WorldWideScience

Sample records for adult rat retinal

  1. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2015-01-01

    Full Text Available Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype.

  2. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE cells to study retinal diseases

    Directory of Open Access Journals (Sweden)

    Janosch Peter Heller

    2015-11-01

    Full Text Available Diseases such as age-related macular degeneration (AMD affect the retinal pigment epithelium (RPE and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 minutes yielded 4 x 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.

  3. Retrograde Labeling of Adult Rat Retinal Ganglion Cells with the Flurogold

    Institute of Scientific and Technical Information of China (English)

    Wei Huang; Yannian Hui; Miaoli Zhang

    2000-01-01

    Purpose: To study the densities and distribution of retinal ganglion cells(RGC) in adult rat retinae with flurogold(FG) labeling retogradely.Methods: FG was injected to the superior colliculi(SC) and dorsal lateral geniculate nuclei (dLGN) in adult rats and the retinae were examined by fluorescence microscopy at various periods of time.Results: FG-labelled RGC were observed in the retina as early as 3 days after application of FG. The labelled cells gradually increased in density, reached 95% of the maximal number on days 7 and the maximal number on days 30. The density of labelled cells was higher in the posterior pole than in the peripheral area. The fluorescence intensity in labelled cells maintained up to 60 days.Conclusion: The FG retrograde labeling method is reliable and effective for quantity of RGC. Eye Science 2000; 16:29 ~ 33.

  4. Retrograde Labeling of Adult Rat Retinal Ganglion Cells with the Flurogold

    Institute of Scientific and Technical Information of China (English)

    WeiHuang; YannianHui; 等

    2002-01-01

    Purpose:To study the densities and distribution of retinal ganglion cells(RGC) in adult rat retinae with flurogold(FG) labeling retogradely.Methods:FG was injected to the superior colliculid(SC) and dorsal lateral geniculate nuclei(dLGN) in adult rats and the retinae were examined by fluorescence microscopy at various periods of time.Results:FG-labelled RGC were observed in the retina as early as 3 days after application of FG.The labeled cells gradually increased in density,reached 95% of the maximal number on days 7 and the maximal nuber on days 30.The density of labeled cells was higher in the posterior pole than in the peripheral area.The fluorescence intensity in labeled cells maintained up to 60 days.Conclusion:The FG retrograde labeling method is reliable and effective for quantity of RGC.Eye Science 2000;46:29-33.

  5. Gender-Dependent Effects of Enriched Environment and Social Isolation in Ischemic Retinal Lesion in Adult Rats

    Science.gov (United States)

    Kiss, Peter; Szabadfi, Krisztina; Horvath, Gabor; Tamas, Andrea; Farkas, Jozsef; Gabriel, Robert; Reglodi, Dora

    2013-01-01

    Exposure to an enriched environment has been shown to have many positive effects on brain structure and function. Numerous studies have proven that enriched environment can reduce the lesion induced by toxic and traumatic injuries. Impoverished environment, on the other hand, can have deleterious effects on the outcome of neuronal injuries. We have previously shown that enriched conditions have protective effects in retinal injury in newborn rats. It is well-known that the efficacy of neuroprotective strategies can depend on age and gender. The aim of the present study, therefore, was to examine the effects of environmental enrichment and social isolation in retinal ischemia. We used bilateral common carotid artery occlusion to induce retinal hypoperfusion in adult Wistar rats of both genders. Groups were housed in standard, enriched or impoverished conditions. Impoverished environment was induced by social isolation. Retinas were processed for histological analysis after two weeks of survival. In the present study, we show that (1) enriched environment has protective effects in adult ischemic retinal lesion, while (2) impoverished environment further increases the degree of ischemic injury, and (3) that these environmental effects are gender-dependent: females are less responsive to the positive effects of environmental enrichment and more vulnerable to retinal ischemia in social isolation. In summary, our present study shows that the effects of both positive and negative environmental stimuli are gender-dependent in ischemic retinal lesions. PMID:23921682

  6. Beta-amyloid precursor protein cleavage enzyme-1 expression in adult rat retinal neurons in the early period after lead exposure

    Institute of Scientific and Technical Information of China (English)

    Jufang Huang; Kai Huang; Lei Shang; Hui Wang; Xiaoxin Yan; Kun Xiong

    2011-01-01

    Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ), and exhibit upregulation of β-site amyloid precursor protein expression in old age. However, further evidence is required to elucidate the precise relationship and molecular mechanisms underlying the effects of early lead exposure on excessive Aβ production in adult mammals. The present study investigated the effects of lead exposure on expression of β-amyloid precursor protein cleavage enzyme-1 (BACE-1) in the rat retina and the production of Aβ in early development, using the retina as a window for studying Alzheimer's disease. Adult rats were intraocularly injected with different doses of lead acetate (10 μmol/L, 100 μmol/L, 1 mmol/L, 10 mmol/L and 100 mmol/L). The results revealed that retinal lead concentration, BACE-1 and its cleavage products β-C-terminal fragment and retina Aβ1-40 were all significantly increased in almost all of the lead exposure groups 48 hours later in a dose-dependent manner. The only exception was the 10 μmol/L group. The distribution of BACE-1 in the retina did not exhibit obvious changes, and no distinctive increase in the activation of retinal microglia was apparent. Similarly, retinal synaptophysin expression did not exhibit any clear changes. These data suggest that lead exposure can result in the upregulation of retinal neuron BACE-1 expression in the early period of development and further increase the overproduction of Aβ1-40 in the retina. Our results provided novel insight into the molecular mechanisms underlying environmentally-induced Alzheimer's disease.

  7. Effects of Lead on Temporal Response Properties of Retinal Ganglion Cells in Developing Rats

    Institute of Scientific and Technical Information of China (English)

    阮迪云; 汤立新; 赵晨; 郭宇静

    1994-01-01

    Neonatal rats have taken in lead, during the period from their parturition to their weaning, from the milk of dams fed with water containing 0.2% lead acetate solutions. The alterations in the temporal response properties of retinal ganglion cells in adult rats (90 days) following the lead exposure at their developing stage have been studied. The results of this investigation demonstrate that the lead exposure in neonatal rats causes decreases in the optimal temporal frequency, bandwidth at half amplitude, temporal resolution and response phase of the retinal ganglion cells in adult rats. Compared with the sustained cells, the transient cells have a much greater alteration in temporal response properties.

  8. Effect of lidocaine on retinal aquaporin-4 expression after ischemia/reperfusion injury in the rat

    Institute of Scientific and Technical Information of China (English)

    Liying He; Li Li

    2008-01-01

    BACKGROUND: Several studies have demonstrated that high doses of lidocaine can reduce edema in rats with brain injury by down-regulating aquaporin-4 (AQP4) expression. The hypothesis for the present study is that lidocaine could retinal edema that is associated with AQP4 expression.OBJECTIVE: This study was designed to investigate the interventional effects of lidocaine on retinal AQP4 expression and retinal edema following ischemia/reperfusion injury in the rat.DESIGN, TIME AND SETTING: This study, a randomized, controlled, animal experiment, was performed at the Basic Research Institute, Chongqing Medical University from September 2006 to May 2007.MATERIALS: Seventy-five, healthy, adult, female, Sprague-Dawley rats were included. A total of 50 rats were used to establish a retinal ischemia/reperfusion injury model using an anterior chamber enhancing perfusion unit. Rabbit anti-rat AQP4 antibody was purchased from Santa Cruz Biotechnology, USA.METHODS: All 75 rats were randomly divided into three groups, with 25 rats in each: control, model, and lidocaine. At each time point (1, 6, 12, 24, and 48 hours after modeling, five rats for each time point), each rat in the lidocaine group was intraperitoneally administered lidocaine with an initial dose of 30 mg/kg, followed by subsequent doses of 15 mg/kg every six hours. The entire treatment process lasted three days for each rat. At each above-mentioned time point, rats in the model group were modeled, but not administered any substances. Rats in the control group received the same treatments as in the lidocaine group except that lidocaine was replaceld by physiological saline.MAIN OUTCOME MEASURES: Following hematoxylin-eosin staining, rat retinal tissue was observed to investigate retinal edema degree through the use of an optical microscope and transmission electron microscope. Retinal AQP4 expression was determined by immunohistochemistry.RESULTS: At each above-mentioned time point, AQP4 expression was

  9. Glucose metabolism in rat retinal pigment epithelium.

    Science.gov (United States)

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  10. Visual advantage in deaf adults linked to retinal changes.

    Directory of Open Access Journals (Sweden)

    Charlotte Codina

    Full Text Available The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14 and hearing (N = 15 adults using Optical Coherence Tomography (OCT, an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

  11. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats.

    Directory of Open Access Journals (Sweden)

    Francisco M Nadal-Nicolás

    Full Text Available The three members of the Pou4f family of transcription factors: Pou4f1, Pou4f2, Pou4f3 (Brn3a, Brn3b and Brn3c, respectively play, during development, essential roles in the differentiation and survival of sensory neurons. The purpose of this work is to study the expression of the three Brn3 factors in the albino and pigmented adult rat. Animals were divided into these groups: i untouched; ii fluorogold (FG tracing from both superior colliculli; iii FG-tracing from one superior colliculus; iv intraorbital optic nerve transection or crush. All retinas were dissected as flat-mounts and subjected to single, double or triple immunohistofluorescence The total number of FG-traced, Brn3a, Brn3b, Brn3c or Brn3 expressing RGCs was automatically quantified and their spatial distribution assessed using specific routines. Brn3 factors were studied in the general RGC population, and in the intrinsically photosensitive (ip-RGCs and ipsilateral RGC sub-populations. Our results show that: i 70% of RGCs co- express two or three Brn3s and the remaining 30% express only Brn3a (26% or Brn3b; ii the most abundant Brn3 member is Brn3a followed by Brn3b and finally Brn3c; iii Brn3 a-, b- or c- expressing RGCs are similarly distributed in the retina; iv The vast majority of ip-RGCs do not express Brn3; v The main difference between both rat strains was found in the population of ipsilateral-RGCs, which accounts for 4.2% and 2.5% of the total RGC population in the pigmented and albino strain, respectively. However, more ipsilateral-RGCs express Brn3 factors in the albino than in the pigmented rat; vi RGCs that express only Brn3b and RGCs that co-express the three Brn3 members have the biggest nuclei; vii After axonal injury the level of Brn3a expression in the surviving RGCs decreases compared to control retinas. Finally, this work strengthens the validity of Brn3a as a marker to identify and quantify rat RGCs.

  12. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants.

    Science.gov (United States)

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2017-01-01

    Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.

  13. In vitro differentiation of retinal pigment epithelium from adult retinal stem cells.

    Science.gov (United States)

    Aruta, Claudia; Giordano, Francesca; De Marzo, Anna; Comitato, Antonella; Raposo, Graça; Nandrot, Emeline F; Marigo, Valeria

    2011-02-01

    One of the limitations in molecular and functional studies of the retinal pigment epithelium (RPE) has been the lack of an in vitro system retaining all the features of in vivo RPE cells. Retinal pigment epithelium cell lines do not show characteristics typical of a functional RPE, such as pigmentation and expression of specific markers. The present study was aimed at the development of culture conditions to differentiate, in vitro, retinal stem cells (RSC), derived from the adult ciliary body, into a functional RPE. Retinal stem cells were purified from murine eyes, grown as pigmented neurospheres and induced to differentiate into RPE on an extracellular matrix substrate using specific culture conditions. After 7-15 days of culture, pigmented cells with an epithelial morphology showed a polarized organization and a capacity for phagocytosis. We detected different stages of melanogenesis in cells at 7 days of differentiation, whereas RPE at 15 days contained only mature melanosomes. These data suggest that our protocol to differentiate RPE in vitro can provide a useful model for molecular and functional studies.

  14. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  15. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice.

    Science.gov (United States)

    Fox, Donald A; Hamilton, W Ryan; Johnson, Jerry E; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B; O'Callaghan, James P

    2011-11-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  16. Protection by dimethylthiourea against retinal light damage in rats.

    Science.gov (United States)

    Organisciak, D T; Darrow, R M; Jiang, Y I; Marak, G E; Blanks, J C

    1992-04-01

    The protective effect of dimethylthiourea (DMTU) against retinal light damage was determined in albino rats reared in darkness or in weak cyclic light. Rats maintained under these conditions were treated with DMTU at different concentrations and dosing schedules and then exposed for various times to intense visible light, either intermittently (1 hr light and 2 hr dark) or continuously. The extent of retinal light damage was determined 2 weeks after light exposure by comparing rhodopsin levels in experimental rats with those in unexposed control animals. To determine the effect of DMTU on rod outer segment (ROS) membrane fatty acids, ROS were isolated immediately after intermittent light exposure, and fatty acid compositions were measured. The time course for DMTU uptake and its distribution in serum, retina, and the retinal pigment epithelium (RPE)/choroid complex was determined in other rats not exposed to intense light. After intraperitoneal injection of the drug (500 mg/kg body weight), DMTU appeared rapidly in the serum, retina, and the RPE and choroid. In the ocular tissues, it was distributed 70-80% in the retina and 20-30% in the RPE and choroid. This antioxidant appears to have a long half-life because it was present in these same tissues 72 hr after a second intraperitoneal injection. For rats reared in the weak cyclic light environment, DMTU (two injections) provided complete protection against rhodopsin loss after intense light exposures of up to 16 hr. Only 15% rhodopsin loss was found in cyclic-light DMTU-treated rats after 24 hr of intermittent or continuous light. For rats reared in darkness, DMTU treatment resulted in a rhodopsin loss of less than 20% after 8-16 hr of continuous light and approximately 40% after similar exposure to intermittent light. Irrespective of the type of light exposure, rhodopsin loss in the dark-reared DMTU-treated rats was nearly identical to that found in uninjected cyclic light-reared animals. In rats from both light

  17. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  18. Application of Two-Dimensional Electrophoresis in the Research of Retinal Proteins of Diabetic Rat

    Institute of Scientific and Technical Information of China (English)

    Shangqing Liu; Yanyan Zhang; Xianyong Xie; Weiming Hu; Rong Cai; Jian Kang; Huijun Yang

    2007-01-01

    Diabetes mellitus (DM) is a chronic disease which is associated with numerous serious health complications such as diabetic retinopathy, and is the leading cause of new cases of blindness in adults at the age of 20-74 years old. The aim of the study was to establish and optimize a two-dimensional polyacrylamide gel electrophoresis (2-DE) technique for retina proteomics to improve the resolution and reproducibility, and to observe the proteomic changes of retinal tissues in diabetic and normal rats. Proteins were extracted from retinal tissues of normal and 8 weeks diabetic SD rats and used in two-dimensional electrophoresis. Various conditions of retina proteomic 2-DE were adjusted, optimized and protein spots of differential expression were obtained through analysis of 2-DE images with PDQuest software. By choosing appropriate sample amount, using pre-cast IPG dry strips (pH 5-8)and casting 12% equal gel, satisfactory 2-DE images of retina were obtained and a steady 2-DE technique was established. In this way, we found 36 spots in 2-DE gel of diabetic retinas that exhibited statistically significant variations, including up-regulation of 5 proteins in diabetic rat retinas, down-regulation of 23, and disappearance of 8, in comparison with normal tissues. The differences of protein expression were observed in retinas between diabetic and normal rats. Our established 2-DE technique of retina proteins could be effectively applied in proteomics of retina diseases.

  19. Organotypic explant culture of adult rat retina for in vitro investigations of neurodegeneration, neuroprotection and cell transplantation

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol details a method for isolating retinal tissue from adult rats as an organotypic culture to study neurobiological processes in mature tissue. It combines the efficiency and control common to in vitro techniques with close imitation of the in vivo environment. Eyes from adult rats are enucleated and the neural retina is isolated. Tissue is cut into quarters, yielding eight retinal explants per animal, and cultured at a fluid/air interface on organotypic culture membranes. Explanta...

  20. Postconditioning with inhaled hydrogen promotes survival of retinal ganglion cells in a rat model of retinal ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Ruobing; Wu, Jiangchun; Chen, Zeli; Xia, Fangzhou; Sun, Qinglei; Liu, Lin

    2016-02-01

    Retinal ischemia/reperfusion (I/R) injury plays a crucial role in the pathophysiology of various ocular diseases. Intraperitoneal injection or ocular instillation with hydrogen (H2)-rich saline was recently shown to be neuroprotective in the retina due to its anti-oxidative and anti-inflammatory effects. Our study aims to explore whether postconditioning with inhaled H2 can protect retinal ganglion cells (RGCs) in a rat model of retinal I/R injury. Retinal I/R injury was performed on the right eyes of rats and was followed by inhalation of 67% H2 mixed with 33% oxygen immediately after ischemia for 1h daily for one week. RGC density was counted using haematoxylin and eosin (HE) staining and retrograde labeling with cholera toxin beta (CTB). Visual function was assessed using flash visual evoked potentials (FVEP) and pupillary light reflex (PLR). Potential biomarkers of retinal oxidative stress and inflammatory responses were measured, including the expression of 4-Hydroxynonenalv (4-HNE), interleukin-1 beta (IL1-β) and tumor necrosis factor alpha (TNF-α). HE and CTB tracing showed that the survival rate of RGCs in the H2-treated group was significantly higher than the rate in the I/R group. Rats with H2 inhalation showed better visual function in assessments of FVEP and PLR. Moreover, H2 treatment significantly decreased the number of 4-HNE-stained cells in the ganglion cell layer and inhibited the retinal overexpression of IL1-β and TNF-α that was induced by retinal I/R injury. Our results demonstrate that postconditioning with inhaled high-dose H2 appears to confer neuroprotection against retinal I/R injury via anti-oxidative, anti-inflammatory and anti-apoptosis pathways.

  1. Differences in expression of retinal proteins between diabetic and normal rats

    Institute of Scientific and Technical Information of China (English)

    Shang-Qing Liu; Jian Kang; Cheng-Jun Li; En-Jie Tang; Bin Wen; Rong Cai; Hui-Jun Yang

    2007-01-01

    AIM: To compare and identify the differences in expression of retinal proteins between normal and diabetic rats, and to analyze the molecular pathogenetic mechanisms of retinal diseases caused by diabetes.METHODS: Changes in protein expression of retinal tissues from diabetic and normal rats were observed using 2-dimensional polyacrylamide gel electrophoresis (2-DE). Some protein spots exhibiting statistically significant variations (P < 0.05) were selected randomly and identified by tandem mass spectrometry and analyzed by bioinformatics.RESULTS: 2-DE showed that the expression was upregulated in 5 retinal proteins, down-regulated in 23retinal proteins, and disappeared in 8 retinal proteins.Eight spots were identified from the 36 spots by tandem mass spectrometry (MS/MS) and analyzed by bioinformatics. Guanylate kinase 1, triosephosphate isomerase 1, ATP synthase subunit d, albumin and dimethylarginine dimethylaminohydrolase 2 played an important role in signal transduction. Triosephosphate isomerase 1, crystallin alpha B, ATP synthase subunit d and peroxiredoxin 6 were involved in energy metabolism of retinal tissues. Guanylate kinase 1 played an important role in photoexcitation of retinal rod photoreceptor cells.Whether crystallin beta A1 plays a role in diabetic retinas is unknown so far.CONCLUSION: There are differences in expression of retinal proteins between diabetic and normal rats.These proteins may be involved in the mechanisms and prognosis of retinal diseases caused by diabetes.

  2. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  3. 17β-estradiol ameliorates light-induced retinal damage in Sprague-Dawley rats by reducing oxidative stress.

    Science.gov (United States)

    Wang, Shaolan; Wang, Baoying; Feng, Yan; Mo, Mingshu; Du, Fangying; Li, Hongbo; Yu, Xiaorui

    2015-01-01

    Oxidative stress is considered as a major cause of light-induced retinal neurodegeneration. The protective role of 17β-estradiol (βE2) in neurodegenerative disorders is well known, but its underlying mechanism remains unclear. Here, we utilized a light-induced retinal damage model to explore the mechanism by which βE2 exerts its neuroprotective effect. Adult male and female ovariectomized (OVX) rats were exposed to 8,000 lx white light for 12 h to induce retinal light damage. Electroretinogram (ERG) assays and hematoxylin and eosin (H&E) staining revealed that exposure to light for 12 h resulted in functional damage to the rat retina, histological changes, and retinal neuron loss. However, intravitreal injection (IVI) of βE2 significantly rescued this impaired retinal function in both female and male rats. Based on the level of malondialdehyde (MDA) production (a biomarker of oxidative stress), an increase in retinal oxidative stress followed light exposure, and βE2 administration reduced this light-induced oxidative stress. Quantitative reverse-transcriptase (qRT)-PCR indicated that the messenger RNA (mRNA) levels of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were downregulated in female OVX rats but were upregulated in male rats after light exposure, suggesting a gender difference in the regulation of these antioxidant enzyme genes in response to light. However, βE2 administration restored or enhanced the SOD and Gpx expression levels following light exposure. Although the catalase (CAT) expression level was insensitive to light stimulation, βE2 also increased the CAT gene expression level in both female OVX and male rats. Further examination indicated that the antioxidant proteins thioredoxin (Trx) and nuclear factor erythroid 2-related factor 2 (Nrf2) are also involved in βE2-mediated antioxidation and that the cytoprotective protein heme oxygenase-1 (HO-1) plays a key role in the endogenous defense mechanism

  4. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    Directory of Open Access Journals (Sweden)

    Laura Fernández-Sánchez

    Full Text Available Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  5. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Esquiva, Gema; Martín-Nieto, José; Pinilla, Isabel; Cuenca, Nicolás

    2012-01-01

    Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  6. Therapeutic efficacy of melatonin in reducing retinal damage in an experimental model of early type 2 diabetes in rats.

    Science.gov (United States)

    Salido, Ezequiel M; Bordone, Melina; De Laurentiis, Andrea; Chianelli, Mónica; Keller Sarmiento, María Inés; Dorfman, Damián; Rosenstein, Ruth E

    2013-03-01

    Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages and provokes significant retinal alterations. The aim of this work was to analyze the effect of melatonin on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water. Three weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25 mg/kg). One day or 3 wk after vehicle or STZ injection, animals were subcutaneously implanted with a pellet of melatonin. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 wk of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Melatonin, which did not affect glucose metabolism in control or diabetic rats, prevented the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels. In addition, melatonin prevented the decrease in retinal catalase activity. These results indicate that melatonin protected the retina from the alterations observed in an experimental model of DR associated with type 2 diabetes.

  7. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A–dependent eNOS inactivation

    Science.gov (United States)

    García, Celina; Aranda, Jorge; Arnold, Edith; Thébault, Stéphanie; Macotela, Yazmín; López-Casillas, Fernando; Mendoza, Valentín; Quiroz-Mercado, Hugo; Hernández-Montiel, Hebert Luis; Lin, Sue-Hwa; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2008-01-01

    Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies. PMID:18497878

  8. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells.

    Science.gov (United States)

    Balenci, Laurent; van der Kooy, Derek

    2014-02-01

    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  9. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  10. Beta-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Sato, Ayumi; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-01-01

    We investigated the effects of epinephrine and dopamine on retinal blood vessels in streptozotocin (STZ, 80 mg/kg, i.p.)-treated rats and age-matched control rats to determine whether diabetes mellitus alters the retinal vascular responses to circulating catecholamines. Experiments were performed 6-8 weeks after treatment with STZ or the vehicle. The fundus images were captured with the digital fundus camera system for small animals we developed and diameters of retinal blood vessels contained in the digital images were measured. Epinephrine increased the diameters of retinal blood vessels, but the vasodilator responses were reduced in diabetic rats. Dopamine produced a biphasic retinal vascular response with an initial vasoconstriction followed by a vasodilation. The vasoconstrictor effects of dopamine on retinal arterioles were enhanced in diabetic rats, whereas the difference between the two groups was abolished by treatment with propranolol. The vasodilator effect of isoproterenol, but not of the activator of adenylyl cyclase colforsin, on retinal blood vessels was reduced in diabetic rats. No difference in vasoconstriction of retinal blood vessels to phenylephrine between non-diabetic and diabetic rats was observed. The vasodilator responses of retinal blood vessels to 1,1-dimethyl-4-phenylpiperazinium, a ganglionic nicotinic receptor agonist, were also attenuated in diabetic rats. These results suggest that diabetes mellitus alters the retinal vascular responses to circulating catecholamines and the impairment of vasodilator responses mediated by beta-adrenoceptors contributes to the alteration.

  11. Molecular characterization of retinal stem cells and their niches in adult zebrafish

    Directory of Open Access Journals (Sweden)

    Barthel Linda K

    2006-07-01

    Full Text Available Abstract Background The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of true 'adult stem cells' – self-renewal, multipotency, and the capacity to respond to injury by mitotic activation with the ability to regenerate differentiated tissues – has been known for several decades. However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the microenvironmental niches that support their maintenance in the differentiated retina and regulate their activity during growth and regeneration have not yet been elucidated. Results Our data show that the zebrafish retina has two kinds of specialized niches that sustain retinal stem cells: 1 a neuroepithelial germinal zone at the interface between neural retina and ciliary epithelium, called the ciliary marginal zone (CMZ, a continuous annulus around the retinal circumference, and 2 the microenvironment around some Müller glia in the differentiated retina. In the uninjured retina, scattered Müller glia (more frequently those in peripheral retina are associated with clusters of proliferating retinal progenitors that are restricted to the rod photoreceptor lineage, but following injury, the Müller-associated retinal progenitors can function as multipotent retinal stem cells to regenerate other types of retinal neurons. The CMZ has several features in common with the neurogenic niches in the adult mammalian brain, including access to the apical epithelial surface and a close association with blood vessels. Müller glia in the teleost retina have a complex response to local injury that includes some features of reactive gliosis (up-regulation of glial fibrillary acidic protein, GFAP, and re-entry into the cell cycle together with dedifferentiation and re-acquisition of phenotypic and molecular characteristics of multipotent retinal progenitors in the CMZ (diffuse distribution of N-cadherin, activation of Notch

  12. Neuroprotective Effect of Melatonin on Retinal Ganglion Cells in Rats

    Institute of Scientific and Technical Information of China (English)

    TANG Qiongyan; HU Yizhen; CAO Yang

    2006-01-01

    To investigate the neuroprotective effect of melatonin (MT) on retinal ganglion cells (RGCs) in rats with ischemia reperfusion injury (RIR), 24 healthy SD rats were randomly divided into two groups:group A and group B. RIR model was induced in the left eyes by increasing the pressure of the anterior chamber. Group A was treated with 10 % alcohol- normal saline (1 mL/kg/d, ip), while group B was treated with 0.5 % MT (1 mL/kg/d, ip). On the basis of the time interval between the left eyes RIR and the sacrifice, rats in both group A and group B were further divided into 3 subgroups: groups A1 and B1 (days 7), groups A2 and B2 (days 14), groups A3 and B3 (days 30), with4 rats in each subgroup. 7 day before the sacrifice, 3 % fluorogold was bilaterally injected into superior colliculi and geniculate body. The eyes were enucleated after being sacrificed, and mounting of the retina from both eyes was performed on a slide and observed under a fluorescence microscope. Four photos were taken from each of the four quadrants of the retina.The labeled-RGCs were counted by using a computerized image analyzer. The rate of the labeledRGCs was used for statistical analysis. Our results showed that, in group A, the rate of the labeled-RGCs was (77. 16±6.35) %, (65.53±7.01) %, (53.85±4.38) % on day 7, 14 and 30.In group B, the rate of the labeled-RGCs was (81.33±9.27) %, (79.80±8.36) %, (80.34±11.05) % on day 7, 14 and 30. In group B, which was treated with MT after RIR, the rate of labeled-RGCs was significantly higher than that of group A on day 14 and day 30 (P<0.05). It is concluded that, in the RIR rats, MT therapy could increase the survival rate of the RGCs and could rescue and restore the injured RGCs.

  13. CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF

    Directory of Open Access Journals (Sweden)

    Mayer Eric J

    2009-02-01

    Full Text Available Abstract Background CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF, sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres. Methods Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS CD133+ retinal cells were enriched from post mortem adult human retina. CD133+ retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation. Results We demonstrated purification (to 95% of CD133+ cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133+ retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133+ retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal. Conclusion These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.

  14. Retinal ganglion cells of high cytochrome oxidase activity in the rat

    Institute of Scientific and Technical Information of China (English)

    JENLS; CHAURMW

    1990-01-01

    Retinal ganglion cells in the rat were studied using the heavy metal intensified cytochrome oxidase and horseradish peroxidase histochemical methods.The results show that a population of large retinal ganglion cells was consistently observed with the cytochrome oxidase staining method in retinas of normal rats or rats which received unilateral thalamotomy at birth.These cytochrome oxidase rich ganglion cells appeared to have large somata,3-6 primary dendrites and extensive dendritic arbors,and are comparable to ganglion cells labeled by the wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP).However,the morphological details of some of the cells revealed by the cytochrome oxidase staining method are frequently better than those shown by the HRP histochemical method.These results suggest that the mitochondrial enzyme cytochrome oxidase can be used as a simple but reliable marker for identifying and studying a population of retinal genglion cells with high metabolic rate in the rat.

  15. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats.

    Directory of Open Access Journals (Sweden)

    I-Mo Fang

    Full Text Available This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ. Low-dose (5 mg/kg or high-dose (10 mg/kg COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG. Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.

  16. Ethyl Pyruvate Prevents Methyglyoxal-Induced Retinal Vascular Injury in Rats

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2013-01-01

    Full Text Available Pyruvate is an endogenous antioxidant substance. The aim of this study was to investigate the protective effects of ethyl pyruvate (EP on retinal vascular injury in diabetic retinopathy. To investigate the protective effect of EP on vascular cell apoptosis and blood-retinal barrier (BRB breakage, we have used intravitreally methylglyoxal-(MGO- injected rat eyes. Apoptosis of the retinal vascular cell that was stimulated by the intravitreal injection of MGO was evidently attenuated by the EP treatment. EP exerts inhibitory effect on MGO-induced vascular cell apoptosis by blocking oxidative injury. In addition, EP treatment prevented MGO-induced BRB breakage and the degradation of occludin, an important tight junction protein. These observations suggest that EP acts through an antioxidant mechanism to protect against oxidative stress-induced apoptosis in retinal vessels.

  17. Caspase-dependent retinal ganglion cell apoptosis in the rat model of acute diabetes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Neural apoptosis is generally believed to be mediated by two distinct pathways, caspase-dependant and caspase-independent pathways. This study investigated the apoptotic pathways involved in retinal ganglion ceils in acute diabetes in rats. Methods Diabetes was induced in male Wistar rats by a peritoneal injection of streptozotocin (STZ). Expression and localization of caspase-3 and apoptosis-inducing factor (AIF) proteins in the retina of diabetic rats was examined by Western blotting and immunohistochemistry analyses. Terminal transferase dUTP nick end labeling (TUNEL) assay and immunofluorescent staining specific for caspase-3 and AIF were applied to analyze for apoptosis of retinal ganglion cells. In addition, a caspase-3 inhibitor DEVD-CHO was injected intravitreally to further determine the apoptotic pathways of retinal ganglion cells triggered in acute diabetes. Results Two weeks after induction of diabetes, a significant increase in caspase-3 protein expression and localization occurred in the nerve fiber layer, ganglion cell layer, and inner plexiform layer of the retina. Four weeks after the onset of diabetes, the increase in caspase-3 expression was profound eight weeks postinduction of diabetes (P<0.05). Meanwhile, no AIF protein expression was detected in this study. In addition, intravitreal administration of the caspase-3 inhibitor DEVD-CHO reduced apoptosis of retinal ganglion cells by its direct inhibitory action on caspase-3. Conclusion Caspase-dependent apoptotic pathways may be the main stimulant of STZ-induced retinal ganglion cell apoptosis in acute diabetes.

  18. PROPERTIES OF PROLIFERATION AND DIFFERENTIATION OF NEONATAL RAT RETINAL PROGENITOR CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    Kang Qianyan; Liu Yong; Zhao Jianjun; Qiu Fen; Chen Xinlin; Tian Yumei; Hu Ming

    2006-01-01

    Objective To investigate the properties of proliferation and differentiation of neonatal rat retinal progenitor cells (RPCs) in vitro. Methods RPCs were isolated from neonatal SD rats neural retina and cultured in DMEM/F12+N2 with EGF and bFGF (suspension medium )or 10%FBS without EGF and bFGF (differentiation medium). The cells grew as suspended spheres or adherent monolayers, depending on different culture conditions. The neural stem cells or retinal progenitors, neurons, astrocytes, retinal ganglion cells, rod photoreceptors and the proliferating cells were evaluated with immunofluorescence analysis by Nestin or Pax6, Map2, GFAP, Thy-1, Rhodopsin and BrdU antibodies respectively. Results RPCs could propagate and differentiate in suspension or differentiation medium and express the markers of Nestin (92.86%) or Pax6 (86.75%), Map2 (38.54%), GFAP (20.93%), Thy-1 (27.66%) and Rhodopsin(13.33%)in suspension medium; however, Nestin (60.27%), Pax6 (52%), Map2 (34.94%), GFAP (38.17%), Thy-1(30.84%) and Rhodopsin (34.67%) in differentiation medium. 96.4% of the population in the neurospheres was BrdU-positive cells. The cells could spontaneously adherent forming some subspheres and retinal specific cell types. Conclusion Neonatal rat RPCs possess the high degree of proliferation and can differentiate into neurons, astrocytes, retinal ganglion cells and rod photoreceptors in vitro. There are different proportions for RPCs to differentiate into specific cell types.

  19. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat.

    Directory of Open Access Journals (Sweden)

    Amanda-Jayne Carr

    Full Text Available Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs. These induced pluripotent stem (iPS cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD, the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE. As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.

  20. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Directory of Open Access Journals (Sweden)

    Kim Chan

    2007-10-01

    Full Text Available Abstract Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5. RGC-5 cells were cultured in a closed hypoxic chamber (5% O2 with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38 and nuclear factor-kappa B (NF-κB were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF, a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.

  1. Light adaptation does not prevent early retinal abnormalities in diabetic rats.

    Science.gov (United States)

    Kur, Joanna; Burian, Michael A; Newman, Eric A

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark.

  2. Screening for diabetic retinopathy: the utility of nonmydriatic retinal photography in Egyptian adults.

    Science.gov (United States)

    Penman, A D; Saaddine, J B; Hegazy, M; Sous, E S; Ali, M A; Brechner, R J; Herman, W H; Engelgau, M M; Klein, R

    1998-09-01

    Although regular screening for diabetic retinopathy with ophthalmoscopy or retinal photography is widely recommended in the United States and Europe, few reports of its use in developing countries are available. We compared the performance of screening by retinal photography with that of indirect ophthalmoscopy by using data from a population-based survey of diabetes and its complications in Egypt. During that project, 427 persons with diabetes underwent an eye examination and fundus photography with a non-mydriatic camera through a dilated pupil. Data from the examinations of the right eye of each patient are presented. Ninety-two (22%) of the 427 retinal photographs were ungradable; in 58 eyes (63%), this was due to media opacity (42 eyes with cataract, 3 with corneal opacity, and 13 with both). Agreement between retinal photography and indirect ophthalmoscopy was poor (kappa = 0.33; 95% CI = 0.27-0.39) and primarily due to the large number of eyes (n = 79) with ungradable photographs that could be graded by ophthalmoscopy. None of these eyes was judged by ophthalmoscopy to have sight-threatening retinopathy. Fifty-four photographs were diagnosed with greater retinopathy than found on ophthalmoscopy. Retinal photography with the nonmydriatic camera through a dilated pupil is a useful method to screen for diabetic retinopathy in most adults in Egypt. However, such screening strategies have limited use in older persons and in persons with corneal disease or cataract.

  3. The Retinome – Defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium

    Directory of Open Access Journals (Sweden)

    Goetz Thomas

    2004-07-01

    Full Text Available Abstract Background The mammalian retina is a valuable model system to study neuronal biology in health and disease. To obtain insight into intrinsic processes of the retina, great efforts are directed towards the identification and characterization of transcripts with functional relevance to this tissue. Results With the goal to assemble a first genome-wide reference transcriptome of the adult mammalian retina, referred to as the retinome, we have extracted 13,037 non-redundant annotated genes from nearly 500,000 published datasets on redundant retina/retinal pigment epithelium (RPE transcripts. The data were generated from 27 independent studies employing a wide range of molecular and biocomputational approaches. Comparison to known retina-/RPE-specific pathways and established retinal gene networks suggest that the reference retinome may represent up to 90% of the retinal transcripts. We show that the distribution of retinal genes along the chromosomes is not random but exhibits a higher order organization closely following the previously observed clustering of genes with increased expression. Conclusion The genome wide retinome map offers a rational basis for selecting suggestive candidate genes for hereditary as well as complex retinal diseases facilitating elaborate studies into normal and pathological pathways. To make this unique resource freely available we have built a database providing a query interface to the reference retinome 1.

  4. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Eren Çerman

    Full Text Available Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP labelled bone marrow derived stem cells (BMSC and left eyes with balanced salt solution (Sham. Animals were grouped as Baseline (n = 51, Diabetic (n = 45, Diabetic+BMSC (n = 45 eyes, Diabetic+Sham (n = 45 eyes, Healthy+BMSC (n = 6 eyes, Healthy+Sham (n = 6 eyes. Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.

  5. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dan, E-mail: DZhou@syntapharma.com [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States); Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States); Huang, Qin [Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132 (United States); Bates, Richard C.; Sonderfan, Andrew J. [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States)

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  6. Regulation of retinal proteome by topical antiglaucomatous eye drops in an inherited glaucoma rat model.

    Directory of Open Access Journals (Sweden)

    Maurice Schallenberg

    Full Text Available Examination of the response of the retinal proteome to elevated intraocular pressure (IOP and to the pharmacological normalization of IOP is crucial, in order to develop drugs with neuroptorective potential. We used a hereditary rat model of ocular hypertension to lower IOP with travaprost and dorzolamide applied topically on the eye surface, and examine changes of the retinal proteome. Our data demonstrate that elevated IOP causes alterations in the retinal protein profile, in particular in high-mobility-group-protein B1 (HMGB1, calmodulin, heat-shock-protein (HSP 70 and carbonic anhydrase II expression. The changes of the retinal proteome by dorzolamide or travoprost are different and independent of the IOP lowering effect. This fact suggests that the eye drops exert a direct IOP-independent effect on retinal metabolism. Further investigations are required to elucidate the potential neuroprotective mechanisms signaled through changes of HMGB1, calmodulin, HSP70 and carbonic anhydrase II expression in glaucoma. The data may facilitate development of eye drops that exert neuroprotection through direct pharmacological effect.

  7. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    Full Text Available BACKGROUND: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. METHODOLOGY/PRINCIPAL FINDINGS: Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. CONCLUSIONS/SIGNIFICANCE: Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative

  8. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration

    Directory of Open Access Journals (Sweden)

    Adi Tzameret

    2015-09-01

    Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection.

  9. Expression patterns of the retinal development-related genes in the fetal and adult retina

    Institute of Scientific and Technical Information of China (English)

    LI Hui-ming; WANG Feng; QIU Wei; LIU Yan; HUANG Qian

    2007-01-01

    Background Retina is important in converting light into neural signals, but little is known about the regulatory genes essential for the retinal morphological formation, development and functional differentiation. This study aimed to investigate the mRNA expression patterns and cellular or subcellular distribution of 33 differentially expressed genes in the retina belonging to the early and middle-late embryogenesis stages as well as the early adult stage during human development.Methods In situ hybridization and real-time fluorescent quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR) were used to assay 33 differentially expressed genes which were screened out using microarray analysis and were not present in the retinal cDNA or the Expressed Sequence Tags (EST) database of the National Eye Institute (NEI) Genebank.Results Nine of the 33 genes belonged to EST or the unknown cDNA fragments, and the remaining belonged to the novel genes in the retina. During the human retinal development 17 genes were down-regulated, 6 were up-regulated and the remaining 10 were relatively unchanged. Most of the genes expressed in all layers of the retina at the gestation stage, and in the fully developed retina some genes examined did show higher expression level in certain specific cells and structures such as retinal ganglion cells or the outer segment of photoreceptor cells.Conclusion The gene expression profile during retinal development possesses temporal and spatial distribution features, which can provide experimental evidence for further research of the functions of those genes.

  10. Effects of combined ketamine/xylazine anesthesia on light induced retinal degeneration in rats.

    Directory of Open Access Journals (Sweden)

    Blanca Arango-Gonzalez

    Full Text Available OBJECTIVES: To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats. METHODS: Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG and morphological assessment by in vivo imaging (optical coherence tomography, histology (hematoxylin/eosin staining, TUNEL assay and immunohistochemistry (GFAP and rhodopsin staining were performed at baseline (ERG, 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls. RESULTS: Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL thickness in the non-anesthetized group at 36 h (p0.05, indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d, thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01 and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03 were observed in non-treated vs. ketamine-xylazine treated animals. CONCLUSIONS: Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage, reducing photoreceptor cell death. These data support the notion that anesthesia with ketamine-xylazine provides neuroprotective effects in light-induced cell damage.

  11. Effects of Combined Ketamine/Xylazine Anesthesia on Light Induced Retinal Degeneration in Rats

    Science.gov (United States)

    Bolz, Sylvia; Eslava-Schmalbach, Javier; Willmann, Gabriel; Zhour, Ahmad; Zrenner, Eberhart; Fischer, M. Dominik; Gekeler, Florian

    2012-01-01

    Objectives To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats. Methods Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology (hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls. Results Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the non-anesthetized group at 36 h (p0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d), thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals. Conclusions Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage, reducing photoreceptor cell death. These data support the notion that anesthesia with ketamine-xylazine provides neuroprotective effects in light-induced cell damage. PMID:22558200

  12. Multiple Retinal Axons Converge onto Relay Cells in the Adult Mouse Thalamus

    Directory of Open Access Journals (Sweden)

    Sarah Hammer

    2015-09-01

    Full Text Available Activity-dependent refinement of neural circuits is a fundamental principle of neural development. This process has been well studied at retinogeniculate synapses—synapses that form between retinal ganglion cells (RGCs and relay cells within the dorsal lateral geniculate nucleus. Physiological studies suggest that shortly after birth, inputs from ∼20 RGCs converge onto relay cells. Subsequently, all but just one to two of these inputs are eliminated. Despite widespread acceptance, this notion is at odds with ultrastructural studies showing numerous retinal terminals clustering onto relay cell dendrites in the adult. Here, we explored this discrepancy using brainbow AAVs and serial block face scanning electron microscopy (SBFSEM. Results with both approaches demonstrate that terminals from numerous RGCs cluster onto relay cell dendrites, challenging the notion that only one to two RGCs innervate each relay cell. These findings force us to re-evaluate our understanding of subcortical visual circuitry.

  13. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis

    Science.gov (United States)

    Inayat, Samsoon; Rountree, Corey M.; Troy, John B.; Saggere, Laxman

    2015-02-01

    Objective. No cure currently exists for photoreceptor degenerative diseases, which cause partial or total blindness in millions of people worldwide. Electrical retinal prostheses have been developed by several groups with the goal of restoring vision lost to these diseases, but electrical stimulation has limitations. It excites both somas and axons, activating retinal pathways nonphysiologically, and limits spatial resolution because of current spread. Chemical stimulation of retinal ganglion cells (RGCs) using the neurotransmitter glutamate has been suggested as an alternative to electrical stimulation with some significant advantages. However, sufficient scientific data to support developing a chemical-based retinal prosthesis is lacking. The goal of this study was to investigate the feasibility of a neurotransmitter-based retinal prosthesis and determine therapeutic stimulation parameters. Approach. We injected controlled amounts of glutamate into rat retinas from the epiretinal side ex vivo via micropipettes using a pressure injection system and recorded RGC responses with a multielectrode array. Responsive units were identified using a spike rate threshold of 3 Hz. Main results. We recorded both somal and axonal units and demonstrated successful glutamatergic stimulation across different RGC subtypes. Analyses show that exogenous glutamate acts on RGC synapses similar to endogenous glutamate and, unlike electrical prostheses, stimulates only RGC somata. The spatial spread of glutamate stimulation was ˜ 290 μm from the injection site, comparable to current electrical prostheses. Further, the glutamate injections produced spatially differential responses in OFF, ON, and ON-OFF RGC subtypes, suggesting that differential stimulation of the OFF and ON systems may be possible. A temporal resolution of 3.2 Hz was obtained, which is a rate suitable for spatial vision. Significance. We provide strong support for the feasibility of an epiretinal neurotransmitter

  14. [Adult Refsum disease. A retinal dystrophy with therapeutic options].

    Science.gov (United States)

    Rüther, K

    2005-08-01

    Adult Refsum disease is one of the few forms of tapetoretinal degenerations accessible for therapy. The disease is characterized by an elevated plasma phytanic acid level and high concentrations of phytanic acid in a variety tissues. Beside tapetoretinal degeneration, additional symptoms are chronic polyneuropathy, cerebellar ataxia, sensorineural hearing loss, anosmia, ichthyosis, skeletal malformations, and cardiac abnormalities. A diet low in phytanic acid leads to an amelioration of polyneuropathy and ataxia and slows or even stops the other manifestations. This beneficial effect of dietary precautions requires the need to get hold of as much patients as possible but better all of them. The ophthalmologist plays a crucial role to this end because of the early manifestation of the tapetoretinal degeneration. A delay of 11 years between the appearance of first symptoms and the diagnosis of Refsum disease, as reported in the literature, is not acceptable.

  15. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.

    Science.gov (United States)

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-03-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function.

  16. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    OpenAIRE

    Gian Carlo Demontis; Claudia Aruta; Antonella Comitato; Anna De Marzo; Valeria Marigo

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor...

  17. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Po-Ting Yeh

    Full Text Available We evaluated whether orally administered astaxanthin (AST protects against oxidative damage in the ocular tissues of streptozotocin (STZ-induced diabetic rats.Fifty 6-week-old female Wistar rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 40 or to remain uninduced (n = 10. The diabetic rats were randomly selected into four groups and they were separately administered normal saline, 0.6 mg/kg AST, 3 mg/kg AST, or 0.5 mg/kg lutein daily for eight weeks. Retinal functions of each group were evaluated by electroretinography. The expression of oxidative stress and inflammatory mediators in the ocular tissues was then assessed by immunohistochemistry, western blot analysis, ELISA, RT-PCR, and electrophoretic mobility shift assay (EMSA. Retinal functions were preserved by AST and lutein in different levels. Ocular tissues from AST- and lutein-treated rats had significantly reduced levels of oxidative stress mediators (8-hydroxy-2'-deoxyguanosine, nitrotyrosine, and acrolein and inflammatory mediators (intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine, increased levels of antioxidant enzymes (heme oxygenase-1 and peroxiredoxin, and reduced activity of the transcription factor nuclear factor-kappaB (NF-κB.The xanthophyll carotenoids AST and lutein have neuroprotective effects and reduce ocular oxidative stress, and inflammation in the STZ diabetic rat model, which may be mediated by downregulation of NF-κB activity.

  18. Long-term Characterization of Retinal Degeneration in Royal College of Surgeons Rats Using Spectral-Domain Optical Coherence Tomography

    Science.gov (United States)

    Ryals, Renee C.; Andrews, Michael D.; Datta, Shreya; Coyner, Aaron S.; Fischer, Cody M.; Wen, Yuquan; Pennesi, Mark E.; McGill, Trevor J.

    2017-01-01

    Purpose Prospective treatments for age-related macular degeneration and inherited retinal degenerations are commonly evaluated in the Royal College of Surgeons (RCS) rat before translation into clinical application. Historically, retinal thickness obtained through postmortem anatomic assessments has been a key outcome measure; however, utility of this measurement is limited because it precludes the ability to perform longitudinal studies. To overcome this limitation, the present study was designed to provide a baseline longitudinal quantification of retinal thickness in the RCS rat by using spectral-domain optical coherence tomography (SD-OCT). Methods Horizontal and vertical linear SD-OCT scans centered on the optic nerve were captured from Long-Evans control rats at P30, P60, P90 and from RCS rats between P17 and P90. Total retina (TR), outer nuclear layer+ (ONL+), inner nuclear layer (INL), and retinal pigment epithelium (RPE) thicknesses were quantified. Histologic sections of RCS retina obtained from P21 to P60 were compared to SD-OCT images. Results In RCS rats, TR and ONL+ thickness decreased significantly as compared to Long-Evans controls. Changes in INL and RPE thickness were not significantly different between control and RCS retinas. From P30 to P90 a subretinal hyperreflective layer (HRL) was observed and quantified in RCS rats. After correlation with histology, the HRL was identified as disorganized outer segments and the location of accumulated debris. Conclusions Retinal layer thickness can be quantified longitudinally throughout the course of retinal degeneration in the RCS rat by using SD-OCT. Thickness measurements obtained with SD-OCT were consistent with previous anatomic thickness assessments. This study provides baseline data for future longitudinal assessment of therapeutic agents in the RCS rat. PMID:28253400

  19. Effects of 3,4-methylenedioxymethamphetamine administration on retinal physiology in the rat.

    Directory of Open Access Journals (Sweden)

    João Martins

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA; ecstasy is known to produce euphoric states, but may also cause adverse consequences in humans, such as hyperthermia and neurocognitive deficits. Although MDMA consumption has been associated with visual problems, the effects of this recreational drug in retinal physiology have not been addressed hitherto. In this work, we evaluated the effect of a single MDMA administration in the rat electroretinogram (ERG. Wistar rats were administered MDMA (15 mg/kg or saline and ERGs were recorded before (Baseline ERG, and 3 h, 24 h, and 7 days after treatment. A high temperature (HT saline-treated control group was also included. Overall, significantly augmented and shorter latency ERG responses were found in MDMA and HT groups 3 h after treatment when compared to Baseline. Twenty-four hours after treatment some of the alterations found at 3 h, mainly characterized by shorter latency, tended to return to Baseline values. However, MDMA-treated animals still presented increased scotopic a-wave and b-wave amplitudes compared to Baseline ERGs, which were independent of temperature elevation though the latter might underlie the acute ERG alterations observed 3 h after MDMA administration. Seven days after MDMA administration recovery from these effects had occurred. The effects seem to stem from specific changes observed at the a-wave level, which indicates that MDMA affects subacutely (at 24 h retinal physiology at the outer retinal (photoreceptor/bipolar layers. In conclusion, we have found direct evidence that MDMA causes subacute enhancement of the outer retinal responses (most prominent in the a-wave, though ERG alterations resume within one week. These changes in photoreceptor/bipolar cell physiology may have implications for the understanding of the subacute visual manifestations induced by MDMA in humans.

  20. Characterization of retinal damage in the episcleral vein cauterization rat glaucoma model.

    Science.gov (United States)

    Danias, John; Shen, Fran; Kavalarakis, Manolis; Chen, Bin; Goldblum, David; Lee, Kevin; Zamora, Maria-Florencia; Su, YanLing; Brodie, Scott E; Podos, Steven M; Mittag, Thom

    2006-02-01

    Episcleral vein cauterization (EVC) is used in rats to generate a glaucoma model with high intraocular pressure (IOP). The long-term retinal damage in this glaucoma model, however, has not been accurately quantified. We report the location and amount of retinal ganglion cell (RGC) damage caused by (EVC) induced IOP elevation in two rat strains. IOP was raised in one eye of Wistar (N = 5) and Brown-Norway(B-N)(N = 7) rats by EVC and monitored monthly until IOP in contralateral eyes equalized at 5 months post-surgery. Animals were maintained for 3.5-4.5 additional months. B-N rats (N = 7) that had no EVC served as controls for this strain. Scotopic flash ERGs were recorded at baseline and just prior to euthanasia. Automated counts of all retrogradely labeled RGCs in retinal flat-mounts were determined and compared between contralateral eyes. RGC density maps were constructed and RGC size distribution was determined. Oscillatory potentials in the group of eyes which had elevated IOP were decreased at the time of euthanasia, when IOP had returned to normal. The group of normal B-N rats had similar RGC counts between contralateral eyes. In the experimental group the mean number of RGCs was not significantly different between control and experimental eyes, but 1 of 5 Wistar and 2 of 7 B-N experimental eyes had at least 30% fewer RGCs than contralateral control eyes. Total retinal area in B-N experimental eyes was higher compared to contralateral eyes. Cumulative IOP exposure of the experimental eyes was modestly correlated with RGC loss while oscillatory potentials appeared to be inversely related to RGC loss. In retinas with extensive (> 30% RGC loss) but not complete damage, smaller cells were preserved better than larger ones. The above results indicate that RGC loss in both Wistar and B-N strains is variable after a prolonged elevation of IOP via EVC. Such variability despite equivalent IOP levels and ERG abnormalities, suggests unknown factors that can protect IOP

  1. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    Directory of Open Access Journals (Sweden)

    Hu Y

    2013-10-01

    Full Text Available Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC transplantation in preventing loss of visual function in aged rats with glaucoma caused by laser-induced ocular hypertension. We found that BMSCs promoted survival of retinal ganglion cells in the transplanted eye as compared with the control eye. Further, in swimming tests guided by visual cues, the rats with a BMSC transplant performed significantly better. We believe that BMSC transplantation therapy is effective in treating aged rats with glaucoma. Keywords: glaucoma, stem cell, transplantation, cell therapy, aging

  2. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.

    Science.gov (United States)

    Tzameret, Adi; Sher, Ifat; Belkin, Michael; Treves, Avraham J; Meir, Amilia; Nagler, Arnon; Levkovitch-Verbin, Hani; Rotenstreich, Ygal; Solomon, Arieh S

    2015-09-01

    Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection.

  3. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  4. Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae.

    Science.gov (United States)

    Felmy, F; Pannicke, T; Richt, J A; Reichenbach, A; Guenther, E

    2001-05-01

    Retinal glial Müller cells are characterized by dominant K(+) conductances. The cells may undergo changes of their membrane currents during ontogeny and gliosis as described in rabbit and man. Although the rat retina is often used in physiological experiments, the electrophysiology of rat Müller cells is less well studied. The aim of the present study was to characterize their membrane currents in postnatal development and in two models of retinal degeneration. Freshly isolated cells were subjected to whole-cell patch clamp recordings. During the first 4 weeks after birth of rats, their Müller cells displayed an increase in all membrane currents, particularly in the inward currents elicited at hyperpolarizing potentials. The decrease of the membrane resistance from more than 760 MOmega to less than 50 MOmega was accompanied by a shift of the zero current potential from about -20 mV to -80 mV, similar as earlier observed in developing rabbit Müller cells. These developmental changes were found in pigmented Brown Norway rats as well as in rats with inherited retinal dystrophy (RCS rats). Moreover, an infection of Lewis rats with the Borna disease virus caused substantial neuroretinal degeneration but did not result in a strong reduction of inward currents and of the zero current potential of the Müller cells. Thus, rat Müller cells fail to change their basic membrane properties in two different models of retinal pathology. This is in contrast to human and rabbit Müller cells, which have been shown to undergo dramatic changes of their membrane physiology in response to retinal diseases and injuries.

  5. Conditioned medium from activated spleen cells supports the survival of rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    A. Sholl-Franco

    1997-11-01

    Full Text Available Cytokines are a heterogeneous group of molecules that have been associated with several functions in the nervous system, such as survival and differentiation of neuronal and glial cells. In the present study, we demonstrated that conditioned medium from spleen cells activated with concanavalin A increased neuritogenesis and survival of retinal cells, as measured by biochemical and morphological criteria. Our data showed that conditioned medium induced a five-fold increase in the amount of protein after 120 h in vitro. This effect was not inhibited by the blockade of voltage-dependent L-type calcium channels with 5.0 µM nifedipine. However, the use of an intracellular calcium chelator (15.0 µM BAPTA-AM inhibited this effect. Our results support the idea that factors secreted by activated lymphocytes, such as cytokines, can modulate the maintenance and the differentiation of rat retinal cells in vitro, indicating a possible role of these molecules in the development of retinal cells, as well as in its protection against pathological conditions

  6. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy.

    Science.gov (United States)

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-02-24

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP](mi2004) zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.

  7. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

    Institute of Scientific and Technical Information of China (English)

    Kwok-Fai So; Mason Chin Pang Leung; Qi Cui

    2014-01-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the ifrst week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These ifndings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal gan-glion cells.

  8. Postnatal visual deprivation in rats regulates several retinal genes and proteins, including differentiation-associated fibroblast growth factor-2.

    Science.gov (United States)

    Prokosch-Willing, Verena; Meyer zu Hoerste, Melissa; Mertsch, Sonja; Stupp, Tobias; Thanos, Solon

    2015-01-01

    Little is known about the retinal cellular basis of amblyopia, which is a developmental disease characterized by impaired visual acuity. This study examined the retinal transcripts associated with experimentally induced unilateral amblyopia in rats. Surgical tarsorrhaphy of the eyelids on one side was performed in pups prior to eye opening at postnatal day 14, thereby preventing any visual experience. This condition was maintained for over 2 months, after which electroretinograms (ERGs) were recorded, the retinal ganglion cell (RGC) arrangement and number were determined using neuroanatomical tracing, the retinal transcripts were studied using microarray analysis, regulated mRNAs were confirmed with quantitative reverse-transcriptase PCR, and proteins were stained using Western blotting and immunohistochemistry. An attenuated ERG was found in eyes that were deprived of visual experience. Retrograde neuroanatomical staining disclosed a larger number of RGCs within the retina on the visually deprived side compared to the non-deprived, control side, and a multilayered distribution of RGCs. At the retinomic level, several transcripts associated with retinal differentiation, such as fibroblast growth factor 2 (FGF-2), were either up- or downregulated. Most of the transcripts could be verified at the mRNA level. To unravel the role of a differentiation-associated protein, we tested FGF-2 in dissociated postnatal retinal cell cultures and found that FGF-2 is a potent factor triggering ganglion cell differentiation. The data suggest that visual experience shapes the postnatal retinal differentiation, whereas visual deprivation induces changes at the functional, cellular and molecular levels within the retina.

  9. Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity

    DEFF Research Database (Denmark)

    Corydon, Thomas J; Mann, Vivek; Slumstrup, Lasse;

    2016-01-01

    BACKGROUND/AIMS: Microgravity (µg) has adverse effects on the eye of humans in space. The risk of visual impairment is therefore one of the leading health concerns for NASA. The impact of µg on human adult retinal epithelium (ARPE-19) cells is unknown. METHODS: In this study we investigated the i...

  10. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity.

    Science.gov (United States)

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)(-1) and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.

  11. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity

    Science.gov (United States)

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress. PMID:25951172

  12. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity.

    Directory of Open Access Journals (Sweden)

    Ixchel Osorio-Paz

    Full Text Available In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot(-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.

  13. Increased vascular density and vitreo-retinal membranes accompany vascularization of the pigment epithelium in the dystrophic rat retina.

    Science.gov (United States)

    Caldwell, R B; Roque, R S; Solomon, S W

    1989-09-01

    Observations of vascularization of the retinal pigment epithelium (RPE) and formation of vitreo-retinal membranes (VRMs) in Royal College of Surgeons (RCS) rats with inherited retinal dystrophy suggest that vascular proliferation occurs in this model. To test this hypothesis, we studied the progression of vascular changes in RCS and age-matched control rats using quantitative light microscope morphometry and electron microscopy. At 2 weeks, prior to photoreceptor degeneration, the dystrophic retina is comparable with the control. By 2 months, extensive degeneration of photoreceptor cells results in significant thinning of the dystrophic retina as compared with the control. Signs of vascular degeneration are evident at the electron microscope level--"ghost" vessels consisting of acellular basal lamina surrounded by amorphous electron-dense material; degenerating endothelial cells and pericytes; and abnormal deposits of extracellular matrix (ECM) material around blood vessels. Vascular degeneration is accompanied by glial changes in the form of necrotic perivascular glial processes and abnormal ECM deposits among the altered Muller cell processes. At 2-4 months in the dystrophic retina, numbers of vessel profiles in dystrophic retinas are decreased as compared with controls. However, vascular degeneration is overshadowed by the formation of numerous capillary tufts within the RPE layer, which together with retinal thinning results in increased vessel density. Between 4-12 months, the retinal thickness diminishes further, vascularization of the RPE increases, vitreo-retinal membranes are formed, and vascular density increases. In summary, following an initial period of vascular degeneration, vascularization of the RPE is accompanied by an increase in retinal vessel density and by the formation of vitreo-retinal membranes.

  14. Nimodipine rescues N-methyl-N-nitrosourea-induced retinal degeneration in rats

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2013-01-01

    Full Text Available Background: That nimodipine (NMD is potentially useful for ophthalmic treatment. However, the effect of NMD is unknown on retinal degenerative diseases. Objective: The purpose of the present study was to investigate the effect of NMD on N-methyl-N-nitrosourea (MNU-induced retinal degeneration (RD and elucidate its possible mechanisms. Materials and Methods: Morphological observation of NMD on MNU-induced RD was evaluated by light microscopy and electron microscopy. Nonenzymatic antioxidant glutathione (GSH was measured by a colorimetric method. Transforming growth factor-beta (TGF-β was measured by enzyme-linked immunosorbent assay (ELISA. Telomerase was detected by reverse transcriptase polymerase chain reaction (RT-PCR. Results: The significantly protective effect of NMD on MNU-induced RD was demonstrated morphologically. NMD increased the content of GSH and decreased the level of TGF-β in rat retina. RT-PCR analysis demonstrated that NMD treatment significantly decreased mRNA level of telomerase. Conclusion: These data suggest that NMD inhibit MNU-induced RD in rats. The expressions of TGF-β, telomerase and GSH contents might partially contribute to its protective effects on MNU-induced RD.

  15. Prenatal hypoxia is associated with long-term retinal dysfunction in rats.

    Directory of Open Access Journals (Sweden)

    Stephane L Bourque

    Full Text Available BACKGROUND: Intra-uterine growth restriction (IUGR has been associated with increased predisposition to age-related complications. We tested the hypothesis that rat offspring models of IUGR would exhibit exacerbated, age-related retinal dysfunction. METHODS: Female Sprague-Dawley rats (maintained at 11.5% O2 from gestational day 15 to 21 to induce IUGR and control offspring (maintained at 21% O2 throughout pregnancy had retinal function assessed at 2 months (young and 14 months of age (aged with electroretinogram (ERG recordings. Retinal anatomy was assessed by immunofluorescence. RESULTS: Deficits in rod-driven retina function were observed in aged IUGR offspring, as evidenced by reduced amplitudes of dark-adapted mixed a-wave V(max (by 49.3%, P < 0.01, b-wave V(max (by 42.1%, P < 0.001 and dark-adapted peak oscillatory potentials (by 42.3%, P < 0.01. In contrast to the rod-driven defects specific to aged IUGR offspring, light adapted ERG recordings revealed cone defects in young animals, that were stationary until old age. At 2 months, IUGR offspring had amplitude reductions for both b-wave (V(max by 46%, P < 0.01 and peak oscillatory potential (V(max by 38%, P < 0.05. Finally, defects in cone-driven responses were further confirmed by reduced maximal photopic flicker amplitudes at 2 (by 42%, P < 0.001 and 14 months (by 34%, P  =  0.06 and critical flicker fusion frequencies at 14 months ( CONTROL: 42 ± 1 Hz, IUGR: 35 ± 2 Hz, P < 0.05. These functional changes were not paralleled by anatomical losses in IUGR offspring retinas. CONCLUSIONS: These data support that the developing retina is sensitive to stressors, and that pathways governing cone- and rod-driven function differ in their susceptibilities. In the case of prenatal hypoxia, cone- and rod-driven dysfunction manifest at young and old ages, respectively. We must, therefore, take into account the specific impact that fetal programming might exert on age-related retinal dystrophies

  16. KR-31378, a potassium-channel opener, induces the protection of retinal ganglion cells in rat retinal ischemic models.

    Science.gov (United States)

    Choi, Anho; Choi, Jun-Sub; Yoon, Yone-Jung; Kim, Kyung-A; Joo, Choun-Ki

    2009-04-01

    KR-31378 is a newly developed K(ATP)-channel opener. To investigate the ability of KR-31378 to protect retinal ganglion cells (RGC), experiments were conducted using two retinal ischemia models. Retinal ischemia was induced by transient high intraocular pressure (IOP) for acute ischemia and by three episcleral vein occlusion for chronic retinal ischemia. KR-31378 was injected intraperitoneally and administered orally in the acute and chronic ischemia models, respectively. Under the condition of chronic ischemia, RGC density in the KR-31378-treated group was statistically higher than that in the non-treated group, and IOP was reduced. In the acute retinal ischemia model, 90% of RGC were degenerated after one week in non-treated retina, but, RGC in KR-31378-treated retina were protected from ischemic damage in a dose-dependent manner and showed inhibited glial fibrillary acidic protein (GFAP) expression. Furthermore, the KR-31378 protective effect was inhibited by glibenclamide treatment in acute ischemia. These findings indicate that systemic KR-31378 treatment may protect against ischemic injury-induced ganglion cell loss in glaucoma.

  17. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats.

    Science.gov (United States)

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-07-25

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What's more, ZER significantly (p diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity.

  18. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Yang F

    2015-11-01

    Full Text Available Fan Yang, Dongmei Wang, Lingling Wu, Ying Li Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China Purpose: To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs in a rat model of chronic glaucoma.Methods: Eighty Wistar rats were randomly divided into triptolide group (n=40 and normal saline (NS group (n=40. Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP, anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed.Results: Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05, with no statistical difference between the two groups (P>0.05. RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05. Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90 than the NS group (35.06±7.59 (P<0.05. TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01. The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia.Conclusion: Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. Keywords: glaucoma, triptolide

  19. In vitro Culture of Bone Marrow Mesenchymal Stem Cells in Rats and Differentiation into Retinal Neural-like Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Xufang; JIANG Huanrong; YANG Hong

    2007-01-01

    In order to study the in vitro culture and expansion of bone marrow mesenchymal stem cells in rats (rMSCs) and the possibility of rMSCs differentiation into retinal neural cells, the bone marrow-derived cells in SD rats were isolated and cultured in vitro. The retinal neural cells in SD rats were cultured and the supernatants were collected to prepare conditioned medium. The cultured rMSCs were induced to differentiate by two steps. Imrnunofluorescence method and anti-nestin, anti-NeuN, anti-GFAP and anti-Thy1.1 antibodies were used to identify the cells derived from the rMSCs. The results showed that the in vitro cultured rMSCs grew well and expanded quickly. After induction with two conditioned media, rMSCs was induced to differentiate into neural progenitor cells, then into retinal neural-like cells which were positive for nestin, NeuN, GFAP and Thy1.1 de-tected by fluorescence method. The findings suggested that rMSCs could be culture and expanded in vitro, and induced to differentiate into retinal neural-like cells.

  20. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2/Bcl-2 associated X protein (Bax in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.

  1. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin.

    Science.gov (United States)

    Bray, A F; Cevallos, R R; Gazarian, K; Lamas, M

    2014-11-07

    Human adult dental pulp stem cells (DPSCs) are self-renewing stem cells that originate from the neural crest during development and remain within the dental pulp niche through adulthood. Due to their multi-lineage differentiation potential and their relative ease of access they represent an exciting alternative for autologous stem cell-based therapies in neurodegenerative diseases. In animal models, DPSCs transplanted into the brain differentiate into functional neurons or astrocytes in response to local environmental cues that appear to influence the fate of the surviving cells. Here we tested the hypothesis that DPSCs might be able to respond to factors present in the retina enabling the regenerative potential of these cells. We evaluated the response of DPSCs to conditioned media from organotypic explants from control and chemically damaged rat retinas. To evaluate cell differentiation, we analyzed the expression of glial fibrillary acidic protein (GFAP), early neuronal and retinal markers (polysialic acid-neural cell adhesion molecule (PSA-NCAM); Pax6; Ascl1; NeuroD1) and the late photoreceptor marker rhodopsin, by immunofluorescence and reverse transcription polymerase chain reaction (RT-PCR). Exposure of DPSC cultures to conditioned media from control retinas induced a 39% reduction on the number of DPSCs that expressed GFAP; the expression of Pax6, Ascl1, PSA-NCAM or NeuroD1 was undetectable or did not change significantly. Expression of rhodopsin was not detectable in control or after exposure of the cultures with retinal conditioned media. By contrast, 44% of DPSCs exposed to conditioned media from damaged retinas were immunopositive to this protein. This response could not be reproduced when conditioned media from Müller-enriched primary cultures was used. Finally, quantitative RT-PCR was performed to compare the relative expression of glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and brain

  2. Effects of nuclear factor κB expression on retinal neovascularization and apoptosis in a diabetic retinopathy rat model

    Institute of Scientific and Technical Information of China (English)

    Ning; Jiang; Xiao-Long; Chen; Hong-Wei; Yang; Yu-Ru; Ma

    2015-01-01

    AIM: To investigate the expression and role of nuclear factor κB(NF-κB) in diabetic retinopathy(DR) and its relationship with neovascularization and retinal cell apoptosis. METHODS: A total of 80 male Wistar rats were randomly assigned to control(4, 8, 12 and 16 wk, n =10 in each group) and diabetes mellitus(DM) groups(4, 8, 12 and 16wk, n =10 in each group). A diabetic rat model was established by intraperitoneal injection of streptozotocin(60 mg/kg). After 4, 8, 12 and 16 wk, rats were sacrificed.Retinal layers and retinal neovascularization growth were stained with hematoxylin-eosin and examined under light microscopy. Cell apoptosis in the retina was detected by Td T-mediated d UTP nick end labeling, and NF-κB distribution and expression in the retina was determined using immunohistochemistry. RESULTS: DM model success rate up to 100%.Diabetes model at each time point after the experimental groupcompared with the control group, the blood glucose was significantly increased, decreased body weight, each time point showed significant differences compared with the control group(P <0.01). After 12 wk other pathological changes in the retina of diabetic rats were observed; after 16 wk, neovascularization were observed. After 1mo, retinal cell apoptosis was observed.Compared with the control group, NF-κB expression in the DM group significantly increased with disease duration.CONCLUSION: With the prolonging of DM progression,the expression NF-κB increases. NF-κB may be related to retinal cell apoptosis and neovascularization.

  3. ER stress in retinal degeneration in S334ter Rho rats.

    Directory of Open Access Journals (Sweden)

    Vishal M Shinde

    Full Text Available The S334ter rhodopsin (Rho rat (line 4 bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP. The Unfolded Protein Response (UPR is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12-P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.

  4. Alpha B-crystallin improved survival of retinal ganglion cells in a rat model of acute ocular hypertension

    Institute of Scientific and Technical Information of China (English)

    Zhihong Wu; Layi Wang; Shike Hou

    2012-01-01

    Increased endogenous αB-crystallin protein levels have been shown to reduce cell apoptosis,although the effects of exogenous αB-crystallin protein remain poorly understood.The present study established an acute ocular hypertension model in the right eye of Sprague-Dawley rats.Fluorogold retrograde tracing and immunofluorescence methods showed that the number of retinal ganglion cells decreased in the right eyes and caspase-3 expression increased following acute ocular hypertension.Intravitreal injection of αB-crystallin in the right eye increased the number of retinal ganglion cells and reduced caspase-3 expression.Results demonstrated that exogenous αB-crystallin protein inhibited caspase-3 expression and improved retinal ganglion cell survival following acute ocular hypertension.

  5. Adenosine A(2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.

    Directory of Open Access Journals (Sweden)

    Pin-Chien Huang

    Full Text Available BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs and retinal ganglion cells (RGCs. The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A receptor (A(2AR regulates retinal waves and whether A(2AR regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2AR decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2AR may up-regulate wave frequency. To investigate whether A(2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2AR (A2AR-WT in SACs, suggesting that A(2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2AR mutant (A(2AR-ΔC in SACs, the wave frequency was reduced compared to the A(2AR-WT, but was similar to the control, suggesting that the full-length A(2AR in SACs is required for A(2AR up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2AR up-regulates the frequency of retinal waves via

  6. Heat Shock Protein 72 Protects Retinal Ganglion Cells in Rat Model of Acute Glaucoma

    Institute of Scientific and Technical Information of China (English)

    Guoping Qing; Xuanchu Duan; Youqin Jiang

    2005-01-01

    Purpose: To investigate whether the induction of heat shock protein (HSP)72 by heat stress (HS) or zinc (Zn2+ ) administration can increase survival of retinal ganglion cells (RGC) in rat model of acute experimental glaucoma.Methods: Acute glaucoma model was made by intracameral irrigation with BSS at 102 mmHg for two hours in right eyes of male Wistar rats. Glaucoma model rats were treated with HS once a week (six rats) or intraperitoneal injection of zinc sulfate (24.6 mg/kg) every two weeks (six rats), and were referred to as HS group and zinc group, respectively. Untreated model rats served as damage group (six rats). In control groups, quercetin (400 mg/kg) was intraperitoneally injected to inhibit the induction of heat shock proteins 6 hours before HS or zinc administration, and were referred to as HS+que group (six rats) and zinc+que group (six rats), respectively. Subsequent to 16 days of IOP elevation, the rats were sacrificed. Eyes were quickly enucleated, and the retinas were dissected. RGC were labeled with Nissl staining and counted under microscope.Results: The average RGC density in normal Wistar rats was (2504±181) cells/mm2. In damage group, it decreased to (2015±111 ) cells/mm2. The RGC densities at 1,2, and 3 mm from the center of the optic nerve head were (2716±215), (2496±168), and (2317±171) cells/mm2, respectively, for normal rats and (2211±133), (1969±154),and (1872±68) cells/mm2, respectively, for damage group. The latter was significantly lower at all locations compared with the former (P=0.027 for each, Mann-Whitney test).The average RGC densities were (2207±200) cells/mm2 for HS group, (2272±155) cells/mm2 for zinc group, (1964±188) cells/mm2 for HS+que group, (2051 ±214) cells/mm2 for zinc+que group and (2015±111 ) cells/mm2 for damage group. There were significant differences in density of labeled RGCs among the five groups (P=0.040,Kruskal-Wallis test). Both HS and zinc group had higher RGC densities than damage group (P

  7. Retinal ganglion cell neuroprotection in a rat model of glaucoma following brimonidine, latanoprost or combined treatments.

    Science.gov (United States)

    Hernández, María; Urcola, J Haritz; Vecino, Elena

    2008-05-01

    The aim of the present study is to evaluate the neuroprotective effect of two antiglaucomatous substances, regardless of their hypotensive effect in the eye. Brimonidine, which does not reduce IOP when administered intraperitoneally, and latanoprost, which has a renowned hypotensive effect topically. We examined rat retinal ganglion cell (RGC) survival and size distribution in experimental glaucoma in response to different glaucomatous agents. IOP was elevated by episcleral vein cauterization (EVC) prior to the application of different treatments: (I) PBS application (control group), (II) intraperitoneal administration of brimonidine (a general hypotensive agent), (III) topical application of latanoprost (an ocular hypotensive agent), and (IV) latanoprost combined with brimonidine. After 12 weeks, RGCs were retrogradely labeled with fluorogold and RGC density was analyzed. EVC caused a significant increase (42%) in IOP in each group before drug treatment. After 12weeks of EVC, RGC survival in control vs. EVC rats was 78.9+/-3.2%. No IOP reduction was observed in brimonidine injected rats, but RGC survival at 12 weeks was total (103.7+/-2.7%). In latanoprost treated rats, IOP dropped by around 22% and 94.7+/-3.7% of the RGC population survived. Finally in the latanoprost+brimonidine combined group, IOP was significantly reduced by 25% and 94.4+/-2.2% of RGCs survived. Surprisingly, whereas EVC led to a 6% increase in RGC soma size, brimonidine treatment was associated with a 9% reduction in the soma size of RGCs at 12 weeks. We conclude that brimonidine exerts a neuroprotective effect via a mechanism which is independent of IOP reduction. These findings indicate that cell survival in glaucoma may be enhanced by neuroprotective strategies which are independent of IOP reduction. No synergistic neuroprotective effect was observed when both treatments were applied simultaneously.

  8. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    Science.gov (United States)

    Demontis, Gian Carlo; Aruta, Claudia; Comitato, Antonella; De Marzo, Anna; Marigo, Valeria

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells. PMID:22432014

  9. Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium.

    Directory of Open Access Journals (Sweden)

    Gian Carlo Demontis

    Full Text Available In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells.

  10. The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2012-02-01

    Self-renewing, multipotential retinal stem cells (RSCs reside in the pigmented ciliary epithelium of the peripheral retina in adult mammals. RSCs can give rise to rhodopsin positive-cells, which can integrate into early postnatal retina, and represent a potentially useful option for cellular therapy. The ability to purify a stem cell population and direct the differentiation toward a particular cell lineage is a challenge facing the application of stem cells in regenerative medicine. Here we use cell sorting to prospectively enrich mouse RSCs based on size, granularity and low expression of P-cadherin and demonstrate that only rare cells with defined properties proliferate to form colonies. We show that clonally-derived mouse and human RSC progeny are multipotent and can differentiate into mature rhodopsin-positive cells with high efficiency using combinations of exogenous culture additives known to influence neural retinal development, including taurine and retinoic acid. This directed RSC differentiation follows the temporal sequence of photoreceptor differentiation in vivo, and the cells exhibit morphology, protein and gene expression consistent with primary cultures of rods in vitro. These results demonstrate that the RSC, an adult stem cell, can be enriched and directed to produce photoreceptors as a first step toward a targeted cell replacement strategy to treat retinal degenerative disease.

  11. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Thing-Fong Tzeng

    2016-07-01

    Full Text Available Diabetic retinopathy (DR, the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg once a day orally for 8 weeks. ZER administration significantly (p < 0.05 lowered the levels of plasma glucose (32.5% ± 5.7% lower and glycosylated hemoglobin (29.2% ± 3.4% lower in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs and the higher levels of the receptors for AGEs (RAGE in retinas of diabetic rats. What’s more, ZER significantly (p < 0.05 ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity.

  12. Endothelins Inhibit Osmotic Swelling of Rat Retinal Glial and Bipolar Cells by Activation of Growth Factor Signaling.

    Science.gov (United States)

    Vogler, Stefanie; Grosche, Antje; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-10-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-β1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-β1 from Müller cells.

  13. High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina.

    Science.gov (United States)

    Sakamoto, Kenji; Mizuta, Aya; Fujimura, Kyosuke; Kurauchi, Yuki; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2015-08-01

    High-mobility group Box-1 (HMGB1) is known to be released from injured cells and to induce an inflammatory response. Although HMGB1 was reported to mediate ischemia-reperfusion injury of the brain, its role in glutamate excitotoxicity of the retina remains controversial. Here, the authors demonstrated the evidence that HMGB1 is involved in the retinal damage induced by NMDA. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal injection of NMDA (200 nmol/eye) or HMGB1 protein derived from bovines (5-15 μg/eye). Intravitreal anti-HMGB1 IgY (5 μg/eye) was simultaneously administered with NMDA or HMGB1. Seven days later, animals were killed and 5-μm retinal sections through the optic nerve head were obtained. These specimens were subjected to morphometry. Intravitreal NMDA and HMGB1 protein evoked cell loss in the ganglion cell layer 7 days later. Intravitreal anti-HMGB1 IgY reduced these damages. Anti-HMGB1 IgY reduced the number of 8-hydroxy-deoxyguanosine (8-OHdG)-positive cells induced by intravitreal NMDA. Toll-like receptor 2/4 antagonist peptide, receptor for advanced glycation end-products (RAGE) antagonist peptide, and FPS-ZM1 significantly reduced the retinal damage induced by HMGB1 protein. The results in the present study suggest that HMGB1 is at least in part involved in NMDA-induced retinal injury, and probably induces cell death of retinal ganglion cells with increase of oxidative stress, via activation of toll-like receptor 2/4 and RAGE in the rat retina.

  14. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells.

    Science.gov (United States)

    Liu, F; Weng, S-J; Yang, X-L; Zhong, Y-M

    2015-10-01

    Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.

  15. Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina.

    Science.gov (United States)

    Chan, Leanne L H; Lee, Eun-Jin; Humayun, Mark S; Weiland, James D

    2011-06-01

    Electrical stimulation threshold and retinal ganglion cell density were measured in a rat model of retinal degeneration. We performed in vivo electrophysiology and morphometric analysis on normal and S334ter line 3 (RD) rats (ages 84-782 days). We stimulated the retina in anesthetized animals and recorded evoked responses in the superior colliculus. Current pulses were delivered with a platinum-iridium (Pt-Ir) electrode of 75-μm diameter positioned on the epiretinal surface. In the same animals used for electrophysiology, SMI-32 immunolabeling of the retina enabled ganglion cell counting. An increase in threshold currents positively correlated with age of RD rats. SMI-32-labeled retinal ganglion cell density negatively correlated with age of RD rats. ANOVA shows that RD postnatal day (P)100 and P300 rats have threshold and density similar to normal rats, but RD P500 and P700 rats have threshold and density statistically different from normal rats (P < 0.05). Threshold charge densities were within the safety limits of Pt for all groups and pulse configurations, except at RD P600 and RD P700, where pulses were only safe up to 1- and 0.2-ms duration, respectively. Preservation of ganglion cells may enhance the efficiency and safety of electronic retinal implants.

  16. Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration

    Science.gov (United States)

    Maccarone, Rita; Rapino, Cinzia; Zerti, Darin; di Tommaso, Monia; Battista, Natalia; Di Marco, Stefano; Bisti, Silvia; Maccarrone, Mauro

    2016-01-01

    Experimental studies demonstrated that saffron (Crocus sativus) given as a dietary supplement counteracts the effects of bright continuous light (BCL) exposure in the albino rat retina, preserving both morphology and function and probably acting as a regulator of programmed cell death [1]. The purpose of this study was to ascertain whether the neuroprotective effect of saffron on rat retina exposed to BCL is associated with a modulation of the endocannabinoid system (ECS). To this aim, we used eight experimental groups of Sprague-Dawley rats, of which six were exposed to BCL for 24 hours. Following retinal function evaluation, retinas were quickly removed for biochemical and morphological analyses. Rats were either saffron-prefed or intravitreally injected with selective type-1 (CB1) or type-2 (CB2) cannabinoid receptor antagonists before BCL. Prefeeding and intravitreally injections were combined in two experimental groups before BCL. BCL exposure led to enhanced gene and protein expression of retinal CB1 and CB2 without affecting the other ECS elements. This effect of BCL on CB1 and CB2 was reversed by saffron treatment. Selective CB1 and CB2 antagonists reduced photoreceptor death, preserved morphology and visual function of retina, and mitigated the outer nuclear layer (ONL) damage due to BCL. Of interest, CB2-dependent neuroprotection was more pronounced than that conferred by CB1. These data suggest that BCL modulates only distinct ECS elements like CB1 and CB2, and that saffron and cannabinoid receptors could share the same mechanism in order to afford retinal protection. PMID:27861558

  17. The Study of Influencing Factors on the Growth Characters of Sprague—Dawley Rat Retinal Neurons in Vitro

    Institute of Scientific and Technical Information of China (English)

    LiuHQ; GeJ

    1999-01-01

    Purpose:To investigate the influencing factors in culturing Srague-Dawley(S-D) rats retinal neurons in order to lay foundation for further experimental research.Materials and Methods:Retinal cells were plated on plastic plates and coverslips coated with poly-lysine or ethylene imine polymer for primary culture.The cultured cells were divided into following groups:1.Culture medium changed every 2 tp 3 days vs changed only once;2.Cytosine arabinoside(Ara-C)added to the culture medium vs not added.The cells were observed and pictured under inverted phase contrast microscope.The cells were identified through immunocytochemistry.Results:The immunofluorescence showed that most of the cultured cells were neurons,among them were a few retinal ganglion cells.In the cultured group of which substrata coated with poly-l-lysine and culture medium added with Ara-c,the neurons intended to aggregate into clusters with relatively straight neurites.In the group of which substrata coated with ethylene imine polymer and medium added with Ara-c,the neurons grew dispersively with bent neurites.Both of them survived for 2 to 3 weeks.The cells which plated in the medium not added with Ara-c did not aggregate into clusters and survived longer than 4 weeks.In the group of which medium changed several times,the survival time of neurons was shorter than that in the medium changed only once.Conclusions:The retinal neurons plated on the substrata coated with ethylene imine polymer are easy to observe because of its dispersive growth.It is not favorable for the growth of the neurons by changing culture medium many times.Ara-c may possibly have side effect on the growth of retinal neurons.

  18. Protective effects of Purendan superfine powder on retinal neuron apoptosis in a rat model of type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Zhijun Dong; Xiangyi Tao; Xiaoxiao Fu; Haibin Wang; Donghua Wang; Tiemin Zhang

    2012-01-01

    This study sought to investigate the effects of Purendan superfine powder comprised of Momordica charantia, Radix Ginseng, and Radix Salviae Miltiorrhiae on neuronal apoptosis and expression of bcl-2, bax, and caspase-3, which are retinal apoptosis-associated factors in rats with diabetes mellitus induced by continuous intraperitoneal injection of streptozotocin. The results showed that Purendan superfine powder could upregulate the expression of bcl-2 protein and mRNA, and downregulate the expression of bax and caspase-3 in the retina of diabetes mellitus rats. In addition, Purendan superfine powder was shown to reduce the number of apoptotic neurons. Our experimental findings indicate that Purendan superfine powder can inhibit neuronal apoptosis in the retina of diabetes mellitus rats and has protective effects on diabetic retinopathy.

  19. Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults

    Directory of Open Access Journals (Sweden)

    Carol L Shields

    2015-01-01

    Full Text Available Background: Spectral domain (SD enhanced depth imaging optical coherence tomography (EDI-OCT is a useful tool for anatomic, cross-sectional imaging of retinal conditions. Aims: The aim was to identify characteristic patterns of retinal and retinal pigment epithelial tumors on EDI-OCT in children and adults. Settings and Design: Retrospective review. Materials and Methods: Analysis of published reports and personal observations using office-based EDI-OCT for adults and portable hand-held SD OCT for infants and children. Results: Using EDI-OCT, retinal tumors such as small retinoblastoma, astrocytic hamartoma, and hemangioblastoma arose abruptly from the retina, immediately adjacent to normal retina. Small exophytic retinoblastoma and retinal hemangioblastoma showed the full-thickness, homogeneous retinal disorganization with surrounding normal retina "draping" over the margins. Retinoblastoma occasionally had intralesional cavities and surrounding subretinal fluid. Hemangioblastoma often had adjacent intraretinal edema and subretinal fluid. Astrocytic hamartoma arose within the nerve fiber layer and sometimes with a "moth-eaten" or cavitary appearance. Retinal pigment epithelial (RPE lesions such as congenital hypertrophy of RPE appeared flat with shadowing, occasional subretinal cleft, and abrupt photoreceptor loss. Congenital simple hamartoma showed an abrupt elevation from the inner retina with crisp, dark posterior shadowing. Combined hamartoma of the retina/RPE showed vitreoretinal traction causing "sawtooth mini-peak" or gently "maxi-peak" folding of the retina. RPE adenoma often produces remote macular edema or epiretinal membrane and the tumor has an irregular, "rugged" surface with deep shadowing. Conclusions: Enhanced depth imaging optical coherence tomography shows characteristic patterns that are suggestive of certain retinal and RPE tumors.

  20. Protective effect of Aster tataricus extract on retinal damage on the virtue of its antioxidant and anti-inflammatory effect in diabetic rat.

    Science.gov (United States)

    Du, Hao; Zhang, Meng; Yao, Kejun; Hu, Zhitao

    2017-03-02

    Effect of Aster tataricus (AT) was estimated on the retinal injury in diabetic rats by its antioxidant and anti-inflammatory activity. Streptozotocin (STZ) was used to induce diabetes at a dose of 60mg/kg, i.p. and blood glucose was estimated to confirm the diabetic rats. All the animals were separated in to 5 different groups (n=10) such as control, diabetic retinopathy (DR) receives saline solution, and AT treated group receives AT (100, 200 and 400mg/kg) for the duration of 8 week. After treatment protocol period blood glucose and HbA1c% was estimated in the blood sample of diabetic rats. Retinal tissue was isolated for the fundus photography and retinal vessel diameter, retinal vascular permeability and leukocytosis were estimated. Moreover in the retinal tissue homogenate oxidative stress parameters such as superoxide dismutase (SOD), glutathione peroxidase (GSH) and catalase (CAT) and concentration of cytokines (TNFα, IL10) was estimated. Result of the study suggested that root extract of AT contain rich amount of polyphenol in it which significantly reduces the body weight and concentration of glucose in blood in diabetic rats. Fundus photography suggested that AT extract attenuates the structure and functional abnormalities that develops due to diabetes. Retinal leukocytosis and vascular permeability was significantly decreases in AT treated group than DR group. There was significant increase in the activity of GSH, CAT and SOD in AT treated group than DR group. Moreover AT also attenuates the altered concentration of TNFα, IL10 and NF-κB in the retina of STZ induced diabetic rat. Thus present study concludes that root extract of AT effectively manages the diabetic retinopathy by controlling the blood glucose and also by attenuating the altered oxidative stresss and inflammatory mediators such as TNFα, IL10 and NF-κB in the retina of STZ induced diabetic rat.

  1. Protective effects of PF-4708671 against N-methyl-d-aspartic acid-induced retinal damage in rats.

    Science.gov (United States)

    Hayashi, Ikumi; Aoki, Yuto; Ushikubo, Hiroko; Asano, Daiki; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2016-12-01

    We previously demonstrated that rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), protects against N-methyl-d-aspartic acid (NMDA)-induced retinal damage in rats. Rapamycin inhibits mTOR activity, thereby preventing the phosphorylation of ribosomal protein S6, which is a downstream target of S6 kinase. Therefore, we aimed to determine whether PF-4708671, an inhibitor of S6 kinase, protects against NMDA-induced retinal injury. Intravitreal injection of NMDA (200 nmol/eye) caused cell loss in the ganglion cell layer and neuroinflammatory responses, such as an increase in the number of CD45-positive leukocytes and Iba1-positive microglia. Surprisingly, simultaneous injection of PF-4708671 (50 nmol/eye) with NMDA significantly attenuated these responses without affecting phosphorylated S6 levels. These results suggest that PF-4708671 and rapamycin likely protect against NMDA-induced retinal damage via distinct pathways. The neuroprotective effect of PF-4708671 is unlikely to be associated with inhibition of the S6 kinase, even though PF-4708671 is reported to be a S6 kinase inhibitor.

  2. Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Wen-Long Sheng

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGCs are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.

  3. PROPERTIES OF PROLIFERATION AND DIFFERENTIATION OF NEONATAL RAT RETINAL PROGENITOR CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Neural stem or progenitor cells are i mmature,multipotent cells that have the capacityto differenti-ate into the three CNSlineages(neurons,astrocytesand oligodendrocytes)[1].Neuronal degeneration isthe cause of visual i mpair ment associated with prev-alent ocular diseases such as retinitis pigmentosa,age-related macular degeneration,retinal detach-ment and glaucoma[2].Transplantation of culturedneural stemcells/progenitors may helprestore visionby repopulating the damaged retina and replacingthe degenerati...

  4. Surgical Management of Traumatic Retinal Detachment with Primary Vitrectomy in Adult Patients

    OpenAIRE

    Katarzyna Nowomiejska; Tomasz Choragiewicz; Dorota Borowicz; Agnieszka Brzozowska; Joanna Moneta-Wielgos; Ryszard Maciejewski; Jünemann, Anselm G.; Robert Rejdak

    2017-01-01

    Purpose. To evaluate functional and anatomical results of pars plana vitrectomy (PPV) in the retinal detachment (RD) followed by severe eye trauma. Methods. Retrospective analysis of medical records of forty-one consecutive patients treated with 23-gauge PPV due to traumatic RD. Age, gender, timing of PPV, visual acuity, and presence of intraocular foreign body (IOFB) and proliferative vitreoretinopathy (PVR) were included in the analysis. Results. Mean age of patients was 47 years; the major...

  5. Adolescent social isolation influences cognitive function in adult rats

    Institute of Scientific and Technical Information of China (English)

    Feng Shao; Xiao Han; Shuang Shao; Weiwen Wang

    2013-01-01

    Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate the effects of adolescent social isolation on latent inhibition and brain-derived neurotrophic factor levels in the forebrain of adult rats. Male Wistar rats were randomly divided into adolescent isolation (isolated housing, 38–51 days of age) and social groups. Latent inhibition was tested at adulthood. Brain-derived neurotrophic factor levels were measured in the medial prefrontal cortex and nucleus accumbens by an enzyme-linked immunosorbent assay. Adolescent social isolation impaired latent inhibition and increased brain-derived neurotrophic factor levels in the medial prefrontal cortex of young adult rats. These data suggest that adolescent social isolation has a profound effect on cognitive function and neurotrophin levels in adult rats and may be used as an animal model of neurodevelopmental disorders.

  6. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    Science.gov (United States)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  7. DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide-induced inflammation in THP-1 cells and rat liver.

    Science.gov (United States)

    Zolfaghari, Reza; Chen, Qiuyan; Ross, A Catharine

    2012-09-01

    Both retinoid status and inflammation have been shown to control the level of expression of retinoid homeostatic genes. In the present study, DHRS3, previously shown to possess retinal reductase activity, was identified by microarray analysis of THP-1 monocytes as a possible gene target of all-trans-retinoic acid (RA). In these cells, DHRS3 mRNA increased 30- to 40-fold after treatment with ≤20 nM RA for 24 h, while DHRS3 protein also increased. Of several synthetic retinoids tested, only Am580, a RA receptor-α-selective retinoid, increased DHRS3 mRNA expression. The full-length DHRS3 cDNA was cloned from rat liver and subjected to in vitro transcription-translation. Two major ∼30- and 35-kDa proteins were detected. In adult rat tissues, DHRS3 mRNA was most abundant in the adrenal gland, liver, and ovary. In the liver, DHRS3 is expressed in hepatocytes and possibly in all liver cells. To evaluate whether DHRS3 is regulated in the liver by RA and/or inflammatory stimuli, we treated rats for 6 h with RA or LPS or both. DHRS3 mRNA was doubled by RA but reduced by >90% after treatment with LPS in the absence and presence of RA. On the basis of our results, DHRS3 mRNA expression is regulated by RA in a tissue- or cell-type specific manner; the RA-induced increase in DHRS3 may contribute to retinoid storage; and a reduction of DHRS3 expression in the liver during inflammation may contribute to the perturbation of whole body vitamin A metabolism that has previously been shown to occur in conditions of inflammatory stress.

  8. Histological and electrophysiological changes in the retinal pigment epithelium after injection of sodium iodate in the orbital venus plexus of pigmented rats

    Directory of Open Access Journals (Sweden)

    Hamid Aboutaleb Kadkhodaeian

    2016-01-01

    Conclusion: NaIO3injection into the retrobulbar venous plexus of pigmented rats can result in significant and progressive damage to the RPE and subsequently to the neuroretina of the injected eye, and may serve as a model of retinal degeneration.

  9. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    Directory of Open Access Journals (Sweden)

    Nicolas Froger

    Full Text Available Retinal ganglion cell (RGC degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats. After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%, whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  10. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  11. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  12. Surgical Management of Traumatic Retinal Detachment with Primary Vitrectomy in Adult Patients

    Science.gov (United States)

    Borowicz, Dorota; Brzozowska, Agnieszka; Moneta-Wielgos, Joanna; Maciejewski, Ryszard; Jünemann, Anselm G.

    2017-01-01

    Purpose. To evaluate functional and anatomical results of pars plana vitrectomy (PPV) in the retinal detachment (RD) followed by severe eye trauma. Methods. Retrospective analysis of medical records of forty-one consecutive patients treated with 23-gauge PPV due to traumatic RD. Age, gender, timing of PPV, visual acuity, and presence of intraocular foreign body (IOFB) and proliferative vitreoretinopathy (PVR) were included in the analysis. Results. Mean age of patients was 47 years; the majority of patients were men (88%). Closed globe injury was present in 21 eyes and open globe injury in 20 eyes (IOFB in 13 eyes, penetration injury in 4 eyes, and eye rupture in 3 eyes). Mean follow-up period was 14 months; mean timing of PPV was 67 days. Twenty-seven (66%) eyes had a functional success; 32 eyes (78%) had anatomical success. As a tamponade silicone oil was used in 33 cases and SF6 gas in 8 cases. Conclusions. Severe eye injuries are potentially devastating for vision, but vitreoretinal surgery can improve anatomical and functional outcomes. Among analysed pre- and intra- and postoperative factors, absence of PVR, postoperative retinal attachment, and silicone oil as a tamponade were related to significantly improved visual acuity. PMID:28163930

  13. Surgical Management of Traumatic Retinal Detachment with Primary Vitrectomy in Adult Patients.

    Science.gov (United States)

    Nowomiejska, Katarzyna; Choragiewicz, Tomasz; Borowicz, Dorota; Brzozowska, Agnieszka; Moneta-Wielgos, Joanna; Maciejewski, Ryszard; Jünemann, Anselm G; Rejdak, Robert

    2017-01-01

    Purpose. To evaluate functional and anatomical results of pars plana vitrectomy (PPV) in the retinal detachment (RD) followed by severe eye trauma. Methods. Retrospective analysis of medical records of forty-one consecutive patients treated with 23-gauge PPV due to traumatic RD. Age, gender, timing of PPV, visual acuity, and presence of intraocular foreign body (IOFB) and proliferative vitreoretinopathy (PVR) were included in the analysis. Results. Mean age of patients was 47 years; the majority of patients were men (88%). Closed globe injury was present in 21 eyes and open globe injury in 20 eyes (IOFB in 13 eyes, penetration injury in 4 eyes, and eye rupture in 3 eyes). Mean follow-up period was 14 months; mean timing of PPV was 67 days. Twenty-seven (66%) eyes had a functional success; 32 eyes (78%) had anatomical success. As a tamponade silicone oil was used in 33 cases and SF6 gas in 8 cases. Conclusions. Severe eye injuries are potentially devastating for vision, but vitreoretinal surgery can improve anatomical and functional outcomes. Among analysed pre- and intra- and postoperative factors, absence of PVR, postoperative retinal attachment, and silicone oil as a tamponade were related to significantly improved visual acuity.

  14. Surgical Management of Traumatic Retinal Detachment with Primary Vitrectomy in Adult Patients

    Directory of Open Access Journals (Sweden)

    Katarzyna Nowomiejska

    2017-01-01

    Full Text Available Purpose. To evaluate functional and anatomical results of pars plana vitrectomy (PPV in the retinal detachment (RD followed by severe eye trauma. Methods. Retrospective analysis of medical records of forty-one consecutive patients treated with 23-gauge PPV due to traumatic RD. Age, gender, timing of PPV, visual acuity, and presence of intraocular foreign body (IOFB and proliferative vitreoretinopathy (PVR were included in the analysis. Results. Mean age of patients was 47 years; the majority of patients were men (88%. Closed globe injury was present in 21 eyes and open globe injury in 20 eyes (IOFB in 13 eyes, penetration injury in 4 eyes, and eye rupture in 3 eyes. Mean follow-up period was 14 months; mean timing of PPV was 67 days. Twenty-seven (66% eyes had a functional success; 32 eyes (78% had anatomical success. As a tamponade silicone oil was used in 33 cases and SF6 gas in 8 cases. Conclusions. Severe eye injuries are potentially devastating for vision, but vitreoretinal surgery can improve anatomical and functional outcomes. Among analysed pre- and intra- and postoperative factors, absence of PVR, postoperative retinal attachment, and silicone oil as a tamponade were related to significantly improved visual acuity.

  15. Hyperprolactinemia affects spermiogenesis in adult male rats.

    Science.gov (United States)

    Aleem, M; Choudhari, J; Padwal, V; Balasinor, N; Parte, P; Gill-Sharma, M K

    2005-01-01

    The mechanisms underlying the antifertility effects of hyperprolactinemia have yet to be established in an appropriate experimental model. Hyperprolactinemia is a known side effect of fluphenazine, a broad spectrum, long-acting phenothiazine known to be dopamine type-D2 receptor antagonist. In our earlier study in adult male rats, we reported that fluphenazine at a dose of 3 mg/kg/day suppressed serum FSH but not testosterone (T) through increasing dopamine (DA) metabolism in the pituitary gland, within 60 days. Fluphenazine treatment affected sperm quality and male rats treated with fluphenazine sired fewer litters. The effects of fluphenazine-induced hyperprolactinemia on sperm quality appeared to be related to reduced FSH. We now report that FSH suppression enhanced the uptake of acridine orange (AO), a DNA intercalating, fluorescent dye by the fluphenazine-treated caput epididymal sperms with concomitant reduction in the uptake of thiol-specific monobromobimane (mBBr) fluorescent dye in vitro, suggesting greater accessibility of DNA intercalating dye to sperm chromatin and reduction in free sperm protein thiols. The concomitant increase in AO and decrease in mBBr fluorescence was suggestive of loose chromatin packaging in caput epididymal sperms after treatment with fluphenazine at 3 mg/kg/day for 60 days. The suppression in levels of protamine (P1) in caput epididymal sperms suggested that chromatin hypocompaction was due to reduced deposition of protamines in sperm chromatin. Reduction in testicular levels of cyclic adenosyl 3', 5' monophosphate response element modulator (CREMtau) and P1 further suggested that reduced deposition was indeed due to reduced synthesis. The concomitant reduction in testicular levels of transition protein 1 (TP1) and transition protein 2 (TP2) also suggested that hypoprotamination was due to reduced synthesis of these proteins crucial for facilitating P1 deposition. The effect appeared to have occurred at the level of translation

  16. Baclofen Protects Primary Rat Retinal Ganglion Cells from Chemical Hypoxia-Induced Apoptosis through the Akt and PERK Pathways

    Directory of Open Access Journals (Sweden)

    Pingping Fu

    2016-11-01

    Full Text Available Retinal ganglion cells (RGCs consume large quantities of energy to convert light information into a neuronal signal, which makes them highly susceptible to hypoxic injury. This study aimed to investigate the potential protection by baclofen, a GABAB receptor agonist, of retinal ganglion cells against hypoxia-induced apoptosis. CoCl2 was applied to mimic hypoxia. Primary rat retinal ganglion cells (RGCs were subjected to CoCl2 with or without baclofen treatment, and RNA interference techniques were used to knock down the GABAB2 gene in the primary RGCs. The viability and apoptosis of RGCs were assessed using cell viability and TUNEL assays, Hoechst staining, and flow cytometry. The expression of cleaved caspase-3, bcl-2, bax, Akt, phospho-Akt, PERK, phospho-PERK, eIF2α, phospho-eIF2α, ATF-4, and CHOP were measured using western blotting. GABAB2 mRNA expression was determined using quantitative real-time polymerase chain reaction (qRT-PCR analysis. Our study revealed that CoCl2 significantly induced RGC apoptosis and that baclofen reversed these effects. CoCl2-induced reduction of Akt activity was also reversed by baclofen. Baclofen prevented the activation of the PERK pathway and the increase in CHOP expression induced by CoCl2. Knockdown of GABAB2 and the inactivation of the Akt pathway by inhibitors reduced the protective effect of baclofen on CoCl2-treated RGCs. Taken together, these results demonstrate that baclofen protects RGCs from CoCl2-induced apoptosis by increasing Akt activity and by suppressing the PERK pathway and CHOP activation.

  17. Dobutamine stress echocardiography in healthy adult male rats

    OpenAIRE

    Couet Jacques; Roussel Élise; Drolet Marie-Claude; Lachance Dominic; Plante Eric; Arsenault Marie

    2005-01-01

    Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intra...

  18. Hypertension after bilateral kidney irradiation in young and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-09-01

    The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension.

  19. Elk3 deficiency causes transient impairment in post-natal retinal vascular development and formation of tortuous arteries in adult murine retinae.

    Directory of Open Access Journals (Sweden)

    Christine Weinl

    Full Text Available Serum Response Factor (SRF fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(-/- mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(-/- mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF in the affected eyes. However, in Elk3(-/- mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients.

  20. Retinal adaptation to changing glycemic levels in a rat model of type 2 diabetes

    DEFF Research Database (Denmark)

    Johnson, Leif E; Larsen, Michael; Perez, Maria-Thereza

    2013-01-01

    PURPOSE: Glucose concentrations are elevated in retinal cells in undiagnosed and in undertreated diabetes. Studies of diabetic patients suggest that retinal function adapts, to some extent, to this increased supply of glucose. The aim of the present study was to examine such adaptation in a model...... by a reduction in a-wave amplitudes and maximum slopes of about 30%. A direct effect of insulin on the ERG was unlikely since the expression of phosphorylated Akt kinase was not affected by treatment. The electrophysiological differences between untreated ZDFs and controls preceded an activation of Müller cells...... in the ZDFs (up-regulation of glial fibrillary acidic protein), which was attenuated by insulin treatment. There were otherwise no signs of cell death or morphological alterations in any of the experimental groups. These data show that under chronic hyperglycemia, the ZDF retina became abnormally sensitive...

  1. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  2. Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors.

    Science.gov (United States)

    Zhang, C-Q; Wu, H-J; Wang, S-Y; Yin, S; Lu, X-J; Miao, Y; Wang, X-H; Yang, X-L; Wang, Z

    2013-12-03

    Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. While CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of the cannabinoid receptor anandamide, the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.

  3. Effects of minocycline on apoptosis and neuronal changes in retinal ganglion cells from experimental optic neuritis rats

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang

    2008-01-01

    BACKGROUND: Minocycline, a tetracycline derivative, is neuroprotective in models of various neurological diseases.OBJECTIVE: To investigate the effects of minocycline on retinal ganglion cells (RGCs) in rats with optic neuritis, and to compare with the effects of methylprednisolone.DESIGN, TIME AND SETTING: This neuropathology controlled study was performed at the First Affiliated Hospital, Chongqing Medical University, China in May 2007.MATERIALS: A total of 22 female Wistar rats were randomly assigned into a normal control group (n = 5) and an experimental group (n = 17). The experimental group was composed of a model subgroup (n = 7), a minocycline subgroup (n = 5), and a methylprednisolone subgroup (n = 5). Minocycline was supplied by Sigma, USA.METHODS: Antigen homogenate made from guinea pig spinal cord and complete Freund adjuvant was used to induce autoimmune encephalomyelitis, which could induce demyelinated optic neuritis models. Rats in the minocycline subgroup were intraperitoneally injected with minocycline (45 mg/kg) daily from day 8 following autoimmunity. Rats in the methylprednisolone subgroup were intraperitoneally injected with methylprednisolone (20 mg/kg) daily from day 8 following autoimmunity.MAIN OUTCOME MEASURES: On day 18 after autoimmunity induction, pathological changes in the optic nerve were observed by hematoxylin-eosin staining. The percentage area of axons in the transverse section of the optic nerve was measured by Bielschowsky staining. Apoptosis of RGCs was detected by TUNEL.RESULTS: Under an optical microscope, the optic nerve in rats with demyelinated optic neuritis showed a vacuole-like structure of fibers, irregular swelling of the axons, and infiltration of a large quantity of inflammatory cells. With an electron microscope, the optic nerve presented with vacuole-like structures in the axons, a small percentage area of axons in the transverse section, loose myelin sheaths, and microtubules and microfilaments disappeared. The

  4. Kv3 channels modulate calcium signals induced by fast firing patterns in the rat retinal ganglion cells.

    Science.gov (United States)

    Kuznetsov, Kirill I; Grygorov, Oleksii O; Maslov, Vitaly Yu; Veselovsky, Nikolay S; Fedulova, Svetlana A

    2012-11-01

    Expression of non-inactivating Kv3.1/Kv3.2 potassium channels determines fast-spiking phenotype of many types of neurones including retinal ganglion cells (RGCs); furthermore Kv3 channels regulate neurotransmitter release from presynaptic terminals. In the present study we investigated how inhibition of Kv3 channel by low TEA concentrations modifies firing properties and Ca2+ influx in the rat RGCs. Experiments were performed on the whole-mount retinal preparations from 4 to 6 weeks old Wistar rats using simultaneous whole cell patch clamp and intracellular Ca2+ measurements in combination with single-cell RT-PCR. In response to 500-ms depolarization step the RGCs demonstrated fast firing tonic behaviour with a mean frequency of spiking 61±5 Hz (n=28). All of the tonic cells tested (n=9) expressed specific mRNA for either Kv3.1 or Kv3.2 or for both channels. Bath applications of TEA (250 μM, 500 μM and 1 mM) modified firing patterns dose-dependently as follows: firing frequency was decreased, mean action potential (AP) half-width increased and mean amplitude of after hyperpolarization was reduced. The amplitude of the Ca2+ signals induced by the cells firing was linearly dependent on number of APs with a mean slope of 7.3±0.9 nM per one AP (n=8). APs widening by TEA increased the slope of the amplitude vs. AP number plots in a dose-dependent manner: 250 μM of TEA increased the mean slope value to 9.5±1.2 nM/AP, 500 μM to 12.4±2.4 nM/AP and 1 mM to 13.2±2.9 nM/AP (n=6). All these parameters, as well as the cells firing properties, were significantly different from controls and from each other except between 500 μM and 1 mM. This is consistent with the pharmacological properties of Kv3.1/Kv3.2 channels: the TEA IC50 is in the range 150-300 μM with almost complete block at 1 mM. This suggests that Kv3.1/Kv3.2 channels underlie the fast firing of the rat RGCs and provide at a given firing frequency 1.8-fold restriction Ca2+ influx, thus protecting the cells

  5. iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Peter D. Westenskow

    2016-01-01

    Full Text Available Phototransduction is accomplished in the retina by photoreceptor neurons and retinal pigment epithelium (RPE cells. Photoreceptors rely heavily on the RPE, and death or dysfunction of RPE is characteristic of age-related macular degeneration (AMD, a very common neurodegenerative disease for which no cure exists. RPE replacement is a promising therapeutic intervention for AMD, and large numbers of RPE cells can be generated from pluripotent stem cells. However, questions persist regarding iPSC-derived RPE (iPS-RPE viability, immunogenicity, and tumorigenesis potential. We showed previously that iPS-RPE prevent photoreceptor atrophy in dystrophic rats up until 24 weeks after implantation. In this follow-up study, we longitudinally monitored the same implanted iPS-RPE, in the same animals. We observed no gross abnormalities in the eyes, livers, spleens, brains, and blood in aging rats with iPSC-RPE grafts. iPS-RPE cells that integrated into the subretinal space outlived the photoreceptors and survived for as long as 2 1/2 years while nonintegrating RPE cells were ingested by host macrophages. Both populations could be distinguished using immunohistochemistry and electron microscopy. iPSC-RPE could be isolated from the grafts and maintained in culture; these cells also phagocytosed isolated photoreceptor outer segments. We conclude that iPS-RPE grafts remain viable and do not induce any obvious associated pathological changes.

  6. Ultrasonic Vocalizations by Adult Rats (Rattus norvegicus)

    Science.gov (United States)

    1991-12-01

    begun. Diazepam , chlordiazepoxide , morphine, or naloxone was administered I.P. prior to placing the rat in the tailshock apparatus. Four different...by chlordiazepoxide and diazepam . Drug Dev. Res., 5, 185-193 (1985). Gardner, C.R., and Budhram, P. Effects of agents which interact with central... diazepam , and chlorpromazine, attenuate these vocalizations. Recent work by Kaltwasser (1990) examined the occurrence of vocalizations in response to

  7. Effects of pyruvate on retinal oxidative damage and retinal ultrastructure in diabetic rats%丙酮酸对糖尿病大鼠视网膜氧化损伤及超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    齐艳秀; 符俊达; 王玉清; 王冬兰

    2014-01-01

    目的:研究糖尿病大鼠视网膜病变过程中视网膜组织学和氧化应激的变化,以及丙酮酸的对抗作用。  方法:将80只Wistar大鼠分成3组:对照组(20只),模型组(30只),治疗组(30只)。模型组和治疗组用STZ诱导糖尿病,治疗组在大鼠饲料和饮水中添加2%丙酮酸。观察大鼠的血糖、体质量变化,并在造模后12 wk观察3组大鼠视网膜组织中GSH-Px、MDA和Na+-K+-ATP酶水平及其超微结构改变。  结果:模型组和对照组相比,体质量显著下降,视网膜中GSH-Px和ATP酶活性显著下降,MDA水平显著升高,视网膜超微结构有显著改变;治疗组和模型组相比,血糖没有显著改变,视网膜组织中 GSH-Px 和 ATP 水平升高, MDA水平下降,视网膜超微结构病变相对较轻。  结论:丙酮酸可以减轻氧化应激反应,改善视网膜的能量代谢,延缓视网膜病变的发展。%AlM:To investigate the changes of retinal histology and oxidative stress in diabetic retinopathy and its reversal by pyruvate in diabetic rats. METHODS: Eighty Wistar rats were divided into 3 groups:control group ( 20 rats ) , model group ( 30 rats ) and treatment group ( 30 rats ) . After streptozotocin ( STZ) induced diabetes mellitus in the model group and the treatment group, the treatment group received 2%pyruvate in diet and drinking. The changes of body weight and blood glucose were observed and the changes of glutathione peroxidase ( GSH-PX ) , malonie dialdehyde ( MDA) , and Na+-K+-ATPase levels of retinal tissue and retinal ultrastructure were investigated in three groups at 12wk after occurrence of diabetes. RESULTS: Compared with control group, the body weight of the model group were significantly decreased, the activities of GSH-PX and ATP in the retina of diabetic rats were significantly lower, the MDA was signigicantly higher and significant changes occurred in retinal ultrastructure. Compared with model group, the blood glucose of

  8. The Protective Role of Mecobalamin Following Optic Nerve Crush in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    Xiangmei Kong; Xinghuai Sun; Jinjun Zhang

    2004-01-01

    Purpose: To evaluate the potential for Mecobalamin as a neuroprotective agent in optic nerve crush injury.Methods: Twenty-four adult Sprague-Dawley rats were randomly divided into four groups.One group acted as normal controls, while in the other three groups the right eye was subjected to optic nerve crush injury. Of the three crush injury groups one group received no treatment, while the other two groups received intramuscular injections of VitaminB12 or Mecobalamin (10μg) immediately after crush injury and then every two days. All the rats were sacrificed one month post-treatment, and the eyes attached with optic nerves were removed for histology. The morphological changes of optic nerve axons and retinal ganglion cells (RGCs) were assessed under light microscope (LM) and transmission electromicroscope (TEM). The numbers of axons and RGCs were counted.Results: In this study we demonstrate the potential for Mecobalamin as a neuroprotective agent following optic nerve crush injury. We show here that the axons of optic nerves were loose in structure or destroyed. The mitochondria of the RGCs was swollen, and the Nissel body was less evident after the crush injury. Moreover, the number of axons and RGCs was significantly reduced (P < 0.001). However, these changes were less dramatic after the Mecobalamin-treatment. More axons and RGCs were remained in the group than those in the untreated injury group (P = 0.010 and 0.003 respectively), and those in the VitaminB12-treated group (P=0.037 and 0.035 respectively). More significantly, there were newly formed axons found in the Mecobalamin-treated group.Conclusions: Optic nerve crush injury in rats causes the loss of the axons and RGCs but this may be ameliorated by treatment with Mecobalamin.

  9. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling.

    Science.gov (United States)

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A

    2015-06-04

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  10. Restoration of visual performance by d-serine in models of inner and outer retinal dysfunction assessed using sweep VEP measurements in the conscious rat and rabbit.

    Science.gov (United States)

    Staubli, Ursula; Rangel-Diaz, Natalie; Alcantara, Miguel; Li, Yong-Xin; Yang, Jia-Ying; Zhang, Kai-Ming; Foster, Alan C

    2016-10-01

    The NMDA subtype of glutamate receptor and its co-agonist d-serine play a key role in synaptic function in the central nervous system (CNS), including visual cortex and retina. In retinal diseases such as glaucoma and macular degeneration, a loss of vision arises from malfunction of retinal cells, resulting in a glutamate hypofunctional state along the visual pathway in the affected parts of the visual field. An effective strategy to remedy this loss of function might be to increase extracellular levels of d-serine and thereby boost synaptic NMDA receptor-mediated visual transmission and/or plasticity to compensate for the impairment. We tested this idea in brain slices of visual cortex exhibiting long-term potentiation, and in rodent models of visual dysfunction caused by retinal insults at a time when the injury had stabilized to look for neuroenhancement effects. An essential aspect of the in vivo studies involved adapting sweep VEP technology to conscious rats and rabbits and combining it with intracortical recording while the animals were actively attending to visual information. Using this technology allowed us to establish complete contrast sensitivity function curves. We found that systemic d-serine dose-dependently rescued the contrast sensitivity impairment in rats with blue light-induced visual dysfunction. In rabbits with inner retinal dysfunction, both systemic and intravitreal routes of d-serine provided a rescue of visual function. In sum, we show that co-agonist stimulation of the NMDA receptor via administration of exogenous d-serine might be an effective therapeutic strategy to enhance visual performance and compensate for the loss of vision resulting from retinal disease.

  11. Effects of phytanic acid on the vitamin E status, lipid composition and physical properties of retinal cell membranes: implications for adult Refsum disease.

    Science.gov (United States)

    Young, S P; Johnson, A W; Muller, D P

    2001-12-01

    Adult Refsum disease is an inherited disorder in which phytanic acid accumulates in tissues and serum. Two hypotheses have been proposed to explain the pathogenesis of this condition. The molecular distortion hypothesis suggests that phytanic acid may alter membrane composition and structure, thereby affecting membrane function(s). The anti-metabolite hypothesis suggests that an accumulation of phytanic acid in membranes may interfere with vitamin E function. These two hypotheses were investigated by studying the effects of modulating phytanic acid and alpha-tocopherol concentrations on the fatty acid composition and certain physical parameters of cultured retinal cells. Results showed that (a) the phospholipid fraction of retinal cells readily incorporated phytanic acid, (b) the incorporation of phytanic acid increased membrane fluidity, (c) there was no competition for uptake between phytanic acid and alpha-tocopherol, and (d) the incorporation of phytanic acid did not increase the susceptibility of membranes to lipid peroxidation in vitro. These results obtained with cultured retinal cells suggest that the molecular distortion hypothesis, but not the anti-metabolite hypothesis, could explain the pathogenesis of adult Refsum disease. In vitro tissue culture models can, however, only approximate to the much more complex situation that occurs in vivo.

  12. Nogo-A deletion increases the plasticity of the optokinetic response and changes retinal projection organization in the adult mouse visual system.

    Science.gov (United States)

    Guzik-Kornacka, Anna; van der Bourg, Alexander; Vajda, Flora; Joly, Sandrine; Christ, Franziska; Schwab, Martin E; Pernet, Vincent

    2016-01-01

    The inhibitory action of Nogo-A on axonal growth has been well described. However, much less is known about the effects that Nogo-A could exert on the plasticity of neuronal circuits under physiological conditions. We investigated the effects of Nogo-A knock-out (KO) on visual function of adult mice using the optokinetic response (OKR) and the monocular deprivation (MD)-induced OKR plasticity and analyzed the anatomical organization of the eye-specific retinal projections. The spatial frequency sensitivity was higher in intact Nogo-A KO than in wild-type (WT) mice. After MD, Nogo-A KO mice reached a significantly higher spatial frequency and contrast sensitivity. Bilateral ablation of the visual cortex did not affect the OKR sensitivity before MD but reduced the MD-induced enhancement of OKR by approximately 50% in Nogo-A KO and WT mice. These results suggest that cortical and subcortical brain structures contribute to the OKR plasticity. The tracing of retinal projections to the dorsal lateral geniculate nucleus (dLGN) revealed that the segregation of eye-specific terminals was decreased in the adult Nogo-A KO dLGN compared with WT mice. Strikingly, MD of the right eye led to additional desegregation of retinal projections in the left dLGN of Nogo-A KO but not in WT mice. In particular, MD promoted ectopic varicosity formation in Nogo-A KO dLGN axons. The present data show that Nogo-A restricts visual experience-driven plasticity of the OKR and plays a role in the segregation and maintenance of retinal projections to the brain.

  13. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    Science.gov (United States)

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level.

  14. Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity

    Directory of Open Access Journals (Sweden)

    Thomas J. Corydon

    2016-11-01

    Full Text Available Background/Aims: Microgravity (µg has adverse effects on the eye of humans in space. The risk of visual impairment is therefore one of the leading health concerns for NASA. The impact of µg on human adult retinal epithelium (ARPE-19 cells is unknown. Methods: In this study we investigated the influence of simulated µg (s-µg; 5 and 10 days (d, using a Random Positioning Machine (RPM, on ARPE-19 cells. We performed phase-contrast/fluorescent microscopy, qRT-PCR, Western blotting and pathway analysis. Results: Following RPM-exposure a subset of ARPE-19 cells formed multicellular spheroids (MCS, whereas the majority of the cells remained adherent (AD. After 5d, alterations of F-actin and fibronectin were observed which reverted after 10d-exposure, suggesting a time-dependent adaptation to s-µg. Gene expression analysis of 12 genes involved in cell structure, shape, adhesion, migration, and angiogenesis suggested significant changes after a 10d-RPM-exposure. 11 genes were down-regulated in AD and MCS 10d-RPM-samples compared to 1g, whereas FLK1 was up-regulated in 5d- and 10d-RPM-MCS-samples. Similarly, TIMP1 was up-regulated in 5d-RPM-samples, whereas the remaining genes were down-regulated in 5d-RPM-samples. Western blotting revealed similar changes in VEGF, β-actin, laminin and fibronectin of 5d-RPM-samples compared to 10d, whereas different alterations of β-tubulin and vimentin were observed. The pathway analysis showed complementing effects of VEGF and integrin β-1. Conclusions: These findings clearly show that s-µg induces significant alterations in the F-actin-cytoskeleton and cytoskeleton-related proteins of ARPE-19, in addition to changes in cell growth behavior and gene expression patterns involved in cell structure, growth, shape, migration, adhesion and angiogenesis.

  15. Adult Coats’ Disease Successfully Managed with the Dexamethasone Intravitreal Implant (Ozurdex®) Combined with Retinal Photocoagulation

    OpenAIRE

    Sebastián Martínez-Castillo; Roberto Gallego-Pinazo; Rosa Dolz-Marco; Cristina Marín-Lambíes; Manuel Díaz-Llopis

    2012-01-01

    Purpose: To report a case of Coats’ disease managed with the dexamethasone intravitreal implant Ozurdex® (Allergan, Inc., Irvine, Calif., USA) combined with retinal photocoagulation. Methods: A 46-year-old female with 20/200 visual acuity was diagnosed with Coats’ disease with secondary retinal vasoproliferative tumor. An initial approach was performed with an intravitreal injection of the sustained-release dexamethasone implant Ozurdex. After reattachment of the retina, the telangiectatic ve...

  16. Contextual fear conditioning differs for infant, adolescent, and adult rats.

    Science.gov (United States)

    Esmorís-Arranz, Francisco J; Méndez, Cástor; Spear, Norman E

    2008-07-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian-conditioned suppression. When a discrete auditory-conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness, but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role.

  17. Immature rats show ovulatory defects similar to those in adult rats lacking prostaglandin and progesterone actions

    Directory of Open Access Journals (Sweden)

    Sanchez-Criado Jose E

    2004-09-01

    Full Text Available Abstract Gonadotropin-primed immature rats (GPIR constitute a widely used model for the study of ovulation. Although the equivalence between the ovulatory process in immature and adult rats is generally assumed, the morphological and functional characteristics of ovulation in immature rats have been scarcely considered. We describe herein the morphological aspects of the ovulatory process in GPIR and their response to classical ovulation inhibitors, such as the inhibitor of prostaglandin (PG synthesis indomethacin (INDO and a progesterone (P receptor (PR antagonist (RU486. Immature Wistar rats were primed with equine chorionic gonadotropin (eCG at 21, 23 or 25 days of age, injected with human chorionic gonadotropin (hCG 48 h later, and sacrificed 16 h after hCG treatment, to assess follicle rupture and ovulation. Surprisingly, GPIR showed age-related ovulatory defects close similar to those in adult rats lacking P and PG actions. Rats primed with eCG at 21 or 23 days of age showed abnormally ruptured corpora lutea in which the cumulus-oocyte complex (COC was trapped or had been released to the ovarian interstitum, invading the ovarian stroma and blood and lymphatic vessels. Supplementation of immature rats with exogenous P and/or PG of the E series did not significantly inhibit abnormal follicle rupture. Otherwise, ovulatory defects were practically absent in rats primed with eCG at 25 days of age. GPIR treated with INDO showed the same ovulatory alterations than vehicle-treated ones, although affecting to a higher proportion of follicles. Blocking P actions with RU486 increased the number of COC trapped inside corpora lutea and decreased ovulation. The presence of ovulatory defects in GPIR, suggests that the capacity of the immature ovary to undergo the coordinate changes leading to effective ovulation is not fully established in Wistar rats primed with eCG before 25 days of age.

  18. Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina.

    Science.gov (United States)

    Trost, A; Schroedl, F; Marschallinger, J; Rivera, F J; Bogner, B; Runge, C; Couillard-Despres, S; Aigner, L; Reitsamer, H A

    2014-12-01

    Doublecortin (DCX) is predominantly expressed in neuronal precursor cells and young immature neurons of the developing and adult brain, where it is involved in neuronal differentiation, migration and plasticity. Moreover, its expression pattern reflects neurogenesis, and transgenic DCX promoter-driven reporter models have been previously used to investigate adult neurogenesis. In this study, we characterize dsRed2 reporter protein-expressing cells in the adult retina of the transgenic DCX promoter-dsRed2 rat model, with the aim to identify cells with putative neurogenic activity. Additionally, we confirmed the expression of the dsRed2 protein in DCX-expressing cells in the adult hippocampal dentate gyrus. Adult DCX-dsRed2 rat retinas were analyzed by immunohistochemistry for expression of DCX, NF200, Brn3a, Sox2, NeuN, calbindin, calretinin, PKC-a, Otx2, ChAT, PSA-NCAM and the glial markers GFAP and CRALBP, followed by confocal laser-scanning microscopy. In addition, brain sections of transgenic rats were analyzed for dsRed2 expression and co-localization with DCX, NeuN, GFAP and Sox2 in the cortex and dentate gyrus. Endogenous DCX expression in the adult retina was confined to horizontal cells, and these cells co-expressed the DCX promoter-driven dsRed2 reporter protein. In addition, we encountered dsRed2 expression in various other cell types in the retina: retinal ganglion cells (RGCs), a subpopulation of amacrine cells, a minority of bipolar cells and in perivascular cells. Since also RGCs expressed dsRed2, the DCX-dsRed2 rat model might offer a useful tool to study RGCs in vivo under various conditions. Müller glial cells, which have previously been identified as cells with stem cell features and with neurogenic potential, did express neither endogenous DCX nor the dsRed2 reporter. However, and surprisingly, we identified a perivascular glial cell type expressing the dsRed2 reporter, enmeshed with the glia/stem cell marker GFAP and colocalizing with the

  19. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  20. Apigenin prevents TNF-α induced apoptosis of primary rat retinal ganglion cells.

    Science.gov (United States)

    Fu, M-S; Zhu, B-J; Luo, D-W

    2014-11-25

    TNF-α has recently been identified to be a mediator of retinal ganglion cell (RGC) death, while glial cells are relatively protected against this death stimulus. Exposure of RGCs to TNF-α is thought to contribute to RGC apoptosis. Apigenin is a flavone with powerful anti-inflammatory properties that exists naturally in various plants and Chinese medicine. In our study, MTT assays showed that apigenin significantly inhibited the decrease of RGC viability induced by TNF-α in a dose-dependent manner. Pretreatment with apigenin prevented TNF-α-induced apoptosis in a dose-dependent manner as shown by flow cytometry. The production of ATP and the total oxygen uptake were also promoted after apigenin administration. TNF-α stimulation led to a significant reduction of bcl-2 and enhancement of bax, which was reversed by apigenin treatment. Apigenin treatment also alleviated the increased caspase-3 activity induced by TNF-α. Moreover, luciferase reporter assay indicated that apigenin dose-dependently decreased NF-κB activation induced by TNF-α, but had no significant effect on activation of AP-1. Collectively, these data demonstrated that apigenin alleviated TNF-α-induced apoptosis through inhibition of caspase-dependent apoptotic pathway and activation of nuclear factor-kappaB. Therefore, apigenin may be developed as an anti-apoptotic drug to treat retinopathy.

  1. Effect of piperine on the epididymis of adult male rats

    Institute of Scientific and Technical Information of China (English)

    S. C. D'cruz; P. P. Mathur

    2005-01-01

    Aim: To study the effect of piperine on the epididymal antioxidant system of adult male rats. Methods: Adult male rats were orally administered piperine at doses of 1 mg/kg, 10 mg/kg and 100 mg/kg body weight each day for 30consecutive days. Twenty-four hours after the last treatment, the rats were weighed and killed with ether and the epididymis was dissected from the bodies. Sperm collected from the cauda region of the epididymis was used for the assessment of its count, motility and viability. Caput, corpus and cauda regions of the epididymis were separated and homogenized separately to obtain 10 % homogenates. The supernatants were used for the assays of sialic acid,superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, lipid peroxidation and hydrogen peroxide generation. Results: Body weight of the piperine-treated rats remained unchanged. The weights of the caput,corpus and cauda regions of the epididymis significantly decreased at dose of 100 mg/kg. Epididymal sperm count and motility decreased at 10 mg/kg and 100 mg/kg, and sperm viability decreased significantly at 100 mg/kg. Sialic acid levels in the epididymis decreased significantly at 100 mg/kg while significant decrease in the cauda region alone was observed at 10 mg/kg. A significant decline in the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, along with an increase in hydrogen peroxide generation and lipid peroxidation were observed at 10 mg/kg and 100 mg/kg. Conclusion: Piperine caused a decrease in the activity of antioxidant enzymes and sialic acid levels in the epididymis and thereby increased reactive oxygen species levels that could damage the epididymal environment and sperm function.

  2. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... sulfate proteoglycans previously described....

  3. Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of OPN5 in the rat retina.

    Directory of Open Access Journals (Sweden)

    Paula S Nieto

    Full Text Available The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC-5, by testing for the presence of visual and non-visual opsins and assessing expression of the immediate-early gene protein c-Fos and changes in intracellular Ca(2+ mobilization in response to brief light pulses. Cultured RGC-5 cells express a number of photopigment mRNAs such as retinal G protein coupled receptor (RGR, encephalopsin/panopsin (Opn3, neuropsin (Opn5 and cone opsin (Opn1mw but not melanopsin (Opn4 or rhodopsin. Opn5 immunoreactivity was observed in RGC-5 cells and in the inner retina of rat, mainly localized in the ganglion cell layer (GCL. Furthermore, white light pulses of different intensities and durations elicited changes both in intracellular Ca(2+ levels and in the induction of c-Fos protein in RGC-5 cell cultures. The results demonstrate that RGC-5 cells expressing diverse putative functional photopigments display intrinsic photosensitivity which accounts for the photic induction of c-Fos protein and changes in intracellular Ca(2+ mobilization. The presence of Opn5 in the GCL of the rat retina suggests the existence of a novel type of photoreceptor cell.

  4. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model.

    Science.gov (United States)

    Grant, Stephan; Tran, Phong; Zhang, Qin; Zou, Aihua; Dinh, Dac; Jensen, Jordan; Zhou, Sue; Kang, Xiaolin; Zachwieja, Joseph; Lippincott, John; Liu, Kevin; Johnson, Sarah Ludlum; Scales, Stephanie; Yin, Chunfeng; Nukui, Seiji; Stoner, Chad; Prasanna, Ganesh; Lafontaine, Jennifer; Wells, Peter; Li, Hui

    2010-02-10

    Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.

  5. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  6. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul

    2010-01-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably...

  7. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    Science.gov (United States)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  8. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  9. Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina

    DEFF Research Database (Denmark)

    Klitten, Laura L; Rath, Martin F; Coon, Steven L

    2008-01-01

    Levels of dopamine and melatonin exhibit diurnal rhythms in the rat retina. Dopamine is high during daytime adapting the retina to light, whereas melatonin is high during nighttime participating in the adaptation of the retina to low light intensities. Dopamine inhibits the synthesis of melatonin....... The sharp increase of Drd4 expression at a specific postnatal time suggests that dopamine is involved in retinal development....

  10. Dobutamine stress echocardiography in healthy adult male rats

    Directory of Open Access Journals (Sweden)

    Couet Jacques

    2005-10-01

    Full Text Available Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe. Results Dobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate. Conclusion DSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.

  11. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016.

  12. Acute behavioral toxicity of carbaryl and propoxur in adult rats.

    Science.gov (United States)

    Ruppert, P H; Cook, L L; Dean, K F; Reiter, L W

    1983-04-01

    Motor activity and neuromotor function were examined in adult CD rats exposed to either carbaryl or propoxur, and behavioral effects were compared with the time course of cholinesterase inhibition. Rats received an IP injection of either 0, 2, 4, 6 or 8 mg/kg propoxur or 0, 4, 8, 16 or 28 mg/kg carbaryl in corn oil 20 min before testing. All doses of propoxur reduced 2 hr activity in a figure-eight maze, and crossovers and rears in an open field. For carbaryl, dosages of 8, 16 and 28 mg/kg decreased maze activity whereas 16 and 28 mg/kg reduced open field activity. In order to determine the time course of effects, rats received a single IP injection of either corn oil, 2 mg/kg propoxur or 16 mg/kg carbaryl, and were tested for 5 min in a figure-eight maze either 15, 30, 60, 120 or 240 min post-injection. Immediately after testing, animals were sacrificed and total cholinesterase was measured. Maximum effects of propoxur and carbaryl on blood and brain cholinesterase and motor activity were seen within 15 min. Maze activity had returned to control levels within 30 and 60 min whereas cholinesterase levels remained depressed for 120 and 240 min for propoxur and carbaryl, respectively. These results indicate that both carbamates decrease motor activity, but behavioral recovery occurs prior to that of cholinesterase following acute exposure.

  13. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2017-01-01

    Full Text Available Nerve growth factor (NGF is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC degenerate following optic-nerve crush (ONC, even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  14. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Science.gov (United States)

    Mesentier-Louro, Louise A.; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A.; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F.; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-01

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration. PMID:28067793

  15. Effects of neonatal peripheral tissue injury on pain-related behaviors in adult rats

    Directory of Open Access Journals (Sweden)

    Meng-meng LI

    2013-09-01

    Full Text Available Objective To observe the effects of peripheraltissueinjury in the developmental stage of newborn rats on pain-related behaviors in adult rats. Methods SD rats 1,4,7,14,21 and 28days after birth were selected in thepresent study(4litters at each time point and 10 rats per litter.Each litter of rats was randomly divided intoinjury group(receiving subcutaneous injection of 20μl bee venomand control group(receiving subcutaneous injection of 20μl normal saline, with20 in each group, and then raised for 2 months to adulthood. The baseline pain threshold was observed by measuring spontaneous paw flinching reflex,paw withdrawal thermal latency(PWTLand paw withdrawal mechanical threshold(PWMT, then 50μl 0.4% bee venom was subcutaneously injected to each rat, and the changesinpa in reaction and pain threshold were determined. Results The baseline thermal pain threshold in adult rats receiving bee venom or normal saline at different time points after birth was similar,but baseline mechanical pain threshold in adult rats receiving bee venom at1,4,7and14 days after birth was decreased significantly compared with the adult rats receiving normal saline at corresponding time points(P0.05.Mechanical hyperalgesia was not induced in rats injected with bee venom but induced in adult ratsinjected with normal saline4-21days after birth.Injection of bee venom 21 and 28 days after birth could obviously enhance the bee venom-induced hyperalgesiain adult rats compared with control group(P<0.01. Conclusions Bee venom stimuli at different time points after birth could affect the baseline PWMT and mechanical pain hypersensitivityin adult rats but not the baseline PWTL and thermal pain hypersensitivity. The 21st day maybe a key time point of nervous system development in rats.

  16. Neonatal caffeine exposure and seizure susceptibility in adult rats.

    Science.gov (United States)

    Guillet, R; Dunham, L

    1995-08-01

    Early developmental exposure to caffeine in rats results in changes in brain excitability that persist to adulthood. The mechanism of these alterations is unknown. To identify potential neurotransmitter systems involved, we exposed neonatal rats to caffeine and determined seizure thresholds for chemoconvulsants active at different CNS receptors in the adult animal. Rats were unhandled (NH) or received by gavage (0.05 ml/10 g) either vehicle (water) or caffeine (15-20 mg/kg/day) for postnatal days 2-6. At age 70-90 days, each rat was infused intravenously (i.v.) with picrotoxin (PIC), bicuculline (BIC) [convulsants acting at the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor], pentylenetetrazol [PTZ, possibly acting at both GABA/BDZ and N-methyl-D-aspartate (NMDA) receptors], caffeine (acting at adenosine receptors), strychnine (STR, acting at glycine receptors), or kainic acid (KA, acting at the NMDA receptor). Seizure thresholds were analyzed as a function of neonatal treatment and sex. Thresholds for caffeine, PTZ, PIC, and KA were increased as a function of neonatal caffeine exposure (p = 0.01, 0.02, 0.02, and 0.005, respectively). The thresholds for BIC and STR were not altered. There were also gender differences in seizure susceptibility. Thresholds for seizures produced by BIC, caffeine, PIC, and STR were higher in females (p = 0.005, 0.005, 0.001, and 0.0001, respectively), but were not different for seizures caused by PTZ. These results suggest that early developmental exposure to caffeine affects later seizure susceptibility. Moreover, some of these effects are gender specific.

  17. Contractile force measured in unskinned isolated adult rat heart fibres.

    Science.gov (United States)

    Brady, A J; Tan, S T; Ricchiuti, N V

    1979-12-13

    A number of investigators have succeeded in preparing isolated cardiac cells by enzymatic digestion which tolerate external [Ca2+] in the millimolar range. However, a persistent problem with these preparations is that, unlike in situ adult ventricular fibres, the isolated fibres usually beat spontaneously. This spontaneity suggests persistent ionic leakage not present in situ. A preferable preparation for mechanical and electrical studies would be one which is quiescent but excitable in response to electrical stimulation and which does not undergo contracture with repeated stimulation. We report here a modified method of cardiac fibre isolation and perfusion which leaves the fibre membrane electrically excitable and moderately resistant to mechanical stress so that the attachment of suction micropipettes to the fibre is possible for force measurement and length control. Force generation in single isolated adult rat heart fibres is consistent with in situ contractile force. The negative staircase effect (treppe) characteristic of adult not heart tissue is present with increased frequency of stimulation. Isometric developed tension increases with fibre length as in in situ ventricular tissue.

  18. Adult Coats’ Disease Successfully Managed with the Dexamethasone Intravitreal Implant (Ozurdex® Combined with Retinal Photocoagulation

    Directory of Open Access Journals (Sweden)

    Sebastián Martínez-Castillo

    2012-03-01

    Full Text Available Purpose: To report a case of Coats’ disease managed with the dexamethasone intravitreal implant Ozurdex® (Allergan, Inc., Irvine, Calif., USA combined with retinal photocoagulation. Methods: A 46-year-old female with 20/200 visual acuity was diagnosed with Coats’ disease with secondary retinal vasoproliferative tumor. An initial approach was performed with an intravitreal injection of the sustained-release dexamethasone implant Ozurdex. After reattachment of the retina, the telangiectatic vessels were treated with laser photocoagulation. Results: The patient’s visual acuity improved to 20/25 after the intravitreal Ozurdex. No further recurrences of exudation were evident through the 12-month follow-up. Conclusions: Ozurdex may be an effective initial therapeutic approach for Coats’ disease with immediate anatomical response and visual improvement.

  19. Behavioral effects of subchronic inhalation of toluene in adult rats.

    Science.gov (United States)

    Beasley, Tracey E; Evansky, Paul A; Gilbert, Mary E; Bushnell, Philip J

    2010-01-01

    Whereas the acute neurobehavioral effects of toluene are robust and well characterized, evidence for persistent effects of repeated exposure to this industrial solvent is less compelling. The present experiment sought to determine whether subchronic inhalation of toluene caused persistent behavioral changes in rats. Adult male Long-Evans rats inhaled toluene vapor (0, 10, 100, or 1000 ppm) for 6h/day, 5 days/week for 13 weeks and were evaluated on a series of behavioral tests beginning 3 days after the end of exposure. Toluene delayed appetitively-motivated acquisition of a lever-press response, but did not affect motor activity, anxiety-related behavior in the elevated plus maze, trace fear conditioning, acquisition of an appetitively-motivated visual discrimination, or performance of a visual signal detection task. Challenges with acute inhalation of toluene vapor (1200-2400 ppm for 1 h) and injections of quinpirole (0.01-0.03 mg/kg) and raclopride (0.03-0.10 mg/kg) revealed no toluene-induced latent impairments in visual signal detection. These results are consistent with a pattern of subtle and inconsistent long-term effects of daily exposure to toluene vapor, in contrast to robust and reliable effects of acute inhalation of the solvent.

  20. An AD-related neuroprotector rescues transformed rat retinal ganglion cells from CoCl₂-induced apoptosis.

    Science.gov (United States)

    Men, Jie; Zhang, Xiaohui; Yang, Yang; Gao, Dianwen

    2012-05-01

    Some ocular diseases characterized by apoptotic death of retinal ganglion cells (RGCs) and Alzheimer's disease (AD) are chronic neurodegenerative disorders and have similarities in neuropathology. Humanin (HN) is known for its ability to suppress neuronal death induced by AD-related insults. In present study, we investigated the neuroprotective effects of HN on hypoxia-induced toxicity in RGC-5 cells. Hypoxia mimetic compound cobalt chloride (CoCl₂) could increase the cell viability loss and apoptosis, whereas HN can significantly attenuate these effects. This finding may provide new therapeutics for the retinal neurodegenerative diseases targeting neuroprotection.

  1. Neonatal injections of methoxychlor decrease adult rat female reproductive behavior.

    Science.gov (United States)

    Bertolasio, Jennifer; Fyfe, Susanne; Snyder, Ben W; Davis, Aline M

    2011-12-01

    Methoxychlor (MXC), a commonly used pesticide, has been labeled as an endocrine disruptor. To evaluate the impact of neonatal exposure to MXC on female reproduction, female Sprague-Dawley rats were given subcutaneous injections on postnatal days 1, 3, and 5. The injections contained 1.0mg MXC, 2.0mg MXC, 10 μg 17β-estradiol benzoate (positive control), or sesame oil (vehicle). The injections of MXC had no effect on anogenital distance or day of vaginal opening. Treatment with either 2.0mg MXC or estradiol significantly increased the total number of days with vaginal keratinization. Treatment with MXC had no effect on ability to exhibit a mating response as an adult female, although the high dose MXC (2.0) and the positive control (estradiol) animals demonstrated a decrease in degree of receptivity, a decrease in proceptive behavior and an increase in rejection behavior. These data suggest that higher doses of MXC given directly to pups during the neonatal period can act as an estrogen and alter aspects of the nervous system, impacting adult reproductive characteristics.

  2. The proteome of neural stem cells from adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Fütterer Carsten D

    2003-06-01

    Full Text Available Abstract Background Hippocampal neural stem cells (HNSC play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. Results Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5 protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca2+ signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. Conclusions The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before.

  3. Primary culture of adult rat liver cells. I. Preparation of isolated cells from trypsin-perfused liver of adult rat

    Directory of Open Access Journals (Sweden)

    Miyazaki,Masahiro

    1977-12-01

    Full Text Available Isolated hepatic cells from adult rats were prepared by perfusing the livers with trypsin. The highest yield of viable cells was obtained by perfusing the liver with 0.1% trypsin, pH 7.0, at 37 degrees C for 30 min. Following this treatment about 70% of cells excluded trypan blue. The isolated cells contained many binucleate cells. Between 60 and 70% of DNA present originally in the liver was recovered from the isolated hepatic cells, which had higher glucose 6-phosphatase activity than the liver. Thus the resulting cell population seems to be rich in hepatocytes. The isolated hepatic cells, however, lost some of their cellular proteins such as alanine and tyrosine amino-transferases. It was suggested that the membranes of isolated hepatic cells might be damaged by both enzymatic digestion and mechanical destruction.

  4. 早期糖尿病大鼠视网膜神经节细胞树突形态异常的研究%Study on abnormal dendrite of retinal ganglion cells in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    徐格致; 秦要武; 王文吉

    2008-01-01

    Objective To observe the morphological changes of dendrite and soma in retinal ganglion cells (RGCs) which subsisted in early diabetic rats. Methods The RGCs of 3-months-course diabetic rats and coeval normal rats were marked by gene gun techniques. To collect RGCs photographs by Leica microscope with Z axis and CCD camera;to observe the changes of diameter, variance of structural features in dendritic field and somata after classification which according to the size and morphology. Thy-1 antibody marks on the retinal RGCs, taking a photograph under fluorescent microscope, counting the changes of retinal RGCs density in early diabetic rat. Results In three-month diabetic rats, the density of retinal RGCs was decreased obviously. Morphological changes of RGCs in the dendritic fields were observed with gene gun technique. There was no severe variation in all kinds of the bole of cell dendrite,in which some only showed crispation partially and sparseness also twisting in the dendritic ramus. The mean diameter of dendritic field and soma in class A of diabetic rats was (401±86)μm, the mean diameter of dendritic field in control group was (315±72) μm,compared with each other, there is statistically significant differences (t=21. 249, P0.05); the mean diameter of dendritic field and soma in class B of diabetic rats were (170±36). (14±2) μm respectively, in control group were (165±36), (16±2) μm, the mean diameter of dendritic field and soma in class C of diabetic group were (265±78),(17±5) μm respectively, in control group were (251±57),(17±4) μm , compared with each other,there are on statistically significant differences (t=1.357,0.798,0. 835,1.104 ,P>0.05). ConclusionsIn short-term diabetes, the survived RGCs show good plasticity in adult diabetic rats, especially in class A. The changes of dendrites were more sensitive than the soma, which could be the leading index of themorphologic changes of RGCs in the early stage. The good plasticity showed by

  5. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    Science.gov (United States)

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  6. Transformation of adult rat cardiac myocytes in primary culture.

    Science.gov (United States)

    Banyasz, Tamas; Lozinskiy, Ilya; Payne, Charles E; Edelmann, Stephanie; Norton, Byron; Chen, Biyi; Chen-Izu, Ye; Izu, Leighton T; Balke, C William

    2008-03-01

    We characterized the morphological, electrical and mechanical alterations of cardiomyocytes in long-term cell culture. Morphometric parameters, sarcomere length, T-tubule density, cell capacitance, L-type calcium current (I(Ca,L)), inward rectifier potassium current (I(K1)), cytosolic calcium transients, action potential and contractile parameters of adult rat ventricular myocytes were determined on each day of 5 days in culture. We also analysed the health of the myocytes using an apoptotic/necrotic viability assay. The data show that myocytes undergo profound morphological and functional changes during culture. We observed a progressive reduction in the cell area (from 2502 +/- 70 microm(2) on day 0 to 1432 +/- 50 microm(2) on day 5), T-tubule density, systolic shortening (from 0.11 +/- 0.02 to 0.05 +/- 0.01 microm) and amplitude of calcium transients (from 1.54 +/- 0.19 to 0.67 +/- 0.19) over 5 days of culture. The negative force-frequency relationship, characteristic of rat myocardium, was maintained during the first 2 days but diminished thereafter. Cell capacitance (from 156 +/- 8 to 105 +/- 11 pF) and membrane currents were also reduced (I(Ca,L), from 3.98 +/- 0.39 to 2.12 +/- 0.37 pA pF; and I(K1), from 34.34p +/- 2.31 to 18.00 +/- 5.97 pA pF(-1)). We observed progressive depolarization of the resting membrane potential during culture (from 77.3 +/- 2.5 to 34.2 +/- 5.9 mV) and, consequently, action potential morphology was profoundly altered as well. The results of the viability assays indicate that these alterations could not be attributed to either apoptosis or necrosis but are rather an adaptation to the culture conditions over time.

  7. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  8. Tooth movement characteristics in relation to root resorption in young and adult rats

    NARCIS (Netherlands)

    Ren, Yijin; Maltha, Jaap C.; Kuijpers-Jagtman, Anne Marie

    2007-01-01

    The aim of this study was to investigate tooth movement characteristics in relation to root resorption in young and adult rats. Two groups of 30 rats each (aged 6 wk and 9-12 months, respectively) were used. Standardized orthodontic appliances were placed to move the maxillary molars mesially. Anima

  9. Cytochrome c release and caspase-3 activation in retinal ganglion cells following different distance of axotomy of the optic nerve in adult hamsters.

    Science.gov (United States)

    He, M H; Cheung, Z H; Yu, E H; Tay, D K C; So, K F

    2004-11-01

    This study examined the relationship between the distance of axotomy and the death of injured retinal ganglion cells (RGCs) in adult hamsters and the relationship of cytochrome c and caspase-3 on the death pathway of RGCs. The left optic nerve (ON) of adult hamsters was transected either at 1 or 3 mm away from the optic disc, and retrogradely labeled with Flurogold on the ON stump. After a predetermined period of postoperative time, the surviving RGCs were counted by retina flat-mount, and the activation of cytochrome c and caspase-3 were investigated by immunohistochemistry. Cell loss was found to be much faster (P < 0.01), more cells with cytochrome c were observed (P < 0.05) and the activation of caspase-3 was earlier when ON was transected 1 mm away from the optic disc than when was transected 3 mm away from the optic disc. Distance of axotomy affects the axotomized cell death rate where more RGCs died when the ON transection was applied closer to the eye. The timing of activation of caspase-3 in the RGCs may be linked to the distance of axotomy.

  10. 基因转染的虹膜色素上皮细胞移植后RCS鼠视网膜BDNF表达观察%Retinal BDNF expressions in RCS rats after transplantation of gene transfected iris pigment epithelium

    Institute of Scientific and Technical Information of China (English)

    张英瑜; 高朋芬; 杨丽霞

    2011-01-01

    目的 探讨脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)基因转染的虹膜色素上皮细胞(AAV-BDNF-IPE)移植入皇家外科学院(royal college of surgeons,RCS)大鼠视网膜下腔后,不同时期视网膜组织BDNF表达变化.方法 通过外路途径将BDNF基因转染的虹膜色素上皮细胞移植到RCS大鼠视网膜下腔,术后3、5、7、9、11周分别取RCS大鼠手术眼及对照组动物眼视网膜组织,用酶联免疫吸附法(Elisa)检测视网膜组织中BDNF的表达水平,比较分析这些数据.结果 对照组RCS大鼠出生后3周龄时视网膜组织中BDNF仍保持较高水平,其后迅速降低,其中3周龄组与其它周龄组比较,P<0.01;手术组RCS大鼠术时、术后3、5、7、9、11周各组间两两比较,BDNF表达无显著差异(P>0.05);出生后6周龄直到14周龄的不同时期,AAV-BDNF-IPE移植手术组RCS大鼠视网膜BDNF表达水平均明显高于对照组(其中6周龄组P<0.05,其它各周龄组P<0.01).结论 BDNF基因转染的虹膜色素上皮细胞在RCS大鼠视网膜下腔移植后,视网膜组织中BDNF可以持续稳定高水平表达,这为临床开发新的神经营养因子给药方式提供了实验依据.%Objective To investigate the retinal brain derived neurotrophic factor( BDNF) expressions in different phases of royal college of surgeons( RCS) rats after BDNF transfected iris pigment epithelium( AAV-BDNF-IPE) being transplanted into the subretinal space of RCS rat. Methods AAV-BDNF-IPEs were transplanted into the subretinal space of RCS rats. BDNF expressions in retinal tissue of intact RCS rats and surgery RCS rats were detected by enzyme linked immunosorbent assay ( Elisa) at 3 ,5 ,7 ,9and 11 weeks after surgery. Results BDNF expressions in retinal tissue of intact RCS rats were still high at postnatal 3w and were sharply decreased into low level later; retinal BDNF expression of intact RCS rats at postnatal 3w were much higher than those at other

  11. Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin).

    Science.gov (United States)

    Barron, Elyssa; Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2009-01-01

    Eight groups of male adolescent and adult spontaneous hyperactive rats (SHR) were used in a dose response (saline, 0.6, 2.5, and 10 mg/kg) experiment of methylphenidate (MPD). Four different locomotor indices were recorded for 2 hours postinjection using a computerized monitoring system. Acutely, the 0.6 mg/kg dose of MPD did not elicit an increase in locomotor activity in either the adolescent or in the adult male SHR. The 2.5 and the 10.0 mg/kg doses increased activity in the adolescent and the adult rats. Chronically, MPD treatment when comparing adolescent and adult gave the following results: the 0.6 mg/kg dose of MPD failed to cause sensitization in the adolescent group but caused sensitization in the adult group, while the 2.5 and 10 mg/kg both caused sensitization in the adolescent and adult groups.

  12. Prenatal exposure to ethanol causes partial diabetes insipidus in adult rats.

    Science.gov (United States)

    Knee, Daniel S; Sato, Aileen K; Uyehara, Catherine F T; Claybaugh, John R

    2004-08-01

    Chronic consumption of ethanol in adult rats and humans leads to reduced AVP-producing neurons, and prenatal ethanol (PE) exposure has been reported to cause changes in the morphology of AVP-producing cells in the suprachiasmatic nucleus of young rats. The present studies further characterize the effects of PE exposure on AVP in the young adult rat, its hypothalamic synthesis, pituitary storage, and osmotically stimulated release. Pregnant rats were fed a liquid diet with 35% of the calories from ethanol or a control liquid diet for days 7-22 of pregnancy. Water consumption and urine excretion rate were measured in the offspring at 60-68 days of age. Subsequently, the offspring were infused with 5% NaCl at 0.05 ml.kg(-1).min(-1) with plasma samples taken before and at three 40-min intervals during infusion for measurement of AVP and osmolality. Urine output and water intake were approximately 20% greater in PE-exposed rats than in rats with no PE exposure, and female rats had a greater water intake than males. The relationship between plasma osmolality and AVP in PE-exposed rats was parallel to, but shifted to the right of, the control rats, indicating an increase in osmotic threshold for AVP release. Pituitary AVP was reduced by 13% and hypothalamic AVP mRNA content was reduced by 35% in PE-exposed rats. Our data suggest that PE exposure can cause a permanent condition of a mild partial central diabetes insipidus.

  13. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  14. Effects of acute adult and early-in-life bladder inflammation on bladder neuropeptides in adult female rats

    Directory of Open Access Journals (Sweden)

    Ness Timothy J

    2011-08-01

    Full Text Available Abstract Background The purpose of the present study was to determine how acute adult and/or prior early-in life (EIL; P14-P16 exposure to bladder inflammation affects bladder content of calcitonin gene related peptide (CGRP and substance P (SP. Estrous cycle influences were also studied in the adult-treatment conditions. Methods In Experiment 1, intravesical zymosan or isoflurane anesthesia alone was administered to adult female rats. Bladders and serum were collected 24 hours later during each phase of the estrous cycle. In Experiment 2, zymosan or anesthesia alone was administered EIL and as adults, with bladder tissue collection 24 h later. Results In general, Experiment 1 showed that bladder content of both CGRP and SP was increased by inflammation. This effect was significant when data were collapsed across all phases of the estrous cycle, but was only significant during proestrus when individual comparisons were made during each phase of estrous. Also, adult bladder inflammation significantly reduced estradiol levels. In Experiment 2, bladder content of CGRP and SP was significantly increased in rats receiving EIL and/or adult inflammation. Bladder weights were also significantly increased by inflammation. Conclusions These data indicate that bladder CGRP and SP are maximally increased during the proestrus phase of the estrous cycle in inflamed adult female rats. EIL exposure to bladder inflammation alone can also produce an increase in CGRP and SP lasting into adulthood. Therefore, EIL experience with bladder inflammation may predispose an organism to experience a painful bladder disorder as an adult by increasing primary afferent content of CGRP and/or SP.

  15. The role of peroxisome proliferator-activated receptor and effects of its agonist, pioglitazone, on a rat model of optic nerve crush: PPARγ in retinal neuroprotection.

    Directory of Open Access Journals (Sweden)

    Juming Zhu

    Full Text Available It has been shown that peroxisome proliferators-activated receptor gamma (PPARγ is beneficial for central nervous system injury. However its role on optic nerve injury remains unknown. In the present study, we examined the change of PPARγ expression in rat retina following optic nerve injury and investigated the effect of pioglitazone (Pio, a PPARγ agonist, on retinal ganglion cells (RGCs neuroprotection using a rat optic nerve crush (ONC model. Our results showed that PPARγ mRNA and protein levels were increased after ONC, and most of PPARγ-immunoreactive cells colocalized with Müller cells. Pio treatment significantly enhanced the number of surviving RGCs and inhibited RGCs apoptosis induced by ONC. However, when PPARγ antagonist GW9662 was used, these neuroprotective effects were abolished. In addition, pio attenuated Müller cell activation after ONC. These results indicate that PPARγ appears to protect RGCs from ONC possibly via the reduction of Müller glial activation. It provides evidence that activation of PPARγ may be a potential alternative treatment for RGCs neuroprotection.

  16. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil. Electrophysiological...

  17. Retinitis pigmentosa

    NARCIS (Netherlands)

    Hartong, Dyonne T.; Berson, Eliot L.; Dryja, Thaddeus P.

    2006-01-01

    Hereditary degenerations of the human retina are genetically heterogeneous, with well over 100 genes implicated so far. This Seminar focuses on the subset of diseases called retinitis pigmentosa, in which patients typically lose night vision in adolescence, side vision in young adulthood, and centra

  18. Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes.

    Science.gov (United States)

    Codeluppi, Simone; Gregory, Ebba Norsted; Kjell, Jacob; Wigerblad, Gustaf; Olson, Lars; Svensson, Camilla I

    2011-04-15

    Primary astrocyte cell cultures have become a valuable tool for studies of signaling pathways that regulate astrocyte physiology, reactivity, and function; however, differences in culture preparation affect data reproducibility. The aim of this work was to define optimal conditions for obtaining primary astrocytes from adult rat spinal cord with an expression profile most similar to adult human spinal cord astrocytes. Hence, we examined whether different Sprague-Dawley substrains and culture conditions affect astrocyte culture quality. Medium supplemented with fetal bovine serum from three sources (Sigma, Gibco, Hyclone) or a medium with defined composition (AM medium) was used to culture astrocytes isolated from spinal cords of adult Harlan and Charles River Spraque-Dawley rats. Purity was significantly different between cultures established in media with different sera. No microglia were detected in AM or Hyclone cultures. Gene expression was also affected, with AM cultures expressing the highest level of glutamine synthetase, connexin-43, and glutamate transporter-1. Interestingly, cell response to starvation was substrain dependent. Charles River-derived cultures responded the least, while astrocytes derived from Harlan rats showed a greater decrease in Gfap and glutamine synthetase, suggesting a more quiescent phenotype. Human and Harlan astrocytes cultured in AM media responded similarly to starvation. Taken together, this study shows that rat substrain and growth medium composition affect purity, expression profile and response to starvation of primary astrocytes suggesting that cultures of Harlan rats in AM media have optimal astrocyte characteristics, purity, and similarity to human astrocytes.

  19. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats.

    Science.gov (United States)

    Ornelas, Laura C; Novier, Adelle; Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-03-01

    Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a

  20. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration

    Directory of Open Access Journals (Sweden)

    Valeria Colafrancesco

    2011-01-01

    Full Text Available The aim of this study was to investigate the effect of nerve growth factor (NGF administration on retinal ganglion cells (RGCs in experimentally induced glaucoma (GL and diabetic retinopathy (DR. GL was induced in adult rats by injection of hypertonic saline into the episcleral vein of the eye and diabetes (DT was induced by administration of streptozoticin. Control and experimental rats were treated daily with either ocular application of NGF or vehicle solution. We found that both animal models present a progressive degeneration of RGCs and changing NGF and VEGF levels in the retina and optic nerve. We then proved that NGF eye drop administration exerts a protective effect on these models of retinal degeneration. In brief, our findings indicate that NGF can play a protective role against RGC degeneration occurring in GL and DR and suggest that ocular NGF administration might be an effective pharmacological approach.

  1. Effects of neonatal overfeeding on juvenile and adult feeding and energy expenditure in the rat.

    Directory of Open Access Journals (Sweden)

    Aneta Stefanidis

    Full Text Available Overfeeding during perinatal life leads to an overweight phenotype that persists throughout the juvenile stage and into adulthood, however, the mechanism(s underlying this effect are poorly understood. We hypothesized that obesity due to neonatal overfeeding is maintained by changes in energy expenditure and that these changes differ between males and females. We investigated feeding, physical activity, hormonal and metabolic alterations that occur in adult rats made obese by having been nursed in small litters (SL compared with those from control litters (CL. There were no differences in absolute food intake between the groups, and juvenile and adult SL rats ate less chow per gram body weight than the CL did in the dark (active phase. Juvenile, but not adult SL rats did have reduced whole body energy expenditure, but there were no differences between the groups by the time they reached adulthood. Adult SL females (but not males had reduced brown adipose tissue (BAT temperatures compared with CL in the first half of the dark phase. Our results indicate a persistent overweight phenotype in rats overfed as neonates is not associated with hyperphagia at any stage, but is reflected in reduced energy expenditure into the juvenile phase. The reduced dark phase BAT activity in adult SL females is not sufficient to reduce total energy expenditure at this stage of life and there is an apparently compensatory effect that prevents SL and CL from continuing to diverge in weight that appears between the juvenile and adult stages.

  2. Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Chunlong Ke; Baili Chen; Shaolei Guo; Chao Yang

    2008-01-01

    BACKGROUND: It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson's disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats.OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro.DESIGN: Randomized grouping design.SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University.MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-scn University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male,Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University.METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1 ct, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry.MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells.RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylasc. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2

  3. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  4. [New drug therapy for retinal degeneration].

    Science.gov (United States)

    Ohguro, Hiroshi

    2008-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degeneration characterized by nyctalopia, ring scotoma, and bone-spicule pigmentation of the retina. So far, no effective therapy has been found for RP. As a possible molecular etiology of RP, retina-specific gene deficits are most likely involved, but little has been identified in terms of intracellular mechanisms leading to retinal photoreceptor cell death at post-translational levels. In order to find an effective therapy for RP, we must look for underlying common mechanisms that are responsible for the development of RP, instead of designing a specific therapy for each of the RP types with different causes. Therefore, in the present study, several animal models with different causes of RP were studied, including (1)Royal College of Surgeons (RCS) rats with a deficit of retinal pigment epithelium (RPE) function caused by rhodopsin mutation; (2) P23H rats, (3) S334ter rats, (4) photo stress rats, (5) retinal degeneration (rd) mice with a deficit of phosphodiesterase(PDE) function; and (6) cancer-associated retinopathy (CAR) model rats with a deficit of recoverin-dependent photoreceptor adaptation function. In each of these models, the following assessments were made in order to elucidate common pathological mechanisms among the models: (1) retinal function assessed by electroretinogram (ERG), (2) retinal morphology, (3) retinoid analysis, (4) rhodopsin regeneration, (5) rhodopsin phosphorylation and dephosphorylation, and (6) cytosolic cGMP levels. We found that unregulated photoreceptor adaptation processes caused by an imbalance of rhodopsin phosphorylation and dephosphorylation caused retinal dysfunction leading to photoreceptor cell death. As possible candidate drugs for normalizing these retinal dysfunctions and stopping further retinal degeneration, nilvadipine, a Ca channel blocker, retinoid derivatives, and anthocyanine were chosen and tested to determine their effect on the above animal models with

  5. Isoflavones prevent bone loss following ovariectomy in young adult rats

    Directory of Open Access Journals (Sweden)

    Chen Li-Ting

    2008-03-01

    Full Text Available Abstract Soy protein, a rich source of phytoestrogens, exhibit estrogen-type bioactivity. The purpose of this study was to determine if ingestion of isoflavones before ovariectomy can prevent bone loss following ovariectomy. Twenty-four nulliparous Wistar rats were randomly divided into four groups. In the normal diet groups, a sham operation was performed on Group A, while ovariectomy was performed on Group B. For Groups C and D, all rats were fed with an isoflavone-rich (25 mg/day diet for one month, then bilateral ovariectomy were performed. In the rats in Group C, a normal diet was begun following the ovariectomy. The rats in Groups D continued to receive the isoflavone-rich diet for two additional months postoperatively. All rats were sacrificed 60 days after surgery. The weight of bone ash of the long bones and whole lumbar spine were determined. A histological study of cancellous bone was done and biochemical indices of skeletal metabolism were performed and analyzed. The markers of bone metabolism exhibited no significant changes. When compared with the sham-operated rats fed a normal diet, the bone mass of ovariectomized rats decreased significantly; pre-ovariectomy ingestion of an isoflavone-rich diet did not prevent bone loss. The bone mass of rats treated with an isoflavone-rich diet for three months was higher than controls two months after ovariectomy. Dietary isoflavones did not prevent the development of post-ovariectomy bone loss, but long-term ingestion of an isoflavone-rich diet increased the bone mineral contents after ovariectomy in young rats.

  6. Morphine treatment during juvenile isolation increases social activity and opioid peptides release in the adult rat.

    Science.gov (United States)

    Van den Berg, C L; Kitchen, I; Gerrits, M A; Spruijt, B M; Van Ree, J M

    1999-05-29

    The consequences of juvenile isolation and morphine treatment on general activity, social activity and endogenous opioid release during a social interaction test were investigated in the adult rat. Rats were either isolated or socially housed during weeks 4 and 5 of age and treated daily during this isolation period subcutaneously with either saline or morphine. Directly after a social interaction test at 10 weeks of age, rats were injected with [3H]-diprenorphine and subsequently prepared for in vivo autoradiography. The autoradiographic technique was used to visualise neuroanatomical changes in opioid receptor occupancy, probably reflecting changes in opioid peptide release, as a result of social activity. Juvenile isolation increased general activity during the social interaction test, an effect which was accompanied by a reduction of opioid receptor occupancy in many brain areas, suggesting an increased opioid peptide release as a consequence of socially-induced general activity. Morphine treatment in isolated rats caused an increase in adult social activity and enhanced opioid peptide release in some cortical regions and the ventral tegmental area as compared to saline treated rats. Both social activity and opioid receptor occupancy were unaffected by morphine treatment in non-isolated rats. The present study underscores the role of opioid systems in adult social behaviors as a consequence of juvenile isolation. The results suggest a relationship between social activity and opioid peptide release during social contact. Increased social activity seems to be accompanied by elevated opioid peptide release in distinct brain areas after morphine treatment during juvenile isolation.

  7. Effect of lindane on antioxidant enzymes in epididymis and epididymal sperm of adult rats

    Institute of Scientific and Technical Information of China (English)

    K.C. Chitra; R. Sujatha; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the changes induced by lindane on the antioxidant enzymes in epididymis and epididymal sperm of adult rats, Methods; Adult male rats were orally administered lindane at a dose of 5.0 mg/kg body weight per day for 30 days. At the end of the treatment, the rats were sacrificed. The epididymis was removed and weighed and sperm were collected for sperm count, motility and biochemical studies. A 1% homogenate of epididymis was prepared and used for biochemical estimations. Results: In lindane-treated rats, there were significant reductions in the epididymal weight, epididymal sperm count and motility compared with the controls. Significant decreases in the superoxide dismutase (SOD), catalase, glutathione reductase and glutathione peroxidase activities and significant increases in the H2O2 generation and lipid peroxidation were also observed in the epididymis and epididymal sperm of lindane-treated rats. Conclusion: Lindane decreases the levels of antioxidant enzymes in the epididymis and epididymal sperm of adult rats thereby inducing oxidative stress.

  8. Early treatment with metformin induces resistance against tumor growth in adult rats.

    Science.gov (United States)

    Trombini, Amanda B; Franco, Claudinéia Cs; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane As; Fabricio, Gabriel S; de Sant'Anna, Juliane R; Castro-Prado, Marialba Aa; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo Cf

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer.

  9. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Lavik, Erin B;

    2005-01-01

    To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs.......To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs....

  10. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    Directory of Open Access Journals (Sweden)

    Damián Dorfman

    Full Text Available Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm optic nerve (ON could be the first structural change of the visual pathway in streptozotocin (STZ-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE or remained in a standard environment (SE for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity, microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1 immunoreactivity, astrocyte reactivity (glial fibrillary acid protein-immunostaining, myelin (myelin basic protein immunoreactivity, ultrastructure, and brain derived neurotrophic factor (BDNF levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.

  11. [Disruption of latent inhibition in adult rats after prepubertal dopamine terminals lesions in the ventral hippocampus].

    Science.gov (United States)

    Loskutova, L V; Kostiunina, N V; Red'kina, A V

    2010-05-01

    Wistar rats were submitted to bilateral ventral hippocampal injection of 6-hydroxydopamine on 32nd day after birth. Latent inhibition was measured in passive or active avoidance tasks when the rats received 20 and 100 pre-exposures of conditioned stimulus. Prepubertal and adult lesioned rats showed a deficit in the latent inhibition but not in the capacity to avoidance learning in presence of the conditioned stimulus novelty. Possible mechanism of the involvement of hippocampal dopaminergic terminals in attention inhibition to irrelevant information is considered.

  12. Low maternal care exacerbates adult stress susceptibility in the chronic mild stress rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Dyrvig, Mads; Bouzinova, Elena V

    2012-01-01

    In the present study we report the finding that the quality of maternal care, in early life, increased the susceptibility to stress exposure in adulthood, when rats were exposed to the chronic mild stress paradigm. Our results indicate that high, as opposed to low maternal care, predisposed rats...... to a differential stress-coping ability. Thus rats fostered by low maternal care dams became more prone to adopt a stress-susceptible phenotype developing an anhedonic-like condition. Moreover, low maternal care offspring had lower weight gain and lower locomotion, with no additive effect of stress. Subchronic...... exposure to chronic mild stress induced an increase in faecal corticosterone metabolites, which was only significant in rats from low maternal care dams. Examination of glucocorticoid receptor exon 17 promoter methylation in unchallenged adult, maternally characterized rats, showed an insignificant...

  13. HISTOLOGICAL STUDIES OF THE EFFECTS OF RED PEPPER ON THE STOMACH OF ADULT WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Josiah O. Adjene

    2007-01-01

    Full Text Available Histological effects of red pepper commonly used as spice in food on the stomach of adult wistar rats were carefully investigated. The rats of both sexes (n=24, average weight of 200g were randomly assigned into two treatments (n=16 and control (n=6 groups. The rats in the treatments groups received 1g and 2g of red pepper thoroughly mixed with 20g of their feeds for 7 and 14 days, while the control rats received equal amounts of feeds without the red pepper added. The rats were fed with grower's mash purchased from Edo feeds and flour mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day eight and fifteen of the experiment respectively.The stomach was carefully dissected out and quickly fixed in 10% formol saline for routine histological procedure after H & E method.The histological findings after H&E methods indicated that the treated sections of the stomach showed some level of cellular hypertrophy, congestion of blood vessels degenerative changes disruption and distortion of the cytoarchitecture of the stomach.These findings indicate that red pepper may have some deleterious effects on the microanatomy of the stomach of adult wistar rat at higher doses. It is recommended that further studies aimed at corroborating these findings be carried out.

  14. HISTOLOGICAL STUDIES OF THE EFFECTS OF MONOSODIUM GLUTAMATE ON THE INFERIOR COLLICULUS OF ADULT WISTAR RATS.

    Directory of Open Access Journals (Sweden)

    A.O. Eweka.

    2008-01-01

    Full Text Available Histological effects of Monosodium glutamate (MSG commonly used as food additive on the inferior colliculus (IC of adult Wistar rats were carefully studied. The rats of both sexes (n=24, average weight of 185g were randomly assigned into two treatments (n=16 and control (n=8 groups. The rats in the treatment groups received 3g and 6g of MSG thoroughly mixed with their feeds for fourteen days, while the control rats received equal amounts of feeds without MSG added. The rats were fed with growers' mash purchased from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day fifteen of the experiment. The inferior colliculus was carefully dissected out and quickly fixed in 10% formal saline for routine histological study after H&E method.The histological findings after H&E methods indicated that the treated sections of the inferior colliculus showed some cellular degenerative changes, cellular hypertrophy, and autophagic vacuoles with some intercellular vacuolations appearing in the stroma, and some degree of neuronal hypertrophy when compared to the control sections.These findings indicate that MSG consumption may have a deleterious effect on the neurons of the inferior colliculus (IC. MSG may probably have adverse effects on the auditory sensibilities by its deleterious effects on the nerve cells of the IC of adult Wistar rats. It is recommended that further studies aimed at corroborating these observations be carried out.

  15. Histological effects of chronic consumption of soda pop drinks on kidney of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Josiah Obaghwarhievwo Adjene

    2010-05-01

    Full Text Available Background: Health concerns over soda pop drinks have been severally report. However, histological perspectives are not very common. Aim: The objective of this study is to investigate histological effect of chronic consumption of soda pop drinks on the kidney of adult Wistar rats. Materials and methods: The rats of both sexes (n = 24, with average weight of 200g were randomly assigned into two treatment (A & B (n=16 and Control (c (n=8 groups. The rats in the treatment group (A received a brand of soda pop drink on a daily basis for thirty days. The rats in treatment group (B received another brand of soda drink, while the control group (C received equal amount of water for the same period. The rats were given the drinks as well as feeds liberally for thirty days, and sacrificed by cervical dislocation on the thirty-first day of the experiment. The kidney was carefully dissected out and quickly fixed in 10% formal saline for histological study. Results: The findings indicate that rats in the treated groups (A&B showed some varying degree of distortion and disruption of the renal structure. There are observable diffuse signs of glomerulonephritis with some congestion and tubular necrosis as compared to the control group. Conclusion: Chronic consumption of soda pop drinks may affect the microanatomy of the kidney of adult Wistar rats. Further study aimed at corroborating these observations in humans is warranted.

  16. Histological effects of chronic consumption of soda pop drinks on kidney of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Josiah Obaghwarhievwo Adjene

    2010-01-01

    Full Text Available Background : Health concerns over soda pop drinks have been severally report. However, histological perspectives are not very common. Aim: The objective of this study is to investigate histological effect of chronic consumption of soda pop drinks on the kidney of adult Wistar rats. Materials and methods : The rats of both sexes (n = 24, with average weight of 200g were randomly assigned into two treatment (A & B (n=16 and Control (c (n=8 groups. The rats in the treatment group (A received a brand of soda pop drink on a daily basis for thirty days. The rats in treatment group (B received another brand of soda drink, while the control group (C received equal amount of water for the same period. The rats were given the drinks as well as feeds liberally for thirty days, and sacrificed by cervical dislocation on the thirty-first day of the experiment. The kidney was carefully dissected out and quickly fixed in 10% formal saline for histological study. Results : The findings indicate that rats in the treated groups (A&B showed some varying degree of distortion and disruption of the renal structure. There are observable diffuse signs of glomerulonephritis with some congestion and tubular necrosis as compared to the control group. Conclusion : Chronic consumption of soda pop drinks may affect the microanatomy of the kidney of adult Wistar rats. Further study aimed at corroborating these observations in humans is warranted.

  17. HISTOLOGICAL EFFECTS OF CHRONIC CONSUMPTION OF NUTMEG ON THE LATERAL GENICULATE BODY OF ADULT WISTAR RATS.

    Directory of Open Access Journals (Sweden)

    J.O. Adjene

    2010-01-01

    Full Text Available The effects of chronic consumption of nutmeg commonly used as a spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the lateral geniculate body of adult wistar rats was studied.The rats of both sexes, with average weight of 200g were randomly assigned into treatment and control groups. The rats in the treatment group (n=8 received 2g of nutmeg thoroughly mixed with the feeds on a daily basis for thirty-two days. The control group (n=8 received equal amount of feeds daily without nutmeg added for thirty-two days. The growers mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo State, Nigeria and the rats were given water liberally. The rats were sacrificed on the thirty-three day of the experiment. The lateral geniculate body was carefully dissected out and quickly fixed in 10% formal saline for histological study.The findings indicate that rats in the treated group showed some cellular degenerative changes like sparse cellular population, pyknotic nuclei with some microcystic changes, edema and vacuolations in the stroma of the treated lateral geniculate body as compared to that of the control group.Chronic consumption of nutmeg may therefore have an adverse effect on the visual sensibilities by affecting the microanatomy of the lateral geniculate body of adult wistar rats. It is recommended for further studies aimed at corroborating these observations.

  18. Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy.

    Science.gov (United States)

    Sitnikova, Evgenia

    2011-03-04

    Absence epilepsy has age-related onset. In a WAG/Rij rat genetic model, absence seizures appear after puberty and they are increased with age. It is known that (1) epileptic activity in WAG/Rij rats is initiated at the perioral area in the somatosensory cortex; (2) sensory deprivation, i.e., whisker trimming during the critical period of development, could enhance excitatory activity in the somatosensory cortex. It is hypothesized that the cortex may become more excitable after neonatal vibrissae removal, and this may precipitate absence seizures in adult rats. We found that whisker trimming during the first postnatal weeks caused more rapid development of EEG seizure activity in adult WAG/Rij rats. Epileptic discharges in the trimmed rats were more numerous (vs control), showed longer duration and often appeared in desynchronized and drowsy EEG. The number of absence-like spindle-shaped EEG events (spike-wave spindles) in the whisker-trimmed rats was higher than in control, especially during the intermediate sleep state. An age-dependent increase of intermediate sleep state was found in the trimmed rats, but not in the intact animals. We discuss epigenetic factors that can modulate absence epilepsy in genetically prone subjects.

  19. Effect of taurine on GFAP and TauT expressions in rat retinal Müller cells in high glucose culture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-jie; XU Hong-xia; ZENG Kai-hong; MI Man-tian

    2007-01-01

    Objective:To detect the expression of glial fibrillary acid protein (GFAP) and taurine transporter (TauT) in the retinal Müller cells in high glucose culture with taurine and to explore the influence of glucose on the taurine transporting, and the possible protective effects of taurine on Müller cells in early diabetic retinopathy. Methods: The Müller cells from the rat retina were cultured in high glucose, and GFAP and TauT expressions were detected in the cells treated with different doses of taurine by immuocytochemical fluorescein staining and Western blotting. Results: High glucose enhanced the expression of GFAP and decreased the expression of TauT in Müller cells. Taurine decreased the up-regulation of GFAP in the cells which was induced by high glucose; 0. 1-10 mmol/L taurine increased the expression of TauT in Müller cells. Conclusion: Taurine can inhibit the changes in Müller cell resulted from high glucose.

  20. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  1. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  2. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available The roles of vitamin A (VA in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1 were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.

  3. Uterine phenotype of young adult rats exposed to dietary soy or genistein during development.

    Science.gov (United States)

    Eason, Renea R; Till, S Reneé; Velarde, Michael C; Geng, Yan; Chatman, Leon; Gu, Liwei; Badger, Thomas M; Simmen, Frank A; Simmen, Rosalia C M

    2005-10-01

    Dietary soy intake is associated with protection from breast cancer, but questions persist on the potential risks of the major soy isoflavone genistein (GEN) on female reproductive health. Here, we evaluated intermediate markers of cancer risk in uteri of cycling, young adult Sprague-Dawley rats lifetime exposed to one of three AIN-93G semipurified diets: casein (CAS), soy protein isolate (SPI+ with 276 mg GEN aglycone equivalents/kg) and CAS+GEN (GEN at 250 mg/kg). Postnatal day 50 (PND50) rats lifetime exposed to GEN or SPI+ had similar uterine luminal epithelium height, myometrial thickness, endometrial gland numbers, endometrial immunoreactive proliferating cell nuclear antigen (PCNA), and serum estrogen and progesterone, as CAS-fed rats. GEN-fed rats showed modestly increased apoptosis in uterine glandular epithelium, compared to those of CAS- or SPI+-fed groups. Diet had no effect on the uterine expression of genes for the tumor suppressors PTEN, p53 and p21, and the apoptotic-associated proteins Bcl2, Bax and progesterone receptor. Uterine tissue and serum concentrations of total GEN were higher in rats fed GEN than in those fed SPI+. Human Ishikawa endocarcinoma cells treated with GEN-fed rat serum tended to exhibit increased apoptotic status than those treated with CAS-fed rat serum. Exogenously added GEN (0.2 and 2 microM) increased, while estradiol-17beta (0.1 microM) decreased Ishikawa cell apoptosis, relative to untreated cells. Results suggest that lifetime dietary exposure to soy foods does not alter uterine cell phenotype in young adult rats, while GEN, by enhancing uterine endometrial glandular apoptosis in vivo and in vitro, may confer protection against uterine carcinoma. Given its limited influence on uterine phenotype of young adult females, GEN, when taken as part of soy foods or as supplement, should be favorably considered for other potential health benefits.

  4. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu Kong

    2014-11-01

    Full Text Available Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH and luteinizing hormone (LH, and lowered etradiol (E2 serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.

  5. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats Incorporação e diferenciação retiniana de células tronco mesenquimais intravítreas em ratos

    Directory of Open Access Journals (Sweden)

    Paula Castanheira

    2008-10-01

    Full Text Available PURPOSE: To evaluate the pattern of retinal integration and differentiation of mesenchymal stem cells (MSCs injected into the vitreous cavity of rat eyes with retinal injury. METHODS: Adult rat retinas were submitted to laser damage followed by transplantation of DAPI-labeled BM-MSCs grafts. To assess the integration and differentiation of BM-MSCs in laser-injured retina, host retinas were evaluated 2.4 and 8 weeks after injury/transplantation. RESULTS: Our results demonstrated that the grafted cells survived in the retina for at least 8 weeks and almost all BM-MSCs migrated and incorporated into the neural retina, specifically in the outer nuclear layer (ONL, inner nuclear layer (INL and ganglion cell layer (GCL while a subset of grafted cells were found in the subretinal space posttransplantation. At 8 weeks immunohistochemical analysis with several retinal specific markers revealed that the majority of the grafted cells expressed rhodopsin, a rod photoreceptor marker, followed by parvalbumin, a marker for bipolar and amacrine cells. A few subsets of cells were able to express a glial marker, glial fibrillary acidic protein. However, grafted cells failed to express pan-cytokeratin, a retinal pigment epithelium marker. CONCLUSIONS: These results suggest the potential of BM-MSCs to differentiate into retinal neurons. Taken together, these findings might be clinically relevant for future mesenchymal stem cell therapy studies concerning retinal degeneration repair.OBJETIVO: Avaliar o padrão de integração e diferenciação retiniana de células tronco mesenquimais (CTM injetadas na cavidade vítrea de ratos portadores de lesões retinianas. MÉTODOS: Ratos Wistar adultos foram submetidos a múltiplas lesões retinianas utilizando-se YAG laser e injeção intravítrea de células tronco mesenquimais. A fim de se avaliar a integração e diferenciação retiniana, o tecido retiniano lesado pelo YAG laser / tratado pelas células tronco, foi

  6. EFFECTS OF CEREBRAL CORTICAL CONCIS ON CELL PROLIFERATION OF THE SUBVENTRICULAR ZONE IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuelin; Qiu Shudong; Zhang Pengbo; Shi Wei

    2006-01-01

    Objective To investigate the proliferative response and time course of endogenous neural stem/progenitor cells after cerebral cortical concis in the adult rats. Methods Eighty adult male Sprague-Dawley rats were used in this study. Cumulative BrdU labeling was employed to detect the proliferating cells. At 1 d, 3 d, 7 d, 14 d, and 21 d after cerebral cortical concis, the rats were killed for BrdU immunohistochemical staining and cell counting in the injured ipsilateral SVZ. Results Little BrdU immunoreactivity cells was present in SVZ of the control rats from day 7 to day 21 after sham operation. The number of BrdU immunoreactivity cells in the injured ipsilateral SVZ increased at day 1 and peaked at day 7 after cerebral cortical concis. Conclusion After cerebral cortical concis of the adult rats, neural stem/progenitor cells in the injured ipsilateral SVZ markedly proliferated with a peak at day 7. This finding may be important for manipulating SVZ cells to promote the recovery from cerebral cortical concis.

  7. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats.

    Science.gov (United States)

    Holtz, Nathan A; Carroll, Marilyn E

    2015-06-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability.

  8. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats

    Institute of Scientific and Technical Information of China (English)

    R. Sujatha; K.C. Chitin; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the effect of lindane on testicular antioxidant system and testicular steroidogenesis in adult male rats. Methods: Adult male rats were orally administered with lindane at a dose of 5.0 mg/kg body weight per day for 30 days. Twenty-four hours after the last treatment the rats were killed using anesthetic ether. Testes, epididymis,seminal vesicles and ventral prostate were removed and weighed. A 10% testicular homogenate was prepared and cen trifuged at 4°C. The supematant was used for various biochemical estimations. Results: The body weight and the weights of testes, epididymis, seminal vesicles and ventral prostate were reduced in lindane-treated rars. There was asignificant decline in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione reduc tase while an increase in hydrogen peroxide (H2O2) generation was observed. The specific activities of testicular steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were decreased. The levels of DNA, RNA and protein were also decreased in lindane-treated rats. Conclusion: Lindane induces oxida tive stress and decreases antioxidant enzymes in adult male rats.

  9. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    Science.gov (United States)

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  10. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.

    2010-01-01

    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was e

  11. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    Science.gov (United States)

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  12. The effect of prenatal methamphetamine exposure on recognition memory in adult rats.

    Science.gov (United States)

    Fialová, Markéta; Šírová, Jana; Bubeníková-Valešová, Věra; Šlamberová, Romana

    2015-01-01

    The use of methamphetamine (MA) among pregnant women is an increasing world-wide health problem. Prenatal MA exposure may cause changes in foetus but the exact effects have remained unclear. The aim of this study is to present the effect of prenatal MA exposure on recognition memory in adult rats. Adult female Wistar rats were injected daily with D-methamphetamine HCl (MA; 5 mg/kg, s.c.) during the entire gestation period. Control females were treated with saline in the same regime. Adult male offspring was administrated acutely by MA (1 mg/kg i.p.) or saline 30 minutes before beginning of an experiment. For testing recognition memory two tasks were chosen: Novel Object Recognition Test (NORT) and Object Location Test (OLT). Our results demonstrate that prenatally MA-exposed animals were worse in NORT independently on an acute administration of MA in adulthood. Prenatally MA-exposed rats did not deteriorate in OLT, but after acute administration of MA in adulthood, there was significant worsening compared to appropriate control. Prenatally saline-exposed offspring did not deteriorate in any test even after acute administration of MA. Our data suggest that prenatal MA exposure in rats cause impairment in recognition memory in adult offspring, but not in spatial memory. In addition, acute administration of MA to controls did not deteriorate either recognition or spatial memory.

  13. Monitoring of intermittent PTH(1-34) treatment by serum PINP in adult ovariectomized osteopenic rats

    DEFF Research Database (Denmark)

    Halleen, Jussi; Peng, ZhiQi; Fagerlund, Katja

    , allowing measurement of serum PINP in preclinical rodent osteoporosis models. The purpose of this study was to evaluate the use of serum PINP for monitoring intermittent PTH(1-34) treatment in adult ovariectomized (OVX) osteopenic rats. Study groups included a sham-operated control group and an OVX...

  14. Reinnervation of muscles after transection of the sciatic nerve in adult rats

    NARCIS (Netherlands)

    Ijkema-Paassen, J; Meek, MF; Gramsbergen, A

    2002-01-01

    Functional recovery after transection of the sciatic nerve in adult rats is poor, probably because of abnormalities in reinnervation. Denervation and reinnervation patterns were studied morphologically in the lateral gastrocnemius (LGC), tibialis anterior (TA), and soleus (SOL) muscles for 21 weeks

  15. Peripheral effect of NMDA receptor antagonists on adult rats exposed to neonatal colon pain

    Institute of Scientific and Technical Information of China (English)

    ChunLin; ElieD.Al-Chaer

    2004-01-01

    AIM: Previous work done by Al-Chaer' s lab has shown that colon irritation (CI) in neonates can lead to chronic visceral hypersensitivity in adult rats, with characteristics of visceral allodynia and hyperalgesia, associated with central neuronal sensitization in the absence of identifiable peripheral pathology (Al-Chaer et al. 2000) . The pathogenesis of

  16. Strain differences in baroceptor reflex in adult Wistar Kyoto rats

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2010-01-01

    Full Text Available OBJECTIVES: A subset of normotensive Sprague-Dawley rats show lower baroreflex sensitivity; however, no previous study investigated whether there are differences in baroreflex sensitivity within this subset. Our study compared baroreflex sensitivity among conscious rats of this specific subtype. METHODS: Male Wistar Kyoto (WKY rats (16 weeks old were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure (MAP and heart rate (HR. Baroreflex gain was calculated as the ratio between change in HR and MAP variation (ΔHR/ΔMAP in response to a depressor dose of sodium nitroprusside (SNP, 50 µg/kg, i.v. and a pressor dose of phenylephrine (PE, 8 µg/kg, i.v.. Rats were divided into four groups: 1 low bradycardic baroreflex (LB, baroreflex gain (BG between -1 and -2 bpm/mmHg tested with PE; 2 high bradycardic baroreflex (HB, BG < -2 bpm/mmHg tested with PE; 3 low tachycardic baroreflex (LT, BG between -1 and -2 bpm/mmHg tested with SNP and; 4 high tachycardic baroreflex (HT, BG < -2 bpm/mmHg tested with SNP. Significant differences were considered for p < 0.05. RESULTS: Approximately 37% of the rats showed a reduced bradycardic peak, bradycardic reflex and decreased bradycardic gain of baroreflex while roughly 23% had a decreased basal HR, tachycardic peak, tachycardic reflex and reduced sympathetic baroreflex gain. No significant alterations were noted with regard to basal MAP. CONCLUSION: There is variability regarding baroreflex sensitivity among WKY rats from the same laboratory.

  17. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    Science.gov (United States)

    Oosthuizen, M K; Amrein, I

    2016-06-02

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species.

  18. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    Science.gov (United States)

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  19. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    Science.gov (United States)

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  20. Body and Testicular Weight Changes in Adult Wistar Rats Following Oral Administration of Artesunate

    Directory of Open Access Journals (Sweden)

    al-hassan m. izunya

    2010-05-01

    Full Text Available This experiment was designed to study the effects on the body and testicular weights of adult wistar rats that recieved an oral administration of normal and double normal doses of artesunate. The rats were divided into three groups (A, B and C of five rats each. A and B served as the treatment groups, while C served as the control group. Group A rats were given 4mg.kg-1 b.w of artesunate daily for 3 days followed by 2mg.kg-1 b.w daily for next for 4 days. Group B rats were given 8mg.kg-1 b.w of artesunate daily for 3 days followed by 4mg.kg-1 b.w daily for next 4 days, while group C rats were given only distilled water. The rats were fed with grower's mash purchased from Edo feeds and Flour Mill Ltd, Ewu, Edo state and were given w ater ad libitum. On day eight of the experiment, the rats were weighed and sacrificed. The testes w ere carefully dissected out, freed from adherent tissues and weighed to the nearest 0.001 g. The results showed no changes in body weight of rats in groups A, B and C. There was also no significant change in testicular weight of rats in group A. However a significant increase in testicular weight was observed in group C. Our results suggest that artesunate at normal and double normal doses, has no effect on body weight of rats but may be toxic to the testes at higher doses. It is uncertain however if these changes are reversible. It is recommended therefore, that further studies aimed at corroborating these observations be carried out.

  1. Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats.

    Directory of Open Access Journals (Sweden)

    Aditya Asokan

    Full Text Available Adult hippocampal neurogenesis has been linked to the effects of anti-depressant drugs on behavior in rodent models of depression. To explore this link further, we tested whether the serotonin-norepinephrine reuptake inhibitor (SNRI venlafaxine impacted adult hippocampal neurogenesis differently than its primary active SNRI metabolite desvenlafaxine. Adult male Long Evans rats (n = 5-6 per group were fed vehicle, venlafaxine (0.5 or 5 mg or desvenlafaxine (0.5 or 5 mg twice daily for 16 days. Beginning the third day of drug treatment, the rats were given a daily bromodeoxyuridine (BrdU; 50 mg/kg injection for 5 days to label dividing cells and then perfused 2 weeks after the first BrdU injection to confirm total new hippocampal cell numbers and their phenotypes. The high desvenlafaxine dose increased total new BrdU+ cell number and appeared to accelerate neuronal maturation because fewer BrdU+ cells expressed maturing neuronal phenotypes and more expressed mature neuronal phenotypes in the dentate gyri of these versus vehicle-treated rats. While net neurogenesis was not increased in the dentate gyri of rats treated with the high desvenlafaxine dose, significantly more mature neurons were detected. Our data expand the body of literature showing that antidepressants impact adult neurogenesis by stimulating NPC proliferation and perhaps the survival of neuronal progeny and by showing that a high dose of the SNRI antidepressant desvenlafaxine, but neither a high nor low venlafaxine dose, may also accelerate neuronal maturation in the adult rat hippocampus. These data support the hypothesis that hippocampal neurogenesis may indeed serve as a biomarker of depression and the effects of antidepressant treatment, and may be informative for developing novel fast-acting antidepressant strategies.

  2. Dermal penetration of [14C]captan in young and adult rats.

    Science.gov (United States)

    Fisher, H L; Hall, L L; Sumler, M R; Shah, P V

    1992-07-01

    Age dependence in dermal absorption has been a major concern in risk assessment. Captan, a chloroalkyl thio heterocyclic fungicide, was selected for study of age dependence as representative of this class of pesticides. Dermal penetration of [14C]captan applied at 0.286 mumol/cm2 was determined in young (33-d-old) and adult (82-d-old) female Fischer 344 rats in vivo and by two in vitro methods. Dermal penetration in vivo at 72 h was about 9% of the recovered dose in both young and adult rats. The percentage penetration was found to increase as dosage (0.1, 0.5, 2.7 mumol/cm2) decreased. Two in vitro methods gave variable dermal penetration values compared with in vivo results. A static system yielded twofold higher dermal penetration values compared with in vivo results for both young and adult rats. A flow system yielded higher dermal penetration values in young rats and lower penetration values in adults compared with in vivo results. Concentration in body, kidney, and liver was less in young than in adult rats given the same absorbed dosage. A physiological pharmacokinetic model was developed having a dual compartment for the treated skin and appeared to describe dermal absorption and disposition well. From this model, tissue/blood ratios of captan-derived radioactivity for organs were found to range from 0.35 to 3.4, indicating no large uptake or binding preferences by any organ. This preliminary pharmacokinetic model summarizes the experimental findings and could provide impetus for more complex and realistic models.

  3. Effect of prenatal programming and postnatal rearing on glomerular filtration rate in adult rats.

    Science.gov (United States)

    Lozano, German; Elmaghrabi, Ayah; Salley, Jordan; Siddique, Khurrum; Gattineni, Jyothsna; Baum, Michel

    2015-03-01

    The present study examined whether a prenatal low-protein diet programs a decrease in glomerular filtration rate (GFR) and an increase in systolic blood pressure (BP). In addition, we examined whether altering the postnatal nutritional environment of nursing neonatal rats affected GFR and BP when rats were studied as adults. Pregnant rats were fed a normal (20%) protein diet or a low-protein diet (6%) during the last half of pregnancy until birth, when rats were fed a 20% protein diet. Mature adult rats from the prenatal low-protein group had systolic hypertension and a GFR of 0.38 ± 0.03 versus 0.57 ± 0.05 ml·min(-1)·100 g body wt(-1) in the 20% group (P < 0.01). In cross-fostering experiments, mothers continued on the same prenatal diet until weaning. Prenatal 6% protein rats cross-fostered to a 20% mother on day 1 of life had a GFR of 0.53 ± 0.05 ml·min(-1)·100 g body wt(-1), which was not different than the 20% group cross-fostered to a different 20% mother (0.45 ± 0.04 ml·min(-1)·100 g body wt(-1)). BP in the 6% to 20% group was comparable with the 20% to 20% group. Offspring of rats fed either 20% or 6% protein diets during pregnancy and cross-fostered to a 6% mother had elevated BP but a comparable GFR normalized to body weight as the 20% to 20% control group. Thus, a prenatal low-protein diet causes hypertension and a reduction in GFR in mature adult offspring, which can be modified by postnatal rearing.

  4. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  5. Mechanism of Forelimb Motor Function Restoration after Cervical Spinal Cord Hemisection in Rats: A Comparison of Juveniles and Adults

    Directory of Open Access Journals (Sweden)

    Atsushi Hasegawa

    2016-01-01

    Full Text Available The aim of this study was to investigate forelimb motor function after cervical spinal cord injury in juvenile and adult rats. Both rats received a left segmental hemisection of the spinal cord after C3-C4 laminectomy. Behavioral evaluation of motor function was monitored and assessed using the New Rating Scale (NRS and Forelimb Locomotor Scale (FLS and by measuring the range of motion (ROM of both the elbow and wrist. Complete left forelimb motor paralysis was observed in both rats. The NRS showed motor function recovery restored to 50.2±24.7% in juvenile rats and 34.0±19.8% in adult rats. FLS was 60.4±26.8% in juvenile rats and 46.5±26.9% in adult rats. ROM of the elbow and wrist were 88.9±20.6% and 44.4±24.1% in juvenile rats and 70.0±29.2% and 40.0±21.1% in adult rats. Thus, the NRS and ROM of the elbow showed a significant difference between age groups. These results indicate that left hemisection of the cervical spinal cord was not related to right-sided motor functions. Moreover, while motor paralysis of the left forelimb gradually recovered in both groups, the improvement was greater in juvenile rats.

  6. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Piyanard Boonnate

    Full Text Available The amount of dietary monosodium glutamate (MSG is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology.Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group. All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets.MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated.Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account.

  7. Metabolic syndrome triggered by high-fructose diet favors choroidal neovascularization and impairs retinal light sensitivity in the rat.

    Science.gov (United States)

    Thierry, Magalie; Pasquis, Bruno; Acar, Niyazi; Grégoire, Stéphane; Febvret, Valérie; Buteau, Bénédicte; Gambert-Nicot, Ségolène; Bron, Alain M; Creuzot-Garcher, Catherine P; Bretillon, Lionel

    2014-01-01

    Diabetic retinopathy and age-related macular degeneration are the leading causes of blindness in Western populations. Although it is a matter of controversy, large-scale population-based studies have reported increased prevalence of age-related macular degeneration in patients with diabetes or diabetic retinopathy. We hypothesized that metabolic syndrome, one of the major risk factors for type 2 diabetes, would represent a favorable environment for the development of choroidal neovascularization, the main complication of age-related macular degeneration. The fructose-fed rat was used as a model for metabolic syndrome in which choroidal neovascularization was induced by laser photocoagulation. Male Brown Norway rats were fed for 1, 3, and 6 months with a standard equilibrated chow diet or a 60%-rich fructose diet (n = 24 per time point). The animals expectedly developed significant body adiposity (+17%), liver steatosis at 3 and 6 months, hyperleptinemia at 1 and 3 months (two-fold increase) and hyperinsulinemia at 3 and 6 months (up to two-fold increase), but remained normoglycemic and normolipemic. The fructose-fed animals exhibited partial loss of rod sensitivity to light stimulus and reduced amplitude of oscillatory potentials at 6 months. Fructose-fed rats developed significantly more choroidal neovascularization at 14 and 21 days post-laser photocoagulation after 1 and 3 months of diet compared to animals fed the control diet. These results were consistent with infiltration/activation of phagocytic cells and up-regulation of pro-angiogenic gene expression such as Vegf and Leptin in the retina. Our data therefore suggested that metabolic syndrome would exacerbate the development of choroidal neovascularization in our experimental model.

  8. Effect of morphine, naloxone and histamine system on water intake in adult male rats.

    Science.gov (United States)

    Eidi, Maryam; Oryan, Shahrbanoo; Eidi, Akram; Sepehrara, Leili

    2003-10-08

    The present study investigated the interaction between histamine and opioid systems on water intake in adult male rats. Intracerebroventricular (i.c.v.) injections were carried out in all experiments. Water intake was measured 1 h after drug injections. Administration of histamine (40-80 microg/rat) and naloxone (0.5-1 microg/rat) increased, while morphine (2.5 microg/rat), pyrilamine (25-50 microg/rat), the histamine H1 receptor antagonist, and ranitidine (10-20 microg/rat), the histamine H2 receptor antagonist, decreased water intake in isolated rats. Blockade of histamine H1 and H2 receptors attenuated the histamine-induced response. Pyrilamine, but not ranitidine, increased the inhibitory effect induced by morphine. Also, pharmacological blockade of histamine H1 and H2 receptors decreased the naloxone-induced effect on water intake. It is concluded that the histaminergic system may have a close interaction with morphine and naloxone on drinking behavior.

  9. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    Science.gov (United States)

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  10. Effect of artemether on hematological parameters of healthy and uninfected adult Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Osonuga IO; Osonuga OA; Osonuga A; Onadeko AA; Osonuga AA

    2012-01-01

    Objective: To evaluate the effect of short term artemether administration on some blood parameters in adult male Wistar rats. Methods: Sixty five albino rats with body weight of 190-220 g were used for the four-phased study. The animals were randomly divided into five groups. The first-four groups of 15 rats were further divided into 3 subgroups of 5 rats. The drug was administered orally at sub-optimal, therapeutic, and high doses of 25, 50 and 75 mg/kg bw, respectively to the rats for 1 day, 2 days and 3 days. Blood samples were collected by cardio-puncture from the rats for hematology at the end of each phase. The last group served as control, and they were given water ad libitum. Results:Artemether caused significant reduction (P<0.05) of the hematological profile of the animals in a dose dependent manner. Discontinuation of the drug use however showed gradual recovery of the depressed indices of the blood parameters. Conclusions:The results suggest that artemether can induce reversible changes in hematological profiles of rats by extension man. This can probably aggravate anemia when artemether is administered to malaria patients. Hence, the study supports the use of the drug with caution especially in patients prone to anemic tendencies.

  11. Influence of endogenous ciliary neurotrophic factor on neural differentiation of adult rat hippocampal progenitors

    Institute of Scientific and Technical Information of China (English)

    Jun Ding; Zhili He; Juan Ruan; Ying Liu; Chengxin Gong; Shenggang Sun; Honghui Chen

    2013-01-01

    Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.

  12. Potential testicular toxicity of sodium nitrate in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Mansour, Ahmed M; Abo-Salem, Osama M; Abd-Ellah, Hala F; Abdel-Naim, Ashraf B

    2010-02-01

    Nitrate is a common contaminant in groundwater aquifers. Current study aimed at evaluating the potential testicular toxicity of sodium nitrate in rats. Sodium nitrate was given orally to rats at doses of 50, 100 or 200 mg/kg/day for 60 consecutive days. Sperm count and motility, daily sperm production and testis weight were significantly decreased specially at high doses. Testicular activity of lactate dehydrogenase-X, glucose-6-phosphate dehydrogenase, and acid phosphatase were inhibited in a dose-related manner. Lipid peroxides and hydrogen peroxide production were significantly increased in all treated animals. This was accompanied by inhibition of testicular activities of superoxide dismutase and glutathione peroxidase. Fifty mg/kg of sodium nitrate did not significantly alter catalase or glutathione reductase activity. Glutathione was significantly decreased by sodium nitrate in a dose-related manner. The decrease in sperm count and motility and daily sperm production was confirmed by histopathological studies which indicated chromatolysis, pyknosis and necrosis in spermatocytes. In conclusion, subchronic exposure of rats to sodium nitrate results in testicular toxicity as evidenced by decreased sperm count and motility, daily sperm production and testis weight, inhibited activity of enzyme markers of spermatogenesis and induction of histopathological changes. These effects are attributed, at least partly, to testicular oxidative stress.

  13. Repair of acutely injured spinal cord through constructing tissue-engineered neural complex in adult rats

    Institute of Scientific and Technical Information of China (English)

    PU Yu; GUO Qing-shan; WANG Ai-min; WU Si-yu; XING Shu-xing; ZHANG Zhong-rong

    2007-01-01

    Objective: To construct tissue-engineered neural complex in vitro and study its effect in repairing acutely injured spinal cord in adult rats. Methods: Neural stem cells were harvested from the spinal cord of embryo rats and propagated in vitro. Then the neural stem cells were seeded into polyglycolic acid scaffolds and co-cultured with extract of embryonic spinal cord in vitro. Immunofluorescence histochemistry and scanning electron microscope were used to observe the microstructure of this complex. Animal model of spine semi-transection was made and tissue-engineered neural complex was implanted by surgical intervention. Six weeks after transplantation, functional evaluation and histochemistry were applied to evaluate the functional recovery and anatomic reconstruction. Results: The tissue-engineered neural complex had a distinct structure, which contained neonatal neurons, oligodendrocytes and astrocytes. After tissue-engineered neural complex was implanted into the injured spinal cord, the cell components such as neurons, astrocytes and oligodendrocytes, could survive and keep on developing. The adult rats suffering from spinal cord injury got an obvious neurological recovery in motor skills. Conclusions: The tissue-engineered neural complex appears to have therapeutic effects on the functional recovery and anatomic reconstruction of the adult rats with spinal cord injury.

  14. Effects of Chronic 5-Bromo-2-Deoxyuridine Adminidtration on Spatial Memory in the Adult Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Hosseini

    2013-05-01

    Full Text Available Background: 5-Bromo-2-deoxyuridine (BrdU has been a principal marker for mitotic cells in studies of adult neurogenesis. The method consists of a pulse injection of BrdU into the intraperitoneal cavity followed by a variable survival time allowing for tracking the divided cells and their progeny. However, such exogenous markers may produce toxic effects. Aim of this study was determined the effects of Brdu on spatial memory in the adult rat. Materials and Methods: 16 Wistar rats were used in this experimental study. The rats were randomly divided into 2 groups (N=8 in each group, as follows: control and Brdu (50 mg/kg. Brdu was administered intraperitoneally for 6 weeks and then animals were used for behavioral testing in the Morris water maze. The data were analyzed with repeated measure’s ANOVA.Results: Our present findings show that there were no differences in the path length, escape latency and swim speed between control and Brdu-administrated groups.Conclusion: This study show that Brdu (exogenic proliferation marker did not has side effects on spatial memory in the adult rats.

  15. Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α, prevents retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Miin Roh

    Full Text Available BACKGROUND: Visual loss in glaucoma is associated with pathological changes in retinal ganglion cell (RGC axons and a slow decline in the RGC population. Age and elevated intraocular pressure (IOP are the main risk factors for glaucomatous loss of vision. Several studies have implicated the proinflammatory cytokine tumor necrosis factor-α (TNF-α as a link between elevated IOP and RGC death, but the cellular source of TNF-α and its causative role in RGC death remain uncertain. Here, using a rat model of glaucoma, we investigated the source of elevated TNF-α and examined whether Etanercept, a TNF-α blocker that is in common clinical use for other indications, is protective against RGC death. METHODOLOGY/PRINCIPAL FINDINGS: Episcleral vein cauterization (EVC caused intraocular pressure (IOP to be elevated for at least 28 days. IOP elevation resulted in a dramatic increase in TNF-α levels within a few days, axonal degeneration, and a 38% loss of RGCs by 4 weeks. Immunostaining coupled with confocal microscopy showed that OHT induced robust induction of TNF-α in Iba-1-positive microglia around the optic nerve head (ONH. Despite persistent elevation of IOP, Etanercept reduced microglial activation, TNF-α levels, axon degeneration in the optic nerve, and the loss of RGCs. CONCLUSIONS/SIGNIFICANCE: Ocular hypertension (OHT triggers an inflammatory response characterized by the appearance of activated microglia around the ONH that express TNF-α. Blocking TNF-α activity with a clinically approved agent inhibits this microglial response and prevents axonal degeneration and loss of RGCs. These findings suggest a new treatment strategy for glaucoma using TNF-α antagonists or suppressors of inflammation.

  16. Cross-sensitization between testosterone and cocaine in adolescent and adult rats.

    Science.gov (United States)

    Engi, Sheila A; Cruz, Fabio C; Crestani, Carlos C; Planeta, Cleopatra S

    2015-11-01

    Cocaine and anabolic-androgenic steroids are substances commonly co-abused. The use of anabolic steroids and cocaine has increased among adolescents. However, few studies investigated the consequences of the interaction between anabolic-androgenic steroids in animals' model of adolescence. We examined the effects of acute and repeated testosterone administration on cocaine-induced locomotor activity in adult and adolescent rats. Rats received ten once-daily subcutaneous (s.c.) injections of testosterone (10mg/kg) or vehicle. Three days after the last testosterone or vehicle injections rats received an intraperitoneal (i.p.) challenge injection of either saline or cocaine (10mg/kg). A different subset of rats was treated with a single injection of testosterone (10mg/kg) or vehicle and three days later was challenged with cocaine (10mg/kg, i.p.) or saline. Immediately after cocaine or saline injections the locomotor activity was recorded during forty minutes. Our results demonstrated that repeated testosterone induced locomotor sensitization to cocaine in adolescent but not adult rats.

  17. Effects of extremely low frequency magnetic field on anxiety level and spatial memory of adult rats

    Institute of Scientific and Technical Information of China (English)

    HE Li-hua; SHI Hong-mei; LIU Tong-tong; XUYing-chun; YE Kang-ping; WANG Sheng

    2011-01-01

    Background As the widespread use of electric devices in modern life,human are exposed to extremely low frequency magnetic fields (ELF MF) much more frequently than ever.Over the past decades,a substantial number of epidemiological and experimental studies have demonstrated that ELF MF (50 Hz) exposure is associated with increased risk of various health effects.The present study examined the effects of chronic exposure to ELF MF on anxiety level and spatial memory of adult rats.Methods The 50-Hz ELF MF was used during the whole experimental procedures and the value of magnetic field (MF)was set to 2 mT.Adult rats were divided randomly to control,MF 1 hour and MF 4 hours group.Anxiety-related behaviors were examined in the open field test and the elevated plus maze; changes in spatial learning and memory were determined in Morris water maze after 4 weeks of daily exposure.Results Rats in MF 4 hours group had increased anxiety-like behaviors with unaltered locomotor activity.In the Morris water maze test,rats had reduced latency to find the hidden platform and improved long-term memory of former location of platform without changes in short-term memory and locomotor activity.Conclusion Chronic ELF MF exposure has anxiogenic effect on rats,and the promoting effects on spatial learning and long-term retention of spatial memory.

  18. Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components.

    Science.gov (United States)

    Baroncelli, Laura; Bonaccorsi, Joyce; Milanese, Marco; Bonifacino, Tiziana; Giribaldi, Francesco; Manno, Ilaria; Cenni, Maria Cristina; Berardi, Nicoletta; Bonanno, Giambattista; Maffei, Lamberto; Sale, Alessandro

    2012-06-01

    Amblyopia is one of the most common forms of visual impairment, arising from an early functional imbalance between the two eyes. It is currently accepted that, due to a lack of neural plasticity,amblyopia is an untreatable pathology in adults. Environmental enrichment (EE) emerged as a strategy highly effective in restoring plasticity in adult animals, eliciting recovery from amblyopia through a reduction of intracortical inhibition. It is unknown whether single EE components are able to promote plasticity in the adult brain, crucial information for designing new protocols of environmental stimulation suitable for amblyopic human subjects. Here, we assessed the effects of enhanced physical exercise,increased social interaction, visual enrichment or perceptual learning on visual function recovery in adult amblyopic rats. We report a complete rescue of both visual acuity and ocular dominance in exercised rats, in animals exposed to visual enrichment and in animals engaged in perceptual learning.These effects were accompanied by a reduced inhibition/excitation balance in the visual cortex. In contrast, we did not detect any sign of recovery in socially enriched rats or in animals practicing a purely associative visual task. These findings could have a bearing in orienting clinical research in the field of amblyopia therapy.

  19. Effect of A2A receptor antagonist (SCH 442416) on the mRNA expression of glutamate aspartate transporter and glutamine synthetase in rat retinal Müller cells under hypoxic conditions in vitro

    OpenAIRE

    Yu, Jun; Huang, Xin; WU, QIRONG; Wang, Jun; Yu, Xiaoyan; Zhao, Peiquan

    2012-01-01

    The purpose of the present study was to investigate the effect of the A2A receptor antagonist (SCH 442416) on the mRNA expression of glutamate aspartate transporter (GLAST) and glutamine synthetase (GS) in rat retinal Müller cells under hypoxic conditions in vitro. Immunofluorescent staining of GS and GFAP was used for the identification of Müller cells. The GLAST and GS mRNA expression of Müller cells treated with 0.1, 1 and 10 μM SCH 442416 under hypoxic conditions was examined by real-time...

  20. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    Science.gov (United States)

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats.

  1. Comparison of airway measurements during influenza-induced tachypnea in infant and adult cotton rats

    Directory of Open Access Journals (Sweden)

    Prince Gregory A

    2009-06-01

    Full Text Available Abstract Background Increased respiratory rate (tachypnea is frequently observed as a clinical sign of influenza pneumonia in pediatric patients admitted to the hospital. We previously demonstrated that influenza infection of adult cotton rats (Sigmodon hispidus also results in tachypnea and wanted to establish whether this clinical sign was observed in infected infant cotton rats. We hypothesized that age-dependent differences in lung mechanics result in differences in ventilatory characteristics following influenza infection. Methods Lung tidal volume, dynamic elastance, resistance, and pleural pressure were measured in a resistance and compliance system on mechanically-ventilated anesthestized young (14–28 day old and adult (6–12 week old cotton rats. Animals at the same age were infected with influenza virus, and breathing rates and other respiratory measurements were recorded using a whole body flow plethysmograph. Results Adult cotton rats had significantly greater tidal volume (TV, and lower resistance and elastance than young animals. To evaluate the impact of this increased lung capacity and stiffening on respiratory disease, young and adult animals were infected intra-nasally with influenza A/Wuhan/359/95. Both age groups had increased respiratory rate and enhanced pause (Penh during infection, suggesting lower airway obstruction. However, in spite of significant tachypnea, the infant (unlike the adult cotton rats maintained the same tidal volume, resulting in an increased minute volume. In addition, the parameters that contribute to Penh were different: while relaxation time between breaths and time of expiration was decreased in both age groups, a disproportionate increase in peak inspiratory and expiratory flow contributed to the increase in Penh in infant animals. Conclusion While respiratory rate is increased in both adult and infant influenza-infected cotton rats, the volume of air exchanged per minute (minute volume is

  2. Induction of abnormal oocyte division under the constant light in the young adult rat

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Fangxiong Shi

    2012-01-01

    In order to study the effect of constant light on the ovary, 12 young adult female rats were exposed to constant light for 37 days and their estrous cycles were recorded by daily examination and the ovaries were examined histologically. The results showed that constant light induced in an abnormal and uncontrolled division of oocytes. In these divided-oocyte follicles (DOFs), two or more divided-oocytes shared one zona pellucida and usually floated freely in the follicular antrum. This fantastic phenomenon was discovered for the first time, and it was different from multioocyte follicles (MOFs) and polyovular follicles (POFs) founded in rats, humans, rabbits, mice and dogs.

  3. Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny.

    Science.gov (United States)

    Garoui, El Mouldi; Troudi, Afef; Fetoui, Hamadi; Soudani, Nejla; Boudawara, Tahia; Zeghal, Najiba

    2012-11-01

    The aim of this study was to evaluate the biochemical changes in cobalt-exposed rats and to investigate the potential role of Tunisian propolis against the cobalt-induced renal damages. Twenty-four pregnant Wistar rats were divided into four groups and were treated as follows: group 1 (control) received distilled water; group 2 received 350 ppm of CoCl(2) in drinking water; group 3 received 350 ppm CoCl(2) in drinking water and a propolis-supplemented diet (1 g/100 g of diet); group 4 received a propolis-supplemented diet (1 g/100 g of diet) without cobalt. In the cobalt group, a significant decrease in body, absolute and relative weights was noted when compared to controls. The administration of cobalt to pregnant rats from the 14th day of pregnancy until day 14 after delivery resulted in an increased level of renal malondialdehyde, a decreased renal content of glutathione and antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione peroxidase in lactating rats and their pups. A statistically significant increase in plasma urea and creatinine serum levels was seen in treated female rats and their pups. Histopathologically, the cobalt-administration induced degenerative changes in the kidney of lactating rats and their pups. When compared with cobalt-treated rats, those receiving the propolis supplementation (along with cobalt-treatment) had lower malondialdehyde levels, higher antioxidant activities and the cobalt-related histopathological changes in the kidneys were at lower severity. Our results suggested that the propolis might be a potential candidate agent against cobalt-induced nephrotoxicity in adult and juvenile rats when administered to female rats during the late pregnancy and the early postnatal period.

  4. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats.

    Science.gov (United States)

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-12-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14-18 months of age) and 14 young adult (2.5-6.5 months of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes.

  5. Resveratrol improves reproductive parameters of adult rats varicocelized in peripuberty.

    Science.gov (United States)

    Mendes, Talita Biude; Paccola, Camila Cicconi; de Oliveira Neves, Flávia Macedo; Simas, Joana Noguères; da Costa Vaz, André; Cabral, Regina Elisabeth L; Vendramini, Vanessa; Miraglia, Sandra Maria

    2016-07-01

    The aim of this study was to investigate the protective action of resveratrol against the reproductive damage caused by left-sided experimental varicocele. There was a reduction of testicular major axis in the varicocele group when compared with the other groups; the testicular volume was reduced in varicocele group in comparison to the sham-control and resveratrol groups. The frequency of morphologically abnormal sperm was higher in varicocele and varicocele treated with resveratrol groups than in sham-control and resveratrol groups. The frequency of sperm with 100% of mitochondrial activity and normal acrosome integrity were lower in varicocele group than in varicocele treated with resveratrol, sham-control and resveratrol groups. Sperm motility was also reduced in varicocele group than in other groups. The sperm DNA fragmentation was higher in varicocele group than in other groups. Testicular levels of malondialdehyde were higher in varicocele and varicocele treated with resveratrol groups. The varicocele and varicocele treated with resveratrol groups had a significantly higher frequency of TUNEL-positive cells than sham-control and resveratrol groups; however, immunolabeling of the testes from varicocele treated with resveratrol group showed a lower number of apoptotic germ cells in comparison with the left testis of rats of the varicocele group. Reproductive alterations produced by varicocele from peripuberty were reduced by resveratrol in adulthood. Resveratrol should be better investigated as an adjuvant in the treatment of varicocele. Daily administration of resveratrol to rats with varicocele from peripuberty improves sperm quality in the adulthood.

  6. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture.

    Science.gov (United States)

    Evans, M S; Collings, M A; Brewer, G J

    1998-01-31

    Methods were recently developed for culturing neurons from adult rat hippocampus using the serum-free medium Neurobasal with B27 supplement. To determine whether adult cultured neurons have normal electrical properties, we studied cultures from rats of three age groups: (1) embryonic; (2) 10-11 months old and (3) 35-36 months old. Neurons had a polarized morphology with a large branching apical dendrite and small basal dendrites. Mean resting potentials were similar in the three age groups. All neurons had nonlinear current-voltage relationships, indicating the presence of voltage-sensitive ion channels. Most neurons had a voltage-sensitive inward current followed by a sustained voltage-sensitive outward current. Tetrodotoxin blocked the inward current, which is likely to be a sodium current. The sustained outward current, which is likely to be a potassium current, reversed at -71 mV. Most neurons exhibited anomalous rectification. Calcium currents were present in both embryonic and adult neurons. Embryonic neurons would sometimes fire multiple action potentials but adult neurons fired only single action potentials. Our results indicate that both embryonic and adult cultured neurons retain a clearly neuronal electrophysiological phenotype in Neurobasal/B27 serum-free medium.

  7. Effect of the antioxidant dibunol on adrenocortical, thyroid, and adenohypopyseal function in adult and old rats

    Energy Technology Data Exchange (ETDEWEB)

    Gorban' , E.N.

    1986-04-01

    This paper studies the effect of dibunol (4-methyl-2,6-di-tert-butylphenol) (D) on the function of the adrenal cortex, thyroid gland, and adenhypophysis, which produces trophic hormones for the other two glands. Experiments were carried out on adult rats. After injection of D concentrations of corticosterone (CS), triodothyronine (T/sub 3/), ACTH, and thyrotrophin (TSH) in the blood plasma and the CS concentration in tssue of the adenohypophysis were determined. It is shown that injection of D caused biphasic changes in the CS concentration in both tissues studied in adult and old animals.

  8. Temporal Expression of Mutant LRRK2 in Adult Rats Impairs Dopamine Reuptake

    Directory of Open Access Journals (Sweden)

    Hongxia Zhou, Cao Huang, Jianbin Tong, Weimin C Hong, Yong-Jian Liu, Xu-Gang Xia

    2011-01-01

    Full Text Available Parkinson's disease (PD results from progressive degeneration of dopaminergic neurons. Most PD cases are sporadic, but some have pathogenic mutation in the individual genes. Mutation of the leucine-rich repeat kinase-2 (LRRK2 gene is associated with familial and sporadic PD, as exemplified by G2019S substitution. While constitutive expression of mutant LRRK2 in transgenic mice fails to induce neuron death, transient expression of the disease gene by viral delivery causes a substantial loss of dopaminergic neurons in mice. To further assess LRRK2 pathogenesis, we created inducible transgenic rats expressing human LRRK2 with G2019S substitution. Temporal overexpression of LRRK2G2019S in adult rats impaired dopamine reuptake by dopamine transporter (DAT and thus enhanced locomotor activity, the phenotypes that were not observed in transgenic rats constitutively expressing the gene throughout life time. Reduced DAT binding activity is an early sign of dopaminergic dysfunction in asymptomatic subjects carrying pathogenic mutation in LRRK2. Our transgenic rats recapitulated the initiation process of dopaminergic dysfunction caused by pathogenic mutation in LRRK2. Inducible transgenic approach uncovered phenotypes that may be obscured by developmental compensation in constitutive transgenic rats. Finding in inducible LRRK2 transgenic rats would guide developing effective strategy in transgenic studies: Inducible expression of transgene may induce greater phenotypes than constitutive gene expression, particularly in rodents with short life time.

  9. Effects of cyclophosphamide on the kaolin consumption (pica behavior) in five strains of adult male rats.

    Science.gov (United States)

    Tohei, Atsushi; Kojima, Shu-ichi; Ikeda, Masashi; Hokao, Ryoji; Shinoda, Motoo

    2011-07-01

    It is known that pica, the consumption of non-nutritive substances such as kaolin, can be induced by administration of toxins or emetic agents in rats. In the present study, we examined the effects of intraperitoneal (i.p.) administration of cyclophosphamide on pica behavior and on the concentration of 5-hydroxyindoleacetic acids (5HIAA) in cerebrospinal fluid (CSF) in the following five strains of adult male rats: Sprague Dawley (SD), Wistar, Fischer 344 (F344), Wistar-Imamichi (WI) and Long Evans (LE). Cyclophosphamide (25 mg or 50 mg/kg) was injected (i.p.) into the rats and kaolin and food intake were measured at 24 hr after injection. The animals were anesthetized with urethane (1 g/kg) at 3 hr after injection of cyclophosphamide, and CSF was collected from the cisterna magna. WI and LE rats clearly showed pica behavior as compared with the other strains. In LE rats, the concentration of 5HIAA in CSF also increased in a dose-dependent manner of cyclophosphamide. The pretreatment with ondansetron (5-HT(3) antagonist) restored both changes (kaolin consumption and 5HIAA levels) induced by cyclophosphamide. These results suggest that the LE rat is sensitive to cyclophosphamide, that pica induced by cyclophosphamide mimics many aspects of emesis including the serotonergic response in the central nervous system and that use of the pica model would be a practical method for evaluating the effects of antiemetic drugs in addition to the mechanism of emesis.

  10. Impairment in Spatial Memory in adult Rats following developmental Low Lead Exposure

    Directory of Open Access Journals (Sweden)

    Rajashekar Rao Barkur

    2012-11-01

    Full Text Available The present study was aimed to investigate the effect of environmentally relevant levels of lead exposure during gestational and early postnatal period on hippocampal dependent spatial memory in rats during adulthood. The pregnant rats were allowed to drink either normal water (control group or 0.2% lead acetate solution (Leadtreated group during pregnancy and lactation. Thus rats pups of lead treated group where exposed to lead indirectly through their mothers during this period. At weaning pups of lead treated group were allowed to drink normal water till they attain the adult hood. Blood lead level was estimated on postnatal day 22 and 120. Birth weight and weight gain of the rat pups as they grew were measured at regular intervals. Both the control and lead treated groups of rats were subjected to water maze test on postnatal day 30 and 120. Results showed that lead treatment had no effect on birth weight or weight gain. Blood lead level on postnatal day 22 was significantly high in treated group compared to the control group and it was normalized by end of four months. The rats born to lead treated mothers showed impaired in spatial memory during water maze test both on postnatal day 36 and 126. These data suggests that exposure to environmentally relevant levels of lead during intrauterine and early postnatal period of brain development causes impairment in spatial memory not only during infancy but also lasts till adulthood.

  11. Adolescent social defeat disturbs adult aggression-related impulsivity in wild-type rats.

    Science.gov (United States)

    Coppens, Caroline M; Coolen, Alex; de Boer, Sietse F; Koolhaas, Jaap M

    2014-10-01

    Adolescence is generally considered as a developmental period during which adverse social experiences may have lasting consequences in terms of an increased vulnerability to affective disorders. This study aimed at determining the individual susceptibility to adolescent social stress using a rat model. We used rats of the Wild-type Groningen strain, which are characterized by a broad variation in adult levels of aggression and impulsivity. We hypothesized that experience of social defeat in adolescence results in heightened aggression and impulsivity levels in adulthood. In contrast to our expectation, adolescent social defeat did not lead to a difference in the average adult level of aggression and impulsivity, but the significant correlation between offensive aggression and impulsivity found in control animals was not present in animals defeated during adolescence.

  12. Immunohistochemical localization of glutamate transporter EAAC1 in the brainstem of adult rat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fu-xing; LIU Tao; ZHAO Jing-wei; LI Jin-lian; DONG Yu-lin; LI Ji-shuo

    2001-01-01

    Objective: To observe the distribution of EAAC1, a subtype of glutamate transporters, in the brainstem of adult rat. Methods: Immunocytochemical staining with avidin-biotin complex (ABC) method was employed. Results:EAAC1 was widely distributed throughout the brainstem. In many regions, the EAAC1-like immunoreactivity was primarily distributed in the neuropil. Cell body staining was observed in the prepositus hypoglossal nucleus, external cortex of the inferior colliculus, red nucleus, substantia nigra, mesencephalic raphe nuclei, ventral tegmental nucleus, superior olivary complex, nucleus of the trapezoid body, cochlear nucleus, sensory trigeminal complex, Barrington's nucleus,trigeminal motor nucleus, parabrachial nuclei, dorsal nucleus of vagus, hypoglossal nucleus, locus coeruleus, lateral and superior vestibular nuclei, lateral paragigantocellular nucleus and dorsal paragigantocellular nucleus. Conclusion: Glutamate transporter EAAC 1 is widely distributed throughout the brainstem of adult rat, which may play an important role in excitatory activities of the neurons induced by glutamate.

  13. Toxicity Induced after Subchronic Administration of the Synthetic Food Dye Tartrazine in Adult Rats, Role of Oxidative Stress

    OpenAIRE

    Narges El Golli; Ines Bini-Dhouib; Aicha Jrad; Imene Boudali; Basma Nasri; Nadia Belhadjhmida; Saloua El Fazaa

    2016-01-01

    The present study was conducted to evaluate the toxic potential of tartrazine, a food color, in different tissues in adult rat: blood, liver, kidneys, and spleen. Tartrazine was administered orally at a dose of 300 mg/kg of body weight to adult male Wistar rats during a period of 30 days. Tartrazine treatment led to an increase in platelets count, a reduction in peripheral lymphocytes and in spleen T CD8-lymphocytes. Furthermore, tartrazine increased the activities of hepatocellular enzymes a...

  14. Differentiation of endogenous neural precursors following spinal cord injury in adult rats

    Institute of Scientific and Technical Information of China (English)

    Bin Zhao; Hua Han; Shuanke Wang; Bingren Gao; Zhengyi Sun

    2008-01-01

    BACKGROUND:Studies have shown that cell death can activate proliferation of endogenous neural stem cells and promote newly generated cells to migrate to a lesion site.OBJECTIVE:To observe regeneration and differentiation of neural cells following spinal cord injury in adult rats and to quantitatively analyze the newly differentiated cells.DESIGN,TIME AND SETTING:A cell biology experiment was performed at the Institute of Orthopedics and Medical Experimental Center,Lanzhou University.between August 2005 and October 2007.MATERIALS:Fifty adult,Wistar rats of both sexes;5-bromodeoxyuridine(BrdU,Sigma,USA);antibodies against neuron-specific enolase,glial fibrillary acidic protein,and myelin basic protein(Chemicon,USA).METHODS:Twenty-five rats were assigned to the spinal cord injury group and received a spinal cord contusion injury.Materials were obtained at day 1,3,7,15,and 29 after injury,with 5 rats for each time point.Twenty-five rats were sham-treated by removing the lamina of the vertebral arch without performing a contusion.MAIN OUTCOME MEASURES:The phenotype of BrdU-labeled cells,i.e.,expression and distribution of surface markers for neurons(neuron-specific enolase),astrocytes(glial fibrillary acidic protein),and oligodendrocytes(myelin basic protein),were identified with immunofluorescence double-labeling.Confocal microscopy was used to detect double-labeled cells by immunofluorescence.Quantitative analysis of newly generated cells was performed with stereological counting methods.RESULTS:There was significant cell production and differentiation after adult rat spinal cord injury.The quantity of newly-generated BrdU-labeled cells in the spinal cord lesion was 75-fold greater than in the corresponding area of control animals.Endogenous neural precursor cells differentiated into astrocytes and oligodendrocytes,however spontaneous neuronal difierentiation was not detected.Between 7 and 29 d after spinal cord injury,newly generated cells expressed increasingly more

  15. Mechanisms of Retinal Damage from Chronic Laser Radiation.

    Science.gov (United States)

    1981-07-01

    W.K.: The effects of the pineal gland on light-induced retinal photoreceptor damage. Exp. Eye Res. 28:37-44, 1979. 17. Hollyfield, Joe G., Rayborn...co-iI workers in 196612. Noell reported that irreversible retinal damage occurs in normal laboratory rats exposed continuously to an illuminated...light than with either red or blue light. In fact, the action spectrum of the damage paralleled the action spectrum of the ERG. The iris of pigmented rats

  16. Neurones in the adult rat anterior medullary velum.

    Science.gov (United States)

    Ibrahim, M; Menoud, P A; Celio, M R

    2000-03-27

    The presence of neurones in the rat anterior medullary velum (AMV) has been investigated by using antibodies to the calcium-binding proteins, parvalbumin (PV), calretinin (CR), and calbindin-D28k (CB). Disparate populations of mainly GABAergic neurones were located in the rostral and caudal regions of the AMV. The rostral region of the AMV was characterised by GABAergic CR-labelled or PV-labelled neurones. CR-labelled neurones were bipolar or multipolar with round to ovoid somata (diameters between 8 and 12 microm), and rostrocaudally running dendrites forming a network. PV-labelled neurones had round somata (diameters between 6 and 10 microm) and were bi-tufted, with beaded dendrites. Both CR-labelled and PV-labelled dendrites formed punctate pericellular associations with unlabelled somatic profiles. In the caudal region of the AMV, PV-labelled neurones were GABAergic, multipolar cells, having round somata (diameters between 9 and 12 microm), with either beaded or nonbeaded dendrites forming a network of interconnecting dendrites. PV-labelled pericellular associations were made around both PV-labelled and unlabelled somatic profiles. CR labelled unipolar brush cells (UBCs) were not GABAergic. UBCs were characterised by a round to oval somata (10-15 microm in diameter) from which a single primary dendrite emerged to form a distal expansion having small terminal dendrites. From the distal expansion, there also appeared to be CR-labelled processes emanating and extending for up to 250 microm. CB occasionally labelled "Purkinje-like cells" (PLCs). The rat AMV is a more complex structure than first envisaged with the presence of predominantly inhibitory neurones expressing different calcium-binding proteins. Functional and anatomic aspects of this circuitry are further discussed.

  17. Effect of Camphor on Pituitary-Gonadal Hormonal Axis and Oogenesis in Adult Female Rats

    OpenAIRE

    Habibollah Johari; Amir Ashkan Mahjoor; Siyamak Fallahi; Hossein Kargar Jahromi; Maryam Abedini; Mohammad Ali Poor Danesh; Zahra Zamani

    2013-01-01

    Background & Objective: Camphor stimulates the nervous system and the circulatory system, reduces lactation, and prevents conception and embryo embedding. We investigated the effects of camphor on the pituitary-gonadal hormonal axis and concentration of steroidal hormones.   Materials & Methods: The parameters investigated were concentrations of LH, FSH, estrogen, progesterone, and testosterone. Forty adult female rats at a mean weight of 180 ± 20 grams were divided into five groups. Camphor ...

  18. Selection of medium for serum-free primary culture of adult rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Miyazaki,Masahiro

    1990-02-01

    Full Text Available To select a suitable medium for serum-free primary culture of adult rat hepatocytes, ten commercially-available synthetic media were compared for their ability to maintain the cells under serum-free and serum-supplemented conditions with special reference to attachment, survival and albumin secretion. It was found that Williams' medium E and DM-160 medium were the best among the ten media for maintaining hepatocytes under serum-free conditions in primary culture.

  19. Use of the light/dark test for anxiety in adult and adolescent male rats.

    Science.gov (United States)

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence.

  20. Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhiyan Lu; Jinwei Wu; Guangyuan Cheng; Jianying Tian; Zeqing Lu; Yongyi Bi

    2014-01-01

    Previous studies have found that methylmercury can damage hippocampal neurons and accord-ingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmer-cury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride.

  1. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex.

    Science.gov (United States)

    Guasti, Leonardo; Paul, Alex; Laufer, Ed; King, Peter

    2011-04-10

    Sonic hedgehog signaling was recently demonstrated to play an important role in murine adrenal cortex development. The organization of the rat adrenal differs from that of the mouse, with the zona glomerulosa and zona fasciculata separated by an undifferentiated zone in the rat, but not in the mouse. In the present study we aimed to determine the mRNA expression patterns of Sonic hedgehog and the hedgehog signaling pathway components Patched-1 and Gli1 in the developing and adult rat adrenal. Sonic hedgehog expression was detected at the periphery of the cortex in cells lacking CYP11B1 and CYP11B2 expression, while signal-receiving cells were localized in the overlying capsule mesenchyme. Using combined in situ hybridization and immunohistochemistry we found that the cells expressing Sonic hedgehog lie between the CYP11B2 and CYP11B1 layers, and thus Sonic hedgehog expression defines one cell population of the undifferentiated zone.

  2. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  3. Qualitative and quantitative analysis of bones in adult rats by repeated intraperitoneal administration of paclitaxel (taxol) using radioisotope EDXRF technique

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Y. E-mail: yozdemir25@yahoo.com; Iyiguen, Ibrahim; Durak, Ridvan

    2003-05-15

    Energy dispersive X-ray fluorescence analysis of right back leg bone samples taken from adult female rats administered paclitaxel (taxol) was carried out using standard addition method. Because qualitative and quantitative data analysis of rat bone samples is not found in the literature, comparison was not made with other experimental results. Our experimental results are presented and discussed in this study.

  4. Methods to evaluate functional nerve recovery in adult rats : walking track analysis, video analysis and the withdrawal reflex

    NARCIS (Netherlands)

    Dijkstra, [No Value; Meek, MF; Robinson, PH; Gramsbergen, A

    2000-01-01

    The aim of this study was to compare different methods for the evaluation of functional nerve recovery. Three groups of adult male Wistar rats were studied. In group A, a 12-mm gap between nerve ends was bridged by an autologous nerve graft; in rats of group B we performed a crush lesion of the scia

  5. A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat

    DEFF Research Database (Denmark)

    Berg, Rune W; Chen, Ming-Teh; Huang, Hsueh-Chen;

    2009-01-01

    Extracellular recordings from single units in the brain, for example the neocortex, have proven feasible in moving, awake rats, but have not yet been possible in the spinal cord. Single-unit activity during locomotor-like activity in reduced preparations from adult cats and rats have provided...

  6. Behavioral Differences Between Late Preweanling and Adult Female Sprague-Dawley Rat Exploration of Animate and Inanimate Stimuli and Food

    OpenAIRE

    Smith, Kiersten S.; Morrell, Joan I.

    2010-01-01

    The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied ...

  7. Cardiac and plasma lipid profiles in response to acute hypoxia in neonatal and young adult rats

    Directory of Open Access Journals (Sweden)

    Raff Hershel

    2010-01-01

    Full Text Available Abstract Background The physiological and biochemical responses to acute hypoxia have not been fully characterized in neonates. Fatty acids and lipids play an important role in most aspects of cardiac function. Methods We performed comprehensive lipid profiling analysis to survey the changes that occur in heart tissue and plasma of neonatal and young adult rats exposed to hypoxia for 2 h, and following 2 h of recovery from hypoxia. Results Cardiac and plasma concentrations of short-chain acylcarnitines, and most plasma long-chain fatty acids, were decreased in hypoxic neonates. Following recovery from hypoxia, concentrations of propionylcarnitine, palmitoylcarnitine, stearoylcarnitine were increased in neonatal hearts, while oleylcarnitine and linoleylcarnitine concentrations were increased in neonatal plasma. The concentrations of long-chain fatty acids and long-chain acylcarnitines were increased in the hearts and plasma of hypoxic young adult rats; these metabolites returned to baseline values following recovery from hypoxia. Conclusion There are differential effects of acute hypoxia on cardiac and plasma lipid profiles with maturation from the neonate to the young adult rat. Changes to neonatal cardiac and plasma lipid profiles during hypoxia likely allowed for greater metabolic and physiologic flexibility and increased chances for survival. Persistent alterations in the neonatal cardiac lipid profile following recovery from hypoxia may play a role in the development of rhythm disturbances.

  8. Effects of estradiol and methoxychlor on Leydig cell regeneration in the adult rat testis.

    Science.gov (United States)

    Chen, Bingbing; Chen, Dongxin; Jiang, Zheli; Li, Jingyang; Liu, Shiwen; Dong, Yaoyao; Yao, Wenwen; Akingbemi, Benson; Ge, Renshan; Li, Xiaokun

    2014-05-06

    The objective of the present study is to determine whether methoxychlor (MXC) exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2). Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS) to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control), 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7-15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms.

  9. Effects of Estradiol and Methoxychlor on Leydig Cell Regeneration in the Adult Rat Testis

    Directory of Open Access Journals (Sweden)

    Bingbing Chen

    2014-05-01

    Full Text Available The objective of the present study is to determine whether methoxychlor (MXC exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2. Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control, 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7–15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms.

  10. Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Ribeiro, Karine F; Petronilho, Fabrícia; Vuolo, Francieli; Colpo, Gabriela D; Pfaffenseller, Bianca; Kapczinski, Flávio; Dal-Pizzol, Felipe; Quevedo, João

    2013-04-01

    A growing body of evidence is pointing toward an association between immune molecules, as well brain-derived neurotrophic factor (BDNF) and the depression. The present study was aimed to evaluate the behavioral and molecular effects of the antidepressant imipramine in maternally deprived adult rats. To this aim, maternally deprived and non-deprived (control group) male rats were treated with imipramine (30mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming test. In addition to this, IL-10, TNF-α and IL-1β cytokines were assessed in the serum and cerebrospinal fluid (CSF). In addition, BDNF protein levels were assessed in the prefrontal cortex, hippocampus and amygdala. In deprived rats treated with saline was observed an increase on immobility time, compared with non-deprived rats treated with imipramine (pimipramine treatment reversed the effects of maternal deprivation on BDNF and cytokines levels (pimipramine, it is suggested that classic antidepressants could exert their effects by modulating the immune system.

  11. Repeated-dose liver micronucleus test of 4,4'-methylenedianiline using young adult rats.

    Science.gov (United States)

    Sanada, Hisakazu; Koyama, Naomi; Wako, Yumi; Kawasako, Kazufumi; Hamada, Shuichi

    2015-03-01

    Liver micronucleus (MN) tests using partial hepatectomized rats or juvenile rats have been shown to be useful for the detection of hepatic carcinogens. Moreover, Narumi et al. established the repeated-dose liver MN test using young adult rats for integration into general toxicity. In the present study, in order to examine the usefulness of the repeated-dose liver MN test, we investigated MN induction with a 14 or 28 day treatment protocol using young adult rats treated with 4,4′-methylenedianiline (MDA), a known hepatic carcinogen. MDA dose-dependently induced micronuclei in hepatocytes in 14- and 28-day repeated-dose tests. However, although statistically significant increases in micronuclei were observed in bone marrow cells at two dose levels in the 14-day study, there was no dose response and no increases in micronuclei in the 28-day study. These results indicate that the evaluation of genotoxic effects using hepatocytes is effective in cases where chromosomal aberrations are not clearly detectable in bone marrow cells. Moreover, the repeated-dose liver MN test allows evaluation at a dose below the maximum tolerable dose, which is required for the conventional MN test because micronucleated hepatocytes accumulate. The repeated-dose liver MN test employed in the present study can be integrated into the spectrum of general toxicity tests without further procedural modifications.

  12. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats

    Science.gov (United States)

    Soliz, Jorge; Tam, Rose; Kinkead, Richard

    2016-01-01

    Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders. PMID:27729873

  13. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats.

    Science.gov (United States)

    Kirschner, P B; Henshaw, R; Weise, J; Trubetskoy, V; Finklestein, S; Schulz, J B; Beal, M F

    1995-07-01

    Basic fibroblast growth factor (bFGF) is a polypeptide growth factor that promotes neuronal survival. We recently found that systemic administration of bFGF protects against both excitotoxicity and hypoxia-ischemia in neonatal animals. In the present study, we examined whether systemically administered bFGF could prevent neuronal death induced by intrastriatal injection of N-methyl-D-aspartate (NMDA) or chemical hypoxia induced by intrastriatal injection of malonate in adult rats and 1-methyl-4-phenylpyridinium (MPP+) in neonatal rats. Systemic administration of bFGF (100 micrograms/kg) for three doses both before and after intrastriatal injection of either NMDA or malonate in adult rats produced a significant neuroprotective effect. In neonatal rats, bFGF produced dose-dependent significant neuroprotective effects against MPP+ neurotoxicity, with a maximal protection of approximately 50% seen with either a single dose of bFGF of 300 micrograms/kg or three doses of 100 micrograms/kg. These results show that systemic administration of bFGF is effective in preventing neuronal injury under circumstances in which the blood-brain barrier may be compromised, raising the possibility that this strategy could be effective in stroke.

  14. Histological effects of oral administration of nutmeg on the kidneys of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-01-01

    Full Text Available Aims: The effects of oral administration of nutmeg commonly used as spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the kidneys of adult Wistar rats were carefully studied. Material and Methods: Rats of both sexes (n = 24, with average weight of 220g were randomly assigned into two treatments (A & B of (n=16 and Control (c (n=8 groups. The rats in the treatment groups (A & B received 0.1g (500mg/kg body weight and 0.2g (1000mg/kg body weight of nutmeg thoroughly mixed with the feeds respectively on a daily basis for forty-two days. The control group (c received equal amount of feeds daily without nutmeg added for forty-two days. The growers′ mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and the rats were given water liberally. The rats were sacrificed by cervical dislocation on the forty-third day of the experiment. The kidneys were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological study after hematoxylin and eosin method. Result: The histological findings in the treated sections of the kidneys showed distortion of the renal cortical structures, vacuolations appearing in the stroma and some degree of cellular necrosis, with degenerative and atrophic changes when compared to the control group. Conclusion: These findings indicate that oral administration of nutmeg may have some deleterious effects on the kidneys of adult Wistar rats at higher doses and by extension may affect its excretory and other metabolic functions. It is recommended that caution should therefore be advocated in the intake of this product and further studies be carried out to examine these findings.

  15. Histological effects of oral administration of nutmeg on the kidneys of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-04-01

    Full Text Available Aims: The effects of oral administration of nutmeg commonly used as spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the kidneys of adult Wistar rats were carefully studied. Material and Methods: Rats of both sexes (n = 24, with average weight of 220g were randomly assigned into two treatments (A & B of (n=16 and Control (c (n=8 groups. The rats in the treatment groups (A & B received 0.1g (500mg/kg body weight and 0.2g (1000mg/kg body weight of nutmeg thoroughly mixed with the feeds respectively on a daily basis for forty-two days. The control group (c received equal amount of feeds daily without nutmeg added for forty-two days. The growers’ mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and the rats were given water liberally. The rats were sacrificed by cervical dislocation on the forty-third day of the experiment. The kidneys were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological study after hematoxylin and eosin method. Result: The histological findings in the treated sections of the kidneys showed distortion of the renal cortical structures, vacuolations appearing in the stroma and some degree of cellular necrosis, with degenerative and atrophic changes when compared to the control group. Conclusion: These findings indicate that oral administration of nutmeg may have some deleterious effects on the kidneys of adult Wistar rats at higher doses and by extension may affect its excretory and other metabolic functions. It is recommended that caution should therefore be advocated in the intake of this product and further studies be carried out to examine these findings.

  16. Therapeutic effect of the NMDA antagonist MK-801 on low-level laser induced retinal injury

    Science.gov (United States)

    Yan, W.-H.; Wu, J.; Chen, P.; Dou, J.-T.; Pan, C.-Y.; Mu, Y.-M.; Lu, J.-M.

    2009-03-01

    The aim of this article was to explore the mechanism of injury in rat retina after constant low-level helium-neon (He-Ne) laser exposure and therapeutic effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, on laser-induced retinal injury. He-Ne laser lesions were created in the central retina of adult Wistar Kyoto rats and were followed immediately by intraperitoneal injection of MK-801 (2 mg/kg) or saline, macroscopical and microscopical lesion were observed by funduscope and light microscope. Ultrastructural changes of the degenerating cells were examined by electron microscopy. Photoreceptor apoptosis was evaluated by TdT-mediated dUTP nick end-labeling (TUNEL). mRNA levels were measured by in situ hybridization and NMDA receptor expression was determined by immunohistochemistry. Laser induced damage was histologically quantified by image-analysis morphometry. Electroretinograms (ERGs) were recorded at different time point after the cessation of exposure to constant irradiation. There was no visible bleeding, exudation or necrosis under funduscope. TUNEL and electron microscopy showed photoreceptor apoptosis after irradiation. MK-801-treated animals had significantly fewer TUNEL-positive cells in the photoreceptors than saline-treated animals after exposure to laser. In situ hybridization (ISH) showed that the NMDAR mRNA level of MK-801-treated rats decreased in the inner plexiform layer 6 h after the cessation of exposure to constant irradiation when compared with that of saline-treated rats. So did Immunohistochemistry (IHC). Electroretinogram showed that b-wave amplitudes of MK-801-treated group were higher than that of saline-treated group after laser exposure. These findings suggest that Low level laser may cause the retinal pathological changes under given conditions. High expression of NMDAR is one of the possible mechanisms causing experimental retinal laser injury of rats. MK-801 exhibits the therapeutic effect due to promote the

  17. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats.

    Science.gov (United States)

    Montandon, Gaspard; Horner, Richard L; Kinkead, Richard; Bairam, Aida

    2009-11-15

    Caffeine is commonly used clinically to treat apnoeas and unstable breathing associated with premature birth. Caffeine antagonizes adenosine receptors and acts as an efficient respiratory stimulant in neonates. Owing to its persistent effects on adenosine receptor expression in the brain, neonatal caffeine administration also has significant effects on maturation of the respiratory control system. However, since adenosine receptors are critically involved in sleep regulation, and sleep also modulates breathing, we tested the hypothesis that neonatal caffeine treatment disrupts regulation of sleep and breathing in the adult rat. Neonatal caffeine treatment (15 mg kg(-1) day(-1)) was administered from postnatal days 3-12. At adulthood (8-10 weeks old), sleep and breathing were measured with a telemetry system and whole-body plethysmography respectively. In adult rats treated with caffeine during the neonatal period, sleep time was reduced, sleep onset latency was increased, and non-rapid eye movement (non-REM) sleep was fragmented compared to controls. Ventilation at rest was higher in caffeine-treated adult rats compared to controls across sleep/wake states. Hypercapnic ventilatory responses were significantly reduced in caffeine-treated rats compared to control rats across sleep/wake states. Additional experiments in adult anaesthetized rats showed that at similar levels of arterial blood gases, phrenic nerve activity was enhanced in caffeine-treated rats. This study demonstrates that administration of caffeine in the neonatal period alters respiratory control system activity in awake and sleeping rats, as well as in the anaesthetized rats, and also has persistent disrupting effects on sleep that are apparent in adult rats.

  18. Rax: Developmental and Daily Expression Patterns in the Rat Pineal Gland and Retina

    OpenAIRE

    Rohde, Kristian; Klein, David C.; Møller, Morten; Rath, Martin F.

    2011-01-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day (E) 18, whereas Rax expression in the pineal is relatively delayed and not detectable until E20. In both tissues, Rax is e...

  19. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    Science.gov (United States)

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults.

  20. The time course of denervation-induced changes is similar in soleus muscles of adult and old rats.

    NARCIS (Netherlands)

    Degens, H.; Kosar, S.N.; Hopman, M.T.E.; Haan, A. de

    2008-01-01

    Muscle denervation is accompanied by atrophy and a decline in oxidative capacity. We investigated whether the time course of adaptations following denervation of the soleus muscle differs in adult (5 months old) and older adult (25 months old) rats. We denervated the soleus muscle of the left leg, w

  1. A SELF-PRIMING EFFECT OF LHRH ON LH SECRETION IN DISPERSED ANTERIOR PITUITARY CELLS OF ADULT MALE RAT

    Institute of Scientific and Technical Information of China (English)

    QUZhi-Chao; GUOJing; GUOJian

    1989-01-01

    LHRH self-priming effect is simply defmed as an enhancement of LH response to LHRH, i. e., a second challenge with LHRH elicits more LH secretion as compared to the first challenge. The present study is to observe whether this phenomenon exists in perfused anterior pituitary (AP) cells of adult male rat. Dispersed AP cells of adult SD

  2. ZP2307, a novel cyclic PTH(1-17) analog, reversed established osteopenia in adult ovariectomized rats

    DEFF Research Database (Denmark)

    Vääräniemi, Jukka; Morko, Jukka; Peng, ZhiQi

    -17) analog, ZP2307, with a high efficacy and potency on the human PTH receptor in vitro. This study characterized the effects of intermittent treatment with ZP2307 on established osteopenia in adult ovariectomized (OVX) rats. Female Sprague-Dawley rats were ovariectomized at 6 months of age. After 6 weeks......-34). This study demonstrated that the intermittent treatment with ZP2307, the novel cyclic PTH(1-17) analog, is effective in reversing the established osteopenia in adult OVX rats to normal conditions. Due to its broad dose response relationship, ZP2307 may have a wider therapeutic window and a better safety...

  3. Effect of glial cell line-derived neurotrophic factor on peripheral nerve regeneration in adult rat

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe-yu; LI Jian-hong; ZHENG Xing-dong; LU Chang-lin; HE Cheng

    2001-01-01

    Objective: To study the effect of glial cell line-derived neurotrophic (GDNF) on adult peripheral nerve regeneration. Methods: Transectioned sciatic nerve in adult rats was sutured into silicone channel. GDNF or SAL solution was injected into the silicone channels during operation. Four weeks later, the effect of GDNF on axonal regeneration was evaluated by degenerative neurofiber staining and HRP retrograde tracing. Results: Compared with SAL group, the percentage of degenerative neurofiber areas decreased from 17.3% to 1.9% ( P<0.01 ) and the ratio of labeled spinal somas number was significantly increased from 43.5% to 68.3% ( P<0.01 ) in GDNF group. Conclusion: The results suggest that exogenous GDNF can obviously enhance adult peripheral nerve regeneration.

  4. Effects of Infantile Repeated Hyperglycemia on Behavioral Alterations in Adult Rats

    Directory of Open Access Journals (Sweden)

    Malihe Moghadami

    2012-09-01

    Full Text Available Anxiety symptoms have been reported to be present in many patients with diabetes mellitus. However, little is known about the effects of hyperglycemia in critical periods of the central nervous system development. We assessed locomotive, exploratory, and anxiety behaviors in adult rats that remained from infantile repeated hyperglycemia by the open field and elevated plus maze tests. Our findings showed significant hypo activity, reduced locomotive/exploratory activities, increased fear related behaviors, and anxiety state between hyperglycemic and control adult males and the same differences were observed among females. In addition, no significant behavioral alterations between male and female animals were observed. This study determined that repeated increments in daily blood sugar levels in newborns may affect neuronal functions and provide behavioral abnormalities in adults.

  5. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert

    2003-01-01

    The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain...... days after irradiation, the animals with blocked neurogenesis performed poorer than controls in a hippocampus-dependent place-recognition task, indicating that the presence of newly generated neurons may be necessary for the normal function of this brain area. The animals were never impaired...... irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21...

  6. Effect of maternal obesity on diabetes development in adult rat offspring.

    Science.gov (United States)

    de Campos, Kleber Eduardo; Sinzato, Yuri Karen; Pimenta, Walkyria de Paula; Rudge, Marilza Vieira Cunha; Damasceno, Débora Cristina

    2007-10-27

    This study aimed to evaluate whether maternal obesity leads to the onset of diabetes in adult Wistar rats offspring. MSG solution neonatally administration induced obesity in rats (F(1)MSG group, n=30); and saline solution was also administrated to control rats (F(1)CON group, n=13). In 3rd month of age, both control and MSG groups were mated for offspring (generation F(2)), named as F(2)CON, n=28 and F(2)MSG groups, n=15; and so both generations were studied until 7th month of life. Lee Index was measured for experimental obesity validation from 5th to 7th month. Glycemia was weekly determined during pregnancy and monthly from 3rd to 7th month. In the end of experimental period all rats were submitted to oral glucose tolerance test (OGTT), with estimation of total area under the curve (AUC); and insulin tolerance test (ITT). Rats were then anesthetized and killed. Data were statistically analyzed with significance level of pgenerations showed significant maternal interference in control and MSG groups. OGTT analysis showed higher glycemia in obese rats (F(1)MSG) and their offspring (F(2)MSG) as compared to their respective controls; and MSG groups increased AUC from OGTT. As regards ITT, F(2)MSG showed higher glycemia at 30 and 120 min, suggesting a delay of insulin action decreasing. Although glucose intolerance and insulin resistance clinical conditions represent as a factors for type 2 Diabetes mellitus development, this experimental model proposal was not efficient to induce type 2 Diabetes mellitus, but for obesity developing, glucose intolerance and insulin resistance in successive generations of rats.

  7. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    Energy Technology Data Exchange (ETDEWEB)

    Zangar, R.C. (Oregon State Univ., Corvallis (United States) Pacific Northwest Laboratories, Richland, WA (United States)); Springer, D.L. (Pacific Northwest Laboratories, Richland, WA (United States)); Buhler, D.R. (Oregon State Univ., Corvallis (United States))

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  8. Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex.

    Science.gov (United States)

    Mainardi, Marco; Landi, Silvia; Gianfranceschi, Laura; Baldini, Sara; De Pasquale, Roberto; Berardi, Nicoletta; Maffei, Lamberto; Caleo, Matteo

    2010-11-01

    It has been demonstrated that the complex sensorimotor and social stimulation achieved by rearing animals in an enriched environment (EE) can reinstate juvenile-like plasticity in the adult cortex. However, it is not known whether EE can affect thalamocortical transmission. Here, we recorded in vivo field potentials from the visual cortex evoked by electrical stimulation of the dorsal lateral geniculate nucleus (dLGN) in anesthetized rats. We found that a period of EE during adulthood shifted the input-output curves and increased paired-pulse depression, suggesting an enhanced synaptic strength at thalamocortical terminals. Accordingly, EE animals showed an increased expression of the vesicular glutamate transporter 2 (vGluT-2) in geniculocortical afferents to layer IV. Rats reared in EE also showed an enhancement of thalamocortical long-term potentiation (LTP) triggered by theta-burst stimulation (TBS) of the dLGN. To monitor the functional consequences of increased LTP in EE rats, we recorded visual evoked potentials (VEPs) before and after application of TBS to the geniculocortical pathway. We found that responses to visual stimulation were enhanced across a range of contrasts in EE animals. This was accompanied by an up-regulation of the intracortical excitatory synaptic marker vGluT-1 and a decrease in the expression of the vesicular GABA transporter (vGAT), indicating a shift in the excitation/inhibition ratio. Thus, in the adult rat, EE enhances synaptic strength and plasticity of the thalamocortical pathway associated with specific changes in glutamatergic and GABAergic neurotransmission. These data provide novel insights into the mechanisms by which EE shapes the adult brain.

  9. Distinct Testicular Steroidogenic Response Mechanisms Between Neonatal and Adult Heat-Acclimated Male Rats

    Directory of Open Access Journals (Sweden)

    Beata Kurowicka

    2015-03-01

    Full Text Available Background: In comparison to short-term gonad heat exposure, little is known about the molecular mechanisms that regulate testicular steroidogenesis during long-term whole body heat acclimation. Material and Methods: Testicular slices from neonatal (NHA and adult (AHA heat-acclimated Wistar rats were analysed in vitro to assess the mRNA expression and enzymatic activity of steroidogenic enzymes under basal and luteinising hormone (LH or prolactin (PRL stimulated conditions compared with control rats (CR. Furthermore, a de-acclimated group (DA was created by transferring adult NHA rats to control conditions. Results: Heat acclimation significantly increased plasma LH levels in the AHA group and LH and PRL in the NHA group compared with the CR group; however, after heat acclimation, the T and E2 levels did not differ from the control levels. All heat-acclimated groups showed high basal intra-testicular steroid production in vitro. Moreover, basal Cyp11a1 and Hsd3b1 levels were upregulated in vitro in the NHA and DA groups versus the CR group. LH in vitro stimulation upregulated Cyp11a1 expression in the NHA and AHA groups and PRL stimulation upregulated Cyp17a1 levels in the NHA and DA groups compared with the basal expression levels. In the AHA group, decreased basal Star and CYP11A activities but increased HSD3B1 and CYP17A1 activities were found. Conclusion: Our data revealed that despite the similar steroid levels in plasma and secreted in vitro by neonatal and adult heat-acclimated rat testicular slices, the molecular mechanisms underlying the steroidogenic response to heat acclimation during these different developmental stages were distinct.

  10. Functional analysis of retinal microglia and their effects on progenitors.

    Science.gov (United States)

    Carter, Debra A; Balasubramaniam, Balini; Dick, Andrew D

    2013-01-01

    The identification of stem/progenitor cells within the retinal neural environment has opened up the possibility of therapy via cellular replacement and/or reprogramming of resident cell populations. Within the neuro-retinal niche, following injury or in disease states (including inflammation and degeneration), cellular responses affect tissue homeostasis, reduce cell density, disrupt tissue architecture, and produce scar formation. Microglia (resident retinal immune cell tissue macrophage) are key to the maintenance of retinal homeostasis and are implicated in responses that may influence the control and behavior of retinal progenitors. Factors to consider in the generation of a transplantable cell resource with good migratory and integrative capacity include their yield, purity, and functional viability. Utilizing human postmortem retina, we have created a research platform to isolate, culture, and characterize adult retinal microglia as well as analyze their effect on retinal progenitors. Here, we describe techniques using magnetic labeled bead cell separation to isolate pure populations of retinal CD133(+) precursor cells and CD11b(+) microglia from primary adult retinal cell suspensions (RCSs), enabling flow cytometric cell phenotypic and qPCR genotypic analysis, as well as functional analysis by real-time ratiometric calcium imaging.

  11. Impact of chronic nicotine administration on bone mineral content in young and adult rats: a comparative study.

    Science.gov (United States)

    Farag, Mahmoud M; Selima, Eman A; Salama, Mona A

    2013-11-15

    The aim of this study was to evaluate the effects of chronic nicotine administration on bone mineral homeostasis in rapidly growing young rats in comparison to effects in adult male rats. Two doses of nicotine (3 and 4.5mg/kg/day, as nicotine hydrogen tartrate) were used and rat treatment was continued for 6 months. In this study, all nicotine-treated rats weighed less than control rats and the effect was dose-dependent. Also, rats treated with nicotine had lower femoral wet weight and showed a significant reduction in femoral mid-shaft cortical width and femoral and lumbar vertebral ash weights. These effects were associated with a significant reduction of ash calcium and phosphorus contents of the femora and lumbar vertebrae. The bone mineral-lowering effects of nicotine were more severe in the lumbar vertebral spongy bone than in the femoral compact bone and these changes were more marked in adult rats than in young rats. An additional interesting observation was that the femora of young rats treated with nicotine were significantly shorter than those of control young rats. Also, the values of the femoral ash weight per unit length were significantly decreased in nicotine-treated adult rats but not in nicotine-treated young rats. Thus, these results show that nicotine-induced changes in bone vary with age. The clinical relevance of this study is that it may provide justification to insist that all people in general and the risky young group in particular should be warned against the hazards of the negative effects of nicotine on bone.

  12. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity.

    Science.gov (United States)

    van de Heijning, Bert J M; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M

    2015-07-08

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%-75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  13. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    Directory of Open Access Journals (Sweden)

    Bert J. M. van de Heijning

    2015-07-01

    Full Text Available Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control. A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  14. Adaptive optics technology for high-resolution retinal imaging.

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  15. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lombardo

    2012-12-01

    Full Text Available Adaptive optics (AO is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  16. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    Science.gov (United States)

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  17. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  18. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  19. Application of Luxol Fast Blue staining in locating the corticospinal tract in adult rats

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Guangming Lü; Xiaosong Gu

    2006-01-01

    BACKGROUND: There are many methods for myelin staining,mordant,or the special reaction of osmic acid with lipoid is used according to different principles.The commonly used methods are classic Well staining ,classic lithium carbonate-haematine staining,fast green staining,silver staining ,etc.Luxol Fast Blue can brightly stain myelin sheath,and has certain specificity .The background can be very clean if there is proper differentiation,whereas Luxol Fast Blue is cheap and convenient to operate,thus it is an ideal staining reagent for routine myelin sheath.OBJECTIVE: To show the coricospinal tract of normal adult rats with Luxol Fast Blue shaining method.DESIGN:A repetitive measurement design.SETTINGS: Institute of Nuerobiology,Nantong University;Department of Rehabilitation Medicine,Affiliated Hospital of Nantong University.MATERIALS: Six healthy adult male SD rats of clean dergree,weighing averagely 300 g.were provided by the experimental animal center of Nantong University.1 g/L Luxol Fast Blue solution was provided by Sigma Company;Leica CM1900 cryostat microtome by Leica Company;Leica DMR microscope by Leica Company.METHODS:The experiment was carried out in the Staff Room of Human Anatomy,Nantong University in May 2005.The rats were given intraperitoneal injection of combined anesthetic(2 mL/kg),then the chest was open for perfusing saline and phosphate buffer containing formamint via heart. Brain and spinal cord were removed after 1 hour then fixed,then changed to phosphate buffer(pH 7.4)containing 300 g/L saccharu at 4 ℃.and stayed overnight,tissue blocks at pyramid,decussation of pyramid and cervical,thoracic,lumbar and sacral segments of spinal cord were removed to prepare continuous horizontal frozen sections(30 μm) after sedimentation,the sections were dried at room temperature.The corticospinal tract of normal adult rats were shown with Luxol Fast Blue staining method,and observed under Leica DMR microscope.MAIN OUTCOME MEASURES:Positive fibers in

  20. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  1. Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition.

    Science.gov (United States)

    Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J; Ren, Xuefang; Hu, Heng; Nurkiewicz, Timothy R; McBride, Carroll R; Yi, Jinghai; Engels, Kevin; Simpkins, James W

    2016-01-01

    It is generally accepted that gestational xenobiotic exposures result in systemic consequences in the adult F1 generation. However, data on detailed behavioral and cognitive consequences remain limited. Using our whole-body nanoparticle inhalation facility, pregnant Sprague-Dawley rats (gestational day [GD] 7) were exposed 4 d/wk to either filtered air (control) or nano-titanium dioxide aerosols (nano-TiO2; count median aerodynamic diameter of 170.9 ± 6.4 nm, 10.4 ± 0.4 mg/m(3), 5 h/d) for 7.8 ± 0.5 d of the remaining gestational period. All rats received their final exposure on GD 20 prior to delivery. The calculated daily maternal deposition was 13.9 ± 0.5 µg. Subsequently, at 5 mo of age, behavior and cognitive functions of these pups were evaluated employing a standard battery of locomotion, learning, and anxiety tests. These assessments revealed significant working impairments, especially under maximal mnemonic challenge, and possible deficits in initial motivation in male F1 adults. Evidence indicates that maternal engineered nanomaterial exposure during gestation produces psychological deficits that persist into adulthood in male rats.

  2. Effect of pinealectomy, adrenalectomy, pinealectomy plus adrenalectomy upon the quantification of spermatogenic cells of adult rats

    Directory of Open Access Journals (Sweden)

    Castro A.C.S.

    2002-01-01

    Full Text Available The objectives of this study were to evaluate the effects of pinealectomy, adrenalectomy and pinealectomy-adrenalectomy upon the quantification of spermatogenic cells of rats. As such, 32 adult Wistar rats with a mean body weight of 331.7± 15.5g were assigned into one of the following treatments: (a a sham-operated control group, consisting of nine animals; (b ten pinealectomized animals; (c seven adrenalectomized animals and (d six pinealectomized plus adrenalectomized animals. No significant differences were observed between groups for the following parameters: body, testes, prostate and seminal vesicle weights, seminiferous tubular diameter, number of cells per seminiferous tubular cross sections (primary spermatocytes at pachytene, round spermatids, Sertoli cells and numbers of germ cells per Sertoli cell (primary spermatocytes at pachytene and round spermatids . Although no increase in testicular weight was observed following pinealectomy, a significant (P<0.05 increase of approximately 11.5% in the number of round spermatids per Sertoli cell (Sertoli cell ratio occurred thus suggesting that short-term pinealectomy abolishes the antigonadal effect of the pineal gland upon adult Wistar rat testes.

  3. Variability in the distribution of callosal projection neurons in the adult rat parietal cortex.

    Science.gov (United States)

    Ivy, G O; Gould, H J; Killackey, H P

    1984-07-23

    Previous reports have shown that the barrel field area of the parietal cortex of the adult rat contains relatively few callosal projection neurons, even though callosal projection neurons are abundant in this cortical region in the neonatal rat. Furthermore, it has been shown that many of the callosal neurons which seem to disappear as the animal matures do not die, but project to ipsilateral cortical areas. These findings rely on the ability of retrograde transport techniques which utilize injections of horseradish peroxidase (HRP) or of fluorescent dyes into one hemisphere. We now show that several technical modifications of the HRP technique yield a wider distribution of HRP-containing neurons in the contralateral barrel field area of the adult rat than previously reported. These include implants of HRP pellets into transected axons of the corpus callosum, the addition of DMSO and nonidet P40 to Sigma VI HRP, wheat germ agglutinin HRP and the use of tetramethyl benzidine as the chromogen in the reaction procedure. Our findings have implications for transport studies in general and for the development of the cortical barrel field in particular.

  4. Effects of moderate zinc deficiency on cognitive performance in young adult rats.

    Science.gov (United States)

    Massaro, T F; Mohs, M; Fosmire, G

    1982-07-01

    Two experiments were conducted to establish a dietary zinc level which approximates a moderate deficiency in the young adult rat and to determine if a concurrent zinc deficiency affects cognitive performance. Male rats were fed varying levels of zinc in diet throughout a 17-day period. The lowest dietary level that depressed serum and bone zinc without influencing food consumption or body weight gains was observed to be 5.8 microgram Zn/g diet. Young adult rats maintained on either a zinc adequate (24.4 microgram Zn/g) or low-zinc (5.3 microgram Zn/g) diet were tested in a modified Skinner Box involving tests of visual, auditory, association, and discrimination learning. No differences were observed in the visual discrimination performance of the zinc deficient animals when compared with control counterparts. Deficits in the ability to transfer a learned association between visual and auditory stimuli were observed, however, in the deficient group during the transfer test phase. The latter performed better during the final auditory discrimination task in transferring a learned food-relevant cue.

  5. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion.

    Science.gov (United States)

    Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F; Brown, Robert A; McLellan, Gillian J; Charteris, David G; Khaw, Peng T; Limb, G Astrid

    2016-02-01

    Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance: Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for

  6. 新型频域相关断层扫描对健康年轻人视网膜各参数的测量分析%Retinal asymmetry in Chinese adults measured by cirrus high definition optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    Syed Nasir Ali Shah; 张林; 樊小娟; 邓瑾; Faisal Shahbaz; Umer Farooq

    2016-01-01

    目的:采用新型频域相关断层扫描测量分析健康年轻人中视网膜各参数生理的不对称性。方法:对146名健康年轻人进行横断面观察研究,采用新型频域相关断层扫描对其双眼视网膜参数(视网膜神经纤维层厚度、视盘、黄斑)进行扫描。通过右眼减去左眼所得参数值的平均差进行配对t检验。两眼间的差异采用2.5%~97.5%之间进行评估。视网膜参数相关。通过回归分析,评价性别和血压对视网膜参数的影响。结果:两眼的视网膜神经纤维层平均厚度无统计学差异(+0.7μm,P=0.09)。两眼视网膜颞侧象限(+2.51μm,P=0.02),鼻侧象限(+2.50μm,P=0.04),钟表位右眼2点与左眼10点(+5.85μm,P=0.002),右眼3点与左眼9点(+3.20μm,P=0.005),右眼11点与左眼1点(+3.80μm,P=0.024),平均厚度(-0.034μm,P=0.013)和垂直方向杯盘比(-0.028μm,P=0.008),黄斑部鼻侧象限(+7.76μm,P=0.003)。左眼上方视网膜明显较薄(-2.40μm, P=0.03)。平均视网膜神经纤维层厚度和黄斑厚度分别为11μm和18μm。视网膜参数在双眼有中度的相关性(0.41~0.6),而两眼视网膜参数与性别、血压不相关(P<0.05)。研究表明通过新型频域相关断层扫描发现健康年轻人的视网膜神经纤维层厚度和黄斑厚度两眼间的差异分别不应超过11μm和18μm。结论:视网膜参数的不对称性存在于健康视网膜,并对早期视网膜病变的诊断提供有价值的评估。%Abstract•AIM: To investigate the physiological asymmetry of retinal parameters with cirrus high -definition optical coherence tomography ( Cirrus HD -OCT ) in healthy young adults.•METHODS: In this cross-sectional observational study we included 146 normal young adults. Bilateral eyes retinal parameters such

  7. Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights.

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    Full Text Available BACKGROUND: Exposure to early postnatal stress is known to hasten the progression of kindling epileptogenesis in adult rats. Despite the significance of this for understanding mesial temporal lobe epilepsy (MTLE and its associated psychopathology, research findings regarding underlying mechanisms are sparse. Of several possibilities, one important candidate mechanism is early life 'programming' of the hypothalamic-pituitary-adrenal (HPA axis by postnatal stress. Elevated corticosterone (CORT in turn has consequences for neurogenesis and cell death relevant to epileptogenesis. Here we tested the hypotheses that MS would augment seizure-related corticosterone (CORT release and enhance neuroplastic changes in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week old Wistar rats, previously exposed on postnatal days 2-14 to either maternal separation stress (MS or control brief early handling (EH, underwent rapid amygdala kindling. We measured seizure-induced serum CORT levels and post-kindling neurogenesis (using BrdU. Three weeks post-kindling, rats were euthanized for histology of the hippocampal CA3c region (pyramidal cell counts and dentate gyrus (DG (to count BrdU-labelled cells and measure mossy fibre sprouting. As in our previous studies, rats exposed to MS had accelerated kindling rates in adulthood. Female MS rats had heightened CORT responses during and after kindling (p<0.05, with a similar trend in males. In both sexes total CA3c pyramidal cell numbers were reduced in MS vs. EH rats post-kindling (p = 0.002. Dentate granule cell neurogenesis in female rats was significantly increased post-kindling in MS vs. EH rats. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that early life stress results in enduring enhancement of HPA axis responses to limbic seizures, with increased hippocampal CA3c cell loss and augmented neurogenesis, in a sex-dependent pattern. This implicates important candidate mechanisms through which early life

  8. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    Science.gov (United States)

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood.

  9. Protective effects of vitamin E and selenium on spermatogenesis in adult male rat insulin-resistant

    Directory of Open Access Journals (Sweden)

    Alireza Zakerabasali

    2013-03-01

    Full Text Available Background & Objective: Diabetes mellitus is a metabolic disease and is a multifactorial disorder characterized by chronic hyperglycemia resulting from impaired insulin secretion and insulin factional or both. In this study, the protective role of vitamin E and sodium selenite in preventing the harmful effects of insulin resistance (diabetes type 2 on spermatogenesis was studied.   Materials & Methods: Male adults (180-200 g of Wistar rats were divided into five groups, each containing 7 rats (control, sham, and three experimental groups. The rats were fed daily with water-soluble fructose (10%, mg/kg 200 of vitamin E (gavage, and 5/0 mg/kg of sodium selenite (intraperitoneal injection or both for 110 days. Subsequently, sperm parameters, levels of testosterone, LH, and daily sperm production (DSP were checked. Additionally, testicular histopathology and malondialdehyde (MDA in the testis were examined.   Results: Sperm count, sperm motility and viability, and insulin resistance in the rats decreased DSP. A significant decrease was observed in the number of Leydig cells, spermatogonia, spermatogenesis, and spermatozoa in the testis of the insulin-resistant animals, whereas MDA and testosterone rose in the insulin-resistant rats. Vitamin E and sodium selenite intake reduced the levels of MDA and harmful effects of fructose on testicles, as well as sperm parameters and testicular pathology. A simultaneous intake of vitamin E and sodium selenite conferred the highest level of protection.   Conclusion: These findings suggest that vitamin E and sodium selenite can have a protective role in the testes of rats against oxidative stress induced by diabetes type 2.

  10. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats.

    Science.gov (United States)

    Galeano, Pablo; Romero, Juan Ignacio; Luque-Rojas, María Jesús; Suárez, Juan; Holubiec, Mariana Inés; Bisagno, Verónica; Santín, Luis Javier; De Fonseca, Fernando Rodríguez; Capani, Francisco; Blanco, Eduardo

    2013-09-01

    Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction.

  11. Ependymal cell proliferation and apoptosis following acute spinal cord injury in the adult rat

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Jun Qian; Yanchao Ma; Guoxin Nan; Shuanke Wang; Yayi Xia; Youcheng Zhang

    2008-01-01

    BACKGROUND: Studies have reported that spinal cord injury can induce the reactive proliferation of ependymal cells and secondarily cause the apoptosis of nerve cells. However, there is no generally accepted theory on the apoptotic characteristics of ependymal cells in the injured spinal cord.OBJECTIVE: To observe the reactive proliferation and apoptosis of ependymal cells in adult rats following acute spinal cord injury.DESIGN, TIME AND SETTING: A randomized control study based on neuropathology was performed in the Third Military Medical University of Chinese PLA between 2005 and 2007.MATERIALS: Forty healthy, adult, Wistar rats were included in the present study.METHODS: Moderate spinal cord injury was established in twenty rats using Feeney's method, while the remaining 20 rats served as controls and were only treated with laminectomy. All rats were injected intraperitoneally with 1.25 mL of BrdU solution (10 mg BrdU/mL saline) 3 times at 4 hours intervals during the 12 hours prior to sacrifice.MAIN OUTCOME MEASURES: Ependymal cell proliferation and apoptosis in the rat spinal cord were determined by BrdU and nestin immunofluorescence double-labeling, as well as the TUNEL method, at 1, 3, 7, and 14 days after operation.RESULTS: In the moderate spinal cord injury rats, nestin expression was observed in the cytoplasm of ependymal cells. One day immediately following surgery, ependymal cells were BrdU-labeled. The number of BrdU-positive cells increased at 3 days, reached a peak at 7 days, and gradually reduced thereafter. The ependyma developed ti'om a constitutive monolayer cells to a multi-layer cell complex. Some BrdU/Nestin double-positive ependymal cells migrated out from the ependyma. TUNEL-positive cells were also detected in the ependyma in the central region, as well as ischemic regions of the injured spinal cord. In addition, TUNEL-positive cells were visible in the ependyma. No TUNEL-positive ependymal cells were observed in the normal spinal cord

  12. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats

    Science.gov (United States)

    Shepherd, Daniel J.; Tsai, Shih-Yen; O'Brien, Timothy E.; Farrer, Robert G.; Kartje, Gwendolyn L.

    2016-01-01

    Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis. PMID:27803646

  13. Sodium metabisulfite-induced changes on testes, spermatogenesis and epididymal morphometric values in adult rats

    Directory of Open Access Journals (Sweden)

    Shahnaz Shekarforoush

    2015-12-01

    Full Text Available Background: Sulphites are widely used as a preservative and antioxidant additives in the food and pharmaceutical industries. Many types of biological and toxicological effects of sulphites in multiple organs of mammals have been shown in previous studies. Objective: The aim of this study was to investigate the effects of sodium metabisulfite (SMB on testicular function and morphometric values of epididymis in adult male Wistar rats. Materials and Methods: A total of 32 rats were randomly divided into four groups. The experimental groups received SMB at doses of 10 mg/kg (S10, 100mg/kg (S100, and 260 mg/kg (S260 while an equal volume of normal saline was administered to the control group via gavage. The rats were anaesthetized after 28 days and the left testis with the head of epididimis was excised following abdominal incision for histological observation using hematoxylin and eosin staining. Serum samples were collected for assay of testosterone level. The initial epididymis was analyzed for motility, morphology, and the number of sperms. Result: The results of this study showed that normal morphology, count, and motility of sperms and testosterone level were decreased in the SMB treated groups. In comparison with the control group, SMB resulted in a lower total number of spermatogonia, primary spermatocyte, spermatids, and Leydig cells. Conclusion: It is suggested that SMB decreases the sperm production and has the potential to affect the fertility adversely in male rats.

  14. Sugar overconsumption during adolescence selectively alters motivation and reward function in adult rats.

    Directory of Open Access Journals (Sweden)

    Leandro F Vendruscolo

    Full Text Available BACKGROUND: There has been a dramatic escalation in sugar intake in the last few decades, most strikingly observed in the adolescent population. Sugar overconsumption has been associated with several adverse health consequences, including obesity and diabetes. Very little is known, however, about the impact of sugar overconsumption on mental health in general, and on reward-related behavioral disorders in particular. This study examined in rats the effects of unlimited access to sucrose during adolescence on the motivation for natural and pharmacological rewards in adulthood. METHODOLOGY/PRINCIPAL FINDINGS: Adolescent rats had free access to 5% sucrose or water from postnatal day 30 to 46. The control group had access to water only. In adulthood, rats were tested for self-administration of saccharin (sweet, maltodextrin (non-sweet, and cocaine (a potent drug of abuse using fixed- and progressive-ratio schedules, and a concentration-response curve for each substance. Adult rats, exposed or not exposed to sucrose, were tested for saccharin self-administration later in life to verify the specificity of adolescence for the sugar effects. Sugar overconsumption during adolescence, but not during adulthood, reduced the subsequent motivation for saccharin and maltodextrin, but not cocaine. This selective decrease in motivation is more likely due to changes in brain reward processing than changes in gustatory perception. CONCLUSIONS/SIGNIFICANCE: Sugar overconsumption induces a developmental stage-specific chronic depression in reward processing that may contribute to an increase in the vulnerability to reward-related psychiatric disorders.

  15. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study

    Directory of Open Access Journals (Sweden)

    Norman Ruthven Saunders

    2015-04-01

    Full Text Available The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analysed by functional groups of influx transporters, particularly solute carrier (SLC transporters. RNA-Seq was performed at embryonic day (E 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest represented functional group in the embryo was amino acid transporters (twelve with expression levels 2-98 times greater than in the adult. In contrast, in the adult only six amino acid transporters were up-regulated compared to the embryo and at more modest enrichment levels (<5-fold enrichment above E15. In E15 plexus five glucose transporters, in particular Glut-1, and only one monocarboxylate transporter were enriched compared to the adult, whereas only two glucose transporters but six monocarboxylate transporters in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing brain with higher amino acid transport activity reported previously. Data for divalent metal transporters are also considered. Immunohistochemistry of several transporters (e.g. Slc16a10, a thyroid hormone transporter gene products was carried out to confirm translational activity and to define cellular distribution of the proteins. Overall the results show that there is substantial expression of numerous influx transporters in the embryonic choroid plexus, many at higher levels than in the adult. This, together with immunohistochemical evidence and data from published physiological transport studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.

  16. Constituent ratio of motor fibers from the C5-C7 spinal nerves in the radial nerve is greater in pup rats than in adult rats.

    Science.gov (United States)

    Nie, Mingbo; Chen, Liang; Gu, Yudong

    2012-06-01

    Clinically, injuries of C5-C7 of the brachial plexus cause falling of the wrist and fingers in infants but not in adults unless 4 consecutive spinal nerves are injured. The purpose of this study was to compare the constituent difference of spinal nerves in the radial nerve between pup and adult rats.A group of 16 pup rats and a group of 16 adult rats were each divided into 2 groups of 8 (P1 and A1 groups, C5-C6 were divided; P2 and A2 groups, C5-C7 were divided]). A nerve conduction study and histological examination were performed to evaluate radial nerve innervation to the extensor digitorum communis muscle after dividing the spinal nerves. Retrograde tracing with 5% cholera toxin B for anterior horn motoneurons of the spinal cord innervating the radial nerve was performed in 8 pup rats and 8 adult rats. Results showed that the division of C5-C7 caused more significant damage to radial nerve innervation to the extensor digitorum communis in pups than in adults, although the division of C5-C6 did not. In pups, the percentages (median with interquartile) of anterior horn motoneurons of the spinal cord innervating the radial nerve were 36.4 (28.3-38.5) in C5-C6, 28.1 (24.5-32.5) in C7, and 37.5 (36.5-39.3) in C8-T1. In adults, they were 24.2 (23.6-27.8) in C5-C6, 21.8 (19.5-26.3) in C7, and 50.7 (48.7-55.5) C8-T1.This study implies that C7 innervation in the radial nerve in humans may be more critical to the function of this nerve in infants than in adults.

  17. The 14-day repeated dose liver micronucleus test with methapyrilene hydrochloride using young adult rats.

    Science.gov (United States)

    Inoue, Kenji; Ochi, Akimu; Koda, Akira; Wako, Yumi; Kawasako, Kazufumi; Doi, Takaaki

    2015-03-01

    The repeated dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect genotoxic hepatocarcinogens that can be integrated into a general toxicity study. The assay methods were thoroughly validated by 19 Japanese facilities. Methapyrilene hydrochloride (MP), known to be a non-genotoxic hepatocarcinogen, was examined in the present study. MP was dosed orally at 10, 30 and 100mg/kg/day to 6-week-old male Crl:CD (SD) rats daily for 14 days. Treatment with MP resulted in an increase in micronucleated hepatocytes (MNHEPs) with a dosage of only 100mg/kg/day. At this dose level, cytotoxicity followed by regenerative cell growth was noted in the liver. These findings suggest that MP may induce clastogenic effects indirectly on the liver or hepatotoxicity of MP followed by regeneration may cause increase in spontaneous incidence of MNHEPs.

  18. Neonatal human retinal pigment epithelial cells secrete limited trophic factors in vitro and in vivo following striatal implantation in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2015-01-01

    Human retinal pigment epithelial (hRPE) cell implants into the striatum have been investigated as a potential cell-based treatment for Parkinson's disease in a Phase II clinical trial that recently failed. We hypothesize that the trophic factor potential of the hRPE cells could potentially influe...

  19. Long-term effects of repeated maternal separation and ethanol intake on HPA axis responsiveness in adult rats.

    Science.gov (United States)

    Odeon, María Mercedes; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2017-02-15

    It has been shown that early life manipulations produce behavioral, neural, and hormonal effects. The long term consequences of repeated maternal separation (RMS) plus cold stress and ethanol intake were evaluated during adolescence and adult rats on hypothalamic-pituitary-adrenal (HPA) axis in male adult Wistar rats. RMS+ cold stress was applied from postnatal day (PD) 2 in which the pups were separated from their mothers and exposed to cold stress (4°C) 1h per day for 20days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7days: PD22-29 and PD59-66. Half of the animals were sacrificed, while the others were exposed to acute stress (AS) for 2h and then they were killed. RMS+ cold stress: a) increased voluntary ethanol intake in adolescent and adult rats; b) reduced protein expression (Western measurements) in corticotropin-releasing hormone (CRH) in hypothalamus (Hyp) and mineralocorticoid receptor (MR) in hippocampus (Hic) while increased glucocorticoid receptor (GR) in Hic; c) decreased plasmatic levels of adrenocorticotropic hormone (ACTH) and increased corticosterone (COR) levels in HPA axis, d) adult rats exposure a new AS incremented ACTH and COR levels. However, this modification did not alter the HPA axis capacity to respond to a new type of stressor. These results demonstrate the consequences of early life stress on the vulnerability of ethanol consumption and HPA axis responsiveness to a stressor in adult rats.

  20. Histological changes in kidneys of adult rats treated with Monosodium glutamate: A light microscopic study

    Directory of Open Access Journals (Sweden)

    Singh BR, Ujwal Gajbe, Anil Kumar Reddy, Vandana Kumbhare

    2015-01-01

    Full Text Available Introduction: Monosodium Glutamate (MSG, which is chemically known as AJI-NO-MOTO also familiar as MSG in routine life. MSG is always considered to be a controversial food additive used in the world. It is a natural excitatory neurotransmitter, helps in transmitting the fast synaptic signals in one third of CNS. Liver and kidney play a crucial role in metabolism as well as elimination of MSG from the body. Present study is to detect structural changes in adult rat kidney tissue treated with MSG; observations are done with a light microscope. Materials & Methods: The study was conducted in the department of Anatomy, J.N.M.C, Sawangi (M Wardha. Thirty (30 adult Wistar rats (2-3 months old weighing about (200 ± 20g were used in the current study, animals were divided into three groups (Group – A, B, C. Group A: Control, Group B: 3 mg /gm body weight, Group C: 6 mg /gm body weight, MSG were administered orally daily for 45 days along with the regular diet. Observations & Results: The Mean values of animals weight at the end of experiment (46th day respectively were 251.2 ± 13, 244.4 ± 19.9 and 320 ± 31.1. Early degenerative changes like, Glomerular shrinkage (GSr, loss of brush border in proximal convoluted tubules and Cloudy degeneration was observed in sections of kidney treated with 3 mg/gm body weight of MSG. Animals treated with 6 mg/gm body weight of MSG showed rare changes like interstitial chronic inflammatory infiltrate with vacuolation in some of the glomeruli, and much glomerular shrinkage invaginated by fatty lobules. Conclusion: The effects of MSG on kidney tissues of adult rats revealed that the revelatory changes are directly proportional to the doses of MSG.

  1. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  2. Increased astrocytic expression of metallothioneins I + II in brainstem of adult rats treated with 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan; Moos, Torben

    1997-01-01

    The cerebral distribution of metallothioneins I and II (MT-I + II) was studied in adult rats subjected to i.p. injection with the gliotoxin 6-aminonicotinamide (6-AN). Grey matter regions of the brainstem heralded numerous OX-42-positive macrophages and microglia, indicating that 6-AN primarily...... caused damage to this part of the brain. In the grey matter regions infiltrated with OX-42-positive cells, astrocytes identified by anti-GFAP and MT-I + II antibodies were almost absent. By contrast, in the peripheral zone of the lesioned regions numerous reactive GFAP- and MT-I + II-positive astrocytes...

  3. Combination Therapy for the Cardiovascular Effects of Perinatal Lead Exposure in Young and Adult Rats

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Andréia Fresneda [Departamento de Farmacologia, Instituto de Biociências - Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Faculdade da Alta Paulista (FAP), Tupã, SP (Brazil); Cordellini, Sandra, E-mail: cordelli@ibb.unesp.br [Departamento de Farmacologia, Instituto de Biociências - Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-09-15

    Combination therapy can play a significant role in the amelioration of several toxic effects of lead (Pb) and recovery from associated cardiovascular changes. To investigate the effects of combination therapy on the cardiovascular effects of perinatal lead exposure in young and adult rats Female Wistar rats received drinking water with or without 500 ppm of Pb during pregnancy and lactation. Twenty-two- and 70-day-old rat offspring who were or were not exposed to Pb in the perinatal period received meso-dimercaptosuccinic acid (DMSA), L-arginine, or enalapril and a combination of these compounds for 30 additional days. Noradrenaline response curves were plotted for intact and denuded aortas from 23-, 52-, 70-, and 100-day-old rats stratified by perinatal Pb exposure (exposed/unexposed) and treatment received (treated/untreated). Systolic blood pressure was evaluated and shown to be higher in the 23-, 52-, 70-, and 100-day age groups with Pb exposure than in the corresponding control age groups: 117.8 ± 3.9*, 135.2 ± 1.3*, 139.6 ± 1.6*, and 131.7 ± 2.8*, respectively and 107.1 ± 1.8, 118.8 ± 2.1, 126.1 ± 1.1, and 120.5 ± 2.2, respectively (p < 0.05). Increased reactivity to noradrenaline was observed in intact, but not denuded, aortas from 52-, 70-, and 100-day-old exposed rats, and the maximum responses (g of tension) in the respective Pb-exposed and control age groups were as follows: 3.43 ± 0.16*, 4.32 ± 0.18*, and 4.21 ± 0.23*, respectively and 2.38 ± 0.33, 3.37 ± 0.13, and 3.22 ± 0.21, respectively (p < 0.05). All treatments reversed the changes in vascular reactivity to noradrenaline in rats perinatally exposed to Pb. The combination therapy resulted in an earlier restoration of blood pressure in Pb-exposed rats compared with the monotherapies, except for enalapril therapy in young rats. These findings represent a new approach to the development of therapeutic protocols for the treatment of Pb-induced hypertension.

  4. Impairment on sperm quality and fertility of adult rats after antiandrogen exposure during prepuberty.

    Science.gov (United States)

    Perobelli, Juliana Elaine; Alves, Thaís Regina; de Toledo, Fabíola Choqueta; Fernandez, Carla Dal Bianco; Anselmo-Franci, Janete A; Klinefelter, Gary R; Kempinas, Wilma De Grava

    2012-06-01

    This study evaluated the effects of antiandrogen exposure during the prepubertal period on reproductive development and reproductive competence in adults. Male rats were divided into two groups: flutamide, receiving 25 mg/kg/day of flutamide by oral gavage and control, receiving vehicle daily. Dosing continued from PND 21 to 44, and animals were killed on PND 50 or PND 75-80. The epididymis, prostate, vas deferens and seminal vesicle weights were lower in Flutamide group on PND 50, while on PND 80 only seminal vesicle weight was reduced. Fertility assessed by IUI revealed a decrease in the fertility potential in the flutamide-treated adults. Flutamide accelerated sperm transit time through the epididymis, impairing sperm motility and storage. A quantitative analysis of the cauda sperm membrane proteome revealed a few significant changes in protein expression. Thus, exposure to flutamide during the prepubertal period compromises the function of the epididymis along with epididymal sperm quality at adulthood.

  5. The cortical response to sensory deprivation in adult rats is affected by gonadectomy.

    Science.gov (United States)

    Mowery, Todd M; Elliott, Kevin S; Garraghty, Preston E

    2009-05-01

    The present study investigated the effects of adult-onset sensory deprivation and gonadectomy. Adult male and female rats underwent unilateral transection of the infraorbital nerve. Half of the subjects had been gonadectomized 1 week prior to the nerve injury. We found that the areas of deprived barrels were significantly reduced when compared to barrels in the contralateral control hemisphere, and that this shrinkage was independent of sex and gonadectomy. We also found significant reductions in cytochrome oxidase staining intensity in the deprived barrels. While there were no differences in the magnitude of this effect between males and females, this effect was substantially more pronounced in the gonadectomized subjects. That is, gonadal hormones appeared to play a significant neuroprotective role in the metabolic response of the barrel cortex to deprivation. Thus, either males and females have a common neuroprotective hormonal pathway, or each has a sex-specific hormone pathway that serves an equivalent neuroprotective function.

  6. Reproducible isolation of type II pneumocytes from fetal and adult rat lung using nycodenz density gradients.

    Science.gov (United States)

    Viscardi, R M; Ullsperger, S; Resau, J H

    1992-01-01

    Isolating fresh, relatively pure type II pneumocytes from the lung, particularly of fetal origin, is a difficult process. Separation by buoyant density gradient centrifugation has been used successfully to isolate adult type II cells. There is concern, however, that Percoll, a gradient medium that is commonly used for type II cell isolation, may be toxic to cells. We evaluated a new gradient medium, Nycodenz, that is (1) a true solution, (2) transparent, (3) not metabolized by cells, and (4) nontoxic to cells. Type II pneumocytes were isolated from 19- and 21-day gestation fetal and adult rat lung by elastase digestion and separated on preformed isotonic Nycodenz gradients (2 mL each of 27.6, 20.7, 13.8, and 4.6 (w/v) solutions). Type II pneumocytes were recovered from the density range 1.057-1.061 and identified by binding of FITC-conjugated and gold-complexed Maclura pomifera lectin. Cells derived from 19-day fetal lung contained abundant glycogen and reacted with a monoclonal antibody to the cytokeratins 8 and 18, which are markers of the fetal type II cell. Adult type II cells reacted with antibodies to cytokeratins 8, 18, and 19. Type II cell purity was 79.7 +/- 2.4%, 83.8 +/- 2.8%, and 82.6 +/- 1.8% (means +/- SEM) for 19- and 21-day gestation fetal and adult lung preparations, respectively. Cell viability was greater than 95%. The final cell yield for adult preparations was 17.8 +/- 2.7 x 10(6)/rat (means +/- SEM). To determine if the freshly isolated type II pneumocytes were functionally active, the incorporation of [3H]choline into phosphatidylcholine was measured. The percent saturation of phosphatidylcholine was high for both populations of freshly isolated cells. However, adult type II pneumocytes incorporated [3H]choline into phosphatidylcholine more rapidly than 21-day gestation fetal cells (5.97 x 10(-3) dpm/10(6) cells/h vs. 0.32 x 10(-3) dpm/10(6) cells/h, P less than .005). We have demonstrated that, using the Nycodenz isolation method, it is

  7. Retinal remodeling in human retinitis pigmentosa.

    Science.gov (United States)

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.

  8. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    Science.gov (United States)

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  9. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats.

    Directory of Open Access Journals (Sweden)

    Li-Hong Li

    Full Text Available Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX, a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%-induced nociceptive responses (such as elevating and licking or biting during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact. Using formalin-induced conditioned place avoidance (F-CPA, which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA. In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.

  10. Ethidium bromide-induced demyelination of the sciatic nerve of adult Wistar rats

    Directory of Open Access Journals (Sweden)

    Riet-Correa G.

    2002-01-01

    Full Text Available Peripheral nerve ultrastructure was assessed after single or multiple local injections of the intercalating dye ethidium bromide. Thirty-four adult Wistar rats of both sexes were divided into five groups and maintained in a controlled environment with rat chow and water ad libitum throughout the experiment. The experimental animals were injected with 1 µl of 0.1% ethidium bromide in 0.9% saline into the central third of the left sciatic nerve 1 (group 1, 2 (group 2, 4 (group 3, 6 (group 4 or 8 (group 5 times. In groups 2 to 5 the injections were made at 28-day intervals. Control animals received the same amount of 0.9% saline. The animals were killed at different times after injection: group 1 at 7 days (2 rats and 15 days (2 rats; for groups 2, 3, 4 and 5, all rats were killed 10 days after the last injection and the lesions were investigated by light and transmission electron microscopy. In the acute lesions, intoxicated Schwann cells showed a vacuolated cytoplasm and separation of the sheaths from the axon. Myelin sheaths underwent progressive vesiculation and subsequent segmental demyelination. Myelin debris were withdrawn by macrophages and remyelination by Schwann cells was prominent. With the increase in the number of injections collagen fibers also increased in number and progressively enveloped smaller numbers of remyelinated axons composing new fascicles. Wallerian degeneration of fibers apparently not affected by ethidium bromide was more intense in the nerves from groups 4 and 5. The peripheral nerve repairs itself after demyelinating challenges with a profusion of collagen fibers and new fasciculations. This experimental model is valid to mimic recurrent demyelinating neuropathies.

  11. The social behavior of male rats administered an adult-onset calorie restriction regimen.

    Science.gov (United States)

    Govic, Antonina; Levay, Elizabeth A; Kent, Stephen; Paolini, Antonio G

    2009-03-23

    The behavioral outcomes of a calorie restricted diet are often neglected in favour of a more physiological examination of the consequences of calorie restriction (CR). This is especially the case with social behavior. A few findings within the maternal CR literature suggest that adult male social behavior is altered by this regimen. Despite the paucity of findings within the maternal CR literature, a systematic investigation of the behavioral phenotype of males administered an adult-onset CR is completely lacking and was the focus of the current study. Adult male hooded Wistar rats were administered a three week CR, with one group receiving a 25% CR and another group receiving a 50% CR before male-to-male social behavior was examined and compared with ad libitium fed males. Various behavioral elements were modulated by CR, both the CR25% and 50% group initiated contact sooner and engaged in greater social activity compared to the ad libitum fed controls. The CR25% group also demonstrated less non-social (self-grooming) behavior and a greater frequency of walkovers compared to all groups, indicating a propensity towards dominance. The CR50% group demonstrated greater environmental assessment/exploration, as measured by the frequency of rearing. As with the maternal CR literature, an adult-onset chronic CR induces a more socially active behavioral phenotype and reduces interest in non-social behavior in the moderately CR group. Taken together, the social behavioral phenotype can be modulated by a CR initiated and maintained during adulthood.

  12. Immunohistochemical distribution of Plexin A4 in the adult rat central nervous system

    Directory of Open Access Journals (Sweden)

    Claire-Anne Gutekunst

    2010-07-01

    Full Text Available PlexinA4 is the latest member to be identified of the plexin A subfamily, critical transducers of class 3 semaphorin signaling as co-receptors to neuropilins 1 and 2. Despite functional information regarding the role of PlexinA4 in development and guidance of specific neuronal pathways, little is known about its distribution in the adult central nervous system (CNS. Here we report an in depth immunohistochemical analysis of PlexinA4 expression in the adult rat CNS. PlexinA4 staining was present in neurons and fibers throughout the brain and spinal cord, including neocortex, hippocampus, lateral hypothalamus, red nucleus, facial nucleus and the mesencephalic trigeminal nucleus. PlexinA4 antibodies labeled fibers in the lateral septum, nucleus accumbens, several thalamic nuclei, substantia nigra pars reticulata, zona incerta, pontine reticular region, as well as in several cranial nerve nuclei. This constitutes the first detailed description of the topographic distribution of PlexinA4 in the adult CNS and will set the basis for future studies on the functional implications of PlexinA4 in adult brain physiology.

  13. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  14. Microvascular Abnormality in Schizophrenia as Shown by Retinal Imaging

    Science.gov (United States)

    Meier, Madeline H.; Shalev, Idan; Moffitt, Terrie E.; Kapur, Shitij; Keefe, Richard S.E.; Wong, Tien; Belsky, Daniel W.; Harrington, HonaLee; Hogan, Sean; Houts, Renate; Caspi, Avshalom; Poulton, Richie

    2013-01-01

    Objective Retinal and cerebral microvessels are structurally and functionally homologous, but, unlike cerebral microvessels, retinal microvessels can be noninvasively measured in vivo via retinal imaging. Here we test the hypothesis that individuals with schizophrenia show microvascular abnormality and evaluate the utility of retinal imaging as a tool for future schizophrenia research. Methods Participants were members of the Dunedin Study, a population-representative cohort followed from birth with 95% retention. Study members underwent retinal imaging at age 38 years. We assessed retinal arteriolar and venular caliber for all members of the cohort, including individuals who developed schizophrenia. Results Study members who developed schizophrenia were distinguished by wider retinal venules, suggesting microvascular abnormality reflective of insufficient brain oxygen supply. Analyses that controlled for confounding health conditions suggested that wider retinal venules are not simply an artifact of co-occurring health problems in schizophrenia patients. Wider venules were also associated with a dimensional measure of adult psychosis symptoms and with psychosis symptoms reported in childhood. Conclusions Findings provide initial support for the hypothesis that individuals with schizophrenia show microvascular abnormality. Moreover, results suggest that the same vascular mechanisms underlie subthreshold symptoms and clinical disorder and that these associations may begin early in life. These findings highlight the promise of retinal imaging as a tool for understanding the pathogenesis of schizophrenia. PMID:24030514

  15. DAPI diffusion after intravitreal injection of mesenchymal stem cells in the injured retina of rats.

    Science.gov (United States)

    Castanheira, Paula; Torquetti, Leonardo Torquetti; Magalhãs, Débora Rodrigues Soares; Nehemy, Marcio B; Goes, Alfredo M

    2009-01-01

    To evaluate DAPI (4',6-diamidino-2-phenylindole) as a nuclear tracer of stem cell migration and incorporation it was observed the pattern of retinal integration and differentiation of mesenchymal stem cells (MSCs) injected into the vitreous cavity of rat eyes with retinal injury. For this purpose adult rat retinas were submitted to laser damage followed by transplantation of DAPI-labeled BM-MSCs grafts and double-labeled DAPI and quantum dot-labeled BM-MSCs. To assess a possible DAPI diffusion as well as the integration and differentiation of DAPI-labeled BM-MSCs in laser-injured retina, host retinas were evaluated 8 weeks after injury/transplantation. It was demonstrated that, 8 weeks after the transplant, most of the retinal cells in all neural retinal presented nuclear DAPI labeling, specifically in the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL). Meanwhile, at this point, most of the double-labeled BM-MSCs (DAPI and quantum dot) remained in the vitreous cavity and no retinal cells presented the quantum dot marker. Based on these evidences we concluded that DAPI diffused to adjacent retinal cells while the nanocrystals remained labeling only the transplanted BM-MSCs. Therefore, DAPI is not a useful marker for stem cells in vivo tracing experiments because the DAPI released from dying cells in moment of the transplant are taken up by host cells in the tissue.

  16. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2014-06-01

    Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood-brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats. Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and neuroprotective effects that modulate glial functions. Here, we evaluated the effects of resveratrol on GSH content, GS activity, TNF-α and IL-1β levels in hippocampal astrocytes from newborn, adult and aged Wistar rats. We observed a decrease in antioxidant defenses and an increase in the inflammatory response in hippocampal astrocytes from adult and aged rats compared to classical astrocyte cultures from newborn rats. Resveratrol prevented these effects. These findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with antioxidant and anti-inflammatory activities.

  17. Hepatotrophic activity of benzodiazepine drugs in adult rats of either sex.

    Science.gov (United States)

    Gershbein, L L

    1994-07-01

    Adult rats with two-thirds of the liver removed were administered diets supplemented with benzodiazepine drugs over a period of 10 days and the mass of organ regenerated or the liver increment ascertained. For a number of the drugs, liver regeneration was stimulated; the effect was more consistent and reproducible in the adult female. On the basis of the lower sensitivity of the male, such animals provided an approach toward rating the hepatotrophic efficacy of the agents and in relation to structure. According to the current classification, hepatotrophic activity was higher with lorazepam, loprazolam, oxazepam and chlordiazepoxide; intermediate with nitrazepam, temazepam, quazepam, halazepam and triazepam and lower with diazepam, clorazepate dipotassium, clobazam and alprazolam. More reproducible responses in terms of g wet and dry liver per 100 g body weight were obtained with sham-operated or intact males. The antagonist, flumazenil, fed at 0.080% was not effective as such nor modified the responses in admixture with several drugs in partially hepatectomized or intact males. In vivo hepatic microsomal changes in protein, cytochrome P-450 or the enzymes, aminopyrine demethylase and benzo[a]pyrene hydroxylase with the various series were not remarkable or sporadic. Among other factors, the liver incremental changes noted currently are dependent on the metabolic intermediate benzodiazepines of varying elimination half-lives which may be distinct from that of the parent drug coupled with the alterations induced by partial ablation of the organ in rats of either sex.

  18. Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise.

    Science.gov (United States)

    Foret, Ariane; Quertainmont, Renaud; Botman, Olivier; Bouhy, Delphine; Amabili, Philippe; Brook, Gary; Schoenen, Jean; Franzen, Rachelle

    2010-02-01

    Ependymal cells located around the central canal of the adult spinal cord are considered as a source of neural stem cells (NSCs) and represent an interesting pool of endogenous stem cells for repair strategies. Physical exercise is known to increase ependymal cell proliferation, while improving functional recovery. In this work, we further characterized those endogenous NSCs within the normal and injured adult rat spinal cord and investigated the effects of treadmill training using immunohistochemical and behavioral studies. In uninjured untrained rats, Sox-2, a NSC marker, was detected in all ependymal cells of the central canal, and also scattered throughout the parenchyma of the spinal cord. Within the lesion, Sox-2 expression increased transiently, while the number of nestin-positive ependymal cells increased with a concomitant enhancement of proliferation, as indicated by the mitotic markers Ki67 and bromo-deoxyuridine. Exercise, which improved functional recovery and autonomous micturition, maintained nestin expression in both injured and uninjured spinal cords, with a positive correlation between locomotor recovery and the number of nestin-positive cells.

  19. Cortical neurogenesis in adult rats after ischemic brain injury:most new neurons fail to mature

    Institute of Scientific and Technical Information of China (English)

    Qing-quan Li; Guan-qun Qiao; Jun Ma; Hong-wei Fan; Ying-bin Li

    2015-01-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial ifbrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identiifed using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromode-oxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial ifbrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our ifndings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  20. Subacute toxicity assessment of diflubenzuron, an insect growth regulator, in adult male rats.

    Science.gov (United States)

    de Barros, Aline Lima; Cavalheiro, Gabriela Finoto; de Souza, Alexsandra Vila Maior; Traesel, Giseli Karenina; Anselmo-Franci, Janete A; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina

    2016-04-01

    Diflubenzuron (DFB), an insecticide and acaricide insect growth regulator, can be used in agriculture against insect predators and in public health programs, to control insects and vectors, mainly Aedes aegypti larvae. Due to the lack of toxicological assessments of this compound, the objective of the present study was to evaluate the toxicological effects of subacute exposure to the DFB insecticide in adult male rats. Adult male rats were exposed (gavage) to 0, 2, 4, or 8 mg/kg of DFB for 28 days. No clinical signs of toxicity were observed in the DFB-treated animals of the experimental groups. However, there was an increase in serum levels of alanine aminotransferase in the group that received 8 mg/kg/DFB/day and urea at doses of 4 and 8 mg/kg/DFB/day, without altering other biochemical or hematological parameters. The subacute exposure to the lowest dose of DFB caused significant decrease in testis weight, daily sperm production, and in number of sperm in the epididymis in relation to the control group. However, no alterations were observed in the sperm morphology, testicular, epididymis, liver and kidney histology, or testosterone levels. These findings unveiled the hazardous effects of DFB on male reproduction after the subacute exposure and special attention should be addressed to the effects of low doses of this pesticide.

  1. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Jodi L. Pawluski

    2014-01-01

    Full Text Available Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1 cookie and (2 osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat.

  2. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    Science.gov (United States)

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches.

  3. Renoprotective effects of moringa oleifera leaf extract on the kidneys of adult wistar rats

    Directory of Open Access Journals (Sweden)

    Ezejindu D. N

    2016-07-01

    Full Text Available Moringa oleifera is one of several nutritional supplements giving wide spread popularity in Nigeria and many other countries of the world. The leaves and flowers are being used by the population with great dietary importance. The aim of this study is to investigate the effects of oral administration of Moringa oleifera leaf extract on the kidneys of adult wistar rats. 24 apparently healthy adult wistar rats weighing between190- 230kg were divided into four groups of six animals each. Group A served as the control and received 0.3ml of distilled water orally. The experimental groups B, C & D received 0.5ml, 0.6ml &0.7ml of Moringa oleifera extract orally respectively. The administration lasted for twenty one days. The animals were weighed, sacrificed using chloroform vapour. The kidney tissue were removed, weighed and trimmed down for histological studies. Result of this study showed non-distortion of the kidney cells. The findings of this study suggest that chronic Moringa oleifera consumption may not put the kidneys at risk of adverse histopathological conditions.

  4. Bisphenol A exposure at an environmentally relevant dose induces meiotic abnormalities in adult male rats.

    Science.gov (United States)

    Liu, Chuan; Duan, Weixia; Zhang, Lei; Xu, Shangcheng; Li, Renyan; Chen, Chunhai; He, Mindi; Lu, Yonghui; Wu, Hongjuan; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Whether environmental exposure to bisphenol A (BPA) may induce reproductive disorders is still controversial but certain studies have reported that BPA may cause meiotic abnormalities in C. elegans and female mice. However, little is known about the effect of BPA on meiosis in adult males. To determine whether BPA exposure at an environmentally relevant dose could induce meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 20 μg/kg body weight (bw)/day for 60 consecutive days. We found that BPA significantly increased the proportion of stage VII seminiferous epithelium and decreased the proportion of stage VIII. Consequently, spermiation was inhibited and spermatogenesis was disrupted. Further investigation revealed that BPA exposure delayed meiosis initiation in the early meiotic stage and induced the accumulation of chromosomal abnormalities and meiotic DNA double-strand breaks (DSBs) in the late meiotic stage. The latter event subsequently activated the phosphatidylinositol 3-kinase-related protein kinase (ATM). Our results suggest that long-term exposure to BPA may lead to continuous meiotic abnormalities and ultimately put mammalian reproductive health at risk.

  5. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    Science.gov (United States)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  6. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats.

    Science.gov (United States)

    Greisen, Mia H; Altar, C Anthony; Bolwig, Tom G; Whitehead, Richard; Wörtwein, Gitta

    2005-03-15

    Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.

  7. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes

    Directory of Open Access Journals (Sweden)

    Thing-Fong Tzeng

    2015-09-01

    Full Text Available The present study investigates the amelioration of diabetic retinopathy (DR by Zingiber zerumbet rhizome ethanol extracts (ZZRext in streptozotocin-induced diabetic rats (STZ-diabetic rats. ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day for three months. Blood-retinal barrier (BRB breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL-1β, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes.

  8. Intravitreal injection of erythropoietin sustained-release microspheres protects damaged retinal ganglion cells in rats%促红细胞生成素缓释微球玻璃体腔注射对视网膜神经节细胞的保护作用

    Institute of Scientific and Technical Information of China (English)

    荣先芳; 莫晓芬; 任甜甜; 袁伟恩; 王艳; 王鑫

    2010-01-01

    目的 探讨乳酸/羟基乙酸共聚物(PLGA)装载的促红细胞生成素(EPO)缓释微球(EPO-PLGA微球)经玻璃体腔注射对大鼠视神经挫伤模型中受损视网膜神经节细胞(RGC)的保护作用.方法 选取成年SD大鼠,建立视神经挫伤模型.建模后分别经玻璃体腔内注射含10 IU EPO的PLGA微球(EPO-PLGA组)、10 IU EPO(EPO组)、5 μl空白PLGA(PLGA组)、5 μl PBS(PBS组),另设未治疗组不予玻璃体腔注药.术后5 d和2周,做视网膜切片,对各组RGC凋亡情况行TUNEL检测;术后23 d,DiI上丘逆标RGC,并于术后4周处死大鼠,视网膜铺片观察各组RGC存活情况;每组各个时间点分别处死6只SD大鼠.采用方差分析对结果进行比较.结果 TUNEL检测显示,术后5 d和2周,各组均可见TUNEL阳性细胞,其中EPO-PLGA组和EPO组TUNEL阳性细胞显著减少,其细胞凋亡率明显少于PLGA组、PBS组及未治疗组.术后4周,视网膜铺片RGC计数显示,正常SD大鼠RGC密度为(2387.7±164.9)个/mm2,未治疗组为(748.3±58.8)个/mm2,EPO-PLGA组为(1296.7±157.6)个/mm2,EPO组为(1418.5±154.9)个/mm2,PLGA组为(821.7±52.1)个/mm2,PBS组为(804.4±86.4)个/mm2;可见EPO-PLGA组和EPO组较未治疗组细胞密度显著增高,具有明显的RGC保护作用(P均<0.01),而EPO-PLGA组和EPO组间差异无统计学意义(P=0.065).结论 EPO-PLGA缓释微球与EPO具有等效的RGC保护作用,这为进一步观察EPO-PLGA缓释微球的长效神经保护作用奠定了基础.%Objective To investigate the protective effect of erythropoietin (EPO) encapsulated in poly (L-lactic-co-glycolic acid) (PLGA) microspheres on damaged retinal ganglion cell (RGC) by intravitreal injection after optic nerve crush. Methods Adult SD rats were selected to establish an optic nerve crush model. Immediately after the crush, the animals received intravitreal doses of 10 IU EPO of EPO-PLGA microspheres (EPO-PLGA group), 10 IU EPO (EPO group), blank PLGA microshperes (PLGA group), and PBS (PBS

  9. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico)); Rivera, F. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Babinski, E. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Berlanga, E. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Madrazo, M. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Franco-Bourland, R. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico)); Grijalva, I. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  10. PROLIFERATION AND DIFFERENTIATION OF NEURAL STEM CELLS IN ADULT RATS AFTER CEREBRAL INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Ren-zhi Wang; Yong Yao; Zhi-hai Liu; Zhi-gang Lian; Yu-jie Zou; Yu-kui Wei

    2004-01-01

    Objective To investigate proliferation and differentiation of neural stem cells in adult rats after cerebral infarction.Methods Models of cerebral infarction in rats were made and the time-course expression of bromodeoxyuridine (BrdU), Musashil, glial fibrillary acidic protein (GFAP), and neuronal nuclear antigen (NeuN) were determined by immunohistochemistry and immunofluorescence staining. BrdU and Musashil were used to mark dividing neural stem cells. GFAP and NeuN were used to mark differentiating neural stem cells.Results Compared with controls, the number of BrdU-labeled and BrdU-labeled with Musashil-positive cells increased strikingly 1 day after cerebral infarction; approximately 6 fold with a peak 7 days later; markedly decreased 14 days later, but was still elevated compared with that of controls; decling to the control level 28 days later. The number of BrdU-labeled with GFAP-positive cells nearly remained unchanged in the hippocampus after cerebral infarction. The number of BrdU-labeled with NeuN-positive cells increased strikingly 14 days after cerebral infarction, reached maximum peak in the hippocampus 28 days after cerebral infarction in rats.Conclusion Cerebral infarction stimulate proliferation of inherent neural stem cells and most proliferated neural stem cells differentiate into neurons.

  11. Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat.

    Science.gov (United States)

    Haeno, Satoko; Maeda, Naoyuki; Yamaguchi, Kousuke; Sato, Michiko; Uto, Aika; Yokota, Hiroshi

    2016-04-01

    The synthetic estrogen diethylstilbestrol is used to prevent miscarriages and as a therapeutic treatment for prostate cancer, but it has been reported to have adverse effects on endocrine homeostasis. However, the toxicity mechanism is poorly understood. Recently, we reported that diethylstilbestrol impairs adrenal steroidogenesis via cholesterol insufficiency in adult male rats. In the present study, we found that the adrenal cholesterol level was significantly reduced without of the decrease in other precursors in the adrenal steroidogenesis 24 h after a single dose of diethylstilbestrol (0.33 μg/g body mass). The serum HDL/cholesterol level was also reduced only 12 h after the diethylstilbestrol exposure. The level of Apo E, which is indispensable for HDL/cholesterol maturation, was decreased in both the HDL and VLDL/LDL fractions, whereas the level of Apo A1, which is an essential constituent of HDL, was not altered in the HDL fraction. Because the liver is a major source of Apo E and Apo A1, the secretion rates of these proteins were examined using a liver perfusion experiment. The secretion rate of Apo A1 from the liver was consistent between DES-treated and control rats, but that of Apo E was comparatively suppressed in the DES-treated rats. The disruption of adrenal steroidogenesis by diethylstilbestrol was caused by a decrease in serum HDL/cholesterol, which is the main source of adrenal steroidogenesis, due to the inhibition of Apo E secretion from the liver.

  12. Circadian variations in expression of the trkB receptor in adult rat hippocampus.

    Science.gov (United States)

    Dolci, Claudia; Montaruli, Angela; Roveda, Eliana; Barajon, Isabella; Vizzotto, Laura; Grassi Zucconi, Gigliola; Carandente, Franca

    2003-12-19

    The expression of brain-derived neurotrophic factor (BDNF) in the central nervous system (CNS) and the expression of its high-affinity trkB receptor on neuron surfaces are known to depend on neuron activity. The expression of BDNF (mRNA and protein) and trkB mRNA shows circadian oscillations in rat hippocampal homogenates. We investigated circadian variations in trkB expression in specific areas of the adult rat hippocampal formation by immunohistochemistry. In sets of two experiments performed in the spring, 39 2-month-old male Wistar rats were accustomed to a 12-h light-12-h dark cycle for 2 weeks. Three animals were then sacrificed every 4 h. Forty-micrometer-thick coronal sections of hippocampal formation were obtained and processed for trkB immunohistochemistry. Cell staining intensity was assessed by image analysis of different hippocampal areas on five sections per animal. Circadian rhythmicity was evaluated by the cosinor method. Statistically significant circadian variations in trkB expression were found in dentate gyrus, entorhinal cortex, and the CA3 and hilar regions of the hippocampus, with highest expression during the first half of the dark (activity) period. These findings suggest a relationship between trkB expression and the physiological neuronal activation of wakefulness. TrkB receptor expression in the hippocampal regions studied was continuous and changes were gradual over the 24-h cycle, suggesting that more complex regulatory mechanisms also intervened.

  13. Behavioral and neuroendocrine consequences of juvenile stress combined with adult immobilization in male rats.

    Science.gov (United States)

    Fuentes, Silvia; Carrasco, Javier; Armario, Antonio; Nadal, Roser

    2014-08-01

    Exposure to stress during childhood and adolescence increases vulnerability to developing several psychopathologies in adulthood and alters the activity of the hypothalamic-pituitary-adrenal (HPA) axis, the prototypical stress system. Rodent models of juvenile stress appear to support this hypothesis because juvenile stress can result in reduced activity/exploration and enhanced anxiety, although results are not always consistent. Moreover, an in-depth characterization of changes in the HPA axis is lacking. In the present study, the long-lasting effects of juvenile stress on adult behavior and HPA function were evaluated in male rats. The juvenile stress consisted of a combination of stressors (cat odor, forced swim and footshock) during postnatal days 23-28. Juvenile stress reduced the maximum amplitude of the adrenocorticotropic hormone (ACTH) levels (reduced peak at lights off), without affecting the circadian corticosterone rhythm, but other aspects of the HPA function (negative glucocorticoid feedback, responsiveness to further stressors and brain gene expression of corticotrophin-releasing hormone and corticosteroid receptors) remained unaltered. The behavioral effects of juvenile stress itself at adulthood were modest (decreased activity in the circular corridor) with no evidence of enhanced anxiety. Imposition of an acute severe stressor (immobilization on boards, IMO) did not increase anxiety in control animals, as evaluated one week later in the elevated-plus maze (EPM), but it potentiated the acoustic startle response (ASR). However, acute IMO did enhance anxiety in the EPM, in juvenile stressed rats, thereby suggesting that juvenile stress sensitizes rats to the effects of additional stressors.

  14. Effects of morphine on thermal sensitivity in adult and aged rats.

    Science.gov (United States)

    Morgan, Drake; Mitzelfelt, Jeremiah D; Koerper, Lorraine M; Carter, Christy S

    2012-06-01

    There are contradictory data regarding older individuals' sensitivity to pain stimulation and opioid administration. Adult (12-16 months; n = 10) and aged (27-31 months; n = 7) male F344xBN rats were tested in a thermal sensitivity procedure where the animal chooses to remain in one of two compartments with floors maintained at various temperatures ranging from hot (45°C) through neutral (30°C) to cold (15°C). Effects of morphine were determined for three temperature comparisons (ie, hot/neutral, cold/neutral, and hot/cold). Aged rats were more sensitive to cold stimulation during baseline. Morphine produced antinociception during hot thermal stimulation, but had no effect on cold stimulation. The antinociceptive (and locomotor-altering) effects of morphine were attenuated in aged rats. These data demonstrate age-related differences in baseline thermal sensitivity and responsiveness to opioids. Based on behavioral and physiological requirements of this procedure, it is suggested that thermal sensitivity may provide a relevant animal model for the assessment of pain and antinociception.

  15. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Directory of Open Access Journals (Sweden)

    Dubner Ronald

    2005-09-01

    Full Text Available Abstract Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors to compare gene expression profiles in the lumbar spinal dorsal horn (LDH of adult (P60 male rats that received neonatal CAR treatment within (at postnatal day 3; P3 and outside (at postnatal 12; P12 of the sensitive period. The data were obtained both without inflammation (at baseline and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems in the LDH ipsilateral to the

  16. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats.

    Science.gov (United States)

    Ren, Ke; Novikova, Svetlana I; He, Fang; Dubner, Ronald; Lidow, Michael S

    2005-09-22

    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The

  17. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    Science.gov (United States)

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  18. Subculture of proliferating adult rat hepatocytes in medium supplemented with nicotinamide and EGF.

    Science.gov (United States)

    Mitaka, T; Kojima, T; Mizuguchi, T; Mochizuki, Y

    1996-09-01

    To establish parenchymal hepatocyte cell lines, we tried to subculture the primary hepatocytes isolated from adult rats. The hepatocytes were cultured in serum-free modified Dulbecco's modified Eagle's medium supplemented with 10 mM nicotinamide and 10 ng/ml epidermal growth factor. When 6 x 10(5) cells were plated on 35-mm dishes coated with rat tail collagen, the cells proliferated and reached confluence at Day 6 to Day 8. The first subculture was carried out at Day 8 using 0.005% collagenase and gentle pipettings. Most cells were recovered and plated on the new dishes coated with the collagen (first passage). The attached cells could proliferate and reached near confluence when the cells occupied more than two-thirds of the dish surface. About a week after the first subculture, the second one was conducted. Although the number of the recovered cells was smaller than at the first passage, the cells could attach and proliferate to a certain extent. Thereafter, they were maintained for more than 2 mo, but they never overgrew. Albumin secretion into the culture medium was confirmed in the subcultured cells. Ultrastructurally, these subcultured cells possessed hepatic characteristics such as peroxisomes with a crystalline nucleiod and bile-canaliculus structures. When 10% fetal bovine serum and ascorbic acid 2-phosphate were added to the cells of the second passage, they began to proliferate very slowly. These proliferating cells were mainly mononucleate and had a small cytoplasm. In addition, some of them could differentitate into typical mature hepatocytes by forming a three-dimensional structure interacting with nonparenchymal cells. In this experiment, we showed the successful subculturing of parenchymal hepatocytes isolated from adult rats and provided evidence that the subcultured cells still have the potential to proliferate and to differentiate.

  19. The Histopathological Effect of Sildenafil Citrate on Superior Colliculus of Adult Male Rat

    Directory of Open Access Journals (Sweden)

    Amany Shams

    2013-08-01

    Full Text Available Objective: Preclinical and very limited clinical studies suggest that sildenafil may have therapeutic potential in selected neurological disorders. However, many neurological side effects of sildenafil have been reported. This work aimed to clarify the histopathological effect of sildenafil citrate on the superior colliculus (SC of adult male albino rat. Material and methods: 24 adult male albino rats were used and divided into 4 groups. The first 3 groups were received respectively sildenafil citrate orally at doses 0.25, 0.70 and 1.43mg/kg body weight daily for 30 days while the 4th group was used as control. At end of the treatment, the superior colliculi were undergone light and electron microscopic investigation. Results: In the control group, superficial part of the SC has neural cells and myelinated nerve fibers. With least dose of sildenafil, the superficial part of SC revealed disturbance in neural tissue with dilated capillaries and vacuoles. Some neurons showed deeply stained nuclei shrunken cytoplasm. Some cells showed enlarged mitochondria and dilated endoplasmic reticulum. With medium dose of sildenafil, SC showed more disturbances; stripped myelin sheaths or widely separated myelin lamellae, dilated blood vessels with large vacuoles around them and many neurons with apoptotic criteria. However, maximum dose of sildenafil induced massive destruction of edematous neural tissue; invasion of the surface with massive blood vessels, marked decrease in thickness of myelin sheaths and the neural cells revealed degenerative and apoptotic changes. The mean number and size of cells revealed significantly progressive decrease in all treated rats with increasing doses of the drug. Conclusion: Long-term, daily use of sildenafil can lead to pathological effect in the superior colliculus which may be implicated in visual disturbance and this effect is dose dependent, so neurological effect of sildenafil necessitates further investigations. [J

  20. Identification of interneurons activated at different inclines during treadmill locomotion in adult rats.

    Science.gov (United States)

    Tillakaratne, Niranjala J K; Duru, Paul; Fujino, Hidemi; Zhong, Hui; Xiao, Mei Si; Edgerton, V Reggie; Roy, Roland R

    2014-12-01

    By using c-fos as an activity-dependent marker, we identified the cholinergic interneurons around the central canal and lumbar interneurons throughout the gray matter that were activated after a 30-min bout of quadrupedal treadmill stepping at a 0° or 25° incline in adult rats. Increased loading (elevated treadmill incline) imposed during treadmill stepping activated more cholinergic interneurons in the proximity of the central canal, i.e., central canal cluster cells and partition neurons. Since cholinergic central canal cells are thought to modulate motoneuron excitability, these data suggest that increased load during stepping may increase motoneuronal activity through activating more cholinergic central canal cells. We identified the muscle-specific motoneurons and afferent terminals in the spinal cord by injecting cholera toxin subunit B in the soleus and tibialis anterior muscles. The number of interneurons in lumbar segments L4 (tibialis anterior) and L5 (soleus) was higher in both groups that stepped on the treadmill compared with control and was highest in rats that stepped at a 25° incline. In a majority of laminae, the distribution of total and muscle-specific activated interneurons was highest in the 25° incline group and lowest in the control group for both muscles. These data could reflect increased peripheral (proprioceptive) input as well as supraspinal drive associated with stepping and demonstrate the differences in 1) the activation of cholinergic interneurons near the central canal and 2) the laminar and segmental location of interneurons throughout the gray matter that play a role in generating stepping under different loading conditions in adult rats.

  1. Effects of H2S on the central regulation of respiration in adult rats.

    Science.gov (United States)

    Li, Hui; Hou, Xuefei; Ding, Yan; Nie, Lihong; Zhou, Hua; Nie, Zheng; Tang, Yuhong; Chen, Li; Zheng, Yu

    2014-04-16

    Hydrogen sulfide (H2S) is a gasotransmitter synthesized from cysteine (Cys) by pyridoxal-5'-phosphate-dependent enzymes. We investigated the potential roles of H2S in the regulation of central rhythmic respiration in adult rats in vivo. Sodium hydrosulfide (NaHS: 2.5 mM, 10 mM, and 5 mM) as a source of exogenous H2S, Cys (2.5 mM, 10 mM and 5 mM) as a source of endogenous H2S, 2.5 mM Cys+10 mM hydroxylamine (NH2OH), and 10 mM NH2OH, respectively, were intracerebroventricularly injected into rats. The rhythmic discharge of the diaphragm, including burst duration (BD), burst interval (BI), burst frequency (BF), and integrated amplitude (IA), and arterial blood pressure (BP) were measured at different time points. The results were analyzed by analysis of variance. A total of 2.5 mM NaHS did not significantly affect changes in BD, BI, BF, IA, or BP (P>0.05), whereas 2.5 mM Cys significantly altered BD, BI, and BF (P0.05). A concentration of 5 mM Cys had effects similar to those of 5 mM NaHS; both induced biphasic respiratory responses and changed the BF (P0.05) except for BD was temporarily decreased (P<0.05) in the 2.5 mM Cys+10 mM NH2OH group. These results suggest that exogenous and endogenous H2S may participate in the regulation of respiratory activity in adult rats.

  2. HISTOLOGICAL STUDIES OF THE EFFECTS OF MONOSODIUM GLUTAMATE ON THE MEDIAL GENICULATE BODY OF ADULT WISTAR RATS

    Directory of Open Access Journals (Sweden)

    A.O.Eweka

    2007-01-01

    Full Text Available Histological effects of Monosodium glutamate (MSG commonly used as food additive on the medial geniculate body (MGB of adult wistar rats were carefully studied. The rats of both sexes (n=24, average weight of 185g were randomly assigned into two treatments (n=16 and control (n=8 groups.The rats in the treatment groups received 3g and 6g of MSG thoroughly mixed with their feeds for fourteen days, while the control rats received equal amounts of feeds without MSG added. The rats were fed with grower's mash purchased from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day fifteen of the experiment. The medial geniculate body was carefully dissected out and quickly fixed in 10% formal saline for routine histological study after H&E method.The histological findings after H&E methods indicated that the treated sections of the medial geniculate body showed some cellular degenerative changes, autophagic vacuoles with some vacuolations appearing in the stroma, and some degree of neuronal hypertrophy when compared to the control sections. These findings indicate that MSG consumption may have a deleterious effect on the neurons of the medial geniculate body (MGB. MSG may probably have adverse effects on the auditory sensibilities by its deleterious effects on the nerve cells of the MGB of adult wistar rats. It is recommended that further studies aimed at corroborating these observations be carried out.

  3. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  4. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  5. Perinatal Resveratrol Supplementation to Spontaneously Hypertensive Rat Dams Mitigates the Development of Hypertension in Adult Offspring.

    Science.gov (United States)

    Care, Alison S; Sung, Miranda M; Panahi, Sareh; Gragasin, Ferrante S; Dyck, Jason R B; Davidge, Sandra T; Bourque, Stephane L

    2016-05-01

    This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; Phypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.

  6. Effect of peripheral nerve on the neurite growth from retinal explants in culture

    Institute of Scientific and Technical Information of China (English)

    LiuLi; SoKwokfai

    1990-01-01

    The effect of peripheral nerve (PN) on neurite outgrowth from retinal explants of adult hamsters was examined.Cultures of retinal explants,and co-cultures of retinal explants and PN were performed using chick retinal basement memebrane (BM) as substrate.The presence of PN increases the number and length of neurite outgrowth.In addition,a high proportion of neurites situated close to PN tend to grow towards it.Since there was no contact between retinal explants and PN,we suggest that PN might secete diffusible substances to attract the neurites to grow towards it.

  7. Stem cell therapy for retinal diseases

    Institute of Scientific and Technical Information of China (English)

    Jose Mauricio Garcia,; Luisa Mendon?a; Rodrigo Brant; Murilo Abud; Caio Regatieri; Bruno Diniz

    2015-01-01

    In this review, we discuss about current knowledgeabout stem cell (SC) therapy in the treatment of retinaldegeneration. Both human embryonic stem cell andinduced pluripotent stem cell has been growth inculture for a long time, and started to be explored inthe treatment of blinding conditions. The Food andDrug Administration, recently, has granted clinical trialsusing SC retinal therapy to treat complex disorders, asStargardt's dystrophy, and patients with geographicatrophy, providing good outcomes. This study'sintent is to overview the critical regeneration of thesubretinal anatomy through retinal pigment epitheliumtransplantation, with the goal of reestablish importantpathways from the retina to the occipital cortex of thebrain, as well as the differentiation from pluripotentquiescent SC to adult retina, and its relationshipwith a primary retinal injury, different techniques oftransplantation, management of immune rejection andtumorigenicity, its potential application in improvingpatients' vision, and, finally, approaching future directionsand challenges for the treatment of several conditions.

  8. Characterization and enrichment of hepatic progenitor cells in adult rat liver

    Institute of Scientific and Technical Information of China (English)

    Ai-Lan Qin; Xia-Qiu Zhou; Wei Zhang; Hong Yu; Qin Xie

    2004-01-01

    AIM: To detect the markers of oval cells in adult rat liver and to enrich them for further analysis of characterization in vitro.METHODS: Rat model for hepatic oval cell proliferation was established with 2-acetylaminofluorene and two third partial hepatectomy (2-AAF/PH). Paraffin embedded rat liver sections from model (11 d after hepatectomy) and control groups were stained with HE and OV6, cytokeratin19 (CK19),albumin, alpha fetoprotein (AFP), connexin43, and c-kit antibodies by immunohistochemistry. Oval cell proliferation was measured with BrdU incorporation test. C-kit positive oval cells were enriched by using magnetic activated cell sorting (MACS) .The sorted oval cells were cultured in a low density to observe colony formation and to examine their characterization in vitroby immunocytochemistry and RT-PCR. RESULTS: A 2-AAF/PH model was successfully established to activate the oval cell compartment in rat liver. BrdU incorporation test of oval cell was positive. The hepatic oval cells coexpressed oval cell specific marker OV6, hepatocytemarker albumin and cholangiocyte-marker CK19. They also expressed AFP and connexin 43. C-kit, one hematopoietic stem cell receptor, was expressed in hepatic oval cells at high levels. By using c-kit antibody in conjunction with MACS,we developed a rapid oval cell isolation protocol. The sorted cells formed colony when cultured in vitro. Cells in the colony expressed albumin or CK19 or coexpressed both and BrdU incorporation test was positive. RT-PCR on colony showed expression of albumin and CK19 gene.CONCLUSION: Hepatic oval cells in the 2-AAF/PH model had the properties of hepatic stem/progenitor cells. Using MACS, we established a method to isolate oval cells. The sorted hepatic oval cells can form colony in vitro which expresses different combinations of phenotypic markers and genes from both hepatocytes and cholangiocyte lineage.

  9. AVPV neurons containing estrogen receptor-beta in adult male rats are influenced by soy isoflavones

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2007-02-01

    Full Text Available Abstract Background Isoflavones, the most abundant phytoestrogens in soy foods, are structurally similar to 17beta-estradiol. It is known that 17beta-estradiol induces apoptosis in anteroventral periventricular nucleus (AVPV in rat brain. Also, there is evidence that consumption of soy isoflavones reduces the volume of AVPV in male rats. Therefore, in this study, we examined the influence of dietary soy isoflavones on apoptosis in AVPV of 150 day-old male rats fed either a soy isoflavone-free diet (Phyto-free or a soy isoflavone-rich diet (Phyto-600. Results The occurrence of apoptosis in AVPV was examined by TUNEL staining. The incidence of apoptosis was about 10 times higher in the Phyto-600 group (33.1 ± 1.7% than in the Phyto-free group (3.6 ± 1.0%. Furthermore, these apoptotic cells were identified as neurons by dual immunofluorescent staining of GFAP and NeuN as markers of astrocytes and neurons, respectively. Then the dopaminergic neurons in AVPV were detected by immunohistochemistry staining of tyrosine hydroxylase (TH. No significant difference in the number of TH neurons was observed between the diet treatment groups. When estrogen receptor (ER alpha and beta were examined by immunohistochemistry, we observed a 22% reduction of ERbeta-positive cell numbers in AVPV with consumption of soy isoflavones, whereas no significant change in ERalpha-positive cell numbers was detected. Furthermore, almost all the apoptotic cells were ERbeta-immunoreactive (ir, but not ERalpha-ir. Last, subcutaneous injections of equol (a major isoflavone metabolite that accounts for approximately 70–90% of the total circulating plasma isoflavone levels did not alter the volume of AVPV in adult male rats. Conclusion In summary, these findings provide direct evidence that consumption of soy isoflavones, but not the exposure to equol, influences the loss of ERbeta-containing neurons in male AVPV.

  10. The effects of biological sex and gonadal hormones on learning strategy in adult rats.

    Science.gov (United States)

    Hawley, Wayne R; Grissom, Elin M; Barratt, Harriet E; Conrad, Taylor S; Dohanich, Gary P

    2012-02-28

    When learning to navigate toward a goal in a spatial environment, rodents employ distinct learning strategies that are governed by specific regions of the brain. In the early stages of learning, adult male rats prefer a hippocampus-dependent place strategy over a striatum-dependent response strategy. Alternatively, female rats exhibit a preference for a place strategy only when circulating levels of estradiol are elevated. Notably, male rodents typically perform better than females on a variety of spatial learning tasks, which are mediated by the hippocampus. However, limited research has been done to determine if the previously reported male spatial advantage corresponds with a greater reliance on a place strategy, and, if the male preference for a place strategy is impacted by removal of testicular hormones. A dual-solution water T-maze task, which can be solved by adopting either a place or a response strategy, was employed to determine the effects of biological sex and hormonal status on learning strategy. In the first experiment, male rats made more correct arm choices than female rats during training and exhibited a bias for a place strategy on a probe trial. The results of the second experiment indicated that testicular hormones modulated arm choice accuracy during training, but not the preference for a place strategy. Together, these findings suggest that the previously reported male spatial advantage is associated with a greater reliance on a place strategy, and that only performance during the training phase of a dual-solution learning task is impacted by removal of testicular hormones.

  11. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2016-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...

  12. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik;

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  13. Neonatal Androgen Exposure Causes Persistent Gut Microbiota Dysbiosis Related to Metabolic Disease in Adult Female Rats.

    Science.gov (United States)

    Moreno-Indias, Isabel; Sánchez-Alcoholado, Lidia; Sánchez-Garrido, Miguel Ángel; Martín-Núñez, Gracia María; Pérez-Jiménez, Francisco; Tena-Sempere, Manuel; Tinahones, Francisco J; Queipo-Ortuño, María Isabel

    2016-12-01

    Alterations of gut microbiome have been proposed to play a role in metabolic disease, but the major determinants of microbiota composition remain ill defined. Nutritional and sex hormone challenges, especially during early development, have been shown to permanently alter adult female phenotype and contribute to metabolic disturbances. In this study, we implemented large-scale microbiome analyses to fecal samples from groups of female rats sequentially subjected to various obesogenic manipulations, including sex hormone perturbations by means of neonatal androgenization or adult ovariectomy (OVX), as a model of menopause, to establish whether these phenomena are related to changes in gut microbiota. Basic metabolic profiles concerning glucose/insulin homeostasis were also explored. The effects of the sex hormonal perturbations, either developmentally (androgenization) or in adulthood (OVX), clearly outshone the impact of nutritional interventions, especially concerning the gut microbiota profile. Notably, we observed a lower diversity in the androgenized group, with the highest Firmicutes to Bacteroidetes ratio, supporting the occurrence of durable alterations in gut microbiota composition, even in adulthood. Moreover, the elimination of adult ovarian secretions by OVX affected the richness of gut microbiota. Our data are the first to document the durable impact of sex steroid manipulations, and particularly early androgenization, on gut microbiota composition. Such dysbiosis is likely to contribute to the metabolic perturbations of conditions of obesity linked to gonadal dysfunction in the female.

  14. Persistent sodium current properties in hippocampal CA1 pyramidal neurons of young and adult rats.

    Science.gov (United States)

    Lunko, Oleksii; Isaev, Dmytro; Maximyuk, Oleksandr; Ivanchick, Gleb; Sydorenko, Vadym; Krishtal, Oleg; Isaeva, Elena

    2014-01-24

    Persistent tetrodotoxin-sensitive sodium current (INaP) plays an important role in cellular and neuronal network excitability in physiological conditions and under different pathological circumstances. However, developmental changes in INaP properties remain largely unclear. In the present study using whole cell patch clamp technique we evaluated INaP properties in CA1 hippocampal pyramidal neurons isolated from young (postnatal day (P) 12-16) and adult (P60-75) rats. We show that the INaP density is substantially larger in the adult group. Although INaP inactivation characteristics were found to be similar in both groups, voltage dependence of INaP activation is shifted to more negative membrane potentials (young: -48.6±0.5mV vs. adult: -52.4±0.2mV, p<0.01). Our data indicates the increase of INaP contribution in the basal membrane sodium conductivity in the mature hippocampus.

  15. Expression of alpha-synuclein in different brain parts of adult and aged rats.

    Science.gov (United States)

    Adamczyk, A; Solecka, J; Strosznajder, J B

    2005-03-01

    The synucleins are a family of presynaptic proteins that are abundant in neurons and include alpha-, beta, and gamma-synuclein. Alpha-synuclein (ASN) is involved in several neurodegenerative age-related disorders but its relevance in physiological aging is unknown. In the present study we investigated the expression of ASN mRNA and protein in the different brain parts of the adult (4-month-old) and aged (24-month-old) rats by using RT-PCR technique and Western blot, respectively. Our results indicated that mRNA expression and immunoreactivity of ASN is similar in brain cortex, hippocampus and striatum but markedly lower in cerebellum comparing to the other brain parts. Aging lowers ASN mRNA expression in striatum and cerebellum by about 40%. The immunoreactivity of ASN in synaptic plasma membranes (SPM) from aged brain cortex, hippocampus and cerebellum is significantly lower comparing to adult by 39%, 24% and 65%, respectively. Beta-synuclein (BSN) was not changed in aged brain comparing to adult. Age-related alteration of ASN may affect the nerve terminals structure and function.

  16. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    Science.gov (United States)

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.

  17. Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro.

    Directory of Open Access Journals (Sweden)

    Satoru Moritoh

    Full Text Available BACKGROUND: Organotypic tissue culture of adult rodent retina with an acute gene transfer that enables the efficient introduction of variable transgenes would greatly facilitate studies into retinas of adult rodents as animal models. However, it has been a difficult challenge to culture adult rodent retina. The purpose of this present study was to develop organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We established an interphase organotypic tissue culture for adult rat retinas (>P35 of age which was optimized from that used for adult rabbit retinas. We implemented three optimizations: a greater volume of Ames' medium (>26 mL per retina, a higher speed (constant 55 rpm of agitation by rotary shaker, and a greater concentration (10% of horse serum in the medium. We also successfully applied this method to adult mouse retina (>P35 of age. The organotypic tissue culture allowed us to keep adult rodent retina morphologically and structurally intact for at least 4 days. However, mouse retinas showed less viability after 4-day culture. Electrophysiologically, ganglion cells in cultured rat retina were able to generate action potentials, but exhibited less reliable light responses. After transfection of EGFP plasmids by particle-mediated acute gene transfer, we observed EGFP-expressing retinal ganglion cells as early as 1 day of culture. We also introduced polarized-targeting fusion proteins such as PSD95-GFP and melanopsin-EYFP (hOPN4-EYFP into rat retinal ganglion cells. These fusion proteins were successfully transferred into appropriate locations on individual retinal neurons. CONCLUSIONS/SIGNIFICANCE: This organotypic culture method is largely applicable to rat retinas, but it can be also applied to mouse retinas with a caveat regarding cell viability. This method is quite flexible for use in acute gene transfection in adult rodent retina, replacing

  18. Histological studies of the effects of monosodium glutamate of the Fallopian tubes of adult female Wistar rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-01-01

    Full Text Available Background: The effect of monosodium glutamate used as food additive on the fallopian tubes of adult Wistar rat was investigated. Material and Methods: Adult female Wistar rats (n=24 of average weight of 230g were randomly assigned into three groups A, B and C in each group (n=8. The treatment groups (A & B were given 0.04mg/kg and 0.08mg/kg of monosodium glutamate thoroughly mixed with the growers′ mash, respectively on a daily basis. The control group (C received equal amount of feeds (Growers′ mash without monosodium glutamate added for fourteen days. The growers′ mash was obtained from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and the rats were given water liberally. The rats were sacrificed on day fifteen of the experiment. The fallopian tubes were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological procedures. Result: The histological findings in the treated groups showed evidence of cellular hypertrophy, degenerative and atrophic changes, and lysed red blood cells in lumen with the group that received 0.08mg/kg of monosodium glutamate more severe. Conclusion: MSG may have some deleterious effects on the fallopian tubes of adult female Wistar rats at higher doses and by extension may contribute to the causes of female infertility. It is recommended that further studies aimed at corroborating these findings be carried out.

  19. TIME COURSE OF CHOLINESTERASE INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL CARBOFURAN, FORMETANATE, METHOMYL, METHIOCARB, OXAMYL ON PROPOXUR.

    Science.gov (United States)

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...

  20. Effects of chronic overload on muscle hypertrophy and mTOR signaling in adult and aged rats

    Science.gov (United States)

    We examined the effect of 28 days of overload on mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) signaling in young adult (Y; 6 mo old) and aged (O; 30 mo old) Fischer 344 x Brown Norway rats subjected to bilateral synergist ablation (SA) of two-thirds of the gas...

  1. Effect of neonatal or adult heat acclimation on testicular and epididymal morphometry and sperm production in rats.

    Science.gov (United States)

    Kurowicka, B; Dietrich, G J; Kotwica, G

    2015-03-01

    The accessory gland weight, testicular and epididymal morphometry and sperm production were analyzed in four groups of rats housed at 20 or 34°C: (1) control rats (CR) kept at 20°C from birth to day 90; (2) adult heat-acclimated rats (AHA) kept at 20°C from birth to day 45 followed by 34°C to day 90; (3) neonatal heat-acclimated rats (NHA) kept at 34°C from birth to day 90 and (4) de-acclimated rats (DA) kept at 34°C from birth to day 45 followed by 20°C to day 90. In NHA and DA rats, accessory gland weight was higher than in controls. Despite the lack of differences in testicular and epididymal morphometry, curvilinear velocity of spermatozoa was lower in the NHA group compared to controls. Areas of seminiferous tubules were lower in the DA than in CR and NHA groups, however, sperm concentration and motility were not affected by the treatment in this group. In AHA rats, epithelium of approximately 20% of seminiferous tubules was degenerated and Sertoli cell number was lower in the remaining tubules. In contrast to sperm motility, epididymal duct area, area of the duct occupied by spermatozoa and cauda epididymis sperm concentration were lower in AHA rats than in the other groups. In conclusion, neonatal heat acclimation did not affect the testicular morphometry and epididymal sperm concentration, suggesting adjustment to high ambient temperature. On the contrary, adult heat acclimation of rats affected the examined parameters, leading to decreased sperm concentration.

  2. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  3. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    OpenAIRE

    Andrea Matteucci; Monica Varano; Lucia Gaddini; Cinzia Mallozzi; Marika Villa; Flavia Pricci; Fiorella Malchiodi-Albedi

    2014-01-01

    In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM) and analyzed in terms of apoptosis and caspase activation and c...

  4. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model.

    Science.gov (United States)

    Miyake, Ayumi; Araki, Masasuke

    2014-07-01

    Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three-dimensional (3-D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin-positive cells nor 3-D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ.

  5. Effects of juvenile isolation and morphine treatment on social interactions and opioid receptors in adult rats: behavioural and autoradiographic studies.

    Science.gov (United States)

    Van den Berg, C L; Van Ree, J M; Spruijt, B M; Kitchen, I

    1999-09-01

    The consequences of juvenile isolation and morphine treatment during the isolation period on (social) behaviour and mu-, delta- and kappa-opioid receptors in adulthood were investigated by using a social interaction test and in vitro autoradiography in rats. Juvenile isolation reduced social exploration in adults. Morphine treatment counteracted this reduction in isolated rats, but decreased social exploration in nonisolated rats. Self-grooming and nonsocial exploration were enhanced after juvenile isolation. Morphine treatment had no effect on self-grooming, but suppressed nonsocial exploration in isolated rats. With respect to the opioid receptors, juvenile isolation resulted in regiospecific increases in mu-binding sites with a 58% increase in the basolateral amygdala and a 33% increase in the bed nucleus of stria terminalis. Morphine treatment in isolated rats reversed this upregulation in both areas. The number of delta-binding sites did not differ between the experimental groups. A general upregulation of kappa-binding sites was observed after juvenile isolation, predominantly in the cortical regions, the hippocampus and the substantia nigra. Morphine treatment did not affect the upregulation of kappa-receptors. The results show that juvenile isolation during the play period causes long-term effects on social and nonsocial behaviours and on the number of mu- and kappa- but not delta-opioid receptors in distinct brain areas. The number of mu-receptors in the basolateral amygdala appears to be negatively correlated with the amount of social exploration in adult rats.

  6. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    Science.gov (United States)

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  7. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats.

    Science.gov (United States)

    Cardoso, Eria; Rezin, Gislaine Tezza; Zanoni, Elton Torres; de Souza Notoya, Frederico; Leffa, Daniela Dimer; Damiani, Adriani Paganini; Daumann, Francine; Rodriguez, Juan Carlos Ortiz; Benavides, Roberto; da Silva, Luciano; Andrade, Vanessa M; da Silva Paula, Marcos Marques

    2014-01-01

    The use of gold nanoparticles is increasing in medicine; however, their toxic effects remain to be elucidated. Studies show that gold nanoparticles can cross the blood-brain barrier, as well as accumulate in the brain. Therefore, this study was undertaken to better understand the effects of gold nanoparticles on rat brains. DNA damage parameters were evaluated in the cerebral cortex of adult rats submitted to acute and chronic administration of gold nanoparticles of two different diameters: 10 and 30nm. During acute administration, adult rats received a single intraperitoneal injection of either gold nanoparticles or saline solution. During chronic administration, adult rats received a daily single injection for 28 days of the same gold nanoparticles or saline solution. Twenty-four hours after either single (acute) or last injection (chronic), the rats were euthanized by decapitation, their brains removed, and the cerebral cortices isolated for evaluation of DNA damage parameters. Our study showed that acute administration of gold nanoparticles in adult rats presented higher levels of damage frequency and damage index in their DNA compared to the control group. It was also observed that gold nanoparticles of 30nm presented higher levels of damage frequency and damage index in the DNA compared to the 10nm ones. When comparing the effects of chronic administration of gold nanoparticles of 10 and 30nm, we observed that occurred significant different index and frequency damage, comparing with control group. However, there is no difference between the 10 and 30nm groups in the levels of DNA damage for both parameters of the Comet assay. Results suggest that gold nanoparticles for both sizes cause DNA damage for chronic as well as acute treatments, although a higher damage was observed for the chronic one.

  8. Applied anatomic study about the central retinal artery in SD rats%SD大鼠视网膜中央动脉的应用解剖学研究

    Institute of Scientific and Technical Information of China (English)

    万炜; 刘政海; 伍校琼; 王晓晟; 罗学港

    2013-01-01

    目的 为建立稳定可靠的视神经损伤动物模型寻求解剖学依据.方法 用红色乳胶灌注技术显示正常SD大鼠视网膜中央动脉的来源、分支、分布及其与视神经的关系,并采用体视显微镜摄片测量;明胶墨汁灌注技术显示距眼球后极2.0mm或6.0 nun处横断视神经后视网膜的血供. 结果 视网膜中央动脉及其分支在视神经鞘内始终与视神经干伴行,视网膜中央动脉起始部到眼球后极的距离为(5.784±0.054)mm;距离眼球后极6.0 mm处鞘内视神经横断组大鼠视网膜单位面积血管数日高于其他部位横断组.结论 在制备视神经损伤SD大鼠模型时,损伤视神经应在鞘内进行,损伤部位距眼球后极6.0 mm最佳.%Objective To provide anatomical basis for establishment of a reliable animal model of optic nerve injury.Method Red latex perfusion technology was used to observe the origin,course,distribution of central retinal artery,and its relationship with the optic nerve in normal SD rats and measurement about several parameters was made on the micrographs recorded using the stereoscopic microscope; Moreover,gelatin-ink perfusion technique was adopted to demonstrate the blood supply of the retina with the optic nerve transected at 2.0 mm and 6.0 mm posterior to the posterior pole of the eye.Result Our study shown the central retinal artery and its branches run with the optic nerve at its course within the optic nerve sheath; the origin of the central retinal artery was located (5.784±0.054) mm posterior to the posterior pole of the eye; the vascular density of the central retinal nerve is highest at the sectional surface of it 6.0 mm posteior to the posterior role of the eye.Conclusion In the preparation of the SD rats model with nerve injury,transection should be made within the sheath,with the best place of the transection being located 6.0 mm posterior to the posterior pole of the eye.

  9. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Ch. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)]. E-mail: meinecke@physik.uni-leipzig.de; Morawski, M. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Reinert, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Arendt, T. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Butz, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)

    2006-08-15

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 {mu}m thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 {mu}m) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques.

  10. ACQUISITION OF FREEZING RESPONSE IN RATS: SEX DIFFERENCES IN ADOLESCENTS AND ADULTS

    Directory of Open Access Journals (Sweden)

    Cristina Vargas-Irwin

    2011-12-01

    Full Text Available Pavlovian fear conditioning is one of the most popular preclinical models in the studyof Post-Traumatic Stress Disorder (PTSD. The aim of the present research wasexplore the sex differences that characterize PTSD by means of this experimentalparadigm, as well as to offer a preliminary description of how these sex differencesbehave throughout development. Forty five naïve rats, of Wistar descent were usedas subjects, with 18 males and 27 females approximately balanced by litter acrossthe two experimental groups: adolescents and adults. The results show significantdifferences in the second measurement of the conditioned stimulus in the interactionbetween sex and age and to compare the tree measurements of the conditionedstimulus. Results are discussed regarding the discrepancies in the literature regardingthe effect of the variables evaluated in the acquisition of Conditioned fear.

  11. Systemic physiology and neuroapoptotic profiles in young and adult rats exposed to surgery

    DEFF Research Database (Denmark)

    Ibrahim, Rami Mossad; Krammer, Caspar Weel; Hansen, Tom Giedsing;

    2015-01-01

    to one of four anaesthetics regimens: (i) sevoflurane/dexmedetomidine, (ii) sevoflurane/fentanyl; (iii) propofol/dexmedetomidine, and (iv) propofol/fentanyl. Animals underwent a dorsal skin flap procedure while physiologic, metabolic and biochemical parameters were closely monitored. Neuroapoptotic...... of sevoflurane and dexmedetomidine resulted in the highest number of caspase-3 positive cells, although the extent of cell death remained relatively low in all experimental groups. CONCLUSION: Combination of anaesthesia and surgery induces significant perturbations of physiological parameters in both young...... and adult spontaneously breathing rats undergoing surgery. These observations further enlighten the need for detailed physiological monitoring under these experimental conditions. Although some statistically significant differences in activated caspase-3 profiles were detected between experimental groups...

  12. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... induces depression-like behavior, without significantly changing neurogenesis, the total number of neurons or the volume of the hippocampus. Further, electroconvulsive stimulation prevents stress-induced depression-like behavior and increases neurogenesis. The total number of neurons and the granule cell...

  13. Dissociable effects of ethanol consumption during the light and dark phase in adolescent and adult Wistar rats.

    Science.gov (United States)

    Walker, Brendan M; Walker, Jennifer L; Ehlers, Cindy L

    2008-03-01

    In adolescence, high levels of drinking over short episodes (binge drinking) is commonly seen in a proportion of the population. Because adolescence is an important neurodevelopmental period, the effects of binge drinking on brain and behavior has become a significant health concern. However, robust animal models of binge drinking in rats are still being developed and therefore further efforts are needed to optimize paradigms for inducing maximal self-administration of alcohol. In the present experiment, 1-h limited-access self-administration sessions were instituted to model excessive drinking behavior in adolescent and adult Wistar rats. In addition to age, the involvement of sex and phase within the light/dark cycle (i.e., drinking in the light or dark) on sweetened 5% ethanol intake were also evaluated over 14 limited-access sessions using a between-groups design. The results of the experiment showed that over 14 limited-access sessions, sweetened ethanol intake (g/kg) was significantly higher for adolescents compared to adults. Females were also found to drink more sweetened ethanol as compared to males. Additionally, drinking in the light produced a robust increase in sweetened ethanol intake (g/kg) in adolescents, as compared to adults during the light phase and as compared to both adolescent and adult rats drinking in the dark. Furthermore, the increase in ethanol consumption observed in adolescents drinking during the light phase was dissociable from sweetened solution intake patterns. These results identify that age, sex, and time of day all significantly influence consumption of sweetened ethanol in Wistar rats. Knowledge of these parameters should be useful for future experiments attempting to evaluate the effects of self-administered ethanol exposure in adult and adolescent rats.

  14. Dark rearing maintains tyrosine hydroxylase expression in retinal amacrine cells following optic nerve transection

    Institute of Scientific and Technical Information of China (English)

    Wei Wan; Zhenghai Liu; Xiaosheng Wang; Xuegang Luo

    2012-01-01

    The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle, reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5-7 days. The number of TH-positive synaptic particles correlated with the TH levels, indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5-7 days after optic nerve injury) in retinal amacrine cells.

  15. Behavioral differences between late preweanling and adult female Sprague-Dawley rat exploration of animate and inanimate stimuli and food.

    Science.gov (United States)

    Smith, Kiersten S; Morrell, Joan I

    2011-03-01

    The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli.

  16. Toxicity Induced after Subchronic Administration of the Synthetic Food Dye Tartrazine in Adult Rats, Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Narges El Golli

    2016-04-01

    Full Text Available The present study was conducted to evaluate the toxic potential of tartrazine, a food color, in different tissues in adult rat: blood, liver, kidneys, and spleen. Tartrazine was administered orally at a dose of 300 mg/kg of body weight to adult male Wistar rats during a period of 30 days. Tartrazine treatment led to an increase in platelets count, a reduction in peripheral lymphocytes and in spleen T CD8-lymphocytes. Furthermore, tartrazine increased the activities of hepatocellular enzymes and promoted changes in kidney biomarkers. In order to explore the possible mechanism involved, oxidative-stress assessment was performed. Results identified critical oxidative alterations in all tested organs, as shown by the promotion of lipid peroxidation and the modification of endogenous antioxidant-defense enzymes. Thus, tartrazine is able to induce in adult rats’ hematotoxicity, immunotoxicity, and liver and kidney injuries by changing the whole balance between oxidants and antioxidants.

  17. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats.

    Science.gov (United States)

    Armenti, AnnMarie E; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 microg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P<0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P<0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P<0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor beta was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P<0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P<0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  18. Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat.

    Science.gov (United States)

    Cizkova, Dasa; Nagyova, Miriam; Slovinska, Lucia; Novotna, Ivana; Radonak, Jozef; Cizek, Milan; Mechirova, Eva; Tomori, Zoltan; Hlucilova, Jana; Motlik, Jan; Sulla, Igor; Vanicky, Ivo

    2009-09-01

    Ependymal cells (EC) in the spinal cord central canal (CC) are believed to be responsible for the postnatal neurogenesis following pathological or stimulatory conditions. In this study, we have analyzed the proliferation of the CC ependymal progenitors in adult rats processed to compression SCI or enhanced physical activity. To label dividing cells, a single daily injection of Bromo-deoxyuridine (BrdU) was administered over a 14-day-survival period. Systematic quantification of BrdU-positive ependymal progenitors was performed by using stereological principles of systematic, random sampling, and optical Dissector software. The number of proliferating BrdU-labeled EC increased gradually with the time of survival after both paradigms, spinal cord injury, or increased physical activity. In the spinal cord injury group, we have found 4.9-fold (4 days), 7.1-fold (7 days), 4.9-fold (10 days), and 5.6-fold (14 days) increase of proliferating EC in the rostro-caudal regions, 4 mm away from the epicenter. In the second group subjected to enhanced physical activity by running wheel, we have observed 2.1-2.6 fold increase of dividing EC in the thoracic spinal cord segments at 4 and 7 days, but no significant progression at 10-14 days. Nestin was rapidly induced in the ependymal cells of the CC by 2-4 days and expression decreased by 7-14 days post-injury. Double immunohistochemistry showed that dividing cells adjacent to CC expressed astrocytic (GFAP, S100beta) or nestin markers at 14 days. These data demonstrate that SCI or enhanced physical activity in adult rats induces an endogenous ependymal cell response leading to increased proliferation and differentiation primarily into macroglia or cells with nestin phenotype.

  19. Urea production in long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Sierra-Santoyo, A; López, M L; Hernández, A; Mendoza-Figueroa, T

    1994-04-01

    To study the functionality of the urea cycle in long-term cultures of adult rat hepatocytes, urea production and the activity of two urea cycle enzymes were measured in hepatocytes cultured on 3T3 cells for 15 days. Urea production was also measured in cultures maintained with medium containing either 0.4 mm arginine or 0.4 mm ornithine and in cultures exposed to different concentrations of NH(4)Cl, an in vivo inducer of urea production. In hepatocytes seeded on 3T3 cells, urea production decreased gradually to 50% of the initial value after 15 days. Urea production was similar in 3T3-hepatocyte cultures maintained for 11 days with medium containing ornithine or arginine. Hepatocytes exposed for 24 hr to 1, 3 and 5 mm NH(4)Cl showed an average increase in urea production of 25, 50 and 69%, respectively, above that of unexposed cultures over 15 days. Ornithine transcarbamylase (OTC) activity decreased by 84% after 5 days in culture and remained constant thereafter, while arginase activity remained constant over 15 days. In contrast, in hepatocytes seeded on plastic substratum, urea production decreased to 24% of the initial value after 8 days in culture. OTC and arginase activities also decreased to 13 and 10% of their initial values after 8 days in culture. These results show that 3T3-hepatocyte cultures from adult rats produce urea from ornithine and/or arginine for at least 15 days and respond to an inducer of urea production as in vivo. They also show that these cultures have decreasing and constant levels of OTC and arginase activities, respectively, owing probably to an adaptative response dependent on substrate concentrations and hormonal regulation. These findings also suggest that 3T3-hepatocyte cultures are a suitable in vitro system to study urea production, its regulation by substrates and hormones and its alteration by drugs and toxic chemicals.

  20. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  1. Branch retinal vein occlusion associated with quetiapine fumarate

    Directory of Open Access Journals (Sweden)

    Siang Lim

    2011-08-01

    Full Text Available Abstract Background To report a case of branch retinal vein occlusion in a young adult with bipolar mood disorder treated with quetiapine fumarate. Case Presentation A 29 years old gentleman who was taking quetiapine fumarate for 3 years for bipolar mood disorder, presented with sudden vision loss. He was found to have a superior temporal branch retinal vein occlusion associated with hypercholesterolemia. Conclusion Atypical antipsychotic drugs have metabolic side effects which require regular monitoring and prompt treatment.

  2. EXPERIMENTAL STUDY ON PLASTICITY OF PROLIFERATED NEURAL STEM CELLS IN ADULT RATS AFTER CEREBRAL INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Ren-zhi Wang; Zhi-gang Lian; Yang Song; Yong Yao

    2006-01-01

    Objective To investigate whether there is endogenous neural stem cell proliferation and whether these proliferated neural stem cells represent neural plasticity in the adult rats after cerebral infarction.Methods Cerebral infarction models of rats were established and the dynamic expression of bromodeoxyuridine (BrdU), BrdU/polysialylated neural cell adhesion molecule (PSA-NCAM) were determined by immunohistochemistry and immunofluorescence staining. BrdU was used to mark dividing neural stem cells. PSA-NCAM was used to mark the plasticity of neural stem cells.Results Compared with controls, the number of BrdU-positive cells in the subventricular zone (SVZ) and hippocampus increased significantly at 1st day after cerebral infarction (P<0.05), reached maximum at 7th day, decreased markedly at 14th day, but it was still elevated compared with that of the controls (P<0.05). The number of BrdU-labeled with PSA-NCAM-positive cells increased significantly at 7th day (P<0.05 ), reached maximum at 14th day,markedly decreased at 28th day, but it was still elevated compared with that of the controls (P<0.05). It was equal to 60% of the number of BrdU-positive cells in the same period.Conclusion Cerebral infarction may stimulate the proliferation of endogenous neural stem cells in situ and most proliferated neural stem cells represent neural plasticity.

  3. Methoxychlor induced biochemical alterations and disruption of spermatogenesis in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Azhar, Ahmad S

    2013-09-01

    Adult male albino rats were treated orally with methoxychlor at doses of 0, 50, 100 or 200 mg/kg/day for 15 consecutive days. Testicular weight, sperm count and motility were significantly decreased. Methoxychlor at doses of 100 and 200 mg/kg significantly inhibited α-glucosidase activity, while plasma testosterone was significantly decrease by the three dose levels in a dose-related pattern. Testicular activities of 3β-HSD, 17β-HSD, SDH were significantly decreased, while ACP, ALP (except for 50 mg/kg), and LDH were significantly increased. H2O2 production and LPO were significantly increased while the enzymic (SOD, CAT and GPx) and non-enzymic antioxidants (thiol content) were significantly decreased. Caspase-3 activity was significantly increased in a dose related manner. The findings of this study indicate that methoxychlor induces oxidative stress associated with impairment of spermatogenesis, in addition to apoptosis. These data provide insight into the mode of action of methoxychlor-induced toxicity in the rat testis.

  4. The effects of synthetic salmon calcitonin on thyroid C and follicular cells in adult female rats

    Directory of Open Access Journals (Sweden)

    M. Manojlovic-Stojanoski

    2011-08-01

    Full Text Available Structural and morphometric features of thyroid C and follicular cells were studied in adult rat females after treatment with synthetic salmon calcitonin (CT. The animals were chronically treated with either a low (10 IU/kg b.w or a high (100 IU/kg b.w dose of CT. A stereological method was applied to determine the volume density and the number of immunoreactive C cells. The height and volume density of follicular epithelium, colloid, interstitium and the follicles (epithelium plus colloid, as well as the index of activation rate were calculated. A significant decrease in body weight, as well as the volume density of immunoreactive C cells and the number of C cells per mm2, was observed in rats treated with both doses of CT. The height and volume density of follicular epithelium and follicles, as well as the index of activation rate were significantly increased in the animals given the high CT dose, while the volume densities of colloid and interstitium were reduced. No significant changes in the examined morphometric parameters were detected after treatment with the low CT dose. According to these results it can be concluded that the structural features of thyroid C and follicular cells were affected by the high dose CT treatment in the opposite manner, while the low dose CT treatment influenced only C cells.

  5. Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats

    Institute of Scientific and Technical Information of China (English)

    Ladachart Taepongsorat; Prakong Tangpraprutgul; Noppadon Kitana; Suchinda Malaivijitnond

    2008-01-01

    Aim: To investigate effects of quercetin on weight and histology of testis and accessory sex organs and on sperm quality in adult male rats. Methods: Male Sprague-Dawley rats were injected s.c. with quercetin at the dose of 0, 30,90, or 270 mg/kg body weight/day (hereafter abbreviated Q0, Q30, Q90 and Q270, respectively), and each dose was administered for treatment durations of 3, 7 and 14 days. Results: From our study, it was found that the effects of quercetin on reproductive organs and sperm quality depended on the dose and duration of treatment. After Q270 treatment for 14 days, the weights of testes, epididymis and vas deferens were significantly increased, whereas the weights of seminal vesicle and prostate gland were significantly decreased, compared with those of Q0. The histo-logical alteration of those organs was observed after Q270 treatment for 7 days as well as 14 days. The sperm motility, viability and concentration were significantly increased after Q90 and Q270 injections after both of 7 and 14 days. Changes in sperm quality were earlier and greater than those in sex organ histology and weight, respectively.Conclusion: Overall results indicate that quercetin might indirectly affect sperm quality through the stimulation of the sex organs, both at the cellular and organ levels, depending on the dose and the duration of treatment. Therefore, the use of quercetin as an alternative drug for treatment of male infertility should be considered.

  6. Effect of Camphor on Pituitary-Gonadal Hormonal Axis and Oogenesis in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Habibollah Johari

    2013-06-01

    Full Text Available Background & Objective: Camphor stimulates the nervous system and the circulatory system, reduces lactation, and prevents conception and embryo embedding. We investigated the effects of camphor on the pituitary-gonadal hormonal axis and concentration of steroidal hormones.   Materials & Methods: The parameters investigated were concentrations of LH, FSH, estrogen, progesterone, and testosterone. Forty adult female rats at a mean weight of 180 ± 20 grams were divided into five groups. Camphor solution was prepared in olive oil at 25, 50, and 100 mg/kg doses, and 0.2 cc injections were done intraperitoneally every day for 2 weeks. The control group received no injection. The sham group received olive oil (as solvent of camphor and treatment groups of 1, 2, and 3 received doses of 25, 50, and 100 mg/kg. The treatment groups were sacrificed one day after the last injection, and their hearts were dissected and blood samples were obtained. The concentrations of the hormones were measured by the ELISA test, and the results were evaluated via the t-test, ANOVA, and Duncan.   Results: The results showed a significant decrease in the concentrations of testosterone and progesterone (p value < 0.05 and a significant increase in the concentrations of LH and FSH (p value <0.05.   Conclusion: Camphor augmented oogenesis via effecting a rise in the concentrations of LH and FSH in our rats.

  7. The Effect of the Alcoholic Extract of Walnut on the Testis Tissue of Adult Male Rats

    Directory of Open Access Journals (Sweden)

    M Abedinzade

    2012-08-01

    Methods: In the present experimental study, forty adult male Wistar rats weighing 250-300 grams were divided into five groups. The control group did not receive any treatment. Normal saline was intraperitoneally injected to the control group. Experimental groups received three different doses of alcoholic extract of walnut: 10, 20 and 50 mg/ kg intraperitoneally/daily, respectively. The testes were removed from the abdomen and the tissue sections were studied. The gathered data were analyzed using One-way Analysis of variance and Tukey's range test. Results: Results indicated that walnut extract affect the development and maintenance of spermatogenesis to its final stages, and increased the number of sperms and interstitial cells in the testis. Alcoholic extract of walnut during the test instrument did not have much impact on the structure of the sperm tube tissue. Conclusion: The alcoholic extract of walnut led to the increased activity of the testis and interstitial cells, followed by an increase in sperm cells and reproductive activity of male rats.

  8. Expression and role of PAK6 after spinal cord injury in adult rat

    Directory of Open Access Journals (Sweden)

    CHEN Xiang-dong

    2012-02-01

    Full Text Available 【Abstract】Objective: To observe p21-activated kinase 6 (PAK6 expression and its possible role after spinal cord injury (SCI in adult rat. Methods: Sprague-Dawley rats were subjected to spinal cord injury. To explore the pathological and physiological significance of PAK6, the expression patterns and distribution of PAK6 were observed by Western blot, immunohistochemistry and immunofluorescence. Results: Western blot analysis showed PAK6 protein level was significantly up-regulated on day 2 and day 4, then reduced and had no up-regulation till day 14. Immunohistochemistry analysis showed that the expression of PAK6 was significantly increased on day 4 compared with the control group. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and astrocytes in the control group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes were largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA and found its change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells on day 4 after injury. Conclusion: The up-regulation of PAK6 in the injured spinal cord may be associated with glial proliferation. Key words: PAK6 protein, human; p21-activated kinases; Spinal cord injury; Astrocytes

  9. Adult-age inflammatory pain experience enhances long-term pain vigilance in rats.

    Directory of Open Access Journals (Sweden)

    Sheng-Guang Li

    Full Text Available BACKGROUND: Previous animal studies have illustrated a modulatory effect of neonatal pain experience on subsequent pain-related behaviors. However, the relationship between chronic pain status in adulthood and future pain perception remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, we investigated the effects of inflammatory pain experience on subsequent formalin-evoked pain behaviors and fear conditioning induced by noxious stimulation in adult rats. Our results demonstrated an increase of the second but not the first phase of formalin-induced pain behaviors in animals with a history of inflammatory pain that have recovered. Similarly, rats with persistent pain experience displayed facilitated acquisition and prolonged retention of pain-related conditioning. These effects of prior pain experience on subsequent behavior were prevented by repeated morphine administration at an early stage of inflammatory pain. CONCLUSIONS/SIGNIFICANCE: These results suggest that chronic pain diseases, if not properly and promptly treated, may have a long-lasting impact on processing and perception of environmental threats. This may increase the susceptibility of patients to subsequent pain-related disorders, even when chronic pain develops in adulthood. These data highlight the importance of treatment of chronic pain at an early stage.

  10. Effects of Postnatal Enriched Environment in a Model of Parkinson’s Disease in Adult Rats

    Directory of Open Access Journals (Sweden)

    Adel Jungling

    2017-02-01

    Full Text Available Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD. The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  11. Effects of Postnatal Enriched Environment in a Model of Parkinson’s Disease in Adult Rats

    Science.gov (United States)

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-01-01

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life. PMID:28216584

  12. Effects of Postnatal Enriched Environment in a Model of Parkinson's Disease in Adult Rats.

    Science.gov (United States)

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-02-14

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson's disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  13. The effect of calabash chalk on some hematological parameters in female adult Wistar rats

    Directory of Open Access Journals (Sweden)

    Amabe Otoabasi Akpantah

    2010-09-01

    Full Text Available Objective: Calabash chalk is a naturally occurring mineral consumed among the Nigerian community for pleasure and commonly by pregnant women as a remedy for morning sickness. Reports have shown that it contains different toxic substances, with lead being the most abundant. This study was therefore undertaken to ascertain the effect of two commonly available preparations of this chalk on some hematological parameters.Materials and Methods: Twenty-four adult female Wistar rats with average weight of 100 g were assigned into three groups (1, 2, 3. Group 1 served as the control and the animals received distilled water, while Groups 2 and 3 were treated by oral gavage with 40 mg/kg of non-salted (NSCC and salted calabash chalk (SCC, respectively, for 14 days.Results: The hemoglobin (Hb concentration and red blood cell (RBC count were significantly (p<0.05, 0.001 respectively lower in the NSCC group, while erythrocyte sedimentation rate (ESR was significantly (p<0.05 higher in the NSCC group compared to the control. There were no significant differences in packed cell volume (PCV, white blood cell (WBC and platelet (Pl counts compared to the control. The SCC group presented no significant difference in all blood count parameters compared to the control.Conclusion: This infers that calabash chalk, particularly the non-salted form, alters the normal concentration of Hb, RBC and Pl counts, and ESR, as observed in the female Wistar rats studied.

  14. Regulation of molecular components of the synapse in the developing and adult rat superior cervical ganglion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.; Black, I.B.

    1987-12-01

    Rat superior cervical sympathetic ganglion was used to begin studying the regulation of molecular components of the synapse. Ganglionic postsynaptic densities (PSDs) exhibited a thin, disc-shaped profile electron microscopically, comparable to that described for brain. Moreover, the presumptive ganglionic PSD protein (PSDp) was phosphorylated in the presence of Ca/sup 2 +/ and calmodulin, bound /sup 125/I-labeled calmodulin, and exhibited a M/sub r/ of 51,000 all characteristic of the major PSD protein of brain. These initial studies indicated that ganglionic PSDp and the major PSD protein of brain are comparable, allowing the study synaptic regulation in the well-defined superior cervical sympathetic ganglion. To obtain enough quantities of ganglionic PSDp, the authors used synaptic membrane fractions. During postnatal development, calmodulin binding to the ganglionic PSDp increased 411-fold per ganglion from birth to 60 days, whereas synaptic membrane protein increased only 4.5-fold. Consequently, different synaptic components apparently develop differently. Moreover, denervation of the superior cervical sympathetic ganglion in adult rats caused an 85% decrease in ganglionic PSDp-calmodulin binding, but denervation caused no change in synaptic membrane protein 2 weeks postoperatively. The observations suggest that presynaptic innervation selectively regulates specific molecular components of the postsynaptic membrane structure.

  15. Nanoparticles of Zinc Oxide Reduces Acute Somatic Pain in Adult Female Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mahnaz Kesmati

    2014-06-01

    Full Text Available Background: With appearance of nano particles as an important component in modern medicine, and considering to new properties of these components, study of their effects on human health is essential. Since zinc components influences mechanisms of nociception, the aim of this study was to evaluate the effect of nano zinc oxide as a new source of zinc and important components in pharmaceutical and hygienic cosmetic production on nociception in adult female rats. Materials and Methods: Female rats were divided into groups: control (receiving saline 0.9% and receiving nano ZnO (0.5, 1, and 5 mg/kg. Hot plate and tail flick tests as models of somatic acute pain were used for evaluation of the pain. The mean of latency time in paw licking and tail withdrawal respectively recorded as nociception indexes in each test for every animal. The animal numbers in each group was seven. Results: In tail flick test, nano ZnO (0.5, 1 mg/kg and in the hot plate test in dose of 0.5 mg/kg, induces significant analgesia (p<0.05 and with increasing of dose reduced its analgesic effect. Conclusion: It seems nano ZnO inhibit the nociception mechanisms and these analgesic properties are more efficient in the low doses. Probably by increasing dose of nano particles aggregation phenomenon prevent of anti-nociception effects of nano ZnO.

  16. Early maternal care predicts reliance on social learning about food in adult rats.

    Science.gov (United States)

    Lindeyer, Charlotte M; Meaney, Michael J; Reader, Simon M

    2013-03-01

    Many vertebrates rely extensively on social information, but the value of information produced by other individuals will vary across contexts and habitats. Social learning may thus be optimized by the use of developmental or current cues to determine its likely value. Here, we show that a developmental cue, early maternal care, correlates with social learning propensities in adult rodents. The maternal behavior of rats Rattus norvegicus with their litters was scored over the first 6 days postpartum. Rat dams show consistent individual differences in the rate they lick and groom (LG) pups, allowing them to be categorized as high, low, or mid-LG mothers. The 100-day old male offspring of high and low-LG mothers were given the opportunity to learn food preferences for novel diets from conspecifics that had previously eaten these diets ("demonstrators"). Offspring of high-LG mothers socially learned food preferences, but offspring of low-LG mothers did not. We administered oxytocin to subjects to address the hypothesis that it would increase the propensity for social learning, but there were no detectable effects. Our data raise the possibility that social learning propensities may be both relatively stable throughout life and part of a suite of traits "adaptively programmed" by early developmental experiences.

  17. Methoxychlor induces apoptosis via mitochondria- and FasL-mediated pathways in adult rat testis.

    Science.gov (United States)

    Vaithinathan, S; Saradha, B; Mathur, P P

    2010-04-29

    In the past few years, there has been much concern about the adverse health effects of environmental contaminants in general and organochlorine in particular. Studies have shown the repro-toxic effects of long-term exposure to methoxychlor, a member of the organochlorine family. However, the insight into the mechanisms of gonadal toxicity induced by methoxychlor is not well known. In the present study we sought to elucidate the mechanism(s) underpinning the gonadal effects within hours of exposure to methoxychlor. Experimental rats were divided into six groups of four each. Animals were orally administered with a single dose of methoxychlor (50mg/kg body weight) and killed at 0, 3, 6, 12, 24, and 72h post-treatment. The levels and time-course of induction of apoptosis-related proteins like cytochorome C, caspase 3 and procaspase 9, Fas-FasL and NF-kappaB were determined to assess sequential induction of apoptosis in the rat testis. DNA damage was assessed by TUNEL assay and flowcytometry. Administration of methoxychlor resulted in a significant increase in the levels of cytosolic cytochrome c and procaspase 9 as early as 6h following exposure. Time-dependent elevations in the levels of Fas, FasL, pro- and cleaved caspase 3 were observed. The DNA damage was measured and showed time-dependent increase in the TUNEL positive cells, and also by flowcytometry of testicular cells. The study demonstrates induction of testicular apoptosis in adult rats following exposure to a single dose of methoxychlor.

  18. Streptozotocin diabetes and insulin resistance impairment of spermatogenesis in adult rat testis: central vs. local mechanism.

    Science.gov (United States)

    Arikawe, A P; Oyerinde, A; Olatunji-Bello, I I; Obika, L F O

    2012-12-18

    Mammalian reproduction is dynamically regulated by the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These hormones are synthesized in the pituitary gland following stimulation by the gonadotropin-releasing hormone (GnRH) and act by stimulating steroid production and gametogenesis in both males and females. Male adult Sprague-Dawley rats (120 - 140 g) were randomly divided into 7 groups. Group 1 > Control group; fed on normal rat pellets. Group 2 > Streptozotocin group; received a single dose IP injection of streptozotocin 45 mg/kg BW in Na+ citrate buffer pH 4.5. Group 3 > Streptozotocin-insulin treated group; received a single dose IP injection of streptozotocin as in group 2 above and treated with insulin sub-cutaneously. Group 4 > Streptozotocin-ginger treated group; received a single dose IP injection of streptozotocin as in group 2 above and treated with 500 mg/Kg Ginger extract orally. Group 5 > Insulin resistant group; fed ad libitum on a special diet containing 25% fructose mixed with 75% normal rat chow (w/w). Group 6 > Insulin resistant-pioglitazone treated group; fed ad libitum on a special diet as in group 5 above and treated with Pioglitazone 15 mg/kg orally. Group 7 > Insulin resistant-ginger treated group; fed ad libitum on a special diet as in group 4 above, and also treated with 500 mg/Kg Ginger extract orally. Hormonal and tissue biochemistry analyses revealed that both central and local mechanisms are implicated in the impairment of spermatogenesis by diabetes but the hypothalamo-pituitary testicular axis alteration might not likely have a major impact as the local defect on steroidogenesis in the testis. This local defect could also predispose to male hypogonadism, i.e. failure of gonadal function.

  19. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring.

    Science.gov (United States)

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Zhang, Lubo

    2013-06-01

    Perinatal nicotine exposure caused a sex-dependent heightened vascular response to angiotensin II (Ang II) and increased blood pressure in adult male but not in female rat offspring. The present study tested the hypothesis that estrogen normalizes perinatal nicotine-induced hypertensive response to Ang II in female offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. Ovariectomy and 17β-estradiol replacement were performed on 8-week-old female offspring. At 5 months of age, Ang II-induced blood pressure responses were not changed by nicotine treatment in the sham groups. In contrast, nicotine significantly enhanced Ang II-induced blood pressure responses as compared with saline control in the ovariectomy groups, which was associated with increased Ang II-induced vascular contractions. These heightened responses were abrogated by 17β-estradiol replacement. In addition, nicotine enhanced Ang II receptor type I, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase type 2 protein expressions, and reactive oxygen species production of aortas as compared with saline control in the ovariectomy groups. Antioxidative agents, both apocynin and tempol, inhibited Ang II-induced vascular contraction and eliminated the differences of contractions between nicotine-treated and control ovariectomy rats. These findings support a key role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood.

  20. External Root Resorption During Standardised Orthodontic Tooth Movement In Young And Adult Rats

    Institute of Scientific and Technical Information of China (English)

    REN Yi-jin; JC. Maltha; AM Kuijpers-Jagtman

    2004-01-01

    目的:比较研究幼鼠和成年鼠正畸牙齿移动过程中的牙根吸收.方法:本研究包括两组大鼠,其中幼鼠30只(年龄约6周),成年鼠30只(年龄约9~12个月).大鼠上颌牙一侧用于实验侧,另一侧用于对照.实验侧的三颗磨牙用结扎丝颌粘接剂固为一个整体,在超弹性拉簧作用下(力值为0.1牛顿)向切牙侧移动.1,2,4,8和12周时给予大鼠过量麻醉剂,材料用于组织学研究.上颌第一磨牙的近中颊侧根为根吸收研究对象.压力侧和张力侧的牙根吸收程度在显微镜下进行长度测量.实验侧与对照侧,压力侧与张力侧,幼鼠与成年鼠之间的牙根吸收程度分别以实验时间为参照,在统计学手段下进行了组间和组内分析和比较,以探讨牙齿移动时间和年龄因素对于牙根吸收的影响.结果:实验侧的牙根吸收在幼鼠与成年鼠之间在1,2,4,8周时均没有统计学差异.而在第12周时,成年鼠实验侧牙根吸收大于幼鼠 (P<0.05).成年鼠实验组压力侧的牙根吸收明显大于对照组压力侧,而在幼鼠组没有发现这一差异.两组年龄幼鼠的实验组其压力侧和张力侧的牙根吸收均高度相关.结论:相对于对照侧,正畸牙齿移动并没有在幼鼠的实验侧诱发更多的牙根吸收.在成年鼠,长期的正畸作用力倾向于诱发更多的牙根吸收.这些研究结果表明对于正畸成年病人的后期治疗要更加注意防止牙根吸收.%Objective: To evaluate root resorption during orthodontic tooth movement in young and adult rats. Material and Methods: Standardised orthodontic tooth movement was performed in two groups of 30 male rats; a juvenile group aged 6 wks and an adult group aged 9-12 months. A split mouth design was chosen. The three maxillary molars at the experimental sides were moved as one unit mesially by a Sentalloy coil spring delivering a force of 10 cN over a long range of activation. The contra-lateral molars served as

  1. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  2. Diosmin alleviates retinal edema by protecting the blood-retinal barrier and reducing retinal vascular permeability during ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Nianting Tong

    Full Text Available BACKGROUND AND PURPOSE: Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury. METHODS: Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB extravasation was determined to assess blood-retinal barrier (BRB disruption and the structure of tight junctions (TJ was examined by transmission electron microscopy. RESULTS: Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1 and occludin protein expression and decreased VEGF/PEDF ratio. CONCLUSIONS: Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.

  3. Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus.

    Science.gov (United States)

    Tabatadze, Nino; Smejkalova, Tereza; Woolley, Catherine S

    2013-02-01

    Acute 17β-estradiol (E2) signaling in the brain is mediated by extranuclear estrogen receptors. Here we used biochemical methods to investigate the distribution, posttranslational modification, and E2 regulation of estrogen receptor-α (ERα) in synaptosomal fractions isolated by differential centrifugation from the adult female rat hippocampus. We find that ERα is concentrated presynaptically and is highly enriched with synaptic vesicles. Immunoisolation of vesicles using vesicle subtype-specific markers showed that ERα is associated with both glutamate and γ-aminobutyric acid-containing neurotransmitter vesicles as well as with some large dense core vesicles. Experiments using broad spectrum and residue-specific phosphatases indicated that a portion of ERα in synaptosomal fractions is phosphorylated at serine/threonine residues leading to a mobility shift in SDS-PAGE and creating a double band on Western blots. The phosphorylated form of ERα runs in the upper of the two bands and is particularly concentrated with synaptic vesicles. Finally, we used E2 with or without the acyl protein thioesterase 1 inhibitor, Palmostatin B, to show that 20 min of E2 treatment of hippocampal slices depletes ERα from the synaptosomal membrane by depalmitoylation. We found no evidence that E2 regulates phosphorylation of synaptosomal ERα on this time scale. These studies begin to fill the gap between detailed molecular characterization of extranuclear ERα in previous in vitro studies and acute E2 modulation of hippocampal synapses in the adult brain.

  4. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu-jing Chen

    2014-01-01

    Full Text Available Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood.

  5. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats.

    Science.gov (United States)

    Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

    2012-09-01

    Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.

  6. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2007-02-01

    Full Text Available BACKGROUND: Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC transplants have shown either poor differentiation or a preferential choice of glial lineages. METHODS AND FINDINGS: In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. CONCLUSIONS: NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major

  7. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    Science.gov (United States)

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  8. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    Science.gov (United States)

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood.

  9. The protective effect of vitamin E against oxidative damage caused by formaldehyde in the testes of adult rats

    Institute of Scientific and Technical Information of China (English)

    Dang-Xia Zhou; Shu-Dong Qiu; Jie Zhang; Hong Tian; Hai-Xue Wang

    2006-01-01

    Aim: To investigate the effect of formaldehyde (FA) on testes and the protective effect of vitamin E (VE) against oxidative damage by FA in the testes of adult rats. Methods: Thirty rats were randomly divided into three groups: (1)control; (2) FA treatment group (Fat); and (3) Fat + VE group. Fat and Fat + VE groups were exposed to FA by inhalation at a concentration of 10 mg/m3 for 2 weeks. In addition, Fat + VE group were orally administered VE during the 2-week FA treatment. After the treatment, the histopathological and biochemical changes in testes, as well as the quantity and quality of sperm, were observed. Results: The testicular weight, the quantity and quality of sperm, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (GSH) were significantly decreased whereas the level of malondialdehyde (MDA) was significantly increased in testes of rats in Fat group compared with those in the control group. VE treatment restored these parameters in Fat + VE group. In addition,microscopy with hematoxylin-eosin (HE) staining showed that seminiferous tubules atrophied, seminiferous epithelial cells disintegrated and shed in rats in Fat group and VE treatment significantly improved the testicular structure in Fat + VE group. Conclusion: FA destroys the testicular structure and function in adult rats by inducing oxidative stress,and this damage could be partially reversed by VE.

  10. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  11. Temperament moderates the influence of periadolescent social experience on behavior and adrenocortical activity in adult male rats.

    Science.gov (United States)

    Caruso, M J; McClintock, M K; Cavigelli, S A

    2014-08-01

    Adolescence is a period of significant behavioral and physiological maturation, particularly related to stress responses. Animal studies that have tested the influence of adolescent social experiences on stress-related behavioral and physiological development have led to complex results. We used a rodent model of neophobia to test the hypothesis that the influence of adolescent social experience on adult behavior and adrenocortical function is modulated by pre-adolescent temperament. Exploratory activity was assessed in 53 male Sprague-Dawley rats to classify temperament and then they were housed in one of the three conditions during postnatal days (PND) 28-46: (1) with familiar kin, (2) with novel social partners, or (3) individually with no social partners. Effects on adult adrenocortical function were evaluated from fecal samples collected while rats were individually-housed and exposed to a 1-hour novel social challenge during PND 110-114. Adolescent-housing with novel or no social partners led to reduced adult glucocorticoid production compared to adolescent-housing with familiar littermates. Additionally, highly-exploratory pre-weanling rats that were housed with novel social partners during adolescence exhibited increased exploratory behavior and a more rapid return to basal glucocorticoid production in adulthood compared to those housed with familiar or no social partners during adolescence and compared to low-exploratory rats exposed to novel social partners. In sum, relatively short-term adolescent social experiences can cause transient changes in temperament and potentially longer-term changes in recovery of glucocorticoid production in response to adult social challenges. Furthermore, early temperament may modulate the influence of adolescent experiences on adult behavioral and adrenocortical function.

  12. Expression of estrogen receptor (ER) -α and -β transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present study expression of estrogen receptor subtype -α (ERα) and -β (ERβ) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1~ 3-days-old) and adult (250~350g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERα transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERα was present in the adult cerebral cortex. No significant difference in ERβ transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERα expression was significantly weaker than ERβ. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERα transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERα/ERβ transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.

  13. Effect of Nigella sativa Linn oil on tramadol-induced hepato- and nephrotoxicity in adult male albino rats

    Directory of Open Access Journals (Sweden)

    A. Elkhateeb

    2015-01-01

    Full Text Available The present study was carried out to evaluate the role of Nigella sativa Linn (NsL oil against subacute tramadol-induced hepatotoxicity, nephrotoxicity as well as oxidative stress in adult male albino rats. Sixty adult male albino rats were divided into four groups. Group I: control group; 30 rats equally subdivided into: Ia; −ve control group, Ib; +ve control group received saline, Ic; +ve control group received corn oil. Group II: 10 rats received NsL oil; 1 mg/kg in 1 ml corn oil/day, group III: 10 rats received tramadol; 30 mg/kg/day, group IV: 10 rats received tramadol + NsL oil in the previous doses. Treatments were given by gavage for 30 days. Then rats were sacrificed and specimens from the livers and kidneys were taken for biochemical and histopathological study. Biochemical data showed elevated liver enzymes; alanine transaminase (ALT, aspartate transaminase (AST, gamma glutamyltransferase (GGT, bilirubin as well as urea and creatinine in tramadol group. A significant increase in hepatic and renal malondialdehyde (MDA and a decrease in glutathione peroxidase (GPx levels were also noticed. Histological analysis of the liver showed vacuolated hepatocyte cytoplasm indicating hydropic degeneration with binucleated cells, apoptotic nuclei, congested central veins, cellular infiltration and hemorrhage. Kidney sections revealed atrophied glomeruli with collapsed tufts and wide Bowman's space, degenerated tubules, hemorrhage and mononuclear cellular infiltration. There was also an increase in area % of collagen fibers in both organs. Concomitant use of NsL oil with tramadol induced partial improvement in the hepato- and nephrotoxic effects. In conclusion, this study suggested that concomitant use of NsL oil with tramadol proved to be capable of ameliorating tramadol-induced hepato- and nephrotoxicity which might be due to its antioxidant potential.

  14. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids.

  15. Investigation of liver tissue and biochemical parameters of adult wistar rats treated with Arctium lappa L.

    Directory of Open Access Journals (Sweden)

    Fabrícia Souza Predes

    2009-04-01

    Full Text Available This study was carried out to evaluate the effects of Arctium lappa L. (burdock on the liver of adult male Wistar rats as measured by light microscopy and biochemical parameters. The rats received the extract in water bottles at doses of 10 or 20 g/L daily for 40 days. There were no significant changes in the plasma levels of albumin, aspartate transaminase (AST, alanine transaminase (ALT, gamma glutamyl transferase (GGT, total protein, total cholesterol, urea, uric acid, triacylglycerol, calcium, phosphorus, chlorine and direct bilirubin. The morphological analysis did not reveal histopathological alterations in liver tissue. Both biochemical and morphological data did not indicate A. lappa toxicity.A bardana (Arctium lappa L é uma planta trazida do Japão e aclimatada no Brasil, e é extensamente utilizada na medicina popular em todo mundo. Este estudo foi realizado para avaliar os possíveis efeitos da A. lappa no fígado e nos parâmetros bioquímicos plasmáticos em ratos Wistar adultos. Estes receberam a infusão de bardana nas doses de 10 ou 20 g de folhas secas /L de água, por 40 dias. Não houve alteração significativa nos níveis plasmáticos de albumina, aspartato transaminase (AST, alanina transaminase (ALT, gamma glutamil transferase (GGT, proteínas totais, colesterol total, uréia, ácido úrico, triglicérides, cálcio, fósforo, bilirrubina direta e cloro. A análise morfológica não revelou alterações histopatológicas no fígado. Os dados bioquímicos e morfológicos não indicaram a toxicidade da bardana.

  16. Histology, Hyperglycemia and Dyslipidemia Evaluations of Aqueous Extract of Moringa oleifera Leaves on Adult Wistar Rat.

    Directory of Open Access Journals (Sweden)

    Oboma, Yibala .I

    2015-09-01

    Full Text Available Chronic hyperglycemia is an indicator of diabetes mellitus and chronic dyslipidemia a risk factor cardiovascular disease. OBJECTIVE: We aim at evaluating the effect of Moringa oleifera on glucose level, lipid profile, cardiac markers, liver enzymes, proteins and histology of the heart and liver. METHODOLOGY: Twenty six male (26 adult Wistar rats were enrolled for the study. Acclimatized and randomly divided into four groups (A, B, C&-D, n=6 and controls. They rat were given intraperitoneal injection of aqueous Moringa oleifera leaf extract. Sacrifice was carried out on 24hrs, 7days, 14days, and 28days respectively. Tissues collected were prepared for histology using heamatoxylin and eosin staining techniques while serum lipid profile, glucose level, creatine kinase, malondialdehyde (MDA and liver enzymes were analyze using Selectra and micro Elisa. RESULT: High doses (500mg/kg and prolonged exposure to the extract resulted in spectrum effects. Prolonged and increase concentration of extract administration causes increase in body weight and is statistically significant at P<0.05, t=35 and df=8, decrease in lipid profile, creatine kinase (CK-MB, malondialdehyde (MDA, liver enzymes and glucose at both higher and lower doses of 500mg/kg and 300mg/kg respectively. Photomicrograph with magnification of x400, show normal histology of the heart and liver. CONCLUSION: Aqueous leaf extract of Moringa oleifera show a potential anti-hyperglycemia and antilipidemic properties with no notable hepatotoxicity and cardiac injury. This study supports the popular sayings about the tradomedicinal use of Moringa oleifera in the treatment of diabetes mellitus and hypertension.

  17. Anxiety-like behaviour in adult rats perinatally exposed to maternal calorie restriction.

    Science.gov (United States)

    Levay, Elizabeth A; Paolini, Antonio G; Govic, Antonina; Hazi, Agnes; Penman, Jim; Kent, Stephen

    2008-08-22

    Environmental stimuli such as caloric availability during the perinatal period exert a profound influence on the development of an organism. Studies in this domain have focused on the effects of under- and malnutrition while the effects of more mild levels of restriction have not been delineated. Rat dams and their offspring were subjected to one of five dietary regimens: control, CR50% for 3 days preconception, CR25% during gestation, CR25% during lactation, and CR25% during gestation, lactation, and post-weaning (lifelong). The pup retrieval test and maternal observations were conducted during lactation to quantify maternal care. In the pup retrieval test, dams that were concurrently experiencing CR (i.e., from the lactation and lifelong groups) displayed shorter latencies to retrieve all pups than the control and preconception groups and the lactation group constructed better nests than all groups. Adult offspring were tested in three tests of anxiety: the elevated plus maze, open field, and emergence test. No differences were observed in the elevated plus maze; however, in the open field preconception animals made fewer entries and spent more time in the central zone than controls. In addition, preconception offspring exhibited longer latencies to full body emergence, spent less time fully emerged, and spent more time engaged in risk assessment behaviours than all other groups. Offspring from the preconception group were also on average 11% heavier than control rats throughout life and displayed 37% higher serum leptin concentrations than controls. A potential role for leptin in the anxiogenic effect of preconception CR is discussed.

  18. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats

    Science.gov (United States)

    Tash, Joseph S.; Johnson, Donald C.; Enders, George C.

    2002-01-01

    The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partia