTING: The randomized, controlled, cell molecular biology experiment was performed at Soochow University, China from March 2007 to March 2008.MATERIALS: A total of 120 healthy, adult Sprague Dawley rats were selected for this study. Rat models of moderate acute thoracic (T9) spinal cord injury were established using the modified Allen method.Shuxuening injection was obtained from Zhenbaodao Pharmaceutical Co., Ltd., China. Methylprednisolone was purchased from North China Pharmaceutical Co., Ltd.METHODS: All rats were equally and randomly divided into four groups. Only the spinal cord was exposed in the sham operation group rats. In the trauma group, rats were not treated with drugs following spinal cord injury. Rats in the hormone group were intraperitoneally injected with 30 mg/kg methylprcdnisolone following spinal cord injury. Rats in the ginkgo biloba leaf extract group were intraperitoneally infused with a 1.0 mL/kg Shuxuening injection per day.MAIN OUTCOME MEASURES: At l hour, as well as 1, 3, 5, 7, and 14 days after spinal cord injury,iNOS- and Bcl-2/Bax-positive cells were quantified with immunohistochemistry. Pathological changes were detected using hematoxylin-eosin staining under an optical microscope.RESULTS: Spinal cord injury in the ginkgo biloba leaf extract and hormone groups was milder compared with the trauma group. Demyelination was significantly ameliorated and the necrotic cavity was obviously reduced in the injured spinal cord of rats in the ginkgo biloba leaf extract and hormone groups at each time point, iNOS expression was increased in the injured spinal cord

  16. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization

    Science.gov (United States)

    Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin

    2015-01-01

    The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  17. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization.

    Directory of Open Access Journals (Sweden)

    Jose A Corleto

    Full Text Available The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI. The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9 complete transection model of muscle spasticity in Sprague-Dawley (SD rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i ankle-rotation-evoked peripheral muscle resistance (PMR and corresponding electromyography (EMG activity, ii Hoffmann reflex, and iii EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist, tizanidine (α2-adrenergic agonist and NGX424 (AMPA receptor antagonist was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  18. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization.

    Science.gov (United States)

    Corleto, Jose A; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin

    2015-01-01

    The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  19. Effects of nerve growth factor on neuronal nitric oxide production after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    汤长华; 曹晓建; 王道新

    2002-01-01

    To explore the protective effects of nerve growth factor (NGF) on injured spinal cord. Methods: The spinal cord injury (SCI) model of Wistar rats was established by a 10 g×2.5 cm impact force on the T8 spinal cord. NGF (60 μg/20 μl) was given to the rats of the treatment group immediately and at 2, 4, 8, 12, 24 hours after SCI. The level of neuronal constitutive nitric oxide synthase (ncNOS) and the expression of ncNOS mRNA in the spinal cord were detected by the immunohistochemistry assay and in situ hybridization method. Results: Abnormal expression of ncNOS was detected in the spinal ventral horn motorneuron in injured rats. The levels of ncNOS protein in the NGF group were significantly lower than those in the normal saline group (P<0.05 ). The ncNOS mRNA expression was found in the spinal ventral horn motorneuron in injured rats and the expression in the NGF group was significantly decreased compared with that in the normal saline group (P<0.01). Conclusions: NGF can protect the injured tissue of the spinal cord by prohibiting abnormal expression of nitric oxide synthase and the neurotoxicity of nitric oxide.

  20. Lumbar spinal mobility changes among adults with advancing age

    Directory of Open Access Journals (Sweden)

    Ismaila Adamu Saidu

    2011-01-01

    Conclusion : Using these data, we developed normative values of spinal mobility for each sex and age group. This study helps the clinicians to understand and correlate the restrictions of lumbar spinal mobility due to age and differentiate the limitations due to disease.

  1. Immunofluorescence laser confocal expression and localization study of rat nerve growth guidance cues Netrin-1 and Slit2 after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    LU Yao-jun; XU Nan-wei; YANG Wen-qiang

    2008-01-01

    To observe the expression and distribution of adult rat axon guidance cues Netrin-1 and Slit2 at different time points after spinal cord injury and to investigate the guidance mechanism of regenerated axons.Methods:Twenty adult Sprague Dawley(SD)rats were divided randomly into five groups with 4 in each.Four groups of them were used to make Allen's spinal cord punch models and we took materials randomly from one of them on the 2nd,4th,7th and 14th day respectively after operation.The left one group was taken as the control group.Immunofluorescence laser confocal scan was used to examine the co-expression and localization of Netrin-1 and Slit2 proteins in the injured site of the spinal cord.Results:Within two weeks after SCI,the expression of Netrin-1 and Slit2 proteins increased temporarily and there was co-expression of them on the neuron plasma membrane.Conclusions:Synchronous high expression and co-expression of axon attractant Netrin-1 and repellent Slit2 are found in the adult rat injured spinal cord in the damaged local and vicinity parts,and probably,they act as the key regulators of axon guidance regeneration.

  2. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats

    Science.gov (United States)

    Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-01-01

    Study Design This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. Purpose The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Overview of Literature Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. Methods The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Results Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Conclusions Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in

  3. Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-bin BI; Yu-bin DENG; Dan-hui GAN; Ya-zhu WANG

    2008-01-01

    Aim: Stem cells hold great promise for brain and spinal cord injuries (SCI), but cell survival following transplantation to adult central nervous system has been poor. Salvianolic acid B (Sal B) has been shown to improve functional recovery in brain-injured rats. The present study was designed to determine whether Sal B could improve transplanted mesenchymal stem cell (MSC) survival in SCI rats. Methods: SCI rats were treated with Sal B. The Basso-Beatie-Bresnahan (BBB) scale was used to test the functional recovery. Sal B was used to protect MSC from being damaged by TNF-α in vitro. Bromodeoxyuridine-labeled MSC were transplanted into SCI rats with Sal B intraperitoneal injection, simul-taneously. MSC were examined, and the functional recovery of the SCI rats was tested. Results: Sal B treatment significantly reduced the lesion area from 0.26±0.05 mm2 to 0.15±0.03 mm2 (P<0.01) and remarkably raised the BBB scores on d 28, post-injury, from 7.3±0.9 to 10.5±1.3 (P<0.05), compared with the phosphate-buffered saline (PBS) control group. MSC were protected from the damage of TNF-α by Sal B. The number of surviving MSC in the MSC plus Sal B groups were 1143.3± 195.6 and 764.0±81.3 on d 7 and 28, post-transplantation, more than those in the MSC group, which was 569.3±72.3 and 237.0±61.3, respectively (P<0.05). Rats with MSC trans-planted and Sal B injected obtained higher BBB scores than those with MSC transplanted alone (P<0.05) and PBS (P<0.01). Conclusion: Sal B provides neuroprotection to SCI and promotes the survival of MSC in vitro and after cell transplantation to the injured spinal cord in vivo.

  4. Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats.

    Science.gov (United States)

    Chen, Yi; Chen, Lu; Wang, Yu; Wolpaw, Jonathan R; Chen, Xiang Yang

    2014-11-15

    Operant conditioning of a spinal cord reflex can improve locomotion in rats and humans with incomplete spinal cord injury. This study examined the persistence of its beneficial effects. In rats in which a right lateral column contusion injury had produced asymmetric locomotion, up-conditioning of the right soleus H-reflex eliminated the asymmetry while down-conditioning had no effect. After the 50-day conditioning period ended, the H-reflex was monitored for 100 [±9 (SD)] (range 79-108) more days and locomotion was then reevaluated. After conditioning ended in up-conditioned rats, the H-reflex continued to increase, and locomotion continued to improve. In down-conditioned rats, the H-reflex decrease gradually disappeared after conditioning ended, and locomotion at the end of data collection remained as impaired as it had been before and immediately after down-conditioning. The persistence (and further progression) of H-reflex increase but not H-reflex decrease in these spinal cord-injured rats is consistent with the fact that up-conditioning improved their locomotion while down-conditioning did not. That is, even after up-conditioning ended, the up-conditioned H-reflex pathway remained adaptive because it improved locomotion. The persistence and further enhancement of the locomotor improvement indicates that spinal reflex conditioning protocols might supplement current therapies and enhance neurorehabilitation. They may be especially useful when significant spinal cord regeneration becomes possible and precise methods for retraining the regenerated spinal cord are needed.

  5. Inflammation unmasks gabapentin's effect on Aδ-fiber evoked excitatory postsynaptic currents in substantia gelatinosa neurons of rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    刘智良; 徐如祥; 杨鲲

    2003-01-01

    ObjectiveTo study the analgesic mechanism of gabapentin, an anticonvulsant, during antinociceptive clinical treatment. MethodsWhole-cell voltage-clamp recordings were taken from adult rat spinal cord slices to investigate the effect of gabapentin on primary afferent Aδ-fiber evokedexcitatory postsynaptic currents (EPSCs) to substantia gelatinosa (SG) neurons in normal and inflamed (established by plantar injection of carrageenan) rats. Results Gabapentin (5-20 μmol/L for 5 min) depressed dorsal root Aδ fiber evoked polysynaptic, but not monosynaptic EPSCs to SG experiencing inflammation by about 25ptic or monosynaptic EPSCs in normal rats. Gabapentin failed to block a glutamate receptor subtype, N-methyl-D-aspartate (NMDA), -induced slow excitatory currents on SG neurons.ConclusionsInflammation, at least in part, unmasks the gabapentin depression on nociception transmission in the dorsal horn, and this depression is not due to the blockade of postsynaptic NMDA receptor.

  6. Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Wen-Qin CAI; Cheng-Ren LI

    2006-01-01

    Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats'hind limbs was observed and HE and X-gal immunocytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate,and partially integrate with host spinal cord, and they significantly ameliorate rats ' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.

  7. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury*

    OpenAIRE

    Xu, Kan; Chen, Qi-xin; Li, Fang-cai; Chen, Wei-Shan; Lin, Min; Wu, Qiong-hua

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Meth...

  8. Neuroprotective effect of estrogen after chronic spinal cord injury in ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: At present, there is still lack of effective drugs for chronic spinal cord injury, whereas it is found recently that estrogen has a neuroprotective effect on brain and spinal cord injuries.OBJECTIVE: To observe the effect of estrogen on the apoptosis of nerve cells after gradual chronic spinal cord injury in ovariectomized rats.DESIGN: A randomized controlled animal trial.SETTING: Institute of Orthopaedics, the Second Hospital of Lanzhou University.MATERIALS: Sixty-five female Wistar rats of common degree, weighing 220 - 250 g, were provided by the experimental animal center of Lanzhou University. The rats were randomly divided into sham-operated group (n =5), estrogen-treated group (n =30) and saline control group (n =30), and the latter two groups were observed at 1, 3, 7, 14, 28 and 60 days respectively, and 5 rats for each time point.METHODS: All the rats were treated with bilateral oophorectomy 2 weeks before the experiment. T10 vertebral lamina was revolved into using plastic screw. The spinal canal impingement was not induced initially. After that, the original incision was opened to expose the screw every 7 - 10 days.MAIN OUTCOME MEASURES: The apoptosis and Caspase-3 positive cells in the damaged spinal cord were detected using terminal deoxynucleotidal transferase-mediated dUTP-biotin nick end labeling (TUNEL) method and Caspase-3 immunohistochemical staining at 1, 3, 7, 14, 28 and 60 days after chronic spinal cord injury respectively.RESULTS: Totally 65 rats were used, and the deleted ones during the experiment were supplemented by others. Changes of Caspase-3 expression after spinal cord injury: In the sham-operated group, only a small amount of Caspase-3 proteins were observed in the rat spinal cord, mainly located in motor neurons of spinal cord anterior horn. In the estrogen-treated group and saline control group, positive cells expressed occasionally at 1 day postoperatively, began to increase obviously at 7 days after injury, strongly

  9. Long-term recovery kinetics of radiation damage in rat spinal cord

    International Nuclear Information System (INIS)

    Purpose: This study aimed to assess the influence of the level of initial injury on the long-term recovery kinetics of radiation damage in the central nervous system using a rat spinal cord model. Methods and Materials: The adult rat spinal cord (C2-T2) was initially given two or three daily fractions of 9 Gy, or three daily fractions of 10.25 Gy. At day 4 or weeks 6, 8, 12, 20, 28, 40, or 52, animals were reirradiated with graded single doses of X rays. The end point was forelimb paralysis caused by white-matter necrosis. Results: Latent times to paralysis as measured from the date of the initial treatment increased with increasing time interval between initial treatment and reirradiation but decreased with increasing size of initial injury. Retreatment ED50s were 14.1, 14.8, 15.4, 16.3, and 16.2 Gy for animals reirradiated at day 4 and weeks 8, 12, 20, and 28, respectively, after an initial dose of 9 Gy x 2. After 9 Gy x 3, the retreatment ED50s at day 4 and weeks 6, 8, 12, 20, 28, 40, and 52 were 10.0, 9.9, 9.8, 12.0, 13.9, 14.6, 14.7, and 15.5 Gy, respectively. For an initial dose of 10.25 Gy x 3, the retreatment ED50s at day 4 and weeks 8, 12, 20, 28, and 40 were 5.8, 6.1, 8.4, 10.6, 12.2, and 13.3 Gy, respectively. Using the linear-quadratic (LQ) model, α/β of 3.0 Gy, to quantitate the biological effect of the different retreatment schedules, the initial doses of 9 Gy x 2 or 3, or 10.25 Gy x 3 were found to represent 47, 71, and 89% of the extrapolated response dose (ERD), respectively, and no significant increase in tolerance was observed for retreatment given within 8 weeks of initial treatment. Significant long-term recovery was observed thereafter and increased with increasing time interval to retreatment. The retreatment tolerance and radiation damage recovered at different intervals were influenced by the initial dose. Using direct analysis, the recovery kinetics could be best described by introducing a time function consisting of a linear and

  10. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter.

    Science.gov (United States)

    Marcol, Wiesław; Slusarczyk, Wojciech; Sieroń, Aleksander L; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cord injury and 3 as well as 7 days later. Neurons in brain stem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of experiment. Functional outcome and morphological features of regeneration were analyzed during 12-week follow-up. The lesions were characterized by means of MRI. Maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. Rats treated with stem cells presented significant improvement of locomotor performance and spinal cord morphology when compared to the control group. Distance covered by stem cells was 7 mm from the epicenter of the injury. Number of brain stem and motor cortex FG-positive neurons in experimental group was significantly higher than in control. Obtained data showed that bone marrow stem cells are able to induce the repair of injured spinal cord white matter. The route of cells application via cisterna magna appeared to be useful for their delivery in spinal cord injury therapy.

  11. Pulmonary function before and after anterior spinal surgery in adult idiopathic scoliosis.

    OpenAIRE

    Wong, C. A.; Cole, A. A.; L. Watson; Webb, J K; Johnston, I. D.; Kinnear, W. J.

    1996-01-01

    BACKGROUND: Little is known about the long term effects of anterior spinal surgery on pulmonary function in adult patients with idiopathic scoliosis. A study was therefore undertaken of pulmonary function before and after anterior spinal surgery in this group of patients. METHODS: Fourteen patients (12 women) of mean age 26.5 years (range 17-50, 10 > or = 20 years) were studied. All 14 patients underwent thoracotomy and anterior arthrodesis, and five also underwent posterior arthrodesis. Scol...

  12. Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Guoxin Nan; Ming Li; Weihong Liao; Jiaqiang Qin; Yujiang Cao; Youqiong Lu

    2009-01-01

    BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells.OBJECTIVE: To investigate the effects of valproic acid on proliferation of endogenous neural sterm cells in a rat model of spinal cord injury.DESIGN, TIME AND SETTING: A randomized, controlled, neuropathological study was performed at Key Laboratory of Trauma, Buming, and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University of Chinese PLA between November 2005 and February 2007.MATERIALS: A total of 45 adult, Wistar rats were randomly divided into sham surgery (n=5), injury(n=20), and valproic acid (n=20) groups. Valproic acid was provided by Sigma, USA.METHODS: Injury was induced to the T10 segment in the injury and valproic acid groups using the metal weight-dropping method. The spinal cord was exposed without contusion in the sham surgery group. Rats in the valproic acid group were intraperitoneally injected with 150 mg/kg valproic acid every 12 hours (twice in total).MAIN OUTCOME MEASURES: Nestin expression (5 mm from injured center) was detected using immunohistochemistry at 1, 3 days, 1, 4, and 8 weeks post-injury.RESULTS: Low expression of nestin was observed in the cytoplasm, but rarely in the white matter of the spinal cord in the sham surgery group. In the injury group, nestin expression was observed in the ependyma and pia mater one day after injury, and expression reached a peak at 1 week (P<0.05).Expression was primarily observed in the ependymal cells, which expanded towards the white and gray matter of the spinal cord. Nestin expression rapidly decreased by 4 weeks post-injury, and had almost completely disappeared by 8 weeks. At 24 hours after spinal cord injury, there was nosignificant difference in nestin expression between the valproic acid and injury groups. At 1 week,there was a significant

  13. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    Directory of Open Access Journals (Sweden)

    Urszula eSlawinska

    2014-08-01

    Full Text Available There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-OHDPAT (acting on 5-HT1A/7 receptors and quipazine (acting on 5-HT2 receptors, to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor CPG. Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.

  14. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    over time. Then, the distribution of the different [(3)H]epibatidine concentrations along the spinal cord was studied. It was found that the percentage of [(3)H]epibatidine entering the spinal cord did not differ between different administered concentrations after a stabilization period of 60 min...

  15. Longitudinal Evaluation of Residual Cortical and Subcortical Motor Evoked Potentials in Spinal Cord Injured Rats.

    Science.gov (United States)

    Redondo-Castro, Elena; Navarro, Xavier; García-Alías, Guillermo

    2016-05-15

    We have applied transcranial electrical stimulation to rats with spinal cord injury and selectively tested the motor evoked potentials (MEPs) conveyed by descending motor pathways with cortical and subcortical origin. MEPs were elicited by electrical stimulation to the brain and recorded on the tibialis anterior muscles. Stimulation parameters were characterized and changes in MEP responses tested in uninjured rats, in rats with mild or moderate contusion, and in animals with complete transection of the spinal cord. All injuries were located at the T8 vertebral level. Two peaks, termed N1 and N2, were obtained when changing from single pulse stimulation to trains of 9 pulses at 9 Hz. Selective injuries to the brain or spinal cord funiculi evidenced the subcortical origin of N1 and the cortical origin of N2. Animals with mild contusion showed small behavioral deficits and abolished N1 but maintained small amplitude N2 MEPs. Substantial motor deficits developed in rats with moderate contusion, and these rats had completely eliminated N1 and N2 MEPs. Animals with complete cord transection had abolished N1 and N2 and showed severe impairment of locomotion. The results indicate the reliability of MEP testing to longitudinally evaluate over time the degree of impairment of cortical and subcortical spinal pathways after spinal cord injuries of different severity. PMID:26560177

  16. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.

    Science.gov (United States)

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2-8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  17. Retrograde tracing of fluorescent gold after autogenous nerve transplantation on spinal cord injured in rats

    DEFF Research Database (Denmark)

    Lin, X; Liu, W; Ding, Ming;

    2016-01-01

    Objective To investigate the changes of the fluorescent gold retrograde tracing autogenous nerve transplantation on spinal cord injured in rats. Methods The animals were divided into two groups, with modified Allen impact method to establish model of spinal cord injury. After 4 weeks......, the transplantation group using autologous sural nerve graft to repair spinal cord injury period and non-transplantation group was only exposed incision without treatment. In the 4, 6 and 8 weeks after operation, the retrograde tracing of FG Fluoro-Gold was performed to discover the recovery of the axial plasma.......01). Conclusion After spinal cord injury, autologous nerve graft was repaired and survived well and promote the recovery of spinal cord injury segment shaft pulp transportation function....

  18. Survival of transplanted neurotrophin-3 expressing human neural stem cells and motor function in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Peiqiang Cai; Guangyun Sun; Peishu Cai; Martin Oudega; Rui Xiao; Xuewen Wang; Wei Li; Yunbing Shu; Cheng Cai; Haihao Yang; Xuebing Shan; Wuhua Luo

    2009-01-01

    BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury,including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and embryonic neural tissue transplantation. However, there is a need for improved outcomes.OBJECTIVE: To investigate the repair feasibility for rat spinal cord injury using human neural stem cells (hNSCs) genetically modified by lentivirus to express neurotrophin-3.DESIGN, TIME AND SETTING: In vitro cell biological experiment and in vivo randomized, controlled,genetic engineering experiment were performed at the Third Military Medical University of Chinese PLA and First People's Hospital of Yibin, China from March 2006 to December 2007.MATERIALS: A total of 64 adult, female, Wistar rats were used for the in vivo study. Of them, 48 rats were used to establish models of spinal cord hemisection, and were subsequently equally and randomly assigned to model, genetically modified hNSC, and normal hNSC groups. The remaining 16 rats served as normal controls.METHODS: hNSCs were in vitro genetically modified by lentivirus to secrete both green fluorescence protein and neurotrophin-3. Neurotrophin-3 expression was measured by Westem blot.Genetically modified hNSC or normal hNSC suspension (5×105) was injected into the rat spinal cord following T10 spinal cord hemisection. A total of 5μL Dulbecco's-modified Eagle's medium was infused into the rat spinal cord in the model group. Transgene expression and survival of transplanted hNSCs were determined by immunohistochemistry. Motor function was evaluatedusing the Basso, Beattie, and Bresnahan (BBB) scale.MAIN OUTCOME MEASURES: The following parameters were measured: expression ofneurotrophin-3 produced by genetically modified hNSCs, transgene expression and survival ofhNSCs in rats, motor function in rats.RESULTS: hNSCs were successfully genetically modified by lentivirus to stably express neurotrophin-3. The

  19. Apoptosis of lumbar spinal cord neurons in cauda equina syndrome rats

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Objective To explore the law of apoptosis of lumbar spinal cord neurons in cauda equina syndrome (CES). Methods Cauda equina of rats was compressed by a piece of silica gel stick. From day 1 to day 28,the lumbar spinal cord specimens were harvested and assessed by Nissl's staining and TUNEL staining. Results Compression of cauda equina caused lesion and apoptosis of neurons in lumbar spinal cord,and the extent of apoptosis reached the peak on 7th day after compression. Conclusion Apoptosis of neurons in lum...

  20. Involvement of GABA and opioid peptide receptors in sevoflurane-induced antinociception in rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Ying-wei WANG; Xiao-ming DENG; Xin-min YOU; Shu-xiao LIU; Zhi-qi ZHAO

    2005-01-01

    Aim: The spinal cord is pivotal in immobility induced by volatile anesthetics because the anesthetics depress the activity of motor neurons in the spinal cord.The aim of this study was to observe the effects of sevoflurane on pain processing at the spinal level. Methods: The firing of the gastrocnemius muscle was evoked by electrical stimulation to the ipsilateral hindpaw in rats. The nociceptive C response of electromyography (EMG)was selected to study. The GABAA receptor antagonist bicuculline (0.1 mg/kg) and opioid receptor antagonist naloxone (0.4 mg/kg) were administered intravenously, either in the presence or in the absence of 1.0% sevoflurane. Results: In rats with transected spinal cord,sevoflurane produced a profound reduction in the C response in a dose- and timedependent manner. In the presence of 1.0% sevoflurane, the C responses were increased after injections of bicuculline and naloxone. Conclusion: Sevoflurane is a volatile anesthetic that acts directly on the spinal cord to suppress the nociceptive reflex. The sevoflurane-induced suppression of the C response is antagonized by either bicuculline or naloxone. The results suggest that spinal GABAA receptors and opioid peptide receptors are involved in the sevoflurane-induced suppression of spinal nociception.

  1. Expression of Slit2 and Robo1 after traumatic lesions of the rat spinal cord.

    Science.gov (United States)

    Liu, Jin-Bo; Jiang, Yu-Qin; Gong, Ai-Hua; Zhang, Zhi-Jian; Jiang, Qian; Chu, Xiang-Ping

    2011-01-01

    We have used semi-quantitative RT-PCR, Western blot, and immunofluorescence imaging approaches to detect the expression levels of Slit2 and its receptor Robo1 in the rat spinal cord after traumatic lesions. Our results revealed that both the mRNA and protein levels of Slit2 were up-regulated in the injured spinal cord. The Slit2 expression level was increased at day 7 until day 14, and then returned to normal level at day 21 after injury. A double-immunolabelling study showed that Slit2 and neurofilament (NF) proteins were both localized in neurons of spinal corda cinerea. Slit2 immunopositivity was detected in neuronal plasma membranes but not in the axonal fibers. In contrast, the immunolabelling of Robo1 in the normal spinal cord was at a low level, mostly in the neurons of spinal corda cinerea, and remained unchanged at all time points following spinal cord injury (SCI). The regulation levels of Slit2 and Robo1 after traumatic lesions in the rat spinal cord are different. Our results indicate that Slit2-Robo1 might not be involved in the inhibitory environment after SCI.

  2. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  3. Expression and effect of Caspase-3 in neurons after tractive spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; PEI Fu-xing; TANG Kang-lai; XU Jian-zhong; LI Qi-hong

    2005-01-01

    Objective: To investigate Caspase-3 expression and its role in neuronal apoptosis.Methods: The T13-L2 spinal cord of rats was injured by traction after the amplitude of P1-N1 wave, monitored by a cortical somatosensory evoked potential (CSEP) monitor, decreased to seventy percent of that before operation. Then rats were killed in 6 h, 1 d, 4 d, 7 d, 14 d and 21 d respectively after operation. Flow cytometer terminal deoxynucleotldyl transferease-mediated biotinylated deoxynuridine triphosphate nick end labeling (TUNEL), Caspase-3 activity assay and immunohistochemical method were applied to investigate Caspase-3 expression in the spinal cord tissue and to study neuronal apoptosis in rats. Results: After spinal cord injury, apoptotic cells detected by flow cytometry and TUNEL-positive cells were significantly more, and positive immunohistochemical staining of Caspase-3 and Caspase-3 activity were significantly higher in Group injury than in Groups control and laminectomy, respectively (P>0.05, P>0.01). Similar trend of changes was noticed in apoptotic cells, TUNEL-positive cells and positive immunohistochemical staining of Caspase-3, all of which reached their respective peak 7 days after operation. Caspase-3 activity reached its peak, however, 4 days postoperatively. Conclusions: Increased expression and activity of Caspase-3 protein in neurons after tractive spinal cord injury is the biochemical signal of early spinal cell apoptosis. It is of great significance for understanding the mechanism of spinal cord injury.

  4. pSVPoMcat modifying Schwann cell to protect injured spinal neurons in rats

    Institute of Scientific and Technical Information of China (English)

    陈礼刚; 高立达; 朴永旭; 毛伯镛; 曾凡俊

    2002-01-01

    Objective: To investigate the protective effect of pSVPoMcat (myelin basic protein microgene)modifying Schwann cell on injured spinal neurons.Methods: A model of rat spinal cord injured by hemisection was used. One hundred and twenty healthy SD rats of both sexes weighing 250-300 g were divided into three groups: Group A (n=40, treated with implantation of pSVPoMcat modifying Schwann cell), Group B (n= 40, treated with implantation of Schwann cell only) and Group C (n=400, treated with sham operation as the control). One week after operation the rat functional recovery was observed dynamically by using combined behavioral score (CBS) and cortical somatasensory evoked potentials, the spinal cord sections were stained by Nissl, acid phosphatase enzyme histochemistry and cell apoptosis was examined by methye green, terminal deoxynucleotidyl and the dUTP Nick end labeling technique. Quantitative analysis was done by computer image analysis system.Results: In Group A the injured neurons recovered well morphologically. The imaging analysis showed a result of Group A>Group B>Group C in the size of the neurons (P<0.01). The percentage of ACP (acid phosphatase) stained area and the rate of apoptosis sequence were groups Aspinal neurons and promotes recovery of injured spinal cord function in rats.

  5. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats

    Directory of Open Access Journals (Sweden)

    Carmen Díaz-Galindo

    2015-01-01

    Full Text Available Gonadotropin-releasing hormone (GnRH and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5 th week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1 st week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury.

  6. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  7. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    Science.gov (United States)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  8. Clinical features of adult spinal muscular atrophy:46 cases

    Institute of Scientific and Technical Information of China (English)

    Xiaojun He; Ping Zhang; Guanghui Chen

    2006-01-01

    BACKGROUND: Spinal muscular atrophy (SMA) is a kind of degenerative disease of nervous system. There are 4 types in clinic, especially types Ⅰ, Ⅱ and Ⅲ are common, and the researches on those 3 types are relative mature. Type Ⅳ is a kind of adult spinal muscular atrophy (ASMA), which has low incidence rate and is often misdiagnosed as amyotrophic lateral sclerosis, muscular dystrophy, cervical syndrome, or others.OBJECTIVE: To observe the clinical features of 46 ASMA patients and analyze the relationship between course and activity of daily living.DESIGN: Case analysis.SETTING: Departments of Neurology of the 81 Hospital of Chinese PLA, the Second Affiliated Hospital of Nanjing Medical College and General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: A total of 46 ASMA patients were selected from the Departments of Neurology of the 81Hospital of Chinese PLA, the Second Affiliated Hospital of Nanjing Medical College and General Hospital of Nanjing Military Area Command of Chinese PLA between April 1998 and January 2002. All patients were consentient. Among 46 cases, there were 37 males and 9 females with the mean age of 42 years. The patients' courses in all ranged from 6 months to 23 years, concretely, courses of 37 cases were less than or equal to 5 years, and those of 9 cases were more than or equal to 6 years.METHODS : ① All the 46 ASMA patients were asked to check blood sedimentation, anti O, serum creatinine,creatine, blood creatine phosphokinase (CPK) and muscular biopsy as early as possible. ② X-ray was used to measure plain film of cervical vertebra borderline film of cranium and neck at proximal end of upper limb of 25 cases and plain film of abdominal vertebra at proximal end of lower limb of 17 cases.③ Cerebrospinal fluid of lumbar puncture was checked on 42 cases, for routine examination, biochemical examination, and immunoglobulin examination. Electromyogram (EMG) was also examined to 42 cases. ④ Barthel index

  9. Observation and establishment of an animal model of tractive spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    刘雷; 池雷庭; 屠重棋; 沈彬; 周宗科; 裴福兴

    2004-01-01

    Objective: To establish an animal model of tractive spinal cord injury in rats in order to investigate its pathophysiological changes and clinical significance.Methods: T12-L3 spines were tracted longitudinally with a special spinal retractor that was put on the proccessus transverses of T12-L3 vertebrae of the rat after exposing T13-L2 spinal cord via dual laminectomy.At the same tine, the spinal cord function was monitored by cortical somatosensory evoked potential (CSEP). Rats were randomly divided into four groups according to the amplitude of CSEP P1-N1 wave, the amount of the decreasing P1-N1 wave was 30% (the 30% group), 50% (the 50% group) and 70% (the 70% group), respectively. After traction, the changes of the neural behavioral function in rats were observed and the morphological structure of the spinal cord was analyzed quantitaltively with image analysis system of computer.Results: With traction of spine, compared with the control group, the 30% group had no marked difference in combined behavioral score (CBS), neuron count, section area of neuron and Nissl body density, but the 50% and 70% groups had marked differece (P<0.01). Light microscope showed that the neuron volume was slightly small and the Nissl body was reduced lightly in the 30% group; the neuron space was enlarged and the neuron was degenerative, reductive, and dissolved, and the spinal cord structure was destroyed in the 50% and 70% groups.Conclusions: The animal model of tractive spial cord injury in rats is a reproducible, graded and clinic mimic. The model in this article provides a valuable assistance in further understanding etiopathology and screening effective miasures of therapy and prophylaxis of the injury.

  10. Influence of neurotrophin-3 on Bcl-2 and Bax expressions in spinal cord injury of rats

    Institute of Scientific and Technical Information of China (English)

    GUO Shu-zhang; JIANG Tao; REN Xian-jun

    2007-01-01

    Objective:To study the protective mechanisms of neurotrophin-3 (NT-3) on the spinal cord injury.Methods:Totally 105 SD rats were randomly divided into 3 groups:control group,experimental group and sham operation group.Rats from the former 2 groups were inflicted to animal model of acute spinal cord injury according to Allen's (WD) by situating a thin plastic tube in the subarachnoid space below the injury level for perfusion.Rats in experimental group received 20μl NT-3 (200 ng) from the tube at 0,4,8,12,24 h and 3,7 d after injury,and those in control group got an equal volume of normal saline at the same time.The animals in sham operation group only received opening vertebral plate and tube was put in subarachnoid space.The rats were sacrificed at 4,8,12,24 h and 3,7,14 d post injury (n=5).The expression levels of Bcl-2 and Bax proteins in spinal cord of rats were detected by immunohistochemistry assay.Results:The level of Bax protein in control group significantly increased as compared with those in sham operation group, and the peak reached at 8 h after spinal cord injury.The Bcl-2 proteins were always weakly positive.The Bax proteins in NT-3 group significantly decreased but the Bcl-2 proteins obviously increased as compared with those in control group.Conclusion:NT-3 can protect spinal cord from injury in vivo.One of the mechanisms is that NT-3 can inhibit abnormal expression of Bax protein,and increase the expression of Bcl-2 protein,then inhibit apoptosis after spinal cord injury.

  11. Spinal cord injury causes sustained disruption of the blood-testis barrier in the rat.

    Directory of Open Access Journals (Sweden)

    Jennifer N Dulin

    Full Text Available There is a high incidence of infertility in males following traumatic spinal cord injury (SCI. Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s causing this are not known. Blood-testis barrier (BTB integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28, laminectomy only (n = 7 or served as uninjured, age-matched controls (n = 28. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI, BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68(+ immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.

  12. S-nitroso-l-cysteine releases norepinephrine in rat spinal synaptosomes.

    Science.gov (United States)

    Li, X; Rose, G; Dongre, N; Pan, H L; Tobin, J R; Eisenach, J C

    2000-07-28

    Although nitric oxide (NO) participates in development of hypersensitivity states in the spinal cord thought to underlie chronic pain, it also participates in analgesia produced by various drugs. In rats with a hypersensitivity state following peripheral nerve injury, spinal administration of an NO donor or l-cysteine alone produced no effect, whereas their combination, which yields s-nitroso-l-cysteine (SNC) powerfully reduced hypersensitivity. In the current study, we examined the ability of SNC to stimulate release of a known spinal analgesic neurotransmitter, norepinephrine (NE), as a possible mechanism of analgesic action of NO in the spinal cord. SNC (but not the NO donor alone or decomposed SNC) produced a concentration-dependent release of NE from rat spinal cord synaptosomes. The d-isomer of SNC was less potent than the l-isomer, and the effect of SNC was partially blocked by l-, but not d-leucine, implicating an interaction with the l-amino acid transporter. SNC-induced NE release was partially Na(+) dependent, but largely Ca(2+) independent. NE uptake inhibitors partially antagonized the effect of SNC, but guanylate cyclase inhibitors were without effect. These data are therefore consistent with NO stimulating NE release in the spinal cord via reaction with thiol containing compounds, such as cysteine, entry into NE terminals via active transport, and production of both exocytotic and carrier mediated release. PMID:10924712

  13. Chondroitinase ABC treatment of injured spinal cord in rats Evaluation of long-term outcomes

    Institute of Scientific and Technical Information of China (English)

    Haifeng Yuan; Qingquan Kong; Yongli Ding; Yueming Song; Lihong Hu; Zili Wang; Hao Liu; Limin Liu; Quan Gong; Tao Li

    2010-01-01

    Chondroitin sulfate proteoglycans(CSPGs)which are produced by mature oligodendrocytes and reactive astrocytes can be upregulated after spinal cord injury and contribute to regenerative failure.Chondroitinase ABC(ChABC)digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition.However,many current studies have used an incomplete spinal cord injury model,and examined results after 8 12 weeks of ChABC treatment.In this study,a complete rat spinal cord transection injury model was used to study the long-term effects of ChABC treatment by subarachnoid catheter.Pathology of spinal cord regeneration was compared with control 24 weeks following ChABC treatment using immunohistochemistry and axon tracing techniques.At 24 weeks after injury,neurofilament 200 expression was significantly greater in the ChABC treatment group compared with the transection group.In the ChABC treatment group,axonal growth was demonstrated by a large number of biotinylated dextran amine positive axons caudal to,or past,the epicenter of injury.Biotinylated dextran amine-labeled fibers were found in the proximal end of the spinal cord in the transection alone group.These results confirm that ChABC can promote axon growth,neural regeneration,and repair after spinal cord injury in rats long after the initial injury.

  14. Changes in autophagy proteins in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zhang Qin; Huang Chen; Meng Bin; Tang Tiansi; Yang Huilin

    2014-01-01

    Objective:Autophagy is involved in several neurodegenerative diseases and recently its role in acute brain injury has won increasing interest.Spinal cord injuries (SCIs) often lead to permanent neurological deficit.Therefore,in this study,we examined the profiles of autophagy-linked proteins (MAP-LC3) after SCI to investigate whether the expression of autophagy contributes to neurological deficit after SCI.Methods:Adult female Sprague-Dawley rats were used and randomly divided into control and SCI groups.All the rates received laminectomy at T8-T10 level.Those in the SCI group received additional exposure of the dorsal surface of the spinal cord,followed by a weightdrop injury.Thereafter we investigated the expression levels of MAP-LC3,beclin-1,Cathepsin D and the beclin-1-binding protein bcl-2 by western blot analysis at 12 h,24 h,3 d,7 d,21 d and 28 d.One-way ANOVA with Tukey post hoc test was used to compare data between groups.Results:We observed significant increase in the level of LC3 (LC3-Ⅱ/LC3-Ⅰ) at 3 d and 7 d after SCI when compared with the sham group.While the level of beclin-1 and ratio of beclin-1/bcl-2 was found to have increased from 12 h to 24 h after injury.Cathepsin D expression was also elevated at 7 d (P<0.01).Conclusion:Based on the above mentioned data,we proposed that autophagy plays a role in the manifestation of cell injury following SCI.

  15. Effects of Nerve Growth Factor on Bcl-2 Protein after Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    汤长华; 曹晓建; 王道新

    2002-01-01

    Objective To explore the protective mechanisms of nerve growth factor( NGF) ou spinal cord injury(SCI) and provide theoretical basis for its clinical application. MethodsThe SCI of Wistar rats was done by Allens weight dropping way by a 10 g × 2.5 cm impact on theposterior of spinal cord T8 NGF ( 3 g/L, 20d) or normal saline was injected to treatment group ratsthrough catheter into subarachnoid space at 0,2,4,8,12 and 24 h after SCI. The expression of bcl-2 protein levels in rat spinal cord was detected by immunohistoclemistry. Results The strong expres-sion sequence of bcl-2 protein was found in spinal cord of normal rat group. The levels of bcl-2 pro-tein after SCI in NGF treatment group increased more significantly than those in normal saline treatmentgroup (P<0. 01). Conclusion NGF could protect injured spinal cord by stimulating bcl-2 pro-tein expression and suppressing apoptosis after SCI.

  16. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion

    Institute of Scientific and Technical Information of China (English)

    Fang Huang; Hongwen He; Wenguo Fan; Yongliang Liu; Hongyu Zhou; Bin Cheng

    2013-01-01

    Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin re-ceptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal minal nucleus and trigeminal ganglion was determined with immunohistochemistry and mistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings sug-gest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin’s regulatory effect on pain is attenuated.

  17. EFFECTS OF NERVE GROWTH FACTOR ON ENDOTHELIN AFTER SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the protective mechanisms of nerve growth factor (NGF) on spinal cord injury.Methods The spinal cord injury (SCI) of Wistar rats was performed by a 10g×2.5cm impact on the posterior T12 spinal cord.The experimental animals received NGF liquid by subarachnoid space tube.The radioimmunological techniques were applied to examine the level of endothelin.Results The level of endothelin was significantly increased after the injury as compared with that in control group(P<0.01).The level of endothelin in NGF group as obviously lowered as compared with that in normal saline group 4 h after injury (P<0.01).Conclusion NGF can protect spinal cord against injury in vivo.One of the mechanisms is that NGF could inhibit endothelin-induced vicious circle.

  18. Spinal blockades of class I antiarrythmic drugs with bupivacaine by isobolographic analysis in rats.

    Science.gov (United States)

    Chen, Yu-Wen; Chu, Chin-Chen; Chen, Yu-Chung; Leung, Yuk-Man; Wang, Jhi-Joung

    2012-10-18

    Flecainide, quinidine, and mexiletine have been shown to be sodium channel blockers and local anesthetics. The purpose of this study was to examine the interaction of the traditional local anesthetic bupivacaine with flecainide, quinidine, or mexiletine on spinal blockades. To obtain the 50% effective dose (ED(50)) of drugs, dose-dependent responses of spinal blockades of motor and sensory functions with intrathecal flecainide, quinidine, mexiletine, and bupivacaine in rats were constructed. Using a continuum of different fixed drug dose ratios, the interactions of bupivacaine with drugs (flecainide, quinidine, or mexiletine) were evaluated by an isobolographic analysis. Our resulting data showed that flecainide, quinidine, and mexiletine, as well as local anesthetic bupivacaine produced dose-dependent spinal blockades in motor function and nociception. Flecainide had the most potent spinal antinociceptive effect (Pmexiletine displayed an additive effect on spinal blockades of motor function and nociception. We concluded that bupivacaine combined with flecainide, quinidine, or mexiletine exhibited an additive effect on spinal blockades of motor function and nociception. Using such a combination strategy to produce antinociception may potentially provide an improved therapeutic separation from myocardial toxicity occurred after spinal bupivacaine. PMID:22985507

  19. Mondia whitei (Periplocaceae prevents and Guibourtia tessmannii (Caesalpiniaceae facilitates fictive ejaculation in spinal male rats

    Directory of Open Access Journals (Sweden)

    Watcho Pierre

    2013-01-01

    Full Text Available Abstract Background Mondia whitei and Guibourtia tessmannii are used in Cameroon traditional medicine as aphrodisiacs. The present study was undertaken to evaluate the pro-ejaculatory effects of the aqueous and organic solvent extracts of these plants in spinal male rats. Methods In spinal cord transected and urethane-anesthetized rats, two electrodes where inserted into the bulbospongiosus muscles and the ejaculatory motor pattern was recorded on a polygraph after urethral and penile stimulations, intravenous injection of saline (0.1 ml/100 g, dopamine (0.1 μM/kg, aqueous and organic solvent plant extracts (20 mg/kg. Results In all spinal rats, urethral and penile stimulations always induced the ejaculatory motor pattern. Aqueous or hexane extract of Mondia whitei (20 mg/kg prevented the expression of the ejaculatory motor pattern. The pro-ejaculatory effects of dopamine (0.1 μM/kg were not abolished in spinal rats pre-treated with Mondia whitei extracts. Aqueous and methanolic stem bark extracts of Guibourtia tessmannii (20 mg/kg induced fictive ejaculation characterized by rhythmic contractions of the bulbospongiosus muscles followed sometimes with expulsion of seminal plugs. In rats pre-treated with haloperidol (0.26 μM/kg, no ejaculatory motor pattern was recorded after intravenous injection of Guibourtia tessmannii extracts (20 mg/kg. Conclusion These results show that Mondia whitei possesses preventive effects on the expression of fictive ejaculation in spinal male rats, which is not mediated through dopaminergic pathway; on the contrary, the pro-ejaculatory activities of Guibourtia tessmannii require the integrity of dopaminergic system to exert its effects. The present findings further justify the ethno-medicinal claims of Mondia whitei and Guibourtia tessmannii.

  20. Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model

    OpenAIRE

    Chen, Dayong; Zeng, Wei; Fu, Yunfeng; Gao, Meng; Lv, Guohua

    2015-01-01

    The aims of this study were to assess that the effects of bone marrow mesenchymal stem cells (BMSCs) combination with minocycline improve spinal cord injury (SCI) in rat model. In the present study, the Wistar rats were randomly divided into five groups: control group, SCI group, BMSCs group, Minocycline group and BMSCs + minocycline group. Basso, Beattie and Bresnahan (BBB) test and MPO activity were used to assess the effect of combination therapy on locomotion and neutrophil infiltration. ...

  1. Deferoxamine improves neurological function in a rat model of experimental spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yanting Wang; Shaoji Yuan; Fachen Wang; Rong Hu; Jiangkai Lin; Zisheng Liu; Hua Feng

    2011-01-01

    A rat model of spinal cord injury was established using modified Allen's method and treated with the ferric iron-chelating agent, deferoxamine. Hematoxylin-eosin, Nissl and Perl's Prussian blue staining, at 7-14 days following spinal cord injury, showed that following deferoxamine treatment, glial cells proliferation increased significantly, nerve cell morphology was improved and hemosiderin was significantly reduced in the injury region. At 1-56 days following injury, Basso, Beattie, and Bres nahan Locomotor Rating Scale scores were increased, while latencies of somatosensory-evoked potentials and motor-evoked potentials were decreased. Results demonstrate that deferoxamine can promote neurological functional recovery after experi-mental spinal cord injury in rats.

  2. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats

    DEFF Research Database (Denmark)

    Qin, Chao; Ghorbani, Marie L M; Wu, Mingyuan;

    2008-01-01

    control. Four to eleven weeks after injections, extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated rats. Esophageal distensions (ED, 0.2, 0.4 ml, 20 s) were produced by water inflation of a latex balloon in the thoracic...

  3. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-08-01

    Full Text Available Background: Acute spinal cord injury (SCI leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. Methods: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. Results: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. Conclusion: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.

  4. Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions

    NARCIS (Netherlands)

    Bijl, HP; van Luijk, P; Coppes, RP; Schippers, JM; Konings, AWT; van der Kogel, AJ

    2003-01-01

    Purpose: The effects of dose distribution on dose-effect relationships have been evaluated and, from this, iso-effective doses (ED(50)) established. Methods and Materials: Wistar rats were irradiated on the cervical spinal cord with single doses of unmodulated protons (150MeV) to obtain sharp latera

  5. Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions.

    NARCIS (Netherlands)

    Bijl, H.P.; Luijk, P. van; Coppes, R.P.; Schippers, J.M.; Konings, A.W.T.; Kogel, A.J. van der

    2003-01-01

    PURPOSE: The effects of dose distribution on dose-effect relationships have been evaluated and, from this, iso-effective doses (ED(50)) established. METHODS AND MATERIALS: Wistar rats were irradiated on the cervical spinal cord with single doses of unmodulated protons (150 MeV) to obtain sharp later

  6. Role of minimally invasive surgery for adult spinal deformity in preventing complications.

    Science.gov (United States)

    Yen, Chun-Po; Mosley, Yusef I; Uribe, Juan S

    2016-09-01

    With the aging population, there is a rising prevalence of degenerative spinal deformity and need of surgical care for these patients. Surgical treatment for adult spinal deformity (ASD) is often fraught with a high rate of complications. Minimally invasive surgery (MIS) has for the past decade been adopted by spine surgeons to treat ASD in the hopes of reducing access-related morbidity and perioperative complications. The benefits of MIS approach in general and recent development of MIS techniques to avoid long-term complications such as pseudoarthrosis or proximal junctional kyphosis are reviewed. PMID:27411527

  7. The change of T-wave on electrocardiogram after epinephrine test dose in spinal anesthetized adults

    OpenAIRE

    Lee, Jeong Woo; Kim, Deokyu; Choi, Hyun Ho; Kim, Dong Chan

    2010-01-01

    Background This study evaluated the efficacy of a T-wave change after the IV administration of low dose epinephrine containing the test dose during spinal anesthesia. Methods Eighty healthy adults undergoing spinal anesthesia were enrolled in this study. The subjects were divided randomly into the following 4 groups: Group S (n = 20) received 3 ml of normal saline, group L (n = 20) received 3 ml of 1.0% lidocaine, group E5 received 3 ml of 1.0% lidocaine with epinephrine 5 µg, and group E10 r...

  8. Effects of L-lysine monohydrochloride on insulin and blood glucose levels in spinal cord injured rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian-ling; ZHAO Yu-wu; LIU Xue-yuan; DING Su-ju

    2010-01-01

    Background Hyperglycemia in brain and spinal cord could aggravate neurologic impairment. Recent studies showed that L-lysine monohydrochlonde (LMH) could increase the insulin secretion and regulate the blood glucose level. The aim of the present study was to investigate the effects of LMH on pancreatic islet B cells, the levels of endogenous insulin and blood glucose in spinal cord injured rats.Methods Forty male Wistar rats were divided into four groups, namely, normal control group, model group, high-dose LMH group (621.5 mg/kg equal to LMH 1/8 LD50), and low-dose LMH group (310.8 mg/kg equal to LMH 1/16 LD50). The model of spinal cord injured rat was established by hemi-transection at the lower right thoracic spinal cord. LMH was administered via intraperitoneal injection once spinal cord injury was produced in rats. All rats were sacrificed 48 hours after spinal cord injured. The effects of LMH on pancreatic islet B cells, the content of endogenous insulin, end the level of blood glucose were observed with immunohistochemical method, radioimmunoassay method, end biochemical analyzer, respectively. Results The insulin immunohistochemical intensities of islet B cells were significantly weaker in model group then those in normal control group (P 0.05). Conclusion LMH, but dose-dependent, might participate in the regulation of pancreatic islet B cells, and then reduce the blood glucose levels in the spinal cord injured rats.

  9. Efficient delivery of small interfering RNA into injured spinal cords in rats by photomechanical waves

    Science.gov (United States)

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2011-03-01

    In the central nervous system, lack of axonal regeneration leads to permanent functional disabilities. In spinal cord injury (SCI), the over-expressions of intermediate filament (IF) proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are mainly involved in glial scar formation; these proteins work as both physical and biochemical barriers to axonal regeneration. Thus, silencing of these IF proteins would be an attractive strategy to treat SCI. In this study, we first attempted to deliver fluorescent probe-labeled siRNAs into injured spinal cords in rats by applying photomechanical waves (PMWs) to examine the capability of PMWs as a tool for siRNA delivery. Intense fluorescence from siRNAs was observed in much broader regions in the spinal cords with PMW application when compared with those with siRNA injection alone. Based on this result, we delivered siRNAs for GFAP and vimentin into injured spinal tissues in rats by applying PMWs. The treatment resulted in efficient silencing of the proteins at five days after SCI and a decrease of the cavity area in the injured tissue at three weeks after SCI when compared with those with siRNA injection alone. These results demonstrate the capability of PMWs for efficient delivery of siRNAs into injured spinal cords and treatment of SCIs.

  10. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats.

    Science.gov (United States)

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-08-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9-T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI. PMID:27656624

  11. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  12. P75 and phosphorylated c-Jun are differentially regulated in spinal motoneurons following axotomy in rats

    Institute of Scientific and Technical Information of China (English)

    Qiuju Yuan; Huanxing Su; Wutian Wu; Zhi-Xiu Lin

    2012-01-01

    The neurotrophin receptor (p75) activates the c-Jun N-terminal kinase (JNK) pathway. Activation of JNK and its substrate c-Jun can cause apoptosis. Here we evaluate the role of p75 in spinal motoneurons by comparing immunoreactivity for p75 and phosphorylated c-Jun (p-c-Jun), the production of JNK activation in axotomized motoneurons in postnatal day (PN)1, PN7, PN14 and adult rats. Intensive p-c-Jun was induced in axotomized motoneurons in PN1 and PN7. In PN14, p-c-Jun expression was sharply reduced after the same injury. The decreased expression of p-c-Jun at this age coincided with a developmental switch of re-expression of p75 in axotomized cells. In adult animals, no p-c-Jun but intensive p75 was detected in axotomized motoneurons. These results indicate differential expression or turnover of phosphorylation of c-Jun and p75 in immature versus mature spinal motoneurons in response to axonal injury. The non-co-occurrence of p75 and p-c-Jun in injured motoneurons indicated that p75 may not activate JNK pathway, suggesting that the p75 may not be involved in cell death in axotomized motoneurons.

  13. Noradrenergic modulation of intrinsic and synaptic properties of lumbar motoneurons in the neonatal rat spinal cord

    Directory of Open Access Journals (Sweden)

    Maylis Tartas

    2010-03-01

    Full Text Available Although it is known that noradrenaline powerfully controls spinal motor networks, few data are available regarding the noradrenergic modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of noradrenergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of noradrenaline and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. Noradrenaline increases the motoneuron excitability partly via the inhibition of a KIR like current. Methoxamine (α1, clonidine (α2 and isoproterenol (β differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (α1, yohimbine (α2 and propranolol (β. We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by noradrenaline, methoxamine and isoproterenol. On the other hand, noradrenaline, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic α1 and β receptor activation. Our data thus show that the noradrenergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord.

  14. Up-regulation of -opioid receptors in the spinal cord of morphine-tolerant rats

    Indian Academy of Sciences (India)

    Subrata Basu Ray; Himanshu Gupta; Yogendra Kumar Gupta

    2004-03-01

    Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of m-receptors within specific parts of the nervous system. However, reports on changes in the -opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10–50 mg/kg, subcutaneously) for five days. In vitro tissue autoradiography for localization of -receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of -receptors in the superficial layers of the dorsal horn. This up-regulation of -receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance.

  15. Effects of intrathecal methotrexate and cytosine arabinoside on the radiation tolerance of the rat spinal cord

    International Nuclear Information System (INIS)

    The effect of intrathecally or intravenously administered methotrexate (MTX) or cytosine arabinoside (ara-C) on the early and late delayed radiation response of the rat cervical spinal cord has been studied. A technique has been developed for intrathecal administration of drugs into the rat lumbar spinal canal. When given shortly before irradiation, intrathecal ara-C significantly reduces the isoeffect doses for the early delayed white matter necrosis syndrome by a factor of 1.2-1.3, while no effect is observed for the late delayed vascular syndrome. The effect disappears when ara-C is given intravenously or 24 h after irradiation. At a maximally tolerated intrathecal MTX dose, no modification of the early or late radiation response of the spinal cord was observed. In constrast to ara-C, intravenous MTX seems to interact with the induction of the late delayed vascular damage in the rat cervical spinal cord, with a dose-modifying factor of 1.1-1.2. (Auth.)

  16. Ex vivo infection of human embryonic spinal cord neurons prior to transplantation into adult mouse cord

    Directory of Open Access Journals (Sweden)

    Dénes Ádám

    2010-05-01

    Full Text Available Abstract Background Genetically modified pseudorabies virus (Prv proved suitable for the delivery of foreign genes to rodent embryonic neurons ex vivo and maintaining foreign gene expression after transplantation into spinal cord in our earlier study. The question arose of whether human embryonic neurons, which are known to be more resistant to Prv, could also be infected with a mutant Prv. Specifically, we investigated whether a mutant Prv with deleted ribonucleotide reductase and early protein 0 genes has the potential to deliver marker genes (gfp and β-gal into human embryonic spinal cord neurons and whether the infected neurons maintain expression after transplantation into adult mouse cord. Results The results revealed that the mutant Prv effectively infected human embryonic spinal cord neurons ex vivo and the grafted cells exhibited reporter gene expression for several weeks. Grafting of infected human embryonic cells into the spinal cord of immunodeficient (rnu-/rnu- mice resulted in the infection of some of the host neurons. Discussion These results suggest that Prv is suitable for the delivery of foreign genes into transplantable human cells. This delivery method may offer a new approach to use genetically modified cells for grafting in animal models where spinal cord neuronal loss or axon degeneration occurs.

  17. Effect of Acupuncture on Free Radicals in Rats with Early Experimental Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    吴永刚; 孙忠人; 李志刚; 赵永厚; 孙申田

    2002-01-01

    @@ Effect of acupuncture on free radicals after spinal cord injury was observed in rats with experimental spinal cord injury (SCI). Results indicated that within 24 hours after SCI malondialdehyde (MDA) increased progressively, 2 hours after SCI it reached the peak; and the superoxide dismutase (SOD) activity decreased significantly at the same hours, the decrease being the most marked 2-6 hours after SCI. The MDA content in the acupuncture group was significantly lower (P<0.05) and the SOD activity higher (P<0.01) than that of the control group respectively. It is suggested that acupuncture inhibits production of MDA and increases the SOD activity.

  18. Low-level laser therapy for spinal cord injury in rats: effects of polarization

    OpenAIRE

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2013-01-01

    Abstract. The effects of laser polarization on the efficacy of near-infrared low-level laser therapy for spinal cord injury (SCI) are presented. Rat spinal cords were injured with a weight-drop device, and the lesion sites were directly irradiated with a linearly polarized 808-nm diode laser positioned either perpendicular or parallel to the spine immediately after the injury and daily for five consecutive days. Functional recovery was assessed daily by an open-field test. Regardless of the p...

  19. Telomerase expression in the glial scar of rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Mingkun Yang; Weibin Sheng; Tao Xu; Kai Huang; Yanjiao Wang

    2012-01-01

    A rat model of spinal cord injury was established using the weight drop method. A cavity formed 14 days following spinal cord injury, and compact scar tissue formed by 56 days. Enzyme-linked immunosorbent assay and polymerase chain reaction enzyme-linked immunosorbent assay results demonstrated that glial fibrillary acidic protein and telomerase expression increased gradually after injury, peaked at 28 days, and then gradually decreased. Spearman rank correlation showed a positive correlation between glial fibrillary acidic protein expression and telomerase expression in the glial scar. These results suggest that telomerase promotes glial scar formation.

  20. Effects of nerve growth factor on N-methyI-D-asparate receptor 1 after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    曹晓建; 汤长华; 罗永湘

    2002-01-01

    To explore the effects of the nerve growth factor ( NGF ) on N-methyI-D-asparate receptor 1(NMDAR 1 ) after spinal cord injury. Methods: Spinal cord injury of Wistar rats was performed with Allen's method by a 10 g x 2.5 cm impact on the posterior T8 spinal cord. NGF was given to the rats of the treatment group via subarachnoid space tube at once,2, 4, 8, 12 and 24 hours after spinal cord injury,respectively. The expression of NMDAR1 mRNA in spinal cord was detected by in situ hybridization. Results: Rare expression sequence of NMDAR1 mRNA was found in rat spinal cord of the normal group. A strong expression sequence of NMDAR1 mRNA was found in rat spinal cord of the normal saline group. The expression of NMDAR1 mRNA in the NGF group was significantly decreased as compared with that in the normal saline group ( P = 0.01 ). Conclusions: NGF can relieve damage of injured spinal cord by prohibiting the expression of NMDAR1 mRNA.

  1. Effect of nerve growth factor on neuronal apoptosis after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    曹晓建; 汤长华; 罗永湘

    2002-01-01

    To explore the molecular mechanism of the protective effect of nerve growth factor (NGF) on injured spinal cord. Methods: The posterior T8 (the 8th thoracic segment) spinal cords of 60 Wistar rats were injured by impacts caused by objects (weighing 10 g) falling from a height of 2.5 cm with Allens way. Solution with nerve growth factors (NGF) was given to 30 rats (the NGF group) through a microtubule inserted into the subarachnoid cavity immediately, and at 2, 4, 8, 12 and 24 hours after spinal cord injury (SCI) respectively. Normal saline (NS) with same volume was given to the other 30 rats (the NS group) with the same method. And 5 normal rats were taken as the normal controls. The expression of bcl-2 and bax proteins in spinal cord was detected with immunohistochemistry. The apoptotic neurons in spinal cord were measured with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling of DNA fragments (TUNEL) staining. Results: The positive expression of bcl-2 protein was strong in the normal controls, but decreased in the NS group, and increased significantly in the NGF group as compared with that of the NS group (P<0.01). The positive expression of bax protein was also strong in the normal controls, but increased in the NS group, and decreased significantly in the NGF group as compared with that of the NS group (P<0.01). Apoptotic neurons were found in the NS group, and they decreased significantly in the NGF group as compared with that of the NS group (P<0.01). Conclusions: NGF can protect the injured nerve tissues through stimulating the expression of bcl-2 protein, inhibiting the expression of bax protein and inhibiting the neuronal apoptosis after SCI.

  2. pSVPoMcat modifying Schwann cell to protect injured spinal neurons in rats

    Institute of Scientific and Technical Information of China (English)

    陈礼刚; 高立达; 等

    2002-01-01

    Objective:To investigate the protective effect of pSVPoMcat(myelin basic protein microgene)modifying Schwann cell on injured spinal neurons.Methods;A model of rat spinal cord injured by hemisection was used.One hundred and twenty healthy SD rats of both sexes weighing 250-300g were divided into three groups:GroupA(n=40,treated with implantation of pSPVoMcat modifying Schwann cell),GroupB(n=40,treated with implantation of Schwann cell only)and GroupC(n=400,treated with sham operation as the control).One week after operation the rat functional recovery was observed dynamically by using combined behavioral score(CBS)and cortical somatasensory evoked potentials,the spinal cord sections were stained by Nissl,acid phosphatase enzyme histochemistry and cell apoptosis was examined by metye green,terminal deoxynucleotidyl and the dUTP Nick end labeling technique.Quantitative analysis was done by computer image analysis system.Results:In Group A the injured neurons recovered well morphologically.The imaging analysis showed a result of GroupA>GroupB>Group Cin the size of the neurons (P<0.01),The percentage of ACP(acid phosphatase) stained area and the rate of apoptosis sequence were groupsAspinal neurons and promotes recovery of injured spinal cord function in rats.

  3. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Subhra Prakash Hui

    Full Text Available Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.

  4. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  5. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    Science.gov (United States)

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  6. A Comprehensive Analysis of the SRS-Schwab Adult Spinal Deformity Classification and Confounding Variables

    DEFF Research Database (Denmark)

    Hallager, Dennis Winge; Hansen, Lars Valentin; Dragsted, Casper Rokkjær;

    2016-01-01

    confounding variables. SUMMARY OF BACKGROUND DATA: The SRS-Schwab Adult Spinal Deformity Classification includes sagittal modifiers considered important for HRQOL and the clinical impact of the classification has been validated in patients from the International Spine Study Group database; however, equivocal...... results were reported for the Pelvic Tilt modifier and potential confounding variables were not evaluated. METHODS: Between March 2013 and May 2014, all adult spinal deformity patients from our outpatient clinic with sufficient radiographs were prospectively enrolled. Analyses of HRQOL variance and post...... with multivariate proportional odds regressions. P values were adjusted for multiple testing. RESULTS: Two hundred ninety-two of 460 eligible patients were included for analyses. The SRS-Schwab Classification significantly discriminated HRQOL scores between normal and abnormal sagittal modifier classifications...

  7. Analgesic action of suspended moxibustion in rats with chronic visceral hyperalgesia correlates with enkephalins in the spinal cord

    Institute of Scientific and Technical Information of China (English)

    Tao Yi; Li Qi; Huangan Wu; Xiaopeng Ma; Huirong Liu; Xiaomei Wang

    2012-01-01

    Rats that modeled chronic visceral hyperalgesia received suspended moxibustion at bilateral Tianshu (ST25) and Shangjuxu (ST37) once daily over a period of 7 days. Results show that suspended moxibustion significantly depressed abdominal withdrawal reflex scores and increased enkephalin concentration in the spinal cord. The experimental findings suggest that spinal enkephalins contributed to the analgesic effect of suspended moxibustion in rats with chronic visceral hyperalgesia.

  8. Presence of binucleate neurons in the spinal cord of young and senile rats.

    Science.gov (United States)

    Portiansky, Enrique Leo; Barbeito, Claudio Gustavo; Flamini, Mirta Alicia; Gimeno, Eduardo Juan; Goya, Rodolfo Gustavo

    2006-11-01

    The presence of binucleate cells constitutes a normal feature of some animal tissues but is rare in the normal brain and has not been documented in the spinal cord. We assessed different segments of the rat spinal cord in order to determine the frequency and distribution of binucleate neurons in this structure as well as the impact of aging on this neuronal population. Young (4-5 months) and senile (32 months) female Sprague-Dawley rats were used. Sections from cervical, thoracic and lumbar segments were histochemically and immunohistochemically (NeuN) stained and the frequency and distribution of binucleate neurons was determined by manual counting. The frequency of binucleate neurons in all of the analysed segments was comparable between young and senile animals. Binucleate neurons were particularly frequent in the C5 and C6 segments. The overall distribution of binucleate neurons in the different laminae assessed was, Lm-III = 19%; Lm-VI = 17%; Lm-VII = 39%; LmVIII = 8%; Lm-IX = 11%; Lm-X = 6%, and was comparable between young and senile rats. We conclude that binucleate neurons occur as a normal feature of the rat spinal cord and that their frequency and distribution does not change with aging. PMID:17021753

  9. Injury potentials associated with severity of acute spinal cord injury in an experimental rat model

    Institute of Scientific and Technical Information of China (English)

    Suying Pan; Guanghao Zhang; Xiaolin Huo; Jinzhu Bai; Tao Song

    2011-01-01

    To investigate characteristics of injury potentials after different degrees of spinal cord injury in rats, the present study established models of spinal cord contusion with severe, moderate, and mild degrees of injury. Injury potential was measured in vivo using a direct current voltage amplification system. Results revealed that in the first 4 hours after acute spinal cord injury, initial amplitude of injury potential was greatest after severe injury, followed by moderate and mild injuries. Amplitude of injury potential decreased gradually with injury time, and the recession curve was logarithmic. Under the same degree of injuries, amplitude of rostral injury potential was generally less than caudal injury potential. Results suggested that injury potential reflected injury severity, because large initial amplitude of injury potential during the early injury stage implied severe injury.

  10. Intrathecal amantadine for prolonged spinal blockade of sensory and motor functions in rats.

    Science.gov (United States)

    Tzeng, Jann-Inn; Kan, Chung-Dann; Wang, Jieh-Neng; Wang, Jhi-Joung; Lin, Heng-Teng; Hung, Ching-Hsia

    2016-08-01

    We aimed to compare the hypothesized local anesthetic action of amantadine (1-adamantanamine) with that of the known local anesthetic mepivacaine. Motor, proprioceptive, and nociceptive functions were evaluated in rats after intrathecal administration. Amantadine elicited spinal anesthesia in a dose-related fashion and produced a better sensory-selective action over motor blockade (P proprioceptive, and nociceptive block was mepivacaine > amantadine (P proprioception, and nociception. On an equipotent basis (ED25 , ED50 , and ED75 ), the duration of amantadine was longer (P proprioceptive, and nociceptive block. Our preclinical data demonstrated that amantadine was less potent than mepivacaine at producing spinal anesthesia. The spinal block duration produced by amantadine was greater than that produced by mepivacaine. Both amantadine and mepivacaine produced a markedly nociceptive-specific blockade. PMID:27011292

  11. Effect of Electroacupuncture at Acupoints of the Governor Vessel on Aquaporin-4 in Rat with Experimental Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Xie Jie; Fang Jian; Feng Xinsong; Liu Qingsi

    2006-01-01

    This study is to investigate the effects of electroacupuncture at acupoints of the Governor Vessel(GV) on aquaporin-4 (AQP-4) expression and on functions of the hind limbs in the rat of spinal cord injury. The functions of the hind limbs were detected with BBB scale on the 1d, 3d, 7d and 21d after the spinal cord injury, respectively, and AQP-4 expression in the spinal cord was determined with immunohistochemical method and analyzed quantitatively with image analyzer. The results indicated that on the 1d after the spinal cord injury, increased AQP-4 expression can be seen significantly in both the gray matter and the white matter of the injured spinal cord, and it reached the peaks on the 3d after the spinal cord injury in both the electroacupuncture group and the spinal cord injury group. However, AQP-4 express was significantly decreased in the electroacupuncture group as compared with that in the control group on 7d, 14d and 21d (P<0.05 or P<0.01). The decrease of AQP-4 expression almost went with the improvement of the neurological function, which suggested that electroacupuncture at the acupoints of the Governor Vessel can inhibit edema of the spinal cord to alleviate the secondary spinal cord injury by means of decreasing the AQP-4 expression after the spinal cord injury, so as to protect the residual normal spinal cord tissues and promote the rebuilding of nervous tissues.

  12. Role of telomerase reverse transcriptase in glial scar formation after spinal cord injury in rats.

    Science.gov (United States)

    Tao, Xu; Ming-Kun, Yang; Wei-Bin, Sheng; Hai-Long, Guo; Rui, Kan; Lai-Yong, Tu

    2013-09-01

    The study aims to determine the expression of telomerase reverse transcriptase (TERT) in the glial scar following spinal cord injury in the rat, and to explore its relationship with glial scar formation. A total of 120 Sprague-Dawley rats were randomly divided into three groups: SCI only group (without TERT interference), TERT siRNA group (with TERT interference), and sham group. The TERT siRNA and SCI only groups received spinal cord injury induced by the modified Allen's weight drop method. In the sham group, the vertebral plate was opened to expose the spinal cord, but no injury was modeled. Five rats from each group were sacrificed under anesthesia at days 1, 3, 5, 7, 14, 28, 42, and 56 after spinal cord injury. Specimens were removed for observation of glial scar formation using hematoxylin-eosin staining and immunofluorescence detection. mRNA and protein expressions of TERT and glial fibrillary acidic protein (GFAP) were detected by reverse-transcription (RT)-PCR and western blotting, respectively. Hematoxylin-eosin staining showed evidence of gliosis and glial scarring in the spinal cord injury zone of the TERT siRNA and SCI only groups, but not in the sham group. Immunofluorescence detection showed a significant increase in GFAP expression at all time points after spinal cord injury in the SCI only group (81 %) compared with the TERT siRNA group (67 %) and sham group (2 %). In contrast, the expression of neurofilament protein 200 (NF-200) was gradually reduced and remained at a stable level until 28 days in the SCI only group. There were no NF-200-labeled cells in the spinal cord glial scar and cavity at day 56 after spinal cord injury. NF-200 expression at each time point was significantly lower in the SCI only group than the TERT siRNA group, while there was no change in the sham group. Western blotting showed that TERT and GFAP protein expressions changed dynamically and showed a linear relationship in the SCI only group (r = 0.765, P scar, which

  13. The autoradiographic localization of substance P receptors in the rat and bovine spinal cord and the rat and cat spinal trigeminal nucleus pars caudalis and the effects of neonatal capsaicin

    International Nuclear Information System (INIS)

    Substance P (SP) is a putative neurotransmitter in the central nervous system. In the present report the authors have used autoradiographic receptor binding techniques to investigate the distribution of SP receptor binding sites in the rat and bovine spinal cord and in the rat and cat spinal trigeminal nucleus pars caudalis. Although some quantitative differences were evident, all species appeared to have a similar distribution of SP receptor binding sites in both the spinal cord and in the spinal trigeminal nucleus pars caudalis. In the spinal cord the heaviest concentration of SP receptors is located in lamina X, while moderate to heavy concentrations were found in laminae I, II and V-IX. Very low concentrations of SP receptors were present in laminae III and IV. Examination of the cat and rat spinal trigeminal nucleus pars caudalis revealed a moderate density of SP receptor binding sites in laminae I and II, very low concentrations in laminae III and IV, and low to moderate concentrations in lamina V. Rats treated neonatally with capsaicin showed a small (11%) but significant (P < 0.02) increase in the levels of SP receptor binding sites in laminae I and II of the cervical and lumbar spinal cord while in all other laminae the levels remained unchanged. (orig.)

  14. Whole-body vibration improves functional recovery in spinal cord injured rats.

    Science.gov (United States)

    Wirth, Felicitas; Schempf, Greta; Stein, Gregor; Wellmann, Katharina; Manthou, Marilena; Scholl, Carolin; Sidorenko, Malina; Semler, Oliver; Eisel, Leonie; Harrach, Rachida; Angelova, Srebrina; Jaminet, Patrick; Ankerne, Janina; Ashrafi, Mahak; Ozsoy, Ozlem; Ozsoy, Umut; Schubert, Harald; Abdulla, Diana; Dunlop, Sarah A; Angelov, Doychin N; Irintchev, Andrey; Schönau, Eckhard

    2013-03-15

    Whole-body vibration (WBV) is a relatively novel form of exercise used to improve neuromuscular performance in healthy individuals. Its usefulness as a therapy for patients with neurological disorders, in particular spinal cord injury (SCI), has received little attention in clinical settings and, surprisingly, even less in animal SCI models. We performed severe compression SCI at a low-thoracic level in Wistar rats followed by daily WBV starting 7 (10 rats) or 14 (10 rats) days after injury (WBV7 and WBV14, respectively) and continued over a 12-week post-injury period. Rats with SCI but no WBV training (sham, 10 rats) and intact animals (10 rats) served as controls. Compared to sham-treated rats, WBV did not improve BBB score, plantar stepping, or ladder stepping during the 12-week period. Accordingly, WBV did not significantly alter plantar H-reflex, lesion volume, serotonergic input to the lumbar spinal cord, nor cholinergic or glutamatergic inputs to lumbar motoneurons at 12 weeks after SCI. However, compared to sham, WBV14, but not WBV7, significantly improved body weight support (rump-height index) during overground locomotion and overall recovery between 6-12 weeks and also restored the density of synaptic terminals in the lumbar spinal cord at 12 weeks. Most remarkably, WBV14 led to a significant improvement of bladder function at 6-12 weeks after injury. These findings provide the first evidence for functional benefits of WBV in an animal SCI model and warrant further preclinical investigations to determine mechanisms underpinning this noninvasive, inexpensive, and easily delivered potential rehabilitation therapy for SCI. PMID:23157611

  15. Posterior spinal decompression, stabilization and arthrodesis in Nigerian adults: Profile and outcome

    Directory of Open Access Journals (Sweden)

    O E Idowu

    2012-01-01

    Full Text Available Background: The availability of intraoperative fluoroscopy and improved access to varieties of spinal titanium implants has revived posterior spinal stabilization techniques with their distinct advantages. Our aim is to describe the profile of various spine pathologies requiring subaxial posterior spinal decompression, stabilization (using titanium implants, and arthrodesis, and to determine the rate of postoperative complications and factors affecting outcome. Materials and Methods: This is a prospective single institution study of consecutive adult patients seen during the study period. Data collected included the patients′ demographics, radiological findings, indication for surgery, surgical procedure, operation time, intraoperative blood loss, and postoperative complications. Results: There were 26 patients (15 males and 11 females. Their ages ranged between 24 and 78 years (median = 42 years. The most common indications for surgery were spinal trauma and degenerative spine disease (24 patients. The region that was most commonly stabilized was the lumbar- 12 cases (46.2%. No patients experienced neural or vascular injury as a result of screw position; likewise no patient had screw loosening. There was a case each of superficial surgical site infection and transient cerebrospinal fluid leak but no case of implant failure was encountered. The outcome was significantly associated with the etiology (0.030 of the indication for surgery and preoperative power grade (0.000. Conclusion: Spinal trauma and degenerative spine disease are the two most common indications for posterior spinal decompression, stabilization and fusion in our center. It is associated with acceptable postoperative complication rate when done under fluoroscopic guidance. Outcome is related more to the preoperative neurological deficit and etiology of the indication for surgical stabilization.

  16. Combined spinal epidural anesthesia for laparoscopic appendectomy in adults: A case series

    Directory of Open Access Journals (Sweden)

    Rajesh S Mane

    2012-01-01

    Full Text Available Background: Laparoscopy is one of the most common surgical procedures and is the procedure of choice for most of the elective abdominal surgeries performed preferably under endotracheal general anesthesia. Technical advances in the field of laparoscopy have helped to reduce surgical trauma and discomfort, reduce anesthetic requirement resulting in shortened hospital stay. Recently, regional anaesthetic techniques have been found beneficial, especially in patients at a high risk to receive general anesthesia. Herewith we present a case series of laparoscopic appendectomy in eight American Society of Anaesthesiologists (ASA I and II patients performed under spinal-epidural anaesthesia. Methods: Eight ASA Grade I and II adult patients undergoing elective Laparoscopic appendectomy received Combined Spinal Epidural Anaesthesia. Spinal Anaesthesia was performed at L 2 -L 3 interspace using 2 ml of 0.5% (10 mg hyperbaric Bupivacaine mixed with 0.5ml (25 micrograms of Fentanyl. Epidural catheter was inserted at T 10 -T 11 interspace for inadequate spinal anaesthesia and postoperative pain relief. Perioperative events and operative difficulty were studied. Systemic drugs were administered if patients complained of shoulder pain, abdominal discomfort, nausea or hypotension. Results: Spinal anaesthesia was adequate for surgery with no operative difficulty in all the patients. Intraoperatively, two patients experienced right shoulder pain and received Fentanyl, one patient was given Midazolam for anxiety and two were given Ephedrine for hypotension. The postoperative period was uneventful. Conclusion: Spinal anaesthesia with Hyperbaric Bupivacaine and Fentanyl is adequate and safe for elective laparoscopic appendectomy in healthy patients but careful evaluation of the method is needed particularly in compromised cardio respiratory conditions.

  17. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.

  18. Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats.

    Science.gov (United States)

    Kuroiwa, Masahiro; Watanabe, Masahiko; Katoh, Hiroyuki; Suyama, Kaori; Matsuyama, Daisuke; Imai, Takeshi; Mochida, Joji

    2014-10-01

    After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.

  19. Raman spectroscopic investigation of spinal cord injury in a rat model

    Science.gov (United States)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  20. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    Science.gov (United States)

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2–8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  1. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  2. Measurement of glucose metabolism in rat spinal cord slices with dynamic positron autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoping [Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People' s Hospital, Guangzhou 510100 (China); Asai, Tatsuya [Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Morioka, Koichi [Department of Cardiovascular Surgery II, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Uchida, Kenzo; Baba, Hisatoshi [Department of Orthopaedics and Rehabilitation Medicine, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Tanaka, Kuniyoshi [Department of Cardiovascular Surgery II, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Zhuang Jian [Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People' s Hospital, Guangzhou 510100 (China); Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan)], E-mail: yfuji@u-fukui.ac.jp

    2009-02-15

    We attempted to measure the regional metabolic rate of glucose (MRglc) in sliced spinal cords in vitro. The thoracic spinal cord of a mature Wister rat was cut into 400-{mu}m slices in oxygenated and cooled (1-4 deg. C) Krebs-Ringer solution. After at least 60 min of preincubation, the spinal cord slices were transferred into double polystyrene chambers and incubated in Krebs-Ringer solution at 36 deg. C, bubbled with 5% O{sub 2}/5% CO{sub 2} gas. To measure MRglc, we used the dynamic positron autoradiography technique (dPAT) with F-18-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG) and the net influx constant of [{sup 18}F]FDG as an index. Uptake curves of [{sup 18}F]FDG were well fitted by straight lines for more than 7 h after the slicing of the spinal cord (linear regression coefficient, r=0.99), indicating a constant uptake of glucose by the spinal cord tissue. The slope (K), which denotes MRglc, is affected by tetrodotoxin, and high K{sup +} (50 mM) or Ca{sup 2+}-free, high Mg{sup 2+} solution. After 10 min of hypoxia, the K value following reoxygenation was similar to the unloaded control value, but after 45 min of hypoxia, the K value was markedly lower than the unloaded control value, and after >90 min of reoxygenation it was nearly 0. Our results indicate that the living spinal cord slices used retained an activity-dependent metabolism to some extent. This technique may provide a new approach for measuring MRglc in sliced living spinal cord tissue in vitro and for quantifying the dynamic changes in MRglc in response to various interventions such as hypoxia.

  3. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    Science.gov (United States)

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  4. Reduced inflammatory phenotype in microglia derived from neonatal rat spinal cord versus brain.

    Directory of Open Access Journals (Sweden)

    Sam Joshva Baskar Jesudasan

    Full Text Available Microglia are the primary immune cells of the central nervous system (CNS. Membrane bound sensors on their processes monitor the extracellular environment and respond to perturbations of the CNS such as injury or infection. Once activated, microglia play a crucial role in determining neuronal survival. Recent studies suggest that microglial functional response properties vary across different regions of the CNS. However, the activation profiles of microglia derived from the spinal cord have not been evaluated against brain microglia in vitro. Here, we studied the morphological properties and secretion of inflammatory and trophic effectors by microglia derived from the brain or spinal cord of neonatal rats under basal culture conditions and after activation with lipopolysaccharide (LPS. Our results demonstrate that spinal microglia assume a less inflammatory phenotype after LPS activation, with reduced release of the inflammatory effectors tumor necrosis factor alpha, interleukin-1 beta, and nitric oxide, a less amoeboid morphology, and reduced phagocytosis relative to brain-derived microglia. Phenotypic differences between brain and spinal microglia are an important consideration when evaluating anti-inflammatory or immunomodulatory therapies for brain versus spinal injury.

  5. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain.

    Science.gov (United States)

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen P H; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-07-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P pain states.

  6. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  7. Spinal metastasis of medulloblastoma in adults: A case report

    OpenAIRE

    Živković Nenad; Berisavac Iva; Marković Marko; Milenković Sanja

    2014-01-01

    Introduction. Medulloblastoma is a primitive neuro-ectodermal malignant tumor most commonly seen in childhood and rarely and uncommonly in adult age. Treatment consists of surgery followed by radiotherapy. In the case of a relapse there is no overall accepted treatment. Tumor metastasis can be seen along the neural axis, lymph nodes, soft tissues, bones and distant organs. Case Outline. In this paper we present a 45-year-old female patient with a thoraco-sp...

  8. Neuroprotective effect of exogenous vascular endothelial growth factor on rat spinal cord neurons in vitro hypoxia

    Institute of Scientific and Technical Information of China (English)

    DING Xin-min; MAO Bo-yong; JIANG Shu; LI Sheng-fu; DENG Yi-ling

    2005-01-01

    Background Vascular endothelial growth factor (VEGF) is well known as a hypoxia-induced protein. That it markedly increased expression of VEGF and improvement of rat motor function after spinal cord injury suggested that VEGF could play a neuroprotective role in ischaemic tolerance. This study investigated whether vascular endothelial growth factor has direct neuroprotective effects on rat spinal cord neurons. Methods We employed primary cultures of embryonic rat spinal cord neurons, then administrated different concentrations of VEGF164 in the culture medium before hypoxia when the number of neurons was counted and the cell viability was detected by MTT. The neuronal apoptosis and expression of VEGF and its receptor genes were evaluated by terminal deoxynucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and immunohistochemistry. The VEGFR2/FLK-1 inhibitor, SU1498, was used to confirm whether the neuroprotective effect of VEGF was mediated through VEGFR2/Flk-1 receptors. Result In hypoxic conditions,the number and viability of neurons decreased progressively, while the number of TUNEL-positive cells increased along with the prolongation of hypoxic exposure. When the concentration of VEGF in cell culture medium reached 25 ng/ml, the cell viability increased 11% and neuronal apoptosis reduced to half, this effect was dose dependent and led to an approximately 25% increase in cell viability and about threefold decrease in TUNEL-positive cells at a maximally effective concentration of 100 ng/ml. In normal conditions, VEGF/Flk-1 but not VEGF/Flt-1 gene expressed at a low level: after hypoxia, the expression of VEGF/Flk-1, but not VEGF/Flt-1 was significantly increased. The protective effect of VEGF was blocked by the VEGFR2/Flk-1 receptor tyrosine kinase inhibitor, SU1498. Conclusions VEGF has direct neuroprotective effects on rat spinal cord neurons, which may be mediated in vitro through VEGFR2/Flk-1 receptors.

  9. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  10. The Role of Spinal Dopaminergic Transmission in the Analgesic Effect of Nefopam on Rat Inflammatory Pain

    OpenAIRE

    Kim, Do Yun; Chae, Joo Wung; Lim, Chang Hun; Heo, Bong Ha; Park, Keun Suk; Lee, Hyung Gon; Choi, Jeong Il; Yoon, Myung Ha; Kim, Woong Mo

    2016-01-01

    Background Nefopam has been known as an inhibitor of the reuptake of monoamines, and the noradrenergic and/or serotonergic system has been focused on as a mechanism of its analgesic action. Here we investigated the role of the spinal dopaminergic neurotransmission in the antinociceptive effect of nefopam administered intravenously or intrathecally. Methods The effects of intravenously and intrathecally administered nefopam were examined using the rat formalin test. Then we performed a microdi...

  11. Neuropathies of spinal cord development in rat pups maternally fed with fried potato chips

    OpenAIRE

    Abdelalim A. Gad-Allah; El-Sayyad, Hassan I; Effat M. El-Shershaby; Ibrahim M. Abdelatif

    2013-01-01

    Objective: Acrylamide is a neurotoxic material and recently elevated levels of acrylamide in varieties of foodstuffs were reported. The present study aimed to illustrate the demyelination of spinal cord of pups maternally fed a diet containing fried potato chips. Methods: Eighty fertile virgin female Wistar rats were made pregnant after mating with healthy male. Zero dates of gestation were determined and dams were arranged into three groups as control, acrylamide-treated (15 mg/kg body we...

  12. Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA.

    Directory of Open Access Journals (Sweden)

    Mohamed-Mounir El Mendili

    Full Text Available The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA remain unknown. We investigated the profile of spinal cord atrophy (SCA in SMN1-linked SMA, and its correlation with the topography of muscle weakness.Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD and cord cross-sectional area (CSA measurements in SMA patients were compared to those in controls and correlated with strength and disability scores.CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10-5. There were no correlations between atrophy measurements, strength and disability scores.Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients.

  13. Bladder response to acute sacral neuromodulation while treating rats in different phases of complete spinal cord injury: a preliminary study

    Directory of Open Access Journals (Sweden)

    Ping Shi

    2015-12-01

    Full Text Available Background: Compared to conventional therapies, sacral neuromodulation (SNM may offer an alternative, non-destructive treatment for SCI patients with bladder dysfunction. Understanding bladder response to SNM treatment for SCI in different phases may yield new insights for innovative use of this promising technique. Materials and Methods: Female Sprague-Dawley rats were used in this study to examine the effects of acute SNM on bladder reflex in complete SCI rats. All rats were anesthetized and set up for continuous saline infusion. Acute SNM treatment was implemented for about 6 hours for each rat. Cystometric parameters, including time between contractions, contraction duration, bladder peak pressure, and number of uninhibited contractions, were analyzed and compared within rats before and after SNM treatment. Results: For the spinally transected rats during early phase (less than two weeks post spinalization, the time between contractions and contraction duration both increased after SNM treatments, yet the increased amplitude was about or less than 20%. For the spinally transected rats with a longer days survival (about two to four weeks post spinalization, the time between contractions and contraction duration substantially increased after SNM treatment and the changes for their average values were more than 90%. For the spinally transected rats with a much longer days survival (more than five weeks post spinalization, the time between contractions and contraction duration increased after SNM treatments, yet the magnitude of changes were less than 30%. Conclusion: The present study suggested that the significant effectiveness of SNM for complete SCI played its role after the spinal shock phase and prior to the development of detrusor overactivity. It indicated that the time point of SNM treatment is necessary to be paid attention.

  14. Toxicity of group B Streptococcus agalactiae in adult rats.

    OpenAIRE

    Warejcka, D. J.; Goodrum, K J; Spitznagel, J K

    1985-01-01

    Several strains of group B Streptococcus agalactiae were found to be lethal for young adult rats. When bacteria were heat killed and then injected intraperitoneally into rats, rapid death (14 to 18 h) of the rats occurred, characterized by labored breathing, hemolyzed serum, hemoglobinuria, and subungual hemorrhages. Sections of tissues from these rats failed to reveal the cause of death. Rats injected with toxic or nontoxic strains of group B S. agalactiae had reduced numbers of circulating ...

  15. Delayed post-traumatic spinal cord infarction in an adult after minor head and neck trauma: a case report

    Directory of Open Access Journals (Sweden)

    Bartanusz Viktor

    2012-09-01

    Full Text Available Abstract Introduction Delayed post-traumatic spinal cord infarction is a devastating complication described in children. In adults, spinal cord ischemia after cardiovascular interventions, scoliosis correction, or profound hypotension has been reported in the literature. However, delayed spinal cord infarction after minor head trauma has not been described yet. Case presentation We report the case of a 45-year-old Hispanic man who had a minor head trauma. He was admitted to our hospital because of paresthesias in his hands and neck pain. A radiological workup showed cervical spinal canal stenosis and chronic cervical spondylotic myelopathy. Twelve hours after admission, our patient became unresponsive and, despite full resuscitation efforts, died. The autopsy revealed spinal cord necrosis involving the entire cervical spinal cord and upper thoracic region. Conclusions This case illustrates the extreme fragility of spinal cord hemodynamics in patients with chronic cervical spinal canal stenosis, in which any further perturbations, such as cervical hyperflexion related to a minor head injury, can have catastrophic consequences. Furthermore, the delayed onset of spinal cord infarction in this case shows that meticulous maintenance of blood pressure in the acute post-traumatic period is of paramount importance, even in patients with minimal post-traumatic symptoms.

  16. Survival and migration of Schwann cells after the vascularized peripheral nerve grafted into spinal cord in rats

    Institute of Scientific and Technical Information of China (English)

    GUO Qing-shan; WANG Ai-min; WANG Xiao-jun; SUN Hong-zhen; DU Quan-yin

    2005-01-01

    Objective:To study the survival and ability of inducing axonal regeneration of the Schwann cells after the peripheral nerve being grafted into spinal cord. Methods:A total of 30 adult female Wistar rats were randomly divided into the VN (vascularized peripheral nerve) and PN (peripheral nerve) groups. A 5-mm spinal cord defect of the left posterior column was made at the T1-3 vertebral level. The defect was grafted with the vascularized or isolated peripheral nerve respectively. The survival and proliferation of the Schwann cells were assessed by histological and morphometric analysis 8 weeks after the operation. Results:In the VN group, the peripheral nerve grew into the cord with lots of Schwann cells survived and proliferated, and had more NF and S-100 positive fibers than in the PN group. Conclusion:The vascularized peripheral nerve enhances the survival and proliferation of the Schwann cells and prompts the regeneration of injured axon of the central nerve system to certain degree.

  17. Impact of spine surgery complications on costs associated with management of adult spinal deformity.

    Science.gov (United States)

    Yeramaneni, Samrat; Robinson, Chessie; Hostin, Richard

    2016-09-01

    A better understanding of the consequences of spine surgery complications is warranted to optimize patient-reported outcomes and contain the rising health care costs associated with the management of adult spinal deformity (ASD). We systematically searched PubMed and Scopus databases using keywords "adult spinal deformity surgery," "complications," and "cost" for published studies on costs of complications associated with spinal surgery, with a particular emphasis on ASD and scoliosis. In the 17 articles reviewed, we identified 355,354 patients with 11,148 reported complications. Infection was the most commonly reported complication, with an average treatment cost ranging from $15,817 to $38,701. Hospital costs for patients with deep venous thrombosis, pulmonary thromboembolism, and surgical site infection were 2.3 to 3.1 times greater than for patients without those complications. An effort to collect and characterize data on cost of complications is encouraged, which may help health care providers to identify potential resources to limit complications and overall costs. PMID:27278531

  18. Effect of neurotrophin-3 on SOD and MDA in rats after acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    GUO Shu-zhang; REN Xian-jun; JIANG Tao; OUYANG Zhong

    2007-01-01

    Objective: To investigate the effect of neurotrophin-3 on the expressions of SOD and MDA in the injured spinal cord of rats. Methods:Totally 105 SD rats were randomly divided into 3 groups (n=35): sham group, control group and experimental group. Animal model of acute spinal cord was inflicted with Allen's method by a thin plastic tube situated in subarachnoid space below the injury level for perfusion. Rats in experimental group received 20 μl NT-3 (200 ng) from the tube at 0,4,8,12,24 h and 3,7 d after injury, and those in control group got the equal volume of normal saline at the same time points.The animals in sham group only received opening vertebral plate and putting tube in subarachnoid space.The rats were sacrificed at 4,8,12,24 h, and 3,7,14 d postinjury (n=5). And the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in blood were observed with colorimetric method. Results: The serum level of SOD reduced obviously and the level of MDA raised obviously in rats after the injury,and the activity of SOD reached the lowest on day 3 and the concentratioh of MDA reached peak at the 7 d.In the experimental group, the SOD level was obviously higher (P<0.01), and MDA level was lower than the control (P<0.01). Conclusion: NT-3 can mitigate secondary injury of spinal cord in vivo. One of mechanisms is that inhibits abnormal expression of MDA and elevates the activity of SOD, thus the injury of free radical and lipid peroxidation is attenuated.

  19. Spinal cord transection-induced allodynia in rats--behavioral, physiopathological and pharmacological characterization.

    Directory of Open Access Journals (Sweden)

    Saïd M'Dahoma

    Full Text Available In humans, spinal cord lesions induce not only major motor and neurovegetative deficits but also severe neuropathic pain which is mostly resistant to classical analgesics. Better treatments can be expected from precise characterization of underlying physiopathological mechanisms. This led us to thoroughly investigate (i mechanical and thermal sensory alterations, (ii responses to acute treatments with drugs having patent or potential anti-allodynic properties and (iii the spinal/ganglion expression of transcripts encoding markers of neuronal injury, microglia and astrocyte activation in rats that underwent complete spinal cord transection (SCT. SCT was performed at thoracic T8-T9 level under deep isoflurane anaesthesia, and SCT rats were examined for up to two months post surgery. SCT induced a marked hyper-reflexia at hindpaws and strong mechanical and cold allodynia in a limited (6 cm2 cutaneous territory just rostral to the lesion site. At this level, pressure threshold value to trigger nocifensive reactions to locally applied von Frey filaments was 100-fold lower in SCT- versus sham-operated rats. A marked up-regulation of mRNAs encoding ATF3 (neuronal injury and glial activation markers (OX-42, GFAP, P2×4, P2×7, TLR4 was observed in spinal cord and/or dorsal root ganglia at T6-T11 levels from day 2 up to day 60 post surgery. Transcripts encoding the proinflammatory cytokines IL-1β, IL-6 and TNF-α were also markedly but differentially up-regulated at T6-T11 levels in SCT rats. Acute treatment with ketamine (50 mg/kg i.p., morphine (3-10 mg/kg s.c. and tapentadol (10-20 mg/kg i.p. significantly increased pressure threshold to trigger nocifensive reaction in the von Frey filaments test, whereas amitriptyline, pregabalin, gabapentin and clonazepam were ineffective. Because all SCT rats developed long lasting, reproducible and stable allodynia, which could be alleviated by drugs effective in humans, thoracic cord transection might be a

  20. Spinal Neuronal NOS Signaling Contributes to Morphine Cardioprotection in Ischemia Reperfusion Injury in Rats.

    Science.gov (United States)

    Jiang, Lingling; Hu, Jun; He, Shufang; Zhang, Li; Zhang, Ye

    2016-09-01

    Morphine has been widely used as rescue treatment for heart attack and failure in humans for many decades. Relatively little has been known about the role of spinal opioid receptors in morphine cardioprotection. Recent studies have shown that intrathecal injection of morphine can reduce the heart injury caused by ischemia (I)/reperfusion (R) in rats. However, the molecular and cellular mechanisms underlying intrathecal morphine cardioprotection has not been determined. Here, we report that intrathecal morphine postconditioning (IMPOC) rescued mean artery pressure (MAP) and reduced myocardial injury in I/R. Pretreatment with either naloxone (NAL), a selective mu-opioid receptor antagonist, or nitric oxide synthase (NOS) inhibitors via intrathecal delivery completely abolished IMPOC cardioprotection, suggesting that the spinal mu-opioid receptor and its downstream NOS signaling pathway are involved in the mechanism of the morphine-induced effect. Consistent with this, IMPOC significantly enhanced spinal neural NOS phosphorylation, nitric oxide, and cGMP content in a similar time course. Intrathecal application of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of guanylate cyclase, completely ablated IMPOC-induced enhancement of cardioprotection and spinal cGMP content. IMPOC rescue of MAP and ischemic injury is correlated with IMPOC enhancement of NOS signaling. Collectively, these findings strengthen the concept of spinal mu-opioid receptors as a therapeutic target that mediates morphine-induced cardioprotection. We also provide evidence suggesting that the activation of spinal NOS signaling is essential for morphine cardioprotection. PMID:27358482

  1. Electrical stimulation modulates injury potentials in rats after spinal cord injury*

    Institute of Scientific and Technical Information of China (English)

    Guanghao Zhang; Xiaolin Huo; Aihua Wang; Changzhe Wu; Cheng Zhang; Jinzhu Bai

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as wel as injury current, can be modulated by direct current field stimulation;however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around-70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon il ustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cel membrane and the reduction of cation influx.

  2. ω-conotoxin MVIIA intralesional injection in spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Karen Maciel de Oliveira

    2016-01-01

    Full Text Available This study aimed to investigate the neuroprotective effect of ω-conotoxin MVIIA (MVIIA intralesional application in rats submitted to spinal cord injury. Male Wistar rats, weighing 300g±23.4, were distributed in five groups: negative control (SHAM, placebo (PLA, 5μM MVIIA, 10μM MVIIA and 20μM MVIIA MVIIA. After laminectomy of the 12th thoracic vertebra (SHAM, the PLA, 5μM MVIIA, 10μM MVIIA and 20μM MVIIA groups were subjected to acute compressive spinal cord trauma for five minutes, and then five minutes later, the animals received specific treatment in a standard total volume of 2µL, by intralesional route, using sterile PBS as placebo. Locomotor activity was assayed using Basso Beattie Bresnahan (BBB scale to show the patterning of SCI. With 48 hours of injury, the animals were euthanized, the liquor sample was collected in atlantooccipital space, and also the spinal segment, including the epicenter and caudal region to injury. Assays were performed for mitochondrial viability, serum glutamate, production of reactive oxygen species (ROS and lipid peroxidation (LP were performed. The study design was randomized and the data submitted to ANOVA and comparison of means by SNK test, and data from BBB scale were evaluated using Kruskal-Wallis test (P<0.05. There was no significant difference between groups in BBB scores. The MVIIA did not promote decrease in the levels of glutamate, ROS, LP, and did not preserve the mitochondria in the intralesional application five minutes after spinal cord injury in rats.

  3. Effects of Bone Marrow Stromal Cell Transplantation through CSF on the Subacute and Chronic Spinal Cord Injury in Rats

    OpenAIRE

    Norihiko Nakano; Yoshiyasu Nakai; Tae-Beom Seo; Tamami Homma; Yoshihiro Yamada; Masayoshi Ohta; Yoshihisa Suzuki; Toshio Nakatani; Masanori Fukushima; Miki Hayashibe; Chizuka Ide

    2013-01-01

    It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs) through the cerebrospinal fluid (CSF) has beneficial effects on acute spinal cord injury (SCI) in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury), and/or chronic (4-week post-injury) SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injec...

  4. Interactions between respiratory oscillators in adult rats.

    Science.gov (United States)

    Huckstepp, Robert Tr; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. PMID:27300271

  5. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  6. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard;

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  7. Effect of glial cell line-derived neurotrophic factor on peripheral nerve regeneration in adult rat

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe-yu; LI Jian-hong; ZHENG Xing-dong; LU Chang-lin; HE Cheng

    2001-01-01

    Objective: To study the effect of glial cell line-derived neurotrophic (GDNF) on adult peripheral nerve regeneration. Methods: Transectioned sciatic nerve in adult rats was sutured into silicone channel. GDNF or SAL solution was injected into the silicone channels during operation. Four weeks later, the effect of GDNF on axonal regeneration was evaluated by degenerative neurofiber staining and HRP retrograde tracing. Results: Compared with SAL group, the percentage of degenerative neurofiber areas decreased from 17.3% to 1.9% ( P<0.01 ) and the ratio of labeled spinal somas number was significantly increased from 43.5% to 68.3% ( P<0.01 ) in GDNF group. Conclusion: The results suggest that exogenous GDNF can obviously enhance adult peripheral nerve regeneration.

  8. Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury.

    Directory of Open Access Journals (Sweden)

    Yan Sun

    Full Text Available Demyelination contributes to the functional impairment of irradiation injured spinal cord. One potential therapeutic strategy involves replacing the myelin-forming cells. Here, we asked whether transplantation of Olig2(+-GFP(+-oligodendrocyte precursor cells (OPCs, which are derived from Olig2-GFP-mouse embryonic stem cells (mESCs, could enhance remyelination and functional recovery after spinal cord irradiation injury. We differentiated Olig2-GFP-mESCs into purified Olig2(+-GFP(+-OPCs and transplanted them into the rats' cervical 4-5 dorsal spinal cord level at 4 months after irradiation injury. Eight weeks after transplantation, the Olig2(+-GFP(+-OPCs survived and integrated into the injured spinal cord. Immunofluorescence analysis showed that the grafted Olig2(+-GFP(+-OPCs primarily differentiated into adenomatous polyposis coli (APC(+ oligodendrocytes (54.6±10.5%. The staining with luxol fast blue, hematoxylin & eosin (LFB/H&E and electron microscopy demonstrated that the engrafted Olig2(+-GFP(+-OPCs attenuated the demyelination resulted from the irradiation. More importantly, the recovery of forelimb locomotor function was enhanced in animals receiving grafts of Olig2(+-GFP(+-OPCs. We concluded that OPC transplantation is a feasible therapy to repair the irradiated lesions in the central nervous system (CNS.

  9. Phosphoproteomics and bioinformatics analyses of spinal cord proteins in rats with morphine tolerance.

    Directory of Open Access Journals (Sweden)

    Wen-Jinn Liaw

    Full Text Available INTRODUCTION: Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. METHODS: To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. RESULTS: Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. CONCLUSIONS: Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance.

  10. Neuroprotective effect of epigallocatechin-3-gallate on hemisection-induced spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fengjun Deng; Rubing Li; Yingbao Yang; Dan Zhou; Qian Wang; Jiangping Xu

    2011-01-01

    Epigallocatechin-3-gallate (EGCG), a naturally occurring compound in green tea, has been widely used as an antioxidant agent. In the present study, model rats with acute spinal cord injury were intraperitoneally injected with 25, 50, and 100 mg/kg EGCG, and spinal cord ultrastructure, oxidative stress reaction, inflammatory factors, and apoptosis-associated gene expression were observed. Results showed that EGCG attenuated neuronal and axonal injury 24 hours post injury. It also decreased serum interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule-1 release, and decreased apoptosis-associated gene expression. Furthermore, it increased the level of the superoxide anion (O2-), superoxide dismutase, and B-cell lymphoma/leukemia-2, and reduced malondialdehyde levels. Furthermore, it reduced the expression of the pro-apoptotic protein Bax. Noticeably, EGCG at the 100 mg/kg dosage exhibited similar effects as methylprednisolone sodium succinate, which has been frequently used for clinical acute spinal cord injury. The results demonstrated that EGCG can significantly inhibit inflammation, suppress oxidation, and reduce apoptosis in acute spinal cord injury.

  11. Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior.

    Science.gov (United States)

    Baastrup, Cathrine; Maersk-Moller, Camilla Charlotte; Nyengaard, Jens Randel; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2010-12-01

    Pain is a frequent consequence of spinal cord injury (SCI) which may profoundly impair the patients' quality of life. Valid experimental models and methods are therefore desirable in the search for better treatments. Usually, experimental pain assays depend on stimulus-evoked withdrawal responses; however, this spinal-mediated reflex response may be particularly problematic when evaluating below-level SCI pain due to the development of hyperactive reflex circuitries. In this study, we applied and compared assays measuring cold (acetone), static (von Frey filaments), and dynamic mechanical (soft brush) hypersensitivity at different levels of the neuroaxis at and below the level of injury in a rat model of SCI. We induced an experimental SCI (MASCIS 25 mm weight-drop) and evaluated the development of spinal reflexes (withdrawal), spinal-brainstem-spinal reflexes (licking, guarding, struggling, vocalizing, jumping, and biting) and cerebral-dependent behavior (place escape/avoidance paradigm (PEAP)). We demonstrated increased brainstem reflexes and cerebrally mediated aversive reactions to stimuli applied at the level of SCI, suggesting development of at-level evoked pain behavior. Furthermore, stimulation below-level increased innate reflex responses without increasing brainstem reflexes or aversive behavior in the PEAP, suggesting development of the spasticity syndrome rather than pain-like behavior. While spinal reflex measures are acceptable for studying changes in the spinal reflex pathways and spinal cord, they are not suited as nociceptive behavioral measures. Measuring brainstem organized responses eliminates the bias associated with the spastic syndrome, but pain requires cortical involvement. Methods depending on cortical structures, as the PEAP, are therefore optimal endpoints in animal models of central pain. PMID:20863621

  12. Application of Luxol Fast Blue staining in locating the corticospinal tract in adult rats

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Guangming Lü; Xiaosong Gu

    2006-01-01

    BACKGROUND: There are many methods for myelin staining,mordant,or the special reaction of osmic acid with lipoid is used according to different principles.The commonly used methods are classic Well staining ,classic lithium carbonate-haematine staining,fast green staining,silver staining ,etc.Luxol Fast Blue can brightly stain myelin sheath,and has certain specificity .The background can be very clean if there is proper differentiation,whereas Luxol Fast Blue is cheap and convenient to operate,thus it is an ideal staining reagent for routine myelin sheath.OBJECTIVE: To show the coricospinal tract of normal adult rats with Luxol Fast Blue shaining method.DESIGN:A repetitive measurement design.SETTINGS: Institute of Nuerobiology,Nantong University;Department of Rehabilitation Medicine,Affiliated Hospital of Nantong University.MATERIALS: Six healthy adult male SD rats of clean dergree,weighing averagely 300 g.were provided by the experimental animal center of Nantong University.1 g/L Luxol Fast Blue solution was provided by Sigma Company;Leica CM1900 cryostat microtome by Leica Company;Leica DMR microscope by Leica Company.METHODS:The experiment was carried out in the Staff Room of Human Anatomy,Nantong University in May 2005.The rats were given intraperitoneal injection of combined anesthetic(2 mL/kg),then the chest was open for perfusing saline and phosphate buffer containing formamint via heart. Brain and spinal cord were removed after 1 hour then fixed,then changed to phosphate buffer(pH 7.4)containing 300 g/L saccharu at 4 ℃.and stayed overnight,tissue blocks at pyramid,decussation of pyramid and cervical,thoracic,lumbar and sacral segments of spinal cord were removed to prepare continuous horizontal frozen sections(30 μm) after sedimentation,the sections were dried at room temperature.The corticospinal tract of normal adult rats were shown with Luxol Fast Blue staining method,and observed under Leica DMR microscope.MAIN OUTCOME MEASURES:Positive fibers in

  13. Contribution of spinal glia activation to mechanical hyperalgesia induced by spared nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    FENG Si-zhe; WEI Xue-zhong; ZHANG Xiang

    2004-01-01

    Objective: To investigate the role of spinal glial cells activation in neuropathic pain in a recently developed spared nerve injury (SNI) animal model by Decosterd and Woolf. Methods: A lesion was made to two of the three terminal branches of the sciatic nerve of rats (tibial and common peroneal nerves) leaving the sural nerve intact. Continuous intrathecai administration of propentofyliine, a glial modulating agent, 1 d before and 5 d after operation, was performed to disrupt spinal cord glia function. The vehicle was intrathecally administrated as control. The paw withdrawal threshold to mechanical stimulation (paw withdrawal mechaical threshold PWMT), body mass and motor function were determined pre- and post-surgery. Results: It produced a prolonged mechanical allodynia in the medial and lateral part of the ipsilateral hind paw in SNL models. The treatment with propentofylline significantly prevented the development of mechanical allodynia located in either medial or lateral plantar surface. Rats in two groups showed normal motor function and body weight increase. Conclusion:SNI model can be applied as a useful method with little variance in searching the mechanism of neuropathic pain. These study suggest that spinal glia activation may contribute to mechanical allodynia induced by SNI.

  14. Extract of Cornus officinalis SIEB ameliorates osteoporosis in Spinal Cord-Injured Rats

    Institute of Scientific and Technical Information of China (English)

    Qingxi Meng; Baolong Wang; Peng Yu; Qunqun Shan; Zhaohu Mao; Fan Zhang; Jian Li; Tinbao Zhao

    2015-01-01

    目的:观察山茱萸的提取物对脊髓损伤大鼠的骨质疏松的治疗作用。方法40只Wistar雄性大鼠分成四组:标准对照组、脊髓损伤组、脊髓损伤高剂量提取物治疗组、脊髓损伤低剂量提取物治疗组。除标准对照组外,建立脊髓损伤引起的骨质疏松大鼠模型,然后进行相关生物化学、骨密度及形态的分析和比较。结果与标准对照组相比,脊髓损伤组的大鼠显示骨量、生物化学指标和形态学参数的显著下降。山茱萸提取物高剂量组治疗大鼠胫骨骨干内、外部区域骨质疏松显示剂量依赖性。结论山茱萸提取物治疗可能通过刺激成骨细胞引骨组织反应,从而导致形态学的变化。%This study investigated the effects of extract of Cornus officinalis CO) on bone loss in spinal cord-injured rats.Forty male Wistar rats were used to establish osteoporosis induced by spinal cord injury, subsequently divided into four groups: standard control group (CG);spinal cord-injured control (SC); spinal cord-injured treated with low-dose extract (L group); and spinal cord-injured treated with high-dose extract ( H group) .Biomechanical, densitometric, and morphometric analyses were performed. SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG).CO-treated rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphysis in a dose-dependent manner.We conclude that the extract of Cornus officinalis SIEB et.ZUCC treatment was able to initiate a positive bone-tissue response, might through stimulation of osteoblasts, which was able to determine the observed morphometric modifications.

  15. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  16. The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection

    Science.gov (United States)

    Buzoianu-Anguiano, Vinnitsa; Orozco-Suárez, Sandra; García-Vences, Elisa; Caballero-Chacón, Sara; Guizar-Sahagún, Gabriel; Chavez-Sanchez, Luis; Grijalva, Israel

    2015-01-01

    Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model. PMID:26634157

  17. The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection.

    Science.gov (United States)

    Buzoianu-Anguiano, Vinnitsa; Orozco-Suárez, Sandra; García-Vences, Elisa; Caballero-Chacón, Sara; Guizar-Sahagún, Gabriel; Chavez-Sanchez, Luis; Grijalva, Israel

    2015-01-01

    Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model. PMID:26634157

  18. The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection

    Directory of Open Access Journals (Sweden)

    Vinnitsa Buzoianu-Anguiano

    2015-01-01

    Full Text Available Functional recovery following spinal cord injury (SCI is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN and the transplantation of bone marrow stromal cells (BMSCs have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI without treatment, TSCI + Fibrin Glue (FG, TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model.

  19. Role of autophagy in the bimodal stage after spinal cord ischemia reperfusion injury in rats.

    Science.gov (United States)

    Fang, Bo; Li, Xiao-Qian; Bao, Na-Ren; Tan, Wen-Fei; Chen, Feng-Shou; Pi, Xiao-Li; Zhang, Ying; Ma, Hong

    2016-07-22

    Autophagy plays an important role in spinal cord ischemia reperfusion (I/R) injury, but its neuroprotective or neurodegenerative role remains controversial. The extent and persistence of autophagy activation may be the critical factor to explain the opposing effects. In this study, the different roles and action mechanisms of autophagy in the early and later stages after I/R injury were investigated in rats. Thespinal cord I/R injury was induced by 14-min occlusion of the aortic arch, after which rats were treated with autophagic inhibitor (3-methyladenine, 3-MA) or agonist (rapamycin) immediately or 48h following the injury. Autophagy markers, microtubule-associated protein light chain 3-II (LC3-II) and Beclin 1 increased and peaked at the early stage (8h) and the later stage (72h) after spinal cord I/R injury. Beclin 1 was mostly expressed in neurons, but was also expressed to an extent in astrocytes, microglia and vascular endothelial cells. 8h after injury, rats treated with 3-MA showed a decrease in the hind-limb Basso-Beattie-Bresnahan (BBB) motor function scores, surviving motor neurons, and B-cell lymphoma-2 (Bcl-2) expression, and increase in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells, Bcl-2-associated X protein (Bax), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) expression, and activation of microglia, while those treated with rapamycin showed opposing effects. However, 72h after injury, rats treated with 3-MA improved the BBB scores, and the surviving motor neurons, and reduced the autophagic cell death, while those treated with rapamycin had adverse effects. These findings provide the first evidence that early activated autophagy alleviates spinal cord I/R injury via inhibiting apoptosis and inflammation; however later excessively elevated autophagy aggravates I/R injury through inducing autophagic cell death. PMID:27109922

  20. Enhanced salt sensitivity following shRNA silencing of neuronal TRPV1 in rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Shuang-quan YU; Donna H WANG

    2011-01-01

    Aim: To investigate the effects of selective knockdown of TRPV1 channels in the lower thoracic and upper lumbar segments of spinal cord, dorsal root ganglia (DRG) and me senteric arteries on rat blood pressure responses to high salt intake.Methods: TRPV1 short-hairpin RNA (shRNA) was delivered using intrathecal injection (6 μg.kg1-d-1, for 3 d). Levels of TRPV1 and tyrosine hydroxylase expression were determined by Western blot analysis. Systolic blood pressure and mean arterial pressure (MAP) were examined using tail-cuff and direct arterial measurement, respectively.Results: In rats injected with control shRNA, high-salt diet (HS) caused higher systolic blood pressure compared with normal-salt diet(NS) (HS:149±4 mmHg; NS:126±2 mmHg, P<0.05). Intrathecal injection of TRPV1 shRNA significantly increased the systolic blood pressure in both HS rats and NS rats (HS:169±3 mmHg; NS:139±2 mmHg). The increases was greater in HS rats than in NS rats (HS:13.9%±1.8%; NS: 9.8±0.7, P<0.05). After TRPV1 shRNA treatment, TRPV1 expression in the dorsal horn and DRG of T8-L3 segments and in mesenteric arteries was knocked down to a greater extent in HS rats compared with NS rats. Blockade of α1-adrenoceptors abolished the TRPV1 shRNA-induced pressor effects. In rats injected with TRPV1 shRNA, level of tyrosine hydroxylase in mesenteric arteries was increased to a greater extent in HS rats compared with NS rats.Conclusion: Selective knockdown of TRPV1 expression in the lower thoracic and upper lumbar segments of spinal cord, DRG, and mesenteric arteries enhanced the prohypertensive effects of high salt intake, suggesting that TRPV1 channels in these sites protect against increased salt sensitivity, possibly via suppression of sympatho-excitatory responses.

  1. Olfactory ensheathing cells (OECs) degrade neurocan in injured spinal cord by secreting matrix metalloproteinase-2 in a rat contusion model.

    Science.gov (United States)

    Yui, Sho; Fujita, Naoki; Chung, Cheng-Shu; Morita, Maresuke; Nishimura, Ryohei

    2014-11-01

    The mechanism by which olfactory ensheathing cells (OECs) exert their potential to promote functional recovery after transplantation into spinal cord injury (SCI) tissue is not fully understood, but the relevance of matrix metalloproteinases (MMPs) has been suggested. We evaluated the expression of MMPs in OECs in vitro and the MMP secretion by OECs transplanted in injured spinal cord in vivo using a rat SCI model. We also evaluated the degradation of neurocan, which is one of the axon-inhibitory chondroitin sulfate proteoglycans, using SCI model rats. The in vitro results showed that MMP-2 was the dominant MMP expressed by OECs. The in vivo results revealed that transplanted OECs secreted MMP-2 in injured spinal cord and that the expression of neurocan was significantly decreased by the transplantation of OECs. These results suggest that OECs transplanted into injured spinal cord degraded neurocan by secreting MMP-2.

  2. Ameliorating Role of Caffeic Acid Phenethyl Ester (CAPE Against Methotrexate-Induced Oxidative Stress in the Sciatic Nerve, Spinal Cord and Brain Stem Tissues of Rats

    Directory of Open Access Journals (Sweden)

    Ertuğrul Uzar

    2010-03-01

    Full Text Available OBJECTIVE: Methotrexate (MTX-associated neurotoxicity is an important clinical problem in cancer patients, but the mechanisms of MTX-induced neurotoxicity are not yet known exactly. The aims of this study were (1 to investigate the possible role of malondialdehyde (MDA, superoxide dismutase (SOD enzyme, glutathione peroxidase (GSH-Px and catalase (CAT in the pathogenesis of MTX-induced neurotoxicity and (2 to determine whether there is a putative protective effect of caffeic acid phenethyl ester (CAPE on MTX-induced neurotoxicity in the spinal cord, brainstem and sciatic nerve of rats. METHODS: A total of 19 adult Wistar male rats were divided into three experimental groups. Group I, control group; Group II, MTX-treated group; and Group III, MTX + CAPE-treated group. MTX was administered to the MTX and MTX + CAPE groups intraperitoneally (IP with a single dose of 20 mg/kg on the second day of the experiment. CAPE was administered to the MTX + CAPE group IP with a dose of 10 μmol/kg for 7 days. RESULTS: In the sciatic nerve and spinal cord tissue, CAT and GSH-Px activities were increased in the MTX group in comparison with the control group. CAPE treatment with MTX significantly decreased CAT and GSH-Px activities in the neuronal tissues of rats in comparison with the MTX group. In the spinal cord and brainstem tissues, SOD activity in the MTX group was decreased in comparison with the control group, but in the sciatic nerve, there was no significant difference. In the spinal cord and brainstem of rats, SOD activity was increased in the CAPE + MTX group when compared with the MTX group. The level of MDA was higher in the MTX group than in the control group. CAPE administration with MTX injection caused a significant decrease in MDA level when compared with the MTX group. CONCLUSION: These results reveal that MTX increases oxidative stress in the sciatic nerve, spinal cord and brainstem of rats and that CAPE has a preventive effect on the

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available Experts \\ Spinal Cord Injury 101 Topics Adult Injuries Spinal Cord Injury 101 Spinal Cord Injury 101 The Basics of Spinal Cord Injury Rehabilitation ... in countries outside the US ? A spinal cord injury affects the entire family FacingDisability is designed to ...

  4. Study Protocol- Lumbar Epidural Steroid Injections for Spinal Stenosis (LESS: a double-blind randomized controlled trial of epidural steroid injections for lumbar spinal stenosis among older adults

    Directory of Open Access Journals (Sweden)

    Friedly Janna L

    2012-03-01

    Full Text Available Abstract Background Lumbar spinal stenosis is one of the most common causes of low back pain among older adults and can cause significant disability. Despite its prevalence, treatment of spinal stenosis symptoms remains controversial. Epidural steroid injections are used with increasing frequency as a less invasive, potentially safer, and more cost-effective treatment than surgery. However, there is a lack of data to judge the effectiveness and safety of epidural steroid injections for spinal stenosis. We describe our prospective, double-blind, randomized controlled trial that tests the hypothesis that epidural injections with steroids plus local anesthetic are more effective than epidural injections of local anesthetic alone in improving pain and function among older adults with lumbar spinal stenosis. Methods We will recruit up to 400 patients with lumbar central canal spinal stenosis from at least 9 clinical sites over 2 years. Patients with spinal instability who require surgical fusion, a history of prior lumbar surgery, or prior epidural steroid injection within the past 6 months are excluded. Participants are randomly assigned to receive either ESI with local anesthetic or the control intervention (epidural injections with local anesthetic alone. Subjects receive up to 2 injections prior to the primary endpoint at 6 weeks, at which time they may choose to crossover to the other intervention. Participants complete validated, standardized measures of pain, functional disability, and health-related quality of life at baseline and at 3 weeks, 6 weeks, and 3, 6, and 12 months after randomization. The primary outcomes are Roland-Morris Disability Questionnaire and a numerical rating scale measure of pain intensity at 6 weeks. In order to better understand their safety, we also measure cortisol, HbA1c, fasting blood glucose, weight, and blood pressure at baseline, and at 3 and 6 weeks post-injection. We also obtain data on resource utilization

  5. Effects of Jisuikang on hemorheology and inflammatory factors in rats following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yong Ma; Jianzhong Zhou; Wengui Yanga; Wenjian Sun; Shaojian Yin; Shijie Sun

    2008-01-01

    BACKGROUND: Trauma can damage the spinal cord or cauda equina to different degrees. Previous studies have verified that traditional Chinese medicine has effects on spinal cord injury via a variety of pathways. OBJECTIVE: To observe changes in hemorheology and inflammatory factors in spinal cord injury rats following treatment with the Chinese medicine Jisuikang, to verify the dose-dependent effect of Jisuikang, and to compare its effects with the effects of prednisone. DESIGN, TIME AND SETTING: A randomized study was performed at the Research Institute of Orthopedics, and Experimental Center of First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, China from September 2007 to March 2008. MATERIALS: Jisuikang powdered extract, composed of milkvetch root (30 g), Chinese angelica (12 g), red peony root (12 g), earthworm (10 g), szechwan lovage rhizome (10 g), peach seed (10 g) and safflower (10 g), was provided by the Experimental Center, First Clinical Medical College, Nanjing University of Traditional Chinese medicine. Each gram of powdered extract was equivalent to 6.47 g crude drug. METHODS: A total of 72 Sprague Dawley rats were randomly assigned into 6 groups (n = 12). Rat models of spinal cord injury were established using the occlusion method. Rats in the model group were treated with distilled water. Rats in the 25 g/kg, 12.5 g/kg, and 6.25 g/kg Jisuikang groups were given 25 g/kg, 12.5 g/kg, or 6.25 g/kg Jisuikang by gavage, for 14 days. Rats in the prednisone group received 0.06 g/kg prednisone by gavage, for 7 days. Rats in the normal group were given the same volume of distilled water. The volume of administration was 15 mL/kg.MAIN OUTCOME MEASURES: Rat serum interleukin-10, tumor necrosis factor-α (TNF-α), nitric oxide, nitric oxide synthase levels, malondialdehyde content, superoxide dismutase activity and whole blood viscosity were measured in each group. Spinal cord around the site of the model was collected. Half the

  6. Alteration of Excitatory Amino Acid in Experimental Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    张宁; 罗永湘

    2002-01-01

    Objective To detect the effect of excitatory amino acid (EAA) in the sec-ondary damage following spinal cord injury (SCI). Methods Glutamate (Glu) and Aspartate(Asp) on the injury site (T8) were studied using a rat SCI model induced by Allen's weight drop method(10g×2.5cm). The result suggested that Asp and Glu were significantly increased in 10 min. Re-sults Glu was significantly decreased from 2 h to 24 h,while Asp was a little reduced in 2 h,andslightly rose in 4 h as compared with Control Group. Though elevated in 8 h, it dropped again in 24 h ascompared with Control Group. Conclusion The result indicates that the rise of EAA following SCIcould be the cause of the secondary spinal cord damage.

  7. Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Hayley R Inglis

    Full Text Available BACKGROUND: Experimental autoimmune encephalomyelitis (EAE, the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. METHODOLOGY/PRINCIPAL FINDINGS: MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. CONCLUSIONS/SIGNIFICANCE: EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.

  8. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-03-01

    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  9. Effect of erhuangfang on cerebral and spinal demyelination and regeneration as well as expression of glial fibrillary acidic protein in rats with experimental allergic encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: It demonstrates that erhuangfang can improve clinical symptoms of multiple sclerosis and relieve side effects of hormone. However, whether erhuangfang can improve experimental allergic encephalomyelitis (EAE) or not needs a further study.OBJECTIVE: To observe the effect of erhuangfang on neuro-pathology and astrocyte in EAE rats and compare with the effect of hormone.DESIGN: Randomized controlled animal study.SETTINGS: Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University; College of Traditional Chinese Medicine, Capital Medical University.MATERIALS: The experiment was carried out in the Laboratory Center of Capital Medical University from August to October 2005. Ten adult guinea pigs (SPF grade, weighing 400 - 450 g) and 70 adult Lewis rats (SPF grade, weighing 200- 220 g) were selected in this study. Erhuangfang consisted of jiudahuang,shengdi, shuizhi, dabeimu, etc.METHODS: ① Experimental intervention: Rats were randomly divided into normal group (n=10), model group (n=20), western medicine group (n=20) and Chinese herb group (n=20). Mixed emulsion, which was consisted of Freund's adjuvant and spinal cord homogenate of guinea pigs, was subcutaneously injected into palms of the two hindfeet of rats in the latter three groups to establish EAE models. Foot pads were injected with saline and then rats were perfused with saline in the normal group. In the model group, models were established as the same as those mentioned above, and rats were also perfused with saline. Rats in the western medicine group were perfused with saline and then 5 mg/kg prednisone acetate suspension. Rats in the Chinese herb group were perfused with erhuangfang decoction (15 g raw materials per kilogram) at 5 days before model establishment. The dosage in the four groups was 3 mL/day per rat. ② Experimental evaluation: At 28 days after model establishment, rats were randomly selected for cerebral (mainly surrounding cerebral

  10. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Institute of Scientific and Technical Information of China (English)

    Peng Xie; Wen-Hui Ruan

    2016-01-01

    Objective:To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model.Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs) group, erythropoietin (EPO) group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected.Results:Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group.Conclusions:Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  11. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth

    Science.gov (United States)

    Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.

    2011-05-01

    It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental

  12. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury

    OpenAIRE

    Shah, Prithvi K.; Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2013-01-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as oppos...

  13. Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro

    Directory of Open Access Journals (Sweden)

    Kuo Hsiao-Hui

    2009-05-01

    Full Text Available Abstract An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML. Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN, glial fibrillary acidic protein (GFAP, or choline acetyltransferase (ChAT. The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs in the IML. Suppression of SND genesis by tetrodotoxin (TTX or mecamylamine (MECA, nicotinic receptor blocker almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.

  14. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    OpenAIRE

    Wang, Yue-Xin; Sun, Jing-Jing; Zhang, Mei; Hou, Xiao-hua; Hong, Jun; Zhou, Ya-Jing; Zhang, Zhi-Yong

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via ...

  15. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia★

    OpenAIRE

    Wang, Dong; Zhang, Jianjun

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under no...

  16. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    OpenAIRE

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via ...

  17. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Lu, Hongbin, E-mail: hongbinlu@hotmail.com [Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  18. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats.

    Science.gov (United States)

    Martini, Alessandra C; Forner, Stefânia; Koepp, Janice; Rae, Giles Alexander

    2016-05-16

    Mitogen-activated protein kinases (MAPKs) have been implicated in central nervous system injuries, yet the roles within neurodegeneration following spinal cord injury (SCI) still remain partially elucidated. We aimed to investigate the changes in expression of the three MAPKs following SCI and the role of spinal c-jun-NH2-terminal kinase (JNK) in motor impairment following the lesion. SCI induced at the T9 level resulted in enhanced expression of phosphorylated MAPKs shortly after trauma. SCI increased spinal cord myeloperoxidase levels, indicating a local neutrophil infiltration, and elevated the number of spinal apoptotic cells. Intrathecal administration of a specific inhibitor of JNK phosphorylation, SP600125, given at 1 and 4h after SCI, reduced the p-JNK expression, the number of spinal apoptotic cells and many of the histological signs of spinal injury. Notably, restoration of locomotor performance was clearly ameliorated by SP600125 treatment. Altogether, the results demonstrate that SCI induces activation of spinal MAPKs and that JNK plays a major role in mediating the deleterious consequences of spinal injury, not only at the spinal level, but also those regarding locomotor function. Therefore, inhibition of JNK activation in the spinal cord shortly after trauma might constitute a feasible therapeutic strategy for the functional recovery from SCI. PMID:27080425

  19. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  20. Antinociceptive effect of ambroxol in rats with neuropathic spinal cord injury pain

    Science.gov (United States)

    Hama, Aldric T.; Plum, Ann Woodhouse; Sagen, Jacqueline

    2010-01-01

    Symptoms of neuropathic spinal cord injury (SCI) pain include evoked cutaneous hypersensitivity and spontaneous pain, which can be present below the level of the injury. Adverse side-effects obtained with currently available analgesics complicate effective pain management in SCI patients. Voltage-gated Na+ channels expressed in primary afferent nociceptors have been identified to mediate persistent hyperexcitability in dorsal root ganglia (DRG) neurons, which in part underlies the symptoms of nerve injury-induced pain. Ambroxol has previously demonstrated antinociceptive effects in rat chronic pain models and has also shown to potently block Na+ channel current in DRG neurons. Ambroxol was tested in rats that underwent a mid-thoracic spinal cord compression injury. Injured rats demonstrated robust hind paw (below-level) heat and mechanical hypersensitivity. Orally administered ambroxol significantly attenuated below-level hypersensitivity at doses that did not affect performance on the rotarod test. Intrathecal injection of ambroxol did not ameliorate below-level hypersensitivity. The current data suggest that ambroxol could be effective for clinical neuropathic SCI pain. Furthermore, the data suggests that peripherally expressed Na+ channels could lend themselves as targets for the development of pharmacotherapies for SCI pain. PMID:20732348

  1. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shaoqiang Chen; Bilian Wu; Jianhua Lin

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated,purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method.Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein.Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks).Expressions of choline acetyltransferase,glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation,determined by immunofluorescence staining and laser confocal scanning microscopy.Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase,glutamic acid decarboxylase and synapsins,3 weeks after transplantation.The Basso-Beattie-Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins.Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats,promote expression of choline acetyltransferase,glutamic acid decarboxylase and synapsins,and improve nerve function in rats with spinal cord injury.

  2. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study.

    Science.gov (United States)

    Al-Gholam, Marwa A; Nooh, Hanaa Zakaria; El-Mehi, Abeer E; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-03-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  3. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    鲁凯伍; 陈哲宇; 侯铁胜

    2004-01-01

    Objective:To investigate the effect of liposomemediated glial cell line-derived neurotrophic factor (GDNF) gene transfer in vivo on spinal cord motoneurons after spinal cord injury (SCI) in adult rats.Methods: Sixty male Sprague-Dawley rats were divided equally into two groups: GDNF group and control group. The SCI model was established according to the method of Nystrom, and then the DC-Chol liposomes and recombinant plasmid pEGFP-GDNF cDNA complexes were injected into the injured spinal cord. The expression of GDNF cDNA 1 week after injection was detected by RTPCR and fluorescence microscope. We observed the remaining motoneurons in the anterior horn and the changes of cholinesterase (CHE) and acid phosphatase (ACP) activity using Nissl and enzyme histochemistry staining. The locomotion function of hind limbs of rats was evaluated using inclined plane test and BBB locomotor scale.Results: RT-PCR and fluorescence observation confirmed the presence of expression of GDNF cDNA 1week and 4 weeks after injection. At 1, 2, 4 weeks after SCI, the number of motoneurons in the anterior horn in GDNF group (20.4±3.2, 21.7±3.6, 22.5±3.4) was more than that in control group ( 16.8±2.8, 17.3 ± 2.7,18.2±3.2, P<0.05). At 1, 2 weeks after SCI, the mean gray of the CHE-stained spinal motoneurons in GDNF group (74.2± 25.8, 98.7± 31.6 was less than that in control group (98.5 ±32.2, 134.6 ±45.2, P<0.01), and the mean gray of ACP in GDNF group (84.5±32.6, 79.5±28.4) was more than that in control group (61.2±24.9,52.6±19.9, P<0.01). The locomotion functional scales in GDNF group were higher than that in control group within 1 to 4 weeks after SCI (P<0.05).Conclusions: GDNF gene transfer in vivo can protect motoneurons from death and degeneration induced by incompleted spinal cord injury as well as enhance locomotion functional restoration of hind limbs. These results suggest that liposome-mediated delivery of GDNF cDNA might be a practical method for treating

  4. Floating light-activated microelectrical stimulators tested in the rat spinal cord

    Science.gov (United States)

    Abdo, Ammar; Sahin, Mesut; Freedman, David S.; Cevik, Elif; Spuhler, Philipp S.; Unlu, M. Selim

    2011-10-01

    Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long-term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated microelectrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08 N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source.

  5. Combination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone

    Directory of Open Access Journals (Sweden)

    Xiao-lin Hou

    2015-01-01

    Full Text Available Resistance mechanisms of rho-associated kinase (ROCK inhibitors are associated with the enhanced expression of cyclooxygenase-2 (COX-2. The therapeutic effects of ROCK on nervous system diseases might be enhanced by COX-2 inhibitors. This study investigated the synergistic effect of the combined use of the ROCK inhibitor fasudil and a COX-2 inhibitor celecoxib on spinal cord injury in a rat model established by transecting the right half of the spinal cord at T 11 . Rat models were orally administrated with celecoxib (20 mg/kg and/or intramuscularly with fasudil (10 mg/kg for 2 weeks. Results demonstrated that the combined use of celecoxib and fasudil significantly decreased COX-2 and Rho kinase II expression surrounding the lesion site in rats with spinal cord injury, improved the pathomorphology of the injured spinal cord, and promoted the recovery of motor function. Moreover, the effects of the drug combination were better than celecoxib or fasudil alone. This study demonstrated that the combined use of fasudil and celecoxib synergistically enhanced the functional recovery of injured spinal cord in rats.

  6. Combination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone.

    Science.gov (United States)

    Hou, Xiao-Lin; Chen, Yan; Yin, Hua; Duan, Wei-Gang

    2015-11-01

    Resistance mechanisms of rho-associated kinase (ROCK) inhibitors are associated with the enhanced expression of cyclooxygenase-2 (COX-2). The therapeutic effects of ROCK on nervous system diseases might be enhanced by COX-2 inhibitors. This study investigated the synergistic effect of the combined use of the ROCK inhibitor fasudil and a COX-2 inhibitor celecoxib on spinal cord injury in a rat model established by transecting the right half of the spinal cord at T11. Rat models were orally administrated with celecoxib (20 mg/kg) and/or intramuscularly with fasudil (10 mg/kg) for 2 weeks. Results demonstrated that the combined use of celecoxib and fasudil significantly decreased COX-2 and Rho kinase II expression surrounding the lesion site in rats with spinal cord injury, improved the pathomorphology of the injured spinal cord, and promoted the recovery of motor function. Moreover, the effects of the drug combination were better than celecoxib or fasudil alone. This study demonstrated that the combined use of fasudil and celecoxib synergistically enhanced the functional recovery of injured spinal cord in rats.

  7. Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Edvinsson, Lars

    2011-01-01

    was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal...... to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal...... trigeminal nucleus (STN) and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) - in human and rat STN and at the C1-level...

  8. Does social support impact depression in caregivers of adults ageing with spinal cord injuries?

    Science.gov (United States)

    Rodakowski, Juleen; Skidmore, Elizabeth R.; Rogers, Joan C.; Schulz, Richard

    2013-01-01

    Objective The objective of this study was to examine the role of social support in predicting depression in caregivers of adults aging with spinal cord injuries (SCI). Design Cross-sectional secondary data analyses were conducted for this study. Setting Participants were recruited from multiple community locations in Pittsburgh, PA and Miami, FL. Subjects Community-dwelling caregivers of aging adults with SCI (N=173) were interviewed as part of a multisite randomized clinical trial. Main measures The Center for Epidemiological Studies Depression Scale measured caregiver depression symptom levels. A hierarchical multiple regression analysis examined the effect of social support (social integration, received social support, and negative social interactions) on depressive symptoms levels for the caregivers of adults aging with SCI, controlling for demographic characteristics and caregiving characteristics. Results Caregivers were, on average, 53 years old (SD=15) and care-recipients were 55 years old (SD=13). Average Center for Epidemiological Studies Depression Scale scores indicated that sixty-nine (40%) caregivers had significant depressive symptoms (mean 8.69, SD=5.5). Negative social interactions (β̂ =.27, P<.01) and social integration (β̂ =−.25, P<.01) were significant independent predictors of depressive symptom levels in caregivers of adults aging with SCI. Conclusions Findings demonstrate that negative social interactions and social integration are associated with burden in caregivers of adults aging with SCI. Negative social interactions and social integration should be investigated in assessments and interventions intended to target caregiver depressive symptom levels. PMID:23117350

  9. Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72

    OpenAIRE

    Cheng-Kuei Chang; Willy Chou; Hung-Jung Lin; Yi-Ching Huang; Ling-Yu Tang; Mao-Tsun Lin; Ching-Ping Chang

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was inj...

  10. Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord.

    Science.gov (United States)

    López-Dolado, Elisa; González-Mayorga, Ankor; Portolés, María Teresa; Feito, María José; Ferrer, María Luisa; Del Monte, Francisco; Gutiérrez, María Concepción; Serrano, María Concepción

    2015-08-26

    The increasing prevalence and high sanitary costs of lesions affecting the central nervous system (CNS) at the spinal cord are encouraging experts in different fields to explore new avenues for neural repair. In this context, graphene and its derivatives are attracting significant attention, although their toxicity and performance in the CNS in vivo remains unclear. Here, the subacute tissue response to 3D flexible and porous scaffolds composed of partially reduced graphene oxide is investigated when implanted in the injured rat spinal cord. The interest of these structures as potentially useful platforms for CNS regeneration mainly relies on their mechanical compliance with neural tissues, adequate biocompatibility with neural cells in vitro and versatility to carry topographical and biological guidance cues. Early tissue responses are thoroughly investigated locally (spinal cord at C6 level) and in the major organs (i.e., kidney, liver, lung, and spleen). The absence of local and systemic toxic responses, along with the positive signs found at the lesion site (e.g., filler effect, soft interface for no additional scaring, preservation of cell populations at the perilesional area, presence of M2 macrophages), encourages further investigation of these materials as promising components of more efficient material-based platforms for CNS repair.

  11. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    Science.gov (United States)

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  12. Effects of moxibustion on heat-shock protein 70 expression in the spinal cord and colonic mucosa in a rat model of ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Yin Shi; Luyi Wu; Jingping Mu; Linying Tan; Xiaopeng Ma; Huirong Liu; Shifen Xu; Huangan Wu

    2010-01-01

    Pathological changes in the colon are closely associated with the spinal cord, and innervation of spinal cord can regulate cellular functions. Our previous studies verified that moxibustion protects and restores the colonic mucosa, but the mechanisms of action remain unknown. The present study observed the effects of moxibustion and salicylazosulfapyridine on expression of heat-shock protein 70 (HSP70) and its mRNA in the spinal cord and colonic mucosa of ulcerative colitis rats. Results demonstrated that moxibustion and salicylazosulfapyridine increased HSP70 mRNA expression in the spinal cord and colonic mucosa of ulcerative colitis rats. The decreased transcriptional activity of HSP70 in the spinal cord and colonic mucosa might participate in damage to the colonic mucosa in ulcerative colitis rats. Moxibustion exerted protective effects on colonic mucosa by up-regulating HSP70 transcriptional activity in the spinal cord and colonic mucosa.

  13. Warming Moxibustion Relieves Chronic Visceral Hyperalgesia in Rats: Relations to Spinal Dynorphin and Orphanin-FQ System

    Directory of Open Access Journals (Sweden)

    Li Qi

    2013-01-01

    Full Text Available As a twin therapy of acupuncture in traditional Chinese medicine, moxibustion has shown its effects in relieving abdominal pain in irritable bowel syndrome (IBS patients and IBS rat models, but its mechanisms are largely unknown. In this paper, we determined the role of spinal dynorphin and orphanin-FQ system in analgesic effect of warming moxibustion (WM on chronic visceral hyperalgesia (CVH in IBS-like rat model. Here, we show that (1 repeated WM at bilateral ST25 and ST37 acupoints markedly attenuated the abdominal withdrawal reflex scores in CVH rats; (2 intrathecal administration of κ receptor antagonist prior to WM significantly attenuated the WM analgesia and dynorphinA (1-17 enhanced the WM analgesia. WM significantly reinforced the upregulation of spinal dynorphin mRNA/protein and κ receptor mRNA levels in CVH rats; (3 intrathecal administration of orphanin-FQ receptor antagonist prior to WM significantly attenuated the WM analgesia and orphanin-FQ enhanced the WM analgesia. WM reinforced the upregulation of spinal orphanin-FQ mRNA/protein and orphanin-FQ receptor mRNA levels in CVH rats. These results suggest that moxibustion may relieve CVH at least in part by activating spinal dynorphin and orphanin-FQ system.

  14. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  15. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats.

    Science.gov (United States)

    Detloff, Megan Ryan; Quiros-Molina, Daniel; Javia, Amy S; Daggubati, Lekhaj; Nehlsen, Anthony D; Naqvi, Ali; Ninan, Vinu; Vannix, Kirsten N; McMullen, Mary-Katharine; Amin, Sheena; Ganzer, Patrick D; Houlé, John D

    2016-08-01

    Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious. PMID:26671215

  16. Effects of poly lactic-co-glycolic acid-Nogo A antibody delayed-release microspheres on regeneration of injured spinal cord in rats

    Institute of Scientific and Technical Information of China (English)

    Hai Lan; Yueming Song

    2009-01-01

    BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous function recovery. For successful regeneration, sustained release of the antibody from a biodegradable material loaded with Nogo A antibodies to the injury site is required. OBJECTIVE: To compare the therapeutic effects of poly lactic-co-glycolic acid (PLGA)-Nogo A antibody delayed-release microspheres and Nogo A antibody alone on spinal regeneration in Sprague-Dawley rats with complete transverse injury to the spinal cord.DESIGN, TIME AND SETTING: A randomized, controlled animal trial was performed at the Pharmacological Laboratory of West China Center of Medical Sciences, Sichuan University, between October 2007 and January 2008.MATERIALS: Goat anti-rat Nogo A monoclonal antibody was purchased from Santa, American; goat anti-rat neurofilament 200 monoclonal antibody was from Zhongshan Goldenbridge, Beijing, China; PLGA-Nogo A antibody delayed-release microspheres were provided by the College of Pharmacy, Sichuan University.METHODS: A total of 36 adult female Sprague Dawley rats were used to establish models of completely transected spinal cord injury, at T10. Animals were randomly divided into three groups (n=12): model, Nogo A antibody alone, and Nogo A antibody delayed-release microsphere groups. After transverse injury of the spinal cord, 50 μL normal saline solution, 50 μL normal saline solution containing 50 μ g Nogo A antibody, and 50 μ L normal saline solution containing 50 μg Nogo A antibody microspheres were administered to the respective groups at the injury site. MAIN OUTCOME MEASURES: The expression of Nogo A and neurofilament 200 in injured spinal cord was tested immunohistochemically, and motor function of rats was assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale.RESULTS: Four weeks after injury, expression of Nogo A in

  17. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures.

    Directory of Open Access Journals (Sweden)

    Josephine Pinkernelle

    Full Text Available BACKGROUND: Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer's disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. METHODS: In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM at various time points in culture and fixed after 1 week. RESULTS: Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. CONCLUSIONS: The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.

  18. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord

    Science.gov (United States)

    Ersen, Ali; Elkabes, Stella; Freedman, David S.; Sahin, Mesut

    2015-02-01

    Objective. Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. Approach. One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. Main results. The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. Significance. These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.

  19. Developmental expression of CAPON and Dexras1 in spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    Xin LI; Chun CHENG; Jian ZHAO; Mengling CHEN; Shuqiong NIU; Shangfeng GAO; Aiguo SHEN

    2008-01-01

    To study the expression of the carboxy-ter-minal PSD-95/DLG/ZO-1 ligand of nNOS (CAPON) and Dexrasl mRNA during development in the spinal cord of rats, real-time polymerase chain reaction (Real-time PCR), as a quantitative method, was used to study the developmental expression of CAPON and Dexrasl mRNA level in the spinal cord. The spatial expression of CAPON and Dexrasl mRNA was examined by a com-bination of in situ hybridization (ISH) and immunofluor-escence. During the development of the spinal cord, CAPON mRNA was expressed in low levels from embryo day 14 to day 18. At postnatal day 1, it reached the peak and was expressed in the part which will become the dor-sal horn when mature. It then decreased gradually until postnatal week 12, when it presented in the ventral horn. At embryo day 14, Dexrasl mRNA was expressed at low levels, increased during embryo day 16 to day 18 and peaked at postnatal day 1. Spatiotemporal expression of Dexrasl mRNA was similar to CAPON as confirmed by correlation analysis and colocalization. CAPON and neuronal nitric oxide synthase (nNOS) was expressed within the same cells of the dorsal horn at postnatal day 1 but had different subcellular localizations. Co-express-ion of CAPON and Dexrasl mRNA in myeloid tissue during development process of rat indicates that the adaptor protein, CAPON may play a probable role in differentiation of neurons, synaptic plasticity and synap-togenesis by regulating nNOS to activate Dexrasl.

  20. Electroacupuncture improves microcirculation and neuronal morphology in the spinal cord of a rat model of intervertebral disc extrusion

    Directory of Open Access Journals (Sweden)

    Dai-xun Jiang

    2015-01-01

    Full Text Available Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral surface of T 13 . Electroacupuncture was used to stimulate the bilateral Zusanli point (ST36 and Neiting point (ST44 for 14 days. Compared with control animals, blood flow in the first lumbar vertebra (L 1 was noticeably increased in rats given electroacupuncture. Microvessel density in the T 13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved significantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.

  1. Combined therapy of methylprednisolone and brain-derived neurotrophic factor promotes axonal regeneration and functional recovery after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    李立新; 徐启武; 吴幼章; 胡卫星; 顾培元; 傅震

    2003-01-01

    Objective To investigate the effects of combination therapy with methylprednisolone (MP) and brain-derived neurotrophic factor (BDNF) on axonal remyelination and functional recovery after spinal cord injury in rats. Methods Forty-five rats were randomly divided into three groups: Group A received MP and BDNF; group B received MP and cerebrospinal fluid (CSF); and group C received CSF only. Contusion injury to adult rat spinal cord was produced at the T10 vertebra level followed by immediate intravenous MP or CSF, and was thereafter infused intrathecally with BDNF or CSF for 6 weeks. Axonal remyelination and functional recovery was observed using RT-PCR, immunohistochemistry and open field locomotion. Results An increase of 28.4%±2.3% in the expression of proteolipid protein (PLP) gene, an endogenous indicator of axonal remyelination, was demonstrated in group A 24 hours after injury. Ten weeks later, there were significant decreases in hematogenous inflammatory cellular infiltration in groups A and B compared to C (P<0.05). Concomitantly, a significant amount of axonal remyelination was observed in group A compared to groups B and C (P<0.05). Furthermore, combination therapy using MP and BDNF in group A resulted in stimulation of hindlimb activity as well as improvement in the rate of functional recovery in open field locomotion (P<0.05). Conclusions Combined therapy of MP and BDNF can improve functional recovery through mechanisms that include attenuating inflammatory cellular infiltration and enhancing axonal remyelination at the injury site. Such a combination may be an effective approach for treatment of spinal cord injury.

  2. Malignant ventricular arrhythmia in a case of adult onset of spinal muscular atrophy (Kugelberg-Welander disease).

    NARCIS (Netherlands)

    Roos, M.; Sarkozy, A.; Chierchia, G.B.; Wilde, P.C.M. de; Schmedding, E.; Brugada, P.

    2009-01-01

    We present a case of a 43-year-old male patient with adult onset of spinal muscular atrophy (SMA). The patient first came to our attention with atrioventricular (AV) block. A dual-chamber pacemaker (DDD-PM) was implanted. Four years later, the PM data log showed occurrence of frequent episodes of no

  3. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    OpenAIRE

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, gluta...

  4. Serotonin differentially modulates the intrinsic properties of spinal motoneurons from the adult turtle

    Science.gov (United States)

    Perrier, Jean-François; Cotel, Florence

    2008-01-01

    This report considers serotonergic (5-HT) effects on spinal motoneurons, reviewing previous data and presenting a new study showing distinct effects of two 5-HT receptor subtypes. We previously investigated the effects of 5-HT on motoneurons in a slice preparation from the spinal cord of the adult turtle. In agreement with previous studies, we had found that 5-HT applied to the extracellular medium promoted a voltage sensitive plateau potential. However, we also reported that this effect was only observed in half of the motoneurons; 5-HT inhibited the firing of the other half of the motoneurons recorded from. To investigate the reasons for this, we applied 5-HT focally by means of the microiontophoresis technique. Facilitation of plateau potentials was observed when 5-HT was released at sites throughout the somatodendritic region. However, motoneurons were inhibited by 5-HT when selectively applied in the perisomatic region. These two effects could be induced in the same motoneuron. With pharmacological tools, we demonstrate here that the facilitation of plateau potentials is mediated by 5-HT2 receptors and the inhibitory effect is due to the activation of 5-HT1A/7 receptors. PMID:18096602

  5. Changes in brain-derived neurotrophic factor expression after transplanting microencapsulated sciatic nerve cells of rabbits into injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Changes of brain-derived neurotrophic factor (BDNF) expression reflect function of nerve cells; meanwhile, they play a significant role in researching interventions on plerosis of nerve injury.OBJECTIVE: To observe and compare the effects on changes of BDNF expression in rats with spinal cord injury between microencapsulated sciatic nerve cells of rabbits and only transplanting sciatic nerve cells of rabbits.DESIGN: Randomized controlled animal study.SETTING: Medical School of Jiujiang College.MATERIALS: The experiment was carried out in the Medical Science Researching Center, Jiujiang College from May 2004 to May 2006. A total of 90 healthy adult SD rats, weighing 250 - 300 g, of either gender; and 10 rabbits, weighing 2.0 - 2.5 kg, of either gender, were provided by Jiangxi Experimental Animal Center.METHODS: Sciatic nerve tissue of rabbits was separated to make cell suspension. After centrifugation,suspension was mixed with 15 g/L alginate saline solution and ejaculated to 20 mmol/L barium chloride saline solution by double-cavity ejaculator. The obtained cell microcapsules were suspended in saline. Rats were randomly divided into microencapsulated group, only suspension group, and only injured group with 30 animals in each group. After anesthesia, T10 spinous process and vertebra lamina of rats in the former two groups were exposed. Spinal cord tissue in 2-mm length was removed from rats by spinal cord right hemi-section. The gelatin sponges with the size of 2 mm × 2 mm × 2 mm were grafted as filing cage,and absorbed 10 μμ L microencapsulated sciatic nerve cells of rabbit in the microencapsulated group and 10 μ L sciatic nerve cells of rabbits in the only suspension group; respectively. No graft was placed in the only injured group.MAIN OUTCOME MEASURES: On the 1st, 3rd, 7th, 14th and 28th days after operation,immunohistochemistry (SABC technique) was used to detect distribution and amount of positive-reactive neurons in BDNF of spinal cord

  6. Evidence that dorsal locus coeruleus neurons can maintain their spinal cord projection following neonatal transection of the dorsal adrenergic bundle in rats.

    Science.gov (United States)

    Stanfield, B B

    1989-01-01

    In adult rats, locus coeruleus neurons which extend axons to the spinal cord are found only at mid-rostrocaudal levels of the nucleus, where they are essentially confined to its ventral, wedge-shaped half (Satoh et al. 1980; Westlund et al. 1983; Loughlin et al. 1986). However, during early postnatal development, coeruleospinal cells are found throughout the locus coeruleus (Cabana and Martin 1984; Chen and Stanfield 1987). This developmental restriction of the distribution of coeruleospinal neurons is due to axonal elimination rather than to cell death, since neurons retrogradely labeled through their spinal axons perinatally are still present in the dorsal portion of the locus coeruleus at survival periods beyond the age at which these cells lose their spinal projection (Chen and Stanfield 1987). I now report that if axons ascending from the locus coeruleus are cut by transecting the dorsal adrenergic bundle on the day of birth, a more widespread distribution of coeruleospinal neurons is retained beyond the perinatal period. These results not only indicate that the absence of the normally maintained collateral of a locus coeruleus neuron is sufficient to prevent the elimination of a collateral which would otherwise be lost, but also may imply that during normal postnatal development the presence of the maintained collateral is somehow causally involved in the elimination of the transient collateral. PMID:2612596

  7. Expression of melanocortin receptors and pro-opiomelanocortin in the rat spinal cord in relation to neurotrophic effects of melanocortins

    NARCIS (Netherlands)

    Gispen, W.H.; Kraan, M. van der; Tatro, J.B.; Entwistle, M.L.; Brakkee, J.H.; Burbach, J.P.H.; Adan, R.A.H.

    1999-01-01

    Although neurotrophic effects of -melanocyte-stimulating hormone (-MSH) are well established, the mechanism underlying these effects is unknown. To identify candidate components of the signaling system that may mediate these effects, in the present study rat spinal cord, dorsal root ganglia, sciatic

  8. Quantitative study of neurofilament-positive fiber length in rat spinal cord lesions using isotropic virtual planes

    DEFF Research Database (Denmark)

    von Euler, Mia; Larsen, Jytte Overgaard; Janson, A M

    1998-01-01

    Spontaneous reocurrence of neurofilament (NF)-positive fibers has been described after spinal cord lesions in rats. However, previously introduced methods to evaluate the lesion and the regenerative fiber outgrowth suffer from several biases, why a new concept of quantitative, morphological analy...

  9. Data on dose-volume effects in the rat spinal cord do not support existing NTCP models

    NARCIS (Netherlands)

    Van Luijk, P; Bijl, HP; Konings, AWT; Van Der Kogel, AJ; Schippers, JM

    2005-01-01

    Purpose: To evaluate several existing dose-volume effect models for their ability to describe the occurrence of white matter necrosis in rat spinal cord after irradiation with small proton beams. Methods and Materials: A large number of dose-volume effect models has been fitted to data on the occurr

  10. Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord

    NARCIS (Netherlands)

    Bijl, HP; van Luijk, P; Coppes, RP; Schippers, JM; Konings, AWT; van der Kogel, AJ

    2006-01-01

    Purpose: The dose-response relationship for a relatively short length (4 mm) of rat spinal cord has been shown to be significantly modified by adjacent low-dose fields. In an additional series of experiments, we have now established the dose-volume dependence of this effect. Methods and Materials: W

  11. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan;

    2011-01-01

    , the rats were anesthetized with pentobarbital, ventilated and paralyzed. A laminectomy enabled extracellular recording of T(3) spinal cord neuronal activity. Intrapericardial administration of a mixture of algogenic chemicals (bradykinin, serotonin, prostaglandin E(2) (all at 10(-5)M), and adenosine (10...

  12. Spinal shape analysis in 1,020 healthy young adults aged from 19 to 30 years

    Directory of Open Access Journals (Sweden)

    Jakub Krejčí

    2016-03-01

    Full Text Available Background: A number of studies on diseased spine have been published; however, there is a relative paucity of studies investigating spine shape characteristics in healthy populations. Such characteristics are needed for diagnostics of spine disorders and assessment of changes in the spinal shape that may have been caused by influence of the modern life style or intensive sport activity. Objective: The aim of the study was to determine characteristics of the spine shape in a large sample of healthy young adults. Methods: Population cross-sectional study. A non-radiographic surface method (system DTP-3 was used for the assessment of spine shape in the sagittal and frontal planes. A total of 1,020 participants (440 men, 580 women took part in the study, their mean (± SD age was 21.8 ± 1.9 years (range 19.1-29.7 for men and 21.9 ± 1.8 years (range 19.3-29.7 for women. All data were checked for normality and are presented as means, standard deviations, ranges, skewness, and kurtosis. Differences between the sexes were assessed with the two-sample t-test. Results: The average sagittal spinal shape was C3 - 12.9° - C7 - 43.0° - T10 - 27.1° - L5 for men and C3 - 12.1° - C6 - 44.5° - T11 - 34.1° - L5 for women. Men showed a significantly smaller thoracic kyphosis and lumbar lordosis curvatures than women. The average curvature due to the lateral deviation in the frontal plane was 6.1° for both sexes, the curvature was larger than 10° in 9.1% of men and 8.8% of women. We found left lateral deviation in 72.5% of men and in 63.6% of women. Conclusions: The study provides characteristics of the spine shape in a large sample of healthy young adults. Such characteristics should be part and parcel of determining the cut-off level for physiological spinal shape. Based on the results of the study, we suggest a lateral deviation of 10° as the maximum for a curvature to be still considered non-pathological.

  13. Adolescent social isolation influences cognitive function in adult rats

    Institute of Scientific and Technical Information of China (English)

    Feng Shao; Xiao Han; Shuang Shao; Weiwen Wang

    2013-01-01

    Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate the effects of adolescent social isolation on latent inhibition and brain-derived neurotrophic factor levels in the forebrain of adult rats. Male Wistar rats were randomly divided into adolescent isolation (isolated housing, 38–51 days of age) and social groups. Latent inhibition was tested at adulthood. Brain-derived neurotrophic factor levels were measured in the medial prefrontal cortex and nucleus accumbens by an enzyme-linked immunosorbent assay. Adolescent social isolation impaired latent inhibition and increased brain-derived neurotrophic factor levels in the medial prefrontal cortex of young adult rats. These data suggest that adolescent social isolation has a profound effect on cognitive function and neurotrophin levels in adult rats and may be used as an animal model of neurodevelopmental disorders.

  14. Repair effect of Schwann cells modified by microgene pSVPoMcat on injured spinal cord in rats

    Institute of Scientific and Technical Information of China (English)

    陈礼刚; 高立达; 卢敏; 毛伯镛; 曾凡俊; 李开慧; 朴永旭

    2002-01-01

    To observe the repair effect of Schwann cells (SCs) modified by microgene pSVPoMcat on injured spinal cord in rats. Methods: Semi-transection injury at the level of T8 of spinal cord was made with cutting method on 120 Sprague Dawley (SD) rats. Then 40 rats implanted with SCs modified by microgene pSVPoMcat were taken as Group A,40 rats implanted with simple SCs as Group B and the other 40 rats were taken as the control group (Group C ). The functional recovery of the rats was observed through combined behavioral score ( CBS ) and cortical somatosensory evoked potential ( CSEP ), and the expression of the glial fibrillary acidic protein (GFAP) was measured with in situ hybridization and immunocytochemistry. At 3 months after operation, the rats were examined with magnetic resonance image (MRI), and the neurofilaments (NF) of the axons were stained with immunohistochemical method. Results: GFAP expression in Group A was significantly lower than that of the other 2 groups. MRI showed that the spinal signals in the injured area recovered fundamentally in Group A, didn't recover in Group B and malacia focus was found in Group C, which was same as the results of NF staining. Wave amplitudes in incubation periods in Group A and Group B tended to recover. It recovered to the normal level in Group A, which was similar to the results of CBS. Conclusions: SCs modified by microgene pSVPoMcat can inhibit GFAP expression, improve the growth of the axons and the functional recovery of neurons after spinal cord injury.

  15. Co- transplantation of Bone Marrow Stromal Cells with Schwann Cells Evokes Mechanical Allodynia in the Contusion Model of Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    Zahra Yekta

    2012-01-01

    Full Text Available Objective: Several studies have shown that, although transplantation of neural stem cellsinto the contusion model of spinal cord injury (SCI promotes locomotor function and improvesfunctional recovery, it induces a painful response, Allodynia. Different studies indicatethat bone marrow stromal cells (BMSCs and Schwann cells (SCs can improvelocomotor recovery when transplanted into the injured rat spinal cord. Since these cellsare commonly used in cell therapy, we investigated whether co-transplantation of thesecells leads to the development of Allodynia.Materials and Methods: In this experimental research, the contusion model of SCI was inducedby laminectomy at the T8-T9 level of the spinal cord in adult female wistar rats (n=40weighting (250-300g using the New York University Device. BMSCs and SCs were culturedand prelabeled with 5-bromo-2-deoxyuridine (BrdU and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanineperchlorate (DiI respectively. The rats were divided into five groupsof 8 including: a control group (laminectomy only, three experimental groups (BMSC, SCand Co-transplant and a sham group. The experimental groups received BMSCs, SCs,and BMSCs and SCs respectively by intraspinal injection 7 days after injury and the shamgroup received serum only. Locomotion was assessed using Basso, Beattie and Bresnahan(BBB test and Allodynia by the withdrawal threshold test using Von Frey Filamentsat 1, 7, 14, 21, 28, 35, 42, 49 and 56 days after SCI. The statistical comparisons betweengroups were carried out by using repeated measures analysis of variances (ANOVA.Results: Significant differences were observed in BBB scores in the Co- transplant groupcompared to the BMSC and SC groups (p< 0.05. There were also significant differencesin the withdrawal threshold means between animals in the sham group and the BMSC,SC and the Co-transplant groups (p<0.05.BBB scores and withdrawal threshold meansshowed that co-transplation improved functioning but

  16. In vivo longitudinal Myelin Water Imaging in rat spinal cord following dorsal column transection injury.

    Science.gov (United States)

    Kozlowski, Piotr; Rosicka, Paulina; Liu, Jie; Yung, Andrew C; Tetzlaff, Wolfram

    2014-04-01

    Longitudinal Myelin Water Imaging was carried out in vivo to characterize white matter damage following dorsal column transection (DC Tx) injury at the lumbar level L1 of rat spinal cords. A transmit-receive implantable coil system was used to acquire multiple spin-echo (MSE) quantitative T2 data from the lumbar spinal cords of 16 rats at one week pre-injury as well as 3 and 8weeks post-injury (117 microns in-plane resolution and 1.5mm slice thickness). In addition, ex vivo MSE and DTI data were acquired from cords fixed and excised at 3 or 8weeks post injury using a solenoid coil. The MSE data were used to generate Myelin Water Fractions (MWFs) as a surrogate measure of myelin content, while DTI data were acquired to study damage to the axons. Myelin damage was assessed histologically with Eriochrome cyanine (EC) and Myelin Basic Protein in degenerated myelin (dgen-MBP) staining, and axonal damage was assessed by neurofilament-H in combination with neuron specific beta-III-tubulin (NF/Tub) staining. These MRI and histological measures of injury were studied in the dorsal column at 5mm cranial and 5mm caudal to injury epicenter. MWF increased significantly at 3weeks post-injury at both the cranial and caudal sites, relative to baseline. The values on the cranial side of injury returned to baseline at 8weeks post-injury but remained elevated on the caudal side. This trend was found in both in vivo and ex vivo data. This MWF increase was likely due to the presence of myelin debris, which were cleared by 8 weeks on the cranial, but not the caudal, side. Both EC and dgen-MBP stains displayed similar trends. MWF showed significant correlation with EC staining (R=0.63, p=0.005 in vivo and R=0.74, p=0.0001 ex vivo). MWF also correlated strongly with the dgen-MBP stain, but only on the cranial side (R=0.64, p=0.05 in vivo; R=0.63, p=0.038 ex vivo). This study demonstrates that longitudinal MWI in vivo can accurately characterize white matter damage in DC Tx model of injury

  17. Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury.

    Science.gov (United States)

    Koyanagi, I; Tator, C H; Lea, P J

    1993-08-01

    The purpose of this study was to investigate the vascular mechanisms involved in the pathophysiology of acute spinal cord injury. Vascular corrosion casts of traumatized rat spinal cords at C7-T1 were inspected by scanning electron microscopy. Nineteen rats were subjected to a 51g acute clip compression at C8-T1 and then underwent transcardial perfusion with polyester resin at 15 minutes, 4 hours, or 24 hours after injury. The injured spinal cord appeared almost avascular at the compression site, although the large vessels on the surface of the spinal cord were all intact. The sulcal arteries at the injury site frequently showed constriction, and the impressions of endothelial nuclei were more slender and less distinct in the constricted arterial casts. Extravasation of the injected resin at the injury site was observed most frequently in the 15-minute group. Poorly filled distal branches of the sulcal arteries were seen at the injury site in every group. Indeed, it was concluded that the disruption and occlusion of the sulcal arteries and their branches accounted for a considerable amount of the posttraumatic ischemia of the cord. Occlusion of the sulcal arteries in the anterior median sulcus at the injury site was more frequently observed in the 24-hour group than in earlier groups. This observation suggests that there was a progressive circulatory disturbance of the damaged sulcal arteries at the injury site. The 4- and 24-hour groups showed avascular areas extending longitudinally from the injury site in the posterior columns, probably the result of hemorrhage and venous obstruction. PMID:8367052

  18. Over-expression of PUMA correlates with the apoptosis of spinal cord cells in rat neuropathic intermittent claudication model.

    Directory of Open Access Journals (Sweden)

    Bin Ma

    Full Text Available BACKGROUND: Neuropathic intermittent claudication (NIC is a typical clinical symptom of lumbar spinal stenosis and the apoptosis of neurons caused by cauda equina compression (CEC has been proposed as an important reason. Whereas, the factors and the mechanism involved in the process of apoptosis induced by CEC remain unclear. METHODOLOGY AND RESULTS: In our modified rat model of NIC, a trapezoid-shaped silicon rubber was inserted into the epidural space under the L5 and L6 vertebral plate. Obvious apoptosis was observed in spinal cord cells after compression by TUNEL assay. Simultaneously, qRT-PCR and immunohistochemistry showed that the expression levels of PUMA (p53 up-regulated modulator of apoptosis and p53 were upregulated significantly in spinal cord under compression, while the expression of p53 inhibitor MDM2 and SirT2 decreased in the same region. Furthermore, CEC also resulted in the upregulation of Bcl-2 pro-apoptotic genes expression and caspase-3 activation. With the protection of Methylprednisolone, the upregulation of PUMA and p53 expression as well as the decrease of MDM2 and SirT2 in spinal cord were partially rescued in western bolt analysis. CONCLUSIONS: These results suggest that over-expression of PUMA correlates with CEC caused apoptosis of spinal cord cells, which is characterized by the increase of p53, Bax and Bad expression. PUMA upregulation might be crucial to induce apoptosis of spinal cord cells through p53-dependent pathway in CEC.

  19. Granulocyte colony-stimulating factor (G-CSF protects oligodendrocyte and promotes hindlimb functional recovery after spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Ryo Kadota

    Full Text Available BACKGROUND: Granulocyte colony-stimulating factor (G-CSF is a protein that stimulates differentiation, proliferation, and survival of cells in the granulocytic lineage. Recently, a neuroprotective effect of G-CSF was reported in a model of cerebral infarction and we previously reported the same effect in studies of murine spinal cord injury (SCI. The aim of the present study was to elucidate the potential therapeutic effect of G-CSF for SCI in rats. METHODS: Adult female Sprague-Dawley rats were used in the present study. Contusive SCI was introduced using the Infinite Horizon Impactor (magnitude: 200 kilodyne. Recombinant human G-CSF (15.0 µg/kg was administered by tail vein injection at 1 h after surgery and daily the next four days. The vehicle control rats received equal volumes of normal saline at the same time points. RESULTS: Using a contusive SCI model to examine the neuroprotective potential of G-CSF, we found that G-CSF suppressed the expression of pro-inflammatory cytokine (IL-1 beta and TNF- alpha in mRNA and protein levels. Histological assessment with luxol fast blue staining revealed that the area of white matter spared in the injured spinal cord was significantly larger in G-CSF-treated rats. Immunohistochemical analysis showed that G-CSF promoted up-regulation of anti-apoptotic protein Bcl-Xl on oligpodendrocytes and suppressed apoptosis of oligodendrocytes after SCI. Moreover, administration of G-CSF promoted better functional recovery of hind limbs. CONCLUSIONS: G-CSF protects oligodendrocyte from SCI-induced cell death via the suppression of inflammatory cytokines and up-regulation of anti-apoptotic protein. As a result, G-CSF attenuates white matter loss and promotes hindlimb functional recovery.

  20. Low level laser therapy accelerates bone healing in spinal cord injured rats.

    Science.gov (United States)

    Medalha, Carla Christina; Santos, Ana Lúcia Yaeko Silva; Veronez, Suellen de Oliveira; Fernandes, Kelly Rossetti; Magri, Angela Maria Paiva; Renno, Ana Claudia Muniz

    2016-06-01

    Bone loss occurs rapidly and consistently after the occurrence of a spinal cord injury (SCI), leading to a decrease in bone mineral density (BMD) and a higher risk of fractures. In this context, the stimulatory effects of low level laser therapy (LLLT) also known as photobiomodulation (PBM) have been highlighted, mainly due to its osteogenic potential. The aim of the present study was to evaluate the effects of LLLT on bone healing using an experimental model of tibial bone defect in SCI rats. Twenty-four female Wistar rats were randomly divided into 3 groups: Sham group (SG), SCI control group (SC) and SCI laser treated group (SL). Two weeks after the induction of the SCI, animals were submitted to surgery to induce a tibial bone defect. Treatment was performed 3days a week, for 2weeks, at a single point over the area of the injury, using an 808nm laser (30mW, 100J/cm(2); 0.028cm(2), 1.7W/cm², 2.8J). The results of the histological and morphometric evaluation demonstrated that the SL group showed a larger amount of newly formed bone compared to the SC group. Moreover, a significant immunoexpression of runt-related transcription factor 2 (RUNX2) was observed in the SL group. There was no statistical difference in the biomechanical evaluation. In conclusion, the results suggest that LLLT accelerated the process of bone repair in rats with complete SCI. PMID:27077555

  1. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle.

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-05-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  2. Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk.

    NARCIS (Netherlands)

    Pull ter Gunne, A.F.; Laarhoven, C.J.H.M. van; Cohen, D.B.

    2010-01-01

    Surgical site infection (SSI) following spinal surgery is a frequent complication and results in higher morbidity, mortality and healthcare costs. Patients undergoing surgery for spinal deformity (scoliosis/kyphosis) have longer surgeries, involving more spinal levels and larger blood losses than ty

  3. Effects of transplantation of microencapsulated rabbit sciatic nerve on nuclear factor-kappa B expression after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Xiaolian Wang; Jianmin Ma; Hui Chen; Deming Liu

    2009-01-01

    BACKGROUND: It has been reported that nuclear factor-kappa B (NF- k B), activated after spinal cord injury in rats, plays a key role in inflammatory responses in the central nervous system.OBJECTIVE: To investigate the effects of transplantation of microencapsulated rabbit sciatic nerve on NF- k B expression and motor function after spinal cord injury in rats, and to compare the results with the transplantation of rabbit sciatic nerve alone.DESIGN, TIME AND SETTING: This completely randomized, controlled study was performed at the Department of Neurobiology, Medical College of Nanchang University between December 2007 and July 2008.MATERIALS: A rabbit anti-NF- k B P65 monoclonal antibody was made by the Santa Cruz Company, USA and a streptavidin peroxidase immunohistochemical kit was provided by the Sequoia Company, China.METHODS: Eight rabbits were used to prepare a sciatic nerve cell suspension that was divided into two parts: one stored for transplantation, and the other mixed with a 1.5% sodium alginate solution. One hundred and twenty adult Sprague Dawley rats weighing 220-250 g were randomly divided into four groups: the microencapsulated cell group (n = 36), the non-encapsulated cell group (n = 36), the saline group (n = 36) and the sham operation group (n = 12). The first three groups underwent a right hemisection injury of the spinal cord at the T level, into which was transplanted a gelatin sponge soaked with 10 μ L of a microencapsulated nerve tissue/cell suspension (microencapsulated cell group), a tissue/cell suspension (non-encapsulated cell group) or physiological saline (saline group). In the sham operation group the vertebrae were exposed, but the spinal cord was not injured, and no implantation was given.MAIN OUTCOME MEASURES: Pathological changes were detected using hematoxylin-eosin staining; NF- K B expression was quantified using immunohistochemical staining; motor function was assessed using the Basso, Beattie and Bresnahan (BBB) scale

  4. Effectiveness of minocycline and FK506 alone and in combination on enhanced behavioral and biochemical recovery from spinal cord injury in rats.

    Science.gov (United States)

    Ahmad, Mohammad; Zakaria, Abdulrahim; Almutairi, Khalid M

    2016-06-01

    Injury to the spinal cord results in immediate physical damage (primary injury) followed by a prolonged posttraumatic inflammatory disorder (secondary injury). The present study aimed to investigate the neuroprotective effects of minocycline and FK506 (Tacrolimus) individually and in combination on recovery from experimental spinal cord injury (SCI). Young adult male rats were subjected to experimental SCI by weight compression method. Minocycline (50mg/kg) and FK506 (1mg/kg) were administered orally in combination and individually to the SCI group daily for three weeks. During these three weeks, the recovery was measured using behavioral motor parameters (including BBB, Tarlov and other scorings) every other day for 29days after SCI. Thereafter, the animals were sacrificed and the segment of the spinal cord centered at the injury site was removed for the histopathological studies as well as for biochemical analysis of monoamines such as 5-hydroxytryptamine (5-HT) and 5-hydroxy-indolacetic acid (5-HIAA) and some oxidative stress indices, such as thiobarbituric acid-reactive substances (TBARS), total glutathione (GSH) and myeloperoxidase (MPO). All behavioral results indicated that both drugs induced significant recovery from SCI with respect to time. The biochemical and histopathological results supported the behavioral findings, revealing significant recovery in the regeneration of the injured spinal tissues, the monoamine levels, and the oxidative stress indices. Overall, the effects of the tested drugs for SCI recovery were as follows: FK506+minocycline>minocycline>FK506 in all studied parameters. Thus, minocycline and FK506 may prove to be a potential therapy cocktail to treat acute SCI. However, further studies are warranted. PMID:27106204

  5. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.

    Science.gov (United States)

    Gwak, Young S; Kang, Jonghoon; Unabia, Geda C; Hulsebosch, Claire E

    2012-04-01

    In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors

  6. The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat

    International Nuclear Information System (INIS)

    Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperature during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord

  7. Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord

    Science.gov (United States)

    Im, Changkyun; Park, Hae Yong; Koh, Chin Su; Ryu, Sang Baek; Seo, In Seok; Kim, Yong Jung; Kim, Kyung Hwan; Shin, Hyung-Cheul

    2016-10-01

    Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.

  8. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Baba Hiroshi

    2010-05-01

    Full Text Available Abstract Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon.

  9. Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats.

    Science.gov (United States)

    Juif, Pierre-Eric; Poisbeau, Pierrick

    2013-08-01

    Oxytocin (OT) and arginine vasopressin (AVP) are 2 neuropeptides that display well-known effects on the reproductive system. Although still controversial, oxytocin and vasopressin were demonstrated to exert potent effects on the nociceptive system when administered directly in various central nervous structures. On the other hand, little is known about their peripheral (hormonal) actions on nociception and pain responses. The aim of the present work was to characterize the effects of physiological blood concentrations of OT and AVP on spinal nociception and on pain responses. To do so, growing doses of OT or AVP were administered intravenously and the nociceptive processing by spinal cord neurons was analyzed in anesthetized male rats in vivo. We observed that the action potentials mediated by C-type nociceptive fibers was strongly reduced (antinociception) after intravenous injections of low doses of OT (effects were fully abolished in the presence of the OT receptor antagonist and the AVP receptor antagonist type 1A (V1A), respectively. We confirmed this result with a behavioral model of forced swim stress-induced analgesia associated with plasmatic release of OT (and not vasopressin). Stress-induced analgesia was transiently lost after i.v. administration of OTR antagonist. Together, the present work provides straightforward evidence that blood levels of OT and AVP modulate nociception, windup plasticity and pain responses. The final target structures explaining these effects remains to be identified but are likely to be C-type nociceptors.

  10. {sup 18}F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    Energy Technology Data Exchange (ETDEWEB)

    Bagrosky, Brian M. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States); Hayes, Kari L.; Fenton, Laura Z. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); Koo, Phillip J. [University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States)

    2013-08-15

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using {sup 18}F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in

  11. 18F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    International Nuclear Information System (INIS)

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using 18F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in patients

  12. Effect ofFerula sinkiangensis K.M. Shen on pain threshold and Fos protein expression and astrocyte activation in the spinal cord of neuropathic pain rats

    Institute of Scientific and Technical Information of China (English)

    Huang Yi-fei; Hu Wei; Li Lei; Liu Yan-lu

    2015-01-01

    BACKGROUND:Ferula sinkiangensis K.M. Shen is composed of volatile oil, resin and gum that have the anti-inflammatory, anti-alergic, antispasmodic and analgesic effects. But its analgesic mechanism is unclear. OBJECTIVE: To observe the effect ofFerula sinkiangensis K.M. Shen on heat pain, mechanical pain, Fos protein expression and astrocyte activation in spinal cord of rats with neuropathic pain. METHODS: Eighty adult Sprague-Dawley rat models of chronic sciatic nerve injury were randomly divided into five groups and then intragasticaly administeredFerula sinkiangensis K.M. Shen at low, moderate and high doses (0.075, 0.15, 0.30 g/kg), celecoxib or physiological saline. Heat pain and mechanical pain were measured at 1 day before operation and at 1, 2, 3, 5, 7, 14 days after operation. The spinal cord tissue at S4-5 segments was harvested and Fos protein expression and astrocyte activation in the spinal cord of rats were observed by immunohistochemical staining method. RESULTS AND CONCLUSION: After 1 and 5 days of medication, behavioral pain scores of rats in the low-, moderate-, and high-doseFerula sinkiangensis K.M. Shen groups were significantly higher than that in the physiological saline group (P < 0.01). The largest reduction in heat pain threshold was measured in the moderate-doseFerula sinkiangensis K.M. Shen group compared to the other groups (P < 0.01). The most significant reduction in rat mechanical pain threshold was measured in the high-doseFerula sinkiangensis K.M. Shen group than in the other groups (P < 0.01). At each time point post-operation, the number of Fos protein-positive cels in the low-, moderate- and high-doseFerula sinkiangensis K.M. Shen and celecoxib groups was significantly lower than that in the physiological saline group (P < 0.05); the number of Fos protein-positive cels in the moderate- and high-doseFerula sinkiangensis K.M Shen groups was significantly higher than that in the celecoxib group (P< 0.05). At each time point post

  13. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Sillar, K T; Kjaerulff, O;

    1999-01-01

    We have studied the effects of the biogenic amine noradrenaline (NA) on motor activity in the isolated neonatal rat spinal cord. The motor output was recorded with suction electrodes from the lumbar ventral roots. When applied on its own, NA (0.5-50 microM) elicited either no measurable root...... addition of NA to the NMDA/5-HT saline could reinstate a well-coordinated locomotor rhythm. We conclude that exogenously applied NA can elicit tonic activity or can trigger a slow, irregular and often synchronous motor pattern. When NA is applied during ongoing locomotor activity, the amine has a distinct...... slowing effect on the rhythm while preserving the normal coordination between flexors and extensors. The ability of NA to "rescue" rhythmic locomotor activity after its time-dependent deterioration suggests that the amine may be important in the maintenance of rhythmic motor activity....

  14. Effect of nitric oxide on spinal evoked potentials and survival rate in rats with decompression sickness

    DEFF Research Database (Denmark)

    Randsøe, Thomas; Meehan, Claire Francesca; Broholm, Helle;

    2015-01-01

    or an increased nitrogen washout on decompression through augmented blood flow rate. The present experiments were conducted to investigate whether a short- or long-acting NO donor [glycerol trinitrate (GTN) or isosorbide-5-mononitrate (ISMN), respectively] would offer the same protection against spinal cord DCS...... of DCS. In total, 58 rats were divided into 6 different treatment groups. The first three received either saline (group 1), 300 mg/kg iv ISMN (group 2), or 10 mg/kg ip GTN (group 3) before compression. The last three received either 300 mg/kg iv ISMN (group 4), 1 mg/kg iv GTN (group 5), or 75 μg/kg iv...... GTN (group 6) during the dive, before decompression. In all groups, decompression caused considerable intravascular bubble formation. The ISMN groups showed no difference compared with the control group, whereas the GTN groups showed a tendency toward faster SEP disappearance and shorter survival...

  15. Enhanced neuroprotection and improved motor function in traumatized rat spinal cords by rAAV2-mediated Glial-derived neurotrophic factor combined with early rehabilitation training

    Institute of Scientific and Technical Information of China (English)

    Han Qingquan; Xiang Jingjing; Zhang Yun; Qiao Hujun; Shen Yongwei; Zhang Chun

    2014-01-01

    Background Spinal cord injury (SCI) is a serious neurological injury that often leads to permanent disabilities for the victims.The aim of this study was to determine the effects of glial-derived neurotrophic factor (GDNF) mediated by recombinant adeno-associated virus type 2 (rAAV2) alone or in combination with early rehabilitation training on SCI.Methods SCI was induced on the T8-9 segments of the spinal cord by laminectomy in adult male Sprague-Dawley rats.Then besides the sham operation group,the SCI rats were randomly divided into four groups:natural healing group,gene therapy group,rehabilitation training group,and combination therapy group (gene therapy in combination with rehabilitation training).Motor dysfunction,protein expression of GDNF,edema formation,and cell injury were examined 7,14,and 21 days after trauma.Results The topical application of rAAV-GDNF-GFP resulted in strong expression of GDNF,especially after the 14th day,and could protect the motor neuron ceils.Early rehabilitative treatment resulted in significantly improved motor function,reduced edema formation,and protected the cells from injury,especially after the 7th and 14th days,and increased the GDNF expression in the damaged area,which was most evident after Day 14.The combined application of GDNF and early rehabilitative treatment after SCI resulted in a significant reduction in spinal cord pathology and motor dysfunction after the 7th and 14th days.Conclusion These observations suggest that rAAV2 gene therapy in combination with rehabilitation therapy has potential clinical value for the treatment of SCI.

  16. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Lei-Fang Cao

    2016-01-01

    Full Text Available In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA into the bilateral striatum (CPu. PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4 aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE precursor droxidopa (L-DOPS or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE and 5-hydroxytryptamine (5-HT reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain.

  17. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  18. A prospective evaluation of a pressure ulcer prevention and management E-Learning Program for adults with spinal cord injury.

    Science.gov (United States)

    Brace, Jacalyn A; Schubart, Jane R

    2010-08-01

    Pressure ulcers are a common complication of spinal cord injury (SCI). Pressure ulcer education programs for spinal cord injured individuals have been found to have a positive effect on care protocol adherence. A prospective study was conducted among hospitalized spinal cord-injured men and women to determine if viewing the Pressure Ulcer Prevention and Management Education for Adults with Spinal Cord Injury: E-Learning Program affects their knowledge scores. A 20-question multiple-choice pre-/post learning test was developed and validated by 12 rehabilitation nurses. Twenty (20) patients (13 men, seven women; mean age 49 years, [SD: 18.26] with injuries to the cervical [seven], thoracic [six], and lumbar [six] regions) volunteered. Most (42%) had completed high school and time since SCI ranged from 2 weeks to 27 years. Eighteen (18) participants completed both the pre- and post test. Of those, 16 showed improvement in pressure ulcer knowledge scores. The median scores improved from 65 (range 25 to 100) pre-program to 92.5 (range 75 to 100) post-program. Descriptive statistics, Student's t-test, and analysis of variance (ANOVA) were used to analyze the data. The results suggest that a single viewing of this e-learning program could improve pressure ulcer knowledge of hospitalized adults with SCI. Research to ascertain the effects of this and other educational programs on pressure ulcer rates is needed. PMID:20729562

  19. Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats.

    Science.gov (United States)

    Liu, Shiyao; Yang, Yanwei; Jin, Mu; Hou, Siyu; Dong, Xiuhua; Lu, Jiakai; Cheng, Weiping

    2016-09-15

    Previous studies have shown that xenon-delayed postconditioning for up to 2h after reperfusion provides protection against spinal cord ischemia/reperfusion (I/R) injury in rats. This study was designed to determine the roles of phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (ERK) in this neuroprotection. The rats were randomly assigned to the following nine groups (n=16∗9): 1) I/R+N2 group, 2) I/R+Xe group, 3) I/R+PD98059+N2 group (ERK blocking agent), 4) I/R+wortmannin+N2 group (PI3K-Akt blocking agent), 5) I/R+PD98059+Xe group, 6) I/R+wortmannin+Xe group, 7) I/R+DMSO+Xe group (dimethyl sulfoxide, vehicle control), 8) I/R+DMSO+N2 group, and 9) sham group (no spinal cord ischemia and no xenon). Spinal cord ischemia was induced for 25min in male Sprague-Dawley rats. Neurological function was assessed using the Basso, Beattie, and Bresnahan (BBB) open-field locomotor scale at 6, 12, 24 and 48h after reperfusion. Histological examination of the lumbar spinal cord was performed using Nissl staining and TUNEL staining at 4 (n=8) and 48 (n=8)h after reperfusion. Western blotting was performed to evaluate p-Akt and p-ERK expression in the spinal cord at 4 (n=8) and 48 (n=8) h after reperfusion. Compared with the sham group, all rats in the I/R groups had lower BBB scores, fewer normal motor neurons, more apoptotic neurons and lower p-Akt and p-ERK levels at each time point (P<0.05). Compared with the I/R group, rats in the I/R+Xe group had higher neurological scores, more normal motor neurons, fewer apoptotic neurons and significantly higher levels of p-Akt and p-ERK at each time point (P<0.05). Compared with the I/R+Xe group, the I/R+PD98059+Xe and I/R+wortmannin+Xe groups showed worse neurological outcomes and less p-Akt and p-ERK at each time point (P<0.05). These results suggest that xenon-delayed postconditioning improves neurological outcomes to spinal cord I/R injury in rats through the activation of the AKT and ERK signaling

  20. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat.

    Directory of Open Access Journals (Sweden)

    Paul J Austin

    Full Text Available Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four 'disability-specific' genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular

  1. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat.

    Science.gov (United States)

    Austin, Paul J; Bembrick, Alison L; Denyer, Gareth S; Keay, Kevin A

    2015-01-01

    Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four 'disability-specific' genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure

  2. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  3. Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xin Geng; Tao Sun; Jing-hui Li; Ning Zhao; Yong Wang; Hua-lin Yu

    2015-01-01

    Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw-ley rats was clamped for 60 seconds.Dazhui (GV14) andMingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres-sion of serum inlfammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These ifndings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  4. Immunohistochemical distribution of Plexin A4 in the adult rat central nervous system

    Directory of Open Access Journals (Sweden)

    Claire-Anne Gutekunst

    2010-07-01

    Full Text Available PlexinA4 is the latest member to be identified of the plexin A subfamily, critical transducers of class 3 semaphorin signaling as co-receptors to neuropilins 1 and 2. Despite functional information regarding the role of PlexinA4 in development and guidance of specific neuronal pathways, little is known about its distribution in the adult central nervous system (CNS. Here we report an in depth immunohistochemical analysis of PlexinA4 expression in the adult rat CNS. PlexinA4 staining was present in neurons and fibers throughout the brain and spinal cord, including neocortex, hippocampus, lateral hypothalamus, red nucleus, facial nucleus and the mesencephalic trigeminal nucleus. PlexinA4 antibodies labeled fibers in the lateral septum, nucleus accumbens, several thalamic nuclei, substantia nigra pars reticulata, zona incerta, pontine reticular region, as well as in several cranial nerve nuclei. This constitutes the first detailed description of the topographic distribution of PlexinA4 in the adult CNS and will set the basis for future studies on the functional implications of PlexinA4 in adult brain physiology.

  5. Transplantation of low-power laser-irradiated olfactory ensheathing cells to promote repair of spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Haoxian Chen; Xinfeng Zheng; Weibin Sheng; Qin Wei; Tao Jiang; Gele Jin

    2009-01-01

    BACKGROUND: Previous studies have demonstrated that low-power laser (LPL) irradiation can promote the regeneration of peripheral nerves and central nerves, as well as influence cellular proliferation. Therefore, it is thought to be a potential treatment for spinal cord injury.OBJECTIVE: Utilizing histological observations and behavioral evaluations, the aim of this study was to investigate the influence of transplanted olfactory ensheathing cells (OECs), irradiated by LPL, on functional repair of rats following transversal spinal cord injury.DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the animal experimental center in the First Affiliated Hospital of Xinjiang Medical University between January 2007 and February 2008.MATERIALS: A total of 52 Sprague Dawley rats were included in this experiment. Twelve rats were used to harvest OECs, some of which were irradiated by LPL on days 3, 5, and 7 in culture.The remaining 40 rats were used to establish T12 complete spinal cord transection injury.DMEM/F12 medium was purchased from Sigma, USA, Fluorogold was provided by Chemicon,USA, and the LY/JG650-D500-16 low-power laser was produced by Xi'an Lingyue Electromechanical Science And Technology Co., Ltd., China.METHODS: The successful rat models were randomly divided into three groups: OEC transplantation, LPL-irradiated OEC transplantation, and control. These animals were microinjected with OEC suspension, LPL-irradiated OEC suspension, and DMEM/F12 medium(10 μL) respectively 4 weeks after spinal cord was completely transected at the T12 level.MAIN OUTCOME MEASURES: Spinal cord injury was observed using hematoxylin-eosin staining.Expression of nerve growth factor receptor p75 and glial fibrillary acidic protein were determined using immunohistochemical staining. Regeneration of spinal nerve fibers in rats was assayed by Fluorogold retrograde labeling method. Basso, Beattie and Bresnahan (BBB) scores were used to evaluate motor

  6. Hypertension after bilateral kidney irradiation in young and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-09-01

    The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension.

  7. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  8. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    International Nuclear Information System (INIS)

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1β was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1β was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1β. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1β expression and thus modulating spinal excitatory synaptic transmission and pain response.

  9. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wei [Department of Out-Patient, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Wang, Wei; Huang, Jing [Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi' an 710032 (China); Ren, Ning [Comprehensive Diagnostic and Therapeutic Center, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Wu, Sheng-Xi, E-mail: shengxi@fmmu.edu.cn [Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi' an 710032 (China); Li, Yong-Qi, E-mail: devneuro@fmmu.edu.cn [Comprehensive Diagnostic and Therapeutic Center, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China)

    2010-05-14

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1{beta} was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1{beta} was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1{beta}. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1{beta} expression and thus modulating spinal excitatory synaptic transmission and pain response.

  10. Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury.

    Science.gov (United States)

    Wang, Dongmei; Xue, Yaping; Yan, Yanhua; Lin, Minjie; Yang, Jiajia; Huang, Jianzhong; Hong, Yanguo

    2016-07-01

    The rodent Mas-related gene (Mrg) receptor subtype C has been demonstrated to inhibit pathological pain. This study investigated the mechanisms underlying the reversal of pain hypersensitivity by the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) in a rat model of L5 spinal nerve ligation (SNL). Intrathecal (i.t.) administration of BAM8-22 (0.1-10nmol) attenuated mechanical allodynia in a dose-dependent manner on day 10 after SNL. The antiallodynia effect of BAM8-22 was abolished by MrgC receptor antibody, but not by naloxone. I.t. BAM8-22 (10nmol) inhibited SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) and phosphorylation of cyclic AMP response element-binding protein (p-CREB) in the spinal dorsal horn. The BAM8-22 treatment reversed the SNL-induced astrocyte activation, increase of interleukin-1β (IL-1β) expression and phosphorylation of extracellular signal-regulated kinase (p-ERK) in the spinal cord. BAM8-22 also reversed the upregulation of fractalkine and IL-1β in small- and medium-sized dorsal root ganglion (DRG) neurons. Furthermore, the BAM8-22 exposure suppressed the lipopolysaccharide (LPS)-induced increase of nNOS and IL-1β in the DRG explant cultures and the BAM8-22-induced suppression disappeared in the presence of MrgC receptor antibody. The present study provides evidence that activation of MrgC receptors inhibits nerve injury-induced increase of pronociceptive molecules in DRG neurons, suppressing astrocyte activation, the upregulation of excitatory mediators and phosphorylation of transcription factors in the spinal dorsal horn. As MrgC receptors are unequally expressed in the dorsal root and trigeminal ganglia, this study suggests that targeting MrgC receptors could be a new therapy for neuropathic pain with limited unwanted effects. PMID:27018398

  11. Effects of Sevoflurane on the discharges of wide dynamic range neurons in spinally transected rats

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-wei; XIONG Yuan-chang; DENG Xiao-ming; ZHAO Zhi-qi

    2004-01-01

    Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transected at T9- 10 level. The rate of firings of single neurons in the dorsal horn in response to electrical stimulation of skin was recorded with microelectrodes. The early and late discharges were observed when rats inhaled 0.5%, 1.0%, 1.5%, and 2.0%sevoflurane. Results: Sevoflurane suppressed the early and late discharges at the concentration of 0.5%, 1.0%, 1.5%,and 2.0%. Compared with early discharges, the extent of inhibition of late discharges was wider at the concentration of1%, 1.5 %, and 2.0% of sevoflurane. Conclusion: It is indicated that sevoflurane could suppress the transmission of nociceptive and non-nociceptive stimulation at dorsal horn. The suppression on nociceptive imput is stronger than that on nonnociceptive imput when the concentration of sevoflurane is more than 1%.

  12. Exogenous Neuritin Promotes Nerve Regeneration After Acute Spinal Cord Injury in Rats.

    Science.gov (United States)

    Gao, Rui; Li, Xingyi; Xi, Shaosong; Wang, Haiyan; Zhang, Hong; Zhu, Jingling; Shan, Liya; Song, Xiaoming; Luo, Xing; Yang, Lei; Huang, Jin

    2016-07-01

    Insufficient local levels of neurotrophic factor after spinal cord injury (SCI) are the leading cause of secondary injury and limited axonal regeneration. Neuritin belongs to a family of neurotrophic factors that promote neurite outgrowth, maintain neuronal survival, and provide a favorable microenvironment for the regeneration and repair of nerve cells after injury. However, it is not known whether the exogenously applied neuritin protein has a positive effect on nerve repair after SCI. This was investigated in the present study using purified human recombinant neuritin expressed in and purified from Pichia pastoris, which was tested in a rat SCI model. A recombinant neuritin concentration of 60 μg/ml induced the recovery of hind limb motor function and stimulated nerve regeneration in rats with SCI. Continuous administration of neuritin at this dose at an early stage after SCI inhibited poly ADP ribose polymerase (PARP) protein degradation and decreased neuronal apoptosis. In addition, during the critical postinjury period of axonal regeneration, exogenous neuritin treatment increased the expression of neurofilament 200 and growth-associated protein 43 in the damaged tissue, which was associated with the restoration of hind limb movement. These results suggest that neuritin creates an environment that promotes nerve cell survival and neurite regeneration after SCI, which contribute to nerve regeneration and the recovery of motor function. PMID:27009445

  13. Combining Adult Learning Theory with Occupational Therapy Intervention for Bladder and Bowel Management after Spinal Cord Injury: A Case Report.

    Science.gov (United States)

    Gallagher, Gina; Bell, Alison

    2016-01-01

    Bladder and bowel management is an important goal of rehabilitation for clients with spinal cord injury. Dependence is these areas have been linked to a variety of secondary complications, including decreased quality of life, urinary tract infections and pressure ulcers (Hammell, 2010; Hicken et al, 2001). Occupational therapists have been identified as important members of the health care team in spinal cord injury rehabilitation; however, specific roles and interventions have not been clearly described. This case report will describe occupational therapy interventions embedded with principles of adult learning theory to address bladder and bowel management with an adult client who sustained an incomplete thoracic level spinal cord injury. PMID:26694910

  14. 重组人促红细胞生成素对SCI大鼠Akt和p-Akt表达的影响%The effect of recombinant human erythropoietin on the expression of Akt and p-Akt in spinal cord injury rat

    Institute of Scientific and Technical Information of China (English)

    车敏; 刘颖; 王岩峰

    2012-01-01

    目的 探讨重组人促红细胞生成素(recombinant human erythropoietin,rHuEPO)对脊髓损伤(spinal cord injury,SCI)大鼠Akt与p-Akt表达的影响.方法 成年健康Wistar大鼠72只,雌雄不限,按随机数字表法分为假手术组、脊髓损伤组和重组人促红细胞生成素治疗组,参照Nystrom's压迫方法制作大鼠脊髓压迫损伤模型,按照存活时间再分为脊髓损伤6h,12h,24h,3d组.免疫组化和Western blot方法检测Akt、p-Akt在各组大鼠脊髓表达的变化.结果 免疫组化和Western blot结果发现,脊髓Akt、p-Akt蛋白阳性表达的平均光密度值SCI组低于假手术组(P <0.05),重组人促红细胞生成素治疗组显著高于SCI组(P<0.05).结论 rHuEPO可通过上调Akt、p-Akt蛋白的表达参与脊髓损伤修复.%Objective To study the effect of recombinant human erythropoietin(rHuEPO) on the expressions of Akt and p-Akt in spinal cord injury rat. Methods 72 healthy adult Wistar rats were randomly divided into the sham group(n=8), the spinal cord injury group(n=32) and rHuEPO group(n=32). The spinal cord injury was induced with Nyslrom's way. The spinal cord injury group and rHuEPO group were further randomly subdivided into four subgroups (6h, 12h, 24h, 3d) according to the postoperative survival time. The expressions of Akt and p-Akt were observed by immunochemistry and Western blot methods. Results The mean optic density(MOD) values of Akt and p—Akt products in spinal cord were decreased in spinal cord injury than in sham group( P <0.05), but increased significantly in rHuEPO treated group than in spinal cord injury( P <0.05) by immunochemistry and Western blot. Conclusion The impairment effect of rHuEPO in spinal cord injury might be related to the upregulation of the expressions of Akt and p—Akt.

  15. Effects of brain-derived neurotrophic factor on synapsin expression in rat spinal cord anterior horn neurons cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhifei Wang; Daguang Liao; Changqi Li

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons.However,it remains controversial whether BDNF affects synapsin expression in spinal cord anterior horn neurons.Wistar rat spinal cord anterior hom neurons were cultured in serum-supplemented medium containing BDNF,BDNF antibody,and Hank's solution for 3 days,and then synapsin I and synaptophysin protein and mRNA expression was detected.Under serum-supplemented conditions,the number of surviving neurons in the spinal cord anterior horn was similar among BDNF,anti-BDNF,and control groups(P > 0.05).Synapsin I and synaptophysin protein and mRNA expressions were increased in BDNF-treated neurons,but decreased in BDNF antibody-treated neurons(P< 0.01).These results indicated that BDNF significantly promotes synapsin I and synaptophysin expression in in vitro-cultured rat spinal cord anterior horn neurons.

  16. Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT.

    Science.gov (United States)

    Kozyrev, Natalie; Staudt, Michael D; Brown, Arthur; Coolen, Lique M

    2016-05-15

    Chronic spinal cord injury (SCI) causes major disruption of ejaculatory function in men. Ejaculation is a reflex and the spinal generator for ejaculatory reflexes in the rat has been located in the lumbosacral spinal cord. The effects of SCI on the rat spinal ejaculation generator and ejaculatory reflexes remain understudied. The first goal of the current study was to establish the effects of chronic SCI on the function of the spinal ejaculation generator. Male rats received a contusion injury of the spinal cord at spinal level T6-T7. Ejaculatory reflexes elicited by electrical stimulation of the dorsal penile nerve (DPN) were evaluated in injured and control rats at 4-6 weeks following SCI. SCI males demonstrated significant reductions in bursting of the bulbocavernosus muscle (BCM), an indicator for expulsion phase of ejaculation, and in seminal vesicle pressure (SVP) increases, an indicator for the emission phase of ejaculation, following DPN stimulation. Thus, contusion SCI resulted in long-term impairment of ejaculatory reflexes. The D3 agonist 7-hydroxy-2-(di-N-propylamino) tetralin (7OHDPAT) facilitates ejaculation in spinal cord intact rats, thus the second goal of the current study was to test whether subcutaneous infusions of 7OHDPAT can facilitate ejaculatory reflexes in rats with chronic SCI. Male rats received a contusion injury at T6-T7 and effects of systemic administration of 7OHDPAT (1 mg/kg) were tested 4-5 weeks following injury. Results showed that 7OHDPAT administration facilitated ejaculatory reflexes in SCI males with or without DPN stimulation, provided that supraspinal inputs to the lumbar cord were severed by transection just prior to evaluating the reflex. Thus, 7OHDPAT administration in SCI males was able to overcome the detrimental effects of SCI on ejaculatory reflexes. PMID:26437577

  17. Intramuscular Neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats

    Science.gov (United States)

    Kathe, Claudia; Hutson, Thomas Haynes; McMahon, Stephen Brendan; Moon, Lawrence David Falcon

    2016-01-01

    Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms. DOI: http://dx.doi.org/10.7554/eLife.18146.001 PMID:27759565

  18. Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model

    Directory of Open Access Journals (Sweden)

    Schmitz Beate

    2008-08-01

    Full Text Available Abstract Background Ample evidence suggests a substantial contribution of cellular and molecular changes in the spinal cord to the induction and persistence of chronic neuropathic pain conditions. While for a long time, proteases were mainly considered as protein degrading enzymes, they are now receiving growing interest as signalling molecules in the pain pathology. In the present study we focused on two cathepsins, CATS and CATX, and studied their spatiotemporal expression and activity during the development and progression of neuropathic pain in the CNS of the rat 5th lumbar spinal nerve transection model (L5T. Results Immediately after the lesion, both cathepsins, CATS and CATX, were upregulated in the spinal cord. Moreover, we succeeded in measuring the activity of CATX, which was substantially increased after L5T. The differential expression of these proteins exhibited the same spatial distribution and temporal progression in the spinal cord, progressing up to the medulla oblongata in the late phase of chronic pain. The cellular distribution of CATS and CATX was, however, considerably different. Conclusion The cellular distribution and the spatio-temporal development of the altered expression of CATS and CATX suggest that these proteins are important players in the spinal mechanisms involved in chronic pain induction and maintenance.

  19. Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fei Wu; Danmou Xing; Zhengren Peng; Wusheng Kan

    2006-01-01

    BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord.OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection.DESIGN: Randomized controlled experiment.SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital.MATERIALS: A total of 30 male healthy SD rats of olean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu.METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups:treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models.Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 Ml/kg VPA suspension by gastric perfusion, once a day,whereas model group received 10 Ml/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated Dutp-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells

  20. Regulation of Neurotrophin-3 and Interleukin-1β and Inhibition of Spinal Glial Activation Contribute to the Analgesic Effect of Electroacupuncture in Chronic Neuropathic Pain States of Rats

    Directory of Open Access Journals (Sweden)

    Wenzhan Tu

    2015-01-01

    Full Text Available Growing evidence indicates that neurotrophin-3, interleukin-1β, and spinal glia are involved in neuropathic pain derived from dorsal root ganglia to spinal cord. Electroacupuncture is widely accepted to treat chronic pain, but the precise mechanism underlying the analgesic effect of EA has not been fully demonstrated. In this study, the mechanical withdrawal threshold and thermal withdrawal latency were recorded. We used immunofluorescence and western blots methods to investigate the effect of EA on the expression of NT-3 and IL-1β in DRG and spinal cord of CCI rats; we also examined the expression of spinal GFAP and OX-42 in spinal cord. In present study, the MWT and TWL of CCI group rats were lower than those in the Sham CCI group rats, but EA treatment increased the pain thresholds. Furtherly, we found that EA upregulates the expression of NT-3 in DRG and spinal cord of CCI rats, while EA downregulates the expression of IL-1β. Additionally, immunofluorescence exhibited that CCI-induced activation of microglia and astrocytes was inhibited significantly by EA treatment. These results demonstrated that the analgesic effect of EA may be achieved through promoting the neural protection of NT-3 as well as the inhibition of IL-1β production and spinal glial activity.

  1. The role of calcium in endotoxin-induced release of calcitonin gene-related peptide (CGRP) from rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    唐跃明; 韩启德; 王宪

    1997-01-01

    In the present study, the role of calcium in endotoxin-induced CGRP release was studied. 2 .5-50 μg/mL endotoxin and 1 -10 mmol/L caffeine caused concentration-dependent increase of CGRP release from rat spinal cord in vitro. However, no additive effect could he found when caffeine and endotoxin were concomitantly incubated. By using capsaicin, Ca2+-free medium, Omega-Conotoxin, nifedipine, W-7, ryanodine, MgCl2, Tris-ATP, rutheni-um red, the results indicate that the release of CGRP evoked by endotoxin from the sensory fibers of rat spinal cord is dependent on extracellular calcium. After entering into the cell through the N-type calcium channel, calcium binds to calmodulin, and triggers calcium release from intracellular calcium store by activating the caffeine-sensitive but ryan-odine-insensitive mechanism.

  2. [Effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve].

    Science.gov (United States)

    Petrova, E S; Isaeva, E N

    2014-01-01

    A comparative study of the effect of tissue and suspension allografts of an embryonic spinal cord on regeneration of nerve fibers of impaired (by application of a ligature) sciatic nerve in rats was conducted. It was demonstrated that unlike tissue grafts that reach a large volume 21 and 60 days after transplantation, suspension grafts do not inhibit the growth of axons of the recipient to the periphery. It was established that introduction of a suspension of dissociated cells of the spinal cord embryonic anlages (but not fragments of these anlages) into the impaired sciatic nerve in rats results in an increase in the amount of myelinated regenerating nerve fibers of the recipient 60 days after the operation.

  3. The effect of July admission on inpatient morbidity and mortality after adult spinal deformity surgery

    Science.gov (United States)

    De la Garza-Ramos, Rafael; Passias, Peter G.; Schwab, Frank J.; Lafage, Virginie

    2016-01-01

    Background Some studies have suggested patients who undergo surgery in July have worse outcomes compared to patients treated during other months. The purpose of this study is to compare inpatient morbidity and mortality among patients who underwent adult spinal deformity (ASD) surgery in July with those who underwent surgery in other months. Methods Admission data for patients who underwent ASD surgery were extracted from the Nationwide Inpatient Sample for the years 2002 to 2011. Only adult patients (over 21 years of age) and elective admissions to teaching hospitals were included. A multivariable regression analysis was performed to examine the independent effect of July admissions on overall complications, major complications, and inpatient mortality. Results A total of 27,794 patients were identified, with 2,023 (7.8%) admitted in July and 25,771 (92.2%) in other months. Overall complication rates in July (43.1%) were not different from rates in other months (44.9%, p=0.468). Similarly, major complication rates were similar; 12.9% in July and 12.4% in other months (p=0.764). Mortality was not different between groups (p=0.807). After multivariable analysis, July admissions were not found to increase the odds of developing any complication (OR 0.94; 95% CI, 0.77 - 1.12; p=0.403), major complications (OR 1.04; 95% CI, 0.76 - 1.41; p=0.788) or inpatient mortality (OR 1.35; 95% CI, 0.31 - 5.84; p=0.684). Conclusion In this study of a nationwide database, patients who underwent ASD surgery in July did not have increased odds of developing a complication or inpatient mortality compared to patients admitted in other months. PMID:26913223

  4. Impact of Increasing Age on Outcomes of Spinal Fusion in Adult Idiopathic Scoliosis

    Science.gov (United States)

    Verla, Terence; Adogwa, Owoicho; Toche, Ulysses; Farber, S. Harrison; Petraglia, Frank; Murphy, Kelly R.; Thomas, Steven; Fatemi, Parastou; Gottfried, Oren; Bagley, Carlos A.; Lad, Shivanand P.

    2016-01-01

    Objective To investigate the role of advancing age on postoperative complications and revision surgery after fusion for scoliosis. Methods A retrospective, cohort study was performed using the Thomson Reuters MarketScan database, examining patients with adult scoliosis who underwent spinal fusion from 2000 to 2009. Primary outcomes included infection, hemorrhage and pulmonary embolism (PE) within 90 days of surgery, and refusion. The effect of increasing age was estimated using the odds ratio (OR) of complications in a multivariate logistic regression analysis, and a Cox proportional hazard model estimated the hazard ratio of refusion. Results A total of 8432 patients were included in this study. Overall, the average age was 53.3 years, with 26.90% males and 39% with a Charlson Comorbidity Score of ≥1. Most patients had commercial insurance (66.81%), with 26.03% and 7.16% covered by Medicare and Medicaid, respectively. Increasing age (per 5-year increment) was a significant predictor of hemorrhagic complication (OR, 1.06; confidence interval [CI], 1.01–1.11; P = 0.0196), PE (OR, 1.09; CI, 1.03–1.16; P = 0.0031), infection (OR, 1.04; CI, 1.01–1.07; P = 0.0053), and refusion (hazard ratio, 1.07; CI, 1.02–1.13; P = 0.0103). Conclusions In this study, age was associated with increased risk of hemorrhage, PE, infection, and refusion. With the aging population, the role of patient age on postoperative healing and outcomes deserves deeper investigation after repair of adult idiopathic scoliosis. PMID:26546999

  5. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cord in vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury fiber tractography visualizes the white matter fibers, and directly displays the structural integrity and resultant damage of the fiber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefficient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were significantly lower than those in normal rats (P <0.05 the apparent diffusion coefficient was significantly increased compared with the normal group (P < 0.05. Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefficient values (r = -0.856, P < 0.01, and positively correlated with the average combined scores (r = 0.943, P < 0.01, while apparent diffusion coefficient values had a negative correlation with the average combined scores (r = -0.949, P < 0.01. Experimental findings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualitative and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefficient have a good correlation with the average combined scores, which reflect functional recovery after spinal cord injury.

  6. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Duo Zhang; Xiao-hui Li; Xu Zhai; Xi-jing He

    2015-01-01

    Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cordin vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury; ifber tractography visualizes the white matter ifbers, and directly displays the structural integrity and resultant damage of the ifber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefifcient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were signiifcantly lower than those in normal rats (P < 0.05); the apparent diffusion coefifcient was signiifcantly increased compared with the normal group (P < 0.05). Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefifcient values (r = –0.856,P < 0.01), and positively correlated with the average combined scores (r= 0.943,P < 0.01), while apparent diffusion coefifcient values had a negative correlation with the average combined scores (r = –0.949,P < 0.01). Experimental ifndings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualita-tive and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefifcient have a good correlation with the average combined scores, which relfect functional recovery after spinal cord injury.

  7. Contralateral Metabolic Activation Related to Plastic Changes in the Spinal Cord after Peripheral Nerve Injury in Rats

    OpenAIRE

    Ran Won; Bae Hwan Lee

    2015-01-01

    We have previously reported the crossed-withdrawal reflex in which the rats with nerve injury developed behavioral pain responses of the injured paw to stimuli applied to the contralateral uninjured paw. This reflex indicates that contralateral plastic changes may occur in the spinal cord after unilateral nerve injury. The present study was performed to elucidate the mechanisms and morphological correlates underlying the crossed-withdrawal reflex by using quantitative 14C-2-deoxyglucose (2-DG...

  8. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord

    Directory of Open Access Journals (Sweden)

    Lauriane eBeliez

    2014-08-01

    Full Text Available Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1 to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2 to investigate how the biogenic amines serotonin (5-HT, dopamine (DA and noradrenaline (NA modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic signature regarding its specific effect on intersegmental phase

  9. Pregabalin attenuates place escape/avoidance behavior in a rat model of spinal cord injury.

    Science.gov (United States)

    Baastrup, Cathrine; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2011-01-25

    Spinal cord injury (SCI) pain in humans is difficult to treat, and the lack of valid methods to measure behavior comparable to the complex human pain experience preclinically represents an important obstacle to finding better treatments for this type of central pain. The place escape/avoidance paradigm (PEAP) relies on the active choice of an animal between its natural preference for a dark environment or pain relief, and it has been suggested to measure the affective-motivational component of pain. We have modified the method to a T10 spinal cord contusion model (SCC) of at-level central neuropathic pain in Sprague-Dawley rats. In order to demonstrate sensitivity to change in escape/avoidance behavior and thus the applicability of the PEAP method to predict drug efficacy, we investigated the effect of pregabalin (30 mg/kg) treatment in a randomized design. SCC animals displayed increased escape/avoidance behavior postinjury, indicating at-level mechanical hypersensitivity. Second, we found no correlation between state anxiety levels in SCC animals (elevated plus maze) and PEAP behavior, suggesting that the PEAP measurement is not biased by differences in anxiety levels. Third, we demonstrated a decrease in escape/avoidance behavior in response to treatment with the analgesic drug pregabalin. Thus, the PEAP may be applicable as a surrogate correlate of human pain. In conclusion, the primary finding in this study was a sensitivity to change in escape/avoidance behavior induced by pharmacological modulation with analgesics, supporting the use of the PEAP as a central outcome measure in preclinical SCI pain research. PMID:21070753

  10. The influence of methotrexate on radiation-induced damage to different lengths of the rat spinal cord

    International Nuclear Information System (INIS)

    An experimental model in the rat was used to assess the possible enhancement of damage to the spinal cord when radiation is given in the presence of methotrexate (MTX). The dose of MTX used, 4 mg/kg, was the maximum dose that could be given to the rat, administered into the cerebral spinal fluid circulation, without risk of serious neurological effects. Lengths of 4, 8 and 16 mm of the cervical spine were irradiated with single doses of X rays. For animals that developed paralysis within 30 weeks, caused predominantly by white matter necrosis, there was no evidence to indicate that MTX enhanced the radiation response of the rat spinal cord, at least at a more clinically relevant level of effect i.e. a low incidence of paralysis. For doses associated with the 50% level of effect (ED50) to an 8 mm long field a significant (p<0.005) response enhancement was seen, suggesting a dose modification factor of 1.19±0.07. (author)

  11. Granulocyte-colony stimulating factor (G-CSF improves motor recovery in the rat impactor model for spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Tanjew Dittgen

    Full Text Available Granulocyte-colony stimulating factor (G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function.

  12. Warming Moxibustion Relieves Chronic Visceral Hyperalgesia in Rats: Relations to Spinal Dynorphin and Orphanin-FQ System

    OpenAIRE

    Li Qi; Hui-Rong Liu; Tao Yi; Lu-Yi Wu; Xi-Ru Liu; Chen Zhao; Yin Shi; Xiao-Peng Ma; Huan-Gan Wu

    2013-01-01

    As a twin therapy of acupuncture in traditional Chinese medicine, moxibustion has shown its effects in relieving abdominal pain in irritable bowel syndrome (IBS) patients and IBS rat models, but its mechanisms are largely unknown. In this paper, we determined the role of spinal dynorphin and orphanin-FQ system in analgesic effect of warming moxibustion (WM) on chronic visceral hyperalgesia (CVH) in IBS-like rat model. Here, we show that (1) repeated WM at bilateral ST25 and ST37 acupoints mar...

  13. Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord

    Directory of Open Access Journals (Sweden)

    Guillon Hélène

    2011-10-01

    Full Text Available Abstract Background The adult central nervous system (CNS contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium. Results Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin. These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. Conclusion Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

  14. Effects of electroacupuncture on c-Fos expression in the spinal cord and brain of rats with chronic visceral hypersensitivity

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Wang; Huirong Liu; Guanghong Ding; Yunfei Chen; Huangan Wu; Na Li; Enhua Zhou; Xiudi Qin; Lingsong Yuan

    2009-01-01

    BACKGROUND: Visceral hypersensitivity is the main cause of irritable bowel syndrome, c-Fos is a marker of visceral hypersensitivity in the central nervous system. Electroacupuncture can relieve chronic visceral hypersensitivity in rats, but the mechanism is still unknown.OBJECTIVE: To identify c-Fos expression in the spinal cord and cerebral cortex of rats with chronic visceral hypersensitivity, and to test the effects of electroacupuncture on pain sensitivity in rats with chronic visceral hypersensitivity.DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the Animal Experimental Center, Shanghai University of Traditional Chinese Medicine, from January to April, 2007.MATERIALS: A total of 24 neonatal, male, Sprague Dawley rats, aged five days old, were equally and randomly assigned into a normal group, a model group, and an electroacupuncture group. Rabbit anti-rat c-Fos antibody and Evision secondary antibody kits (Sigma, USA), diaminobenzidine kit (Dako, Denmark), and an LD202H electroacupuncture apparatus (Huawei, Beijing, China) were used in this study.METHODS: Neonatal rats from the model and electroacupuncture groups were used to establish rat models of chronic visceral hypersensitivity by the saccule stimulation method. After model establishment, 0.25 mm diameter electric needles were inserted into Tianshu (ST 25) and Shangjuxu (ST37) at a depth of approximately 0.5 cm, with an square wave (alternating current frequency at 100/20 Hz, amplitude ranged 0.2-0.6 ms, intensify at 1 mA) once for 20 minutes, once a day, for seven days. Rats in the normal and model groups were not treated.MAIN OUTCOME MEASURES: Following 7 days of treatment, c-Fos expression in the spinal cord and cerebral cortex was detected by immunohistochemistry. After the first electroacupuncture treatment, abdominal withdrawal reflex scores were investigated to evaluate the pain threshold for chronic visceral hypersensitivity in rats.RESULTS: Visceral

  15. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  16. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    L.P. Rodrigues

    2012-01-01

    Full Text Available Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a 1 h after surgery, into the injury site at a concentration of 5 x 10(6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group; b into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group. The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day. The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05. The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  17. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 106 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 106 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  18. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld;

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...... studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.......The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and...... in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing...

  19. Mild Moxibustion Decreases the Expression of Prokineticin 2 and Prokineticin Receptor 2 in the Colon and Spinal Cord of Rats with Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Cili Zhou

    2014-01-01

    Full Text Available It has been proven that prokineticin 2 (PK2 and its receptor PKR2 play an important role in hyperalgesia, while mild moxibustion can relieve visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS. The goal of the present study was to determine the effects of mild moxibustion on the expression of PK2 and PKR2 in colon and spinal cord in IBS rat model, which was induced by colorectal distension using inflatable balloons. After mild moxibustion treatment, abdominal withdrawal reflex (AWR scores were assessed by colorectal distension; protein and mRNA expression of PK2 and PKR2 in rat colon and spinal cord was determined by immunohistochemistry and fluorescence quantitative PCR. Compared with normal rats, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly increased in the model group; compared with the model group, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly decreased in the mild moxibustion group. These findings suggest that the analgesia effect of mild moxibustion may be associated with the reduction of the abnormally increased expression of the PK2/PKR2 proteins and mRNAs in the colon and spinal cord.

  20. Aged Garlic Extract Attenuates Neuronal Injury in a Rat Model of Spinal Cord Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Cemil, Berker; Gokce, Emre Cemal; Kahveci, Ramazan; Gokce, Aysun; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Erdogan, Bulent; Kosem, Bahadir

    2016-06-01

    Garlic has been used as a food as well as a component of traditional medicine. Aged garlic extract (AGE) is claimed to promote human health through antioxidant/anti-inflammatory activities with neuroprotective effects. We evaluated the possible beneficial effect of AGE neurologically, pathologically, ultrastructurally, and biochemically in a spinal cord ischemia-reperfusion (I/R) model of rats. Twenty-four Sprague-Dawley rats were divided into three groups: sham (no I/R), I/R, and AGE (I/R+AGE); each group consisted of eight animals. Animals were evaluated neurologically with the Basso, Beattie, and Bresnahan (BBB) scoring system. The spinal cord tissue samples were harvested for pathological and ultrastructural examinations. Oxidative products (Malondialdehyde, nitric oxide), antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase), inflammatory cytokines (tissue tumor necrosis factor alpha, interleukin-1), and caspase-3 activity were analyzed. The AGE group had significantly higher BBB scores than the I/R group. Pathologically, AGE group revealed reduced degree of ischemia and spinal cord edema. Ultrastructural results also showed preservation of tissue structure in the AGE group. Oxidative product levels of the I/R group were significantly higher than both the other groups, and antioxidant enzyme levels of AGE group were significantly higher than the I/R group. There was also significant difference between the sham and AGE groups in terms of total antioxidant enzyme levels. Furthermore, AGE treatment significantly reduced the inflammatory cytokines and caspase-3 activity than the I/R group. This study demonstrates the considerable neuroprotective effect of AGE on the neurological, pathological, ultrastructural, and biochemical status of rats with I/R-induced spinal cord injury. PMID:27183321

  1. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Nicola, F C; Rodrigues, L P; Crestani, T; Quintiliano, K; Sanches, E F; Willborn, S; Aristimunha, D; Boisserand, L; Pranke, P; Netto, C A

    2016-08-01

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action. PMID:27509306

  2. Behavioral and physiological methods for early quantitative assessment of spinal cord injury and prognosis in rats

    Directory of Open Access Journals (Sweden)

    C.A. Giglio

    2006-12-01

    Full Text Available Methods for reliable evaluation of spinal cord (SC injury in rats at short periods (2 and 24 h after lesion were tested to characterize the mechanisms implicated in primary SC damage. We measured the physiological changes occurring after several procedures for producing SC injury, with particular emphasis on sensorimotor functions. Segmental and suprasegmental reflexes were tested in 39 male Wistar rats weighing 250-300 g divided into three control groups that were subjected to a anesthesia, b dissection of soft prevertebral tissue, and c laminectomy of the vertebral segments between T10 and L1. In the lesion group the SC was completely transected, hemisected or subjected to vertebral compression. All animals were evaluated 2 and 24 h after the experimental procedure by the hind limb motility index, Bohlman motor score, open-field, hot-plate, tail flick, and paw compression tests. The locomotion scale proved to be less sensitive than the sensorimotor tests. A reduction in exploratory movements was detected in the animals 24 h after the procedures. The hot-plate was the most sensitive test for detecting sensorimotor deficiencies following light, moderate or severe SC injury. The most sensitive and simplest test of reflex function was the hot-plate. The hemisection model promoted reproducible moderate SC injury which allowed us to quantify the resulting behavior and analyze the evolution of the lesion and its consequences during the first 24 h after injury. We conclude that hemisection permitted the quantitation of behavioral responses for evaluation of the development of deficits after lesions. Hind limb evaluation scores and spontaneous exploration events provided a sensitive index of immediate injury effects after SC lesion at 2 and 24 h. Taken together, locomotion scales, open-field, and hot-plate tests represent reproducible, quantitatively sensitive methods for detecting functional deficiencies within short periods of time, indicating their

  3. Ursolic acid prevents augmented peripheral inflammation and inflammatory hyperalgesia in high-fat diet-induced obese rats by restoring downregulated spinal PPARα.

    Science.gov (United States)

    Zhang, Yanan; Song, Chengwei; Li, Haiou; Hou, Jingdong; Li, Dongliang

    2016-06-01

    Obesity is a risk factor for several pain syndromes and is associated with increased pain sensitivity. Evidence suggests that obesity causes the downregulation of peroxisome proliferator‑activated receptor (PPAR)α in the spinal cord, contributing to augmented peripheral edema and inflammatory hyperalgesia. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, has been shown to upregulate PPARα in the peripheral tissues of obese animals. The present study hypothesized that UA prevents augmented peripheral inflammation and inflammatory hyperalgesia in obesity by restoring downregulated spinal PPARα. The present study demonstrated that Sprague‑Dawley rats fed a high‑fat diet (HFD) for 12 weeks developed obesity and metabolic disorder. Following carrageenan injection, the HFD rats exhibited increased thermal hyperalgesia and paw edema, compared with the rats fed a low‑fat diet. Molecular investigations revealed that the HFD rats exhibited decreased PPARα activity, and exaggerated expression of inflammatory mediators and nuclear factor‑kB activity in the spinal cord in response to carrageenan. Oral administration of UA ameliorated obesity and metabolic disorder, and prevented increased thermal hyperalgesia and paw edema in the HFD rats. Additionally, UA normalized PPARα activity and inhibited the exaggerated spinal cord inflammatory response to carrageenan. Although the knockdown of spinal PPARα with small interfering RNA following the administration of UA did not alter obesity or metabolic parameters, it eradicated the beneficial effects of UA on thermal hyperalgesia and paw edema, and reversed the spinal cord inflammatory response. These results suggested that the systemic administration of UA inhibited the exaggerated spinal cord inflammatory response to peripheral inflammatory stimulation in HFD‑induced obesity by restoring downregulated spinal PPARα, preventing peripheral inflammation and inflammatory hyperalgesia. UA may be a

  4. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats

    Directory of Open Access Journals (Sweden)

    Kort Michael E

    2010-03-01

    Full Text Available Abstract Background There is growing evidence supporting a role for TRPA1 receptors in the neurotransmission of peripheral mechanical stimulation. In order to enhance understanding of TRPA1 contributions to mechanotransmission, we examined the effects a selective TRPA1 receptor antagonist, A-967079, on spinal neuronal activity following peripheral mechanical stimulation in uninjured, CFA-inflamed, and osteoarthritc (OA rats. Results Systemic injection of A-967079 (30 μmol/kg, i.v. decreased the responses of wide dynamic range (WDR, and nociceptive specific (NS neurons following noxious pinch stimulation of the ipsilateral hind paw in uninjured and CFA-inflamed rats. Similarly, A-967079 reduced the responses of WDR neurons to high-intensity mechanical stimulation (300 g von Frey hair of the knee joint in both OA and OA-sham rats. WDR neuronal responses to low-intensity mechanical stimulation (10 g von Frey hair were also reduced by A-967079 administration to CFA-inflamed rats, but no effect was observed in uninjured rats. Additionally, the spontaneous activity of WDR neurons was decreased after A-967079 injection in CFA-inflamed rats but was unaltered in uninjured, OA, and OA-sham animals. Conclusions Blockade of TRPA1 receptors disrupts transmission of high-intensity mechanical stimulation to the spinal cord in both uninjured and injured rats indicating that TRPA1 receptors have an important role in noxious mechanosensation in both normal and pathological conditions. TRPA1 receptors also contribute to the transmission of low-intensity mechanical stimulation, and to the modulation of spontaneous WDR firing, but only after an inflammatory injury.

  5. Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2015-01-01

    Full Text Available Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is invariably used to treat cardiovascular diseases. Simvastatin has been recently demonstrated to have a neuroprotective effect in nervous system diseases. The present study aimed to further verify the neuroprotection and molecular mechanism of simvastatin on rats after spinal cord injury (SCI. The expression of Beclin-1 and LC3-B was evidently enhanced at postoperation days 3 and 5, respectively. However, the reduction of the mTOR protein and ribosomal protein S6 kinase p70 subtype (p70S6K phosphorylation level occurred at the same time after SCI. Simvastatin significantly increased the expression of brain-derived neurotrophic factor (BDNF and glial cell line-derived neurotrophic factor (GDNF. Meanwhile, immunofluorescence results indicated that the expression of chondroitin sulfate proteoglycan (CSPG and caspase-3 protein was obviously reduced by simvastatin. Furthermore, Nissl staining and Basso, Beattie, and Bresnahan (BBB scores showed that the quantity and function of motor neurons were visibly preserved by simvastatin after SCI. The findings of this study showed that simvastatin induced autophagy by inhibiting the mTOR signaling pathway and contributed to neuroprotection after SCI.

  6. Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI

    Directory of Open Access Journals (Sweden)

    Bilgen Mehmet

    2006-11-01

    Full Text Available Abstract Background Manganese-enhanced MRI (MEI offers a novel neuroimaging modality to trace corticospinal tract (CST in live animals. This paper expands this capability further and tests the utility of MEI to image axonal fiber connectivity in CST of injured spinal cord (SC. Methods A rat was injured at the thoracic T4 level of the SC. The CST was labeled with manganese (Mn injected intracortically at two weeks post injury. Next day, the injured SC was imaged using MEI and diffusion tensor imaging (DTI modalities. Results In vivo MEI data obtained from cervical SC confirmed that CST was successfully labeled with Mn. Ex vivo MEI data obtained from excised SC depicted Mn labeling of the CST in SC sections caudal to the lesion, which meant that Mn was transported through the injury, possibly mediated by viable CST fibers present at the injury site. Examining the ex vivo data from the injury epicenter closely revealed a thin strip of signal enhancement located ventrally between the dorsal horns. This enhancement was presumably associated with the Mn accumulation in these intact fibers projecting caudally as part of the CST. Additional measurements with DTI supported this view. Conclusion Combining these preliminary results collectively demonstrated the feasibility of imaging fiber connectivity in experimentally injured SC using MEI. This approach may play important role in future investigations aimed at understanding the neuroplasticity in experimental SCI research.

  7. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Luigi Aloe; Patrizia Bianchi; Alberto De Bellis; Marzia Soligo; Maria Luisa Rocco

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.

  8. Role of HSP70 in motoneuron survival after excitotoxic stress in a rat spinal cord injury model in vitro.

    Science.gov (United States)

    Shabbir, Ayisha; Bianchetti, Elena; Cargonja, Renato; Petrovic, Antonela; Mladinic, Miranda; Pilipović, Kristina; Nistri, Andrea

    2015-12-01

    The outcome for gait recovery from paralysis due to spinal lesion remains uncertain even when damage is limited. One critical factor is the survival of motoneurons, which are very vulnerable cells. To clarify the early pathophysiological mechanisms of spinal damage, an in vitro injury model of the rat spinal cord caused by moderate excitotoxicity was used. With this preparation we investigated whether motoneuron survival was dependent on the expression of the neuroprotective protein HSP70. In the present study excitotoxicity evoked by kainate induced delayed (24 h) loss (35%) of motoneurons, which became pyknotic with translocation of the cell death biomarker apoptosis-inducing factor (AIF) to the nucleus. This process was concomitant with suppression of locomotor network electrical activity. Surviving cells showed strong expression of HSP70 without nuclear AIF. The HSP70 inhibitor VER155008 per se induced neurotoxicity similar to that of kainate, while the HSP90 inhibitor geldanamycin did not damage spinal tissue. Electrophysiological recording following kainate or VER155008 indicated depression of motoneuron field potentials, with decreased excitability and impaired synaptic transmission. When these two drugs were applied together, more intense neurotoxicity emerged. Our data indicate that HSP70 was one important contributor to motoneuron survival and suggest that enhancing HSP70 activity is a potential future strategy for neuroprotecting these cells. PMID:26490753

  9. Changes in Synapses and Axons Demonstrated by Synaptophysin Immunohistochemistry Following Spinal Cord Compression Trauma in the Rat and Mouse

    Institute of Scientific and Technical Information of China (English)

    GUI-LIN LI; MOHAMMAD FAROOQUE; JONAS ISAKSSON; YNGVE OLSSON

    2004-01-01

    and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the Th8-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an important role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.

  10. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    1978-01-01

    Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants....... The effect of in vivo carcinogen pretreatment was also studied. The explant culture from control untreated animals showed good epithelial differentiation with crypts until 6 weeks. In contrast, the explants from animals pretreated with 4 weekly doses of azoxymethane consistently showed epithelial...

  11. Effects of recombinant sCR1 on the immune inflammatory reaction in acute spinal cord injury tissue of rats

    Institute of Scientific and Technical Information of China (English)

    李良满; 朱悦; 范广宇

    2005-01-01

    Objective: To determine the effects of recombinant soluble complement receptor type I (sCR1) on the immune inflammatory reaction in acute spinal cord injury tissue of rats and its protective effects. Results: The motor function of rat in sCR1 group at 3 d, 7 d, and 14 d was obviously better than that in NS group (P<0.01, P<0.01, P<0.01). C3c positive expression in sCR1 group at each time point after injury was obviously less than that in NS group (P<0.01). The myeloperoxidase activity in sCR1 group at each time point after injury was obviously less than that in NS group (P<0.01). Conclusions: Recombinant soluble complement receptor type I (sCR1) can lessen the immune inflammatory reaction in acute spinal cord injury tissue and relieve secondary spinal cord injury by inhibiting the activation of the complement system.

  12. Effect of spinal cord extracts after spinal cord injury on proliferation of rat embryonic neural stem cells and Notch signal pathwayin vitro

    Institute of Scientific and Technical Information of China (English)

    Qing-Zhong Zhou; Ge Zhang; Hai-Bo Long; Fei Lei; Fei Ye; Xu-Feng Jia; Yun-Long Zhou; Jian-Ping Kang; Da-Xiong Feng

    2014-01-01

    Objective:To investigate the effect of the spinal cord extracts(SCE) after spinal cord injuries (SCIs) on the proliferation of rat embryonic neural stem cells(NSCs) and the expressions of mRNA ofNotch1 as well as ofHes1 in this processin vitro.Methods:The experiment was conducted in4 different mediums:NSCs+PBS(GroupA-blank control group),NSCs+SCE with healthySD rats(GroupB-normal control group),NSCs+SCE withSD rats receiving sham-operation treatment (GroupC-sham-operation group) andNSCs+SCE withSCIs rats(GroupD- paraplegic group). Proliferative abilities of4 different groups were analyzed byMTT chromatometry after co-culture for1,2,3,4 and5 d, respectively.The expressions ofNotch1 andHes1 mRNA were also detected withRT-PCR after co-culture for24 and48 h, respectively.Results:After co-culture for1,2,3, 4 and5 d respectively, theMTT values of groupD were significantly higher than those of group A, groupB and groupC(P0.05).Both the expressions ofNotch1 andHes1 mRNA of groupD were significantly higher than those of other3 groups after co-culture for24 h and48 h as well(P0.05).There was no difference in expressions ofNotch1 andHes1 mRNA between24 h and48 h treatment in groupD.Conclusions:SCE could promote the proliferation ofNSCs.It is demonstrated that the microenvironment ofSCI may promote the proliferation ofNSCs.Besides,SCE could increase the expression ofNotch1 andHes1 mRNA of NSC.It can be concluded that theNotch signaling pathway activation is one of the mechanisms that locally injured microenvironment contributes to the proliferation ofENSC afterSCIs.This process may be performed by up-regulating the expressions ofNotch1 andHes1gene.

  13. EFFECT OF AMINOGUANIDINE ON SPINAL CORD EDEMA OF ACUTE SPINAL CORD INJURY IN RATS%氨基胍对大鼠急性脊髓损伤后脊髓水肿的作用机制研究

    Institute of Scientific and Technical Information of China (English)

    范仲凯; 曹阳; 张哲; 王岩松; 于德水; 张明超; 梅晰凡; 吕刚

    2012-01-01

    目的 氨基胍(aminoguanidine,AG)能显著减轻脑外伤及中风动物模型脑水肿,提高神经功能恢复程度.探讨AG对大鼠急性脊髓损伤(spinal cord injury,SCI)后脊髓水肿的作用及相关机制. 方法 取成年雄性SD大鼠150只(体重230~255 g),分为对照组(A组,25只)、假损伤组(B组,25只)、SCI后未治疗组(C组,25只)和SCI后AG治疗组(75只);AG治疗组按给药剂量分为AG 75 mg/kg组(D组,25只)、AG 150 mg/kg组(E组,25只)和AG300 mg/kg组(F组,25只).A组未行任何处理,B组仅行椎板切除术但不治疗;C、D、E、F组制备静压型大鼠SCI模型后,C组腹腔注射5%DMSO,D、E、F组腹腔注射相应剂量AG.于造模后0、12、24、48 h用干湿重法检测受损脊髓组织含水量以筛选最佳剂量,进一步用伊文思兰(Evans blue,EB)法评测血-脊髓屏障功能,用RT-PCR检测水通道蛋白4(aquaporins 4,AQP4)mRNA表达,Western blot和免疫组织化学染色检测AQP4蛋白表达. 结果 脊髓组织含水量检测示,E组在造膜后12、24、48 h对SCI后脊髓组织水肿有明显抑制作用(P<0.05),选择该剂量组用于后续实验.造模后12、24、48 h,E组EB含量明显低于C组(P<0.05),降低血-脊髓屏障通透性.RT-PCR检测结果示造模后12、24、48 h,B、E组AQP4 mRNA表达明显低于C组;Western blot检测示造模后24、48 h,B、E组AQP4蛋白表达明显低于C组;免疫组织化学染色示造模后48 h,B、E组AQP4蛋白表达明显低于C组,差异均有统计学意义(P<0.05);但各指标各时间点B、E组间比较,差异均无统计学意义(P> 0.05). 结论 急性SCI后大鼠经150 mg/kg AG治疗后,能降低AQP4表达,改善脊髓水肿,减轻损伤.%Objective Aminoguanidine (AG) can reduce brain edema and increase the recovery of neuron functions in surgical brain injury and stroke. To investigate the effect of AG on spinal cord injury (SCI) in rats and its mechanism. Methods A total of 150 adult male Sprague Dawley rats

  14. Expression of nerve growth factor in spinal dorsal horn following crushed spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: The aim of this study was to explore the expression of nerve growth factor(NGF) in spinal dorsal horn following crushed spinal cord injury. METHODS: The adult Srague-Dawley rat model of crushed spinal cord injury was established by the method in our laboratory, and intact spinal cord was used as control. The rats were sacrificed respectively after 24 hours, 7 days, and 21 days of operation, and the L3 spinal segments were removed out and fixed in 4% polyformaldehyde. The segments were sectioned into sections of 20 μm in thickness. The sections were stained with anti-NGF antibody by ABC method of immunohistochemistry technique. The immunoreactive intensity of NGF and the number of positive neurons as well as glial cells in dorsal horn were observed and counted under light microscope. RESULTS: The number of positive cells and immunoreactive intensity of NGF increased gradually in the dorsal horn at 24 hours, 7 days and 21 days following crushed spinal cord injury compared with control group (P<0.01). CONCLUSION: These results indicated that NGF plays an important role in the postoperative reaction during the early period of the crushed spinal cord injury.

  15. Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?

    OpenAIRE

    Lee, Jaehee; Back, Seung Keun; Lim, Eun Jeong; Cho, Gyu Chong; Kim, Myung Ah; Kim, Hee Jin; Lee, Min Hee; Na, Heung Sik

    2010-01-01

    Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these ai...

  16. Morphological study of Schwann cells remyelination in contused spinal cord of rats

    OpenAIRE

    Li, Yue; Zhang, Lu; ZHANG Jie-yuan; Liu, Zheng; Duan, Zhao-Xia; Li, Bing-Cang

    2013-01-01

    【Abstract】Objective: To study the role and effect of Schwann cells (SCs) remyelination in contused spinal cord. Methods: Green fluorescence protein expressing-SCs were transplanted into the epicenter, rostral and caudal tis-sues of the injury site at 1 week after the spinal cords were contused. At 6 weeks, the spinal cords were removed for cryosections, semithin sections and ultrathin sections, and then immunocytochemical staining of myelin basic protein (MBP), P...

  17. The time course of serotonin 2C receptor expression after spinal transection of rats

    DEFF Research Database (Denmark)

    Ren, Li-Qun; Wienecke, Jacob; Chen, Meng;

    2013-01-01

    In the spinal cord 5-HT systems modulate the spinal network via various 5-HT receptors. 5-HT2A and 2C receptors are likely the most important 5-HT receptors for enhancing the motoneuron excitability by facilitating the persistent inward current, and thus play an important role for the pathogenesis...... distributed in different regions of the spinal gray matter and was predominantly located in the neuronal somata and their dendrites although it seemed also present in axonal fibers in the superficial dorsal horn. 5-HT2CR-IR in different regions of the spinal gray matter was seen to be increased at 14 days...

  18. Near infrared Raman spectroscopic study of reactive gliosis and the glial scar in injured rat spinal cords

    Science.gov (United States)

    Saxena, Tarun; Deng, Bin; Lewis-Clark, Eric; Hoellger, Kyle; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2010-02-01

    Comparative Raman spectra of ex vivo, saline-perfused, injured and healthy rat spinal cord as well as experiments using enzymatic digestion suggest that proteoglycan over expression may be observable in injured tissue. Comparison with authentic materials in vitro suggest the occurrence of side reactions between products of cord digestion with chondroitinase (cABC) that produce lactones and similar species with distinct Raman features that are often not overlapped with Raman features from other chemical species. Since the glial scar is thought to be a biochemical and physical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study disease progression and explore potential treatments ex vivo and if potential treatments can be designed, perhaps to monitor potential remedial treatments within the spinal cord in vivo.

  19. Effects of Nogo-neutralizing antibody and neurotrophin-3 on axonal regeneration following spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Ruisen Zhan; Shijie Chen; Weiguo Wang; Haibin Long

    2008-01-01

    BACKGROUND: Recent studies have suggested that regeneration of the central nerve fiber following spinal cord injury occurs under specific conditions.OBJECTIVE: To study the effects of Nogo-neutralizing antibody (IN-l), in combination with neurotrophin-3 (NT-3), on axonal regeneration and motor function following spinal cord injury in the rat.DESIGN, TIME AND SETTING: A randomized, controlled, animal study combining immunohistochemistry was performed at the Laboratory of Neuroanatomy of Xiangya Medical College, and Central Laboratory of Xiangya the Third Hospital, Central South University from January 2006 to December 2007.MATERIALS: Eighteen healthy, Sprague Dawley rats were randomly divided into three groups, with six rats per group: control, IN-1, and IN-1/NT-3. Hemisectioned spinal cord injury models were established by cutting the posterior 2/3 of spinal cord, which is equivalent to the T8 level.METHODS: A polyethylene tubing was inserted through into subarachnoid cavity, equivalent to the superior margin at the Ts level. Saline, IN-1, and IN-1/NT-3 were respectively injected into control, IN-1, and IN-1/NT-3 groups, three times/day for seven consecutive days.MAIN OUTCOME MEASURES: At 2 weeks post-surgery, biotin dextran amine (10%) was injected into the fight sensorimotor cortex area. At day 28 post-surgery, spinal cord tissue was prepared for frozen sections.Positive astrocytic expression was observed with glial fibrillary acidic protein (GFAP) immunohistochemical staining whose proliferation level was represented by gray value, i.e. the higher the gray value was, the less the positive cells were, and growth of positive fibers was observed with a biotin dextran amine histological reaction. Motor function was measured according to BBB scores pre-operatively, as well as at days 1, 7, 14,21. and 28 post-operatively.RESULTS: Three rats died during experimentation. By random supplement, a total of 18 rats were included.GFAP-positive astrocytes were observed in all

  20. Dual regulation by ethanol of the inhibitory effects of ketamine on spinal NMDA-induced pressor responses in rats

    Directory of Open Access Journals (Sweden)

    Keng Nien-Tzu

    2012-02-01

    Full Text Available Abstract Background Acute exposure of ethanol (alcohol inhibits NMDA receptor function. Our previous study showed that acute ethanol inhibited the pressor responses induced by NMDA applied intrathecally; however, prolonged ethanol exposure may increase the levels of phosphorylated NMDA receptor subunits leading to changes in ethanol inhibitory potency on NMDA-induced responses. The present study was carried out to examine whether acute ethanol exposure influences the effects of ketamine, a noncompetitive NMDA receptor antagonist, on spinal NMDA-induced pressor responses. Methods The blood pressure responses induced by intrathecal injection of NMDA were recorded in urethane-anesthetized rats weighing 250-275 g. The levels of several phosphorylated residues on NMDA receptor GluN1 subunits were determined by western blot analysis. Results Intravenous injection of ethanol or ketamine inhibited spinal NMDA-induced pressor responses in a dose-dependent and reversible manner. Ketamine inhibition of NMDA-induced responses was synergistically potentiated by ethanol when ethanol was applied just before ketamine. However, ketamine inhibition was significantly reduced when applied at 10 min after ethanol administration. Western blot analysis showed that intravenous ethanol increased the levels of phosphoserine 897 on GluN1 subunits (pGluN1-serine 897, selectively phosphorylated by protein kinase A (PKA, in the lateral horn regions of spinal cord at 10 min after administration. Intrathecal administration of cAMPS-Sp, a PKA activator, at doses elevating the levels of pGluN1-serine 897, significantly blocked ketamine inhibition of spinal NMDA-induced responses. Conclusions The results suggest that ethanol may differentially regulate ketamine inhibition of spinal NMDA receptor function depending on ethanol exposure time and the resulting changes in the levels of pGluN1-serine 897.

  1. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  2. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    Institute of Scientific and Technical Information of China (English)

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantationvia tail vein injection and/or propofol injectionvia tail vein using an infusion pump. Four weeks after cell transplan-tation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve ifbers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electro-physiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  3. Effects of spinal cord stimulation on the flexor reflex and involvement of supraspinal mechanisms: an experimental study in mononeuropathic rats.

    Science.gov (United States)

    Ren, B; Linderoth, B; Meyerson, B A

    1996-02-01

    The physiological mechanisms responsible for pain relief caused by spinal cord stimulation (SCS) are essentially unknown and recent experimental data are sparse. In the present study the authors explored the possible involvement of supraspinal mechanisms in the effects of SCS applied in rats with experimental mononeuropathy produced by sciatic nerve ligation according to the method of Bennett and Xie or that of Seltzer, et al. Confirming results of a previous study undertaken by the authors, the thresholds of the early component of the flexor reflex (latency 8-12 msec), which is mediated by A fibers, were significantly lower in the nerve-ligated than in the intact leg. In halothane-anesthetized animals the spinal cord was exposed and SCS was applied with parameters similar to those used in clinical SCS. Ten minutes of SCS produced a significant elevation of the lowered threshold of the early flexor component only in the nerve-ligated leg, and this augmentatory effect of SCS persisted for 30 to 40 minutes after cessation of the stimulation. The threshold elevation amounted to between 50% and 80% of the prestimulatory value and it was related to the intensity of SCS. The threshold of the late, C-fiber-mediated component of the flexor reflex was not influenced in either of the legs. After transection of the spinal cord at the T-6 level, there was a moderate threshold increase in both the early and late components in both legs, but the threshold of the early component in the nerve-ligated leg remained lower. Spinal cord stimulation produced an almost identical threshold increase in the early component in the nerve-ligated leg with the same time course as before the transection. There was no effect on the late component of the reflex in either leg. The results indicate that this effect of SCS in mononeuropathic rats does not necessarily involve supraspinal mechanisms; instead SCS is operative at a spinal, segmental level. In view of the similarities between the effects

  4. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury.

    Science.gov (United States)

    Figueroa, Johnny D; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D; De Leon, Marino

    2016-08-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the

  5. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI. PMID:27316370

  6. The serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine facilitates noradrenaline release from rat spinal cord slices and inhibits monoamine oxidase activity.

    Science.gov (United States)

    Reimann, W; Schneider, F

    1993-03-01

    1. The influences of the purported serotonergic agonist 5-methoxy-N,N-dimethyltryptamine (MeODMT) on noradrenaline release and metabolism were investigated in a rat spinal cord release model and a monoamine oxidase (MAO) assay. 2. MeODMT inhibited the basal outflow of tritium from rat spinal cord slices preincubated with [3H]noradrenaline and enhanced the electrically-evoked overflow. 3. Effects on basal outflow were not observed, when monoamine oxidase (MAO) was inhibited by pargyline. Effects on the evoked overflow were not observed in the presence of metitepine or phentolamine. 4. Preferential inhibition by MeODMT of MAO A-type enzyme activity was found in a direct assay. 5. The results provide evidence for two different effects by which MeODMT reinforces noradrenergic neurotransmission in the rat spinal cord: facilitation of stimulation-evoked noradrenaline release and inhibition of noradrenaline metabolism by MAO inhibition. PMID:8482527

  7. Distribution of serotonin 5-HT2A and 5-HT7 receptors in the Onuf's nucleus of the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Fanqing Zeng; Chen Xu; Ge Xu

    2008-01-01

    BACKGROUND: Motoneurons from the Onuf's nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytryptamine, 5-HT) regulates motoneuron activity from the Onuf's nucleus of the spinal cord.However, few studies exist that describe 5-HT receptor distribution in the Onuf's nucleus. In addition, the nature of the effects of 5-HT receptor on the innervating striated muscle of the pelvic floor is controversial.OBJECTIVE: To investigate the distribution of serotonin 5-HT2A and 5-HT7 receptors in motoneurons of Onuf's nucleus in the spinal cord of male rats, and to analyze the relationship of 5-HT2A and 5-H7 receptors to central modulation of urogenital function.DESIGN, TIME AND SETTING: The neural morphology experiment was performed at the Ultramicrostructure Laboratory of Reproductive Medicine, Basic Medical College, Chongqing Medical University, China from April to December 2007.MATERIALS: Ten adult, Sprague Dawley rats (eight males and two females) were randomly divided into a gender control group (n = 4,50% male and 50% female) and a retrograde tracing group (n = 6, 100% male).Recombinant pseudorabies virus (PRV-152) was provided by Professor LW Enquist from Princeton University, USA. Rabbit anti-5-HT2A and 5-HT7 receptor antibodies were purchased from Diasorin, France.METHODS: In the gender control group, the spinal L5-6segments were harvested, sliced, and then incubated antibodies specific against 5-HT2A or 5-HT7 receptors for immunohistochemical staining. In the retrograde tracing group, PRV-152 was separately injected into the right ischiocavernosus (ischiocavernosus subgroup,n = 3) and the fight external urethral sphincter (external urethral sphincter subgroup, n = 3). Four days after injection, L5-6 segments were harvested, sliced, and incubated with antibodies specific against 5-HT2A or 5-HT7 receptors for double-labeling immunofluoresccnce

  8. Tapentadol increases levels of noradrenaline in the rat spinal cord as measured by in vivo microdialysis

    NARCIS (Netherlands)

    Tzschentke, Thomas M; Folgering, Joost H A; Flik, Gunnar; De Vry, Jean

    2012-01-01

    Spinal noradrenaline is thought to play an important role in descending pain inhibitory pathways and the modulation of nociceptive information at the spinal level. Tapentadol is a μ-opioid receptor (MOR) agonist and noradrenaline reuptake inhibitor (NRI). We showed previously that tapentadol, in con

  9. Immature rats show ovulatory defects similar to those in adult rats lacking prostaglandin and progesterone actions

    Directory of Open Access Journals (Sweden)

    Sanchez-Criado Jose E

    2004-09-01

    Full Text Available Abstract Gonadotropin-primed immature rats (GPIR constitute a widely used model for the study of ovulation. Although the equivalence between the ovulatory process in immature and adult rats is generally assumed, the morphological and functional characteristics of ovulation in immature rats have been scarcely considered. We describe herein the morphological aspects of the ovulatory process in GPIR and their response to classical ovulation inhibitors, such as the inhibitor of prostaglandin (PG synthesis indomethacin (INDO and a progesterone (P receptor (PR antagonist (RU486. Immature Wistar rats were primed with equine chorionic gonadotropin (eCG at 21, 23 or 25 days of age, injected with human chorionic gonadotropin (hCG 48 h later, and sacrificed 16 h after hCG treatment, to assess follicle rupture and ovulation. Surprisingly, GPIR showed age-related ovulatory defects close similar to those in adult rats lacking P and PG actions. Rats primed with eCG at 21 or 23 days of age showed abnormally ruptured corpora lutea in which the cumulus-oocyte complex (COC was trapped or had been released to the ovarian interstitum, invading the ovarian stroma and blood and lymphatic vessels. Supplementation of immature rats with exogenous P and/or PG of the E series did not significantly inhibit abnormal follicle rupture. Otherwise, ovulatory defects were practically absent in rats primed with eCG at 25 days of age. GPIR treated with INDO showed the same ovulatory alterations than vehicle-treated ones, although affecting to a higher proportion of follicles. Blocking P actions with RU486 increased the number of COC trapped inside corpora lutea and decreased ovulation. The presence of ovulatory defects in GPIR, suggests that the capacity of the immature ovary to undergo the coordinate changes leading to effective ovulation is not fully established in Wistar rats primed with eCG before 25 days of age.

  10. Semaphorin 3A expression in spinal cord injured rats after olfactory ensheathing cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Guoyu Wang; Xijing He; Puwei Yuan; Haopeng Li; Rui Chang

    2011-01-01

    Semaphorin 3A expression is thought to increase following spinal cord injury. The impact of olfactory ensheathing cell transplantation remains unclear. The current study demonstrated that spinal cord hemorrhage, edema, degeneration, necrosis, cyst formation, proliferation of glial cells, regeneration of nerve fibers and various pathological reactions occurred following a simple cross-section of spinal cord injury. Transplantation of olfactory ensheathing cells was found to significantly relieve the pathological reactions in the spinal cord described above, decrease the extent of necrosis in damaged neurons and nerve fibers, and downregulate semaphorin 3A expression in the injured zone. The results confirmed that olfactory ensheathing cell transplantation plays a protective role on the injured spinal cord by reducing the expression of semaphorin 3A.

  11. Antagonism of mGlu receptors and potentiation of EPSCs at rat spinal motoneurones in vitro.

    Science.gov (United States)

    Cao, C Q; Tse, H W; Jane, D E; Evans, R H; Headley, P M

    1997-03-01

    The patch-clamp technique has been used to record synaptic responses, elicited by electrical stimulation of dorsal roots, in 28 single motoneurones of in vitro spinal cord preparations from neonate (P5 to P8) rats. The effects of (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) (200 microM), a potent antagonist at L-2-amino-4-phosphonobutanoate (AP4)-sensitive receptors, and (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) (500 microM), which is a less selective antagonist of mGluRs, were tested on EPSCs alone and as antagonists of AP4-induced depression of EPSCs. The EC50 for depression of EPSCs by AP4 (1.16 +/- 0.12 microM, n = 8) was increased to 18.9 +/- 0.7 microM (n = 6) by MPPG. MCPG (500 microM) had no significant effect on the depressant potency of AP4. Under control conditions, EPSCs had mean peak amplitudes of 983 pA +/- 64 SEM and mean charge transferred of 306 +/- 37 pC (n = 28). These values were increased significantly (p MPPG (n = 6), and 1150 +/- 54 pA and 358 +/- 33 pC (n = 6) by MCPG. There was no significant difference between the enhancement of the initial peak of the EPSCs (mean latency from stimulus artifact 5.9 +/- 0.3 ms) and later components, suggesting mGluRs to be present on primary afferent terminals presynaptic to motoneurones as well as in pathways via interneurones. These results are consistent with the presence of at least two types of presynaptic mGluR that modulate release of glutamate in segmental pathways convergent onto motoneurones. These receptors appear to be activated by interstitial glutamate tonically present in the present preparations. PMID:9175609

  12. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn.

    Science.gov (United States)

    Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T

    2016-04-01

    Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. PMID:26826332

  13. Esmolol modulates inhibitory neurotransmission in the substantia gelatinosa of the spinal trigeminal nucleus of the rat

    Directory of Open Access Journals (Sweden)

    Kato Fusao

    2011-09-01

    Full Text Available Abstract Background β1-adrenaline receptor antagonists are often used to avoid circulatory complications during anesthesia in patients with cardiovascular diseases. Of these drugs, esmolol, a short-acting β antagonist, is also reported to exert antinociceptive and anesthetic sparing effects. This study was designed to identify the central mechanism underlying the antinociceptive effect of esmolol. Methods Wistar rats (7-21 d, 17-50 g were anesthetized with ketamine (100-150 mg/kg or isoflurane (5% and decapitated. Horizontal slices (400-μm thick of the lower brainstem containing the substantia gelatinosa (SG of the caudal part of the spinal trigeminal nucleus (Sp5c, in which the nociceptive primary afferents form the first intracranial synapses, were made with a vibrating slicer. The miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs, respectively were simultaneously recorded from visually identified SG neurons of the Sp5c in the presence of tetrodotoxin (1 μM. Additionally, mIPSCs were recorded during pharmacological isolation of GABA- and glycine-mediated mIPSCs with kynurenic acid (1 mM. Results Esmolol (500 μM significantly and selectively increased the mIPSC frequency (to 214.2% ± 34.2% of the control, mean ± SEM, n = 35; P 2+. Conclusions These data suggest that esmolol modulates inhibitory transmitter release in the Sp5c through a mechanism involving Ca2+-entry but in a β1-adrenoceptor-independent manner. The present results suggest that the facilitation of inhibitory transmitter release in the central nociceptive network underlies, at least in part, the antinociceptive effect of esmolol.

  14. Short term treatment versus long term management of neck and back disability in older adults utilizing spinal manipulative therapy and supervised exercise: a parallel-group randomized clinical trial evaluating relative effectiveness and harms

    OpenAIRE

    Vihstadt, Corrie; Maiers, Michele; Westrom, Kristine; Bronfort, Gert; Evans, Roni; Hartvigsen, Jan; Schulz, Craig

    2014-01-01

    Background Back and neck disability are frequent in older adults resulting in loss of function and independence. Exercise therapy and manual therapy, like spinal manipulative therapy (SMT), have evidence of short and intermediate term effectiveness for spinal disability in the general population and growing evidence in older adults. For older populations experiencing chronic spinal conditions, long term management may be more appropriate to maintain improvement and minimize the impact of futu...

  15. Contextual fear conditioning differs for infant, adolescent, and adult rats.

    Science.gov (United States)

    Esmorís-Arranz, Francisco J; Méndez, Cástor; Spear, Norman E

    2008-07-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian-conditioned suppression. When a discrete auditory-conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness, but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role.

  16. An experimental study on nerve regeneration and spinal neurons after CO2 laser anastomosis of rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-ping; ZHANG xiang; WANG Yan-gang; FEI Zhou; CHEN Yi-jun; FU Luo-an; LIANG Jing-wen; DUAN Xin-min; YANG Ji-qing

    2001-01-01

    Objective: Many methods have been used in an attempt to seal the epineurium and to prevent axonal outgrowth.In this study, the rat sciatic nerves were repaired with CO2 laser, the nerve regeneration and the morphology of spinal anterior horn neurons were investigated. Methods: Seventy-two male Sprague-Dawley rats were randomly divided into 6 groups of 12 rats. The animals were designed to observe the electrophysiology, the histopathology and the morphology of spinal anterior horn neurons. One of the rat sciatic nerve anastomosed with CO2 laser, the contralateral nerve was reconstructed by microsuture technique. At 2, 4, 6, 8 weeks postoperatively, neuromuscular functions, the regeneration of axons and neurons were evaluated by the electro-physiological and histopathological studies. The rats were killed at 4, 6 weeks postoperatively. Results: The recovery of toe spread and myodynamia in laser groups was better than that in suture groups (P<0.05). The latency of foot withdraw caused by radiate heat and neuromuscular conduction velocity in laser groups were faster than that in suture groups (P<0.05). The density of nerve fibers, percentage of axons passing through anastomotic area and numbers of neurons were better in laser groups than in suture groups. At 8 weeks postoperatively, the first grade dendrites of anterior horn neurons grew well. Their diameter, length, volume and total volume were much higher than that in control group. (P<0.05, P<0.01). Conclusion: CO2 laser repairing was effective in promoting the regeneration and the recovery of sciatic nerves in its earlypost-trauma stage. In addition, laser repairing was found to reduce regenerating axons misdirection and forming neuroma.

  17. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    Directory of Open Access Journals (Sweden)

    Olavo Biraghi Letaif

    2015-10-01

    Full Text Available OBJECTIVES:To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion.METHODS:In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day.RESULTS:The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers.CONCLUSIONS:Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  18. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Norihiko Nakano

    Full Text Available It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs through the cerebrospinal fluid (CSF has beneficial effects on acute spinal cord injury (SCI in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury, and/or chronic (4-week post-injury SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0-3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle-injection subgroups, it increased only from 0.5-4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF.

  19. Actions of the GABAB agonist, (-)-baclofen, on neurones in deep dorsal horn of the rat spinal cord in vitro.

    OpenAIRE

    Allerton, C. A.; Boden, P. R.; Hill, R G

    1989-01-01

    1. The electrophysiological actions of the GABAB agonist, (-)-baclofen, on deep dorsal horn neurones were studied using an in vitro preparation of the spinal cord of 9-16 day old rat. 2. On all neurones tested, (-)-baclofen (100 nM-30 microM) had a hyperpolarizing action which was associated with a reduction in apparent membrane input resistance. The increase in membrane conductance was dose-dependent and had a Hill coefficient of 1.0. 3. The (-)-baclofen-activated hyperpolarization persisted...

  20. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa;

    2014-01-01

    OBJECTIVE: Currently, cellular transplantation for spinal cord injuries (SCI) is the subject of numerous preclinical studies. Among the many cell types in the adult brain, there is a unique subpopulation of neural stem cells (NSC) that can self-renew and differentiate into neurons. The study aims......, therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model...... was confirmed by magnetic resonance imaging (MRI) and histological analysis. Animals were clinically observed for 6 months. RESULTS: Analysis confirmed homing of mNSCs into the injury site. Transplanted cells expressed neuronal markers (TubIII). Hind limb performance improved in trans- planted animals based...

  1. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  2. Effect of mesenchymal stem cells transplantation combining with hyperbaric oxygen therapy on rehabilitation of rat spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Cheng-Kui Geng; Hong-Hua Cao; Xiong Ying; Hua-Lin Yu

    2015-01-01

    Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen (HBO) on repair of rat SCI. Methods:Seventy five male rats were divided randomly into five groups:sham, vehicle, BMSCs transplantation group, combination group, 15 rats in each group. Every week after the SCI onset, all animals were evaluated for behavior outcome by Basso-Beattle-Bresnahan (BBB) score and inclined plane test. Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset. HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results:Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment. Results from histopathology showed favorable recovery from combination group than other treatment groups. The number of BrdU+ in combination group were measureable more than transplantation group (P<0.05). The greatest decrease in TNF-α, IL-1β, IL-6, IFN-αdetermined by Elisa assay in combination group were evident too. Conclusions:BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI, and its combination with HBO has a synergistic effect.

  3. Effect of mesenchymal stem cells transplantation combining with hyperbaric oxygen therapy on rehabilitation of rat spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Cheng-Kui; Geng; Hong-Hua; Cao; Xiong; Ying; Hua-Lin; Yu

    2015-01-01

    Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation group,combination group,15 rats in each group.Every week after the SCI onset,all animals were evaluated for behavior outcome by Basso-BeattleBresnahan(BBB) score and inclined plane test.Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset.HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury.Somatosensory evoked potential(SEP) testing was performed to detect the recovery of neural conduction.Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment.Results from histopathology showed favorable recovery from combination group than other treatment groups.The number of BrdU+ in combination group were measureable more than transplantation group(P<0.05).The greatest decrease in TNF-α,IL-1β,IL-6.IFN-α determined by Elisa assay in combination group were evident too.Conclusions:BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI,and its combination with HBO has a synergistic effect.

  4. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats

    Science.gov (United States)

    Chen, Bo; He, Jianyu; Yang, Hao; Zhang, Qian; Zhang, Lingling; Zhang, Xian; Xie, En; Liu, Cuicui; Zhang, Rui; Wang, Yi; Huang, Linhong; Hao, Dingjun

    2015-03-01

    There is no effective strategy for the treatment of spinal cord injury (SCI). An appropriate combination of hydrogel materials and neurotrophic factor therapy is currently thought to be a promising approach. In this study, we performed experiments to evaluate the synergic effect of implanting hydroxyl ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride (HEMA-MOETACL) hydrogel incorporated with basic fibroblast growth factor (bFGF) into the site of surgically induced SCI. Prior to implantation, the combined hydrogel was surrounded by an acellular vascular matrix. Sprague-Dawley rats underwent complete spinal cord transection at the T-9 level, followed by implantation of bFGF/HEMA-MOETACL 5 days after transection surgery. Our results showed that the bFGF/HEMA-MOETACL transplant provided a scaffold for the ingrowth of regenerating tissue eight weeks after implantation. Furthermore, this newly designed implant promoted both nerve tissue regeneration and functional recovery following SCI. These results indicate that HEMA-MOETACL hydrogel is a promising scaffold for intrathecal, localized and sustained delivery of bFGF to the injured spinal cord and provide evidence for the possibility that this approach may have clinical applications in the treatment of SCI.

  5. Awake behaving electrophysiological correlates of forelimb hyperreflexia, weakness and disrupted muscular synchronization following cervical spinal cord injury in the rat.

    Science.gov (United States)

    Ganzer, Patrick Daniel; Meyers, Eric Christopher; Sloan, Andrew Michael; Maliakkal, Reshma; Ruiz, Andrea; Kilgard, Michael Paul; Robert, LeMoine Rennaker

    2016-07-01

    Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dysfunction in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury. PMID:27033345

  6. The role of N-methylaspartate receptors in mediating responses of rat and cat spinal neurones to defined sensory stimuli.

    Science.gov (United States)

    Headley, P M; Parsons, C G; West, D C

    1987-04-01

    1. Single-cell recordings were made from neurones in various spinal laminae in anaesthetized or decerebrated, spinalized or intact rats and cats. Cells were activated by controlled peripheral sensory stimuli which mimicked natural conditions and with some cells also by micro-electrophoretically administered excitatory amino acid analogues. Such responses were tested with amino acid antagonists administered both micro-electrophoretically and intravenously. 2. With cells in the dorsal horn, the dissociative anaesthetic ketamine, administered either micro-electrophoretically or intravenously at doses which selectively reduce responses to N-methylaspartate, had no consistent effect on any of the sensory responses examined. 3. The non-selective amino acid antagonist cis-2,3-piperidine dicarboxylate was somewhat more effective at reducing sensory responses. 4. With motoneurones, intravenous N-methylaspartate-blocking doses of ketamine consistently reduced nociceptive responses. Non-nociceptive responses were less affected. 5. With ventral horn interneurones, intravenous but not micro-electrophoretic ketamine reduced nociceptive responses on about half the cells tested. 6. These results are interpreted in terms of the physiological role of the N-methylaspartate class of excitatory amino acid receptor in mediating responses in the ventral but not dorsal horn of the spinal cord to peripheral somatic stimuli. PMID:2821241

  7. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats.

    Science.gov (United States)

    Liu, Su; Liu, Yue-Peng; Huang, Zhi-Jiang; Zhang, Yan-Kai; Song, Angela A; Ma, Ping-Chuan; Song, Xue-Jun

    2015-12-01

    Treating neuropathic pain continues to be a major clinical challenge and underlying mechanisms of neuropathic pain remain elusive. We have recently demonstrated that Wnt signaling, which is important in developmental processes of the nervous systems, plays critical roles in the development of neuropathic pain through the β-catenin-dependent pathway in the spinal cord and the β-catenin-independent pathway in primary sensory neurons after nerve injury. Here, we report that Wnt signaling may contribute to neuropathic pain through the atypical Wnt/Ryk signaling pathway in rats. Sciatic nerve injury causes a rapid-onset and long-lasting expression of Wnt3a, Wnt5b, and Ryk receptors in primary sensory neurons, and dorsal horn neurons and astrocytes. Spinal blocking of the Wnt/Ryk receptor signaling inhibits the induction and persistence of neuropathic pain without affecting normal pain sensitivity and locomotor activity. Blocking activation of the Ryk receptor with anti-Ryk antibody, in vivo or in vitro, greatly suppresses nerve injury-induced increased intracellular Ca and hyperexcitability of the sensory neurons, and also the enhanced plasticity of synapses between afferent C-fibers and the dorsal horn neurons, and activation of the NR2B receptor and the subsequent Ca-dependent signals CaMKII, Src, ERK, PKCγ, and CREB in sensory neurons and the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the Wnt/Ryk signaling may be an effective approach for treating neuropathic pain.

  8. Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat.

    Science.gov (United States)

    Yang, Liqun; Jones, Nigel R; Blumbergs, Peter C; Van Den Heuvel, Corinna; Moore, Emma J; Manavis, Jim; Sarvestani, Ghafar T; Ghabriel, Mounir N

    2005-04-01

    The post-traumatic inflammatory response in acute spinal cord contusion injury was studied in the rat. Mild and severe spinal cord injury (SCI) was produced by dropping a 10 g weight from 3 and 12 cm at the T12 vertebral level. Increased immunoreactivity of TNF-alpha in mild and severe SCI was detected in neurons at 1 h post-injury, and in neurons and microglia at 6 h post-injury, with a less significant increase in mild SCI. Expression was short-lived and declined sharply by 1 d post-injury. RT-PCR showed an early significant up-regulation of IL-1 beta, IL-6 and TNF-alpha mRNAs, maximal at 6 h post-injury with return to control levels by 24 h post-injury, the changes being less statistically significantly in mild SCI. Western blot showed early transient increases of IL-1 beta, IL-6 and TNF-alpha proteins in severe SCI but not mild SCI. Immunocytochemical, western blotting and RT-PCR analyses suggest that endogenous cells (neurons and microglia) in the spinal cord, not blood-borne leucocytes, contribute to IL-1 beta, IL-6 and TNF-alpha production in the post-traumatic inflammatory response and that their up-regulation is greater in severe than mild SCI. PMID:15851082

  9. Gene expression microarray analysis of the spinal trigeminal nucleus in a rat model of migraine with aura

    Institute of Scientific and Technical Information of China (English)

    Ruozhuo Liu; Shengyuan Yu; Fengpeng Li; Enchao Qiu

    2012-01-01

    Cortical spreading depression can trigger migraine with aura and activate the trigeminal vascular system. To examine gene expression profiles in the spinal trigeminal nucleus in rats following cortical spreading depression-induced migraine with aura, a rat model was established by injection of 1 M potassium chloride, which induced cortical spreading depression. DNA microarray analysis revealed that, compared with the control group, the cortical spreading depression group showed seven upregulated genes-myosin heavy chain 1/2, myosin light chain 1, myosin light chain (phosphorylatable, fast skeletal muscle), actin alpha 1, homeobox B8, carbonic anhydrase 3 and an unknown gene. Two genes were downregulated-RGD1563441 and an unknown gene. Real-time quantitative reverse transcription-PCR and bioinformatics analysis indicated that these genes are involved in motility, cell migration, CO2 /nitric oxide homeostasis and signal transduction.

  10. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta.

    Science.gov (United States)

    Li, Xiaoshuai; Yuan, Zhengwei; Wei, Xiaowei; Li, Hui; Zhao, Guifeng; Miao, Jiaoning; Wu, Di; Liu, Bo; Cao, Songying; An, Dong; Ma, Wei; Zhang, Henan; Wang, Weilin; Wang, Qiushi; Gu, Hui

    2016-04-01

    Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan-gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region. PMID:26894267

  11. Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia

    Directory of Open Access Journals (Sweden)

    Talbot Sébastien

    2012-01-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1 activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791, the antioxidant N-acetyl-L-cysteine (NAC, or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t. injection of a selective B1R agonist (des-Arg9-BK, and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c. enhanced time-dependently (0-24h B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t. and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.. Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg. Des-Arg9-BK (9.6 nmol/site, i.t. decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p

  12. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro.

    Science.gov (United States)

    Veeraraghavan, Priyadharishini; Dekanic, Ana; Nistri, Andrea

    2016-10-01

    Endocannabinoids acting on cannabinoid-1 receptors (CB1Rs) are proposed to protect brain and spinal neurons from excitotoxic damage. The ability to recover from spinal cord injury (SCI), in which excitotoxicity is a major player, is usually investigated at late times after modulation of CB1Rs whose role in the early phases of SCI remains unclear. Using the rat spinal cord in vitro as a model for studying SCI initial pathophysiology, we investigated if agonists or antagonists of CB1Rs might affect SCI induced by the excitotoxic agent kainate (KA) within 24h from a transient (1h) application of this glutamate agonist. The CB1 agonist anandamide (AEA or pharmacological block of its degradation) did not limit excitotoxic depolarization of spinal networks: cyclic adenosine monophosphate (cAMP) assay demonstrated that CB1Rs remained functional 24h later and similarly expressed among dead or survived cells. Locomotor-like network activity recorded from ventral roots could not recover with such treatments and was associated with persistent depression of synaptic transmission. Motoneurons, that are particularly vulnerable to KA, were not protected by AEA. Application of 2-arachidonoylglycerol also did not attenuate the electrophysiological and histological damage. The intensification of damage by the CB1 antagonist AM251 suggested that endocannabinoids were operative after excitotoxic stimulation, yet insufficient to contrast it efficiently. The present data indicate that the early phases of excitotoxic SCI could not be arrested by pharmacologically exploiting the endocannabinoid system, consistent with the notion that AEA and its derivatives are more useful to treat late SCI phases. PMID:27450568

  13. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Ali H Palejwala

    2016-01-01

    Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.

  14. Glial cell-derived neurotrophic factor mRNA expression in a rat model of spinal cord injury following bone marrow stromal cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Lei Li; Gang Lü; Yanfeng Wang; Hong Gao; Xin Xu; Lunhao Bai; Huan Wang

    2008-01-01

    BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression.OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR).DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007.MATERIALS: Sixty healthy Wistar rats aged 2--4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection ofT9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by PerkinElmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension through two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites.MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model

  15. Attenuation by spinal cord stimulation of a nociceptive reflex generated by colorectal distention in a rat model.

    Science.gov (United States)

    Greenwood-Van Meerveld, Beverley; Johnson, Anthony C; Foreman, Robert D; Linderoth, Bengt

    2003-02-28

    The mechanisms underlying the cause and treatment of visceral pain of gastrointestinal origin are poorly understood. Previous clinical studies have shown that spinal cord stimulation (SCS) attenuates neuropathic and ischemic pain, and animal experiments have provided knowledge about probable physiological mechanisms. The goal of the present study was to investigate whether SCS influences colonic sensitivity in a conscious rat. A visceromotor behavioral response (VMR), induced by colorectal distention, was used to quantify the level of colonic sensitivity. Under anesthesia, an electrode (cathode) was placed on the dorsal surface of the spinal cord at L1. One week after implantation of the SCS electrode, the effects of stimulation delivered with different intensities (50 Hz, 0.2 ms for 30 min) on colonic sensitivity were determined. Nociceptive levels of colorectal distention (60 mm Hg for 10 min) induced an enhanced VMR quantified as an increased number of abdominal muscle contractions compared to controls in which the balloon catheter was inserted into the colorectal region but not distended. Colonic sensitization with acetic acid increased the VMR to innocuous levels of colorectal distention (30 mm Hg for 10 min). We found that SCS induced a significant depression of the VMR produced by colorectal distention in both normal rats and those with sensitized colons. The suppressive effect of SCS on colonic sensitivity suggests that SCS may have therapeutic potential for the treatment of visceral pain of gastrointestinal origin associated with abdominal cramping and painful abdominal spasms. PMID:12559199

  16. Combined nonlinear metrics to evaluate spontaneous EEG recordings from chronic spinal cord injury in a rat model: a pilot study.

    Science.gov (United States)

    Pu, Jiangbo; Xu, Hanhui; Wang, Yazhou; Cui, Hongyan; Hu, Yong

    2016-10-01

    Spinal cord injury (SCI) is a high-cost disability and may cause permanent loss of movement and sensation below the injury location. The chance of cure in human after SCI is extremely limited. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. As an indicator of nonlinear dynamics in the brain, sample entropy was used here in combination with detrended fluctuation analysis (DFA) and Kolmogorov complexity to quantify functional plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the sample entropy values were decreased at the first day following injury then gradually increased during recovery. DFA and Kolmogorov complexity results were in consistent with sample entropy, showing the complexity of the EEG time series was lost after injury and partially regained in 1 week. The tendency to regain complexity is in line with the observation of behavioral rehabilitation. A critical time point was found during the recovery process after SCI. Our preliminary results suggested that the combined use of these nonlinear dynamical metrics could provide a quantitative and predictive way to assess the change of neural plasticity in a spinal cord injury rat model. PMID:27668016

  17. Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury

    OpenAIRE

    Zaminy, Arash; Shokrgozar, Mohammad Ali; Sadeghi, Yousef; Noroozian, Mohsen; Heidari, Mohammad Hassan; Piryaei, Abbas

    2013-01-01

    Background: Spinal cord has a limited capacity to repair; therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells have drawn attentions to themselves. Therefore, this study was designed to evaluate the effect of b...

  18. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury.

    Science.gov (United States)

    Chen, Zhe; Park, Jonghyuck; Butler, Breanne; Acosta, Glen; Vega-Alvarez, Sasha; Zheng, Lingxing; Tang, Jonathan; McCain, Robyn; Zhang, Wenpeng; Ouyang, Zheng; Cao, Peng; Shi, Riyi

    2016-07-01

    Currently there are no effective therapies available for the excruciating neuropathic pain that develops after spinal cord injuries (SCI). As such, a great deal of effort is being put into the investigation of novel therapeutic targets that can alleviate this pain. One such target is acrolein, a highly reactive aldehyde produced as a byproduct of oxidative stress and inflammation that is capable of activating the transient receptor potential ankyrin 1 (TRPA1) cation channel, known to be involved in the transmission and propagation of chronic neuropathic pain. One anti-acrolein agent, hydralazine, has already been shown to reduce neuropathic pain behaviors and offer neuroprotection after SCI. This study investigates another acrolein scavenger, phenelzine, for its possible role of alleviating sensory hypersensitivity through acrolein suppression. The results show that phenelzine is indeed capable of attenuating neuropathic pain behaviors in acute, delayed, and chronic administration schedules after injury in a rat model of SCI. In addition, upon the comparison of hydralazine to phenelzine, both acrolein scavengers displayed a dose-dependent response in the reduction of acrolein in vivo. Finally, phenelzine proved capable of providing locomotor function recovery and neuroprotection of spinal cord tissue when administered immediately after injury for 2 weeks. These results indicate that phenelzine may be an effective treatment for neuropathic pain after SCI and likely a viable alternative to hydralazine. We have shown that phenelzine can attenuate neuropathic pain behavior in acute, delayed, and chronic administration in post-SCI rats. This was accompanied by a dose-dependent reduction in an acrolein metabolite in urine and an acrolein adduct in spinal cord tissue, and the suppression of TRPA1 over-expression in central and peripheral locations post-trauma. Acrolein scavenging might be a novel therapeutic strategy to reduce post-SCI neuropathic pain. PMID:27060873

  19. Effect of piperine on the epididymis of adult male rats

    Institute of Scientific and Technical Information of China (English)

    S. C. D'cruz; P. P. Mathur

    2005-01-01

    Aim: To study the effect of piperine on the epididymal antioxidant system of adult male rats. Methods: Adult male rats were orally administered piperine at doses of 1 mg/kg, 10 mg/kg and 100 mg/kg body weight each day for 30consecutive days. Twenty-four hours after the last treatment, the rats were weighed and killed with ether and the epididymis was dissected from the bodies. Sperm collected from the cauda region of the epididymis was used for the assessment of its count, motility and viability. Caput, corpus and cauda regions of the epididymis were separated and homogenized separately to obtain 10 % homogenates. The supernatants were used for the assays of sialic acid,superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, lipid peroxidation and hydrogen peroxide generation. Results: Body weight of the piperine-treated rats remained unchanged. The weights of the caput,corpus and cauda regions of the epididymis significantly decreased at dose of 100 mg/kg. Epididymal sperm count and motility decreased at 10 mg/kg and 100 mg/kg, and sperm viability decreased significantly at 100 mg/kg. Sialic acid levels in the epididymis decreased significantly at 100 mg/kg while significant decrease in the cauda region alone was observed at 10 mg/kg. A significant decline in the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, along with an increase in hydrogen peroxide generation and lipid peroxidation were observed at 10 mg/kg and 100 mg/kg. Conclusion: Piperine caused a decrease in the activity of antioxidant enzymes and sialic acid levels in the epididymis and thereby increased reactive oxygen species levels that could damage the epididymal environment and sperm function.

  20. Comparative Analysis of Remyelinating Potential of Focal and Intravenous Administration of Autologous Bone Marrow Cells Into the Rat Demyelinated Spinal Cord

    OpenAIRE

    Inoue, Michio; HONMOU, OSAMU; Oka, Shinichi; Houkin, Kiyohiro; Hashi,Kazuo; Kocsis, Jeffery D.

    2003-01-01

    The remyelinating potential of autologous bone marrow cells was studied after direct injection and following intravenous injection into rats with a demyelinated lesion in the spinal cord. Both focal and intravenous injections of acutely isolated mononuclear bone marrow cell fractions resulted in varying degrees of remyelination. Suspensions of bone marrow cells collected from the same rat were delivered at varied concentrations (102 to 105 for direct injection and 104 to 107 for i.v. injectio...

  1. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    Science.gov (United States)

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  2. Up-regulation of CD81 (target of the antiproliferative antibody; TAPA) by reactive microglia and astrocytes after spinal cord injury int he rat

    NARCIS (Netherlands)

    Gispen, W.H.; Dijkstra, S.; Geisert Jr., E.E.; Bär, P.R; Joosten, E.A.J.

    2000-01-01

    We examined the expression of CD81 (also known as TAPA, or target of the antiproliferative antibody) after traumatic spinal cord injury in the rat. CD81, a member of the tetraspanin family of proteins, is thought to be involved in reactive gliosis. This is based on the antiproliferative and antiadhe

  3. DO OPIOIDS EVOKE THE RELEASE OF SEROTONIN IN THE SPINAL-CORD - AN INVIVO MICRODIALYSIS STUDY OF THE REGULATION OF EXTRACELLULAR SEROTONIN IN THE RAT

    NARCIS (Netherlands)

    MATOS, FF; ROLLEMA, H; BROWN, JL; BASBAUM, AI

    1992-01-01

    This study investigated the regulation of serotonin (5-HT) and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal spinal cord of awake, freely moving rats, using microdialysis coupled to HPLC with electrochemical detection and tested the hypothesis that opioids exert their analge

  4. Delayed intramuscular human neurotrophin-3 improves recovery in adult and elderly rats after stroke.

    Science.gov (United States)

    Duricki, Denise A; Hutson, Thomas H; Kathe, Claudia; Soleman, Sara; Gonzalez-Carter, Daniel; Petruska, Jeffrey C; Shine, H David; Chen, Qin; Wood, Tobias C; Bernanos, Michel; Cash, Diana; Williams, Steven C R; Gage, Fred H; Moon, Lawrence D F

    2016-01-01

    There is an urgent need for a therapy that reverses disability after stroke when initiated in a time frame suitable for the majority of new victims. We show here that intramuscular delivery of neurotrophin-3 (NT3, encoded by NTF3) can induce sensorimotor recovery when treatment is initiated 24 h after stroke. Specifically, in two randomized, blinded preclinical trials, we show improved sensory and locomotor function in adult (6 months) and elderly (18 months) rats treated 24 h following cortical ischaemic stroke with human NT3 delivered using a clinically approved serotype of adeno-associated viral vector (AAV1). Importantly, AAV1-hNT3 was given in a clinically-feasible timeframe using a straightforward, targeted route (injections into disabled forelimb muscles). Magnetic resonance imaging and histology showed that recovery was not due to neuroprotection, as expected given the delayed treatment. Rather, treatment caused corticospinal axons from the less affected hemisphere to sprout in the spinal cord. This treatment is the first gene therapy that reverses disability after stroke when administered intramuscularly in an elderly body. Importantly, phase I and II clinical trials by others show that repeated, peripherally administered high doses of recombinant NT3 are safe and well tolerated in humans with other conditions. This paves the way for NT3 as a therapy for stroke.

  5. Effect of basic fibroblast growth factor on the expression of glial fibrillary acidic protein after tractive spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; L(U) Bo; TU Chong-qi; CHI Lei-ting; WANG Guang-lin; PEI Fu-xing

    2005-01-01

    Objective: To investigate the effects of basic fibroblast growth factor (bFGF) on the expression of glial fibrillary acidic protein (GFAP) after tractive spinal cord injury in rats and to explore the recovery of spinal cord function.Methods: The rats were subjected to tractive spinal cord injury at T13-L2. Cortical somatosensory-evoked potential (CSEP) was closely monitored and when P1-N1 wave amplitude decreased to 70% of that before operation, a small-bore catheter was inserted below the injured plane through subarachnoid cavity. In the treatment groups, 20 μl of bFGF solution (containing 20 μg of bFGF) was injected through the catheter right after the operation and 1,2, 3, 4, 8, 12 and 24 h postoperatively. In the control group, same volume of normal saline was injected and every four rats were killed at 1, 4, 7, 14 and 21 d after the operation. Combined behavior score (CBS) and electro-physiological examination were adopted to evaluate function recovery. Expression of GFAP was observed by immuno-histochemical staining and was analyzed quantitatively by computer image analysis.Results: There was statistically significant difference in GFAP-positive cells between bFGF treatment group and the control group (P<0.01). Similar tendency was indicated by the results of CBS and CSEP.Conclusions: bFGF can induce large expression of GFAP after tractive spinal cord injury in rats and promote spinal function recovery, which is highly important for spinal cord regeneration.

  6. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Wang, Yong-Tang; Lu, Xiu-Min; Zhu, Feng; Huang, Peng; Yu, Ying; Long, Zai-Yun; Wu, Ya-Min

    2015-12-01

    As a co-receptor of Nogo-66 receptor (NgR) and a critical receptor for paired immunoglobulin-like receptor (PirB), p75 neurotrophin receptor (p75NTR) mediates the inhibitory effects of myelin-associated inhibitors on axonal regeneration after spinal cord injury. Therefore, the p75NTR antagonist, such as recombinant p75NTR protein or its homogenates may block the inhibitory effects of myelin and promote the axonal regeneration and functional recovery. The purposes of this study are to subclone and express the extracellular domain gene of human p75NTR with IgG-Fc (hp75NTR-ED-Fc) in prokaryotic expression system and investigate the effects of the recombinant protein on axonal regeneration and functional recovery in spinal cord-injured rats. The hp75NTR-ED-Fc coding sequence was amplified from pcDNA-hp75NTR-ED-Fc by polymerase chain reaction (PCR) and subcloned into vector pET32a (+), then the effects of the purified recombinant protein on neurite outgrowth of dorsal root ganglion (DRG) neurons cultured with myelin-associated glycoprotein (MAG) were determined, and the effects of the fusion protein on axonal regeneration, functional recovery, and its possible mechanisms in spinal cord-injured rats were further investigated. The results indicated that the purified infusion protein could promote neurite outgrowth of DRG neurons, promote axonal regeneration and functional recovery, and decrease RhoA activation in spinal cord-injured rats. Taken together, the findings revealed that p75NTR still may be a potential and novel target for therapeutic intervention for spinal cord injury and that the hp75NTR-ED-Fc fusion protein treatment enhances functional recovery by limiting tissue loss and stimulating axonal growth in spinal cord-injured rats, which may result from decreasing the activation of RhoA.

  7. Up-regulation and time course of protein kinase C immunoreactivity during persistent inflammation of the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Qingjun Li

    2008-01-01

    BACKGROUND: It has been reported that activation and/or translocation of protein kinase C (PKC) is related to hyperalgesia, and changes in PKC expression in the dorsal horn of spinal cord take place during inflammatory pain.OBJECTIVE: To observe PKC changes in the dorsal horn of spinal cord using immunohistochemistry and to measure the time-course during persistent pain produced by chemical stimulation with a right hind-paw injection of formalin. DESIGN: Randomized controlled animal experiment.SETTING: Institute of Basic Medical Science, Hebei Medical UniversityMATERIALS: The present experiment was performed at the Department of Pathophysiology, Institute of Basic Medical Science, Hebei Medical University between September 2000 and June 2002. Forty-two Sprague-Dawley rats, weighing 260-280 g, irrespective of gender, were provided by the Center of Animal Experimentation at Hebei Medical University. PKC antibody was provided by Sigma, USA. Immunohistochemistry kits were purchased from Zhongshan Biotechnology Company, Beijing. HPIAS-1000 definition multicolor system was provided by Qianping Wuxiang Project Company of Tongji Medical University. Animal use during experimentation was consistent with the standards of Animal Ethics Committee.METHODS: Sprague-Dawley rats were divided randomly into control (n = 6) and experimental groups (n = 36). Experimental rats were given an intracutaneous injection of 5% formalin into the planta surface of the right hind-paw. Animals with inflammatory pain were anesthetized and sacrificed to obtain the L5 spinal region at 1, 3, 12 hours, 1, 3, and 7 days after formalin treatment, with 6 rats in each time group. The spinal cords at the L5 region were collected from the control group following sodium chloride injections into the planta surface of the right hind-paw, identical to the experimental group. MAIN OUTCOME MEASURES: Pain reaction of experimental rats after formalin treatment. PKC-positive neurons, and distribution of PKC

  8. Morphological study of Schwann cells remyelination in contused spinal cord of rats

    Directory of Open Access Journals (Sweden)

    LI Yue

    2013-08-01

    Full Text Available 【Abstract】Objective: To study the role and effect of Schwann cells (SCs remyelination in contused spinal cord. Methods: Green fluorescence protein expressing-SCs were transplanted into the epicenter, rostral and caudal tis-sues of the injury site at 1 week after the spinal cords were contused. At 6 weeks, the spinal cords were removed for cryosections, semithin sections and ultrathin sections, and then immunocytochemical staining of myelin basic protein (MBP, P0 protein (P0 and S100 protein (S100 was carried out on the cryosections. Qualitative and semiquantitative analyses were performed on the cryosections and semithin sections. Ultrastructure of myelinated fibers was observed on the ultrathin sections under electron microscope. Results: Transplanted SCs and myelinated fibers im-munocytochemically labeled by MBP, P0 as well as S100 distributed in whole injured area. The quantity of myeli-nated fibers labeled by the three myelin proteins showed no statistical difference, however, which was significantly larger than that of controls. On the semithin sections, the experi-mental group demonstrated more myelinated fibers in the injured area than the controls, but the fibers had smaller diameter and thinner myelin sheath under electron microscope. Conclusion: SCs can promote regeneration of injured nerve fibers and enhance remyelination, which may be his-tological basis of SCs-mediated functional repair of injured spinal cords. Key words: Spinal cord injury; Schwann cells; My-elin basic protein; Myelin P0 protein; S100 proteins

  9. 大鼠脊髓损伤椎管内蛛网膜下腔持续给药模型的建立%Establishment of spinal cord injury rat model of continuous infusion inside subarachnoid space of spinal canal

    Institute of Scientific and Technical Information of China (English)

    刘德华; 王建; 高志强; 邹连生; 张功亮

    2014-01-01

    Objective To establish spinal cord injury rat model of continuous infusion inside subarachnoid space of spinal canal .Methods By using Allen′s method as a reference ,rat models of acute spinal canal injury was prepared to simulate spinal cord injuries similar to clinical trauma .Continuous infusion device was installed inside subarachnoid space in the lesion .The behaviors of rat models were observed and the effects of this device was evalua‐ted by measuring the level of glucose in the drug delivery device .Results Rats in the experimental group suffered from paraplegia in double hindlimb ,and the tension of muscle below the level of spinal injury was decreased ,with myodynamia level of 0 grade ,without reaction to acupuncture ,and with apparent urine retention .The four limbs of rats in the control group functioned normally .Among all of the 30 rats ,1 rat died in 2 days ,2 rats suffered from spas‐tic paralysis ,catheter of 2 rats were lost or blocked ,and 6 rats showed various degree of self mutilation after surgery . Conclusion The rat model of acute spinal canal injury ,prepared in reference to Allen′s method and installed with continuous infusion device inside subarachnoid space in the lesion ,might be with fine repeatability and could provide stable injured rat model .%目的:建立一种脊髓损伤椎管内蛛网膜下腔持续给药的动物模型。方法参照A llen重物坠落法制备急性脊髓挫伤动物模型,模拟临床上外伤所致的脊髓损伤,并在损伤灶安装蛛网膜下腔持续给药装置,观察大鼠的行为表现,并通过检测给药装置内葡萄糖含量判断该装置效果。结果脊髓损伤实验组大鼠麻醉清醒后均表现为双后肢截瘫,损伤平面以下肌张力降低,肌力0级,对针刺亦无反应,并明显尿潴留;对照组大鼠四肢活动正常。30只大鼠中,1只在术后2 d死亡,2只大鼠表现为痉挛性瘫痪,2只大鼠导管脱落或堵塞,6只大鼠表

  10. Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence.

    Science.gov (United States)

    İkinci, Ayşe; Mercantepe, Tolga; Unal, Deniz; Erol, Hüseyin Serkan; Şahin, Arzu; Aslan, Ali; Baş, Orhan; Erdem, Havva; Sönmez, Osman Fikret; Kaya, Haydar; Odacı, Ersan

    2016-09-01

    The effects of devices emitting electromagnetic field (EMF) on human health have become the subject of intense research among scientists due to the rapid increase in their use. Children and adolescents are particularly attracted to the use of devices emitting EMF, such as mobile phones. The aim of this study was therefore to investigate changes in the spinal cords of male rat pups exposed to the effect of 900MHz EMF. The study began with 24 Sprague-Dawley male rats aged 3 weeks. Three groups containing equal numbers of rats were established-control group (CG), sham group (SG) and EMF group (EMFG). EMFG rats were placed inside an EMF cage every day between postnatal days (PD) 21 and 46 and exposed to the effect of 900MHz EMF for 1h. SG rats were kept in the EMF cage for 1h without being exposed to the effect of EMF. At the end of the study, the spinal cords in the upper thoracic region of all rats were removed. Tissues were collected for biochemistry, light microscopy (LM) and transmission electron microscopic (TEM) examination. Biochemistry results revealed significantly increased malondialdehyde and glutathione levels in EMFG compared to CG and SG, while SG and EMFG catalase and superoxide dismutase levels were significantly higher than those in CG. In EMFG, LM revealed atrophy in the spinal cord, vacuolization, myelin thickening and irregularities in the perikarya. TEM revealed marked loss of myelin sheath integrity and invagination into the axon and broad vacuoles in axoplasm. The study results show that biochemical alterations and pathological changes may occur in the spinal cords of male rats following exposure to 900MHz EMF for 1h a day on PD 21-46. PMID:26708410

  11. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  12. Effect of MDMA (ecstasy) on activity and cocaine conditioned place preference in adult and adolescent rats

    OpenAIRE

    Åberg, Maria; Wade, Dean; Wall, Erin; Izenwasser, Sari

    2006-01-01

    MDMA (ecstasy) is a drug commonly used in adolescence, and many users of MDMA also use other illicit drugs. It is not known whether MDMA during adolescence alters subsequent responses to cocaine differently than in adults. This study examined the effects of MDMA in adolescent and adult rats on cocaine conditioned reward. At the start of these experiments, adolescent rats were at postnatal day (PND) 33 and adult rats at PND 60. Each rat was treated for seven days with MDMA (2 or 5 mg/kg/day or...

  13. Acute behavioral toxicity of carbaryl and propoxur in adult rats.

    Science.gov (United States)

    Ruppert, P H; Cook, L L; Dean, K F; Reiter, L W

    1983-04-01

    Motor activity and neuromotor function were examined in adult CD rats exposed to either carbaryl or propoxur, and behavioral effects were compared with the time course of cholinesterase inhibition. Rats received an IP injection of either 0, 2, 4, 6 or 8 mg/kg propoxur or 0, 4, 8, 16 or 28 mg/kg carbaryl in corn oil 20 min before testing. All doses of propoxur reduced 2 hr activity in a figure-eight maze, and crossovers and rears in an open field. For carbaryl, dosages of 8, 16 and 28 mg/kg decreased maze activity whereas 16 and 28 mg/kg reduced open field activity. In order to determine the time course of effects, rats received a single IP injection of either corn oil, 2 mg/kg propoxur or 16 mg/kg carbaryl, and were tested for 5 min in a figure-eight maze either 15, 30, 60, 120 or 240 min post-injection. Immediately after testing, animals were sacrificed and total cholinesterase was measured. Maximum effects of propoxur and carbaryl on blood and brain cholinesterase and motor activity were seen within 15 min. Maze activity had returned to control levels within 30 and 60 min whereas cholinesterase levels remained depressed for 120 and 240 min for propoxur and carbaryl, respectively. These results indicate that both carbamates decrease motor activity, but behavioral recovery occurs prior to that of cholinesterase following acute exposure.

  14. Dobutamine stress echocardiography in healthy adult male rats

    Directory of Open Access Journals (Sweden)

    Couet Jacques

    2005-10-01

    Full Text Available Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe. Results Dobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate. Conclusion DSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.

  15. Effect of exposure to diazinon on adult rat's brain.

    Science.gov (United States)

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain. PMID:24217015

  16. A PET/CT-based Morphometric Study of Spinal Canal in Korean Young Adults: Anteroposterior Diameter from Cervical Vertebra to Sacrum

    OpenAIRE

    Kang, Moo Sung; Park, Jeong Yoon; Chin, Dong Kyu; Kim, Kyung Hyun; Kuh, Sung Uk; Kim, Keun Su; Cho, Yong Eun

    2012-01-01

    Objective To establish normative data for spinal canal AP diameter from cervical vertebra to sacrum in the Korean young and to assess the exposed spinal canal after laminectomy which was related with restenosis by post-laminectomy membrane formation. Methods From PET/CT, axial bone-window CT of 83 young adults (20-29 years) were obtained, and we measured AP diameters of C3, C5, C7, T1, T4, T8, T12, L1, L3, L5 and S1. We also measured exposed AP diameter of C3, C5, C7, T1 and T2 above imaginar...

  17. Exercise alleviates hypoalgesia and increases the level of calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Patrícia Severo do Nascimento

    2012-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of treadmill training on nociceptive sensitivity and immunoreactivity to calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats. METHODS: Male Wistar rats were divided into three groups: control, diabetic and trained diabetic. Treadmill training was performed for 8 weeks. The blood glucose concentrations and body weight were evaluated 48 h after diabetes induction and every 30 days thereafter. The nociceptive sensitivity was evaluated using the tail-flick apparatus. The animals were then transcardially perfused, and the spinal cords were post-fixed, cryoprotected and sectioned in a cryostat. Immunohistochemistry for calcitonin gene-related peptide analysis was performed on the dorsal horn of the spinal cord. RESULTS: The nociceptive sensitivity analysis revealed that, compared with the control and trained diabetic animals, the latency to tail deflection on the apparatus was longer for the diabetic animals. Optical densitometry demonstrated decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord in diabetic animals, which was reversed by treadmill training. CONCLUSION: We concluded that treadmill training can alleviate nociceptive hypoalgesia and reverse decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord of diabetic animals without pharmacological treatment.

  18. Micturition in conscious rats with and without bladder outlet obstruction: role of spinal alpha 1-adrenoceptors.

    OpenAIRE

    Ishizuka, O; Persson, K.; Mattiasson, A.; Naylor, A; Wyllie, M.; Andersson, K.

    1996-01-01

    1. In normal rats and rats with bladder hypertrophy secondary to outflow obstruction, undergoing continuous cytometry, we examined the responses to the selective alpha 1-adrenoceptor antagonist doxazosin given intrathecally (i.t.) and intra-arterially (i.a.). In addition, we investigated the effects of the drug on L-dopa-induced bladder hyperactivity in normal, unobstructed rats. 2. Doxazosin 50 nmol (approximately 60 micrograms kg-1), given i.t., decreased micturition pressure in normal rats...

  19. Effects of neonatal peripheral tissue injury on pain-related behaviors in adult rats

    Directory of Open Access Journals (Sweden)

    Meng-meng LI

    2013-09-01

    Full Text Available Objective To observe the effects of peripheraltissueinjury in the developmental stage of newborn rats on pain-related behaviors in adult rats. Methods SD rats 1,4,7,14,21 and 28days after birth were selected in thepresent study(4litters at each time point and 10 rats per litter.Each litter of rats was randomly divided intoinjury group(receiving subcutaneous injection of 20μl bee venomand control group(receiving subcutaneous injection of 20μl normal saline, with20 in each group, and then raised for 2 months to adulthood. The baseline pain threshold was observed by measuring spontaneous paw flinching reflex,paw withdrawal thermal latency(PWTLand paw withdrawal mechanical threshold(PWMT, then 50μl 0.4% bee venom was subcutaneously injected to each rat, and the changesinpa in reaction and pain threshold were determined. Results The baseline thermal pain threshold in adult rats receiving bee venom or normal saline at different time points after birth was similar,but baseline mechanical pain threshold in adult rats receiving bee venom at1,4,7and14 days after birth was decreased significantly compared with the adult rats receiving normal saline at corresponding time points(P0.05.Mechanical hyperalgesia was not induced in rats injected with bee venom but induced in adult ratsinjected with normal saline4-21days after birth.Injection of bee venom 21 and 28 days after birth could obviously enhance the bee venom-induced hyperalgesiain adult rats compared with control group(P<0.01. Conclusions Bee venom stimuli at different time points after birth could affect the baseline PWMT and mechanical pain hypersensitivityin adult rats but not the baseline PWTL and thermal pain hypersensitivity. The 21st day maybe a key time point of nervous system development in rats.

  20. Effect of Fujian tablet on the expression of Nogo-A mRNA in the cervical spinal cord of middle cerebral artery occlusion model rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Inhibiting the expression of Nogo-A in cervical spinal cord by use of interaction of antigen and antibody can help the remodeling of corticospinal projection of focal cerebral ischemia model rats to facilitate neurological recovery, which provides a new possible mechanism for drugs to promote neurological recovery. However, the effects of drugs on the expression of Nogo-A in cervical spinal cord are still unclear.OBJECTIVE: To observe the effect of Fujian tablet on the expression of Nogo-A mRNA in cervical spinal cords of middle cerebral artery occlusion (MCAO) rats, and to investigate the possible regulatory effect of Fujian tablet on the regenerated microenvironment of spinal conduction bundle.DESIGN: A randomized and controlled trial taking Wistar rats as experimental animals.SETTING: Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine.MATERIALS: This experiment was carried out in the laboratory of Shandong Academy of Medical Science between June 2005 and July 2006. A total of 40 healthy male Wistar rats, aged 12 weeks, weighing 250 -300 g, were provided by the Experimental Animal Center of Shandong University. Fujian tablets (main components: Heshouwu, Yinyanghuo, etc) were provided by office of Pharmaceutics of Shandong University of traditional Chinese medicine. Nogo-A detection kit was provided by Wuhan Boster Biotechnology Co.,Ltd.,and batch number was 040309009. This experiment was approved by Local Animal Ethics Committee.METHODS: Forty male rats were randomly divided into 4 groups, with 10 in each: normal group,sham-operation group, model group and administration group. Rats in the administration group and model group were subjected to MCAO. Rats in the sham-operation group underwent the same craniotomy, and their middle cerebral arteries (MCA) were not occluded. Rats in the normal group were untouched. Rats in administration group were intragastrically administrated with the solution of Fujian

  1. Hyperbaric oxygen intervention on expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in spinal cord injury models in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; LIU Xue-hua; QU Shao-dong; YANG Jing; WANG Zhi-wei; GAO Chun-jin; SU Qing-jun

    2013-01-01

    Background Hyperbaric oxygen (HBO) intervention is a main therapeutic method and the curative effect has been certified for spinal cord injury (SCI),but the mechanisms of the neuroprotective effect of HBO on SCI remain elusive.This study aimed to observe the change in expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) after SCI at different time points and to investigate the neuroprotective mechanism of HBO on SCI in rats.Methods A total of 160 adult Sprague-Dawley rats,weighing between 250 and 300 g,were randomly assigned to four experimental groups (n=40 per group).SCl group:SCl was created with a special NYU impactor of Allen's by a 25 gramcentimeter impacting energy on T10 of the spinal cord.SCI+HBO group:HBO therapy after SCI model was established.Sham operation (SH) group:only laminectomy of T10 and no impact on the spinal cord was done.SH+HBO group:HBO therapy after sham operation.The hindlimb functional recovery was evaluated using Basso,Beattie,and Bresnahan (BBB) score and the expressions of HIF-1α and VEGF were observed with fluorescent quantitation PCR and Western blotting method of six rats picked randomly from each group at different time points of 1,3,7,and 14 days after operation.Results Rats in the SCI group and SCI+HBO group were paralyzed completely after operation with BBB 0-1 score.Rats in the SH group and SH+HBO group could walk after sham operation with BBB 20-21 score.The BBB score of rats in the SCI+HBO group (4.67±1.97 and 10.83±2.23) was higher than that in the SCI group (1.83±0.75 and 6.67±2.16) at 7 and 14 days time points obviously (P <0.05).The expressions of HIF-1α and VEGF in the SCI group and SCI+HBO group were higher than in the SH group and SH+HBO group at any time point obviously (P <0.05),while the SCI+HBO group presented the least expression of HIF-1α mRNA and protein (3.82±0.41 and 0.59±0.06; 2.26±0.41 and 0.37±0.05; 1.58±0.26 and 0.29±0.05) than that in the

  2. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation.

    Directory of Open Access Journals (Sweden)

    Dorothée Cantinieaux

    Full Text Available Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.

  3. Serotonin receptors are involved in the spinal mediation of descending facilitation of surgical incision-induced increase of Fos-like immunoreactivity in rats

    Directory of Open Access Journals (Sweden)

    Prado Wiliam A

    2010-03-01

    Full Text Available Abstract Background Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide, 5-HT2A (ketanserin or 5-HT1/2A/2C/5/6/7 (methiothepin receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions We conclude: (1 muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5 α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

  4. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors.

    Science.gov (United States)

    Koo, Sung Tae; Lim, Kyu Sang; Chung, Kyungsoon; Ju, Hyunsu; Chung, Jin Mo

    2008-03-01

    In a previous study, we showed that electroacupuncture (EA) applied to the SI-6 point on the contralateral forelimb produces long-lasting and powerful analgesia in pain caused by ankle sprain in a rat model. To investigate the underlying mechanism of EA analgesia, the present study tested the effects of various antagonists on known endogenous analgesic systems in this model. Ankle sprain was induced in anesthetized rats by overextending their right ankle with repeated forceful plantar flexion and inversion of the foot. When rats developed pain behaviors (a reduction in weight-bearing of the affected hind limb), EA was applied to the SI-6 point on the contralateral forelimb for 30 min under halothane anesthesia. EA significantly improved the weight-bearing capacity of the affected hind limb for 2h, suggesting an analgesic effect. The alpha-adrenoceptor antagonist phentolamine (2mg/kg, i.p. or 30 microg, i.t.) completely blocked the EA-induced analgesia, whereas naloxone (1mg/kg, i.p.) failed to block the effect. These results suggest that EA-induced analgesia is mediated by alpha-adrenoceptor mechanisms. Further experiments showed that intrathecal administration of yohimbine, an alpha(2)-adrenergic antagonist, reduced the EA-induced analgesia in a dose-dependent manner, whereas terazosin, an alpha(1)-adrenergic antagonist, did not produce any effect. These data suggest that the analgesic effect of EA in ankle sprain pain is, at least in part, mediated by spinal alpha(2)-adrenoceptor mechanisms. PMID:17537577

  5. Protective effect of safflower on spinal cord injury in rats%红花注射液对大鼠脊髓损伤后继发性水肿的影响

    Institute of Scientific and Technical Information of China (English)

    田小武; 陈剑峰

    2011-01-01

    目的 探讨大鼠脊髓损伤(SCI)后,红花注射液对脊髓继发性水肿的影响.方法 将18只SD大鼠随机分为假手术组(A组), 脊髓打击损伤组(B组)、红花溶液组(C组),每组6只.B组根据改良的重物撞击装置制备脊髓急性打击损伤动物模型,C组在脊髓打击损伤后进行腹腔注射红花溶液100 mg/kg.观察并检测3组大鼠SCI后1、24、48 h 3个不同时间点后肢运动功能评分变化以及脊髓组织病理学、组织含水量.结果 术后A组大鼠功能完全恢复; C组与B组相比,大鼠后肢运动功能24、48 h 2个时间点均有所改善,但24 h时已出现明显差异(P<0.05), 48 h时差异更为显著(P<0.01).SCI后B、C各组的损伤段组织含水量均与A组有明显差异(P<0.05); SCI后24 h时C组与B组相比明显较低(P<0.05), 48 h差异更显著(P<0.01).结论 红花注射液能通过抑制脊髓继发性水肿,促进SCI后的组织功能恢复.%Objective To study the effects of safflower on spinal cord secondary edema after spinal cord injury in adult rats. Methods Eighteen SD rats were randomly divided into 3 groups:Sham-operation group(group A), spinal cord injury group(group B), and safflower group(group C). Animal models of spinal cord injury were induced with weight - dropping method. In group C,Safflower of 100 mg/kg was respectively injected through abdomen immediately after modeling.The locomotor function of the hind limbs, the histopathological and tissue water content changes in the spinal cord were observed 1 h, 24 h and 48 h after modeling. Results The hind limb locomotor function of the rats in group completely recovered. Compared with that in group B, the hind limb locomotor function of rats in group C improved after 24 h and 48 h, with obviously significant improvement after 24 h(P<0.05) and more significant difference after 48 h( P<0.01 ). In group A,the tissue structure was well preserved. In group B, the nerve tissue showed multifocal leukoencephalopathy

  6. Evidence for a periaqueductal gray-nucleus retroambiguus spinal cord pathway in the rat

    NARCIS (Netherlands)

    Holstege, G.; Kerstens, Lenka; Moes, M.C.; Horst, V.G.J.M. van der

    1997-01-01

    The nucleus retroambiguus in the cat has been shown to receive strong projections from the periaqueductal gray and to send fibres to distinct motoneuronal cell groups in brainstem and spinal cord. The nucleus retroambiguus plays a role in the production of vocalization and possibly copulatory (lordo

  7. Morphological study of Schwann cells remyelination in contused spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LI Yue; ZHANG Lu; ZHANG Jie-yuan; LIU Zheng; DUAN Zhao-xia; LI Bing-cang

    2013-01-01

    Objective:To study the role and effect of Schwann cells (SCs) remyelination in contused spinal cord.Methods:Green fluorescence protein expressing-SCs were transplanted into the epicenter,rostral and caudal tissues of the injury site at 1 week after the spinal cords were contused.At 6 weeks,the spinal cords were removed for cryosections,semithin sections and ultrathin sections,and then immunocytochemical staining of myelin basic protein (MBP),P0 protein (P0) and S 100 protein (S100) was carried out on the cryosections.Qualitative and semiquantitative analyses were performed on the cryosections and semithin sections.Ultrastructure ofmyelinated fibers was observed on the ultrathin sections under electron microscope.Results:Transplanted SCs and myelinated fibers immunocytochemically labeled by MBP,P0 as well as S100 distributed in whole injured area.The quantity of myelinated fibers labeled by the three myelin proteins showed no statistical difference,however,which was significantly larger than that of controls.On the semithin sections,the experimental group demonstrated more myelinated fibers in the injured area than the controls,but the fibers had smaller diameter and thinner myelin sheath under electron microscope.Conclusion:SCs can promote regeneration of injured nerve fibers and enhance remyelination,which may be histological basis of SCs-mediated functional repair of injured spinal cords.

  8. A Radio-telemetric System to Monitor Cardiovascular Function in Rats with Spinal Cord Transection and Embryonic Neural Stem Cell Grafts

    Science.gov (United States)

    Hou, Shaoping; Blesch, Armin; Lu, Paul

    2014-01-01

    High thoracic or cervical spinal cord injury (SCI) can lead to cardiovascular dysfunction. To monitor cardiovascular parameters, we implanted a catheter connected to a radio transmitter into the femoral artery of rats that underwent a T4 spinal cord transection with or without grafting of embryonic brainstem-derived neural stem cells expressing green fluorescent protein. Compared to other methods such as cannula insertion or tail-cuff, telemetry is advantageous to continuously monitor blood pressure and heart rate in freely moving animals. It is also capable of long term multiple data acquisitions. In spinal cord injured rats, basal cardiovascular data under unrestrained condition and autonomic dysreflexia in response to colorectal distension were successfully recorded. In addition, cardiovascular parameters before and after SCI can be compared in the same rat if a transmitter is implanted before a spinal cord transection. One limitation of the described telemetry procedure is that implantation in the femoral artery may influence the blood supply to the ipsilateral hindlimb. PMID:25350486

  9. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  10. Activation of Spinal α2-Adrenoceptors Using Diluted Bee Venom Stimulation Reduces Cold Allodynia in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Suk-Yun Kang

    2012-01-01

    Full Text Available Cold allodynia is an important distinctive feature of neuropathic pain. The present study examined whether single or repetitive treatment of diluted bee venom (DBV reduced cold allodynia in sciatic nerve chronic constriction injury (CCI rats and whether these effects were mediated by spinal adrenergic receptors. Single injection of DBV (0.25 or 2.5 mg/kg was performed into Zusanli acupoint 2 weeks post CCI, and repetitive DBV (0.25 mg/kg was injected for 2 weeks beginning on day 15 after CCI surgery. Single treatment of DBV at a low dose (0.25 mg/kg did not produce any anticold allodynic effect, while a high dose of DBV (2.5 mg/kg significantly reduced cold allodynia. Moreover, this effect of high-dose DBV was completely blocked by intrathecal pretreatment of idazoxan (α2-adrenoceptor antagonist, but not prazosin (α1-adrenoceptor antagonist or propranolol (nonselective β-adrenoceptor antagonist. In addition, coadministration of low-dose DBV (0.25 mg/kg and intrathecal clonidine (α2-adrenoceptor agonist synergically reduced cold allodynia. On the other hand, repetitive treatments of low-dose DBV showing no motor deficit remarkably suppressed cold allodynia from 7 days after DBV treatment. This effect was also reversed by intrathecal idazoxan injection. These findings demonstrated that single or repetitive stimulation of DBV could alleviate CCI-induced cold allodynia via activation of spinal α2-adrenoceptor.

  11. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  12. The influence of protein-calorie malnutrition on the development of paranodal regions in spinal roots. A study with the OTAN method on rat.

    Science.gov (United States)

    Nordborg, C

    1977-11-28

    During the early postnatal development of spinal roots in rats paranodal regions were often found, containing OTAN-positive inclusions in the Schwann cell cytoplasm. The presence of OTAN-positive paranodal regions showed variations in time, which were synchronous for ventral and dorsal roots. Dorsal roots, however, showed a more marked presence during development than ventral roots. Spinal roots of animals submitted to a 50% food restriction, were shown to contain more OTAN-positive paranodal regions than controls. This was true for ventral as well as dorsal roots. It is suggested that crowding of internodal segments could be one factor, determining the presence of paranodal, OTAN-positive material. PMID:414508

  13. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study

    DEFF Research Database (Denmark)

    Kjaerulff, O; Kiehn, O

    1996-01-01

    ventral root recordings to monitor neuronal activity and tested the ability of various isolated parts of the caudal thoraciclumbar cord to generate rhythmic bursting in a combination of 5-HT and NMDA. In addition, pathways mediating left/right and rostrocaudal burst alternation were localized. We found...... decreased in the caudal direction, but the rhythm-generating network was found to be distributed over the entire lumbar region and to extend into the caudal thoracic region. The pathways mediating left/ right alternation exist primarily in the ventral commissure. As with the rhythmogenic ability......, these pathways were distributed along the lumbar enlargement. Both lateral and ventral funiculi were sufficient to coordinate activity in the rostral and caudal regions. We conclude that the networks organizing locomotor-related activity in the spinal cord of the newborn rat are distributed....

  14. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.

    Science.gov (United States)

    Zhu, He-Quan; Xu, Jing; Shen, Kai-Feng; Pang, Rui-Ping; Wei, Xu-Hong; Liu, Xian-Guo

    2015-11-01

    Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect. PMID:26376216

  15. Effect of Fenugreek Seed Extract (Trigonella Foenum-graecum on Brachial Region of the Spinal Cord of an 18-Day Old Rat Offspring with Diabetes

    Directory of Open Access Journals (Sweden)

    Z Khaksar

    2013-08-01

    Full Text Available Abstract Background & aim: Diabetes can affect the spinal cord, an important part of the central nervous system. Fenugreek seed has been suggested to have potential antidiabetic effects. This study was conducted to assess the effects of Fenugreek seed extract (trigonella foenum-graecum on fetal spinal cord structure, specifically in the brachial enlargement cord in an 18-day old fetus of diabetic mothers treated with extracts in comparison with the control groups' mothers. Methods: In the present cross-sectional study, sixteen healthy female rats were randomly divided into four equal groups: Healthy control, Diabetes control, Fenugreek control, Fenugreek treatment. Diabetes was induced by intraperitoneal injection of Streptozotcin (50 mg/kg. All four groups became pregnant by natural mating. After formation of the nervous system, two fetuses from each group were expelled by cesarean after performing anesthesia on the animals on 18th day of pregnancy furthermore their brachial enlargement spinal cord samples were taken. Finally, the tissue sections were prepared by routine procedures and diverse histological parameters were examined. The collected data were analyzed by one-way ANOVA. Results: results showed that fetal body weight on the diabetic control group was significantly higher compared to the other groups (P≤ 0/05. Moreover, significant reductions in the transvers and vertical diameters in central channel of the spinal cord and as well in the number of neurons of the spinal cord gray matter in the diabetic control groups in comparison with the other groups were observed (P≤0/05. Conclusion: The hyperglycemic effect of maternal diabetes during fetal period causes abnormalities, especially in the brachial enlargement of spinal cord, including changes in the spinal cord and neurons number in the gray matter. Disorders occurring in the prenatal remains and may perhaps cause lack of ability to perform certain physical activities. Key words

  16. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  17. Regularity of Spinal Cord Blood Flow Following Radiation-induced Spinal Cord Injury in Rats%大鼠放射性脊髓损伤脊髓血流量变化规律

    Institute of Scientific and Technical Information of China (English)

    张晶; 魏丽; 孙万良; 章金刚; 游华; 张伟京

    2013-01-01

    cord barrier breakdown and vascular permeability changes is much earlier than white matter necrosis and demyelination.Therefore,the objective of this article is to clarify the regularity of spinal cord blood flow following radiation-induced spinal cord injury in rats.Methods:60 rats were randomly divided into 12 groups before irradiation,one of which served as control group,remaining 11 groups received single dose 30 Gy γ ray beams to a 2.0 cm cervical spine field spanning C2-T2 using 60Co radiation therapy machine.Dose rate is 153 cGy/min,rats is from the radiation source 80 cm.Irradiationtimeis 1153 seconds,irradiationrange is of 2.0× 1.0 cm.Rats in control group pretended to receive single dose 30 Gy γ ray and the spinal cord blood flow was measured pre-irradiation and post-irradiation with laser Doppler fiow metry.The spinal cord blood flow of 11 groups of rats was measured with laser Doppler flow metry pre-irradiation and post-irradiation 1,3,7,14,21,30,60,90,120,150,180 days.Results:After radiation-induced spinal cord injury in rats,spinal cord blood flow is decreased in the early stage,and reached the lowest point in the 90 days after irradiation,subsequently recovered slightly.Conclusion:Radiation-induced spinal cord injury in rats can affect the spinal cord blood flow as result to spinal cord in rats sustained hypoperfusion,ischemia and hypoxia and eventually lead to spinal cord irreversible damage.Patients often experience fatigue and an increase in neurologic symptoms and signs,and death from brain herniation.This article provides a clinical pathophysiological basis for the early prevention of radiationinduced spinal cord injury.

  18. Effect of lycopene on the expression of pain-related molecules in spinal cord of model rats with neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Dong-Hua Peng

    2016-01-01

    Objective:To analyze the effect of lycopene on the expression of pain-related molecules in spinal cord of model rats with neuropathic pain.Methods:A total of 30 healthy female SD rats were collected to establish neuropathic pain models according to the literatures, including 10 in sham operation group, 10 in model control group and 10 in model treatment group. Rats were executed to obtain L2-L6 segment of spinal cord, and then serum levels of pain-related indicators as well as gene and protein expression in it were detected.Results:Serum IL-17, HMGB-1, Aβ, Tau and C3 levels of sham operation group were lower than those of model control group and model treatment group while CGRP level was higher than that of model control group and model treatment group, and serum IL-17, HMGB-1, Aβ, Tau and C3 levels of model treatment group were lower than those of model control group while CGRP level was higher than that of model control group; ERK, CREB, BDNF, NMDA, AMPA and c-fos mRNA expression levels of sham operation group were lower than those of model control group and model treatment group, and ERK, CREB, BDNF, NMDA, AMPA and c-fos mRNA expression levels of model treatment group were lower than those of model control group; TRPV1, NF-κB, NOS, GFAP, ERK and CREB protein expression levels of sham operation group were lower than those of model control group and model treatment group while Reg expression level was higher than that of model control group and model treatment group, and TRPV1, NF-κB, NOS, GFAP, ERK and CREB protein expression levels of model treatment group were lower than those of model control group while Reg expression level was higher than that of model control group.Conclusion: Lycopene can effectively decrease the expression of pain-promoting genes in model rats with neuropathic pain, and is expected to become new treatment means of neuropathic pain in the future.

  19. Carbon Ion Irradiation of the Rat Spinal Cord: Dependence of the Relative Biological Effectiveness on Linear Energy Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saager, Maria, E-mail: m.saager@dkfz.de [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Glowa, Christin [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Peschke, Peter [Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center, Heidelberg (Germany); Brons, Stephan [Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Scholz, Michael [Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt (Germany); Huber, Peter E. [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Karger, Christian P. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2014-09-01

    Purpose: To measure the relative biological effectiveness (RBE) of carbon ions in the rat spinal cord as a function of linear energy transfer (LET). Methods and Materials: As an extension of a previous study, the cervical spinal cord of rats was irradiated with single doses of carbon ions at 6 positions of a 6-cm spread-out Bragg peak (16-99 keV/μm). The TD{sub 50} values (dose at 50% complication probability) were determined according to dose-response curves for the development of paresis grade 2 within an observation time of 300 days. The RBEs were calculated using TD{sub 50} for photons of our previous study. Results: Minimum latency time was found to be dose-dependent, but not significantly LET-dependent. The TD{sub 50} values for the onset of paresis grade 2 within 300 days were 19.5 ± 0.4 Gy (16 keV/μm), 18.4 ± 0.4 Gy (21 keV/μm), 17.7 ± 0.3 Gy (36 keV/μm), 16.1 ± 1.2 Gy (45 keV/μm), 14.6 ± 0.5 Gy (66 keV/μm), and 14.8 ± 0.5 Gy (99 keV/μm). The corresponding RBEs increased from 1.26 ± 0.05 (16 keV/μm) up to 1.68 ± 0.08 at 66 keV/μm. Unexpectedly, the RBE at 99 keV/μm was comparable to that at 66 keV/μm. Conclusions: The data suggest a linear relation between RBE and LET at high doses for late effects in the spinal cord. Together with additional data from ongoing fractionated irradiation experiments, these data will provide an extended database to systematically benchmark RBE models for further improvements of carbon ion treatment planning.

  20. Altered expression of 14-3-3ζ protein in spinal cords of rat fetuses with spina bifida aperta.

    Directory of Open Access Journals (Sweden)

    Li-na Wu

    Full Text Available BACKGROUND: A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs. A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed. METHODOLOGY/PRINCIPAL FINDINGS: We used immunoblotting and quantitative real-time PCR (qRT-PCR to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7, microRNA-375 (miR-375 and microRNA-451 (miR-451, which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses. CONCLUSIONS/SIGNIFICANCE: These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.

  1. Mature teratoma of the spinal cord in adults: An unusual case

    OpenAIRE

    Li, Yuan; Yang, Bo; SONG, LAIJUN; Yan, Dongming

    2013-01-01

    Intraspinal mature teratomas rarely occur in adults. The present study describes an unusual case of adult intradural mature teratoma, which was completely resected. A 22-year-old female presented with an intermittent pinching pain in the lower right shank that had lasted for three months. Magnetic resonance imaging (MRI) results indicated a multicystic mass extending from the T12 to L2 vertebrae, and the tumors were certified as teratomas by a histopathological examination. The level of pain ...

  2. Distant microglial and astroglial activation secondary to experimental spinal cord lesion Ativação microglial e astroglial à distância secundárias a lesão da medula espinhal

    OpenAIRE

    Ricardo José de Almeida Leme; Gerson Chadi

    2001-01-01

    This paper analysed whether glial responses following a spinal cord lesion is restricted to a scar formation close to the wound or they might be also related to widespread paracrine trophic events in the entire cord. Spinal cord hemitransection was performed in adult rats at the thoracic level. Seven days and three months later the spinal cords were removed and submitted to immunohistochemistry of glial fibrillary acidic protein (GFAP) and OX42, markers for astrocytes and microglia, as well a...

  3. Fertility of male adult rats submitted to forced swimming stress

    Directory of Open Access Journals (Sweden)

    G.Z. Mingoti

    2003-05-01

    Full Text Available We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004. No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001. These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.

  4. Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Takahiro Ando

    Full Text Available The formation of glial scars after spinal cord injury (SCI is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF proteins such as glial fibrillary acidic protein (GFAP and vimentin. In the current study, we delivered small interfering RNAs (siRNAs targeting these IF proteins to SCI model rats using photomechanical waves (PMWs, and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.

  5. Flexibilide Obtained from Cultured Soft Coral Has Anti-Neuroinflammatory and Analgesic Effects through the Upregulation of Spinal Transforming Growth Factor-β1 in Neuropathic Rats

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chen

    2014-06-01

    Full Text Available Chronic neuroinflammation plays an important role in the development and maintenance of neuropathic pain. The compound flexibilide, which can be obtained from cultured soft coral, possesses anti-inflammatory and analgesic effects in the rat carrageenan peripheral inflammation model. In the present study, we investigated the antinociceptive properties of flexibilide in the rat chronic constriction injury (CCI model of neuropathic pain. First, we found that a single intrathecal (i.t. administration of flexibilide significantly attenuated CCI-induced thermal hyperalgesia at 14 days after surgery. Second, i.t. administration of 10-μg flexibilide twice daily was able to prevent the development of thermal hyperalgesia and weight-bearing deficits in CCI rats. Third, i.t. flexibilide significantly inhibited CCI-induced activation of microglia and astrocytes, as well as the upregulated proinflammatory enzyme, inducible nitric oxide synthase, in the ipsilateral spinal dorsal horn. Furthermore, flexibilide attenuated the CCI-induced downregulation of spinal transforming growth factor-β1 (TGF-β1 at 14 days after surgery. Finally, i.t. SB431542, a selective inhibitor of TGF-β type I receptor, blocked the analgesic effects of flexibilide in CCI rats. Our results suggest that flexibilide may serve as a therapeutic agent for neuropathic pain. In addition, spinal TGF-β1 may be involved in the anti-neuroinflammatory and analgesic effects of flexibilide.

  6. Spinal cord glioneuronal tumor with neuropil-like islands with 1p/19q deletion in an adult with low-grade cerebral oligodendroglioma.

    Science.gov (United States)

    Fraum, Tyler J; Barak, Stephanie; Pack, Svetlana; Lonser, Russell R; Fine, Howard A; Quezado, Martha; Iwamoto, Fabio M

    2012-04-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is considered a rare variant of astrocytoma, characterized by discrete aggregates of cells expressing neuronal markers that punctuate a GFAP-positive glial background. Of the 24 published GTNI cases, only two occurred in adult spinal cords; none occurred concurrent with another CNS tumor; and none of those tested exhibited the 1p/19q deletion typical of oligodendroglioma. A 48-year-old man without significant past medical history was diagnosed with a WHO grade II oligodendroglioma by stereotactic biopsy of a lesion discovered after the patient suffered a generalized tonic-clonic seizure. By FISH analysis, this tumor exhibited the 1p/19q deletion present in up to 80% of oligodendrogliomas. The patient received 14 monthly cycles of temozolomide, and his cerebral tumor had a minor response. When the patient subsequently reported progressive paresthesias of his lower extremities, an MRI revealed an enhancing, cystic tumor of the thoracic spinal cord that was diagnosed as GTNI by histological analysis. By FISH analysis, this lesion exhibited the same 1p/19q deletion present in the concurrent cerebral oligodendroglioma. This case of a spinal cord GTNI with 1p/19q deletions constitutes the third report of a spinal cord GTNI in an adult patient; the first report of a GTNI in an individual with a separate CNS neoplasm; and the first report of a GTNI with 1p/19q deletions. This case establishes a potential genetic kinship between GTNI and oligodendroglioma that warrants further investigation.

  7. Neuropathies of spinal cord development in rat pups maternally fed with fried potato chips

    Directory of Open Access Journals (Sweden)

    Abdelalim A. Gad-Allah

    2013-08-01

    Results: Comparing with acrylamide-treatment, protein expression in spinal cord of pups maternally fed with fried potatoes was altered. Necrosis of motor neuronal cells within grey matter, hyperplasia of ependymal lining cells and fragility of white matter was detected. At ultrastructural level, the sensory and motor neuronal cells showed convoluted nuclear envelope and either chromatolysis or compacted chromatin material. Fragmentation of rough endoplasmic reticulum and damage of mitochondria become well evident in pups maternally fed with potato chips. The neuronal axons possessed vacuolation and demyelination associated with apparent damage of mitochondria. Conclusion: Supplementation of fried potato chips exerted neurotoxicity either directly through their content of acrylamide or via its metabolite glycidamide. Both components were reported to find their way across the placenta during gestation and breast milk during the lactation period, interfering with spinal cord differentiation and adversely affected demyelination. [J Exp Integr Med 2013; 3(4.000: 285-292

  8. Regulation of Peripheral Inflammation by Spinal p38 MAP Kinase in Rats

    OpenAIRE

    Boyle, David L.; Jones, Toni L.; Deepa Hammaker; Camille I Svensson; Sanna Rosengren; Salvatore Albani; Linda Sorkin; Firestein, Gary S.

    2006-01-01

    Editors' Summary Background. Rheumatoid arthritis is a disease marked by chronic inflammation, leading to joint pain and destruction. Pain and inflammation in the joints as well as other locations in the body (i.e., the “periphery”) are constantly monitored by the central nervous system (i.e., the brain and spinal cord). Scientists have long suspected that the central nervous system (CNS) can regulate inflammation and immune responses, but little is known about how the CNS does this. One pote...

  9. Bone marrow mesenchymal stem cells, collagen scaffold and BMP-2 for rat spinal fusio

    OpenAIRE

    Arrabal, Pilar M.; de Visser, R; Cifuentes, Manuel; Becerra Ratia, José; Jiménez-Enjuto, E.

    2013-01-01

    The use of autograft for posterolateral spinal fusion, continue being considered the gold standard for the treatment of spine pathologies. However, due to complications such as donor site morbidity, increased operating time, and limited supply, the use of allograft has become an acceptable practice especially in multisegment arthrodesis or in patients with previous graft harvests. Since their use involves the risk of immune response or disease transmission and fusion rates are not as good as ...

  10. The effect of recombinant human erythropoietin on the expression of VEGF in acute spinal cord injury rat%重组人促红细胞生成素对大鼠脊髓损伤后VEGF表达的影响

    Institute of Scientific and Technical Information of China (English)

    霍岩; 沈兆亮; 王冬; 王巍; 高爽

    2012-01-01

    目的 研究重组人促红细胞生成素(recombinant human erythropoietin,rHuEPO)对急性脊髓损伤大鼠血管内皮生长因子(vascular endothelial growth factor,VEGF)表达的影响.方法 参照Nystrom's压迫方法制作大鼠脊髓压迫损伤模型,成年健康Wistar大鼠72只,雌雄不限,按随机数字表法分为正常对照组8只、损伤组32只、重组人促红细胞生成素治疗组32只.免疫组化和Western blot检测各组大鼠VEGF的表达.结果 免疫组化结果显示:损伤组VEGF阳性产物的平均光密度值(mean optic density,MOD)显著高于正常对照组(P<0.01),rHuEPO治疗组与损伤组相比MOD值明显升高(P<0.01).Western blot结果显示:与正常对照组比较,损伤组VEGF积分光密度值(integrated density value,IDV)与内参照IDV的比值明显升高(P<0.01),而rHuEPO治疗组则明显高于损伤组(P<0.01).结论 rHuEPO参与脊髓继发性损伤修复,可能与上调VEGF的表达相关.%Objective To study the expression of vascular endothelial growth factor (VECF) in acute spinal cord injury rat after recombinant human erythropoietin (rHuEPO)was injected. Methods The spinal cord injury was induced with Nystrom's way. The healthy adult Wistar rats (72) were randomly divided into normal control group, spinal cord injury group, recombinant human erythropoietin treated group on average. The expression of VEGF was observed by immunochemistry and Western blot methods in all groups. Results The mean optic density (MOD) of VECF positive product increased significantly in acute spinal cord injury group than in normal control (P<0.01), and increased in the recombinant human erythropoietin treated group than in acute spinal cord injury group (P<0.01) by immunochemistry. The integrated density value (IDV) for VEGF protein band increased significantly in the spinal cord injury group than in normal control (P< 0.01), and increased in recombinant human erythropoietin group than in spinal cord injury group (P

  11. The proteome of neural stem cells from adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Fütterer Carsten D

    2003-06-01

    Full Text Available Abstract Background Hippocampal neural stem cells (HNSC play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. Results Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5 protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca2+ signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. Conclusions The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before.

  12. Neonatal injections of methoxychlor decrease adult rat female reproductive behavior.

    Science.gov (United States)

    Bertolasio, Jennifer; Fyfe, Susanne; Snyder, Ben W; Davis, Aline M

    2011-12-01

    Methoxychlor (MXC), a commonly used pesticide, has been labeled as an endocrine disruptor. To evaluate the impact of neonatal exposure to MXC on female reproduction, female Sprague-Dawley rats were given subcutaneous injections on postnatal days 1, 3, and 5. The injections contained 1.0mg MXC, 2.0mg MXC, 10 μg 17β-estradiol benzoate (positive control), or sesame oil (vehicle). The injections of MXC had no effect on anogenital distance or day of vaginal opening. Treatment with either 2.0mg MXC or estradiol significantly increased the total number of days with vaginal keratinization. Treatment with MXC had no effect on ability to exhibit a mating response as an adult female, although the high dose MXC (2.0) and the positive control (estradiol) animals demonstrated a decrease in degree of receptivity, a decrease in proceptive behavior and an increase in rejection behavior. These data suggest that higher doses of MXC given directly to pups during the neonatal period can act as an estrogen and alter aspects of the nervous system, impacting adult reproductive characteristics.

  13. Primary culture of adult rat liver cells. I. Preparation of isolated cells from trypsin-perfused liver of adult rat

    Directory of Open Access Journals (Sweden)

    Miyazaki,Masahiro

    1977-12-01

    Full Text Available Isolated hepatic cells from adult rats were prepared by perfusing the livers with trypsin. The highest yield of viable cells was obtained by perfusing the liver with 0.1% trypsin, pH 7.0, at 37 degrees C for 30 min. Following this treatment about 70% of cells excluded trypan blue. The isolated cells contained many binucleate cells. Between 60 and 70% of DNA present originally in the liver was recovered from the isolated hepatic cells, which had higher glucose 6-phosphatase activity than the liver. Thus the resulting cell population seems to be rich in hepatocytes. The isolated hepatic cells, however, lost some of their cellular proteins such as alanine and tyrosine amino-transferases. It was suggested that the membranes of isolated hepatic cells might be damaged by both enzymatic digestion and mechanical destruction.

  14. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    Science.gov (United States)

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P neurons is influenced by spontaneous firings of DRG neurons after CCD.

  15. 一种新型脊柱撑开器的研制及脊髓牵张性损伤动物模型的建立%ESTABLISHMENT OF TRACTIVE SPINAL CORD INJURY MODEL IN RATS WITH A NOVEL SPINAL DISTRACTOR

    Institute of Scientific and Technical Information of China (English)

    王文岳; 杨天府; 雷鸣鸣; 裴福兴; 刘雷

    2011-01-01

    . Methods A novel spinal distractor was prepared based on previous study. Sixty adult Sprague Dawley rats (weighing 250-300 g) were randomly divided into 5 groups, 12 rats in each group. T12-L3 spinal structures in the rear area were exposed and then T13-L2 spinal cords were revealed via dual laminectomy and kept integrity. In group A, a novel spinal distractor was placed without distraction; in groups B, C, D, and E, the T12-L3 spines were tracted with a novel spinal distractor which put on transverses process ofT12-L3 vertebrae. During the tractive period, the somatosensory evoked potential (SEP) was used to monitor spinal cord function. The SEP amplitudes descended 50% and kept distracting for 5 minutes in group B and for 10 minutes in group C, and descended 70% and kept distracting for 5 minutes in group D and for 10 minutes in group E, respectively to establish the tractive spinal cord injury model of T11-L2. The improved combine behavioral score (ICBS) was recorded at 1 and 7 days after injury in 6 rats of each group. The T13-L2 spinal tissue specimens were harvested for the morphological observation by HE and Nissl's staining and for neurons counting. Results In group A, the ICBS score was 0 at 1 and 7 days after operation,showing significant difference when compared with the scores of the other groups (P < 0.05). The ICBS scores of groups D and E were significantly higher than those of groups B and C (P < 0.05). Edema and hemorrhage were observed in spinal cord surface and normal morphological structures were destroyed at different extent in groups B, C, D, and E at 1 day. There were adherence and congestion between spinal cord surface and peripheral issue without luster at 7 days, and dura depression was observed at the injury section, especially in group E. Necrosis and dissolution occurred in some neurons, and Nissl body structure dissolved or disappeared in groups B, C, D, and E. The neuron counting gradually decreased in accordance with the aggravation

  16. New phenylglycine derivatives with potent and selective antagonist activity at presynaptic glutamate receptors in neonatal rat spinal cord.

    Science.gov (United States)

    Jane, D E; Pittaway, K; Sunter, D C; Thomas, N K; Watkins, J C

    1995-08-01

    The depression of the monosynaptic excitation of neonatal rat motoneurones produced by the metabotropic glutamate receptor (mGluR) agonists (1S,3S)-1-aminocyclopentane-1, 3-dicarboxylate (ACPD) or L-2-amino-4-phosphonobutyrate (L-AP4) was antagonized by three novel phenylglycine analogues: (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) and (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG). The potencies of all the new compounds were greater than that of the previously reported (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG). For L-AP4-sensitive presynaptic mGluRs, the order of antagonist potency found was MPPG > MSPG > MTPG > MCPG. In contrast, the order of antagonist potency found for (1S,3S)-ACPD-sensitive presynaptic mGluRs was MTPG > MPPG > MSPG > MCPG. To date, MPPG (KD 9.2 microM) is the most potent L-AP4-sensitive receptor antagonist yet tested on the neonatal rat spinal cord. In addition, MTPG (KD 77 microM) is the most potent antagonist yet tested for (1S,3S)-ACPD-sensitive receptors in this preparation. PMID:8532166

  17. Overexpression of BDNF Increases Excitability of the Lumbar Spinal Network and Leads to Robust Early Locomotor Recovery in Completely Spinalized Rats

    OpenAIRE

    Ewelina Ziemlińska; Sebastian Kügler; Melitta Schachner; Iwona Wewiór; Julita Czarkowska-Bauch; Małgorzata Skup

    2014-01-01

    Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of