WorldWideScience

Sample records for adult rat hippocampal

  1. Influence of endogenous ciliary neurotrophic factor on neural differentiation of adult rat hippocampal progenitors

    Institute of Scientific and Technical Information of China (English)

    Jun Ding; Zhili He; Juan Ruan; Ying Liu; Chengxin Gong; Shenggang Sun; Honghui Chen

    2013-01-01

    Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.

  2. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert

    2003-01-01

    The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain...... days after irradiation, the animals with blocked neurogenesis performed poorer than controls in a hippocampus-dependent place-recognition task, indicating that the presence of newly generated neurons may be necessary for the normal function of this brain area. The animals were never impaired...... irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21...

  3. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    Science.gov (United States)

    Oosthuizen, M K; Amrein, I

    2016-06-02

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species.

  4. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats

    Science.gov (United States)

    Shepherd, Daniel J.; Tsai, Shih-Yen; O'Brien, Timothy E.; Farrer, Robert G.; Kartje, Gwendolyn L.

    2016-01-01

    Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis. PMID:27803646

  5. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    Science.gov (United States)

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches.

  6. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  7. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Jodi L. Pawluski

    2014-01-01

    Full Text Available Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1 cookie and (2 osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat.

  8. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats

    Science.gov (United States)

    Bachstetter, Adam D.; Morganti, Josh M.; Jernberg, Jennifer; Schlunk, Andrea; Mitchell, Staten H.; Brewster, Kaelin W.; Hudson, Charles E.; Cole, Michael J; Harrison, Jeffrey K.; Bickford, Paula C.; Gemma, Carmelina

    2010-01-01

    Microglia have neuroprotective capacities, yet chronic activation can promote neurotoxic inflammation. Neuronal fractalkine (FKN), acting on CX3CR1, has been shown to suppress excessive microglia activation. We found that disruption in FKN/ CX3CR1 signaling in young adult rodents decreased survival and proliferation of neural progenitor cells through IL-1β. Aged rats were found to have decreased levels of hippocampal FKN protein; moreover, interruption of CX3CR1 function in these animals did not affect neurogenesis. The age-related loss of FKN could be restored by exogenous FKN reversing the age-related decrease in hippocampal neurogenesis. There were no measureable changes in young animals by the addition of exogenous FKN. The results suggest that FKN/ CX3CR1 signaling has a regulatory role in modulating hippocampal neurogenesis via mechanisms that involve indirect modification of the niche environment. As elevated neuroinflammation is associated with many age-related neurodegenerative diseases, enhancing FKN/ CX3CR1 interactions could provide an alternative therapeutic approach to slow age-related neurodegeneration. PMID:20018408

  9. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2014-06-01

    Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood-brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats. Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and neuroprotective effects that modulate glial functions. Here, we evaluated the effects of resveratrol on GSH content, GS activity, TNF-α and IL-1β levels in hippocampal astrocytes from newborn, adult and aged Wistar rats. We observed a decrease in antioxidant defenses and an increase in the inflammatory response in hippocampal astrocytes from adult and aged rats compared to classical astrocyte cultures from newborn rats. Resveratrol prevented these effects. These findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with antioxidant and anti-inflammatory activities.

  10. Persistent sodium current properties in hippocampal CA1 pyramidal neurons of young and adult rats.

    Science.gov (United States)

    Lunko, Oleksii; Isaev, Dmytro; Maximyuk, Oleksandr; Ivanchick, Gleb; Sydorenko, Vadym; Krishtal, Oleg; Isaeva, Elena

    2014-01-24

    Persistent tetrodotoxin-sensitive sodium current (INaP) plays an important role in cellular and neuronal network excitability in physiological conditions and under different pathological circumstances. However, developmental changes in INaP properties remain largely unclear. In the present study using whole cell patch clamp technique we evaluated INaP properties in CA1 hippocampal pyramidal neurons isolated from young (postnatal day (P) 12-16) and adult (P60-75) rats. We show that the INaP density is substantially larger in the adult group. Although INaP inactivation characteristics were found to be similar in both groups, voltage dependence of INaP activation is shifted to more negative membrane potentials (young: -48.6±0.5mV vs. adult: -52.4±0.2mV, p<0.01). Our data indicates the increase of INaP contribution in the basal membrane sodium conductivity in the mature hippocampus.

  11. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats.

    Science.gov (United States)

    Greisen, Mia H; Altar, C Anthony; Bolwig, Tom G; Whitehead, Richard; Wörtwein, Gitta

    2005-03-15

    Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.

  12. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  13. Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats.

    Science.gov (United States)

    Buchan, A M; Li, H; Cho, S; Pulsinelli, W A

    1991-11-11

    The cytoprotective effect of NBQX, a selective AMPA receptor antagonist, was tested following 10 min of severe forebrain ischemia using the 4-vessel occlusion model. Immediately, and at 15 and 30 min following reperfusion, adult Wistar rats received intraperitoneal injections of either saline (n = 5), 1 mg lithium chloride (n = 17) or 30 mg/kg of the lithium salt of NBQX (n = 18). In saline-treated animals 82 +/- 12% of CA1 hippocampal neurons were lost. Of those treated with lithium 70 +/- 23% were injured, while those given NBQX sustained only 40 +/- 34% CA1 necrosis (P less than 0.01). Twelve of 18 NBQX-treated animals had less than 30% CA1 injury as compared with 1 of 17 lithium-treated animals. The AMPA receptor may play a more important role than the NMDA receptor in selective ischemic necrosis of hippocampal neurons.

  14. Intra-hippocampal injection of lipopolysaccharide inhibits kindled seizures and retards kindling rate in adult rats.

    Science.gov (United States)

    Ahmadi, Amin; Sayyah, Mohammad; Khoshkholgh-Sima, Baharak; Choopani, Samira; Kazemi, Jafar; Sadegh, Mehdi; Moradpour, Farshad; Nahrevanian, Hossein

    2013-04-01

    Neuroinflammation facilitates seizure acquisition and epileptogenesis in developing brain. Yet, the studies on impact of neuroinflammation on mature brain epileptogenesis have led to inconsistent results. Hippocampus is particularly vulnerable to damage caused by ischemia, hypoxia and trauma, and the consequent neuroinflammation, which can lead in turn to epilepsy. Lipopolysaccharide (LPS) is extensively used in experimental studies to induce neuroinflammation. In this study, effect of acute and chronic intra-CA1 infusion of LPS on amygdala-kindled seizures and epileptogenesis was examined in mature rats. LPS (5 μg/rat) inhibited evoked amygdala afterdischarges and behavioral seizures. Anticonvulsant effect of LPS was observed 0.5 h after administration and continued up to 24 h. This effect was accompanied by intra-hippocampal elevation of nitric oxide (NO), interleukin1-β, and tumor necrosis factor-α and was prevented by microglia inhibitor, naloxone, NO synthase inhibitor, Nω-nitro-L-arginine methyl ester, cyclooxygenase inhibitor, piroxicam, and interleukin1-β receptor antagonist, interleukin1-ra. Moreover, daily intra-hippocampal injection of LPS significantly retarded kindling rate. In order to further elucidate the effect of LPS on synaptic transmission and short-term plasticity, changes in field excitatory postsynaptic potentials and population spikes were measured in stratum radiatum and stratum pyramidale of LPS-treated kindled rats. LPS impaired baseline synaptic transmission in hippocampal Schaffer collateral-CA1 synapse and reduced the magnitude of paired-pulse facilitation. Our results suggest that direct suppression of presynaptic mechanisms in Schaffer collateral-CA1 synapses, as well as the inflammatory mediators released by LPS in the hippocampus, is involved in antiepileptic effect of LPS.

  15. Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal Dexamethasone.

    Science.gov (United States)

    Shende, Vishvesh H; McArthur, Simon; Gillies, Glenda E; Opacka-Juffry, Jolanta

    2015-01-01

    The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume) showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.

  16. Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal Dexamethasone

    Directory of Open Access Journals (Sweden)

    Vishvesh H. Shende

    2015-01-01

    Full Text Available The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.

  17. Effects of Scutellaria baicalensis on neurogenesis in the hippocampal dentate gyrus and on spatial memory of adult rats

    Institute of Scientific and Technical Information of China (English)

    Sun-Hwa Lee; Byung-II Min; Byung-soo Ahn; Bong-soo Lim; Seong-Kyu Kim; Sam-Ki Kim; Dae-II Lee; Sung-Rae Cho; Deok-Gon Kim; Jae-Bok Han

    2011-01-01

    We investigated the effects of ethanol extracted Scutellaria baicalensis (EESB) on spatial memory function and neurogenesis in the hippocampal dentate gyrus. Adult Sprague-Dawley rats were orally administered 50, 100, or 200 mg/kg of EESB for 6 successive days. The radial-arm maze test showed that 200 mg/kg of EESB improved the spatial memory of adult rats. Confocal microscopy results showed that 100 mg/kg of EESB increased the number of bromodeoxyuridine (BrdU)- and neuron-specific nuclear protein-positive cells in the granular cell layer, and that 100 and 200 mg/kg of EESB increased the number of BrdU-/neuron-specific nuclear protein-positive cells in the sub-granular zone. 200 mg/kg of EESB increased the number of BrdU-/glial fibrillary acid protein-positive cells in the subgranular zone. These findings indicate that EESB can effectively promote neurogenesis in the hippocampal dentate gyrus and improve spatial memory function.

  18. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Roth, Tania L; Zoladz, Phillip R; Sweatt, J David; Diamond, David M

    2011-07-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and Bdnf DNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed Bdnf DNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased Bdnf DNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in Bdnf DNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of Bdnf mRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnf gene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal Bdnf DNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD.

  19. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture.

    Science.gov (United States)

    Evans, M S; Collings, M A; Brewer, G J

    1998-01-31

    Methods were recently developed for culturing neurons from adult rat hippocampus using the serum-free medium Neurobasal with B27 supplement. To determine whether adult cultured neurons have normal electrical properties, we studied cultures from rats of three age groups: (1) embryonic; (2) 10-11 months old and (3) 35-36 months old. Neurons had a polarized morphology with a large branching apical dendrite and small basal dendrites. Mean resting potentials were similar in the three age groups. All neurons had nonlinear current-voltage relationships, indicating the presence of voltage-sensitive ion channels. Most neurons had a voltage-sensitive inward current followed by a sustained voltage-sensitive outward current. Tetrodotoxin blocked the inward current, which is likely to be a sodium current. The sustained outward current, which is likely to be a potassium current, reversed at -71 mV. Most neurons exhibited anomalous rectification. Calcium currents were present in both embryonic and adult neurons. Embryonic neurons would sometimes fire multiple action potentials but adult neurons fired only single action potentials. Our results indicate that both embryonic and adult cultured neurons retain a clearly neuronal electrophysiological phenotype in Neurobasal/B27 serum-free medium.

  20. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    Science.gov (United States)

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  1. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    Science.gov (United States)

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood.

  2. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    Science.gov (United States)

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects.

  3. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    Science.gov (United States)

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure.

  4. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons.

    Science.gov (United States)

    Cox, David J; Racca, Claudia

    2013-06-15

    In hippocampal neurons, AMPA receptors (AMPARs) mediate fast excitatory postsynaptic responses at glutamatergic synapses, and are involved in various forms of synaptic plasticity. Dendritic local protein synthesis of selected AMPAR subunit mRNAs is considered an additional mechanism to independently and rapidly control the strength of individual synapses. We have used fluorescent in situ hybridization and immunocytochemistry to analyze the localization of AMPAR subunit (GluA1-4) mRNAs and their relationship with the translation machinery in principal cells and interneurons of the adult rat hippocampus. The mRNAs encoding all four AMPAR subunits were detected in the somata and dendrites of CA3 and CA1 pyramidal cells and those of six classes of CA1 γ-aminobutyric acid (GABA)ergic interneurons. GluA1-4 subunit mRNAs were highly localized to the apical dendrites of pyramidal cells, whereas in interneurons they were present in multiple dendrites. In contrast, in the dentate gyrus, GluA1-4 subunit mRNAs were virtually restricted to the somata and were absent from the dendrites of granule cells. These different regional and cell type-specific labeling patterns also correlated with the localization of markers for components of the protein synthesis machinery. Our results support the local translation of GluA1-4 mRNAs in dendrites of hippocampal pyramidal cells and CA1 interneurons but not in granule cells of the dentate gyrus. Furthermore, the regional and cell type-specific differences we observed suggest that each cell type uses distinct ways of regulating the local translation of AMPAR subunits.

  5. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Shubha

    2017-03-15

    Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.

  6. Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro.

    Science.gov (United States)

    Behrens, C J; Ul Haq, R; Liotta, A; Anderson, M L; Heinemann, U

    2011-09-29

    It has been suggested that gap junctions are involved in the synchronization during high frequency oscillations as observed during sharp wave-ripple complexes (SPW-Rs) and during recurrent epileptiform discharges (REDs). Ripple oscillations during SPW-Rs, possibly involved in memory replay and memory consolidation, reach frequencies of up to 200 Hz while ripple oscillations during REDs display frequencies up to 500 Hz. These fast oscillations may be synchronized by intercellular interactions through gap junctions. In area CA3, connexin 36 (Cx36) proteins are present and potentially sensitive to mefloquine. Here, we used hippocampal slices of adult rats to investigate the effects of mefloquine, which blocks Cx36, Cx43 and Cx50 gap junctions on both SPW-Rs and REDs. SPW-Rs were induced by high frequency stimulation in the CA3 region while REDs were recorded in the presence of the GABA(A) receptor blocker bicuculline (5 μM). Both, SPW-Rs and REDs were blocked by the gap junction blocker carbenoxolone. Mefloquine (50 μM), which did not affect stimulus-induced responses in area CA3, neither changed SPW-Rs nor superimposed ripple oscillations. During REDs, 25 and 50 μM mefloquine exerted only minor effects on the expression of REDs but significantly reduced the amplitude of superimposed ripples by ∼17 and ∼54%, respectively. Intracellular recordings of CA3 pyramidal cells revealed that mefloquine did not change their resting membrane potential and input resistance but significantly increased the afterhyperpolarization following evoked action potentials (APs) resulting in reduced probability of AP firing during depolarizing current injection. Similarly, mefloquine caused a reduction in AP generation during REDs. Together, our data suggest that mefloquine depressed RED-related ripple oscillations by reducing high frequency discharges and not necessarily by blocking electrical coupling.

  7. Prolonged protein deprivation differentially affects calretinin- and parvalbumin-containing interneurons in the hippocampal dentate gyrus of adult rats.

    Science.gov (United States)

    Hipólito-Reis, José; Pereira, Pedro Alberto; Andrade, José Paulo; Cardoso, Armando

    2013-10-25

    Protein deprivation is a detrimental nutritional state that induces several deleterious changes in the rat hippocampal formation. In this study, we compared the effects of protein deprivation in the number of parvalbumin (PV)-immunoreactive and calretinin (CR)-immunoreactive interneurons of the dentate gyrus, which are involved in the control of calcium homeostasis and fine tuning of the hippocampal circuits. Two month-old rats were randomly assigned to control and low-protein diet groups. The rats of the latter group were fed with a low-protein diet (8% casein) for 6 months. All animals were perfused at 8 months of age. The number of neurons expressing CR in the molecular layer and in the hilus of dentate gyrus was reduced in protein-deprived rats. Conversely, protein deprivation increased the number of PV-containing interneurons in the dentate granule cell layer and hilus. These results support the view that protein deprivation may disturb calcium homeostasis, leading to neuronal death including GABAergic interneurons expressing CR. In the other hand, the up-regulation of PV cells may reflect a protective mechanism to counteract the calcium overload and protect the remaining neurons of the dentate gyrus.

  8. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Sérgio Gomes da Silva

    Full Text Available Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task. Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation and associative (spatial learning mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  9. Neural activity and the levels of high energy phosphates during deprivation of oxygen and/or glucose in hippocampal slices of immature and adult rats.

    Science.gov (United States)

    Nabetani, M; Okada, Y; Kawai, S; Nakamura, H

    1995-02-01

    To investigate the relationship between neural activity and cerebral energy metabolism during anoxia or ischemia in neural tissue of different ages, hippocampal slices were prepared from four-, seven- and 10-day-old and adult rats. For the index of the neural activity, the population spikes were recorded in the pyramidal cell layer of the CA3 area. ATP and phosphocreatine levels in the slices were measured during oxygen and/or glucose deprivation. After deprivation of both oxygen and glucose, population spikes of the slices from four, seven- and 10-day-old and adult rats ceased completely in 14.2, 11.8, 9.4 and 5.3 min, respectively. The level of ATP at the time of cessation of population spike in four-, seven- and 10-day-old and adult rats was 37.4, 30.2, 28.5 and 56.4% of the original concentrations. After deprivation of glucose only, the decay time of the population spikes of the slices from four-, seven- and 10-day-old and adult rats was 17.8, 14.5, 9.0 and 10.0 min and at the time of population spikes cessation the level of ATP was 99.8, 84.2, 79.3 and 49%, respectively. After deprivation of oxygen only, population spikes of the slices from four, seven- and 10-day old and adult rats ceased completely in 257, 283, 109 and 8.5 min, respectively. The level of ATP at the time of population spikes cessation was 50, 40, 36.6 and 94.4% of the initial values, respectively. These results indicate that the immature rat is extremely resistant to oxygen deprivation from a functional and a metabolic view, whereas in the adult rat, preservation of neural activity depends much on both oxygen and glucose. During glucose deprivation, population spikes of the slices of immature and mature rats ceased rapidly although the level of ATP is preserved at high levels. This suggests that glucose plays an important role in the preservation of neural activity in addition to its major function as an energy substrate especially in immature animals.

  10. Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats.

    Science.gov (United States)

    Rozisky, J R; Laste, G; de Macedo, I C; Santos, V S; Krolow, R; Noschang, C; Vanzella, C; Bertoldi, K; Lovatel, G A; de Souza, I C C; Siqueira, I R; Dalmaz, C; Caumo, W; Torres, I L S

    2013-03-01

    It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 μg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.

  11. Induction of c-fos mRNA expression in an in vitro hippocampal slice model of adult rats after kainate but not gamma-aminobutyric acid or bicuculline treatment.

    Science.gov (United States)

    Massamiri, T; Khrestchatisky, M; Ben-Ari, Y

    1994-01-17

    Levels of gene expression following in vitro treatment of rat hippocampal slices with kainate, gamma-aminobutyric acid (GABA), or bicuculline were measured by the reverse transcription-coupled polymerase chain reaction method. Following a short-term exposure to kainate, c-fos gene expression was induced by 12-fold in the adult, but not the newborn, hippocampus. Under the same experimental conditions, zifl268 and brain-derived neurotrophic factor (BDNF) gene expression were unchanged. Our results also demonstrate a lack of induction of c-fos, zifl268 and BDNF after short-time treatment of either adult or newborn hippocampal slices with GABA or bicuculline. The relevance of the differential induction of gene expression in the adult and newborn in an in vitro hippocampal slice model as compared to previously described in vivo models is discussed.

  12. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    Science.gov (United States)

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock.

  13. Glycidol induces axonopathy by adult-stage exposure and aberration of hippocampal neurogenesis affecting late-stage differentiation by developmental exposure in rats.

    Science.gov (United States)

    Akane, Hirotoshi; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Ohishi, Takumi; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-07-01

    To investigate the neurotoxicity profile of glycidol and its effect on developmental hippocampal neurogenesis, pregnant Sprague Dawley rats were given drinking water containing 0, 100, 300, or 1000 ppm glycidol from gestational day 6 until weaning on day 21 after delivery. At 1000 ppm, dams showed progressively worsening gait abnormalities, and histopathological examination showed generation of neurofilament-L(+) spheroids in the cerebellar granule layer and dorsal funiculus of the medulla oblongata, central chromatolysis in the trigeminal nerve ganglion cells, and axonal degeneration in the sciatic nerves. Decreased dihydropyrimidinase-like 3(+) immature granule cells in the subgranular zone (SGZ) and increased immature reelin(+) or calbindin-2(+) γ-aminobutyric acid-ergic interneurons and neuron-specific nuclear protein (NeuN)(+) mature neurons were found in the dentate hilus of the offspring of the 1000 ppm group on weaning. Hilar changes remained until postnatal day 77, with the increases in reelin(+) and NeuN(+) cells being present at ≥ 300 ppm, although the SGZ change disappeared. Thus, glycidol caused axon injury in the central and peripheral nervous systems of adult rats, suggesting that glycidol targets the newly generating nerve terminals of immature granule cells, resulting in the suppression of late-stage hippocampal neurogenesis. The sustained hilar changes may be a sign of continued aberrations in neurogenesis and migration. The no-observed-adverse-effect level was determined to be 300 ppm (48.8mg/kg body weight/day) for dams and 100 ppm (18.5mg/kg body weight/day) for offspring. The sustained developmental exposure effect on offspring neurogenesis was more sensitive than the adult axonal injury.

  14. Taste aversion learning and aging: a comparison with the effect of dorsal hippocampal lesions in rats.

    Science.gov (United States)

    Moron, I; Ballesteros, M A; Candido, A; Gallo, M

    2002-01-01

    The relationship between hippocampal function and aging was explored in Wistar rats using taste aversion learning by comparing the performance of adult dorsal hippocampal lesioned and fifteen-month-old intact rats with that of adult intact rats. In experiment 1 the conditioned blocking phenomenon was absent in the hippocampal and the aging rats. Unlike the adult intact rats, the hippocampal and aging rats were not impaired in acquiring a learned aversion to a cider vinegar solution (3 %) presented as a serial compound with a previously conditioned saccharin solution (0.1 %). In experiment 2 both the hippocampal and the aging rats developed reduced aversions to a saline solution (0.5 %) followed by an i.p. injection of lithium chloride (0.15 M; 2 % b.w.) if the taste solution was previously preexposed without consequences. This latent inhibition effect was similar to that seen in intact adult rats. In both experiments, the aging rats exhibited enhanced conventional learned taste aversions. It is concluded that aging is not a unitary process but induces both hippocampal dependent and hippocampal independent complex changes in the functioning of the neural circuits, implementing taste aversion learning.

  15. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats.

    Science.gov (United States)

    Blurton-Jones, Mathew; Tuszynski, Mark H

    2002-10-21

    Estrogen has been reported to regulate the activity of gamma-aminobutyric acid (GABA)ergic interneurons within the hippocampus, basal forebrain, and hypothalamus of adult rodents. Although estrogen receptor-alpha bearing GABAergic interneurons have been identified previously, the neurotransmitter phenotype of cells that express the more recently characterized estrogen receptor-beta (ER-beta) has not been examined in vivo. We, therefore, have used fluorescent immunohistochemistry to further characterize the phenotype of ER-beta-bearing cells by double labeling for the GABAergic-associated calcium-binding protein, parvalbumin (PV). We find that a large proportion of ER-beta-immunoreactive cells within the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized (ovx) adult rats are PV-immunoreactive. Within the infralimbic, agranular insular, primary motor, parietal association, perirhinal, and lateral entorhinal cortices, an average of 95.6% +/- 0.8% (intact) and 94.5% +/- 1.4% (ovx) of all ER-beta-immunoreactive cells coexpress parvalbumin, and this proportion is strikingly similar across these diverse cortical regions. ER-beta/PV double-labeled cells represent 23.3% +/- 1.6% (intact) and 25.8% +/- 2.0% (ovx) of all PV-labeled cells within these regions. ER-beta/PV double-labeled cells are also observed within the lateral, accessory basal, and posterior cortical nuclei of the amygdala, and periamygdaloid cortex. Within the basal forebrain, 31.0% +/- 3.1% (intact) and 26.0% +/- 5.2 % (ovx) of ER-beta-immunoreactive cells coexpress PV. Almost all ER-beta-immunoreactive cells within the subiculum, a major output region of the hippocampal formation, double label for PV (intact = 97.2% +/- 2.8%; ovx = 100% +/- 0.0%). Thus, ER-beta exhibits extensive colocalization with a subclass of inhibitory neurons, suggesting a potential mechanism whereby estrogen can regulate neuronal excitability in diverse and broad brain regions by modulating

  16. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  17. Postnatal morphine administration alters hippocampal development in rats.

    Science.gov (United States)

    Traudt, Christopher M; Tkac, Ivan; Ennis, Kathleen M; Sutton, Leah M; Mammel, Daniel M; Rao, Raghavendra

    2012-01-01

    Morphine is frequently used as an analgesic and sedative in preterm infants. Adult rats exposed to morphine have an altered hippocampal neurochemical profile and decreased neurogenesis in the dentate gyrus of the hippocampus. To evaluate whether neonatal rats are similarly affected, rat pups were injected twice daily with 2 mg/kg morphine or normal saline from postnatal days 3 to 7. On postnatal day 8, the hippocampal neurochemical profile was determined using in vivo (1)H NMR spectroscopy. The mRNA and protein concentrations of specific analytes were measured in hippocampus, and cell division in dentate gyrus was assessed using bromodeoxyuridine. The concentrations of γ-aminobutyric acid (GABA), taurine, and myo-insotol were decreased, whereas concentrations of glutathione, phosphoethanolamine, and choline-containing compounds were increased in morphine-exposed rats relative to control rats. Morphine decreased glutamic acid decarboxylase enzyme levels and myelin basic protein mRNA expression in the hippocampus. Bromodeoxyuridine labeling in the dentate gyrus was decreased by 60-70% in morphine-exposed rats. These results suggest that recurrent morphine administration during brain development alters hippocampal structure.

  18. Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK-3α, β and NR2B in adult offspring during fear extinction in rats.

    Science.gov (United States)

    Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen

    2014-06-01

    Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain.

  19. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    Science.gov (United States)

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  20. Ketamine prevents lidocaine-caused neurotoxicity in the CA3 hippocampal and basolateral amygdala regions of the brain in adult rats.

    Science.gov (United States)

    Lopez-Galindo, Gabriel Eduardo; Cano-Europa, Edgar; Ortiz-Butron, Rocio

    2008-01-01

    Our objective was to prove whether blocking the action of glutamate on N-methyl-D: -aspartate (NMDA) receptors could prevent the neuronal damage caused by the acute administration of lidocaine. Twenty male 2-month-old Wistar rats were randomly assigned to the following groups (n = 5 in each group): groups I and II received 0.9% saline i.p., and groups III and IV received 100 mg x kg(-1) of ketamine i.p. Thirty minutes later, groups I and III were again dosed with 0.9% saline i.p., and groups II and IV received 60 mg x kg(-1) of lidocaine i.p. During treatment, the rectal temperature of the animals was monitored and maintained at 37.5 +/- 0.5 degrees C. Ten days after administration of the agents, all rats were transcardially perfused, under pentobarbital anesthesia, with 10% formaldehyde. Their brains were removed and were embedded in paraffin. Coronal cuts of 7 microm were obtained from -2.3 to -3.8 mm from the bregma. Each brain section was stained with cresyl violet-eosin. The number of normal and abnormal pyramidal neurons in the CA3 hippocampal region and the number of large and medium neurons in the basolateral amygdala within an area of 10 000 microm2 were evaluated. We found that lidocaine significantly reduced the number of normal neurons in both the CA3 hippocampal region (F (3,16) = 225.8; P lidocaine-induced damage in the CA3 hippocampal region and the basolateral amygdala. These results demonstrate the participation of NMDA-receptor activation by lidocaine in the CA3 hippocampal and basolateral amygdala regions as a neurotoxic mechanism.

  1. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  2. Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor.

    Science.gov (United States)

    Scharfman, H E

    1997-08-01

    Effects of brain-derived neurotrophic factor (BDNF) in area CA3, the dentate gyrus, and medial entorhinal cortex were examined electrophysiologically by bath application of BDNF in slices containing the hippocampus and entorhinal cortex. Bath application of 25-100 ng/ml BDNF for 30-90 min increased responses to single afferent stimuli in selective pathways in the majority of slices. In area CA3, responses to mossy fiber stimulation increased in 73% of slices and entorhinal cortex responses to white matter stimulation increased in 64% of slices. After exposure to BDNF, these areas also demonstrated evidence of hyperexcitability, because responses to repetitive stimulation (1-Hz paired pulses for several s) produced multiple population spikes in response to mossy fiber stimulation in CA3 or multiple field potentials in response to white matter stimulation in the entorhinal cortex. Repetitive field potentials persisted after repetitive stimulation ended and usually were followed by spreading depression. Enhancement of responses to single stimuli and hyperexcitability were never evoked in untreated slices or after bath application of boiled BDNF or cytochrome C. The tyrosine kinase antagonist K252a (2 microM) blocked the effects of BDNF. In area CA3, both the potentiation of responses to single stimuli and hyperexcitability showed afferent specificity, because responses to mossy fiber stimulation were affected but responses to fimbria or Schaffer collateral stimulation were not. In addition, regional specificity was demonstrated in that the dentate gyrus was much less affected. The effects of BDNF in area CA3 were similar to those produced by bath application of low doses of kainic acid, which is thought to modulate glutamate release from mossy fiber terminals by a presynaptic action. These results suggest that BDNF has acute effects on excitability in different areas of the hippocampal-entorhinal circuit. These effects appear to be greatest in areas that are highly

  3. Effect of Opioid on Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-01-01

    Full Text Available During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs’ effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal’s opioid addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce the vulnerability to drug craving and relapse.

  4. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    Science.gov (United States)

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism.

  5. Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    OpenAIRE

    Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; Liput, Daniel J.; Marshall, S. Alex; Chen, Kevin Y.; Nixon, Kimberly

    2014-01-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may...

  6. Effects of Dalteparin on Structure of Hippocampal Neurons of Rats in Chronic Stress

    OpenAIRE

    Mansoureh Soleimani; Arezo Nahavandi; Fereshteh Farajdokht

    2012-01-01

    Introduction: Stress is defined as any environmental change that disturbs the maintenance of brain homeostasis. Stress leads to production of pro-inflammatory cytokines that provoke rodegenerative disorders. In the present study, we investigated the effects of dalteparin on hippocampal neuronal death induced by chronic stress in rats.Methods : the study was carried out on 60 adult male wistar rats, weighing 200-250 gr. The rats were randomly divided into three groups: control, stress and stre...

  7. Experimental hypothyroidism delays field excitatory post-synaptic potentials and disrupts hippocampal long-term potentiation in the dentate gyrus of hippocampal formation and Y-maze performance in adult rats.

    Science.gov (United States)

    Artis, A S; Bitiktas, S; Taşkın, E; Dolu, N; Liman, N; Suer, C

    2012-03-01

    Manipulations of thyroid hormones have been shown to influence learning and memory. Although a large body of literature is available on the effect of thyroid hormone deficiency on learning and memory functions during the developmental stage, electrophysiological and behavioural findings, particularly on propylthiouracil administration to adult normothyroid animals, are not satisfactory. The experiments in the present study were carried out on 12 adult male Wistar rats aged 6-7 months. Hypothyroidism was induced by administering 6-n-propyl-2-thiouracil in their drinking water for 21 days at a concentration of 0.05%. The spatial learning performance of hypothyroid and control rats was studied on a Y-maze. The rats were then placed in a stereotaxic frame under urethane anaesthesia. A bipolar tungsten electrode was used to stimulate the medial perforant path. A glass micropipette was inserted into the granule cell layer of the ipsilateral dentate gyrus to record field excitatory post-synaptic potentials. After a 15-min baseline recording of field potentials, long-term potentiation was induced by four sets of tetanic trains. The propylthiouracil-treated rats showed a significantly attenuated input-output (I/O) relationship when population spike (PS) amplitudes and field excitatory post-synaptic potentials (fEPSP) were compared. fEPSP and PS latencies were found to be longer in the hypothyroid group than in the control group. The PS amplitude and fEPSP slope potentiations in the hypothyroid rats were not statistically different from those in the control rats, except for the field EPSP slope measured in the post-tetanic and maintenance phases. The hypothyroid rats also showed lower thyroxine levels and poor performance in the spatial memory task. The present study provides in vivo evidence for the action of propylthiouracil leading to impaired synaptic plasticity, which might explain deficit in spatial memory tasks in adult hypothyroid rats.

  8. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects.

    Science.gov (United States)

    Geil, Chelsea R; Hayes, Dayna M; McClain, Justin A; Liput, Daniel J; Marshall, S Alex; Chen, Kevin Y; Nixon, Kimberly

    2014-10-03

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.

  9. Adult hippocampal neurogenesis of mammals: evolution and life history

    OpenAIRE

    Amrein, I.; Lipp, H. P.

    2009-01-01

    Substantial production of new neurons in the adult mammalian brain is restricted to the olfactory system and the hippocampal formation. Its physiological and behavioural role is still debated. By comparing adult hippocampal neurogenesis (AHN) across many mammalian species, one might recognize a common function. AHN is most prominent in rodents, but shows considerable variability across species, being lowest or missing in primates and bats. The latter finding argues against a critical role of ...

  10. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I r

  11. Wnt signaling in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2013-06-01

    Full Text Available In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone of the lateral ventricles and the subgranular zone (SGZ in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/beta-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/beta-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.

  12. Wnt signaling in the regulation of adult hippocampal neurogenesis

    Science.gov (United States)

    Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2013-01-01

    In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed. PMID:23805076

  13. Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis.

    Science.gov (United States)

    Alén, Francisco; Mouret, Aurélie; Viveros, Maria-Paz; Llorente, Ricardo; Lepousez, Gabriel; Lledo, Pierre-Marie; López-Moreno, José Antonio

    2010-03-01

    Alcoholism is characterized by successive periods of abstinence and relapse, resulting from long-lasting changes in various circuits of the central nervous system. Accumulating evidence points to the endocannabinoid system as one of the most relevant biochemical systems mediating alcohol addiction. The endocannabinoid system regulates adult neurogenesis, a form of long-lasting adult plasticity that occurs in a few areas of the brain, including the dentate gyrus. Because exposure to psychotropic drugs regulates adult neurogenesis, it is possible that neurogenesis might be implicated in the pathophysiology, and hence treatment, of neurobiological illnesses related to drugs of abuse. Here, we investigated the sensitivity of adult hippocampal neurogenesis to alcohol and the cannabinoid receptor agonist WIN 55,212-2 (WIN). Specifically, we analysed the potential link between alcohol relapse, cannabinoid receptor activation, and adult neurogenesis. Adult rats were exposed to subchronic alcohol binge intoxication and received the cannabinoid receptor agonist WIN. Another group of rats were subjected to an alcohol operant self-administration task. Half of these latter animals had continuous access to alcohol, while the other half were subjected to alcohol deprivation, with or without WIN administration. WIN treatment, when administered during alcohol deprivation, resulted in the greatest increase in alcohol consumption during relapse. Together, forced alcohol binge intoxication and WIN administration dramatically reduced hippocampal neurogenesis. Furthermore, adult neurogenesis inversely correlated with voluntary consumption of alcohol. These findings suggest that adult hippocampal neurogenesis is a key factor involved in drug abuse and that it may provide a new strategy for the treatment of alcohol addiction and dependence.

  14. Hippocampal adult neurogenesis: Does the immune system matter?

    Science.gov (United States)

    de Miranda, Aline Silva; Zhang, Cun-Jin; Katsumoto, Atsuko; Teixeira, Antônio Lúcio

    2017-01-15

    Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging.

  15. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Roelof Maarten evan Dijk

    2016-03-01

    Full Text Available While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non

  16. Damage of hippocampal neurons in rats with chronic alcoholism

    Institute of Scientific and Technical Information of China (English)

    Ailin Du; Hongbo Jiang; Lei Xu; Na An; Hui Liu; Yinsheng Li; Ruiling Zhang

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deifcits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6%alcohol for 42 days. Endog-enous hydrogen sulifde content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were signiifcantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear mem-brane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  17. Adult hippocampal neurogenesis in natural populations of mammals.

    Science.gov (United States)

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.

  18. Habitat-Specific Shaping of Proliferation and Neuronal Differentiation in Adult Hippocampal Neurogenesis of Wild Rodents

    Directory of Open Access Journals (Sweden)

    Nicole eCavegn

    2013-04-01

    Full Text Available Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis and habitat types. To this end, we compare wild Muridae species of southern Africa (Namaqua rock mouse (Micaelamys namaquensis, red veld rat (Aethomys chrysophilus, highveld gerbil (Tatera brantsii and spiny mouse (Acomys spinosissimus with data from wild European Muridae (long-tailed wood mice (Apodemus sylvaticus, pygmy field mice (Apodemus microps, yellow-necked wood mice (Apodemus flavicollis, and house mice (Mus musculus domesticus from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and DCX-positive cells to total granule cells, is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower adult hippocampal neurogenesis compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups.

  19. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc.

  20. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain.

    Science.gov (United States)

    Hong, Xiao-Ping; Chen, Tao; Yin, Ni-Na; Han, Yong-Ming; Yuan, Fang; Duan, Yan-Jun; Shen, Feng; Zhang, Yan-Hong; Chen, Ze-Bin

    2016-01-01

    Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.

  1. Natural variation and genetic covariance in adult hippocampal neurogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kempermann, Gerd [Center for Molecular Medicine, Berlin, Germany; Chesler, Elissa J [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Williams, Robert [University of Tennessee Health Science Center, Memphis; Gage, Fred [Salk Institute for Biological Studies, The, San Diego, CA

    2006-01-01

    Adult hippocampal neurogenesis is highly variable and heritable among laboratory strains of mice. Adult neurogenesis is also remarkably plastic and can be modulated by environment and activity. Here, we provide a systematic quantitative analysis of adult hippocampal neurogenesis in two large genetic reference panels of recombinant inbred strains (BXD and AXB?BXA, n ? 52 strains). We combined data on variation in neurogenesis with a new transcriptome database to extract a set of 190 genes with expression patterns that are also highly variable and that covary with rates of (i) cell proliferation, (ii) cell survival, or the numbers of surviving (iii) new neurons, and (iv) astrocytes. Expression of a subset of these neurogenesis-associated transcripts was controlled in cis across the BXD set. These self-modulating genes are particularly interesting candidates to control neurogenesis. Among these were musashi (Msi1h) and prominin1?CD133 (Prom1), both of which are linked to stem-cell maintenance and division. Twelve neurogenesis-associated transcripts had significant cis-acting quantitative trait loci, and, of these, six had plausible biological association with adult neurogenesis (Prom1, Ssbp2, Kcnq2, Ndufs2, Camk4, and Kcnj9). Only one cis- cting candidate was linked to both neurogenesis and gliogenesis, Rapgef6, a downstream target of ras signaling. The use of genetic reference panels coupled with phenotyping and global transcriptome profiling thus allowed insight into the complexity of the genetic control of adult neurogenesis.

  2. The Contradictory Effects of Neuronal Hyperexcitationon Adult Hippocampal Neurogenesis.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Encinas

    2016-03-01

    Full Text Available Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural stem cell recruitment and activation, progenitor proliferation, as well as newborn cell survival and differentiation. An excitation-neurogenesis rule was proposed after the demonstration of the capability of cultured neural stem and progenitor cells to intrinsically sense neuronal excitatory activity. In vivo, this property has remained elusive although recently the direct response of neural stem cells to GABA in the hippocampus via GABAA receptors has evidenced a mechanism for a direct talk between neurons and neural stem cells. As it is pro-neurogenic, the effect of excitatory neuronal activity has been generally considered beneficial. But what happens in situations of neuronal hyperactivity in which neurogenesis can be dramatically boosted? In animal models, electroconvulsive shock markedly increases neurogenesis. On the contrary, in epilepsy rodent models, seizures induce the generation of misplaced neurons with abnormal morphological and electrophysiological properties, namely aberrant neurogenesis. We will herein discuss what is known about the mechanisms of influence of neurons on neural stem cells, as well as the severe effects of neuronal hyperexcitation on hippocampal neurogenesis.

  3. Early life inflammatory pain induces long-lasting deficits in hippocampal-dependent spatial memory in male and female rats.

    Science.gov (United States)

    Henderson, Yoko O; Victoria, Nicole C; Inoue, Kiyoshi; Murphy, Anne Z; Parent, Marise B

    2015-02-01

    The present experiment tested the hypothesis that neonatal injury disrupts adult hippocampal functioning and that normal aging or chronic stress during adulthood, which are known to have a negative impact on hippocampal function, exacerbate these effects. Male and female Sprague-Dawley rats were given an intraplantar injection of the inflammatory agent carrageenan (1%) on the day of birth and their memory was tested in the hippocampal-dependent spatial water maze in adulthood and again in middle age. We found that neonatal injury impaired hippocampal-dependent memory in adulthood, that the effects of injury on memory were more pronounced in middle-aged male rats, and that chronic stress accelerated the onset of these memory deficits. Neonatal injury also decreased glucocorticoid receptor mRNA in the dorsal CA1 area of middle-aged rats, a brain region critical for spatial memory. Morphine administration at the time of injury completely reversed injury-induced memory deficits, but neonatal morphine treatments in the absence of injury produced significant memory impairments in adulthood. Collectively, these findings are consistent with our hypothesis that neonatal injury produces long-lasting disruption in adult hippocampal functioning.

  4. Role of adult hippocampal neurogenesis in persistent pain.

    Science.gov (United States)

    Apkarian, A Vania; Mutso, Amelia A; Centeno, Maria V; Kan, Lixin; Wu, Melody; Levinstein, Marjorie; Banisadr, Ghazal; Gobeske, Kevin T; Miller, Richard J; Radulovic, Jelena; Hen, René; Kessler, John A

    2016-02-01

    The full role of adult hippocampal neurogenesis (AHN) remains to be determined, yet it is implicated in learning and emotional functions, and is disrupted in negative mood disorders. Recent evidence indicates that AHN is decreased in persistent pain consistent with the idea that chronic pain is a major stressor, associated with negative moods and abnormal memories. Yet, the role of AHN in development of persistent pain has remained unexplored. In this study, we test the influence of AHN in postinjury inflammatory and neuropathic persistent pain-like behaviors by manipulating neurogenesis: pharmacologically through intracerebroventricular infusion of the antimitotic AraC; ablation of AHN by x-irradiation; and using transgenic mice with increased or decreased AHN. Downregulating neurogenesis reversibly diminished or blocked persistent pain; oppositely, upregulating neurogenesis led to prolonged persistent pain. Moreover, we could dissociate negative mood from persistent pain. These results suggest that AHN-mediated hippocampal learning mechanisms are involved in the emergence of persistent pain.

  5. Effects of Stress and Hippocampal NMDA Receptor Antagonism on Recognition Memory in Rats

    OpenAIRE

    Kevin B Baker; Kim, Jeansok J

    2002-01-01

    Exposures to uncontrollable stress have been shown to alter ensuing synaptic plasticity in the hippocampus and interfere with hippocampal-dependent spatial memory in rats. The present study examined whether stress, which impairs hippocampal long-term potentiation (LTP), also affects (nonspatial) hippocampal-dependent object-recognition memory, as tested on the visual paired comparison task (VPC) in rats. After undergoing an inescapable restraint–tailshock stress experience, rats exhibited mar...

  6. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.

    Science.gov (United States)

    Snyder, Jason S; Soumier, Amélie; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2011-08-03

    Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to inhibit adult neurogenesis specifically, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice also showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.

  7. Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Nelli Giribabu

    2014-01-01

    Full Text Available Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ- induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na+/K+-, Ca2+- and Mg2+-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.

  8. mRNA expression of Rho GTPase-related signaling molecules during rat hippocampal development

    Institute of Scientific and Technical Information of China (English)

    Guoqing Guo; Jifeng Zhang; Li Xin; Jing Chen; Weizai Shen; Lin Yuan; Shizhen Zhong

    2009-01-01

    BACKGROUND:Rho GTPase family members have been shown to participate in neurite growth by regulating the neuronal cytoskeleton.However,there are very few reports of developmental roles of signaling molecules related to Rho GTPases.OBJECTIVE:To investigate messenger ribonucleic acid mRNA expression of signaling molecules associated with Rho GTPases,including Rho-A,Rac-1,collapsin response mediator protein 1(CRMP-1),and tubulin β3 (Tub β3) during rat hippocampus development.DESIGN,TIME AND SETTING:A non-randomized,controlled,animal experiment,based on different developmental stages of the rat hippocampus,was performed at the Guangdong Key Laboratory of Tissue Construction and Detection,Institute of Clinical Anatomy,Southern Medical University between December 2005 and July 2007.MATERIALS:Trizol reagent was purchased from Invitrogen,USA.RNA PCR kit (AMV) Ver 3.0 and 150 bp DNA Ladder Marker were purchased from TaKaRa,Japan.Unless otherwise specified,all other reagents were purchased from Sigma-Aldrich,USA.METHODS:Twenty-five Sprague Dawley rats were assigned to five groups (n=5) according to developmental stages:embryonic (embryonic 15 days),neonatal (postnatal 5 days),juvenile (postnatal 1 month),adult (postnatal 3 months),and senile (postnatal 18 months).MAIN OUTCOME MEASURES:Detection of mRNA expression of Rho-A,Rac-1,CRMP-1,and Tub β3 during various hippocampal developmental stages by reverse-transcription polymerase chain reaction.RESULTS:Hippocampal mRNA expression of Rho-A,as well as Rac-1,reached peak levels at embryonic,juvenile,and senile stages,and was relatively less during neonatal and adult stages.mRNA expression of Rac-1 was greater than Rho-A during each hippocampal developmental stage.CRMP-1 mRNA expression levels were as follows:embryonic>neonatal>juvenile>adult<senile,while Tub β3 mRNA expression was embryonic>neonatal>juvenile>adult=senile.CONCLUSION:Rho-A and Rac-1 shared similar expression profiles,which demonstrated similar

  9. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.

    Science.gov (United States)

    Farley, M M; Swulius, M T; Waxham, M N

    2015-09-24

    Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.

  10. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats

    Directory of Open Access Journals (Sweden)

    Valentina eCorvino

    2015-11-01

    Full Text Available Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2 administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT administration (8mg/kg, characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg i.p. or vehicle, and were sacrificed 48h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48h upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, Cadherin and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad 67, neuropeptide Y (Npy, parvalbumin , Pgc-1α and Sirtuin 1genes, the latter involved in parvalbumin (PV synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.

  11. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents.

    Science.gov (United States)

    Cavegn, Nicole; van Dijk, R Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups.

  12. Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhiyan Lu; Jinwei Wu; Guangyuan Cheng; Jianying Tian; Zeqing Lu; Yongyi Bi

    2014-01-01

    Previous studies have found that methylmercury can damage hippocampal neurons and accord-ingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmer-cury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride.

  13. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood.

    Science.gov (United States)

    McCormick, Cheryl M; Thomas, Catherine M; Sheridan, Cheryl S; Nixon, Feather; Flynn, Jennifer A; Mathews, Iva Z

    2012-06-01

    The ongoing development of the hippocampus in adolescence may be vulnerable to stressors. The effects of social instability stress (SS) in adolescence (daily 1 h isolation and change of cage partner postnatal days 30-45) on cell proliferation in the dentate gyrus (DG) in adolescence (on days 33 and 46, experiment 1) and in adulthood (experiment 2) was examined in Long Evans male rats and compared to nonstressed controls (CTL). Additionally, in experiment 2, a separate group of SS and CTL rats was tested on either a spatial (hippocampal-dependent) or nonspatial (nonhippocampal dependent) version of an object memory test and also were used to investigate hippocampal expression of markers of synaptic plasticity. No memory impairment was evident until the SS rats were adults, and the impairment was only on the spatial test. SS rats initially (postnatal day 33) had increased cell proliferation based on counts of Ki67 immunoreactive (ir) cells and greater survival of immature neurons based on counts of doublecortin ir cells on day 46 and in adulthood, irrespective of behavioral testing. Counts of microglia in the DG did not differ by stress group, but behavioral testing was associated with reduced microglia counts compared to nontested rats. As adults, SS and CTL rats did not differ in hippocampal expression of synaptophysin, but compared to CTL rats, SS rats had higher expression of basal calcium/calmodulin-dependent kinase II (CamKII), and lower expression of the phosphorylated CamKII subunit threonine 286, signaling molecules related to synaptic plasticity. The results are contrasted with those from previous reports of chronic stress in adult rats, and we conclude that adolescent stress alters the ongoing development of the hippocampus leading to impaired spatial memory in adulthood, highlighting the heightened vulnerability to stressors in adolescence.

  14. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers.

    Science.gov (United States)

    Gómez-Palacio-Schjetnan, Andrea; Escobar, Martha L

    2008-11-07

    Brain-derived neurotrophic factor (BDNF) has been proposed as a key regulator and mediator of long-term synaptic modifications related to learning and memory maintenance. Our previous studies show that application of high-frequency stimulation (HFS) sufficient to elicit LTP at the dentate gyrus (DG)-CA3 pathway produces mossy fiber structural modifications 7 days after tetanic stimulation. In the present study, we show that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the DG-CA3 projection of anesthetized adult rats. Furthermore, we show that BDNF functional modifications in synaptic efficacy are accompanied by a presynaptic structural long-lasting reorganization at the hippocampal mossy fiber pathway. These findings support the idea that BDNF plays an important role as synaptic messenger of activity-dependent synaptic plasticity in the adult mammalian brain, in vivo.

  15. Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing.

    Science.gov (United States)

    Guo, Jingjing; Cheng, Xiang; Zhang, Lei; Wang, Linmei; Mao, Yongxin; Tian, Guixiang; Xu, Wenhao; Wu, Yuhao; Ma, Zhi; Qin, Jianbing; Tian, Meiling; Jin, Guohua; Shi, Wei; Zhang, Xinhua

    2017-02-18

    Adult hippocampal neurogenesis is essential for learning and memory, and its dysfunction is involved in neurodegenerative diseases. However, the molecular mechanisms underlying adult hippocampal neurogenesis are still largely unknown. Our previous studies indicated that the transcription factor Brn4 was upregulated and promoted neuronal differentiation of neural stem cells (NSCs) in the surgically denervated hippocampus in rats. In this study, we use high-throughput RNA sequencing to explore the molecular mechanisms underlying the enhancement of adult hippocampal neurogenesis induced by lentivirus-mediated Brn4 overexpression in vivo. After 10 days of the lentivirus injection, we found that the expression levels of genes related to neuronal development and maturation were significantly increased and the expression levels of genes related to NSC maintenance were significantly decreased, indicating enhanced neurogenesis in the hippocampus after Brn4 overexpression. Through RNA sequencing, we found that 658 genes were differentially expressed in the Brn4-overexpressed hippocampi compared with GFP-overexpressed controls. Many of these differentially expressed genes are involved in NSC division and differentiation. By using quantitative real-time PCR, we validated the expression changes of three genes, including Ctbp2, Notch2, and Gli1, all of which are reported to play key roles in neuronal differentiation of NSCs. Importantly, the expression levels of Ctbp2 and Notch2 were also significantly changed in the hippocampus of Brn4 KO mice, which indicates that the expression levels of Ctbp2 and Notch2 may be directly regulated by Brn4. Our current study provides a solid foundation for further investigation and identifies Ctbp2 and Notch2 as possible downstream targets of Brn4. © 2017 Wiley Periodicals, Inc.

  16. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  17. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Chang, Jie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Zhang, Lingyi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan); Hu, Shijie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Huang, Hanlin, E-mail: huanghl@gdoh.org [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan)

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation

  18. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    OpenAIRE

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern ...

  19. Habitat-Specific Shaping of Proliferation and Neuronal Differentiation in Adult Hippocampal Neurogenesis of Wild Rodents

    OpenAIRE

    Nicole eCavegn; R. Maarten evan Dijk; Dominik eMenges; Helene eBrettschneider; Mashudu ePhalanndwa; Chimimba, Christian T; Karin eIsler; Hans-Peter eLipp; Lutz eSlomianka; Irmgard eAmrein

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis and habitat types. To this end, we compare wild Muridae species of southern Africa...

  20. Adult hippocampal neurogenesis is impaired by transient and moderate developmental thyroid hormone disruption.

    Science.gov (United States)

    Gilbert, M E; Goodman, J H; Gomez, J; Johnstone, A F M; Ramos, R L

    2016-12-31

    The hippocampus maintains a capacity for neurogenesis throughout life, a capacity that is reduced in models of adult onset hypothyroidism. The effects of developmental thyroid hormone (TH) insufficiency on neurogenesis in the adult hippocampus, however, has not been examined. Graded degrees of TH insufficiency were induced in pregnant rat dams by administration of 0, 3 or 10ppm of 6-propylthiouracil (PTU) in drinking water from gestational day (GD) 6 until weaning. Body, brain, and hippocampal weight were reduced on postnatal day (PN) 14, 21, 78 and hippocampal volume was smaller at the 10 but not 3ppm dose level. A second experiment examined adult hippocampal neurogenesis following developmental or adult onset hypothyroidism. Two male offspring from 0 and 3ppm exposed dams were either maintained on control water or exposed to 3ppm PTU to create 4 distinct treatment conditions (Control-Control; Control-PTU, PTU-Control, PTU-PTU) based on developmental and adult exposures. Beginning on the 28th day of adult exposure to 0 or 3ppm PTU, bromodeoxyuridine (BrdU, 50mg/kg, ip) was administered twice daily for 5days, and one male from each treatment was sacrificed 24h and 28days after the last BrdU dose and brains processed for immunohistochemistry. Although no volume changes were seen in the hippocampus of the neonate at 3ppm, thinning of the granule cell layer emerged in adulthood. Developmental TH insufficiency produced a reduction in newly born cells, reducing BrdU+ve cells at 1 with no further reduction at 28-days post-BrdU. Similar findings were obtained using the proliferative cell marker Ki67. Neuronal differentiations was also altered with fewer doublecortin (Dcx) expressing cells and a higher proportion of immature Dcx phenotypes seen after developmental but not adult TH insufficiency. An impaired capacity for neurogenesis may contribute to impairments in synaptic plasticity and cognitive deficits previously reported by our laboratory and others following

  1. Effects of combined nicotine and fluoxetine treatment on adult hippocampal neurogenesis and conditioned place preference.

    Science.gov (United States)

    Faillace, M P; Zwiller, J; Bernabeu, R O

    2015-08-06

    Adult neurogenesis occurs in mammals within the dentate gyrus, a hippocampal subarea. It is known to be induced by antidepressant treatment and reduced in response to nicotine administration. We checked here whether the antidepressant fluoxetine would inverse the decrease in hippocampal neurogenesis caused by nicotine. It is shown that repeated, but not a single injection of rats with fluoxetine was able to abolish the decrease in adult dentate cell proliferation produced by nicotine treatment. We measured the expression of several biochemical parameters known to be associated with neurogenesis in the dentate gyrus. Both drugs increased the expression of p75 neurotrophin receptor, which promotes proliferation and early maturation of dentate gyrus cells. Using the conditioned place preference (CPP) paradigm, we also gave both drugs in a context in which their rewarding properties could be measured. Fluoxetine produced a significant but less robust CPP than nicotine. A single injection of fluoxetine was found to reduce nicotine-induced CPP. Moreover, the rewarding properties of nicotine were completely abolished in response to repeated fluoxetine injections. Expression of nicotine-induced CPP was accompanied by an increase of phospho-CREB (cyclic AMP-responsive element-binding protein) and HDAC2 (histone deacetylase 2) expression in the nucleus accumbens. The data suggest that fluoxetine reward, as opposed to nicotine reward, depends on dentate gyrus neurogenesis. Since fluoxetine was able to disrupt the association between nicotine and the environment, this antidepressant may be tested as a treatment for nicotine addiction using cue exposure therapy.

  2. Adult hippocampal neurogenesis and its role in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Mu Yangling

    2011-12-01

    Full Text Available Abstract The hippocampus, a brain area critical for learning and memory, is especially vulnerable to damage at early stages of Alzheimer's disease (AD. Emerging evidence has indicated that altered neurogenesis in the adult hippocampus represents an early critical event in the course of AD. Although causal links have not been established, a variety of key molecules involved in AD pathogenesis have been shown to impact new neuron generation, either positively or negatively. From a functional point of view, hippocampal neurogenesis plays an important role in structural plasticity and network maintenance. Therefore, dysfunctional neurogenesis resulting from early subtle disease manifestations may in turn exacerbate neuronal vulnerability to AD and contribute to memory impairment, whereas enhanced neurogenesis may be a compensatory response and represent an endogenous brain repair mechanism. Here we review recent findings on alterations of neurogenesis associated with pathogenesis of AD, and we discuss the potential of neurogenesis-based diagnostics and therapeutic strategies for AD.

  3. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers.

    Science.gov (United States)

    Costa, Veronica; Lugert, Sebastian; Jagasia, Ravi

    2015-01-01

    Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.

  4. Role of the amygdala in the hippocampal kindling effect of rats.

    Science.gov (United States)

    Araki, H; Aihara, H; Watanabe, S; Yamamoto, T; Ueki, S

    1985-02-01

    In the present experiment, the role of the amygdala in the formation of the hippocampal kindling effect was investigated in rats with chronic electrode implants. The number of trials required for the establishment of hippocampal kindling was significantly shortened by either ipsilateral or bilateral amygdaloid lesions. The high amplitude spike waves in the frontal cortex and reticular formation appeared earlier in the amygdaloid lesioned rats than in the sham lesioned rats. It is suggested that the amygdala has an inhibitory effect on the development of the hippocampal kindling effect. On the other hand, either the ipsilateral or bilateral amygdaloid lesions after the establishment of hippocampal kindling inhibited the induction of generalized convulsion by hippocampal stimulation. Three and 8 repeated daily stimulations were needed to reestablish the hippocampal kindling effect after the ipsilateral and bilateral amygdaloid lesions, respectively. These results do not coincide with the above-mentioned results indicating that the amygdala has an inhibitory role in the formation of hippocampal kindling. It is suggested that the neuronal circuits involved in the formation of hippocampal kindling in the amygdaloid lesioned rats are different from those in the intact rats.

  5. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.

    Science.gov (United States)

    Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M

    2016-04-01

    Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis.

  6. An examination of early neural and cognitive alterations in hippocampal-spatial function of ghrelin receptor-deficient rats.

    Science.gov (United States)

    Cahill, Shaina P; Hatchard, Taylor; Abizaid, Alfonso; Holahan, Matthew R

    2014-05-01

    Ghrelin, a hormone implicated in the regulation of feeding and energy balance, has also been associated with neural function underlying learning and memory. These effects are thought to be mediated by ghrelin targeting receptors at extra hypothalamic sites such as the hippocampus. Exogenous ghrelin administration increases dendritic spine density in the hippocampal CA1 region and neurogenesis in the dentate gyrus (DG), while improving memory in rats. In the present study, we sought to determine whether rats lacking the ghrelin receptor would show early neural or cognitive decline measured via hippocampal integrity (spine density and neurogenesis) and spatial learning and memory. As such, we used young and middle-aged adult rats with mutations to the gene encoding for the ghrelin receptor (GHS-R KO) and wildtype (WT) littermates to determine differences in performance on hippocampal-dependent tasks (the water maze and radial arm maze). In addition, we examined the hippocampal dentate gyrus of these rats for differences in dendritic spine density and cell proliferation (doublecortin). Overall, results demonstrated that spine density and doublecortin staining in the dentate gyrus of the young GHS-R KO group was similar to that seen in middle-aged groups (both KO and WT) and lower than the young WT group. Middle-aged GHS-R KO and WT groups showed deficits on the radial arm maze food-motivated task but not the water maze task. These data suggest that impaired ghrelin signaling leads to an early onset decrement in hippocampal structural integrity that may manifest in non- spatial-related behavioral deficits.

  7. Diet-dependent modulation of hippocampal expression of endocannabinoid signaling-related proteins in cannabinoid antagonist-treated obese rats.

    Science.gov (United States)

    Rivera, Patricia; Luque-Rojas, María Jesús; Pastor, Antoni; Blanco, Eduardo; Pavón, Francisco J; Serrano, Antonia; Crespillo, Ana; Vida, Margarita; Grondona, Jesús M; Cifuentes, Manuel; Bermúdez-Silva, Francisco J; de la Torre, Rafael; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2013-01-01

    Diet-induced obesity produces changes in endocannabinoid signaling (ECS), influencing the regulation of energy homeostasis. Recently, we demonstrated that, in high-fat-diet-fed rats, blockade of CB1 receptor by AM251 not only reduced body weight but also increased adult neurogenesis in the hippocampus, suggesting an influence of diet on hippocampal cannabinoid function. To further explore the role of hippocampal ECS in high-fat-diet-induced obesity, we investigated whether the immunohistochemical expression of the enzymes that produce (diacylglycerol lipase alpha and N-acyl phosphatidylethanolamine phospholipase D) and degrade (monoacylglycerol lipase and fatty acid amino hydrolase) endocannabinoids may be altered in the hippocampus of AM251 (3 mg/kg)-treated rats fed three different diets: standard diet (normal chow), high-carbohydrate diet (70% carbohydrate) and high-fat diet (60% fat). Results indicated that AM251 reduced caloric intake and body weight gain, and induced a modulation of the expression of ECS-related proteins in the hippocampus of animals exposed to hypercaloric diets. These effects were differentially restricted to either the 2-arachinodoyl glycerol or anandamide signaling pathways, in a diet-dependent manner. AM251-treated rats fed the high-carbohydrate diet showed a reduction of the diacylglycerol lipase alpha : monoacylglycerol lipase ratio, whereas AM251-treated rats fed the high-fat diet showed a decrease of the N-acyl phosphatidylethanolamine phospholipase D : fatty acid amino hydrolase ratio. These results are consistent with the reduced levels of hippocampal endocannabinoids found after food restriction. Regarding the CB1 expression, AM251 induced specific changes focused in the CA1 stratum pyramidale of high-fat-diet-fed rats. These findings indicated that the cannabinoid antagonist AM251 modulates ECS-related proteins in the rat hippocampus in a diet-specific manner. Overall, these results suggest that the hippocampal ECS participates

  8. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane.

    Science.gov (United States)

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Hu, Shijie; Huang, Hanlin; Ichihara, Gaku

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.

  9. Antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism.

    Science.gov (United States)

    da Conceição, Rodrigo Rodrigues; Laureano-Melo, Roberto; Oliveira, Kelen Carneiro; de Carvalho Melo, Maria Clara; Kasamatsu, Tereza Sayoko; de Barros Maciel, Rui Monteiro; de Souza, Janaina Sena; Giannocco, Gisele

    2016-04-01

    Thyroidectomy is a surgical procedure indicated in cases of several maligned or benign thyroid diseases, thus, the aim of our study was to verify how the hypothyroidism induced by thyroidectomy influences behavioral parameters and its relation to thyroid hormones metabolism and neurogenesis at hippocampus. For this purpose, Adult male Wistar rats underwent to thyroidectomy to induce hypothyroidism. Behavioral tests, the thyroid profile and hippocampal gene expression were evaluated in control and in thyroidectomized animals. It was observed that thyroidectomized group had a significant increasing in serum thyroid-stimulating hormone (TSH) and a decreasing in thyroxine (T4) levels as well as in triiodothyronine (T3) serum level. It was also observed reduction of the monocarboxylate transporter 8 (Mct8), thyroid hormone receptor alfa (Trα1), deiodinase type 2 (Dio2), ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2) and brain-derived neurotrophic factor (Bdnf) mRNA expression in hippocampus of thyroidectomized animals. In the forced swimming test, it was verified that thyroidectomy promotes a decrease in time of immobility and climbing when compared with the control group. In summary, we demonstrated that antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism. This effect could be associated to an impaired neuronal activity in acute stress response as it is observed in forced swimming paradigm.

  10. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  11. Rat hippocampal GABAergic molecular markers are differentially affected by ageing.

    Science.gov (United States)

    Vela, José; Gutierrez, Antonia; Vitorica, Javier; Ruano, Diego

    2003-04-01

    We previously reported that the pharmacological properties of the hippocampal GABAA receptor and the expression of several subunits are modified during normal ageing. However, correlation between these post-synaptic modifications and pre-synaptic deficits were not determined. To address this issue, we have analysed the mRNA levels of several GABAergic molecular markers in young and old rat hippocampus, including glutamic acid decarboxylase enzymes, parvalbumin, calretinin, somatostatin, neuropeptide Y and vasoactive intestinal peptide (VIP). There was a differential age-related decrease in these interneuronal mRNAs that was inversely correlated with up-regulation of the alpha1 GABA receptor subunit. Somatostatin and neuropeptide Y mRNAs were most frequently affected (75% of the animals), then calretinin and VIP mRNAs (50% of the animals), and parvalbumin mRNA (25% of the animals) in the aged hippocampus. This selective vulnerability was well correlated at the protein/cellular level as analysed by immunocytochemistry. Somatostatin interneurones, which mostly innervate principal cell distal dendrites, were more vulnerable than calretinin interneurones, which target other interneurones. Parvalbumin interneurones, which mostly innervate perisomatic domains of principal cells, were preserved. This age-dependent differential reduction of specific hippocampal inteneuronal subpopulations might produce functional alterations in the GABAergic tone which might be compensated, at the post-synaptic level, by up-regulation of the expression of the alpha1 GABAA receptor subunit.

  12. Repeated Acute Oral Exposure to Cannabis sativa Impaired Neurocognitive Behaviours and Cortico-hippocampal Architectonics in Wistar Rats.

    Science.gov (United States)

    Imam, A; Ajao, M S; Akinola, O B; Ajibola, M I; Ibrahim, A; Amin, A; Abdulmajeed, W I; Lawal, Z A; Ali-Oluwafuyi, A

    2017-03-06

    The most abused illicit drug in both the developing and the developed world is Cannabis disposing users to varying forms of personality disorders. However, the effects of cannabis on cortico-hippocampal architecture and cognitive behaviours still remain elusive.  The present study investigated the neuro-cognitive implications of oral cannabis use in rats. Eighteen adult Wistar rats were randomly grouped to three. Saline was administered to the control rats, cannabis (20 mg/kg) to the experimental group I, while Scopolamine (1 mg/kg. ip) was administered to the last group as a standard measure for the cannabis induced cognitive impairment. All treatments lasted for seven consecutive days. Open Field Test (OFT) was used to assess locomotor activities, Elevated Plus Maze (EPM) for anxiety-like behaviour, and Y maze paradigm for spatial memory and data subjected to ANOVA and T test respectively. Thereafter, rats were sacrificed and brains removed for histopathological studies. Cannabis significantly reduced rearing frequencies in the OFT and EPM, and increased freezing period in the OFT. It also reduced percentage alternation similar to scopolamine in the Y maze, and these effects were coupled with alterations in the cortico-hippocampal neuronal architectures. These results point to the detrimental impacts of cannabis on cortico-hippocampal neuronal architecture and morphology, and consequently cognitive deficits.

  13. [Disruption of latent inhibition in adult rats after prepubertal dopamine terminals lesions in the ventral hippocampus].

    Science.gov (United States)

    Loskutova, L V; Kostiunina, N V; Red'kina, A V

    2010-05-01

    Wistar rats were submitted to bilateral ventral hippocampal injection of 6-hydroxydopamine on 32nd day after birth. Latent inhibition was measured in passive or active avoidance tasks when the rats received 20 and 100 pre-exposures of conditioned stimulus. Prepubertal and adult lesioned rats showed a deficit in the latent inhibition but not in the capacity to avoidance learning in presence of the conditioned stimulus novelty. Possible mechanism of the involvement of hippocampal dopaminergic terminals in attention inhibition to irrelevant information is considered.

  14. Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination.

    Science.gov (United States)

    So, Ji H; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling

    2017-01-01

    Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal's ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons.

  15. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  16. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    Science.gov (United States)

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  17. Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    Science.gov (United States)

    Ben-Ari, Y; Cherubini, E; Corradetti, R; Gaiarsa, J L

    1989-09-01

    1. Intracellular recordings were made from rat CA3 hippocampal neurones in vitro during the first eighteen days of postnatal life. The cells had resting membrane potentials more negative than -51 mV, action potentials greater than 55 mV and membrane input resistances of 117 +/- 12 M omega. An unusual characteristic of these cells was the presence of spontaneous giant depolarizing potentials (GDPs) which were observed during the first eight postnatal (P) days in over 85% of neurones. They were less frequent between P9 and P12 (48%) and disappeared after P12. 2. The GDPs were synchronously generated by a population of neurones; they reversed polarity at -27 mV when recorded with KCl-containing electrodes and at -51 mV with potassium acetate- or potassium methylsulphate-filled electrodes. 3. The GDPs were blocked by bath application of bicuculline (10 microM) or picrotoxin (100-200 microM). Exogenously applied gamma-aminobutyric acid (GABA; 0.2-1 mM) induced at resting membrane potential a bicuculline-sensitive membrane depolarization which reversed polarity at -25 and -51 mV when recorded with KCl- or potassium methylsulphate-filled electrodes respectively. 4. The GDPs were reduced in frequency or blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists DL-2-amino-7-phosphonoheptanoate (AP-7; 50 microM), D(-)2-amino-5-phosphonovalerate (AP-5, 10-50 microM) and (+-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10-50 microM) or NMDA channel blockers phencyclidine (2 microM) and ketamine (20 microM). 5. Stimulation of the hilus during the first week of life evoked a GDP followed by a hyperpolarization. The GDPs were generated by a population of synchronized neurones and reversed polarity at -27 mV with KCl-filled electrodes and at -52 mV with potassium acetate- or potassium methylsulphate-containing electrodes. 6. Bath application of bicuculline (1-10 microM) or picrotoxin (100-200 microM) reversibly blocked the evoked GDPs in the majority of cells

  18. Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice.

    Directory of Open Access Journals (Sweden)

    Yan Long

    Full Text Available Perfluorooctane sulfonate (PFOS is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA and 3,4-dihydrophenylacetic acid (DOPAC in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase, Herc5 (hect domain and RLD 5 isoform 2 and Tyro3 (TYRO3 protein tyrosine kinase 3 were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit, Gzma (Isoform HF1 of Granzyme A precursor, Plau (Urokinase-type plasminogen activator precursor and Lig4 (DNA ligase 4 were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.

  19. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine.

    Science.gov (United States)

    Larsen, Marianne H; Rosenbrock, Holger; Sams-Dodd, Frank; Mikkelsen, Jens D

    2007-01-26

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and NeuroD-immunoreactivity. We find that chronic, but not sub-chronic treatment with Tesofensine increases BDNF mRNA in the CA3 region of the hippocampus (35%), and Arc mRNA in the CA1 of the hippocampus (65%). Furthermore, the number of Ki-67- and neuroD-positive cells increased after chronic, but not sub-chronic treatment. This study shows that Tesofensine enhances hippocampal gene expression and new cell formation indicative for an antidepressant potential of this novel drug substance.

  20. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    Science.gov (United States)

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings

  1. Reactive changes in astrocytes, and delayed neuronal death, in the rat hippocampal CA1 region following cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Guiqing Zhang; Xiang Luo; Zhiyuan Yu; Chao Ma; Shabei Xu; Wei Wang

    2009-01-01

    BACKGROUND: Blood supply to the hippocampus is not provided by the middle cerebral artery. However, previous studies have shown that delayed neuronal death in the hippocampus may occur following focal cerebral ischemia induced by middle cerebral artery occlusion. OBJECTIVE: To observe the relationship between reactive changes in hippocampal astrocytes and delayed neuronal death in the hippocampal CA1 region following middle cerebral artery occlusion. DESIGN, TIME AND SETTING: The immunohistochemical, randomized, controlled animal study was performed at the Laboratory of Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, from July to November 2007. MATERIALS: Rabbit anti-glial fibrillary acidic protein (GFAP) (Neomarkers, USA), goat anti-rabbit IgG (Sigma, USA) and ApoAlert apoptosis detection kit (Biosciences Clontech, USA) were used in this study. METHODS: A total of 42 healthy adult male Wistar rats, aged 3-5 months, were randomly divided into a sham operation group (n = 6) and a cerebral ischemia/reperfusion group (n = 36). In the cerebral ischemia/reperfusion group, cerebral ischemia/reperfusion models were created by middle cerebral artery occlusion. In the sham operation group, the thread was only inserted into the initial region of the internal carotid artery, and middle cerebral artery occlusion was not induced. Rats in the cerebral ischemia/reperfusion group were assigned to a delayed neuronal death (+) subgroup and a delayed neuronal death (-) subgroup, according to the occurrence of delayed neuronal death in the ischemic side of the hippocampal CA1 region following cerebral ischemia. MAIN OUTCOME MEASURES: Delayed neuronal death in the hippocampal CA1 region was measured by Nissl staining. GFAP expression and delayed neuronal death changes were measured in the rat hippocampal CA1 region at the ischemic hemisphere by double staining for GFAP and TUNEL. RESULTS: After 3 days of ischemia

  2. Cognitive training-related changes in hippocampal activity associated with recollection in older adults.

    Science.gov (United States)

    Kirchhoff, Brenda A; Anderson, Benjamin A; Smith, Staci E; Barch, Deanna M; Jacoby, Larry L

    2012-09-01

    Impairments in the ability to recollect specific details of personally experienced events are one of the main cognitive changes associated with aging. Cognitive training can improve older adults' recollection. However, little is currently known regarding the neural correlates of these training-related changes in recollection. Prior research suggests that the hippocampus plays a central role in supporting recollection in young and older adults, and that age-related changes in hippocampal function may lead to age-related changes in recollection. The present study investigated whether cognitive training-related increases in older adults' recollection are associated with changes in their hippocampal activity during memory retrieval. Older adults' hippocampal activity during retrieval was examined before and after they were trained to use semantic encoding strategies to intentionally encode words. Training-related changes in recollection were positively correlated with training-related changes in activity for old words in the hippocampus bilaterally. Positive correlations were also found between training-related changes in activity in prefrontal and left lateral temporal regions associated with self-initiated semantic strategy use during encoding and training-related changes in right hippocampal activity associated with recollection during retrieval. These results suggest that cognitive training-related improvements in older adults' recollection can be supported by changes in their hippocampal activity during retrieval. They also suggest that age differences in cognitive processes engaged during encoding are a significant contributor to age differences in recollection during retrieval.

  3. Mitochondrial and nuclear changes in hippocampal neurons in a lithium-pilocarpine-induced status epilepticus rat model

    Institute of Scientific and Technical Information of China (English)

    Shuhai Tang; Li Zhang; Jianying Sun; Xiaojun Pan

    2009-01-01

    BACKGROUND: Mitochondrial damage plays a key role in neuronal damage.OBJECTIVE: To observe ultrastructural damage to mitochondria and nuclei, as well as caspase-3 expression, in hippocampal CA3 neurons of lithium-pilocarpine-induced status epilepticus rats.DESIGN, TIME AND SETTING: The neuropathological, randomized, controlled study was performed at the Animal Experimental Center, Shandong University, China in May 2008.MATERIALS: A total of 75 healthy, adult, male, Wistar rats were randomly assigned into model (n = 45) and control (n = 30) groups. Lithium-pilocarpine (Sigma, USA) was used in this study.METHODS: Rats in the model group were intraperitoneally injected with lithium chloride (3 mEq/kg),and 24 hours later with pilocarpine (45 mg/kg), to induce seizures for 2 hours. Rats in the control group were intraperitoneally infused with the same volume of saline. Rat hippocampal CA3 tissue was obtained at 3, 12, and 24 hours following status epilepticus.MAIN OUTCOME MEASURES: Neuronal changes were observed under an optical microscope. Ultrastructural changes in mitochondria and nuclei were observed using an electron microscope.caspase-3 mRNA levels were quantified by semiquantitative RT-PCR.RESULTS: After 3 hours of status epilepticus, mitochondria with swollen cristae and ruptured membranes were observed by electron microscopy. Nuclei with marginated chromatin were observed after 24 hours status epilepticus. RT-PCR results demonstrated increased caspase-3 expression at 12 hours, and significantly increased expression at 24 hours following termination of status epilepticus. This was in accordance with acidophilia occurrence, as indicated by hematoxylin-eosin staining, and time of ultrastructural damage to nuclei.CONCLUSION: In lithium-pilocarpine-induced status epilepticus rat models, ultrastructural damage to mitochondria in hippocampal neurons occurred during early stages, followed by increased caspase-3 expression and nuclear changes. These results suggested

  4. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells.

    Science.gov (United States)

    Green, Holly F; Treacy, Eimear; Keohane, Aoife K; Sullivan, Aideen M; O'Keeffe, Gerard W; Nolan, Yvonne M

    2012-03-01

    Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.

  5. Anticonvulsant effects of dipotassium clorazepate on hippocampal kindled seizures in rats.

    Science.gov (United States)

    Amano, K; Takamatu, J; Kaneyama, H; Miyazaki, C; Deshimaru, M; Sumiyoshi, S; Ogata, A; Miyakawa, T

    1998-08-01

    We examined the anticonvulsant properties of dipotassium clorazepate (DC) against hippocampal kindled seizures in rats. Adult male Wistar rats were subjected to kindling 1 week after the implantation of electrodes. After five stage 5 seizures were induced, the generalized convulsion triggering threshold (GST) was determined. Dipotassium clorazepate was administered intraperitoneally in rats that showed two stable stage 5 seizures induced at the GST current intensity. Dipotassium clorazepate at doses of 1 mg/kg or more produced an anticonvulsant effect, but did not readily suppress limbic seizures. Dipotassium clorazepate did not completely suppress after-discharges (AD) even at the highest dose, which was 5 mg/kg. Moreover, raised stimulus intensity failed to affect its efficacy as an anticonvulsant. The results of the present study suggest that DC has a modest anticonvulsant potency. It is reasonable to assume that its anticonvulsant efficacy is primarily due to attenuation of AD propagation rather than the raising of the seizure triggering threshold at the kindling focus.

  6. Effects of D2 receptor antagonist haloperidol on hippocampal neuronal apoptosis in a rat model of temporal epilepsy

    Institute of Scientific and Technical Information of China (English)

    Songqing Wang; Aihua Zhang; Haitang Chen; Qianghua He; Peizeng Xie; Yiquan Ke; Xiaodan Jiang

    2008-01-01

    BACKGROUND: Dopamine receptors are divided into D1 and D2 subgroups. It has been reported that D2 receptors resist neural toxicity induced by excitatory amino acids and muscarine, and also alleviate epilepsy attacks following pilocarpine treatment. However, it has not yet been established whether D2 receptors regulate temporal epilepsy.OBJECTIVE: To observe the effects of the D2 antagonist halopefidol on hippocampal neuronal apoptosis and electrical brain activity in a rat model of kainic acid-induced temporal epilepsy.DESIGN, TIME AND SETTING: Randomized grouping and histopathological study were performed at the Neurology Medicine Institute of Zhujiang Hospital, Southern Medical University from August to December 2004.MATERIALS: Twenty-five adult, male, Sprague Dawley rats were selected for the present study. Kainic acid (Sigma, USA) was injected into the right lateral ventricle to establish models of temporal epilepsy. A PowerLab multiplying channel electrophysiolograph was provided by AD Instruments, Australia.METHODS: The rats were randomly divided into 5 groups (n = 5): control, model, haloperidol hippocampus, haloperidol striatum, and haloperidol substantia nigra. Temporal epilepsy was established in all rats except the control group. Haloperidol was slowly injected into the hippocampus, striatum and substantia nigra, respectively, in three different injection groups. Normal saline was injected into the fight lateral ventricle of the control rats.MAIN OUTCOME MEASURES: Hippocampal apoptosis was observed on the day 3 of treatment using TUNEL staining. Changes in electroencephalogram at 0, 0.5, 2, 6, and 12 hours following treatment onset were observed using a PowerLab multiplying channel electrophysiolograph. Animal behaviors were classified according to the Racine criteria.RESULTS: Twenty-five rats were included in the final analysis. Seizures did not occur in the control group. In the model group, 10 minutes alter kainic acid injection to the lateral

  7. Water maze learning and hippocampal synaptic plasticity in streptozotocin diabetic rats: effects of insulin treatment

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Kamal, A.; Urban, I.J.A.; Spruijt, B.M.; Erkelens, D.W.

    1998-01-01

    Streptozotocin-diabetic rats express deficits in water maze learning and hippocampal synaptic plasticity. The present study examined whether these deficits could be prevented and/or reversed with insulin treatment. In addition, the water maze learning deficit in diabetic rats was further characteriz

  8. Changes in hippocampal histamine receptors in rats after treatment with Trimeresurus albolabris venom

    Institute of Scientific and Technical Information of China (English)

    Qiyi He; Min Deng; Xiaodong Yu; Hui Li; Yixin Lin; Xia Chen

    2008-01-01

    BACKGROUND:It has been demonstrated that histamine and its receptors in the hippocampus play an important role in memory and/or learning behaviors.OBJECTIVE:To investigate the expression levels of the histamine receptor gene and protein in the hippocampi of rats prior to and after administration of Trimeresurus albolabris venom using reverse transcription-polymerase chain reaction(RT-PCR)and Western blot techniques.DESIGN,TIME AND SETTING:A controlled observation based on cellular protein level was performed in the College of Life Sciences,Chongqing Normal University between March 2005 and April 2007.MATERIALS:Eighty adult male Sprague-Dawley rats were provided bv the Laboratory AnimaI Center of the Third Military Medical University of Chinese PLA.Tlle lyophilized pewder of Trimeresurus albolabris venom was collected from Jin-Hu-Shan in Chongqing,China.METHODS:Twenty rats were randomly and evenly divided irite an experimental group and a control group.The experimental group was subcutaneously injected with 0.65 mg/mL Trimeresurus albolabris venom,0.5 mL for each rat.The centrel group was subcutaneously injected with an equal amount of 0.9% physiological saline.Prior to and after iniection,rats from these two groups were placed in the Morris Water Maze for recording of path length and escape latency.The remaining 60 rats were randomly allocated to another experimental group(n=50)and another control group(n=10).Rats were correspondingly injected as described above.At difierent time points(0.1,0.5,1,2,and 3 hours after injection),rats were decapitated and bilateral hippocampal tissues were dissociated(approximately 100 mg for each sample).Then,the acquired hippocampal tissue was immediately preserved at-70℃ for subsequent experiments.MAIN OUTCOME MEASURES:(1)The levels of histamine receptor(including H1R,H2R,and H3R)mRNA and protein in the hippocampi of rats were measured prior to and after injection of Trimeresurus albolabris venom using RT-PCR and Western Blot

  9. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults.

    Science.gov (United States)

    Duarte-Guterman, Paula; Yagi, Shunya; Chow, Carmen; Galea, Liisa A M

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.

  10. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E. (Armed Forces Radiobiology Research Institute, Bethesda, MD (USA))

    1989-08-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage.

  11. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

    Science.gov (United States)

    Holmes, Philip V; Reiss, Jenny I; Murray, Patrick S; Dishman, Rod K; Spradley, Jessica M

    2015-05-01

    Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect.

  12. Clinical and Cognitive Correlates of Structural Hippocampal Change in "At-Risk" Older Adults.

    Science.gov (United States)

    Elcombe, Emma L; Lagopoulos, Jim; Mowszowski, Loren; Diamond, Keri; Paradise, Matthew; Hickie, Ian B; Lewis, Simon J G; Naismith, Sharon L

    2014-06-01

    With estimates of dementia expected to rise over the coming decades, there is interest in understanding the factors associated with promoting neuroprotection and limiting neurodegeneration. In this study, we examined the change in the volume of the hippocampus over a 2-month period in 34 older people "at risk" of cognitive decline (mean age = 66.8 years, 38% male). Factors that were examined included cognitive reserve, neuropsychological functioning, depression as well as a lifestyle (cognitive training) intervention. The results showed that over a 2-month period, increases in hippocampal size were associated with having higher premorbid intellect, greater occupational attainment, superior memory, and higher levels of functioning. Conversely, depression and disability were associated with decreases in hippocampal volume. Cognitive training was not associated with changes in hippocampal volume. These findings suggest that factors associated with cognitive reserve, cognition and depression may play an integral pathophysiological role in determining hippocampal volumes in "at-risk" older adults.

  13. Electroacupuncture at Du channel and meridian of foot- Taiyang for hippocampal neurons in rats with depression

    Institute of Scientific and Technical Information of China (English)

    Min Pi; Wenshu Luo; Lihong Diao; Xiaodan Rao; Haibo Yu; Zhuoxin Yang

    2007-01-01

    BACKGROUND: Long-term anti-depression treatment can promote the regeneration of hippocampal regeneration. Up-regulation of hippocampal regeneration can reverse or prevent against the injury of stress to cerebrum, especially to hippocampal structure and function. Therefore, promoting hippocampal neuronal regeneration may be a new strategy for treating depression and anxiety.OBJECTIVE: To observe the effect of electro-acupuncture at Du channel and meridian of foot-Taiyang on hippocampal neurons from model rats of depression.DESIGN: A randomized controlled animal experiment.SETTING: Department of Acupuncture and Moxibustion, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine.MATERIALS: Twenty-four Wistar rats, of either gender, aged 2 months old, weighing 200 - 220 g, were provided by the Animal Experimental Center, Guangzhou University of Traditional Chinese Medicine.METHODS: This experiment was carried out in the Clinical Molecular Biochemical Laboratory, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine between October 2006 and April 2007.①The involved rats were randomized into 4 groups according to body mass: blank control group,model group, electroacupuncture A group and electroacupuncture B group, with 6 in each. Rats in the blank control group were free to access to water, and were not given any intervention. Rats in the latter 3 groups were developed into rat depression models by chronic stress combined with feeding alone, and received 21-day unpredictable various stresses. Rats in the model group were euthanized at 14 days after modeling,and their brain tissues were harvested. Rats in the electroacupuncture A group were modeled, then points "Baihui" and "Shenting" were chosen, and given electroacupuncture, once a day, 20 minutes once. Rats in the electroacupuncture B group were modeled, then points "Baihui", "Shenting", "Xinshu"and "Ganshu" were chosen, and frequency and therapeutic time were

  14. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    Science.gov (United States)

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  15. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats

    Science.gov (United States)

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dose-dependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  16. Intact neurobehavioral development and dramatic impairments of procedural-like memory following neonatal ventral hippocampal lesion in rats.

    Science.gov (United States)

    Lecourtier, L; Antal, M-C; Cosquer, B; Schumacher, A; Samama, B; Angst, M-J; Ferrandon, A; Koning, E; Cassel, J-C; Nehlig, A

    2012-04-05

    Neonatal ventral hippocampal lesions (NVHL) in rats are considered a potent developmental model of schizophrenia. After NVHL, rats appear normal during their preadolescent time, whereas in early adulthood, they develop behavioral deficits paralleling symptomatic aspects of schizophrenia, including hyperactivity, hypersensitivity to amphetamine (AMPH), prepulse and latent inhibition deficits, reduced social interactions, and spatial working and reference memory alterations. Surprisingly, the question of the consequences of NVHL on postnatal neurobehavioral development has not been addressed. This is of particular importance, as a defective neurobehavioral development could contribute to impairments seen in adult rats. Therefore, at several time points of the early postsurgical life of NVHL rats, we assessed behaviors accounting for neurobehavioral development, including negative geotaxis and grip strength (PD11), locomotor coordination (PD21), and open-field (PD25). At adulthood, the rats were tested for anxiety levels, locomotor activity, as well as spatial reference memory performance. Using a novel task, we also investigated the consequences of the lesions on procedural-like memory, which had never been tested following NVHL. Our results point to preserved neurobehavioral development. They also confirm the already documented locomotor hyperactivity, spatial reference memory impairment, and hyperresponsiveness to AMPH. Finally, our rseults show for the first time that NVHL disabled the development of behavioral routines, suggesting dramatic procedural memory deficits. The presence of procedural memory deficits in adult rats subjected to NHVL suggests that the lesions lead to a wider range of cognitive deficits than previously shown. Interestingly, procedural or implicit memory impairments have also been reported in schizophrenic patients.

  17. Altered mitochondria and Bcl-2 expression in the hippocampal CA3 region in a rat model of acute epilepsy

    Institute of Scientific and Technical Information of China (English)

    Jiyan Cheng; Lina Wu; Qiaozhi Wang; Yanfeng Gan; Guangyi Liu; Hong Yu

    2009-01-01

    BACKGROUND: Previous studies have shown that the mitochondrial structure and function are damaged in animal models of epilepsy. In addition, the Bcl-2 protein is capable of regulating mitochondrial stability.OBJECTIVE: To observe and validate changes in mitochondrial structure and Bcl-2 expression, and to analyze these characteristics in the hippocampal CA3 region of rat models of epilepsy. DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed at the Laboratory of Electron Microscopy and Department of Histology and Embryology, Luzhou Medical College between 2007 and 2008.MATERIALS: Coriamyrtin was provided by the Pharmacy Factory of West China University of Medical Sciences. The primary and secondary antibodies were provided by Zhongshan Goldenbridge Biotechnology, Beijing.METHODS: A total of 44 adult, male, Sprague Dawley rats were randomly divided into control (n=11) and epilepsy (n=33) groups. Rats in the epilepsy group were induced by coriamyrtin (50μg/kg), which was injected into the lateral ventricles. The rats were then observed at 3, 6, and 24 hours after epilepsy induction, with 11 rats at each time point. Epilepsy was not induced in rats from the control group.MAIN OUTCOME MEASURES: Pathological changes in the hippocampal CA3 region were observed by light microscopy; Bcl-2 expression was analyzed by immunohistochemistry; and mitochondrial changes in the hippocampus were observed under transmission electron microscopy.RESULTS: (1) The control group displayed very little Bcl-2 protein expression in the hippocampal CA3 region. However, after 3 hours of epilepsy, expression was visible. By 6 hours, expression peaked and then subsequently decreased after 24 hours, but remained higher than the control group (P<0.05). (2) Mitochondria were damaged to varying degrees in the epilepsy groups. For example, mitochondria edema, cristae space increase, and disappearance of mitochondria were apparent. Moreover, mitochondrial damage

  18. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    Science.gov (United States)

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects.

  19. GABA mediated excitation in immature rat CA3 hippocampal neurons.

    Science.gov (United States)

    Cherubini, E; Rovira, C; Gaiarsa, J L; Corradetti, R; Ben Ari, Y

    1990-01-01

    Intracellular recordings from rat hippocampal neurons in vitro during the first postnatal week revealed the presence of spontaneous giant depolarizing potentials (GDPs). These were generated by the synchronous discharge of a population of neurons. GDPs reversed polarity at -27 and -51 mV when recorded with KCl or K-methylsulphate filled electrodes, respectively. GDPs were blocked by the GABAA receptor antagonist bicuculline (10 microM). Iontophoretic or bath applications of GABA (10-300 microM) in the presence of tetrodotoxin (1 microM), induced a membrane depolarization or in voltage clamp experiments an inward current which reversed polarity at the same potential as GDPs. The response to GABA was blocked in a non-competitive manner by bicuculline (10 microM) and did not desensitize. GABA mediated GDPs were presynaptically modulated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Their frequency was reduced or blocked by NMDA receptor antagonists and by the rather specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The frequency of GDPs was enhanced by glycine and D-serine (10-30 microM) in a strychnine insensitive manner. This effect was blocked by AP-5, suggesting that it was mediated by the allosteric modulatory site of the NMDA receptor. These observations suggest that most of the 'excitatory' drive in immature neurons is mediated by GABA acting on GABAA receptors; furthermore excitatory amino acids modulate the release of GABA by a presynaptic action on GABAergic interneurons.

  20. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate?

    Science.gov (United States)

    Ryan, Sinéad M; Nolan, Yvonne M

    2016-02-01

    Adult hippocampal neurogenesis is believed to be integral for certain forms of learning and memory. Dysregulation of hippocampal neurogenesis has been shown to be an important mechanism underlying the cognitive impairment associated with normal aging, as well as the cognitive deficits evident in preclinical models of Alzheimer's disease and other neurodegenerative diseases. Neuroinflammation is a significant pathological feature of these conditions; it contributes to the observed cognitive decline, and recent evidence demonstrates that it also negatively affects hippocampal neurogenesis. Conversely, during the past twenty years, it has been robustly shown that exercise is a potent inducer of hippocampal neurogenesis, and it is believed that the positive beneficial effect of exercise on cognitive function is likely due to its pro-neurogenic effects. However, the interplay between exercise- and neuroinflammatory-induced changes in hippocampal neurogenesis and associated cognitive function has only recently begun to receive attention. Here we review the current literature on exercise-induced effects on hippocampal neurogenesis, cognitive function and neuroinflammation, and consider exercise as a potential pro-neurogenic and anti-inflammatory intervention for cognition.

  1. EFFECTS OF GLUTAMATE ON SODIUM CHANNEL IN ACUTELY DISSOCIATED HIPPOCAMPAL CA1 PYRAMIDAL NEURONS OF RATS

    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣

    2011-01-01

    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  2. Curcumin protects against interleukin-6-induced rapid Ca2+ influx in rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Qinying Deng; Tao Huang; Hongmei Tang; Xingming Zhong; Sujian Xia; Xiangcai Wei; Jun Dong

    2011-01-01

    The current study sought to investigate the potential protective action of curcumin against interleukin-6-induced injury in rat hippocampal neurons. The results revealed that interleukin-6 induced typical cellular injury, such as the swelling of cell bodies and increased Ca2+ concentration. After administration of curcumin, interleukin-6-induced neurons recovered to a normal state, and the fluorescence intensity of Ca2+ gradually returned to normal. These findings suggest that curcumin exerts a protective effect on hippocampal neurons of rats. In addition, our results suggest that the protective effect of curcumin involves prevention of the rapid Ca2+ influx induced by interleukin-6, which maintains Ca2+ homeostasis.

  3. Temperature- and concentration-dependence of kainate-induced y oscillation in rat hippocampal slices under submerged condition

    Institute of Scientific and Technical Information of China (English)

    Cheng-biao LU; Zhi-hua WANG; Yan-hong ZHOU; Martin VREUGDENHIL

    2012-01-01

    Aim:Fast neuronal network oscillation at the y frequency band (y oscillation:30-80 Hz) has been studied extensively in hippocampal slices under interface recording condition.The aim of this study is to establish a method for recording Y oscillation in submerged hippocampal slices that allows simultaneously monitoring Y oscillation and the oscillation-related intracellular events,such as intracellular Ca2+ concentration or mitochondrial membrane potentials.Methods:Horizontal hippocampal slices (thickness:300 pm) of adult rats were prepared and placed in a submerged or an interface chamber.Extracellular field recordings Were made in the CA3c pyramidal layer of the slices.Kainate,an AMPA/kainate receptor agonist,was applied via perfusion.Data analysis was performed off-line.Results:Addition of kainate (25-1000 nmol/L) induced Y oscillation in both the submerged and interface slices.Kainate increased the Y power in a concentration-dependent manner,but the duration of steady state oscillation was reduced at higher concentrations of kainate.Long-lasting Y oscillation was maintained at the concentrations of 100-300 nmol/L.Under submerged condition,Y oscillation was temperature-dependent,with the maximum power achieved at 29℃.The induction of Y oscillation under submerged condition also required a fast rate of perfusion (5-7 mL/min) and showed a fast dynamic during development and after the washout.Conclusion:The kainite-induced Y oscillation recorded in submerged rat hippocampal slices is useful for studying the intracellular events related to neuronal network activities and may represent a model to reveal the mechanisms underlying the normal neuronal synchronizations and diseased conditions.

  4. Hippocampal plasticity after a vagus nerve injury in the rat

    Institute of Scientific and Technical Information of China (English)

    Giulia Ronchi; Vitaly Ryu; ong ling; Krzysztof Czaja

    2012-01-01

    Stimulation of the vagus nerve has been previously reported to promote neural plasticity and neurogenesis in the brain. Several studies also revealed plastic changes in the spinal cord after injuries to somatosensory nerves originating from both the brachial and lumbo-sacral plexuses. However, the neurogenic responses of the brain to the injury of the viscerosensory innervation are not as yet well understood. In the present study, we investigated whether cells in the dentate gyrus of the hippocampus respond to a chemical and physical damage to the vagus nerve in the adult rat. Intraperitoneal capsaicin administration was used to damage non-myelinated vagal afferents while subdiaphragmatic vagotomy was used to damage both the myelinated and non-myelinated vagal afferents. The 5-bromo-2-deoxyuridine (BrdU) incorporation together with cell-specific markers was used to study neural proliferation in subgranular zone, granule cell layer, molecular layer and hilus of the dentate gyrus. Microglia activation was determined by quantifying changes in the intensity of fluorescent staining with a primary antibody against ionizing calcium adapter-binding molecule 1. Results revealed that vagotomy decreased BrdU incorporation in the hilus 15 days after injury compared to the capsaicin group. Capsaicin administration decreased BrdU incorporation in the granular cell layer 60 days after the treatment. Capsaicin decreased the number of doublecortin-expressing cells in the dentate gyrus, whereas vagotomy did not alter the expression of doublecortin in the hippocampus. Both the capsaicin- and the vagotomy-induced damage to the vagus nerve decreased microglia activation in the hippocampus at 15 days after the injury. At 30 days post injury, capsaicin-treated and vagotomized rats revealed significantly more activated microglia. Our findings show that damage to the subdiaphragmatic vagus in adult rats is followed by microglia activation and long-lasting changes in the dentate gyrus

  5. Impairment of cognitive function and reduced hippocampal cholinergic activity in a rat model of chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    Chunling Zhao; Yan Chen; Chunlai Zhang; Linya Lü; Qian Xu

    2011-01-01

    The present study established a rat model of chronic intermittent hypoxia (CIH) to simulate obstructive sleep apnea syndrome. CIH rats were evaluated for cognitive function using the Morris water maze, and neuronal pathology in the hippocampus was observed using hematoxylin-eosin staining. In addition, hippocampal choline acetyl transferase (ChAT) and nicotinic acetylcholine receptor (nAChR) expression was determined by immunohistochemistry. Our results revealed necrotic hippocampal neurons, decreased ChAT and nAChR expression, as well as cognitive impairment in CIH rats. These results suggest that hippocampal neuronal necrosis and decreased cholinergic activity may be involved in CIH-induced cognitive impairment in rats.

  6. The amyloid precursor protein controls adult hippocampal neurogenesis through GABAergic interneurons.

    Science.gov (United States)

    Wang, Baiping; Wang, Zilai; Sun, Lu; Yang, Li; Li, Hongmei; Cole, Allysa L; Rodriguez-Rivera, Jennifer; Lu, Hui-Chen; Zheng, Hui

    2014-10-01

    Impaired neurogenesis in the adult hippocampus has been implicated in AD pathogenesis. Here we reveal that the APP plays an important role in the neural progenitor proliferation and newborn neuron maturation in the mouse dentate gyrus. APP controls adult neurogenesis through a non cell-autonomous mechanism by GABAergic neurons, as selective deletion of GABAergic, but not glutamatergic, APP disrupts adult hippocampal neurogenesis. APP, highly expressed in the majority of GABAergic neurons in the dentate gyrus, enhances the inhibitory tone to granule cells. By regulating both tonic and phasic GABAergic inputs to dentate granule cells, APP maintains excitatory-inhibitory balance and preserves cognitive functions. Our studies uncover an indispensable role of APP in the GABAergic system for controlling adult hippocampal neurogenesis, and our findings indicate that APP dysfunction may contribute to impaired neurogenesis and cognitive decline associated with AD.

  7. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats.

    Science.gov (United States)

    Scharfman, Helen E; MacLusky, Neil J

    2014-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  8. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jena B. Hales

    2015-01-01

    Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

  9. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Science.gov (United States)

    Hales, Jena B.; Ocampo, Amber C.; Broadbent, Nicola J.; Clark, Robert E.

    2015-01-01

    Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. PMID:26380123

  10. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    Science.gov (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  11. Alterations in spatial memory and anxiety in the MAM E17 rat model of hippocampal pathology in schizophrenia.

    Science.gov (United States)

    Gastambide, Francois; Taylor, Amy M; Palmer, Clare; Svard, Heta; Karjalainen, Maija; Janhunen, Sanna K; Tricklebank, Mark; Bannerman, David M

    2015-11-01

    Adult rats exposed to methylazoxymethanol acetate (MAM) at embryonic day 17 (E17) display robust pathological alterations in the hippocampus. However, discrepancies exist in the literature regarding the behavioural effects of this pre-natal manipulation. Therefore, a systematic assessment of MAM E17-induced behavioural alterations was conducted using a battery of dorsal and ventral hippocampus-dependent tests. Compared to saline controls, MAM E17-treated rats displayed deficits in spatial reference memory in both the aversive hidden platform watermaze task and an appetitive Y-maze task. Deficits in the spatial reference memory watermaze task were replicated across three different cohorts and two laboratories. In contrast, there was little, or no, effect on the non-spatial, visible platform watermaze task or an appetitive, non-spatial, visual discrimination task, respectively. MAM rats were also impaired in the spatial novelty preference task which assesses short-term memory, and displayed reduced anxiety levels in the elevated plus maze task. Thus, MAM E17 administration resulted in abnormal spatial information processing and reduced anxiety in a number of hippocampus-dependent behavioural tests, paralleling the effects of dorsal and ventral hippocampal lesions, respectively. These findings corroborate recent pathological and physiological studies, further highlighting the usefulness of MAM E17 as a model of hippocampal dysfunction in at least some aspects of schizophrenia.

  12. Hippocampal pathway plasticity is associated with the ability to form novel memories in older adults

    Directory of Open Access Journals (Sweden)

    Daria eAntonenko

    2016-03-01

    Full Text Available White matter deterioration in the aging human brain contributes to cognitive decline. The fornix as main efferent hippocampal pathway is one of the tracts most strongly associated with age-related memory impairment. Its deterioration may predict conversion to Alzheimer’s dementia and its precursors. However, the associations between the ability to form novel memories, fornix microstructure and plasticity in response to training have never been tested. In the present study, 25 healthy older adults (15 women; mean age (SD: 69 (6 years underwent an object-location training on three consecutive days. Behavioral outcome measures comprised recall performance on the training days, and on 1-day and 1-month follow up assessments. MRI at 3 Tesla was assessed before and after training. Fornix microstructure was determined by fractional anisotropy and mean diffusivity values from diffusion tensor imaging (DTI. In addition, hippocampal volumes were extracted from high-resolution images; individual hippocampal masks were further aligned to DTI images to determine hippocampal microstructure. Using linear mixed model analysis, we found that the change in fornix FA from pre- to post-training assessment was significantly associated with training success. Neither baseline fornix microstructure nor hippocampal microstructure or volume changes were significantly associated with performance. Further, models including control task performance (auditory verbal learning and control white matter tract microstructure (uncinate fasciculus and parahippocampal cingulum did not yield significant associations. Our results confirm that hippocampal pathways respond to short-term cognitive training, and extend previous findings by demonstrating that the magnitude of training-induced structural changes is associated with behavioral success in older adults. This suggests that the amount of fornix plasticity may not only be behaviorally relevant, but also a potential sensitive

  13. Batroxobin Against Anoxic Damage of Rat Hippocampal Neurons in Culture: Morphological Changes and Hsp70 Expression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Batroxobin,the thrombin-like enzyme,is used for therapeutic defibrination. We have found that batroxobin has good therapeutic effect in ischemic reperfusion rats and clinical practices in vivo. But we have not studied the neuroprotective effect of batroxobin on anoxic hippocampal neurons in vitro. The purpose of this study was to obtain further information on the mechanism of the batroxobin-induced neuroprotection and examine the neuroprotective effect on neurons exposed to anoxia. The effect of batroxobin on anoxic damages in cultured hippocampal neurons of neonatal rats was investigated by using morphological changes and heat shock protein 70Kd (Hsp70) immunoreactive expression as indicators. The results indicate that batroxobin, besides its defibrination, may have a direct neuroprotective effect on anoxic damage of hippocampal neurons.

  14. Gentianine protects hippocampal neurons in a rat model of recurrent febrile convulsion

    Institute of Scientific and Technical Information of China (English)

    Xuewei Liu; Shumin Liu; Na Wang; Fang Lu; Min Cao

    2011-01-01

    Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion (FC).The present study sought to explore the possible mechanism of gentianine by intraperitoneally injecting gentianine into rats with warm water-induced FC.The results revealed that neuronal organelle injury was slightly ameliorated in the hippocampal CA1 region.The level of glutamate was decreased,but the level of γ-aminobutyric acid was increased,as detected by ninhydrin staining.In addition,glutamate acid decarboxylase expression in hippocampal CA1 was increased,as determined by immunohistochemistry.The results demonstrated that gentianine can ameliorate FC-induced neuronal injury by enhancing glutamate acid decarboxylase activity,decreasing glutamate levels and increasing γ-aminobutyric acid levels.

  15. Prenatal protein malnutrition alters the proportion but not numbers of parvalbumin-immunoreactive interneurons in the hippocampus of the adult Sprague-Dawley rat

    OpenAIRE

    Lister, James P.; Blatt, Gene J.; Kemper, Thomas L.; Tonkiss, John; DeBassio, William A; GALLER, JANINA R.; Rosene, Douglas L.

    2011-01-01

    Prenatal protein malnutrition alters the structure and function of the adult rat hippocampal formation. The current study examines the effect of prenatal protein malnutrition on numbers of parvalbumin-immunoreactive (PV-IR) GABAergic interneurons, which are important for perisomatic inhibition of hippocampal pyramidal neurons. Brain sections from prenatally protein malnourished and normally nourished rats were stained for parvalbumin and PV-IR neurons were quantified using s...

  16. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Pei-Cheng Shih

    Full Text Available Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed, low-intensity exercise (Low-Ex, or high-intensity exercise (High-Ex group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF, synapsin-I, postsynaptic density protein 95 (PSD-95, and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be

  17. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells

    Directory of Open Access Journals (Sweden)

    Tara L. Walker

    2016-04-01

    Full Text Available Here, we show that the lysophosphatidic acid receptor 1 (LPA1 is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative precursor cells suggested immune mechanisms and cytokine signaling as molecular regulators of adult hippocampal precursor cell proliferation. In addition to LPA1 being a marker of this important stem cell population, we also show that the corresponding ligand LPA is directly involved in the regulation of adult hippocampal precursor cell proliferation and neurogenesis, an effect that can be attributed to LPA signaling via the AKT and MAPK pathways.

  18. Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats.

    Directory of Open Access Journals (Sweden)

    Aditya Asokan

    Full Text Available Adult hippocampal neurogenesis has been linked to the effects of anti-depressant drugs on behavior in rodent models of depression. To explore this link further, we tested whether the serotonin-norepinephrine reuptake inhibitor (SNRI venlafaxine impacted adult hippocampal neurogenesis differently than its primary active SNRI metabolite desvenlafaxine. Adult male Long Evans rats (n = 5-6 per group were fed vehicle, venlafaxine (0.5 or 5 mg or desvenlafaxine (0.5 or 5 mg twice daily for 16 days. Beginning the third day of drug treatment, the rats were given a daily bromodeoxyuridine (BrdU; 50 mg/kg injection for 5 days to label dividing cells and then perfused 2 weeks after the first BrdU injection to confirm total new hippocampal cell numbers and their phenotypes. The high desvenlafaxine dose increased total new BrdU+ cell number and appeared to accelerate neuronal maturation because fewer BrdU+ cells expressed maturing neuronal phenotypes and more expressed mature neuronal phenotypes in the dentate gyri of these versus vehicle-treated rats. While net neurogenesis was not increased in the dentate gyri of rats treated with the high desvenlafaxine dose, significantly more mature neurons were detected. Our data expand the body of literature showing that antidepressants impact adult neurogenesis by stimulating NPC proliferation and perhaps the survival of neuronal progeny and by showing that a high dose of the SNRI antidepressant desvenlafaxine, but neither a high nor low venlafaxine dose, may also accelerate neuronal maturation in the adult rat hippocampus. These data support the hypothesis that hippocampal neurogenesis may indeed serve as a biomarker of depression and the effects of antidepressant treatment, and may be informative for developing novel fast-acting antidepressant strategies.

  19. Hippocampal testosterone relates to reference memory performance and synaptic plasticity in male rats

    Directory of Open Access Journals (Sweden)

    Kristina eSchulz

    2010-12-01

    Full Text Available Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the natural endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behaviour, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to reference memory performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP of the field excitatory postsynaptic potential (fEPSP was prolonged in untrained rats, both the fEPSP- and the population spike amplitude-LTP was impaired in trained rats. Behavioural performance was unaffected, but correlations of hippocampal field potentials with behaviour were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance.

  20. Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Kimelberg, Harold K; Zhou, Min

    2010-03-01

    Mammalian protoplasmic astrocytes are extensively coupled through gap junction channels but the biophysical properties of these channels under physiological and ischemic conditions in situ are not well defined. Using confocal morphometric analysis of biocytin-filled astrocytic syncytia in rat hippocampal CA1 stratum radiatum we found that each astrocyte directly couples, on average, to 11 other astrocytes with a mean interastrocytic distance of 45 microm. Voltage-independent and bidirectional transjunctional currents were always measured between directly coupled astrocyte pairs in dual voltage-clamp recordings, but never from astrocyte-NG2 glia or astrocyte-interneuron pairs. The electrical coupling ratio varied considerably among astrocytes in developing postnatal day 14 rats (P14, 0.5-12.4%, mean = 3.6%), but became more constant in young adult P21 rats (0.18-3.9%, mean = 1.6%), and the coupling ratio declined exponentially with increasing pair distance. Electrical coupling was not affected by short-term oxygen-glucose deprivation (OGD) treatment, but showed delayed inhibition in an acidic extracellular pH of 6.4. Combination of acidic pH (6.4) and OGD, a condition that better represents cerebral ischemia in vivo, accelerated the inhibition of electrical coupling. Our results show that, under physiological conditions, 20.7-24.2% of K(+) induced currents can travel from any astrocytic soma in CA1 stratum radiatum to the gap junctions of the nearest neighbor astrocytes, but this should be severely inhibited as a consequence of the OGD and acidosis seen in the ischemic brain.

  1. Functional Role of Adult Hippocampal Neurogenesis as a Therapeutic Strategy for Mental Disorders

    Directory of Open Access Journals (Sweden)

    Heechul Jun

    2012-01-01

    Full Text Available Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.

  2. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    Science.gov (United States)

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  3. Seizures following hippocampal kindling induce QT interval prolongation and increased susceptibility to arrhythmias in rats.

    Science.gov (United States)

    Bealer, Steven L; Little, Jason G

    2013-07-01

    The prolonged seizures of status epilepticus produce chronic arrhythmogenic changes in cardiac function. This study was designed to determine if repeated, self-limiting seizures administered to kindled rats induce similar cardiac dysfunction. Multiple seizures administered to rats following hippocampal kindling resulted in cardiac QT interval prolongation and increased susceptibility to experimental arrhythmias. These data suggest that multiple, self-limiting seizures of intractable epilepsy may have cardiac effects that can contribute to sudden unexpected death in epilepsy (SUDEP).

  4. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  5. An association between human hippocampal volume and topographical memory in healthy young adults.

    Directory of Open Access Journals (Sweden)

    Tom eHartley

    2012-12-01

    Full Text Available The association between human hippocampal structure and topographical memory was investigated in healthy adults (N=30. Structural MR images were acquired, and voxel-based morphometry (VBM was used to estimate local gray matter volume throughout the brain. A complementary automated mesh-based segmentation approach was used to independently isolate and measure specified structures including the hippocampus. Topographical memory was assessed using a version of the Four Mountains Task, a short test designed to target hippocampal spatial function. Each item requires subjects to briefly study a landscape scene before recognizing the depicted place from a novel viewpoint and under altered non-spatial conditions when presented amongst similar alternative scenes. Positive correlations between topographical memory performance and hippocampal volume were observed in both VBM and segmentation-based analyses. Score on the topographical memory task was also correlated with the volume of some subcortical structures, extra-hippocampal gray matter and total brain volume, with the most robust and extensive covariation seen in circumscribed neocortical regions in the insula and anterior temporal lobes. Taken together with earlier findings, the results suggest that global variations in brain morphology affect the volume of the hippocampus and its specific contribution to topographical memory. We speculate that behavioral variation might arise directly through the impact of resource constraints on spatial representations in the hippocampal formation and its inputs, and perhaps indirectly through an increased reliance on non-allocentric strategies.

  6. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  7. Altered hippocampal function before emotional trauma in rats susceptible to PTSD-like behaviors.

    Science.gov (United States)

    Nalloor, Rebecca; Bunting, Kristopher M; Vazdarjanova, Almira

    2014-07-01

    Posttraumatic stress disorder (PTSD) is an anxiety disorder that occurs after experiencing a traumatic event. Susceptibility to PTSD exists, as only some trauma-exposed individuals develop this condition. Investigating susceptibilities in animal models can contribute to understanding the etiology of the disorder. We previously reported an animal model which allows reliable pre-classification of rats as susceptible (Sus) or resistant (Res) to developing a PTSD-like phenotype after a later trauma. Here we report that Sus, compared to Res, rats have altered hippocampal function, along the septo-temporal axis, prior to experiencing a traumatic event. In Experiment I, Res and Sus rats explored a novel box twice. Using a cellular imaging method for assessing plasticity-related immediate-early gene expression in large neuronal ensembles, Arc/Homer1a catFISH, we show that Sus rats have smaller vCA3 ensembles during the second exploration. This suppressed vCA3 activation in Sus rats was not due to a difference in exploratory behavior, or to a difference in Arc/Homer1a expression in the basolateral amygdala (BLA). BLA is a main source of inputs to vCA3, but both the ensemble size and overlap of BLA ensembles activated during the two explorations was similar to that of Res rats. Additionally, Sus rats had significant 'infidelity' in their dorsal hippocampal representations of the second event: a lower overlap, compared to Res rats, of Arc/Homer1a-expressing ensembles activated during the two explorations (the size of the ensembles were similar to those of Res rats). These differences were revealed only in conditions of relatively low stress, because they were not observed when Sus and Res rats experienced fear conditioning (Experiment II). Combined, the findings show that altered hippocampal function exists before experiencing emotional trauma in susceptible rats and suggest that this is a risk factor for PTSD.

  8. Circadian variations in expression of the trkB receptor in adult rat hippocampus.

    Science.gov (United States)

    Dolci, Claudia; Montaruli, Angela; Roveda, Eliana; Barajon, Isabella; Vizzotto, Laura; Grassi Zucconi, Gigliola; Carandente, Franca

    2003-12-19

    The expression of brain-derived neurotrophic factor (BDNF) in the central nervous system (CNS) and the expression of its high-affinity trkB receptor on neuron surfaces are known to depend on neuron activity. The expression of BDNF (mRNA and protein) and trkB mRNA shows circadian oscillations in rat hippocampal homogenates. We investigated circadian variations in trkB expression in specific areas of the adult rat hippocampal formation by immunohistochemistry. In sets of two experiments performed in the spring, 39 2-month-old male Wistar rats were accustomed to a 12-h light-12-h dark cycle for 2 weeks. Three animals were then sacrificed every 4 h. Forty-micrometer-thick coronal sections of hippocampal formation were obtained and processed for trkB immunohistochemistry. Cell staining intensity was assessed by image analysis of different hippocampal areas on five sections per animal. Circadian rhythmicity was evaluated by the cosinor method. Statistically significant circadian variations in trkB expression were found in dentate gyrus, entorhinal cortex, and the CA3 and hilar regions of the hippocampus, with highest expression during the first half of the dark (activity) period. These findings suggest a relationship between trkB expression and the physiological neuronal activation of wakefulness. TrkB receptor expression in the hippocampal regions studied was continuous and changes were gradual over the 24-h cycle, suggesting that more complex regulatory mechanisms also intervened.

  9. Estrogen intervention in microvascular morphology and choline acetyltransferase expression in rat hippocampal neurons in chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Zhenjun Yang; Hongwei Yan; Guomin Zhang; Zhihong Chen; Jingfeng Xue

    2011-01-01

    We observed dynamic changes in microvessels and a protective effect of estrogen on chronic cerebral ischemia ovariectomized rat models established through permanent occlusion of bilateral carotid arteries at 7, 14 and 21 days. The results revealed that estrogen improved microvasculature in the hippocampus of chronic cerebral ischemic rats, upregulated Bcl-2 protein expression, downregulated Bax protein expression, increased choline acetyltransferase expression in hippocampal cholinergic neurons, and suppressed hippocampal neuronal apoptosis. These findings indicate that estrogen can protect hippocampal neurons in rats with chronic cerebral ischemia.

  10. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F;

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...

  11. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults

    Directory of Open Access Journals (Sweden)

    Claudia eNiemann

    2014-08-01

    Full Text Available Cardiovascular activity has been shown to be positively associated with grey and white matter volume of, amongst others, frontal and temporal brain regions in older adults. This is particularly true for the hippocampus, a brain structure that plays an important role in learning and memory, and whose decline has been related to the development of Alzheimer´s disease. In the current study, we were interested in whether not only cardiovascular activity but also other types of physical activity, i.e., coordination training, were also positively associated with the volume of the hippocampus in older adults. For this purpose we first collected cross-sectional data on metabolic fitness (cardiovascular fitness and muscular strength and motor fitness (e.g, balance, movement speed, fine coordination. Second, we performed a 12-month randomized controlled trial. Results revealed that motor fitness but not metabolic fitness was associated with hippocampal volume. After the 12-month intervention period, both, cardiovascular and coordination training led to increases in hippocampal volume. Our findings suggest that a high motor fitness level as well as different types of physical activity were beneficial to diminish age-related hippocampal volume shrinkage or even increase hippocampal volume.

  12. The effect of excitotoxic hippocampal lesions on simple and conditional discrimination learning in the rat.

    Science.gov (United States)

    Murray, T K; Ridley, R M

    1999-02-15

    The effect of excitotoxic lesions of the hippocampus on acquisition and reversal of simple and conditional tasks was investigated using a Y-maze. Hippocampal-lesioned rats were severely impaired on acquisition and reversal of a conditional visuo-spatial task (where different pairs of visually distinctive choice arms indicated whether a left or right arm choice was correct on that trial) and were unable to acquire a visuo-visual conditional discrimination (where the appearance of the start arm indicated which of the visually distinctive choice arms was correct irrespective of their left/right position). They were not impaired on acquisition or reversal of a simple spatial left/right discrimination task (where all arms had the same visual appearance) nor on acquisition of a visual discrimination (where the correct, visually distinctive, choice arm varied in its left/right position). Hippocampal-lesioned rats were, however, impaired on reversal of this visual discrimination task and on acquisition and reversal of another visual discrimination task in which the visually distinctive choice arms were less different from each other than in the first version of this task. The degree of impairment in the lesioned rats was related to task difficulty for the sham-operated rats and was not specific to tasks requiring spatial choices, visual discrimination or conditional responding. The impairment on conditional tasks was greater than the impairment on those non-conditional tasks which happened to be matched for task difficulty for the sham-operated rats, suggesting that the conditional demand may target the function of the hippocampus rather closely. Statistically worse than chance performance by hippocampal-lesioned (and sham-operated) rats at the beginning of reversal testing, which was given 24 h after achieving criterion on acquisition of that task, indicated that hippocampal-lesioned rats simultaneously exhibited good memory but impaired learning for the type of

  13. 916 MHz electromagnetic field exposure affects rat behavior and hippocampal neuronal discharge

    Institute of Scientific and Technical Information of China (English)

    Dongmei Hao; Lei Yang; Su Chen; Yonghao Tian; Shuicai Wu

    2012-01-01

    Wistar rats were exposed to a 916 MHz,10 W/m2 mobile phone electromagnetic field for 6 hours a day,5 days a week.Average completion times in an eight-arm radial maze were longer in the exposed rats than control rats after 4-5 weeks of exposure.Error rates in the exposed rats were greater than the control rats at 6 weeks.Hippocampal neurons from the exposed rats showed irregular firing patterns during the experiment,and they exhibited decreased spiking activity 6-9 weeks compared with that after 2-5 weeks of exposure.These results indicate that 916 MHz electromagnetic fields influence learning and memory in rats during exposure,but long-term effects are not obvious.

  14. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases

    Directory of Open Access Journals (Sweden)

    Krishna eVadodaria

    2013-08-01

    Full Text Available Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1 and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including several growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus circuitry.

  15. Reinforcement of Rat Hippocampal LTP by Holeboard Training

    Science.gov (United States)

    Frey, Julietta U.; Korz, Volker; Uzakov, Shukhrat

    2005-01-01

    Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4-5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be…

  16. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  17. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats

    OpenAIRE

    Puebla Jiménez, Lilian; Rodríguez Martín, Eulalia; Arilla Ferreiro, Eduardo

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 ¿g) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal ...

  18. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  19. Time window characteristics of cultured rat hippocampal neurons subjected to ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    XU Zhong; XU Ru-xiang; LIU Bao-song; JIANG Xiao-dan; HUANG Tao; DING Lian-shu; YUAN Jun

    2005-01-01

    Objective: To explore cell death and apoptosis in rat hippocampal neurons at different time points after ischemia, hypoxia and reperfusion injury and to elucidate time window characteristics in ischemia neuronal injury.Methods: Hippocampal neurons were obtained from rat embryo and were cultured in vitro. The ischemia and reperfusion of cultured rat hippocampal neurons were simulated by oxygen-glucose deprivation (OGD) and recovery. OGD at different time points (0.25 h to 3.0 h) and then the same recovery (24 h) were prepared. Annexin V-PI staining and flow cytometry examined neuron death and apoptosis at different time after injury. Results: After OGD and recovery, both necrosis and apoptosis were observed. At different times after OGD, there were statistically significant differences in neuron necrosis rate (P0.05). At recovery, survival rate of hippocampal neurons further decreased while apoptosis rate increased. Furthermore, apoptosis rates of different time differed greatly (P<0.05). Apoptosis rate gradually increased with significant difference among those of different time points (P<0.05). However, 2 h after ischemia, apoptosis rate decreased markedly.Conclusions: Apoptosis is an important pathway of delayed neuron death. The therapeutic time window should be within 2 h after cerebral ischemia and hypoxia.

  20. Electrophysiological actions of cyclosporin A and tacrolimus on rat hip-pocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Yong YU; Xue-qin CHEN; Yao-yuan CUI; Guo-yuan HU

    2007-01-01

    Aim: The aim of the present study was to investigate the electrophysiological actions of cyclosporin A (CsA) and tacrolimus (FK506) on neurons in the brain, and to elucidate the relevant mechanisms. Methods: Whole-cell current-clamp recording was made in CA1 pyramidal neurons in rat hippocampal slices; whole- cell voltage-clamp recording was made in dissociated hippocampal CA1 pyrami- dal neurons of rats. Results: CsA (100 μmol/L) and FKS06 (50 μmol/L) did not significantly alter the passive electrical properties of hippocampal CA1 pyramidal neurons, but slowed down the repolarizing phase of the action potential. CsA (10-100 μmol/L) selectively inhibited the delayed rectifier K~ current (IK,) in a concentration-dependent manner. CsA did not affect the kinetic properties of IK. Intracellular dialysis of CsA (100 μmol/L) had no effect on IK. The inhibition of IK by CsA (100/μmol/L) persisted under the low Ca2+ conditions that blocked the basal activity of calcineurin. Conclusion: CsA exerted calcineurin-independent inhibition on the IK in rat hippocampal pyramidal neurons. Taken together with our previous finding with FK506, it is conceivable that the spike broadening caused by the immunosuppressant drugs is due to direct inhibition on the IK.

  1. Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. Co-regulation by activity

    Directory of Open Access Journals (Sweden)

    Benedikt eRömer

    2011-09-01

    Full Text Available Besides the massive plasticity at the level of synapses, we find in the hippocampus of adult mice and rats two systems with very strong macroscopic structural plasticity: adult neurogenesis, that is the lifelong generation of new granule cells, and dynamic changes in the mossy fibers linking the dentate gyrus to area CA3. In particular the anatomy of the infrapyramidal mossy fiber tract (IMF changes in response to a variety of extrinsic and intrinsic stimuli. Because mossy fibers are the axons of granule cells, the question arises whether these two types of plasticity are linked. Using immunohistochemistry for markers associated with axonal growth and POMC-GFP mice to visualize the postmitotic maturation phase of adult hippocampal neurogenesis, we found that newly generated mossy fibers preferentially but not exclusively contribute to the IMF. The neurogenic stimulus of an enriched environment increased the volume of the IMF. In addition, the IMF grew with a time course consistent with axonal outgrowth from the newborn neurons after the induction of neurogenic seizures using kainate,.These results indicate that two aspects of plasticity in the adult hippocampus, mossy fiber size and neurogenesis, are related and may share underlying mechanisms. In a second, related study (Krebs et al., Frontiers in Neurogenesis ##reference## we have addressed the question of whether there is a shared genetics underlying both traits.

  2. Effects of clobazam on amygdaloid and hippocampal kindled seizures in rats.

    Science.gov (United States)

    Ichimaru, Y; Gomita, Y; Moriyama, M

    1987-05-01

    The effect of clobazam, a 1,5-benzodiazepine, on kindling seizures was compared with the effects of 1,4-benzodiazepines, diazepam and bromazepam, in amygdaloid and hippocampal kindled rats. After kindled seizures were established (stage 5 seizure), the test drugs were administered intraperitoneally. In amygdaloid kindled rats, clobazam significantly suppressed the motor seizures (MS) at doses of 20 and 50 mg/kg and significantly shortened the duration of after-discharge (AD) at doses of 10 to 50 mg/kg. Diazepam at doses of 2 to 10 mg/kg and bromazepam at 1 to 5 mg/kg also significantly suppressed the MS and significantly shortened the duration of AD. Similar suppressive effects by these three benzodiazepines were observed in hippocampal kindled rats. From these results, clobazam was found to have a qualitatively similar but weaker anticonvulsive effect than those of 1,4-benzodiazepines.

  3. Buyuan Congnao decoction decreases hippocampal beta-amyloid expression in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Jing Wang; Cairong Ming

    2012-01-01

    A mixture of ibotenic acid and β-amyloid 1-42 was injected into the hippocampus of a rat model of Alzheimer's disease, followed by intragastric administration of a traditional Chinese medicine Buyuan Congnao decoction (main components included radix astragali, radix polygoni multiflori preparata, rhizoma acori talarinowii, radix polygalae, fructus alpiniae oxyphyllae, and radix glycyrrhizae preparata) and a piracetam suspension.Following treatment with traditional Chinese medicine or western medicine, β-amyloid expression decreased and neuronal morphology was normal in the rat hippocampal CA1 region, in addition to significantly shortened average latency in the Morris water navigation task.These findings suggested that compound prescription of Buyuan Congnao decoction, similar to the curative effects of piracetam, decreased hippocampal β-amyloid expression in a rat model of Alzheimer's disease, as well as improved learning and memory.

  4. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high.

  5. Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats.

    Science.gov (United States)

    Anagnostaras, S G; Maren, S; DeCola, J P; Lane, N I; Gale, G D; Schlinger, B A; Fanselow, M S

    1998-04-01

    We recently reported that Pavlovian fear conditioning and hippocampal perforant-path long-term potentiation (LTP) are sexually dimorphic in rats. Males show greater contextual fear conditioning, which depends on the hippocampus, as well as greater hippocampal LTP. In order to examine the role of circulating gonadal hormones in adult male rats, animals were castrated in two experiments, and Pavlovian fear conditioning and in vivo perforant-path LTP were examined. It was found that sexually-dimorphic LTP and fear conditioning are not regulated by the activational effects of testicular hormones in adult male rats. That is, in every respect, castrated male rats were similar to intact male rats in Pavlovian fear conditioning and hippocampal LTP. It is likely that sexual dimorphism in this system is established earlier in development by the organizational effects of gonadal hormones.

  6. All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis

    OpenAIRE

    2013-01-01

    Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus ...

  7. Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis

    OpenAIRE

    2016-01-01

    Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences betw...

  8. Gender Differences in the Neurobiology of Anxiety:Focus on Adult Hippocampal Neurogenesis

    OpenAIRE

    2016-01-01

    Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences betw...

  9. Correlations between Hippocampal Neurogenesis and Metabolic Indices in Adult Nonhuman Primates

    OpenAIRE

    Perera, Tarique D.; Dunyue Lu; Lakshmi Thirumangalakudi; Smith, Eric L.P.; Arkadiy Yaretskiy; Leonard A. Rosenblum; Kral, John G; Jeremy D Coplan

    2011-01-01

    Increased neurogenesis in feeding centers of the murine hypothalamus is associated with weight loss in diet-induced obese rodents (Kokoeva et al., 2005 and Matrisciano et al., 2010), but this relationship has not been examined in other species. Postmortem hippocampal neurogenesis rates and premortem metabolic parameters were statistically analyzed in 8 chow-fed colony-reared adult bonnet macaques. Dentate gyrus neurogenesis, reflected by the immature neuronal marker, doublecortin (DCX), and e...

  10. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats

    DEFF Research Database (Denmark)

    Olesen, Mikkel Vestergaard; Wörtwein, Gitta; Folke, Jonas

    2017-01-01

    Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design-based stereological cell counting, we recently...... documented an initial 2.6-fold increase in neurogenesis following a clinical relevant schedule of ECS, a treatment also rescuing depression-like behavior in rats. However, these results gave no demonstration of the longevity of newly generated neurons. The present study is a direct continuation...... in neurogenesis facilitates the behavioral outcome of the forced swim test (FST), an animal model of depression. The results showed that ECS in conjunction with CRS stimulates hippocampal neurogenesis, and that a significant quantity of the newly formed hippocampal neurons survives up to 12 months. The new Brd...

  11. Expression of hippocampal adrenergic receptor mRNA in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Jianbin Zhang; Lingling Wang; Xinjun Wang; Jingfeng Jiang; Xiaoren Xiang; Tianjun Wang

    2011-01-01

    Adrenergic receptor dysfunction is suggested as a potential cause of hippocampal vulnerability to stress-related pathology. We examined mRNA expression of adrenergic receptor (AR) subtypes α1-AR, α2-AR, and β1-AR in hippocampal subregions (CA1, CA3, dentate gyrus) using in situ hybridization in a depression model induced by chronic unpredictable mild stress and social isolation. α1-AR mRNA expression was significantly increased in the CA3 and dentate gyrus, β1-AR mRNA was significantly increased in the CA1, and α2-AR mRNA remained unchanged in all regions of depression rats compared with controls. Thus, different AR subtypes exhibit a differing pattern of mRNA expression in various hippocampal subregions following depression.

  12. Involvement of hippocampal NMDA receptors in retention of shuttle avoidance conditioning in rats

    Directory of Open Access Journals (Sweden)

    Roesler R.

    1998-01-01

    Full Text Available The purpose of this research was to evaluate the role of hippocampal N-methyl-D-aspartate (NMDA receptors in acquisition and consolidation of memory during shuttle avoidance conditioning in rats. Adult male Wistar rats were surgically implanted with cannulae aimed at the CA1 area of the dorsal hippocampus. After recovery from surgery, animals were trained and tested in a shuttle avoidance apparatus (30 trials, 0.5-mA footshock, 24-h training-test interval. Immediately before or immediately after training, animals received a bilateral intrahippocampal 0.5-µl infusion containing 5.0 µg of the NMDA competitive receptor antagonist aminophosphonopentanoic acid (AP5 or vehicle (phosphate-buffered saline, pH 7.4. Infusion duration was 2 min per side. Pre-training infusion of AP5 impaired retention test performance (mean ± SEM number of conditioned responses (CRs during retention test session was 16.47 ± 1.78 in the vehicle group and 9.93 ± 1.59 in the AP5 group; P<0.05. Post-training infusion of AP5 did not affect retention (mean ± SEM number of conditioned responses during retention test session was 18.46 ± 1.94 in the vehicle group and 20.42 ± 2.38 in the AP5 group; P>0.10. This impairment could not be attributed to an effect on acquisition, motor activity or footshock sensitivity since AP5 affected neither training session performance measured by the number of CRs nor the number of intertrial crossings during the training session. These data suggest that NMDA receptors in the hippocampus are critical for retention of shuttle avoidance conditioning, in agreement with previous evidence showing a role of NMDA receptors in fear memory.

  13. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    Science.gov (United States)

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction.

  14. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors.

    Science.gov (United States)

    Jongbloets, Bart C; Lemstra, Suzanne; Schellino, Roberta; Broekhoven, Mark H; Parkash, Jyoti; Hellemons, Anita J C G M; Mao, Tianyi; Giacobini, Paolo; van Praag, Henriette; De Marchis, Silvia; Ramakers, Geert M J; Pasterkamp, R Jeroen

    2017-03-10

    The guidance protein Semaphorin7A (Sema7A) is required for the proper development of the immune and nervous systems. Despite strong expression in the mature brain, the role of Sema7A in the adult remains poorly defined. Here we show that Sema7A utilizes different cell surface receptors to control the proliferation and differentiation of neural progenitors in the adult hippocampal dentate gyrus (DG), one of the select regions of the mature brain where neurogenesis occurs. PlexinC1 is selectively expressed in early neural progenitors in the adult mouse DG and mediates the inhibitory effects of Sema7A on progenitor proliferation. Subsequently, during differentiation of adult-born DG granule cells, Sema7A promotes dendrite growth, complexity and spine development through β1-subunit-containing integrin receptors. Our data identify Sema7A as a key regulator of adult hippocampal neurogenesis, providing an example of how differential receptor usage spatiotemporally controls and diversifies the effects of guidance cues in the adult brain.

  15. Downregulation of CREB expression in Alzheimer's brain and in Aβ-treated rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Pham Serena

    2011-08-01

    Full Text Available Abstract Background Oxidative stress plays an important role in neuronal dysfunction and neuron loss in Alzheimer's brain. Previous studies have reported downregulation of CREB-mediated transcription by oxidative stress and Aβ. The promoter for CREB itself contains cyclic AMP response elements. Therefore, we examined the expression of CREB in the hippocampal neurons of Tg2576 mice, AD post-mortem brain and in cultured rat hippocampal neurons exposed to Aβ aggregates. Results Laser Capture Microdissection of hippocampal neurons from Tg2576 mouse brain revealed decreases in the mRNA levels of CREB and its target, BDNF. Immunohistochemical analysis of Tg2576 mouse brain showed decreases in CREB levels in hippocampus and cortex. Markers of oxidative stress were detected in transgenic mouse brain and decreased CREB staining was observed in regions showing abundance of astrocytes. There was also an inverse correlation between SDS-extracted Aβ and CREB protein levels in Alzheimer's post-mortem hippocampal samples. The levels of CREB-regulated BDNF and BIRC3, a caspase inhibitor, decreased and the active cleaved form of caspase-9, a marker for the intrinsic pathway of apoptosis, was elevated in these samples. Exposure of rat primary hippocampal neurons to Aβ fibrils decreased CREB promoter activity. Decrease in CREB mRNA levels in Aβ-treated neurons was reversed by the antioxidant, N-acetyl cysteine. Overexpression of CREB by adenoviral transduction led to significant protection against Aβ-induced neuronal apoptosis. Conclusions Our findings suggest that chronic downregulation of CREB-mediated transcription results in decrease of CREB content in the hippocampal neurons of AD brain which may contribute to exacerbation of disease progression.

  16. Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis

    Science.gov (United States)

    Kumar, Vivek; Pandey, Ankita; Jahan, Sadaf; Shukla, Rajendra Kumar; Kumar, Dipak; Srivastava, Akriti; Singh, Shripriya; Rajpurohit, Chetan Singh; Yadav, Sanjay; Khanna, Vinay Kumar; Pant, Aditya Bhushan

    2016-01-01

    The plethora of literature has supported the potential benefits of Resveratrol (RV) as a life-extending as well as an anticancer compound. However, these two functional discrepancies resulted at different concentration ranges. Likewise, the role of Resveratrol on adult neurogenesis still remains controversial and less understood despite its well documented health benefits. To gather insight into the biological effects of RV on neurogenesis, we evaluated the possible effects of the compound on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of aged rats. Resveratrol exerted biphasic effects on NPCs; low concentrations (10 μM) stimulated cell proliferation mediated by increased phosphorylation of extracellular signal-regulated kinases (ERKs) and p38 kinases, whereas high concentrations (>20 μM) exhibited inhibitory effects. Administration of Resveratrol (20 mg/kg body weight) to adult rats significantly increased the number of newly generated cells in the hippocampus, with upregulation of p-CREB and SIRT1 proteins implicated in neuronal survival and lifespan extension respectively. We have successfully demonstrated that Resveratrol exhibits dose dependent discrepancies and at a lower concentration can have a positive impact on the proliferation, survival of NPCs and aged rat hippocampal neurogenesis implicating its potential as a candidate for restorative therapies against age related disorders. PMID:27334554

  17. Noradrenergic mechanism involved in the nociceptive modulation of hippocampal CA3 region of normal rats.

    Science.gov (United States)

    Jin, Hua; Teng, Yueqiu; Zhang, Xuexin; Yang, Chunxiao; Xu, Manying; Yang, Lizhuang

    2014-06-27

    Norepinephrine (NE) is an important neurotransmitter in the brain, and regulates antinociception. However, the mechanism of action of NE on pain-related neurons in the hippocampal CA3 region is not clear. This study examines the effects of NE, phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of rats. Trains of electric impulses applied to the right sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in the hippocampal CA3 region were recorded by using a glass microelectrode. Our results revealed that, in the hippocampal CA3 region, the intra-CA3 region microinjection of NE decreased the pain-evoked discharged frequency and prolonged the discharged latency of PEN, and increased the pain-evoked discharged frequency and shortened discharged inhibitory duration (ID) of PIN, exhibiting the specific analgesic effect of NE. While intra-CA3 region microinjection of phentolamine produced the opposite response. It implies that phentolamine can block the effect of endogenous NE to cause the enhanced response of PEN and PIN to noxious stimulation. On the basis of above findings we can deduce that NE, phentolamine and alpha-adrenoceptor are involved in the modulation of nociceptive information transmission in the hippocampal CA3 region.

  18. Resistance to extinction after schedules of partial delay or partial reinforcement in rats with hippocampal lesions.

    Science.gov (United States)

    Rawlins, J N; Feldon, J; Ursin, H; Gray, J A

    1985-01-01

    Two experimental procedures were employed to establish the reason why hippocampal lesions apparently block the development of tolerance for aversive events in partial reinforcement experiments, but do not do so in partial punishment experiments. Rats were trained to run in a straight alley following hippocampal lesions (HC), cortical control lesions (CC) or sham operations (SO), and resistance to extinction was assessed following differing acquisition conditions. In Experiment 1 a 4-8 min inter-trial interval (ITI) was used. Either every acquisition trial was rewarded immediately (Continuous Reinforcement, CR), or only a randomly selected half of the trials were immediately rewarded, the reward being delayed for thirty seconds on the other trials (Partial Delay, PD). This delay procedure produced increased resistance to extinction in rats in all lesion groups. In Experiment 2 the ITI was reduced to a few seconds, and rats were trained either on a CR schedule, or on a schedule in which only half the trials were rewarded (Partial Reinforcement, PR). This form of partial reinforcement procedure also produced increased resistance to extinction in rats in all lesion groups. It thus appears that hippocampal lesions only prevent the development of resistance to aversive events when the interval between aversive and subsequent appetitive events exceeds some minimum value.

  19. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Oumei Cheng

    Full Text Available Sleep deprivation (SD plays a complex role in central nervous system (CNS diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR.One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU and neuron-specific enolase (NSE, respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.

  20. Leptin-induced downregulation of the rat hippocampal somatostatinergic system may potentiate its anorexigenic effects.

    Science.gov (United States)

    Perianes-Cachero, Arancha; Burgos-Ramos, Emma; Puebla-Jiménez, Lilian; Canelles, Sandra; Viveros, María Paz; Mela, Virginia; Chowen, Julie A; Argente, Jesús; Arilla-Ferreiro, Eduardo; Barrios, Vicente

    2012-12-01

    The learning and memory mechanisms in the hippocampus translate hormonal signals of energy balance into behavioral outcomes involved in the regulation of food intake. As leptin and its receptors are expressed in the hippocampus and somatostatin (SRIF), an orexigenic neuropeptide, may inhibit leptin-mediated suppression of food intake in other brain areas, we asked whether chronic leptin infusion induces changes in the hippocampal somatostatinergic system and whether these modifications are involved in leptin-mediated effects. We studied 18 male Wistar rats divided into three groups: controls (C), treated intracerebroventricularly (icv) with leptin (12 μg/day) for 14 days (L) and a pair-fed group (PF) that received the same amount of food consumed by the L group. Food restriction increased whereas leptin decreased the hippocampal SRIF receptor density, due to changes in SRIF receptor 2 protein levels. These changes in the PF group were concurrent with an increase of hippocampal G protein-coupled receptor kinase 2 protein levels and activation of Akt and cyclic AMP response element binding protein. The inhibitory effect of SRIF on adenylyl cyclase (AC) activity, however, was decreased in L rats, coincident with lower G inhibitory α3 and higher AC-I levels as well as signal transducer and activator of transcription factor 3 activation. In addition, 20 male Wistar rats were included to analyze whether the leptin antagonist L39A/D40A/F41A and the SRIF receptor agonist SMS 201-995 modify SRIF signaling and food intake, respectively. Administration of L39A/D40A/F41A reversed changes in SRIF signaling, whereas SMS 201-995 ameliorated food consumption in L. Altogether, these results suggest that increased somatostatinergic tone in PF rats may be a mechanism to improve the hippocampal orexigenic effects in a situation of metabolic demand, whereas down-regulation of this system in L rats may represent a mechanism to enhance the anorexigenic effects of leptin.

  1. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Zhihong Chen; Yaqiang He; Chengjun Song; Zhijun Dong; Zhejun Su; Jingfeng Xue

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.

  2. Qualitatively different hippocampal subfield engagement emerges with mastery of a spatial memory task by rats.

    Science.gov (United States)

    Poirier, Guillaume L; Amin, Eman; Aggleton, John P

    2008-01-30

    The parallel, entorhinal cortex projections to different hippocampal regions potentially support separate mnemonic functions. To examine this possibility, rats were trained in a radial-arm maze task so that hippocampal activity could be compared after "early" (two sessions) or "late" (five sessions) learning. Induction of the immediate-early gene Zif268 was then measured, so revealing possible activity differences across hippocampal subfields and the parahippocampal cortices. Each rat in the two experimental groups (early, late) was also yoked to a control rat that obtained the same number of rewards, visited the same number of maze arms, and spent a comparable amount of time in the maze. Although overall Zif268 levels did not distinguish the four groups, significant correlations were found between spatial memory performance and levels of dentate gyrus Zif268 expression in the early but not the late training group. Conversely, hippocampal fields CA3 and CA1 Zif268 expression correlated with performance in the late but not the early training group. This reversal in the correlation pattern was echoed by structural equation modeling, which revealed dynamic changes in effective network connectivity. With early training, the dentate gyrus appeared to help determine CA1 activity, but by late training the dentate gyrus reduced its neural influence. Furthermore, CA1 was distinguished from CA3, each subfield developing opposite relations with task mastery. Thus, functional entorhinal cortex coupling with CA1 activity became more direct with additional training, so producing a trisynaptic circuit bypass. The present study reveals qualitatively different patterns of hippocampal subfield engagement dependent on task demands and mastery.

  3. Neuroligin-1 knockdown reduces survival of adult-generated newborn hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Eric eSchnell

    2014-04-01

    Full Text Available Survival of adult-born hippocampal granule cells is modulated by neural activity, and thought to be enhanced by excitatory synaptic signaling. Here, we report that a reduction in the synaptogenic protein neuroligin-1 in adult-born neurons in vivo decreased their survival, but surprisingly, this effect was independent of changes in excitatory synaptic function. Instead, the decreased survival was associated with unexpected changes in dendrite and spine morphology during granule cell maturation, suggesting a link between cell growth and survival.

  4. Hippocampal ultrastructural changes and apoptotic cell death in rats following endurance training and acute exhaustive exercise

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhang

    2008-01-01

    BACKGROUND: Exhaustive exercise can lead to apoptosis of skeletal muscle cells and myocardial cells as a result of pathological changes in the corresponding cellular ultrastructure. It is hypothesized that such changes could also occur in neurons. OBJECTIVE: To observe brain cell apoptosis and ultrastmctural changes in hippocampal neurons in rats following endurance training and acute exhaustive exercise. DESIGN, TIME AND SETTING: A randomized, controlled, morphological analysis was performed at the Medical Laboratory Center of Zhengzhou University between July and November 2007. MATERIALS: Forty male, 8-week-old, Sprague Dawley rats were included in this study. METHODS: Endurance training consisted of treadmill running once a day, 6 days a week, for 4 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Rats were exposed to exercise at an increasing speed (10 m/min, increasing to 20 and 36 m/min for moderate- and high-intensity exhaustive exercise, respectively, and then was continued until exhaustion). A total of 40 rats were evenly distributed into the following 4 groups: Group A-rats were not exercised; Group B- rats were not trained but sacrificed 24 hours after acute exhaustive treadmill running exercise; Group C rats were subjected to endurance training and sacrificed immediately after acute exhaustive treadmill running exercise; Group D-rats were subjected to endurance training and sacrificed 24 hours after acute exhaustive treadmill running exercise. MAIN OUTCOME MEASURES: Apoptotic cell death was detected by the TUNEL method and hippocampal neuronal ultrastructural change was observed through using transmission electron microscopy. RESULTS: All 40 rats were included in the final analysis. Subsequent to exhaustive exercise, rat cerebral cortex and hippocampal neurons appeared contracted and degenerated. In addition, high amount of lipofuscin was visible in the hippocampal region. Necrotic neurons encased by glial cells appeared in

  5. The mammalian adult neurogenesis gene ontology (MANGO provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available BACKGROUND: Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. CONCLUSIONS/SIGNIFICANCE: The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already

  6. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions.

    Science.gov (United States)

    Ye, Li-Juan; Bian, Hui; Fan, Yao-Dong; Wang, Zheng-Bo; Yu, Hua-Lin; Ma, Yuan-Ye; Chen, Feng

    2016-09-01

    Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 10(5) cells/μL) were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  7. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat.

    Science.gov (United States)

    Ego-Stengel, Valérie; Wilson, Matthew A

    2010-01-01

    The hippocampus plays a key role in the acquisition of new memories for places and events. Evidence suggests that the consolidation of these memories is enhanced during sleep. At the neuronal level, reactivation of awake experience in the hippocampus during sharp-wave ripple events, characteristic of slow-wave sleep, has been proposed as a neural mechanism for sleep-dependent memory consolidation. However, a causal relation between sleep reactivation and memory consolidation has not been established. Here we show that disrupting neuronal activity during ripple events impairs spatial learning. We trained rats daily in two identical spatial navigation tasks followed each by a 1-hour rest period. After one of the tasks, stimulation of hippocampal afferents selectively disrupted neuronal activity associated with ripple events without changing the sleep-wake structure. Rats learned the control task significantly faster than the task followed by rest stimulation, indicating that interfering with hippocampal processing during sleep led to decreased learning.

  8. Acupuncture effects on the hippocampal cholinergic system in a rat model of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Junying Wang; Junling Liu; Shuping Chen; Yonghui Gao; Fanying Meng; Lina Qiao

    2012-01-01

    The present study observed the effects of repeated electroacupuncture of Zusanli (ST36) and Yanglingquan (GB34) on expression of hippocampal acetylcholinesterase, vesicular acetylcholine transporter, and muscarinic M1 receptor mRNA in chronic constrictive injury (neuropathic pain) and/or ovariotomy rats. Results demonstrated increased expression of hippocampal acetylcholinesterase, vesicular acetylcholine transporter, and muscarinic M1 receptor mRNA, as well as decreased pain threshold, in a rat model of chronic neuropathic pain after electroacupuncture. The effects of electroacupuncture increased with prolonged time, but the above-mentioned effects decreased in memory-deficient animals. Results indicated that repeated electroacupuncture has a cumulative analgesic effect, which is closely associated with upregulation of acetylcholinesterase and vesicular acetylcholine transporter activity, as well as M1 receptor mRNA expression and memory.

  9. Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Pauline Lafenetre

    2010-02-01

    Full Text Available Running is a potent stimulator of cell proliferation in the adult dentate gyrus and these newly generated hippocampal neurons seem to be implicated in memory functions. Here we have used a mouse model expressing activated Ras under the direction of the neuronal Synapsin I promoter (named synRas mice. These mice develop down-regulated proliferation of adult hippocampal precursor cells and show decreased short-term recognition memory performances. Voluntary physical activity reversed the genetically blocked generation of hippocampal proliferating cells and enhanced the dendritic arborisation of the resulting doublecortin newly generated neurons. Moreover, running improved novelty recognition in both wild type and synRas littermates, compensating their memory deficits. Brain-derived neurotrophic factor (BDNF has been proposed to be a potential mediator of physical exercise acting in the hippocampus on dentate neurons and their precursors. This was confirmed here by the identification of doublecortin-immunoreactive cells expressing TrkB BDNF receptor. While no difference in BDNF levels were detected in basal conditions between the synRas mice and their wild type littermates, running was associated with enhanced BDNF expression levels. Thus increased BDNF signalling is a candidate mechanism to explain the observed effects of running. Our studies demonstrate that voluntary physical activity has a robust beneficial effect even in mice with genetically restricted neurogenesis and cognition.

  10. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  11. Effect of acupuncture on hippocampal Ref-1 expression in cerebral multi-infarction rats.

    Science.gov (United States)

    Liu, Cun-Zhi; Li, Zu-Guang; Wang, De-Jin; Shi, Guang-Xia; Liu, Li-Ying; Li, Qian-Qian; Li, Chong

    2013-03-01

    Redox effector factor (Ref-1) is a sensitive marker for oxidative cellular injury. The aim of this study was to investigate the effects of acupuncture on hippocampal Ref-1 expression in cerebral multi-infarction rats. The rats with reference memory impairment were randomly allocated to three groups: impaired group, acupuncture group and placebo acupuncture group. Moreover, normal group and sham-operated group were set as control groups. Morris water maze test showed that cerebral multi-infarction rats did not present significant changes in spatial working memory performance. Further investigation by immunohistochemistry revealed that acupunctural treatment significantly increased the expression of Ref-1 in the hippocampus of the impaired rats. These findings suggested that the spatial working memory was unaffected in the cerebral multi-infarction rats although spatial reference memory deficits were detected in our previous study; in addition, acupuncture could increase the Ref-1 expression, consequently exerting the anti-oxidant effects.

  12. Effects of topiramate on hippocampal neuronal apoptosis in rats after kainic acid-evoked seizures

    Institute of Scientific and Technical Information of China (English)

    Yuan Wu; Jiarong Pang; Jinou Zheng; Xiaoqing Deng; Xiulin Liang; Jiaquan Li; Zhiying Chen

    2008-01-01

    BACKGROUND:Apoptosis plays an important role in brain injury after seizures and the formation of chronic epilepsy.It is important to investigate whether topiramate exhibits either antiepileptic and/or anti-apoptotic effects on hippocampal neurons.OBJECTIVE:To observe euronal apoptosis in hippocampus of rat seizure models,and to investigate the antagonizing effect of topiramate on neuronal apoptosis after seizures.DESIGN:An animal experiment of comparative observation.SETTING:First Affiliated Hospital of Guangxi Medical University.MATERIALS:Sixty healthy male Sprague Dawley(SD)rats,4-6 weeks old and weighing 160-220 g,were provided by the Experimental Animal Center of Guangxi Medical University.Main apparatus and reagents were as follows:Rat brain solid positioner(SR-6N,made in Japan); kainic acid by Sigma(USA);pathological image analyzer(DMR+550)by Leica(Germany); in situ apoptosis detection kit by Wuhan Boster Biological Technology Co.,Ltd; topiramate by Xi'an-Janssen Pharmaceutical,Ltd.The treatment on animals in the experiment was in accordance with the standards of animal ethics.METHODS:The experiments were performed at the Scientific Experimental Center of Guangxi Medical University from June to December 2006.The rats were randomly divided into a topiramate-treated group(n=30)and a model group(n=30).① After anesthesia,all rats were administered a kainic acid injection(0.2 μ L,2 g/L)into the right lateral ventricle.Grade Ⅲ and greater Racine standards were considered to be a successful model establishment.Thirty minutes after seizure ,rats in the topiramate-treated group were treated with an intraperitoneal(i.p.)injection of topiramate every day(40 mg/kg/d)for 2 weeks.The rats in the model group were treated with an equal volume of saline for 2 weeks.③Six rats in the topiramate-treated group were sacrificed at 1 day,and 1,2,3,and 4 weeks after treatment,respectively.The model group animals were sacrificed at corresponding time points.The brain

  13. Susceptibility of Rat Hippocampal Neurons to Hypothermia during Development

    OpenAIRE

    Kyung Ah Seo; Sehhyun Kim; Na Mi Lee; Soo Ahn Chae

    2013-01-01

    Purpose: This study evaluated the extent of damage due to hypothermia in the mature and immature brain. Methods: Hippocampal tissue cultures at 7 and 14 days in vitro (DIV) were used to represent the immature and mature brain, respectively. The cultures were exposed at 25?#608;for 0, 10, 30, and 60 minutes (n=30 in each subgroup). Propidium iodide fluorescent images were captured 24 and 48 hours after hypothermic injury. Damaged areas of the cornu ammonis 1 (CA1), CA3, and dentate gyrus (...

  14. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats.

    Science.gov (United States)

    Marco, Eva M; Granstrem, Oleg; Moreno, Enrique; Llorente, Ricardo; Adriani, Walter; Laviola, Giovanni; Viveros, Maria-Paz

    2007-02-14

    There is evidence for the existence of functional interactions between nicotine and cannabinoids and opioid compounds in adult experimental animals. However, there is scarce information about these relationships in young animals. In the present study we evaluated short and long-term effects of a subchronic nicotine treatment [0.4 mg/kg daily i.p. injections from postnatal day (PND) 34 to PND 43], upon hippocampal and striatal cannabinoid-CB(1) and mu-opioid receptors in Wistar rats of both genders. Rats were sacrificed 2 h after the last nicotine injection (short-term effects, PND 43) or one month later (long-term effects, PND 75). Hippocampal and striatal cannabinoid CB(1) and mu-opioid receptors were quantified by Western blotting. The subchronic nicotine treatment induced a region-dependent long-lasting effect in cannabinoid CB(1) receptor: a significant increase in hippocampal cannabinoid CB(1) receptors and a significant decrease in striatal cannabinoid CB(1) receptors, with these effects being similar in males and females. With respect to mu-opioid receptors, subchronic nicotine induced a significant down-regulation in hippocampal and striatal mu-opioid receptors in the long-term, and within the striatum the effects were more marked in adult males than in females. The present results indicate that juvenile nicotine taking may have implications for the endocannabinoid and endogenous opioid function and for the behaviors served by those systems, this includes possible modification of the response of adults to different psychotropic drugs, i.e. cannabis and morphine/heroin when taken later in life.

  15. Input-to-output transformation in a model of the rat hippocampal CA1 network

    OpenAIRE

    Olypher, Andrey V; Lytton, William W; Prinz, Astrid A.

    2012-01-01

    Here we use computational modeling to gain new insights into the transformation of inputs in hippocampal field CA1. We considered input-output transformation in CA1 principal cells of the rat hippocampus, with activity synchronized by population gamma oscillations. Prior experiments have shown that such synchronization is especially strong for cells within one millimeter of each other. We therefore simulated a one-millimeter patch of CA1 with 23,500 principal cells. We used morphologically an...

  16. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats.

    Science.gov (United States)

    Hsu, Ted M; Konanur, Vaibhav R; Taing, Lilly; Usui, Ryan; Kayser, Brandon D; Goran, Michael I; Kanoski, Scott E

    2015-02-01

    Excessive consumption of added sugars negatively impacts metabolic systems; however, effects on cognitive function are poorly understood. Also unknown is whether negative outcomes associated with consumption of different sugars are exacerbated during critical periods of development (e.g., adolescence). Here we examined the effects of sucrose and high fructose corn syrup-55 (HFCS-55) intake during adolescence or adulthood on cognitive and metabolic outcomes. Adolescent or adult male rats were given 30-day access to chow, water, and either (1) 11% sucrose solution, (2) 11% HFCS-55 solution, or (3) an extra bottle of water (control). In adolescent rats, HFCS-55 intake impaired hippocampal-dependent spatial learning and memory in a Barne's maze, with moderate learning impairment also observed for the sucrose group. The learning and memory impairment is unlikely based on nonspecific behavioral effects as adolescent HFCS-55 consumption did not impact anxiety in the zero maze or performance in a non-spatial response learning task using the same mildly aversive stimuli as the Barne's maze. Protein expression of pro-inflammatory cytokines (interleukin 6, interleukin 1β) was increased in the dorsal hippocampus for the adolescent HFCS-55 group relative to controls with no significant effect in the sucrose group, whereas liver interleukin 1β and plasma insulin levels were elevated for both adolescent-exposed sugar groups. In contrast, intake of HFCS-55 or sucrose in adults did not impact spatial learning, glucose tolerance, anxiety, or neuroinflammatory markers. These data show that consumption of added sugars, particularly HFCS-55, negatively impacts hippocampal function, metabolic outcomes, and neuroinflammation when consumed in excess during the adolescent period of development.

  17. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis.

    Science.gov (United States)

    O'Leary, Olivia F; Cryan, John F

    2014-12-01

    Adult hippocampal neurogenesis is implicated in antidepressant action, stress responses, and cognitive functioning. The hippocampus is functionally segregated along its longitudinal axis into dorsal (dHi) and ventral (vHi) regions in rodents, and analogous posterior and anterior regions in primates, whereby the vHi preferentially regulates stress and anxiety, while the dHi preferentially regulates spatial learning and memory. Given the role of neurogenesis in functions preferentially regulated by the dHi or vHi, it is plausible that neurogenesis is preferentially regulated in either the dHi or vHi depending upon the stimulus. We appraise here the literature on the effects of stress and antidepressants on neurogenesis along the hippocampal longitudinal axis and explore whether preferential regulation of neurogenesis in the vHi/anterior hippocampus contributes to stress resilience and antidepressant action.

  18. Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat.

    Science.gov (United States)

    Komaki, Alireza; Khalili, Afshin; Salehi, Iraj; Shahidi, Siamak; Sarihi, Abdolrahman

    2014-05-20

    Modern lifestyle exposes nearly all humans to electromagnetic fields, particularly to extremely low frequency electromagnetic fields (ELF-EMFs). Prolonged exposure to ELF-EMFs induces persistent changes in neuronal activity. However, the modulation of synaptic efficiency by ELF-EMFs in vivo is still unclear. In the present study, we investigated whether ELF-EMFs can change induction of long-term potentiation (LTP) and paired-pulse ratio (PPR) in the rat hippocampal area. Twenty-nine adult male Wistar rats were divided into 3 groups (ELF-EMF exposed, sham and control groups). The ELF-EMF group was exposed to a magnetic field for 90 consecutive days (2h/day). ELF-EMFs were produced by a circular coil (50Hz, 100 micro Tesla). The sham-exposed controls were placed in an identical chamber with no electromagnetic field. After this period, rats were deeply anesthetized with urethane (2.0mg/kg) and then a bipolar stimulating and recording electrode was implanted into the perforant pathway (PP) and dentate gyrus (DG), respectively. LTP in hippocampal area was induced by high-frequency stimulation (HFS). Prolonged exposure to ELF-EMFs increased LTP induction. There was a significant difference in the slope of EPSP and amplitude of PS between the ELF-EMF group and other groups. In conclusion, our data suggest that exposure to ELF-EMFs produces a marked change in the synaptic plasticity generated in synapses of the PP-DG. No significant difference in PPR of ELF-EMF group before and after HFS suggests a postsynaptic expression site of LTP.

  19. Ouabain Modulates the Lipid Composition of Hippocampal Plasma Membranes from Rats with LPS-induced Neuroinflammation.

    Science.gov (United States)

    Garcia, Israel José Pereira; Kinoshita, Paula Fernanda; Scavone, Cristoforo; Mignaco, Julio Alberto; Barbosa, Leandro Augusto de Oliveira; Santos, Hérica de Lima

    2015-12-01

    The effects of ouabain (OUA) and lipopolysaccharide (LPS) in vivo on hippocampal membranes (RHM) of Wistar male rats aged 3 months were analyzed. After intraperitoneal (i.p.) injection of OUA only, LPS only, OUA plus LPS, or saline, the content of proteins, phospholipids, cholesterol and gangliosides from RHM was analyzed. The total protein and cholesterol contents of RHM were not significantly affected by OUA or LPS for the experimentally paired groups. In contrast, total phospholipids and gangliosides were strongly modulated by either OUA or LPS treatments. LPS reduced the total phospholipids (roughly 23 %) and increased the total gangliosides (approximately 40 %). OUA alone increased the total phospholipids (around 23 %) and also the total gangliosides (nearly 34 %). OUA pretreatment compensated the LPS-induced changes, preserving the total phospholipids and gangliosides around the same levels of the control. Thus, an acute treatment with OUA not only modulated the composition of hippocampal membranes from 3-month-old rats, but also was apparently able to counteract membrane alterations resulting from LPS-induced neuroinflammation. This study demonstrates for the first time that the OUA capacity modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation.

  20. Protective effects of endoplasmic reticulum stress preconditioning on hippocampal neurons in rats with status epilepticus

    Directory of Open Access Journals (Sweden)

    Yi ZHANG

    2014-12-01

    Full Text Available Objective To evaluate the protective effects of endoplasmic reticulum stress preconditioning induced by 2-deoxyglucose (2-DG on hippocampal neurons of rats with status epilepticus (SE and the possible mechanism.  Methods Ninety Sprague-Dawley (SD rats were randomly enrolled into preconditioning group (N = 30, SE group (N = 30 and control group (N = 30. Each group was divided into 6 subsets (N = 5 according to six time points (before seizure, 6 h, 12 h, 1 d, 2 d and 7 d after seizure. The preconditioning group was administered 2-DG intraperitoneally with a dose of 150 mg/kg for 7 days, and the lithium-pilocarpine induced SE rat model was established on both preconditioning group and SE group. The rats were sacrificed at the above six time points, and the brains were removed to make paraffin sections. Nissl staining was performed by toluidine blue to evaluate the hippocampal neuronal damage after seizure, and the number of survival neurons in hippocampal CA1 and CA3 regions of the rats were counted. Immunohistochemical staining was performed to detect the expressions of glucose regulated protein 78 (GRP78 and X-box binding protein 1 (XBP-1 in hippocampal CA3 region of the rats.  Results The number of survival neurons in preconditioning group was much more than that in SE group at 7 d after seizure (t = 5.353, P = 0.000, and was more obvious in CA1 region. There was no significant hippocampal neuronal damage in control group. The expressions of GRP78 and XBP-1 in CA3 region of hippocampus in SE group at 6 h after seizure were significantly higher than that in control group (P = 0.000, and then kept increasing until reaching the peak at 2 d (P = 0.000, for all. The expressions of GRP78 and XBP-1 in hippocampal CA3 region in preconditioning group were significantly higher than that in control group before seizure (P = 0.000, for all. The level of GRP78 maintained the highest at 24 h and 2 d after seizure (P = 0.000, for all, while the XBP-1 level

  1. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats.

    Science.gov (United States)

    Puebla, L; Rodríguez-Martín, E; Arilla, E

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 micrograms) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activity was markedly increased in hippocampal membranes from rats treated with 10 micrograms of histamine (23% +/- 1% vs. 17% +/- 1% and 37% +/- 2% vs. 23% +/- 1%, respectively). In contrast, neither the basal nor the FK-stimulated enzyme activities were affected by histamine administration. The functional activity of the hippocampal guanine-nucleotide binding inhibitory protein (Gi protein), as assessed by the capacity of the stable GTP analogue 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity, was not modified by histamine administration. These data suggest that the increased response of the enzyme to SS was not related to an increased functional activity of Gi proteins. In fact, the increased AC response to SS in hippocampal membranes from histamine (10 micrograms)-treated rats was associated with quantitative changes in the SS receptors. Equilibrium binding data obtained with [125I]Tyr11-SS indicate an increase in the number with specific SS receptors (541 +/- 24 vs. 365 +/- 16 fmol/mg protein, P histamine (10 micrograms)-treated rats as compared to control animals. With the aim of determining if these changes were related to histamine binding to its specific receptor sites, the histaminergic H1 and H2 receptor antagonists mepyramine and cimetidine, respectively, were administered 1 h before histamine injection. The pretreatment with mepyramine or cimetidine induced an increase in the

  2. Regulation of GABA Equilibrium Potential by mGluRs in Rat Hippocampal CA1 Neurons.

    Science.gov (United States)

    Yang, Bo; Rajput, Padmesh S; Kumar, Ujendra; Sastry, Bhagavatula R

    2015-01-01

    The equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs) are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS)-a-Methyl-4-carboxyphenylglycine (MCPG), a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary.

  3. Regulation of GABA Equilibrium Potential by mGluRs in Rat Hippocampal CA1 Neurons.

    Directory of Open Access Journals (Sweden)

    Bo Yang

    Full Text Available The equilibrium potential for GABA-A receptor mediated currents (EGABA in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2 but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1. Theta-burst stimulation (TBS in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS-a-Methyl-4-carboxyphenylglycine (MCPG, a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary.

  4. Achyranthes bidentata Blume extract promotes neuronal growth in cultured embryonic rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Xin Tang; Yiren Chen; Xiaosong Gu; Fei Ding

    2009-01-01

    We have prepared an aqueous extract of Achyranthes bidentata Blume,a commonly prescribed Chinese medicinal herb,and reported,in previous studies,that A.bidentata extract benefits nerve growth and prevents neuron apoptosis.In this study,we investigated the actions of ,4.bidentata extract on survival and growth of primarily cultured rat hippocampal neurons.The morphological observation revealed that neurite growth from hippocampal neurons was significantly enhanced by A.bidentata extract with similar effects to those induced by nerve growth factor (NGF),and the greatest neurite growth appeared on treatment with A.bidentata extract at 1 ttg/ml for 24 h.DNA microarray analysis indicated that there were 25 upregulated genes and 47 downregulated genes exhibiting significantly differential expression in hippocampal neurons treated with A.bidentata extract at 1 μg/ml for 6 h when compared to those in untreated hippocampal neurons.Real-time quantitative RT-PCR and Western blot analysis demonstrated that the expression of growth-associated protein-43 in hippocampal neurons was upregulated at both mRNA and protein levels after treatment with A.bidentata extract,and the optimal dosage of the extract was also 1 μg/ml.These data confirm that A.bidentata extract could promote in vitro hippocampal neuronal growth in a dose- and time-dependent manner.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  5. Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory.

    Science.gov (United States)

    Li, Endan; Chung, Hyunju; Kim, Yumi; Kim, Dong Hyun; Ryu, Jong Hoon; Sato, Takahiro; Kojima, Masayasu; Park, Seungjoon

    2013-01-01

    Adult hippocampal neurogenesis is important in mediating hippocampal-dependent learning and memory. Exogenous ghrelin is known to stimulate progenitor cell proliferation in the dentate gyrus of adult hippocampus. The aim of this study was to investigate the role of endogenous ghrelin in regulating the in vivo proliferation and differentiation of the newly generating cells in the adult hippocampus using ghrelin knockout (GKO) mice. Targeted deletion of ghrelin gene resulted in reduced numbers of progenitor cells in the subgranular zone (SGZ) of the hippocampus, while ghrelin treatment restored progenitor cell numbers to those of wild-type controls. We also found that not only the number of bromodeoxyuridine (BrdU)-positive cells but also the fraction of immature neurons and newly generated neurons were decreased in the GKO mice, which were increased by ghrelin replacement. Additionally, in the GKO mice, we observed impairment of memory performance in Y-maze task and novel object recognition test. However, these functional deficiencies were attenuated by ghrelin administration. These results suggest that ghrelin directly induces proliferation and differentiation of adult neural progenitor cells in the SGZ. Our data suggest ghrelin may be a plausible therapeutic potential to enhance learning and memory processes.

  6. miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression

    Directory of Open Access Journals (Sweden)

    Junghee Jin

    2016-08-01

    Full Text Available Emerging evidence has shown that noncoding RNAs, particularly microRNAs (miRNAs, contribute to the pathogenesis of mood and anxiety disorders, although the molecular mechanisms are poorly understood. Here, we show that altered levels of miR-17-92 in adult hippocampal neural progenitors have a significant impact on neurogenesis and anxiety- and depression-related behaviors in mice. miR-17-92 deletion in adult neural progenitors decreases neurogenesis in the dentate gyrus, while its overexpression increases neurogenesis. miR-17-92 affects neurogenesis by regulating genes in the glucocorticoid pathway, especially serum- and glucocorticoid-inducible protein kinase-1 (Sgk1. miR-17-92 knockout mice show anxiety- and depression-like behaviors, whereas miR-17-92 overexpressing mice exhibit anxiolytic and antidepression-like behaviors. Furthermore, we show that miR-17-92 expression in the adult mouse hippocampus responds to chronic stress, and miR-17-92 rescues proliferation defects induced by corticosterone in hippocampal neural progenitors. Our study uncovers a crucial role for miR-17-92 in adult neural progenitors through regulation of neurogenesis and anxiety- and depression-like behaviors.

  7. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging.

    Science.gov (United States)

    Gebara, Elias; Sultan, Sebastien; Kocher-Braissant, Jacqueline; Toni, Nicolas

    2013-01-01

    Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus (DG) and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the DG was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus.

  8. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging.

    Directory of Open Access Journals (Sweden)

    Elias Georges Gebara

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the dentate gyrus was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus.

  9. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior

    Science.gov (United States)

    Hussaini, Syed Mohammed Qasim; Choi, Chan-Il; Cho, Chang Hoon; Kim, Hyo Jin; Jun, Heechul; Jang, Mi-Hyeon

    2014-01-01

    In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification, and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms. PMID:25263701

  10. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    Science.gov (United States)

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-04

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  11. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Boekhoorn, K.; van Dis, V.; Goedknegt, E.; Sobel, A.; Lucassen, P.J.; Hoogenraad, C.C.

    2014-01-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and trans

  12. Memory and hippocampal architecture following short-term midazolam in western diet-treated rats.

    Science.gov (United States)

    Rosenberger, Dorothea S; Falangola, Maria F; Ledreux, Aurélie; Nie, Xingju; Suhre, Wendy M; Boger, Heather A; Granholm, Ann-Charlotte

    2016-05-16

    The impact of short-term benzodiazepine exposure on cognition in middle-aged or older patients is a highly debated topic among anesthesiologists, critical care physicians and public media. "Western diet" (WD) consumption is linked to impaired cognition as well. The combination of benzodiazepines with substantial exposure to WD might set the stage for increased hippocampal vulnerability for benzodiazepines leading to exaggerated cognitive impairment in the postoperative period. In this study, Fischer 344 rats were fed either WD or standard rodent diet from 5 to 10.5 months of age. Rats were exposed to midazolam or placebo two days prior to an MRI scan using Diffusional Kurtosis Imaging (DKI) to assess brain microstructural integrity, followed by behavioral testing using a water radial arm maze. Hippocampal tissue was collected to assess alterations in protein biochemistry in brain regions associated with learning and memory. Our results showed that rats exposed to the combination of midazolam and WD had significantly delayed time of learning and exhibited spatial memory impairment. Further, we observed an overall increase of kurtosis metrics in the hippocampus and increased expression of the mitochondrial protein VDAC2 in midazolam-treated rats. Our data suggest that both the short-acting benzodiazepine midazolam and WD contribute to negatively affect the brain in middle-aged rats. This study is the first application of DKI on the effects of midazolam and WD exposure, and the findings demonstrate that diffusion metrics are sensitive indicators of changes in the complexity of neurite architecture.

  13. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  14. Dissociation of dorsal hippocampal regional activation under the influence of stress in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Johannes ePassecker

    2011-10-01

    Full Text Available Stress has deleterious effects on brain, body and behaviour in humans and animals alike. The present work investigated how 30-minute acute photic stress exposure impacts on spatial information processing in the main subregions of the dorsal hippocampal formation (CA1, CA3 and Dentate Gyrus, a brain structure prominently implicated in memory and spatial representation. Recordings were performed from spatially tuned hippocampal and dentate gyrus cells in rats while animals foraged in a square arena for food. The stress procedure induced a decrease in firing frequencies in CA1 and CA3 place cells while sparing locational characteristics. In contrast to the CA1-CA3 network, acute stress failed to induce major changes in the DG neuronal population. These data demonstrate a clear dissociation of the effects of stress on the main hippocampal sub-regions. Our findings further support the notion of decreased hippocampal excitability arising from stress in areas CA1 and CA3, but not in dentate gyrus.

  15. Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory.

    Science.gov (United States)

    Bétry, Cécile; Etiévant, Adeline; Pehrson, Alan; Sánchez, Connie; Haddjeri, Nasser

    2015-04-03

    Depression is frequently associated with cognitive disturbances. Vortioxetine is a multimodal acting antidepressant that functions as a 5-HT3 and 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and inhibitor of the 5-HT transporter. Given its pharmacological profile, the present study was undertaken to determine whether vortioxetine could modulate several preclinical parameters known to be involved in cognitive processing. In the dorsal hippocampus of anaesthetized rats, the high-frequency stimulation of the Schaffer collaterals provoked a stable long-term potentiation (LTP) of ~25%. Interestingly, vortioxetine (10mg/kg, i.p.) counteracted the suppressant effect of elevated platform stress on hippocampal LTP induction. In the novel object recognition test, vortioxetine (10mg/kg, i.p.) increased the time spent exploring the novel object during the retention test and this pro-cognitive effect was prevented by the partial 5-HT3 receptor agonist SR57227 (1mg/kg, i.p.). Finally, compared to fluoxetine, sustained administration of vortioxetine (5mg/kg/day, s.c.) induced a rapid increase of cell proliferation in the hippocampal dentate gyrus. In summary, vortioxetine prevented the effect of stress on hippocampal LTP, increased rapidly hippocampal cell proliferation and enhanced short-term episodic memory, via, at least in part, its 5-HT3 receptor antagonism. Taken together, these preclinical data suggest that the antidepressant vortioxetine may have a beneficial effect on human cognitive processes.

  16. Effects of electromagnetic radiation on spatial memory and synapses in rat hippocampal CA1

    Institute of Scientific and Technical Information of China (English)

    Yuhong Li; Changhua Shi; Guobing Lu; Qian Xu; Shaochen Liu

    2012-01-01

    In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52-1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region.

  17. Role of neuronal Ras activity in adult hippocampal neurogenesis and cognition

    Directory of Open Access Journals (Sweden)

    Martina eManns

    2011-02-01

    Full Text Available Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do converge on the activation of the G protein p21Ras. We used a transgenic mouse model (synRas mice expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  18. Intercellular adhesion molecule-1 expression in the hippocampal CA1 region of hyperlipidemic rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yingying Cheng; Ying Zhang; Hongmei Song; Jiachun Feng

    2012-01-01

    Chronic cerebral ischemia is a pathological process in many cerebrovascular diseases and it is induced by long-term hyperlipidemia, hypertension and diabetes mellitus. After being fed a high-fat diet for 4 weeks, rats were subjected to permanent occlusion of bilateral common carotid arteries to establish rat models of chronic cerebral ischemia with hyperlipidemia. Intercellular adhesion molecule-1 expression in rat hippocampal CA1 region was determined to better understand the mechanism underlying the effects of hyperlipidemia on chronic cerebral ischemia. Water maze test results showed that the cognitive function of rats with hyperlipidemia or chronic cerebral ischemia, particularly in rats with hyperlipidemia combined with chronic cerebral ischemia, gradually decreased between 1 and 4 months after occlusion of the bilateral common carotid arteries. This correlated with pathological changes in the hippocampal CA1 region as detected by hematoxylin-eosin staining. Immunohistochemical staining showed that intercellular adhesion molecule-1 expression in the hippocampal CA1 region was noticeably increased in rats with hyperlipidemia or chronic cerebral ischemia, in particular in rats with hyperlipidemia combined with chronic cerebral ischemia. These findings suggest that hyperlipidemia aggravates chronic cerebral ischemia-induced neurological damage and cognitive impairment in the rat hippocampal CA1 region, which may be mediated, at least in part, by up-regulated expression of intercellular adhesion molecule-1.

  19. A new chapter in the field of memory: adult hippocampal neurogenesis.

    Science.gov (United States)

    Koehl, Muriel; Abrous, Djoher N

    2011-03-01

    Understanding the cellular mechanisms underlying learning and memory is a major challenge in neurobiology. Structural and functional changes occurring in the hippocampus such as synaptic remodeling and long-term potentiation are key signatures of long-term memory processes. The discovery of a de novo hippocampal production of neurons in the adult brain has been a breakthrough in the field of plasticity and memory, introducing a new actor that could sustain memory processes. Here we will review our current knowledge on the role of these adult new neurons in memory. In particular we will provide evidence showing that they are required for learning and memory and that an alteration in their production rate or maturation leads to memory impairments. Through a thorough survey of the literature, we will also acknowledge that there are many controversies regarding the specific role played by newborn neurons. The emerging picture is that they are involved in the establishment of spatiotemporal relationships among multiple environmental cues for the flexible use of the acquired information. Indeed, newborn neurons have been found to be required for separating events based on their spatial and temporal characteristics, a process that preserves the uniqueness of a memory representation. Thus, adult-born neurons are required for allocentric space representation, for long-term memory retention and for flexible inferential memory expression. Finally, we will conclude by highlighting directions for future research, emphasizing that the exact participation of newborn neurons in memory processes will not be approached without considering the hippocampal network in general.

  20. NF-κB Mediated Regulation of Adult Hippocampal Neurogenesis: Relevance to Mood Disorders and Antidepressant Activity

    Directory of Open Access Journals (Sweden)

    Valeria Bortolotto

    2014-01-01

    Full Text Available Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.

  1. AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior.

    Science.gov (United States)

    Mateus-Pinheiro, A; Alves, N D; Patrício, P; Machado-Santos, A R; Loureiro-Campos, E; Silva, J M; Sardinha, V M; Reis, J; Schorle, H; Oliveira, J F; Ninkovic, J; Sousa, N; Pinto, L

    2016-10-25

    Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ (AP2γ, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and depressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.Molecular Psychiatry advance online publication, 25 October 2016; doi:10.1038/mp.2016.169.

  2. Changes in hippocampal neurons and memory function during the developmental stage of newborn rats with hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yue Li; Huiying Gao

    2006-01-01

    BACKGROUND: Under the normal circumstance, there exist some synapses with inactive functions in central nervous system (CNS), but these functions are activated following nerve injury. At the early stage of brain injury, the abnormal functions of brain are varied, and they have very strong plasticity and are corrected easily.OBJECTTVE: To observe the changes of neuronal morphology in hippocampal CA1 region and memory function in newborn rats with hypoxic-ischemic encephalopathy(HIE) from ischemia 6 hours to adult.DESTGN: Completely randomized grouping, controlled experiment.SETTING: Taian Health Center for Women and Children; Taishan Medical College.MATERTALS: Altogether 120 seven-day-old Wistar rats, of clean grade, were provided by the Experimental Animal Center, Shandong University of Traditional Chinese Medicine. Synaptophysin (SYN) polyclonal antibody was provided by Maixin Biological Company, Fuzhou.METHODS: This experiment was carried out in the Laboratory of Morphology, Taishan Medical College between October 2000 and December 2003. ① The newborn rats were randomly divided into 2 groups: model group and control group, 60 rats in each group. Five rats were chosen from each group at postoperative 6 hours, 24hours, 72 hours, 7 days, 2 weeks and 3 weeks separately for immunohistochemical staining. Fifteen newborn rats were chosen from each group at postoperative 4 weeks and 2 months separately for testing memory ability(After test, 5 rats from each group were sacrificed and used for immunohistochemical staining) ② The right common carotid artery of newborn rats of model group was ligated under the sthetized status. After two hours of incubation, the rats were placed for 2 hours in a container filled with nitrogen oxygen atmosphere containing 0.08 volume fraction of oxygen, thus, HIE models were created; As for the newborn rats in the control group, only blood vessels were isolated, and they were not ligated and hypoxia-treated. ③Thalamencephal tissue

  3. Effects of intracerebroventricular injection of histamine on memory deficits induced by hippocampal lesions in rats.

    Science.gov (United States)

    Kamei, C; Chen, Z; Nakamura, S; Sugimoto, Y

    1997-05-01

    The influence of bilateral hippocampal lesions on active avoidance response was studied in rats, as well as the effect of intracerebroventricular (i.c.v.) injection of histamine on memory deficits caused by hippocampectomy. Retardation of learning acquisition was produced by lesioning of the bilateral dorsal hippocampus in active avoidance response. Memory retention was also impaired by hippocampectomy. Although locomotor activity and rearing behavior measured by open-field test increased after hippocampal lesions, there was no relation between impairment of learning and increase in exploratory behavior. I.c.v. injection of histamine and i.p. injection of histidine resulted in an improvement of memory deficits (not only learning acquisition but also memory retrieval) induced by hippocampal lesions in rats. Histamine contents of the hippocampus and hypothalamus decreased after hippocampectomy, and a decrease in histamine contents of both areas was restored by histamine (i.c.v.) and histidine (i.p.) injection. In addition, a close relationship was found between decrease in response latency of avoidance response and an increase in histamine content of the hippocampus and hypothalamus after histamine injection.

  4. Establishment of a mechanical injury model of rat hippocampal neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; CAO Fei; PAN De-sheng; LIU Wei-guo; HU Wei-wei; ZHENG Xiu-jue; ZHAO Xue-qun; L(U) Shi-ting

    2006-01-01

    Objective:To establish a simple, reproducible, and practical mechanical injury model of hippocampal neurons of Sprague-Dawley rats in vitro.Methods: Hippocampal neurons isolated from1-2-day old rats were cultured in vitro. Mild, moderate and severe mechanical injuries were delivered to the neurons by syringe needle tearing, respectively. The control neurons were treated identically with the exception of trauma. Cell damage was assessed by measuring the Propidium Iodide(PI) uptaking at different time points (0.5, 1, 6, 12 and24 hours) after injury. The concentration of neuron specific enolase was also measured at some time points.Results: Pathological examination showed that degeneration, degradation and necrosis occurred in the injured cultured neurons. Compared with the control group, the ratio of PI-positive cells in the injured groups increased significantly after 30 minutes of injury (P <0.05). More severe the damage was, more PI-positive neurons were detected. Compared with the control group,the concentration of neuron specific enolase in the injured culture increased significantly after 1 hour of injury (P <0.05).Conclusions: The established model of hippocampal neuron injury in vitro can be repeated easily and can simulate the damage mechanism of traumatic brain injury,which can be used in the future research of traumatic brain injury.

  5. Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis.

    Science.gov (United States)

    Beckervordersandforth, Ruth; Ebert, Birgit; Schäffner, Iris; Moss, Jonathan; Fiebig, Christian; Shin, Jaehoon; Moore, Darcie L; Ghosh, Laboni; Trinchero, Mariela F; Stockburger, Carola; Friedland, Kristina; Steib, Kathrin; von Wittgenstein, Julia; Keiner, Silke; Redecker, Christoph; Hölter, Sabine M; Xiang, Wei; Wurst, Wolfgang; Jagasia, Ravi; Schinder, Alejandro F; Ming, Guo-Li; Toni, Nicolas; Jessberger, Sebastian; Song, Hongjun; Lie, D Chichung

    2017-02-08

    Precise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell. Perturbation of mitochondrial complex function by ablation of the mitochondrial transcription factor A (Tfam) reproduces multiple hallmarks of aging in hippocampal neurogenesis, whereas pharmacological enhancement of mitochondrial function ameliorates age-associated neurogenesis defects. Together with the finding of age-associated alterations in mitochondrial function and morphology in NSCs, these data link mitochondrial complex function to efficient lineage progression of adult NSCs and identify mitochondrial function as a potential target to ameliorate neurogenesis-defects in the aging hippocampus.

  6. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer’s disease rats

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Li-hong Kong; Hui Wang; Feng Shen; Ya-wen Wang; Hua Zhou; Guo-jie Sun

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer’s disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer’s disease by injectingβ-amyloid 1–42 (Aβ1–42) into the bilateral hippocam-pal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui(DU20) andShenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer’s disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These ifndings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disor-ders in Alzheimer’s disease rats.

  7. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    Science.gov (United States)

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  8. Hippocampal Excitability Increases during the Estrous Cycle in the Rat: A Potential Role for Brain-Derived Neurotrophic Factor

    OpenAIRE

    SCHARFMAN, HELEN E.; Mercurio, Thomas C.; Goodman, Jeffrey H.; Wilson, Marlene A.; MacLusky, Neil J.

    2003-01-01

    To test the hypothesis that induction of BDNF may contribute to changes in hippocampal excitability occurring during the female reproductive cycle, we examined the distribution of BDNF immunoreactivity and changes in CA1 and CA3 electrophysiology across the estrous cycle in rats. Hippocampal BDNF immunoreactivity increased on the day of proestrus as well as on the following morning (estrus), relative to metestrus or ovariectomized animals. Changes in immunoreactivity were clearest in mossy fi...

  9. Effects of coriaria lactone-activated, astrocyte-conditioned medium on estrogen receptor and progesterone receptor expression in rat cortical and hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jie Rong; Shuhua Zhang

    2009-01-01

    BACKGROUND: Coriaria lactone-activated astrocytes released bioactive substances that eventually caused epilepsy.OBJECTIVE: It has been suggested that activated astrocytes alter the expression of the estrogen receptor and progesterone receptor by releasing bioactive substances during epilepsy, thereby affecting neuronal activity in the brain. This study was designed to observe the expression of the estrogen receptor and the progesterone receptor in rat brain following lateral ventricle injection of coriaria lactone-activated, astrocyte-conditioned medium.DESIGN AND SETTING: This immunohistochemical, randomized, controlled, animal study was conducted at the Department of Pathology, Hospital Affiliated to Binzhou Medical College, China.MATERIAL: Coriaria lactone was provided by Huaxi Pharmaceutical Factory, China.METHODS: Forty adult, healthy, male, Sprague Dawley rats were randomly assigned into two groups. Astrocyte-conditioned medium (10 μL) was injected into rat lateral ventricle in the control group (n = 8). Coriaria lactone-activated, astrocyte-conditioned medium (10 μL) was infused into the rat lateral ventricle in the coriaria lactone group (n = 32). At 2, 4, 8 and 12 hours following injection, rats were sacrificed and subjected to immunohistochemistry. Eight rats were studied at each time point.MAIN OUTCOME MEASURES: Behavioral changes were observed in rats of both groups. Expression of the estrogen receptor and the progesterone receptor in rat cortical and hippocampal neurons was measured using immunohistochemistry.RESULTS: Four hours after injection, estrogen receptor levels in rat cortical and hippocampal neurons were significantly higher in the coriaria lactone group than in the control group (P < 0.05). Progesterone receptor levels were significantly lower in the coriaria lactone group than in the control group (P < 0.05). Seizures were not observed in the control group. In the coriaria lactone group, convulsions appeared 30 minutes after injection

  10. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria.

    Science.gov (United States)

    Filipović, Dragana; Costina, Victor; Perić, Ivana; Stanisavljević, Andrijana; Findeisen, Peter

    2017-03-15

    Fluoxetine (Flx) is the principal treatment for depression; however, the precise mechanisms of its actions remain elusive. Our aim was to identify protein expression changes within rat hippocampus regulated by chronic Flx treatment versus vehicle-controls using proteomics. Fluoxetine-hydrohloride (15mg/kg) was administered daily to adult male Wistar rats for 3weeks, and cytosolic and nonsynaptic mitochondrial hippocampal proteomes were analyzed. All differentially expressed proteins were functionally annotated according to biological process and molecular function using Uniprot and Blast2GO. Our comparative study revealed that in cytosolic and nonsynaptic mitochondrial fractions, 60 and 3 proteins respectively, were down-regulated, and 23 and 60 proteins, respectively, were up-regulated. Proteins differentially regulated in cytosolic and nonsynaptic mitochondrial fractions were primarily related to cellular and metabolic processes. Of the identified proteins, the expressions of calretinin and parvalbumine were confirmed. The predominant molecular functions of differentially expressed proteins in both cell hippocampal fractions were binding and catalytic activity. Most differentially expressed proteins in nonsynaptic mitochondria were catalytic enzymes involved in the pyruvate metabolism, citric acid cycle, oxidative phosphorylation, ATP synthesis, ATP transduction and glutamate metabolism. Results indicate that chronic Flx treatment may influence proteins involved in calcium signaling, cytoskeletal structure, chaperone system and stimulates energy metabolism via the upregulation of GAPDH expression in cytoplasm, as well as directing energy metabolism toward the citric acid cycle and oxidative phosphorylation in nonsynaptic mitochondria. This approach provides new insight into the chronic effects of Flx treatment on protein expression in a key brain region associated with stress response and memory.

  11. Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats.

    Science.gov (United States)

    Gallo, M; Cándido, A

    1995-06-01

    The aim of the present experiments was to study the effect of nonselective electrolytic lesions of the rat dorsal hippocampus on 2 learning phenomena: the L.J. Kamin (1969) blocking effect and latent inhibition of taste aversion learning. Bilateral dorsal hippocampal lesions selectively impaired blocking induced by 1 saccharin-lithium chloride pairing previous to 1 serial compound (saccharin-cider vinegar)-lithium pairing, but lesions had no effect on latent inhibition of a saline aversion, induced by 6 saline preexposures, in the same group of animals. Moreover, dorsal hippocampal lesions did not affect latent inhibition of saccharin-conditioned aversion induced by 1 or 6 preexposures. It is argued that blocking and latent inhibition of taste aversion learning do not share a common neural mechanism.

  12. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice.

    Science.gov (United States)

    Ramírez-Rodríguez, Gerardo; Vega-Rivera, Nelly Maritza; Oikawa-Sala, Julián; Gómez-Sánchez, Ariadna; Ortiz-López, Leonardo; Estrada-Camarena, Erika

    2014-05-01

    Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.

  13. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alice Krezymon

    Full Text Available At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.

  14. Hippocampal volumes among older Indian adults: Comparison with Alzheimer's disease and mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Vikas Dhikav

    2016-01-01

    Full Text Available Background: Hippocampal volume data from India have recently been reported in younger adults. Data in older adults are unknown. The present paper describes hippocampal volume from India among older adults and compares the same with patients having Alzheimer's disease (AD and mild cognitive impairment (MCI. Materials and Methods: A total of 32 cognitively normal subjects, 20 patients with AD, and 13 patients with MCI were enrolled. Patients were evaluated for the diagnosis of AD/MCI using the National Institute of Neurological and Communicative Disorders and Stroke and the Related Disorders Association criteria and the Clinical Dementia Rating (CDR Scale (score = 0.5, respectively. Hippocampal volume was measured using magnetic resonance imaging (MRI machine by manual segmentation (Megnatom Symphony 1.5T scanner three-dimensional (3D sequences. Results: Age and duration of illness in the MCI group were 70.6 ± 8.6 years and 1.9 ± 0.9 years, respectively. In the AD group, age and duration of illness were 72 ± 8.1 years and 3.1 ± 2.2 years, respectively. In cognitively normal subjects, the age range was 45-88 years (66.9 ± 10.32 years. Mean mini–mental status examination (MMSE score of healthy subjects was 28.28 ± 1.33. In the MCI group, MMSE was 27.05 ± 1.79. In the AD group, MMSE was 13.32 ± 5.6. In the healthy group, the hippocampal volume was 2.73 ± 0.53 cm3 on the left side and 2.77 ± 0.6 cm3 on the right side. Likewise, in MCI, the volume on the left side was 2.35 ± 0.42 cm3 and the volume on the right side was 2.36 ± 0.38 cm3. Similarly, in the AD group, the volume on the right side was 1.64 ± 0.55 cm3 and on the left side it was 1.59 ± 0.55 cm3. Post hoc analysis using Tukey's honestly significant difference (HSD showed, using analysis of variance (ANOVA that there was a statistically significant difference between healthy and AD (P ≤ 0.01, and between healthy and MCI (P ≤ 0.01 subjects. There was a correlation between

  15. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  16. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females.

    Science.gov (United States)

    Workman, Joanna L; Raineki, Charlis; Weinberg, Joanne; Galea, Liisa A M

    2015-07-01

    Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis.

  17. Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse.

    Directory of Open Access Journals (Sweden)

    Patrick Pla

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative disease, characterized by motor defects and psychiatric symptoms, including mood disorders such as anxiety and depression. HD is caused by an abnormal polyglutamine (polyQ expansion in the huntingtin (HTT protein. The development and analysis of various mouse models that express pathogenic polyQ-HTT revealed a link between mutant HTT and the development of anxio-depressive behaviors and various hippocampal neurogenesis defects. However, it is unclear whether such phenotype is linked to alteration of HTT wild-type function in adults. Here, we report the analysis of a new mouse model in which HTT is inducibly deleted from adult mature cortical and hippocampal neurons using the CreER(T2/Lox system. These mice present defects in both the survival and the dendritic arborization of hippocampal newborn neurons. Our data suggest that these non-cell autonomous effects are linked to defects in both BDNF transport and release upon HTT silencing in hippocampal neurons, and in BDNF/TrkB signaling. The controlled deletion of HTT also had anxiogenic-like effects. Our results implicate endogenous wild-type HTT in adult hippocampal neurogenesis and in the control of mood disorders.

  18. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury.

    Science.gov (United States)

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-11-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  19. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lei Cao; Xiaohua Bie; Su Huo; Jubao Du; Lin Liu; Weiqun Song

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  20. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats

    OpenAIRE

    SCHARFMAN, HELEN E.; MacLusky, Neil J.

    2013-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult fem...

  1. Cholecystokinin-octapeptide restored morphine-induced hippocampal long-term potentiation impairment in rats.

    Science.gov (United States)

    Wen, Di; Zang, Guoqing; Sun, DongLei; Yu, Feng; Mei, Dong; Ma, Chunling; Cong, Bin

    2014-01-24

    Cholecystokinin-octapeptide (CCK-8), which is a typical brain-gut peptide, exerts a wide range of biological activities on the central nervous system. We have previously reported that CCK-8 significantly alleviated morphine-induced amnesia and reversed spine density decreases in the CA1 region of the hippocampus in morphine-treated animals. Here, we investigated the effects of CCK-8 on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of rat dentate gyrus (DG) in acute saline or morphine-treated rats. Population spikes (PS), which were evoked by stimulation of the LPP, were recorded in the DG region. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and CCK-8 (1μg, i.c.v.) restored the amplitude of PS that was attenuated by morphine injection. Furthermore, microinjection of CCK-8 (0.1 and 1μg, i.c.v.) also significantly augmented hippocampal LTP in saline-treated (1ml/kg, s.c.) rats. Pre-treatment of the CCK2 receptor antagonist L-365,260 (10μg, i.c.v) reversed the effects of CCK-8, but the CCK1 receptor antagonist L-364,718 (10μg, i.c.v) did not. The present results demonstrate that CCK-8 attenuates the effect of morphine on hippocampal LTP through CCK2 receptors and suggest an ameliorative function of CCK-8 on morphine-induced memory impairment.

  2. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Chun-Sing Lam

    Full Text Available Chronic intermittent hypoxia (CIH is a hallmark of obstructive sleep apnea (OSA, which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP against CIH-induced spatial memory deficits. Adult Sprague-Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1 mg/kg daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1 in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NFКB canonical pathway was activated with a translocation of NFКB members (p65, p50 and increased expression levels of NFКB-dependent inflammatory cytokines and mediator (TNFα, IL-1β, COX-2; also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3. Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3 and extrinsic (FADD, cleaved caspase-8, Bid signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis

  3. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat.

    Science.gov (United States)

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu; Cen, Lian; Jiang, Ji-Yao

    2014-07-01

    The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury.

  4. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels

    Directory of Open Access Journals (Sweden)

    Dicker Bridget L

    2007-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by a decline in cognitive function and accumulation of amyloid-β peptide (Aβ in extracellular plaques. Mutations in amyloid precursor protein (APP and presenilins alter APP metabolism resulting in accumulation of Aβ42, a peptide essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD. However, the role of Aβ40, the more prevalent Aβ peptide secreted by cells and a major component of cerebral Aβ deposits, is less clear. In this study, virally-mediated gene transfer was used to selectively increase hippocampal levels of human Aβ42 and Aβ40 in adult Wistar rats, allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD. Results Adeno-associated viral (AAV vectors encoding BRI-Aβ cDNAs were generated resulting in high-level hippocampal expression and secretion of the specific encoded Aβ peptide. As a comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals were tested for development of learning and memory deficits (open field, Morris water maze, passive avoidance, novel object recognition three months after infusion of AAV. A range of impairments was found, with the most pronounced deficits observed in animals co-injected with both AAV-BRI-Aβ40 and AAV-BRI-Aβ42. Brain tissue was analyzed by ELISA and immunohistochemistry to quantify levels of detergent soluble and insoluble Aβ peptides. BRI-Aβ42 and the combination of BRI-Aβ40+42 overexpression resulted in elevated levels of detergent-insoluble Aβ. No significant increase in detergent-insoluble Aβ was seen in the rats expressing APPsw or BRI-Aβ40. No pathological features were noted in any rats, except the AAV-BRI-Aβ42 rats which showed focal, amorphous, Thioflavin-negative Aβ42 deposits. Conclusion The results show that AAV-mediated gene transfer is a valuable tool to model aspects of AD pathology in

  5. Antibody to collapsin response mediator protein 1 promotes neurite outgrowth from rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongsheng Lin; Jing Chen; Wenbin Zhang; Xiaobing Gong; Biao Chen; Guoqing Guo

    2011-01-01

    This study examined the role of collapsin response mediator protein 1 (CRMP-1) on neurite outgrowth from rat hippocampal neurons by blocking its function using an antibody. Hippocampal neurons, cultured in vitro, were treated (blocked) using a polyclonal antibody to CRMP-1, and neurite outgrowth and cytoskeletal changes w ere captured using atomic force microscopy and laser confocal microscopy. Control cells, treated with normal rabbit IgG, established their characteristic morphology and had a large number of processes emerging from the soma, including numerous branches. Microtubules were clearly visible in the soma, formed an elaborate network, and were aligned in parallel arrays to form bundles which projected into neurites. After blocking with CRMP-1 antibody, the number of branches emerging from axons and dendrites significantly increased and were substantially longer, compared with control cells. However, the microtubule network nearly disappeared and only a few remnants were visible. When CRMP-1 antibody-blocked neurons were treated with the Rho inhibitor, Y27632, numerous neurites emerged from the soma, and branches were more abundant than in control neurons. Although the microtubules were not as clearly visible compared with neurons cultured in control medium, the microtubule network recovered in cells treated with Y27632, when compared with cells that were blocked by CRMP-1 antibody (but not treated with Y27632). These results demonstrate that neurite outgrowth from hippocampal neurons can be promoted by blocking CRMP-1 with a polyclonal antibody.

  6. Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zhouyan Feng; Jing Wang; Xiaojing Zheng

    2014-01-01

    The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.

  7. Hippocampal state-dependent behavioral reflex to an identical sensory input in rats.

    Directory of Open Access Journals (Sweden)

    Keita Tokuda

    Full Text Available We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits.

  8. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    Science.gov (United States)

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O

    2000-06-01

    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  9. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Kayode Komolafe

    2014-01-01

    Full Text Available Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL or catechin (1, 5, or 10 µg/mL for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity.

  10. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  11. Effects of electro-acupuncture on Noxa and caspase-3 expression in hippocampal CA1 region of a vascular dementia rat model

    Institute of Scientific and Technical Information of China (English)

    Yanzhen Zhu; Qiang Wu; Ling Lin

    2008-01-01

    BACKGROUND: Noxa, a pro-apoptotic member of the Bcl-2 protein family, has been shown to induce the mitochondrial pathway of apoptosis and to mediate hypoxic cell death in a rat model of cerebral ischcmia.This suggests that Noxa could participate in apoptosis during vascular dementia (VD).OBJECTIVE,: To detect Noxa and caspase-3 expression after electro-acupuncture in VD rats to further validate the mechanism of electro-acupuncture-induced effects in the treatment of VD.DESIGN, TIME AND SETTING: A randomized, controlled study was performed at the Center for the Neurobiology of Fujian Medical University between January 2006 and March 2007.MATERIALS: A total of forty adult, male, Sprague Dawley rats were included in this study. The following equipment was used: confocal laser scanning microscope (SpS, Leica, Germany), water matte (Bejing Suntendy Science and Technology Co., Ltd., China), and SDZ-Ⅱ electronic acupuncture treatment instruments (Suzhou Medical Appliance Factory, China).METHODS: Thirty-eight rats with sufficient learning and memory abilities were selected by Morris water maze criteria. Twelve rats received sham-surgery; the remaining 26 rats were used to establish a VD model by bilateral occlusion of the common carotid arteries. The rats that survived the occlusion procedure were randomly assigned into an electro-acupuncture group (n = 11) and a VD model group (n = 12).MAIN OUTCOME MEASURES: Neuropathological changes were observed with hematoxylin-eosin staining of the hippocampus and expression of Noxa and caspasc-3 in the hippocampal CAI region was analyzed by confocal laser scanning microscope following immunofluorescence staining.RESULTS: Expressions of Noxa and caspase-3 in the electro-acupuncture group and sham-operated group were less than in the VD model group (P < 0.01). Electro-acupuncture reduced the amount of apoptotic neurons in hippocampal CA1 area of rats with VD. The average latency in the Morris water maze test was significantly shorter

  12. Atorvastatin increases dynamin 1 expression in hippocampal CA1 region in a rat model of vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Qinghua Li; Wensheng Zhou

    2011-01-01

    The current study examined a rat model of vascular dementia. The model rats exhibited obvious morphological and ultrastructural changes in neurons in the brain, and significantly reduced dynamin 1 expression in hippocampal CA1 region along with decreased learning and memory performance. Following atorvastatin treatment, the morphology and ultrastructure of cells in the model rat brain were significantly improved, dynamin 1 expression in hippocampal CA1 region was significantly enhanced, and learning and memory ability was significantly improved. The results demonstrated that impaired learning and memory abilities in vascular dementia model rats were closely correlated with decreased dynamin 1 expression. These findings indicate that atorvastatin can protect model rats against cognitive impairment by increasing dynamin 1 expression.

  13. High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells.

    Science.gov (United States)

    Jungenitz, Tassilo; Radic, Tijana; Jedlicka, Peter; Schwarzacher, Stephan W

    2014-07-01

    Increasing evidence shows that adult neurogenesis of hippocampal granule cells is advantageous for learning and memory. We examined at which stage of structural maturation and age new granule cells can be activated by strong synaptic stimulation. High-frequency stimulation of the perforant pathway in urethane-anesthetized rats elicited expression of the immediate early genes c-fos, Arc, zif268 and pCREB133 in almost 100% of mature, calbindin-positive granule cells. In contrast, it failed to induce immediate early gene expression in immature doublecortin-positive granule cells. Furthermore, doublecortin-positive neurons did not react with c-fos or Arc expression to mild theta-burst stimulation or novel environment exposure. Endogenous expression of pCREB133 was increasingly present in young cells with more elaborated dendrites, revealing a close correlation to structural maturation. Labeling with bromodeoxyuridine revealed cell age dependence of stimulation-induced c-fos, Arc and zif268 expression, with only a few cells reacting at 21 days, but with up to 75% of cells activated at 35-77 days of cell age. Our results indicate an increasing synaptic integration of maturing granule cells, starting at 21 days of cell age, but suggest a lack of ability to respond to activation with synaptic potentiation on the transcriptional level as long as immature cells express doublecortin.

  14. Effects of prolonged abstinence from METH on the hippocampal BDNF levels, neuronal numbers and apoptosis in methamphetamine-sensitized rats.

    Science.gov (United States)

    Hajheidari, Samira; Sameni, Hamid Reza; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein

    2017-04-03

    Methamphetamine (METH) use is associated with neuronal damage in various regions of brain, while effects of prolonged abstinence on METH-induced damage are not quite clear. This study evaluated serum and hippocampal BDNF levels, neuronal numbers and apoptosis in METH-sensitized and abstinent rats. Rats were sensitized to METH (2mg/kg, daily/18 days, s.c.). All rats were evaluated for neuron counting, the TUNEL test and serum and hippocampal BDNF levels after 30 days of forced abstinence from METH. The results showed that increased BDNF levels in the hippocampus and serum of METH-sensitized rats returned to control level after 30 days of abstinence. The number of neurons in the DG and CA1 of hippocampus and also, the total hippocampal perimeter and area in METH-sensitized rats were significantly lower than the saline rats. While, the number of neurons was not significantly increased in the hippocampus after prolonged abstinence from METH. Also, METH-sensitized rats showed a significant increase in TUNEL-positive cells, whereas METH-abstinent rats showed a slight but significant decrease in TUNEL-positive cells in the DG and CA3 of hippocampus. These results suggest that despite the reduction in BDNF levels, reducing the number of neurons, perimeter and area of the hippocampus were stable after abstinence. Thus, the degenerative effects of METH have been sustained even after prolonged abstinence in the hippocampus.

  15. p27kip1 Is Required for Functionally Relevant Adult Hippocampal Neurogenesis in Mice.

    Science.gov (United States)

    Hörster, Henrik; Garthe, Alexander; Walker, Tara L; Ichwan, Muhammad; Steiner, Barbara; Khan, Muhammad Amir; Lie, Dieter Chichung; Nicola, Zeina; Ramirez-Rodriguez, Gerardo; Kempermann, Gerd

    2017-03-01

    We asked whether cell-cycle associated protein p27kip1 might be involved in the transition of precursor cells to postmitotic maturation in adult hippocampal neurogenesis. p27kip1 was expressed throughout the dentate gyrus with a strong nuclear expression in early postmitotic, calretinin-positive neurons and neuronally determined progenitor cells (type-3 and some type-2b), lower or absent expression in radial glia-like precursor cells (type-1) and type-2a cells and essentially no expression in granule cells. This suggested a transitory role in late proliferative and early postmitotic phases of neurogenesis. Inconsistent with a role limited to cell cycle arrest the acute stimuli, voluntary wheel running (RUN), environmental enrichment (ENR) and kainate-induced seizures increased p27kip1 expressing cells. Sequential short-term combination of RUN and ENR yielded more p27kip1 cells than either stimulus alone, indicating an additive effect. In vitro, p27kip1 was lowly expressed by proliferating precursor cells but increased upon differentiation. In p27kip1-/- mice neurogenesis was reduced in vivo, whereas the number of proliferating cells was increased. Accordingly, the microdissected dentate gyrus of p27kip1-/- mice generated more colonies in the neurosphere assay and an increased number of larger spheres with the differentiation potential unchanged. In p27kip1-/- monolayer cultures, proliferation was increased and cell cycle genes were upregulated. In the Morris water maze p27kip1-/- mice learned the task but were specifically impaired in the reversal phase explainable by the decrease in adult neurogenesis. We conclude that p27kip1 is involved in the decisive step around cell-cycle exit and plays an important role in activity-regulated and functionally relevant adult hippocampal neurogenesis. Stem Cells 2017;35:787-799.

  16. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats.

    Directory of Open Access Journals (Sweden)

    Suk-Yu Yau

    Full Text Available Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg of corticosterone (CORT for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog /doublecortin (immature neuronal marker showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract

  17. Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Science.gov (United States)

    Tong, Jian-Bin; Wong, Richard; Ching, Yick-Pang; Qiu, Guang; Tang, Siu-Wa; Lee, Tatia M. C.; So, Kwok-Fai

    2011-01-01

    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress. PMID:21935393

  18. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats.

    Science.gov (United States)

    Wang, Qian-Qian; Zhu, Li-Jun; Wang, Xian-Hong; Zuo, Jian; He, Hui-Yan; Tian, Miao-Miao; Wang, Lei; Liang, Gui-Ling; Wang, Yu

    2016-05-01

    Trigeminal nerve stimulation (TNS) has recently been demonstrated effective in the treatment of epilepsy and mood disorders. Here, we aim to determine the effects of TNS on epileptogenesis, cognitive function, and the associated hippocampal apoptosis and inflammatory responses. Rats were injected with pilocarpine to produce status epilepticus (SE) and the following chronic epilepsy. After SE induction, TNS treatment was conducted for 4 consecutive weeks. A pilocarpine re-injection was then used to induce a seizure in the epileptic rats. The hippocampal neuronal apoptosis induced by seizure was assessed by TUNEL staining and inflammatory responses by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). The spontaneous recurrent seizure (SRS) number was counted through video monitoring, and the cognitive function assessed through Morris Water Maze (MWM) test. TNS treatment attenuated the SRS attacks and improved the cognitive impairment in epileptic rats. A pilocarpine re-injection resulted in less hippocampal neuronal apoptosis and reduced level of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and microglial activation in epileptic rats with TNS treatment in comparison to the epileptic rats without TNS treatment. It is concluded that TNS treatment shortly after SE not only protected against the chronic spontaneous seizures but also improved cognitive impairments. These antiepileptic properties of TNS may be related to its attenuating effects on hippocampal apoptosis and pro-inflammatory responses.

  19. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis.

    Science.gov (United States)

    Garthe, Alexander; Roeder, Ingo; Kempermann, Gerd

    2016-02-01

    We here show that living in a stimulus-rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss-of-function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals' behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro-neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end-point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences.

  20. Osthole Upregulates BDNF to Enhance Adult Hippocampal Neurogenesis in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Liu, Hong; Xue, Xinhong; Shi, Huijian; Qi, Lifeng; Gong, Dianrong

    2015-01-01

    Adult hippocampal neurogenesis occurs in the dentate gyrus (DG) of the mouse hippocampus, and plays roles in learning and memory progresses. In amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, a rodent model of Alzheimer's disease (AD), severe impairment of neurogenesis in the dentate subgranular zone (SGZ) of the DG has been reported. Osthole, an active constituent of Cnidium monnieri (L.) CUSSON, has been reported to exert neuroprotective effects and may promote neural stem cell proliferation. However, whether osthole ameliorates spatial memory deficits and improves hippocampal neurogenesis in APP/PS1 mice remains unknown. In this study we found that osthole (30 mg/kg intraperitoneally (i.p.) once daily) treatment dramatically ameliorated the cognitive impairments by Morris Water Maze test and passive avoidance test, and augmented neurogenesis in the DG of hippocampus in APP/PS1 mice. Furthermore, osthole treatment upregulated expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of the BDNF receptor tyrosine receptor kinase B (TrkB) following increased phosphorylation of cyclic AMP response element-binding protein (CREB), indicating that osthole improves neurogenesis via stimulating BDNF/TrkB/CREB signaling in APP/PS1 transgenic mice.

  1. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Khedr LH

    2015-11-01

    Full Text Available Lobna H Khedr, Noha N Nassar, Ezzeldin S El-Denshary, Ahmed M Abdel-tawab 1Department of Pharmacology, Faculty of Pharmacy, Misr International University, 2Department of Pharmacology, Faculty of Pharmacy, Cairo University, 3Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt Abstract: The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally. Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c, caspase-3 (Casp-3, as well as nitric oxide metabolites (NOx were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001 as well as the changes in adenosine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001. Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression. Keywords: rats, CMS, hippocampus, paroxetine, apoptosis, adenine nucleotides, cytochrome-c, caspase-3

  2. Effect of etomidate on voltage-dependent potassium currents in rat isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    TAN Hong-yu; SUN Li-na; WANG Xiao-liang; YE Tie-hu

    2010-01-01

    Background Previous studies demonstrated general anesthetics affect potassium ion channels, which may be one of the mechanisms of general anesthesia. Because the effect of etomidate on potassium channels in rat hippocampus which is involved in memory function has not been studied, we investigated the effects of etomidate on both delayed rectifier potassium current (I_((K(DR))) and transient outward potassium current (I_((K(A))) in acutely dissociated rat hippocampal pyramidal neurons.Methods Single rat hippocampal pyramidal neurons from male Wistar rats of 7-10 days were acutely dissociated by enzymatic digestion and mechanical dispersion according to the methods of Kay and Wong with slight modification. Voltage-clamp recordings were performed in the whole-cell patch clamp configuration. Currents were recorded with a List EPC-10 amplifier and data were stored in a computer using Pulse 8.5. Student's paired two-tail t test was used for data analysis. Results At the concentration of 100 μmol/L, etomidate significantly inhibited I_(K(DR)) by 49.2% at +40 mV when depolarized from -110 mV (P 0.05). The IC_(50) value of etomidate for blocking I_(K(DR)) was calculated as 5.4 μmol/L, with a Hill slope of 2.45. At the presence of 10 μmol/L etomidate, the V_(1/2) of activation curve was shifted from (17.3±1.5) mV to (10.7±9.9) mV (n=8, P <0.05), the V_(1/2) of inactivation curve was shifted from (-18.3±2.2) mV to (-45.3±9.4) mV (n=8, P <0.05). Etomidate 10 μmol/L shifted both the activation curve and inactivation curve of I_(K(DR)) to negative potential, but mainly affected the inactivation kinetics.Conclusions Etomidate potently inhibited I_(K(DR)) but not I_(K(A)) in rat hippocampal pyramidal neurons. I_(K(DR)) was inhibited by etomidate in a concentration-dependent manner, while I_(K(A)) remained unaffected.

  3. Procedural Performance Benefits after Excitotoxic Hippocampal Lesions in the Rat Sequential Reaction Time Task.

    Science.gov (United States)

    Busse, Sebastian; Schwarting, Rainer K W

    2016-01-01

    It is widely agreed upon that hippocampal function is linked to episodic-like and spatial memory across various species, for example, rodents. However, the interplay between hippocampal function and other types of learning and memory, like procedural stimulus-response or sequential learning, is less clear. Recently (Eckart et al. in Hippocampus 22:1202-1214, 2012), we showed that excitotoxic hippocampal lesions, which mainly affected its dorsal part, led not only to the expected deficits in a spatial and episodic-like memory task, namely the object place recognition test, but also to substantial improvements in terms of speed and accuracy in a rat adaption of the human sequential reaction time task (SRTT). The design of that experiment, however, which included fixed test durations per training day, led to the fact that lesioned animals gained more instrumental experience, which may partly have accounted for their enhanced performance. In order to rule out such a potential confound, we performed the present experiment on rats with similar ibotenic lesions aiming at the dorsal hippocampus, but we now kept the amount of correct instrumental responses and reinforcements on the same level as in controls. Our data revealed that lesioned animals were still able to complete the SRTT in a substantially smaller amount of time, when compared to control and sham-operated animals, although no differences were observable in terms of speed or accuracy. Also, the animals with lesions showed impaired extinction in a subsequent test where rewards were omitted. The former effect can primarily be attributed to shorter post-reinforcement pauses in the lesioned animals, and the possible mechanisms of this and the extinction effect will be addressed in the discussion.

  4. Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-10-01

    Evidence suggests that there are positive effects of exercise on learning and memory. Moreover, some studies have demonstrated that forced exercise plays the role of a stressor. This study was aimed at investigating the effects of different timing of exercise and exercise withdrawal on memory, and serum and hippocampal corticosterone (CORT) levels. Wistar rats were randomly divided into five groups: control, sham, exercise-rest (exercise withdrawal), rest-exercise (exercised group), and exercise-exercise (continuous exercise). Rats were forced to run on a treadmill for 1 h/day at a speed 20-21-m/min. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. Findings showed that after the exercise withdrawal, short-term and mid-term memories, had significant enhancement compared to the control group, while the long-term memory did not present this result. In addition, the serum and hippocampal CORT levels were at the basal levels after the rest period in the exercise-rest group. In the rest-exercise group, exercise improved mid- and long-term memories, whereas continuous exercise improved all types short-, mid- and long-term memories, particularly the mid-term memory. Twenty-one and forty-two days of exercise significantly decreased the serum and hippocampal CORT levels. It seems that exercise for at least 21 days with no rest could affect biochemical factors in the brain. Also, regular continuous exercise plays an important role in memory function. Hence, the duration and withdraw of exercise are important factors for the neurobiological aspects of the memory responses.

  5. Glucose deprivation activates diversity of potassium channels in cultured rat hippocampal neurons.

    Science.gov (United States)

    Velasco, Myrian; García, Esperanza; Onetti, Carlos G

    2006-05-01

    1. Glucose is one of the most important substrates for generating metabolic energy required for the maintenance of cellular functions. Glucose-mediated changes in neuronal firing pattern have been observed in the central nervous system of mammals. K(+) channels directly regulated by intracellular ATP have been postulated as a linkage between cellular energetic metabolism and excitability; the functional roles ascribed to these channels include glucose-sensing to regulate energy homeostasis and neuroprotection under energy depletion conditions. The hippocampus is highly sensitive to metabolic insults and is the brain region most sensitive to ischemic damage. Because the identity of metabolically regulated potassium channels present in hippocampal neurons is obscure, we decided to study the biophysical properties of glucose-sensitive potassium channels in hippocampal neurons. 2. The dependence of membrane potential and the sensitivity of potassium channels to glucose and ATP in rat hippocampal neurons were studied in cell-attached and excised inside-out membrane patches. 3. We found that under hypoglycemic conditions, at least three types of potassium channels were activated; their unitary conductance values were 37, 147, and 241 pS in symmetrical K(+), and they were sensitive to ATP. For K(+) channels with unitary conductance of 37 and 241, when the membrane potential was depolarized the longer closed time constant diminished and this produced an increase in the open-state probability; nevertheless, the 147-pS channels were not voltage-dependent. 4. We propose that neuronal glucose-sensitive K(+) channels in rat hippocampus include subtypes of ATP-sensitive channels with a potential role in neuroprotection during short-term or prolonged metabolic stress.

  6. Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats.

    Science.gov (United States)

    van der Hel, W Saskia; Hessel, Ellen V S; Bos, Ineke W M; Mulder, Sandra D; Verlinde, Suzanne A M W; van Eijsden, Pieter; de Graan, Pierre N E

    2014-12-01

    Mesiotemporal sclerosis (MTS), the most frequent form of drug-resistant temporal lobe epilepsy, often develops after an initial precipitating injury affecting the immature brain. To analyse early processes in epileptogenesis we used the juvenile pilocarpine model to study status epilepticus (SE)-induced changes in expression of key components in the glutamate-glutamine cycle, known to be affected in MTS patients. SE was induced by Li(+) /pilocarpine injection in 21-day-old rats. At 2-19 weeks after SE hippocampal protein expression was analysed by immunohistochemistry and neuron damage by FluoroJade staining. Spontaneous seizures occurred in at least 44% of animals 15-18 weeks after SE. As expected in this model, we did not observe loss of principal hippocampal neurons. Neuron damage was most pronounced in the hilus, where we also detected progressive loss of parvalbumin-positive GABAergic interneurons. Hilar neuron loss (or end-folium sclerosis), a common feature in patients with MTS, was accompanied by a progressively decreased glutamine synthetase (GS)-immunoreactivity from 2 (-15%) to 19 weeks (-33.5%) after SE. Immunoreactivity for excitatory amino-acid transporters, vesicular glutamate transporter 1 and glial fibrillary acidic protein was unaffected. Our data show that SE elicited in 21-day-old rats induces a progressive reduction in hilar GS expression without affecting other key components of the glutamate-glutamine cycle. Reduced expression of glial enzyme GS was first detected 2 weeks after SE, and thus clearly before spontaneous recurrent seizures occurred. These results support the hypothesis that reduced GS expression is an early event in the development of hippocampal sclerosis in MTS patients and emphasize the importance of astrocytes in early epileptogenesis.

  7. Hippocampal and thalamic neuronal metabolism in a putative rat model of schizophrenia○

    Institute of Scientific and Technical Information of China (English)

    Guolin Ma; Tianbin Song; Min Chen; Yuan Fu; Yong Xu; Ensen Ma; Wu Wang; Jiang Du; Mingxiong Huang

    2013-01-01

    The transcription factor early growth response protein 3 (EGR3) is involved in schizophrenia. We developed a putative rat model of schizophrenia by transfecting lentiviral particles carrying the Egr3 gene into bilateral hippocampal dentate gyrus. We assessed spatial working memory using the Morris water maze test, and neuronal metabolite levels in bilateral hippocampus and thalamus were determined by 3.0 T proton magnetic resonance spectroscopy. Choline content was significantly greater in the hippocampus after transfection, while N-acetylaspartate and the ratio of N-acetylaspartate to creatine/phosphocreatine in the thalamus were lower than in controls. This study is the first to report evaluation of brain metabolites using 3.0 T proton magnetic resonance spectroscopy in rats transfected with Egr3, and reveals metabolic abnormalities in the hippocampus and thalamus in this putative model of schizophrenia.

  8. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Palmfeldt, Johan; Christiansen, Sofie

    2012-01-01

    Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large......-scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found...... to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release...

  9. Fibroblast Growth Factor-2 Enhanced The Recruitment of Progenitor Cells and Myelin Repair in Experimental Demyelination of Rat Hippocampal Formations

    Directory of Open Access Journals (Sweden)

    Mahdieh Azin

    2015-10-01

    Full Text Available Objective: Hippocampal insults have been observed in multiple sclerosis (MS patients. Fibroblast growth factor-2 (FGF2 induces neurogenesis in the hippocampus and enhances the proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs. In the current study, we have investigated the effect of FGF2 on the processes of gliotoxin induced demyelination and subsequent remyelination in the hippocampus. Materials and Methods: In this experimental study adult male Sprague-Dawley rats received either saline or lysolecithin (LPC injections to the right hippocampi. Animals received intraperitoneal (i.p. injections of FGF2 (5 ng/g on days 0, 5, 12 and 26 post-LPC. Expressions of myelin basic protein (Mbp as a marker of myelination, Olig2 as a marker of OPC proliferation, Nestin as a marker of neural progenitor cells, and glial fibrillary acidic protein (Gfap as a marker of reactive astrocytes were investigated in the right hippocampi by reverse transcriptase-polymerase chain reaction (RT-PCR. Results: There was reduced Mbp expression at seven days after LPC injection, increased expressions of Olig2 and Nestin, and the level of Gfap did not change. FGF2 treatment reversed the expression level of Mbp to the control, significantly enhanced the levels of Olig2 and Nestin, but did not change the level of Gfap. At day-28 post- LPC, the expression level of Mbp was higher than the control in LPC-treated animals that received FGF2. The levels of Olig2, Nestin and Gfap were at the control level in the non-treated LPC group but significantly higher in the FGF2-t reated LPC group. Conclusion: FGF2 enhanced hippocampal myelination and potentiated the recruitment of OPCs and neural stem cells (NSCs to the lesion area. Long-term application of FGF2 might also enhance astrogliosis in the lesion site.

  10. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats.

    Science.gov (United States)

    Shetty, A K; Turner, D A

    1998-05-04

    Aging leads to alterations in the function and plasticity of hippocampal circuitry in addition to behavioral changes. To identify critical alterations in the substrate for inhibitory circuitry as a function of aging, we evaluated the numbers of hippocampal interneurons that were positive for glutamic acid decarboxylase and those that expressed calcium-binding proteins (parvalbumin, calbindin, and calretinin) in young adult (4-5 months old) and aged (23-25 months old) male Fischer 344 rats. Both the overall interneuron population and specific subpopulations of interneurons demonstrated a commensurate decline in numbers throughout the hippocampus with aging. Interneurons positive for glutamic acid decarboxylase were significantly depleted in the stratum radiatum of CA1, the strata oriens, radiatum and pyramidale of CA3, the dentate molecular layer, and the dentate hilus. Parvalbumin interneurons showed significant reductions in the strata oriens and pyramidale of CA1, the stratum pyramidale of CA3, and the dentate hilus. The reductions in calbindin interneurons were more pronounced than other calcium-binding protein-positive interneurons and were highly significant in the strata oriens and radiatum of both CA1 and CA3 subfields and in the dentate hilus. Calretinin interneurons were decreased significantly in the strata oriens and radiatum of CA3, in the dentate granule cell and molecular layers, and in the dentate hilus. However, the relative ratio of parvalbumin-, calbindin-, and calretinin-positive interneurons compared with glutamic acid decarboxylase-positive interneurons remained constant with aging, suggesting actual loss of interneurons expressing calcium-binding proteins with age. This loss contrasts with the reported preservation of pyramidal neurons with aging in the hippocampus. Functional decreases in inhibitory drive throughout the hippocampus may occur due to this loss, particularly alterations in the processing of feed-forward information through the

  11. Cytomorphometric changes in hippocampal CA1 neurons exposed to simulated microgravity using rats as model

    Directory of Open Access Journals (Sweden)

    Amit eRanjan

    2014-05-01

    Full Text Available Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225-275g to 14 days simulated microgravity (SMg and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the post synaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation we propose that SMg exposure might be useful for recovery of stroke patients.

  12. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jian-quan ZHENG; Xie-chuan WENG; Xiao-dan GAI; Jin LI; Wen-bin XIAO

    2004-01-01

    AIM: To investigate whether agmatine could selectively block a given type of the voltage-gated calcium channels (VGCC) and whether related receptors are involved in the blocking effect of agmatine on VGCC. METHODS: The whole-cell patch recording technique was performed to record VGCC currents in the cultured neonatal rat hippocampal neurons. RESULTS: Verapamil (100 μmol/L), a selective blocker of L-type calcium channel, significantly inhibited VGCC current by 80 %± 7 %. Agmatine (100 μmol/L) could further depress the remained currents by 25 %±6 %. The α2-adrenoceptor antagonist yohimbine (10 μmol/L) and the I2 imidazoline receptor antagonist idazoxon (10 and 40 μmol/L) had no significant effect on VGCC currents when used respectively. When the mixture of yohimbine and agmatine was applied, VGCC currents were still depressed remarkably. However, the blocking effect of agmatine was decreased by 29 %± 8 % in the presence of idazoxon (10 μmol/L). The effect of idazoxon did not increase at a higher concentration (40 μmol/L). CONCLUSION: Agmatine could block the L- and other types of VGCC currents in the cultured rat hippocampal neurons. Blocking effect of agmatine on VGCC was partially related to I2 imidazoline receptor and had no relationship with α2-adrenoceptors.

  13. Effects of the alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampal slices.

    Science.gov (United States)

    Ameri, A

    1997-08-01

    Alkaloids of different Aconitum species are employed as analgesics in traditional Chinese folk medicine. The present study was designed in order to investigate the effects of the structurally related alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampus. Experiments were performed as extracellular recordings of stimulus evoked population spikes in rat hippocampal slices. 6-Benzoylheteratisine (0.01-10 microM) inhibited the ortho- and antidromic population spike as well as the field EPSP in a concentration- and frequency-dependent manner. Heteratisine (1-100 microM) was a less potent inhibitor. It exerted a depression of the orthodromic spike, but failed to affect the antidromic population spike. 6-Benzoylheteratisine (10 microM) diminished epileptiform activity induced by bicuculline. In hippocampal neurons, this compound reduced the peak amplitude of the sodium current. There was no effect of heteratisine on the sodium current in concentrations up to 100 microM. It is concluded that the frequency-dependent action of 6-benzoylheteratisine suggests an inhibition of neuronal activity which underlies epileptiform burst discharges. The predominant effect is a suppression of neuronal activity due to a blockade of sodium channels.

  14. The proteome of neural stem cells from adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Fütterer Carsten D

    2003-06-01

    Full Text Available Abstract Background Hippocampal neural stem cells (HNSC play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. Results Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5 protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca2+ signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. Conclusions The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before.

  15. Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy.

    Directory of Open Access Journals (Sweden)

    Idrish Ali

    Full Text Available Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine in vivo the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons. Eight week old male Wistar rats, previously exposed to maternal separation (MS early life stress or early handling (EH, underwent amygdala kindling (or sham kindling. Once fully kindled, in vivo juxtacellular recordings in hippocampal, thalamic and cortical regions were performed under neuroleptic analgesia. In the thalamic reticular nucleus cells both kindling and MS independently lowered firing frequency and enhanced burst firing. Further, burst firing in the thalamic reticular nucleus was significantly increased in kindled MS rats compared to kindled EH rats (p<0.05. In addition, MS enhanced burst firing of hippocampal pyramidal neurons. Following a stimulation-induced seizure, somatosensory cortical neurons exhibited a more pronounced increase in burst firing in MS rats than in EH rats. These data demonstrate changes in firing patterns in thalamocortical and hippocampal regions resulting from both MS and amygdala kindling, which may reflect cellular changes underlying the enhanced vulnerability to kindling in rats that have been exposed to early life stress.

  16. Subacute toxicity of exogenous manganese on rat hippocampal neurons Examination by MRI and optical microscopy

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Xu; Yun Xiang; Min Yang

    2008-01-01

    BACKGROUND: Manganism may cause learning and memory impairment by influencing the normal function of the hippocampus, however, this effect requires further examination.OBJECTIVE: To investigate the effects of manganism on the rat hippocampus using immunohistochemistry and MRI examination.DESIGN, TIME AND SETTING: A randomized controlled study, performed in the School of Medicine and Life Science, Jianghan University and the State Key Laboratory of Atomic & Molecular Physics and Spectroscopy, Chinese Academy of Science, from July to September 2005.MATERIALS: Fourteen healthy SD rats aged two months were selected for this study. MnCl2 4H2O (BIID, UK) (batch number: 9791325); glial fibrillary acidic protein (GFAP) staining kit (Beijing Zhongshan Biotechnology); Biospec 4.7T/30 animal MRI formatter (Bruker, Germany).METHODS: Fourteen rats were randomly divided into a control group (n=7) and a manganism group (n=7). Rats in the manganism group Received intraperitoneal injection of MnCl2·4H2O (50mg/kg), once a day, for four successive days. Rats in the control group were injected according to the manganism regimen, but using saline instead of manganese solution.MAIN OUTCOME MEASURES: Twenty-four hours after the last injection, rats were examined using MRI. Immunohistochemically stained GFAP and hematoxylin-eosin stained hippocampal sections were observed under optical microscopy.RESULTS: Fourteen rats were included in the final analysis. After manganese treatment, T1 weighted image and inversion recovery MRI demonstrated that the signal intensity was significantly enhanced in hippocampus, compared to controls. Neuronal necrosis was not observed in the hippocampus after HE staining. As compared to the control group, GFAP expression was markedly enhanced in the hippocampus of the manganism group.CONCLUSION: Within the rat brain, manganese preferentially localizes to the hippocampus and can induce astroctye activation.

  17. Role of C/EBPβ transcription factor in adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Marta Cortes-Canteli

    Full Text Available BACKGROUND: The dentate gyrus of the hippocampus is one of the regions in which neurogenesis takes place in the adult brain. We have previously demonstrated that CCAAT/enhancer binding protein β (C/EBPβ is expressed in the granular layer of the dentate gyrus of the adult mouse hippocampus. Taking into account the important role of C/EBPβ in the consolidation of long term memory, the fact that newborn neurons in the hippocampus contribute to learning and memory processes, and the role of this transcription factor, previously demonstrated by our group, in regulating neuronal differentiation, we speculated that this transcription factor could regulate stem/progenitor cells in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show, using C/EBPβ knockout mice, that C/EBPβ expression is observed in the subset of newborn cells that proliferate in the hippocampus of the adult brain. Mice lacking C/EBPβ present reduced survival of newborn cells in the hippocampus, a decrease in the number of these cells that differentiate into neurons and a diminished number of cells that are proliferating in the subgranular zone of the dentate gyrus. These results were further confirmed in vitro. Neurosphere cultures from adult mice deficient in C/EBPβ present less proliferation and neuronal differentiation than neurospheres derived from wild type mice. CONCLUSIONS/SIGNIFICANCE: In summary, using in vivo and in vitro strategies, we have identified C/EBPβ as a key player in the proliferation and survival of the new neurons produced in the adult mouse hippocampus. Our results support a novel role of C/EBPβ in the processes of adult hippocampal neurogenesis, providing new insights into the mechanisms that control neurogenesis in this region of the brain.

  18. Surveillance, Phagocytosis, and Inflammation: How Never-Resting Microglia Influence Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Amanda Sierra

    2014-01-01

    Full Text Available Microglia cells are the major orchestrator of the brain inflammatory response. As such, they are traditionally studied in various contexts of trauma, injury, and disease, where they are well-known for regulating a wide range of physiological processes by their release of proinflammatory cytokines, reactive oxygen species, and trophic factors, among other crucial mediators. In the last few years, however, this classical view of microglia was challenged by a series of discoveries showing their active and positive contribution to normal brain functions. In light of these discoveries, surveillant microglia are now emerging as an important effector of cellular plasticity in the healthy brain, alongside astrocytes and other types of inflammatory cells. Here, we will review the roles of microglia in adult hippocampal neurogenesis and their regulation by inflammation during chronic stress, aging, and neurodegenerative diseases, with a particular emphasis on their underlying molecular mechanisms and their functional consequences for learning and memory.

  19. Correlations between Hippocampal Neurogenesis and Metabolic Indices in Adult Nonhuman Primates

    Directory of Open Access Journals (Sweden)

    Tarique D. Perera

    2011-01-01

    Full Text Available Increased neurogenesis in feeding centers of the murine hypothalamus is associated with weight loss in diet-induced obese rodents (Kokoeva et al., 2005 and Matrisciano et al., 2010, but this relationship has not been examined in other species. Postmortem hippocampal neurogenesis rates and premortem metabolic parameters were statistically analyzed in 8 chow-fed colony-reared adult bonnet macaques. Dentate gyrus neurogenesis, reflected by the immature neuronal marker, doublecortin (DCX, and expression of the antiapoptotic gene factor, B-cell lymphoma 2 (BCL-2, but not the precursor proliferation mitotic marker, Ki67, was inversely correlated with body weight and crown-rump length. DCX and BCL-2 each correlated positively with blood glucose level and lipid ratio (total cholesterol/high-density lipoprotein. This study demonstrates that markers of dentate gyrus neuroplasticity correlate with metabolic parameters in primates.

  20. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  1. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development.

    Science.gov (United States)

    de Almeida, Alexandre Aparecido; Gomes da Silva, Sérgio; Fernandes, Jansen; Peixinho-Pena, Luiz Fernando; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; Arida, Ricardo Mario

    2013-10-11

    It has been established that low intensities of exercise produce beneficial effects for the brain, while high intensities can cause some neuronal damage (e.g. exacerbated inflammatory response and cell death). Although these effects are documented in the mature brain, the influence of exercise intensities in the developing brain has been poorly explored. To investigate the impact of exercise intensity in developing rats, we evaluated the hippocampal level of brain derived neurotrophic factor (BDNF), inflammatory cytokines (TNFα, IL6 and IL10) and the occurrence of hippocampal cell degeneration and proliferation at different stages of postnatal brain development of rats submitted to two physical exercise intensities. To this point, male rats were divided into different age groups: P21, P31, P41 and P51. Each age group was submitted to two exercise intensities (low and high) on a treadmill over 10 consecutive days, except the control rats. We verified that the density of proliferating cells was significantly higher in the dentate gyrus of rats submitted to low-intensity exercise from P21 to P30 compared with high-intensity exercise and control rats. A significant increase of proliferative cell density was found in rats submitted to high-intensity exercise from P31 to P40 when compared to low-intensity exercise and control rats. Elevated hippocampal levels of IL6 were detected in rats submitted to high-intensity exercise from P21 to P30 compared to control rats. From P41 to P50 period, higher levels of BDNF, TNFα and IL10 were found in the hippocampal formation of rats submitted to high-intensity exercise in relation to their control rats. Our data show that exercise-induced neuroplastic effects on BDNF levels and cellular proliferation in the hippocampal region are dependent on exercise intensity and developmental period. Thus, exercise intensity is an inflammation-inducing factor and exercise-induced inflammatory response during the postnatal brain development is

  2. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  3. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male Long Evans rats.

    Science.gov (United States)

    Smith, Catherine A; Holahan, Matthew R

    2014-01-01

    Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  4. Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes.

    Science.gov (United States)

    Huang, Shihhui; Slomianka, Lutz; Farmer, Andrew J; Kharlamova, Anastasiya V; Gulevich, Rimma G; Herbeck, Yury E; Trut, Lyudmila N; Wolfer, David P; Amrein, Irmgard

    2015-08-01

    Work on laboratory and wild rodents suggests that domestication may impact on the extent of adult hippocampal neurogenesis and its responsiveness to regulatory factors. There is, however, no model of laboratory rodents and their nondomesticated conspecifics that would allow a controlled comparison of the effect of domestication. Here, we present a controlled within-species comparison of adult hippocampal neurogenesis in farm-bred foxes (Vulpes vulpes) that differ in their genetically determined degree of tameness. Quantitative comparisons of cell proliferation (Ki67) and differentiating cells of neuronal lineage (doublecortin, DCX) in the hippocampus of foxes were performed as a proxy for neurogenesis. Higher neurogenesis was observed in tameness-selected foxes, notably in an extended subgranular zone of the middle and temporal compartments of the hippocampus. Increased neurogenesis is negatively associated with aggressive behavior. Across all animals, strong septotemporal gradients were found, with higher numbers of proliferating cells and young neurons relative to resident granule cells in the temporal than in the septal hippocampus. The opposite gradient was found for the ratio of DCX/Ki67- positive cells. When tameness-selected and unselected foxes are compared with rodents and primates, proliferation is similar, while the number of young neurons is higher. The difference may be mediated by an extended period of differentiation or higher rate of survival. On the background of this species-specific neurogenic pattern, selection of foxes for a single behavioral trait key to domestication, i.e., genetic tameness, is accompanied by global and region-specific increases in neurogenesis.

  5. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.

    Science.gov (United States)

    Kronenberg, Golo; Gertz, Karen; Baldinger, Tina; Kirste, Imke; Eckart, Sarah; Yildirim, Ferah; Ji, Shengbo; Heuser, Isabella; Schröck, Helmut; Hörtnagl, Heide; Sohr, Reinhard; Djoufack, Pierre Chryso; Jüttner, René; Glass, Rainer; Przesdzing, Ingo; Kumar, Jitender; Freyer, Dorette; Hellweg, Rainer; Kettenmann, Helmut; Fink, Klaus Benno; Endres, Matthias

    2010-03-03

    Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.

  6. Elevation of naloxone-sensitive /sup 3/H-dihydromorphine binding in hippocampal formation of genetically epilepsy-prone rats

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.D.; Mills, S.A.; Jobe, P.C.; Reigel, C.E.

    1988-01-01

    /sup 3/H-Dihydromorphine (DHM) binding sites were measured in the brain of non-epileptic control and GEPR rats using in vitro autoradiographic techniques. The number of naloxone-sensitive /sup 3/H-DHM binding sites was increased 38-57% in the pyramidal cell layer of ventral hippocampal CA/sub 3/ and CA/sub 1/ of GEPR-3 and GEPR-9 rats compared to non-epileptic controls. No significant differences in /sup 3/H-DHM binding were observed in dorsal hippocampal formation, lateral entorhinal cortex, lateral geniculate or cerebellum. The results suggest that an increase in the number of opioid receptors in ventral hippocampus of GEPR rats may be one factor contributing to the enhanced sensitivity of GEPR-9 rats to the proconvulsant effects of morphine.

  7. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    Science.gov (United States)

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-04

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice.

  8. Nimodipine Prevents Early Loss of Hippocampal CA1 Parvalbumin Immunoreactivity After Focal Cerebral Ischemia in the Rat

    NARCIS (Netherlands)

    Benyó, Zoltán; de Jong, Giena; Luiten, Paul G.M.

    1995-01-01

    The effect of focal cerebral ischemia induced by middle cerebral artery occlusion on hippocampal interneurons containing the calcium-binding protein parvalbumin (PV) was studied in rats. Four hours after the onset of ischemia, a reduced number of PV-immunoreactive (-ir) neurons was observed in the l

  9. The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats

    NARCIS (Netherlands)

    Kole, MHP; Swan, L; Fuchs, E

    2002-01-01

    Recent hypotheses on the action of antidepressants imply a modulation of excitatory amino acid transmission. Here, the effects of long-term antidepressant application in rats with the drug tianeptine were examined at hippocampal CA3 commissural associational (c/a) glutamate receptor ion channels, em

  10. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Science.gov (United States)

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  11. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results.

    Science.gov (United States)

    Szymkowicz, Sarah M; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  12. Hippocampal brain volume is associated with faster facial emotion identification in older adults: preliminary results

    Directory of Open Access Journals (Sweden)

    Sarah M Szymkowicz

    2016-08-01

    Full Text Available Fast correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging, this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analyses of covariance models with response time as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume. Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  13. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain

    DEFF Research Database (Denmark)

    Hansen, A; Jørgensen, Ole Steen; Bolwig, T G;

    1990-01-01

    The effect of hippocampal kindling on neuronal and glial marker proteins was studied in the rat by immunochemical methods. In hippocampus, pyriform cortex and amygdala there was an increase in glial fibrillary acidic protein (GFAP), indicating reactive gliosis, and an increase in the glycolytic...... enzyme NSE, suggesting increased anaerobic metabolism. Neuronal cell adhesion molecule (NCAM) decreased in pyriform cortex and amygdala of kindled rats, indicating neuronal degeneration....

  14. The Effects of a High-Energy Diet on Hippocampal Function and Blood-Brain Barrier Integrity in the Rat

    OpenAIRE

    Kanoski, Scott E.; Zhang, Yanshu; Zheng, Wei; Davidson, Terry L.

    2010-01-01

    Cognitive impairment and Alzheimer’s Disease are linked with intake of a Western Diet, characterized by high levels of saturated fats and simple carbohydrates. In rats, these dietary components have been shown to disrupt hippocampal-dependent learning and memory processes, particularly those involving spatial memory. Using a rat model, the present research assessed the degree to which consumption of a high-energy (HE) diet, similar to those found in modern Western cultures, produces a selecti...

  15. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling.

  16. Effects of pharmacological treatments on hippocampal NCAM1 and ERK2 expression in epileptic rats with cognitive dysfunction

    Science.gov (United States)

    Kong, Qingxia; Min, Xia; Sun, Ran; Gao, Jianying; Liang, Ruqing; Li, Lei; Chu, Xu

    2016-01-01

    The present study aimed to investigate the effects of various pharmacological agents on the hippocampal expression of neural cell adhesion molecule 1 (NCAM1) and extracellular signal-regulated kinase 2 (ERK2) in epileptic rats with cognitive dysfunction. The experiments were conducted using 120 Wistar rats: 20 controls and 100 with pilocarpine-induced status epilepticus (SE). The SE rats were randomly assigned to 5 groups (n=20/group) that received daily treatments for 1 month with one of the following: (i) saline (no effect on epilepsy); (ii) carbamazepine (an anticonvulsant); (iii) oxcarbazepine (an anticonvulsant); (iv) aniracetam (a nootropic); or (v) donepezil (an acetylcholinesterase inhibitor). Spatial learning and memory were assessed using a Morris Water Maze (MWM). Hippocampal tissue was assessed for NCAM1 and ERK2 messenger RNA (mRNA) expression by reverse transcription polymerase chain reaction, and protein expression by immunochemistry. The results revealed that SE rats had significantly poorer MWM performances compared with controls (P<0.01). Performance in SE rats was improved with donepezil treatment (P<0.01), but declined with carbamazepine (P<0.01). Compared with controls, saline-treated SE rats exhibited increased hippocampal NCAM1 mRNA expression (P<0.01). Among SE rats, NCAM1 mRNA expression was highest in those treated with donepezil, followed by aniracetam-, saline-, oxcarbazepine- and carbamazepine-treated rats. Compared to controls, saline-treated SE rats exhibited decreased hippocampal ERK2 mRNA expression (P<0.01). Among SE rats, ERK2 mRNA expression was highest in those treated with donepezil, followed by aniracetam, saline, oxcarbazepine and carbamazepine. NCAM1 and ERK2 protein expression levels were parallel to those of the mRNA. In saline-treated SE rats, hippocampal ERK2 expression was decreased and NCAM1 expression was increased; thus, these two molecules may be involved in the impairment of spatial memory. Carbamazepine augmented

  17. Effects of caffeine or RX821002 in rats with a neonatal ventral hippocampal lesion

    Directory of Open Access Journals (Sweden)

    Guy eSandner

    2014-01-01

    Full Text Available Rats with a neonatal ventral hippocampal lesion (NVHL are used to model schizophrenia. They show enhanced locomotion and difficulties in learning after puberty. Such behavioural modifications are strengthened by dopaminergic psychostimulant drugs, which is also relevant for schizophrenia because illustrating its dopaminergic facet. But it remains questionable that only dopaminergic drugs elicit such effects. The behavioural effects could simply represent a non specific arousal, in which case NVHL rats should also be hyper-responsive to other vigilance enhancing drugs. We administered an adenosine (caffeine or an adrenaline receptor antagonist, (RX821002 at doses documented to modify alertness of rats, respectively 5 mg/Kg and 1 mg/Kg. Rats were selected prior to the experiments using MRI (magnetic resonance imaging. Each group contained typical and similar NVHL lesions. They were compared to sham lesioned rats. We evaluated locomotion in a new environment and the capacity to remember a visual or acoustic cue that announced the occurrence of food. Both Caffeine and RX82100 enhanced locomotion in the novel environment, particularly in NVHL rats. But, RX82100 had a biphasic effect on locomotion, consisting of an initial reduction preceding the enhancement. It was independent of the lesion. Caffeine did not modify the learning performance of NVHL rats. But, RX821002 was found to facilitate learning.Patients tend to intake much more caffeine than healthy people, which has been interpreted as a means to counter some cognitive deficits. This idea was not validated with the present results. But adrenergic drugs could be helpful for attenuating some of their cognitive deficits.

  18. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  19. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies.

    Directory of Open Access Journals (Sweden)

    Alexander Garthe

    generating a metric rather than just a configurational map of the environment. The discovery of highly specific behavioral deficits as consequence of a suppression of adult hippocampal neurogenesis thus allows to link cellular hippocampal plasticity to well-defined hypotheses from theoretical models.

  20. Distinct effects of chronic dopaminergic stimulation on hippocampal neurogenesis and striatal doublecortin expression in adult mice

    Directory of Open Access Journals (Sweden)

    Rachele eSalvi

    2016-03-01

    Full Text Available While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG and the subventricular zone (SVZ, recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g. the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX and Ropinirole (ROP, on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2'-deoxyuridine (BrdU a proliferation paradigm was performed in which two BrdU injections (100 mg/kg were applied intraperitoneally within 12 hours after a 14-day-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and NeuN 32 days after the last of five BrdU injections (50 mg/kg applied at the beginning of 14-day DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active and

  1. Effects of social housing on hippocampal dendrites and behavior in ovariectomized rats.

    Science.gov (United States)

    Leedy, Gail M; Barrows, Lorraine F; Clark, Suzanne

    2013-03-01

    Social stress is both species and gender specific. For female rats, individual housing and social instability housing conditions are associated with behavioral indicators of stress and depression. The present study directly compared the effects of six weeks of individual housing, social instability and mixed sex, semi-crowded housing in a visible burrow system (VBS) on ovariectomized female rats. Paired, stable housing was used as the control. Behavioral tests were conducted two, four and six weeks into the housing manipulations and included sucrose consumption, social interest, and activity in the open field. Following a series of four behavioral tests, animals were sacrificed and brains were processed for Golgi impregnation. Basal dendrites of CA3 hippocampal neurons were measured. Results indicate that the individual housing and social instability groups were comparable to the control group for all measures. In contrast, the rats housed in the VBS exhibited reduced activity in open field testing, and alterations in social interest. Dendritic lengths were also reduced in those animals living in the VBS in comparison to the animals housed in pairs. To our knowledge, this is the first report of behavioral and neural effects of VBS housing on female rats. Further research is necessary to determine what facets of the VBS housing are responsible for the behavioral and neural changes. This article is part of a Special Issue entitled 'Animal Models'.

  2. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats.

    Directory of Open Access Journals (Sweden)

    Charles H Cohan

    Full Text Available Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1 establishing a model of CA in nine month old middle-aged rats; and 2 to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning and field recordings (long-term potentiation and paired-pulse facilitation were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction.

  3. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats

    Science.gov (United States)

    Busse, Sebastian; Schwarting, Rainer K. W.

    2016-01-01

    The present study is part of a series of experiments, where we analyze why and how damage of the rat’s dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning. PMID:27375453

  4. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.

    Science.gov (United States)

    Li, Chengzhang; Wang, Jiangang; Zhao, Jianhua; Wang, Yali; Liu, Zhihua; Guo, Fang Li; Wang, Xiao Fang; Vreugdenhil, Martin; Lu, Cheng Biao

    2016-09-01

    Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.

  5. Multi-walled carbon nanotube inhibits CA1 glutamatergic synaptic transmission in rat's hippocampal slices.

    Science.gov (United States)

    Chen, Ting; Yang, Jiajia; Zhang, Hui; Ren, Guogang; Yang, Zhuo; Zhang, Tao

    2014-09-17

    The purpose of the study was to investigate the neurotoxic effect of multi-walled carbon nanotubes (MWCNTs) on the properties of glutamatergic synaptic transmission in rat's hippocampal slices using whole-cell patch clamp technique. The amplitude and frequency of excitatory postsynaptic current (EPSC) were accessed on the hippocampal pyramidal neurons. The alterations of glutamatergic synaptic transmission in CA3-CA1 were examined by measuring both the amplitude of evoked excitatory postsynaptic current (eEPSC) and paired-pulse ratio (PPR). The data showed that the amplitude of either spontaneous excitatory postsynaptic current (sEPSC) or miniature excitatory postsynaptic current (mEPSC) was significantly inhibited by 1 μg/mL MWCNTs. However, it was found that there was a trend of different change on the frequency index. When 1 μg/mL MWCNTs was applied, there were a decreased frequency of mEPSC and an increased frequency of sEPSC, which might be due to the effect of action potential. Furthermore, the amplitudes of eEPSC at CA3-CA1 synapses were remarkably decreased. And the mean amplitude of AMPAR-mediated eEPSC was significantly reduced as well. Meanwhile, a majority of PPRs data were greater than one. There were no significant differences of PPRs between control and MWCNTs states, but an increased trend of paired-pulse facilitation was found. These results suggested that MWCNT markedly inhibited hippocampal CA1 glutamatergic synaptic transmission in vitro, which provided new insights into the MWCNT toxicology on CNS at cellular level.

  6. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Science.gov (United States)

    Rodríguez-Muñoz, Rafael; Cárdenas-Aguayo, María Del Carmen; Alemán, Víctor; Osorio, Beatriz; Chávez-González, Oscar; Rendon, Alvaro; Martínez-Rojas, Dalila; Meraz-Ríos, Marco Antonio

    2015-01-01

    The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  7. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez-Muñoz

    Full Text Available The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f, during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV. By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60% and multipolar Glutamatergic (≤40% neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC: dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively, in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  8. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  9. VEGF regulates hippocampal neurogenesis and reverses cognitive deficits in immature rats after status epilepticus through the VEGF R2 signaling pathway.

    Science.gov (United States)

    Han, Wei; Song, Xiaojie; He, Rong; Li, Tianyi; Cheng, Li; Xie, Lingling; Chen, Hengsheng; Jiang, Li

    2017-02-10

    Epilepsy is the most common chronic disease in children, who exhibit a higher risk for status epilepticus (SE) than adults. Hippocampal neurogenesis is altered by epilepsy, particularly in the immature brain, which may influence cognitive development. Vascular endothelial growth factor (VEGF) represents an attractive target to modulate brain function at the neurovascular interface and is a double-edged sword in seizures. We used the lithium-pilocarpine-induced epilepsy model in immature Sprague-Dawley rats to study the effects of VEGF on hippocampal neurogenesis in the acute phase and on long-term cognitive behaviors in immature rats following status epilepticus (SE). VEGF correlates with cell proliferation in the immature brain after SE. By preprocessing VEGF in the lateral ventricles prior to the induction of the SE model, we found that VEGF increased the proliferation of neural stem cells (NSCs) and promoted the migration of newly generated cells via the VEGF receptor 2 (VEGFR2) signaling pathway. VEGF also inhibited cell loss and reversed the cognitive deficits that accompany SE. Based on our results, VEGF positively contributes to the initial stages of neurogenesis and alleviates cognitive deficits following seizures; moreover, the VEGF/VEGFR2 signaling pathway may provide a novel treatment strategy for epilepsy.

  10. Effects of estradiol on cognition and hippocampal pathology after lateral fluid percussion brain injury in female rats.

    Science.gov (United States)

    Lebesgue, Diane; LeBold, David G; Surles, Nathan O; Morales, Diego M; Etgen, Anne M; Zukin, R Suzanne; Saatman, Kathryn E

    2006-12-01

    Studies involving animal models of acute central nervous system (CNS) stroke and trauma strongly indicate that sex and/or hormonal status are important determinants of outcome after brain injury. The present study was undertaken to examine the ability of estradiol to protect hippocampal neurons from lateral fluid percussion brain injury. Sprague-Dawley female rats (211-285 g; n = 119) were ovariectomized, and a subset (n = 66) were implanted with 17beta-estradiol pellets to provide near physiological levels of estradiol. Animals were subjected to lateral fluid percussion brain injury or sham injury 1 week later. Activation of caspase-3 (n = 26) and TUNEL staining (n = 21) were assessed at 3 and 12 h after injury, respectively, in surviving control and estradiol-treated animals. Memory retention was examined using a Morris water maze test in a separate subset of animals (n = 43) at 8 days after injury. Activated caspase-3 and TUNEL staining were observed in the dentate hilus, granule cell layer, and CA3 regions in all injured rats, indicative of selective hippocampal cell apoptosis in the acute posttraumatic period. Estradiol did not significantly alter the number of hippocampal neurons exhibiting caspase-3 activity or TUNEL staining. Brain injury impaired cognitive ability, assessed at 1 week post-injury (p < 0.001). However, estradiol at physiological levels did not significantly alter injury-induced loss of memory. These data indicate that estradiol at physiological levels does not ameliorate trauma-induced hippocampal injury or cognitive deficits in ovariectomized female rats.

  11. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience.

    Science.gov (United States)

    Galimberti, Ivan; Gogolla, Nadine; Alberi, Stefano; Santos, Alexandre Ferrao; Muller, Dominique; Caroni, Pico

    2006-06-01

    We investigated rearrangements of connectivity between hippocampal mossy fibers and CA3 pyramidal neurons. We found that mossy fibers establish 10-15 local terminal arborization complexes (LMT-Cs) in CA3, which exhibit major differences in size and divergence in adult mice. LMT-Cs exhibited two types of long-term rearrangements in connectivity in the adult: progressive expansion of LMT-C subsets along individual dendrites throughout life, and pronounced increases in LMT-C complexities in response to an enriched environment. In organotypic slice cultures, subsets of LMT-Cs also rearranged extensively and grew over weeks and months, altering the strength of preexisting connectivity, and establishing or dismantling connections with pyramidal neurons. Differences in LMT-C plasticity reflected properties of individual LMT-Cs, not mossy fibers. LMT-C maintenance and growth were regulated by spiking activity, mGluR2-sensitive transmitter release from LMTs, and PKC. Thus, subsets of terminal arborization complexes by mossy fibers rearrange their local connectivities in response to experience and age throughout life.

  12. Pharmacological rescue of adult hippocampal neurogenesis in a mouse model of X-linked intellectual disability.

    Science.gov (United States)

    Allegra, Manuela; Spalletti, Cristina; Vignoli, Beatrice; Azzimondi, Stefano; Busti, Irene; Billuart, Pierre; Canossa, Marco; Caleo, Matteo

    2017-04-01

    Oligophrenin-1 (OPHN1) is a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID). How loss of function of Ophn1 affects neuronal development is only partly understood. Here we have exploited adult hippocampal neurogenesis to dissect the steps of neuronal differentiation that are affected by Ophn1 deletion. We found that mice lacking Ophn1 display a reduction in the number of newborn neurons in the dentate gyrus. A significant fraction of the Ophn1-deficient newly generated neurons failed to extend an axon towards CA3, and showed an altered density of dendritic protrusions. Since Ophn1-deficient mice display overactivation of Rho-associated protein kinase (ROCK) and protein kinase A (PKA) signaling, we administered a clinically approved ROCK/PKA inhibitor (fasudil) to correct the neurogenesis defects. While administration of fasudil was not effective in rescuing axon formation, the same treatment completely restored spine density to control levels, and enhanced the long-term survival of adult-born neurons in mice lacking Ophn1. These results identify specific neurodevelopmental steps that are impacted by Ophn1 deletion, and indicate that they may be at least partially corrected by pharmacological treatment.

  13. The Role of Monosialoganglioside GM1 in LTP-Induction in Rat Hippocampal Slices

    Institute of Scientific and Technical Information of China (English)

    李永新; 梅镇彤

    1994-01-01

    The effect of monosialoganglioside GM1 of different doses on the long-term potentiation (LTP) of synaptic transmission has been studied in the CA1 region of rat hippocampal slices, and the possible role that calcium ion and NMDA receptor play has also been investigated. The results reveal that larger magnitude of LTP is induced in hippocampal slices pre-incubated with GM1. The dose-response curve appears in diphase, and the largest magnitude of LTP has been obtained at the GM1 concentration of 50 mg/L in incubation ACSF. Moreover, the magnitude of LTP induced from the slices pre-incubated with GM1 at lower calcium ion concentration is similar to that obtained from the control slices at normal calcium ion concentration. Under higher calcium ion concentration, the enhancing effect of GM1 on LTP seems relatively feeble. After NMDA receptors were blocked, no enhancing effect of GM1 was observed. The mechanism of GM1 action on LTP is discussed.

  14. Saikosaponin a Enhances Transient Inactivating Potassium Current in Rat Hippocampal CA1 Neurons

    Directory of Open Access Journals (Sweden)

    Wei Xie

    2013-01-01

    Full Text Available Saikosaponin a (SSa, a main constituent of the Chinese herb Bupleurum chinense DC., has been demonstrated to have antiepileptic activity. Recent studies have shown that SSa could inhibit NMDA receptor current and persistent sodium current. However, the effects of SSa on potassium (K+ currents remain unclear. In this study, we tested the effect of SSa on 4AP-induced epileptiform discharges and K+ currents in CA1 neurons of rat hippocampal slices. We found that SSa significantly inhibited epileptiform discharges frequency and duration in hippocampal CA1 neurons in the 4AP seizure model in a dose-dependent manner with an IC50 of 0.7 μM. SSa effectively increased the amplitude of ITotal and IA, significantly negative-shifted the activation curve, and positive-shifted steady-state curve of IA. However, SSa induced no significant changes in the amplitude and activation curve of IK. In addition, SSa significantly increased the amplitude of 4AP-sensitive K+ current, while there was no significant change in the amplitude of TEA-sensitive K+ current. Together, our data indicate that SSa inhibits epileptiform discharges induced by 4AP in a dose-dependent manner and that SSa exerts selectively enhancing effects on IA. These increases in IA may contribute to the anticonvulsant mechanisms of SSa.

  15. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Science.gov (United States)

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  16. Postischemic Anhedonia Associated with Neurodegenerative Changes in the Hippocampal Dentate Gyrus of Rats

    Directory of Open Access Journals (Sweden)

    Jiro Kasahara

    2016-01-01

    Full Text Available Poststroke depression is one of the major symptoms observed in the chronic stage of brain stroke such as cerebral ischemia. Its pathophysiological mechanisms, however, are not well understood. Using the transient right middle cerebral artery occlusion- (MCAO-, 90 min operated rats as an ischemia model in this study, we first observed that aggravation of anhedonia spontaneously occurred especially after 20 weeks of MCAO, and it was prevented by chronic antidepressants treatment (imipramine or fluvoxamine. The anhedonia specifically associated with loss of the granular neurons in the ipsilateral side of hippocampal dentate gyrus and was also prevented by an antidepressant imipramine. Immunohistochemical analysis showed increased apoptosis inside the granular cell layer prior to and associated with the neuronal loss, and imipramine seemed to recover the survival signal rather than suppressing the death signal to prevent neurons from apoptosis. Proliferation and development of the neural stem cells were increased transiently in the subgranular zone of both ipsi- and contralateral hippocampus within one week after MCAO and then decreased and almost ceased after 6 weeks of MCAO, while chronic imipramine treatment prevented them partially. Overall, our study suggests new insights for the mechanistic correlation between poststroke depression and the delayed neurodegenerative changes in the hippocampal dentate gyrus with effective use of antidepressants on them.

  17. Circadian rhythm modulates long-term potentiation induced at CA1 in rat hippocampal slices.

    Science.gov (United States)

    Nakatsuka, Hiroki; Natsume, Kiyohisa

    2014-03-01

    Circadian rhythm affects neuronal plasticity. Consistent with this, some forms of synaptic long-term potentiation (LTP) are modulated by the light/dark cycle (LD cycle). For example, this type of modulation is observed in hippocampal slices. In rodents, which are nocturnal, LTP is usually facilitated in the dark phase, but the rat hippocampal CA1 is an exception. The reason why LTP in the dark phase is suppressed in CA1 remains unknown. Previously, LTP was induced with high-frequency stimulation. In this study, we found that in the dark phase, theta-burst stimulation-induced LTP is indeed facilitated in CA1, similar to other regions in the rodent brain. Population excitatory postsynaptic potentials (pEPSP)-LTP and population spikes (PS)-LTP were recorded at CA1. The magnitude of PS-LTP in dark-phase slices was significantly larger than in light-phase slices, while that of pEPSP-LTP was unchanged. Using antidromic-orthodromic stimulation, we found that recurrent inhibition is suppressed in the dark phase. Local gabazine-application to stratum pyramidale in light-phase slices mimicked this disinhibition and facilitated LTP in dark-phase slices. These results suggest that the disinhibition of a GABAA recurrent inhibitory network can be induced in the dark phase, thereby facilitating LTP.

  18. Input-to-output transformation in a model of the rat hippocampal CA1 network.

    Science.gov (United States)

    Olypher, Andrey V; Lytton, William W; Prinz, Astrid A

    2012-01-01

    Here we use computational modeling to gain new insights into the transformation of inputs in hippocampal field CA1. We considered input-output transformation in CA1 principal cells of the rat hippocampus, with activity synchronized by population gamma oscillations. Prior experiments have shown that such synchronization is especially strong for cells within one millimeter of each other. We therefore simulated a one-millimeter ıt patch of CA1 with 23,500 principal cells. We used morphologically and biophysically detailed neuronal models, each with more than 1000 compartments and thousands of synaptic inputs. Inputs came from binary patterns of spiking neurons from field CA3 and entorhinal cortex (EC). On average, each presynaptic pattern initiated action potentials in the same number of CA1 principal cells in the patch. We considered pairs of similar and pairs of distinct patterns. In all the cases CA1 strongly separated input patterns. However, CA1 cells were considerably more sensitive to small alterations in EC patterns compared to CA3 patterns. Our results can be used for comparison of input-to-output transformations in normal and pathological hippocampal networks.

  19. Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the freely moving rat.

    Science.gov (United States)

    Bland, Brian H; Bird, Jen; Jackson, Jesse; Natsume, Kiyohisa

    2006-01-01

    Rats implanted with hippocampal recording electrodes were tested in a wheel-running apparatus under three conditions: (1) independent electrical stimulation of the medial septal nucleus (MS); (2) independent electrical stimulation of the posterior hypothalamic nucleus (PH); and (3) combined electrical stimulation of the MS and PH using pairings of two stimulation conditions, 7 or 10 Hz stimulation of the MS, and a low- or high-intensity PH stimulation. Quantitative measures of running speed were taken, and hippocampal recordings were subjected to fast-Fourier transform analysis. Electrical stimulation of the PH induced wheel-running behavior; running speed and the accompanying hippocampus (HPC) theta frequency increased with increase in stimulation intensity. Electrical stimulation of the MS failed to induce wheel-running behavior despite the fact that HPC theta was induced at the frequency of the applied stimulation (7 and 10 Hz). Electrical stimulation of the MS reset the frequency of HPC theta induced by PH stimulation in both the upward and downward directions and increased theta power, while wheel-running speed was modulated in a downward direction only.

  20. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Directory of Open Access Journals (Sweden)

    Tanara Vieira Peres

    2013-01-01

    Full Text Available The molecular mechanisms mediating manganese (Mn-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs and tyrosine hydroxylase (TH could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old. The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK 1/2, as well as c-Jun N-terminal kinase (JNK 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3 in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.

  1. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  2. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  3. APPswe mutation increases the frequency of spontaneous Ca2+-oscillations in rat hippocampal neurons

    DEFF Research Database (Denmark)

    Kloskowska, Ewa; Malkiewicz, Katarzyna; Winblad, Bengt;

    2008-01-01

    Altered calcium homeostasis is implicated in the pathogenesis of Alzheimer's disease (AD). Much effort has been put into understanding the association between protein mutations causative of this devastating neurodegenerative disease and perturbed calcium signaling. Whereas the presenilin mutations...... have received most attention in the context of neuronal calcium signaling, we focused on the effects of APP with the so-called Swedish mutation (APPswe) on spontaneous neuronal activity. We observed that primary hippocampal neurons from an APPswe transgenic rat showed increased frequency and unaltered...... amplitude of spontaneous calcium oscillations as compared to wild-type neurons. We found that the altered calcium signaling of APPswe transgenic neurons was unlikely to be due to modulation of the NMDA or nicotinic neurotransmitter systems, and did not depend on secreted APP derivates. The implications...

  4. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats.

    Science.gov (United States)

    Smith, Catherine A; Farmer, Kyle; Lee, Hyunmin; Holahan, Matthew R; Smith, Jeffrey C

    2015-10-27

    Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females.

  5. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl Phthalate in Rats

    Directory of Open Access Journals (Sweden)

    Catherine A. Smith

    2015-10-01

    Full Text Available Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl phthalate (DEHP disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females.

  6. Alterations of hippocampal place cells in foraging rats facing a "predatory" threat.

    Science.gov (United States)

    Kim, Eun Joo; Park, Mijeong; Kong, Mi-Seon; Park, Sang Geon; Cho, Jeiwon; Kim, Jeansok J

    2015-05-18

    Fear is an adaptive mechanism evolved to influence the primal decisions of foragers in "approach resource-avoid predator" conflicts. To survive and reproduce, animals must attain the basic needs (food, water, shelter, and mate) while avoiding the ultimate cost of predation. Consistent with this view, ecological studies have found that predatory threats cause animals to limit foraging to fewer places in their habitat and/or to restricted times. However, the neurophysiological basis through which animals alter their foraging boundaries when confronted with danger remains largely unknown. Here, we investigated place cells in the hippocampus, implicated in processing spatial information and memory, in male Long-Evans rats foraging for food under risky situations that would be common in nature. Specifically, place cells from dorsal cornu ammonis field 1 (CA1) were recorded while rats searched for food in a semi-naturalistic apparatus (consisting of a nest and a relatively large open area) before, during, and after encountering a "predatory" robot situated remotely from the nest. The looming robot induced remapping of place fields and increased the theta rhythm as the animals advanced toward the vicinity of threat, but not when they were around the safety of the nest. These neurophysiological effects on the hippocampus were prevented by lesioning of the amygdala. Based on these findings, we suggest that the amygdalar signaling of fear influences the stability of hippocampal place cells as a function of threat distance in rats foraging for food.

  7. Chronic nicotine improves working and reference memory performance and reduces hippocampal NGF in aged female rats.

    Science.gov (United States)

    French, Kristen L; Granholm, Ann-Charlotte E; Moore, Alfred B; Nelson, Matthew E; Bimonte-Nelson, Heather A

    2006-05-15

    The cholinergic system is involved in cognition and several forms of dementia, including Alzheimer's disease, and nicotine administration has been shown to improve cognitive performance in both humans and rodents. While experiments with humans have shown that nicotine improves the ability to handle an increasing working memory load, little work has been done in animal models evaluating nicotine effects on performance as working memory load increases. In this report, we demonstrate that in aged rats nicotine improved the ability to handle an increasing working memory load as well as enhanced performance on the reference memory component of the water radial arm maze task. The dose required to exert these effects (0.3mg/kg/day) was much lower than doses shown to be effective in young rats and appears to be a lower maintenance dose than is seen in light to moderate smokers. In addition, our study reports a nicotine-induced reduction in nerve growth factor (NGF) protein levels in the hippocampus of the aged rat. The effects of nicotine on hippocampal NGF levels are discussed as a potential mechanism of nicotine-induced improvements in working and reference memory.

  8. Age-Related Deficits in Spatial Memory and Hippocampal Spines in Virgin, Female Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    Victoria N. Luine

    2011-01-01

    Full Text Available Effects of aging on memory and brain morphology were examined in aged, 21-month-old, and young, 4-month-old, Fischer 344 female rats. Spatial memory was assessed using the object placement task, and dendritic spine density was determined on pyramidal neurons in the hippocampus following Golgi impregnation. Consistent with previous studies, aged females showed poorer object placement performance than young subjects. Young subjects significantly discriminated the location of objects with a 1.5-hour intertrial delay while aged subjects did not. Spine density of basal dendrites on CA1 pyramidal cells was 16% lower in the aged subjects as compared to the young subjects. No differences in spine density were found between young and aged subjects in basal dendrites of CA1 or in either dendritic field of CA3 pyramidal neurons. Thus, decreased hippocampal CA1 dendritic spine density in aged rats may contribute to poorer spatial memory as compared to young rats. The possibility that the neuroplastic changes observed in this study may pertain only to female subjects having had a specific set of life experiences is discussed. Different factors, such as reproductive status, diet, and handling may contribute to neuroplasticity of the brain during aging; however, this view requires further examination.

  9. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    Science.gov (United States)

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  10. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons.

    Science.gov (United States)

    Zhang, Shuzhuo; Jin, Yuelei; Liu, Xiaoyan; Yang, Lujia; Ge, Zhi juan; Wang, Hui; Li, Jin; Zheng, Jianquan

    2014-09-25

    Methamphetamine (METH) is a psychostimulant drug. Abuse of METH produces long-term behavioral changes including behavioral, sensitization, tolerance, and dependence. It induces neurotoxic effects in several areas of the brain via enhancing dopamine (DA) level abnormally, which may cause a secondary release of glutamate (GLU). However, repeated administration of METH still increases release of GLU even when dopamine content in tissue is significantly depleted. It implies that some other mechanisms are likely to involve in METH-induced GLU release. The goal of this study was to observe METH affected glutamatergic synaptic transmission in rat primary cultured hippocampal neurons and to explore the mechanism of METH modulated GLU release. Using whole-cell patch-clamp recordings, we found that METH (0.1-50.0μM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs). However, METH decreased the frequency of sEPSCs and mEPSCs at high concentration of 100μM. The postsynaptic NMDA receptor currents and P/Q-type calcium channel were not affected by the use of METH (10,100μM). METH did not present visible effect on N-type Ca(2+) channel current at the concentration lower than 50.0μM, but it was inhibited by use of METH at a 100μM. The effect of METH on glutamatergic synaptic transmission was not revered by pretreated with DA receptor antagonist SCH23390. These results suggest that METH directly modulated presynaptic GLU release at a different concentration, while dopaminergic system was not involved in METH modulated release of GLU in rat primary cultured hippocampal neurons.

  11. Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation.

    Science.gov (United States)

    Kern, M; Audesirk, G

    1995-09-01

    Inorganic lead inhibits neurite initiation in cultured rat hippocampal neurons at concentrations as low as 100 nM. Conflicting reports suggest that Pb2+ may stimulate or inhibit protein kinase C, adenylyl cyclase, phosphodiesterase, and calmodulin, or increase intracellular free Ca2+ concentrations. Therefore, Pb2+ may alter the activities of Ca2+/calmodulin-dependent protein kinase (CaM kinase) or protein kinases C or A. We cultured rat hippocampal neurons in 100 nM PbCI2 alone or in combination with kinase or calmodulin inhibitors. Inhibiting protein kinase C with calphostin C exacerbated the inhibition of neurite initiation caused by PbCI2, but inhibiting protein kinase A with KT5720, CaM kinase with KN62, or calmodulin with calmidazolium completely reversed the effects of PbCI2. These results indicate that Pb2+ may inhibit neurite initiation by inappropriately stimulating protein phosphorylation by CaM kinase or cyclic AMP-dependent protein kinase (PKA), possibly by stimulating calmodulin. This hypothesis is supported by findings that other treatments that should increase protein phosphorylation (okadaic acid, a protein phosphatase inhibitor, and Sp-cAMPS, a PKA activator) also reduced neurite initiation. Whole-cell intracellular free Ca2+ ion concentrations were not significantly altered by 100 nM PbCI2 at 4, 12, 24, or 48 hr. Therefore, the hypothesized stimulatory effects of Pb2+ exposure on calmodulin, CaM kinase, or PKA are probably not caused by increases in whole-cell intracellular free Ca2+, but may be attributable either to intracellular Pb2+ or to localized increases in [Ca2+]in that are not reflected in whole-cell measurements.

  12. Neural stem cell activation and glial proliferation in the hippocampal CA3 region of posttraumatic epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Yuanxiang Lin; Kun Lin; Dezhi Kang; Feng Wang

    2011-01-01

    The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrillary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-immunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-κB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.

  13. Microbats appear to have adult hippocampal neurogenesis, but post-capture stress causes a rapid decline in the number of neurons expressing doublecortin.

    Science.gov (United States)

    Chawana, R; Alagaili, A; Patzke, N; Spocter, M A; Mohammed, O B; Kaswera, C; Gilissen, E; Bennett, N C; Ihunwo, A O; Manger, P R

    2014-09-26

    A previous study investigating potential adult hippocampal neurogenesis in microchiropteran bats failed to reveal a strong presence of this neural trait. As microchiropterans have a high field metabolic rate and a small body mass, it is possible that capture/handling stress may lead to a decrease in the detectable presence of adult hippocampal neurogenesis. Here we looked for evidence of adult hippocampal neurogenesis using immunohistochemical techniques for the endogenous marker doublecortin (DCX) in 10 species of microchiropterans euthanized and perfusion fixed at specific time points following capture. Our results reveal that when euthanized and perfused within 15 min of capture, abundant putative adult hippocampal neurogenesis could be detected using DCX immunohistochemistry. Between 15 and 30 min post-capture, the detectable levels of DCX dropped dramatically and after 30 min post-capture, immunohistochemistry for DCX could not reveal any significant evidence of putative adult hippocampal neurogenesis. Thus, as with all other mammals studied to date apart from cetaceans, bats, including both microchiropterans and megachiropterans, appear to exhibit substantial levels of adult hippocampal neurogenesis. The present study underscores the concept that, as with laboratory experiments, studies conducted on wild-caught animals need to be cognizant of the fact that acute stress (capture/handling) may induce major changes in the appearance of specific neural traits.

  14. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice

    Directory of Open Access Journals (Sweden)

    Klaus Fabel

    2009-11-01

    Full Text Available Voluntary physical exercise (wheel running, RUN and environmental enrichment (ENR both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can “prime” the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.

  15. Large-scale phenotyping links adult hippocampal neurogenesis to the reaction to novelty.

    Science.gov (United States)

    van Dijk, R Maarten; Lazic, Stanley E; Slomianka, Lutz; Wolfer, David P; Amrein, Irmgard

    2016-05-01

    The discovery of adult-born neurons in the hippocampus has triggered a wide range of studies that link the new neurons to various behavioral functions. However, the role of new neurons in behavior is still equivocal. Conflicting results may be due to the difficulty in manipulating neurogenesis without off-target effects as well as the statistical approach used, which fail to account for neurogenesis-independent effects of experimental manipulations on behavior. In this study, we apply a more comprehensive statistical and conceptual approach. Instead of between-group analyses, we consider the within-group relationships between neurogenesis and behavior (ANCOVA and mediation analysis) in a large-scale experiment, in which distinct age- (3 and 5 months) and strain- (DBA and C57) related differences in basal levels of neurogenesis in mice are compared with a large number (∼1,500) of behavioral read outs. The analysis failed to detect any association between anxiety and motor impulsivity with neurogenesis. However, within-group adult hippocampal neurogenesis is associated with the reaction to novelty. Specifically, more neurogenesis is associated with a longer latency to explore and a lower frequency of exploratory actions, overall indicative of a phenotype where animals with more neurogenesis were slower to explore a novel environment. This effect is observed in 5-months-old, but not in 3-months-old mice of both strains. An association between the reaction to novelty and adult neurogenesis can have a major impact on results from previous studies using classical behavioral experiments, in which animals are tested in a--for the animal--novel experimental set-up. The neurogenesis-novelty association found here is also a necessary link in the relation that has been suggested to exist between neurogenesis and psychiatric disorders marked by a failure to cope with novelty.

  16. Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli.

  17. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression

    Directory of Open Access Journals (Sweden)

    Nicolas eDéry

    2013-04-01

    Full Text Available Since the remarkable discovery of adult neurogenesis in the mammalian hippocampus, considerable effort has been devoted to unraveling the functional significance of these new neurons. Our group has proposed that a continual turnover of neurons in the DG could contribute to the development of event-unique memory traces that act to reduce interference between highly similar inputs. To test this theory, we implemented a continuous recognition task containing some objects that were repeated across trials as well as some objects that were highly similar, but not identical, to ones previously observed. The similar objects, termed lures, overlap substantially with previously viewed stimuli, and thus, may require hippocampal neurogenesis in order to avoid catastrophic interference. Lifestyle factors such as aerobic exercise and stress have been shown to impact the local neurogenic microenvironment, leading to enhanced and reduced levels of DG neurogenesis, respectively. Accordingly, we hypothesized that healthy young adults who take part in a long-term aerobic exercise regime would demonstrate enhanced performance on the visual pattern separation task, specifically at correctly categorizing lures as similar. Indeed, those who experienced a proportionally large change in fitness demonstrated a significantly greater improvement in their ability to correctly identify lure stimuli as similar. Conversely, we expected that those who score high on depression scales, an indicator of chronic stress, would exhibit selective deficits at appropriately categorizing lures. As expected, those who scored high on the Beck Depression Inventory (BDI were significantly worse than those with relatively lower BDI scores at correctly identifying lures as similar, while performance on novel and repeated stimuli was identical. Taken together, our results support the hypothesis that adult-born neurons in the DG contribute to the orthogonalization of incoming information.

  18. Corticotropin-Releasing Hormone (CRH)-Containing Neurons in the Immature Rat Hippocampal Formation: Light and Electron Microscopic Features and Colocalization With Glutamate Decarboxylase and Parvalbumin

    OpenAIRE

    Yan, Xiao-Xin; Toth, Zsolt; Schultz, Linda; Ribak, Charles E; Tallie Z. Baram

    1998-01-01

    Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined ...

  19. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    Science.gov (United States)

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  20. Hippocampal formation

    NARCIS (Netherlands)

    Cappaert, N.L.M.; van Strien, N.M.; Witter, M.P.; Paxinos, G.

    2015-01-01

    The hippocampal formation and parahippocampal region are prominent components of the rat nervous system and play a crucial role in learning, memory, and spatial navigation. Many new details regarding the entorhinal cortex have been discovered since the previous edition, and the growing interest in t

  1. Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor.

    Science.gov (United States)

    Scharfman, Helen E; Mercurio, Thomas C; Goodman, Jeffrey H; Wilson, Marlene A; MacLusky, Neil J

    2003-12-17

    To test the hypothesis that induction of BDNF may contribute to changes in hippocampal excitability occurring during the female reproductive cycle, we examined the distribution of BDNF immunoreactivity and changes in CA1 and CA3 electrophysiology across the estrous cycle in rats. Hippocampal BDNF immunoreactivity increased on the day of proestrus as well as on the following morning (estrus), relative to metestrus or ovariectomized animals. Changes in immunoreactivity were clearest in mossy fiber axons of dentate gyrus granule cells, which contain the highest concentration of BDNF. Increased immunoreactivity was also apparent in the neuropil-containing dendrites of CA1 and CA3 neurons. Electrophysiological recordings in hippocampal slices showed robust cycle-dependent differences. Evoked responses of CA1 neurons to Schaffer collateral stimulation changed over the cycle, with larger maximum responses at both proestrus and estrus relative to metestrus. In area CA3, repetitive hilar stimuli frequently evoked multiple population spikes at proestrus and estrus but only rarely at other cycle stages, and never in slices of ovariectomized rats. Hyperexcitability in area CA3 at proestrus was blocked by exposure to the high-affinity neurotrophin receptor antagonist K252a, or an antagonist of the alpha7 nicotinic cholinergic receptor, whereas it was induced at metestrus by the addition of BDNF to hippocampal slices. These studies suggest that hippocampal BDNF levels change across the estrous cycle, accompanied by neurophysiological responses that resemble the effects of BDNF treatment. An estrogen-induced interaction of BDNF and alpha7 nicotinic receptors on mossy fibers seems responsible for estrous cycle changes in area CA3. Periovulatory changes in hippocampal function may, thus, involve estrogen-induced increases in BDNF expression.

  2. Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI.

    Science.gov (United States)

    Waddell, Jaylyn; Hanscom, Marie; Shalon Edwards, N; McKenna, Mary C; McCarthy, Margaret M

    2016-01-01

    Hypoxia-ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning.

  3. Stimulation of adult hippocampal neurogenesis by physical exercise and enriched environment is disturbed in a CADASIL mouse model

    Science.gov (United States)

    Klein, C.; Schreyer, S.; Kohrs, F. E.; Elhamoury, P.; Pfeffer, A.; Munder, T.; Steiner, B.

    2017-01-01

    In the course of CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a dysregulated adult hippocampal neurogenesis has been suggested as a potential mechanism for early cognitive decline. Previous work has shown that mice overexpressing wild type Notch3 and mice overexpressing Notch3 with a CADASIL mutation display impaired cell proliferation and survival of newly born hippocampal neurons prior to vascular abnormalities. Here, we aimed to elucidate how the long-term survival of these newly generated neurons is regulated by Notch3. Knowing that adult neurogenesis can be robustly stimulated by physical exercise and environmental enrichment, we also investigated the influence of such stimuli as potential therapeutic instruments for a dysregulated hippocampal neurogenesis in the CADASIL mouse model. Therefore, young-adult female mice were housed in standard (STD), environmentally enriched (ENR) or running wheel cages (RUN) for either 28 days or 6 months. Mice overexpressing mutated Notch3 and developing CADASIL (TgN3R169C), and mice overexpressing wild type Notch3 (TgN3WT) were used. We found that neurogenic stimulation by RUN and ENR is apparently impaired in both transgenic lines. The finding suggests that a disturbed neurogenic process due to Notch3-dependent micromilieu changes might be one vascular-independent mechanism contributing to cognitive decline observed in CADASIL. PMID:28345617

  4. Penicillin-induced epilepsy model in rats: dose-dependant effect on hippocampal volume and neuron number.

    Science.gov (United States)

    Akdogan, Ilgaz; Adiguzel, Esat; Yilmaz, Ismail; Ozdemir, M Bulent; Sahiner, Melike; Tufan, A Cevik

    2008-10-22

    This study was designed to evaluate the penicillin-induced epilepsy model in terms of dose-response relationship of penicillin used to induce epilepsy seizure on hippocampal neuron number and hippocampal volume in Sprague-Dawley rats. Seizures were induced with 300, 500, 1500 and 2000IU of penicillin-G injected intracortically in rats divided in four experimental groups, respectively. Control group was injected intracortically with saline. Animals were decapitated on day 7 of treatment and brains were removed. The total neuron number of pyramidal cell layer from rat hippocampus was estimated using the optical fractionator method. The volume of same hippocampal areas was estimated using the Cavalieri method. Dose-dependent decrease in hippocampal neuron number was observed in three experimental groups (300, 500 and 1500IU of penicillin-G), and the effects were statistically significant when compared to the control group (P<0.009). Dose-dependent decrease in hippocampal volume, on the other hand, was observed in all three of these groups; however, the difference compared to the control group was only statistically significant in 1500IU of penicillin-G injected group (P<0.009). At the dose of 2000IU penicillin-G, all animals died due to status seizures. These results suggest that the appropriate dose of penicillin has to be selected for a given experimental epilepsy study in order to demonstrate the relevant epileptic seizure and its effects. Intracortical 1500IU penicillin-induced epilepsy model may be a good choice to practice studies that investigate neuroprotective mechanisms of the anti-epileptic drugs.

  5. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial.

    Science.gov (United States)

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Brünner, Franziska; Schachtzabel, Claudia; Gussew, Alexander; Puta, Christian; Smesny, Stefan; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2015-10-01

    Interventional studies suggest that changes in physical fitness affect brain function and structure. We studied the influence of high intensity physical exercise on hippocampal volume and metabolism in 17 young healthy male adults during a 6-week exercise program compared with matched controls. We further aimed to relate these changes to hypothesized changes in exercised-induced brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). We show profound improvement of physical fitness in most subjects and a positive correlation between the degree of fitness improvement and increased BDNF levels. We unexpectedly observed an average volume decrease of about 2%, which was restricted to right hippocampal subfields CA2/3, subiculum, and dentate gyrus and which correlated with fitness improvement and increased BDNF levels negatively. This result indicates that mainly those subjects who did not benefit from the exercise program show decreased hippocampal volume, reduced BDNF levels, and increased TNF-α concentrations. While spectroscopy results do not indicate any neuronal loss (unchanged N-acetylaspartate levels) decreased glutamate-glutamine levels were observed in the right anterior hippocampus in the exercise group only. Responder characteristics need to be studied in more detail. Our results point to an important role of the inflammatory response after exercise on changes in hippocampal structure.

  6. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    Science.gov (United States)

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings.

  7. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    Science.gov (United States)

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  8. Low Proliferation and Differentiation Capacities of Adult Hippocampal Stem Cells Correlate with Memory Dysfunction in Humans

    Science.gov (United States)

    Coras, Roland; Siebzehnrubl, Florian A.; Pauli, Elisabeth; Huttner, Hagen B.; Njunting, Marleisje; Kobow, Katja; Villmann, Carmen; Hahnen, Eric; Neuhuber, Winfried; Weigel, Daniel; Buchfelder, Michael; Stefan, Hermann; Beck, Heinz; Steindler, Dennis A.; Blumcke, Ingmar

    2010-01-01

    The hippocampal dentate gyrus maintains its capacity to generate new neurons throughout life. In animal models, hippocampal neurogenesis is increased by cognitive tasks, and experimental ablation of neurogenesis disrupts specific modalities of learning and memory. In humans, the impact of neurogenesis on cognition remains unclear. Here, we…

  9. Hippocampal cell loss and propagation of abnormal discharges accompanied with the expression of tonic convulsion in the spontaneously epileptic rat.

    Science.gov (United States)

    Hanaya, Ryosuke; Sasa, Masashi; Sugata, Sei; Tokudome, Mai; Serikawa, Tadao; Kurisu, Kaoru; Arita, Kazunori

    2010-04-30

    Spontaneously epileptic rats (SER) are double mutants with both tonic convulsion and absence-like seizures from the age of 8 weeks. Hippocampal CA3 neurons in SER display a long-lasting depolarizing shift accompanied by repetitive firing (attributed to abnormalities of the Ca(2+) channels) with a single stimulation of the mossy fibers. In the present investigation, we examined if the seizure discharges of SER were correlated with the hippocampal abnormality of SER using electrophysiological and histological methods. In CA1 neurons of seizure-susceptible mature SER, higher-voltage (<8-11 V) stimulations induced a long depolarization shift (in 25% of neurons) with repetitive firing (in 12.5% of neurons). However, the tremor rat, one of the parent strains of SER, did not exhibit such abnormal firing in the CA3 region of the hippocampus. The number of CA3 neurons in SER was significantly (p<0.01) lower than that in tremor rats and Wistar rats, although no significant difference was established in the hilus. Sprouting of mossy fiber was observed in the dentate of mature SER; however, negligible staining was spotted in the dentate of both mature tremor and Wistar rats. Interestingly, expression of the brain-derived neurotrophic factor was higher in the hilus, CA3, and granular cell layer of dentate gyrus in SER than normal Wistar rats. The expression levels of TUNEL, bax, and Caspase-3 did not show significant changes between the SER and Wistar rats. SER exhibited hippocampal sclerosis-like changes which did not have enough potential for epileptogenesis. Repetitive tonic seizures and vulnerable CA3 neurons of SER could be involved in the induction of sclerosis-like changes in the hippocampus.

  10. Proteomic analysis of hippocampal proteins of F344 rats exposed to 1-bromopropane

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Toxicology, Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510-300 (China); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Chang, Jie [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Zhang, Lingyi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahashi, Masahide [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Wang, Yun [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ichihara, Gaku, E-mail: gak@med.nagoya-u.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2011-11-15

    1-Bromopropane (1-BP) is a compound used as an alternative to ozone-depleting solvents and is neurotoxic both in experimental animals and human. However, the molecular mechanisms of the neurotoxic effects of 1-BP are not well known. To identify the molecular mechanisms of 1-BP-induced neurotoxicity, we analyzed quantitatively changes in protein expression in the hippocampus of rats exposed to 1-BP. Male F344 rats were exposed to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks by inhalation. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) were conducted to detect and identify protein modification. Changes in selected proteins were further confirmed by western blot. 2D-DIGE identified 26 proteins with consistently altered model (increase or decrease after both 1- and 4-week 1-BP exposures) and significant changes in their levels (p < 0.05; fold change {>=} {+-} 1.2) at least at one exposure level or more compared with the corresponding controls. Of these proteins, 19 were identified by MALDI-TOF-TOF/MS. Linear regression analysis of 1-BP exposure level identified 8 differentially expressed proteins altered in a dose-dependent manner both in 1- and 4-week exposure experiments. The identified proteins could be categorized into diverse functional classes such as nucleocytoplasmic transport, immunity and defense, energy metabolism, ubiquitination-proteasome pathway, neurotransmitter and purine metabolism. Overall, the results suggest that 1-BP-induced hippocampal damage involves oxidative stress, loss of ATP production, neurotransmitter dysfunction and inhibition of ubiquitination-proteasome system. -- Highlights: Black-Right-Pointing-Pointer 1-BP modified hippocampal proteome in rat and 19 altered proteins were identified. Black-Right-Pointing-Pointer Expression of Ran, TPI, HSP60, PSMA1, ECH1, TPI, B-CK and DJ-1 was changed by 1-BP. Black

  11. Histamine H1 and endothelin ETB receptors mediate phospholipase D stimulation in rat brain hippocampal slices.

    Science.gov (United States)

    Sarri, E; Picatoste, F; Claro, E

    1995-08-01

    Different neurotransmitter receptor agonists [carbachol, serotonin, noradrenaline, histamine, endothelin-1, and trans-(1S,3R)-aminocyclopentyl-1,3-dicarboxylic acid (trans-ACPD)], known as stimuli of phospholipase C in brain tissue, were tested for phospholipase D stimulation in [32P]Pi-prelabeled rat brain cortical and hippocampal slices. The accumulation of [32P]phosphatidylethanol was measured as an index of phospholipase D-catalyzed transphosphatidylation in the presence of ethanol. Among the six neurotransmitter receptor agonists tested, only noradrenaline, histamine, endothelin-1, and trans-ACPD stimulated phospholipase D in hippocampus and cortex, an effect that was strictly dependent of the presence of millimolar extracellular calcium concentrations. The effect of histamine (EC50 18 microM) was inhibited by the H1 receptor antagonist mepyramine with a Ki constant of 0.7 nM and was resistant to H2 and H3 receptor antagonists (ranitidine and tioperamide, respectively). Endothelin-1-stimulated phospholipase D (EC50 44 nM) was not blocked by BQ-123, a specific antagonist of the ETA receptor. Endothelin-3 and the specific ETB receptor agonist safarotoxin 6c were also able to stimulate phospholipase D with efficacies similar to that of endothelin-1, and EC50 values of 16 and 3 nM, respectively. These results show that histamine and endothelin-1 stimulate phospholipase D in rat brain through H1 and ETB receptors, respectively.

  12. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    Science.gov (United States)

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  13. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy.

    Science.gov (United States)

    Zhou, Zhike; Liu, Tingting; Sun, Xiaoyu; Mu, Xiaopeng; Zhu, Gang; Xiao, Ting; Zhao, Mei; Zhao, Chuansheng

    2017-03-30

    It has been showed that enriched environment (EE) enhances the hippocampal neurogenesis and improves the cognitive impairments, accompanied by the increased expressions of stromal cell-derived factor-1 (SDF-1) in adult rats of temporal lobe epilepsy (TLE). We examined whether the enhanced neurogenesis and improved cognitive functions induced by EE following seizures were mediated by SDF-1/CXCR4 pathway. Therefore, we investigated the effects of the EE combined with CXCR4 antagonist AMD3100 on neurogenesis, cognitive functions and the long-term seizure activity in the TLE model. Adult rats were randomly assigned as control rats, rats treated with EE, rats subjected to status epilepticus (SE), post-SE rats treated with EE, AMD3100 or EE combined with AMD3100 respectively. We used immunofluorescence staining to analyze the hippocampal neurogenesis and Nissl staining to evaluate hippocampal damage. Electroencephalography was used to measure the frequency and mean duration of spontaneous seizures. Cognitive function was evaluated by Morris water maze test. EE treatment significantly, as well as improved cognitive impairments and decreased long-term seizure activity, and that these effects might be mediated through SDF-1/CXCR4 pathway during the chronic stage of TLE. Although AMD3100 reversed the effect of EE on neurogenesis, it did not abolish the cognitive improvement induced by EE following seizures. More importantly, EE combined with AMD3100 treatment significantly suppressed long-term seizure activity, which provided promising evidences to treat TLE.

  14. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Cabell, L; Kern, M

    1997-09-20

    The control of branching of axons and dendrites is poorly understood. It has been hypothesized that branching may be produced by changes in the cytoskeleton [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419; P. Friedrich, A. Aszodi, MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture, FEBS Lett. 295 (1991) 5-9]. The assembly and stability of microtubules, which are prominent cytoskeletal elements in both axons and dendrites, are regulated by microtubule-associated proteins, including tau (predominantly found in axons) and MAP2 (predominantly found in dendrites). The phosphorylation state of tau and MAP2 modulates their interactions with microtubules. In their low-phosphorylation states, tau and MAP2 bind to microtubules and increase microtubule assembly and/or stability. Increased phosphorylation decreases these effects. Diez-Guerra and Avila [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419] found that protein phosphorylation correlates with neurite branching in cultured rat hippocampal neurons, and hypothesized that increased protein phosphorylation stimulates neurite branching. To test this hypothesis, we cultured rat hippocampal neurons in the presence of specific modulators of serine-threonine protein kinases and phosphatases. Inhibitors of several protein kinases, which would be expected to decrease protein phosphorylation, reduced branching. KT5720, an inhibitor of cyclic AMP-dependent protein kinase, and KN62, an inhibitor of Ca(2+)-calmodulin-dependent protein kinases, inhibited branching of both axons and dendrites. Calphostin C and chelerythrine, inhibitors of protein kinase C, inhibited branching of axons but not dendrites. Treatments that would be expected to increase protein phosphorylation, including inhibitors of protein

  15. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats.

    Science.gov (United States)

    Ju, Ling-sha; Jia, Min; Sun, Jie; Sun, Xiao-ru; Zhang, Hui; Ji, Mu-huo; Yang, Jian-jun; Wang, Zhong-yun

    2016-02-01

    General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.

  16. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    Science.gov (United States)

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.

  17. Full Length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Ward Manus W

    2007-02-01

    Full Text Available Abstract Background Bcl-2 homology domain (BH 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid, which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM. Results Western blot experiments confirmed a translocation of FL-Bid to the mitochondria during excitotoxic apoptosis that was associated with the release of cytochrome-C from mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation during excitotoxic cell death using an antibody raised against the amino acids 1–58 of mouse Bid that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures. Conclusion Our data suggest that translocation of FL-Bid is sufficient for the activation of mitochondrial cell death pathways in response to glutamate receptor overactivation.

  18. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures

    Science.gov (United States)

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2017-01-01

    Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h

  19. Intrinsic membrane properties determine hippocampal differential firing pattern in vivo in anesthetized rats.

    Science.gov (United States)

    Kowalski, Janina; Gan, Jian; Jonas, Peter; Pernía-Andrade, Alejandro J

    2016-05-01

    The hippocampus plays a key role in learning and memory. Previous studies suggested that the main types of principal neurons, dentate gyrus granule cells (GCs), CA3 pyramidal neurons, and CA1 pyramidal neurons, differ in their activity pattern, with sparse firing in GCs and more frequent firing in CA3 and CA1 pyramidal neurons. It has been assumed but never shown that such different activity may be caused by differential synaptic excitation. To test this hypothesis, we performed high-resolution whole-cell patch-clamp recordings in anesthetized rats in vivo. In contrast to previous in vitro data, both CA3 and CA1 pyramidal neurons fired action potentials spontaneously, with a frequency of ∼3-6 Hz, whereas GCs were silent. Furthermore, both CA3 and CA1 cells primarily fired in bursts. To determine the underlying mechanisms, we quantitatively assessed the frequency of spontaneous excitatory synaptic input, the passive membrane properties, and the active membrane characteristics. Surprisingly, GCs showed comparable synaptic excitation to CA3 and CA1 cells and the highest ratio of excitation versus hyperpolarizing inhibition. Thus, differential synaptic excitation is not responsible for differences in firing. Moreover, the three types of hippocampal neurons markedly differed in their passive properties. While GCs showed the most negative membrane potential, CA3 pyramidal neurons had the highest input resistance and the slowest membrane time constant. The three types of neurons also differed in the active membrane characteristics. GCs showed the highest action potential threshold, but displayed the largest gain of the input-output curves. In conclusion, our results reveal that differential firing of the three main types of hippocampal principal neurons in vivo is not primarily caused by differences in the characteristics of the synaptic input, but by the distinct properties of synaptic integration and input-output transformation.

  20. Synchrotron FTIR micro-spectroscopy study of the rat hippocampal formation after pilocarpine-evoked seizures.

    Science.gov (United States)

    Chwiej, J; Dulinska, J; Janeczko, K; Dumas, P; Eichert, D; Dudala, J; Setkowicz, Z

    2010-10-01

    In the present work, synchrotron radiation Fourier transform infrared (SRFTIR) micro-spectroscopy and imaging were used for topographic and semi-quantitative biochemical analysis of rat brain tissue in cases of pilocarpine-induced epilepsy. The tissue samples were analyzed with a beam defined by small apertures and spatial resolution steps of 10 microm which allowed us to probe the selected cellular layers of hippocampal formation. Raster scanning of the samples has generated 2D chemical cartographies revealing the distribution of proteins, lipids and nucleic acids. Spectral analysis has shown changes in the saturation level of phospholipids and relative secondary structure of proteins. Special interest was put in the analysis of two areas of the hippocampal formation (sector 3 of the Ammon's horn, CA3 and dentate gyrus, DG) in which elemental abnormalities were observed during our previous studies. Statistically significant increase in the saturation level of phospholipids (increased ratio of the absorption intensities at around 2921 and 2958 cm(-1)) as well as conformational changes of proteins (beta-type structure discrepancies as shown by the increased ratio of the absorbance intensities at around 1631 and 1657 cm(-1) as well as the ratio of the absorbance at 1548 and 1657 cm(-1)) were detected in pyramidal cells of CA3 area as well as in the multiform and molecular layers of DG. The findings presented here suggest that abnormalities in the protein secondary structure and increases in the level of phospholipid saturation could be involved in mechanisms of neurodegenerative changes following the oxidative stress evoked in brain areas affected by pilocarpine-induced seizures.

  1. Changes of evoked potential in different hippocampal regions induced by electrostimulation at medial mamillary nucleus of rats

    Institute of Scientific and Technical Information of China (English)

    Xinxin Li; Lihong Shang; Liang Zhang; Fengzhi Cui

    2006-01-01

    BACKGROUND: Morphological data have shown that the most important afferent fibers of papillary body come from hippocampal structure.OBJECTIVE: To observe the changes of evoked potential in hippocampus and the significance after electrostimulation at medial mamillary nucleus.DESIGN: An observational control experiment.SETTING: Department of Physiology, Shenyang Medical College.MATERIALS: Twenty-three male or female Wistar rats, 3-4 months old, weighing 270-350 g, were provided by bhe animal room of Shenyang Medical College [the license number was scxk(Liao)2003-0016].METHODS: The Wistar rats were anaesthetized by intraperintoneal injection of 20% urethane (1 g/kg), tracheal intubation was also given. The self-made double-pole metal stimulating electrode with the point diameter of 1 mm was inserted into medial mamillary nucleus, the wanted hippocampal guidance spot was found within the rang of the hippocampal region at the same side of tee mamillary body range (CA1-CA4),inserted with same-core guidance electrode, a sole square-wave stimulation of wave wide 0.2 ms stimulated with electrodes at the applied intensity of 7-9 V, the evoked potential was induced through guidance electrodes, and then input to the ATAC-350 data-processing machine for memory showing wave processing, the memory recorded wave recording graph was separately drawn up by the X-Y recording instrument to observe the latency, time procedure and amplitude of the evoked potential in each hippocampal region of the rats and calculate the percentage of the evoked potential in each hippocampal region, Totally 78 guidance spots in hippocampus were recorded, including 30 positive reaction spots and 48 negative ones.MAIN OUTCOME MEASURES:① Latency,time procedure and amplitude of the evoked potentials in each hippocampal region of rats;② percentage of the evoked potentials in each hippocampal region;③ the wave shapes of the evoked potentials in each hippocampal region from different arrangement in the

  2. Administration of copper reduced the hyper-excitability of neurons in CA1 hippocampal slices from epileptic rats.

    Science.gov (United States)

    Leiva, Juan; Infante, Claudio

    2016-04-01

    Copper as a trace metal is involved in several neurodegenerative illnesses, such as Menkes, Wilson's, Alzheimer's, amyotrophic lateral sclerosis (ALS), and Creutzfeldt-Jakob. Electrophysiological evidence indicates that acute perfusion of copper can inhibit long-term synaptic potentiation in hippocampal slices. The objective of this work is to determine whether Cu perfusion can perturb synaptic transmission in hippocampal slices derived from pilocarpine treated epileptic rats. Field potential (FP) recordings of the CA1 neurons of rats with chronic epilepsy showed voltage and response duration decrease following copper sulfate perfusion. However, voltage and response duration were higher after removing copper by washing. The discharge frequency of the CA1 neurons of hippocampal slices from non-epileptic control rats was increased after acute perfusion of 10 μM of pilocarpine. This increase was blocked by administering copper sulphate 10 μM. Krebs-Ringer solution washing re-established the discharges, with a higher frequency than that provoked by pilocarpine perfusion. We discuss the blocking effect of copper and the synaptic hyper-excitability generated by its removal.

  3. Ethanol impairs muscarinic receptor-induced neuritogenesis in rat hippocampal slices: Role of astrocytes and extracellular matrix proteins.

    Science.gov (United States)

    Giordano, Gennaro; Guizzetti, Marina; Dao, Khoi; Mattison, Hayley A; Costa, Lucio G

    2011-12-01

    In an in vitro co-culture system of astrocytes and neurons, stimulation of cholinergic muscarinic receptors in astrocytes had been shown to cause neuritogenesis in hippocampal neurons, and this effect was inhibited by ethanol. The present study sought to confirm these earlier findings in a more complex system, in vitro rat hippocampal slices in culture. Exposure of hippocampal slices to the cholinergic agonist carbachol (1mM for 24h) induced neurite outgrowth in hippocampal pyramidal neurons, which was mediated by activation of muscarinic M3 receptors. Specifically, carbachol induced a >4-fold increase in the length of the longest neurite, and a 4-fold increase in the length of minor neurites and in the number of branches. Co-incubation of carbachol with ethanol (50mM) resulted in significant inhibition of the effects induced by carbachol on all parameters measured. Neurite outgrowth in CNS neurons is dependent on various permissive factors that are produced and released by glial cells. In hippocampal slices carbachol increased the levels of two extracellular matrix protein, fibronectin and laminin-1, by 1.6-fold, as measured by Western blot. Co-incubation of carbachol with ethanol significantly inhibited these increases. Carbachol-induced increases in levels of extracellular matrix proteins were antagonized by a M3 muscarinic receptor antagonist. Furthermore, function-blocking fibronectin or laminin-1 antibodies antagonized the effect of carbachol on neurite outgrowth. These results indicate that in hippocampal slices stimulation of muscarinic M3 receptors induces neurite outgrowth, which is mediated by fibronectin and laminin-1, two extracellular matrix proteins released by astrocytes. By decreasing fibronectin and laminin levels ethanol prevents carbachol-induced neuritogenesis. These findings highlight the importance of glial-neuronal interactions as important targets in the developmental neurotoxicity of alcohol.

  4. Impairment in Spatial Memory in adult Rats following developmental Low Lead Exposure

    Directory of Open Access Journals (Sweden)

    Rajashekar Rao Barkur

    2012-11-01

    Full Text Available The present study was aimed to investigate the effect of environmentally relevant levels of lead exposure during gestational and early postnatal period on hippocampal dependent spatial memory in rats during adulthood. The pregnant rats were allowed to drink either normal water (control group or 0.2% lead acetate solution (Leadtreated group during pregnancy and lactation. Thus rats pups of lead treated group where exposed to lead indirectly through their mothers during this period. At weaning pups of lead treated group were allowed to drink normal water till they attain the adult hood. Blood lead level was estimated on postnatal day 22 and 120. Birth weight and weight gain of the rat pups as they grew were measured at regular intervals. Both the control and lead treated groups of rats were subjected to water maze test on postnatal day 30 and 120. Results showed that lead treatment had no effect on birth weight or weight gain. Blood lead level on postnatal day 22 was significantly high in treated group compared to the control group and it was normalized by end of four months. The rats born to lead treated mothers showed impaired in spatial memory during water maze test both on postnatal day 36 and 126. These data suggests that exposure to environmentally relevant levels of lead during intrauterine and early postnatal period of brain development causes impairment in spatial memory not only during infancy but also lasts till adulthood.

  5. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Sang Gun Lee; In Koo Hwang; Seung Myung Moon; Dae Young Yoo; Hyo Young Jung; Sung Min Nam; Jong Whi Kim; Jung Hoon Choi; Sun Shin Yi; Moo-Ho Won; Yeo Sung Yoon

    2015-01-01

    In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi-dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg) was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental pa-rameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels signiifcantly increased by 20.7–21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons signiifcantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modiifed by oxidative stress, signiifcantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  6. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  7. Altered synaptic properties during integration of adult-born hippocampal neurons following a seizure insult.

    Directory of Open Access Journals (Sweden)

    Johanna Jackson

    Full Text Available Pathological conditions affect several stages of neurogenesis in the adult brain, including proliferation, survival, cell fate, migration, and functional integration. Here we explored how a pathological environment modulates the heterogeneous afferent synaptic input that shapes the functional properties of newly formed neurons. We analyzed the expression of adhesion molecules and other synaptic proteins on adult-born hippocampal neurons formed after electrically-induced partial status epilepticus (pSE. New cells were labeled with a GFP-retroviral vector one week after pSE. One and three weeks thereafter, synaptic proteins were present on dendritic spines and shafts, but without differences between pSE and control group. In contrast, at six weeks, we found fewer dendritic spines and decreased expression of the scaffolding protein PSD-95 on spines, without changes in expression of the adhesion molecules N-cadherin or neuroligin-1, primarily located at excitatory synapses. Moreover, we detected an increased expression of the inhibitory scaffolding protein gephyrin in newborn but not mature neurons after SE. However, this increase was not accompanied by a difference in GABA expression, and there was even a region-specific decrease in the adhesion molecule neuroligin-2 expression, both in newborn and mature neurons. Neuroligin-2 clusters co-localized with presynaptic cholecystokinin terminals, which were also reduced. The expression of neuroligin-4 and glycine receptor was unchanged. Increased postsynaptic clustering of gephyrin, without an accompanying increase in GABAergic input or neuroligin-2 and -4 expression, the latter important for clustering of GABA(A and glycine receptors, respectively, could imply an increased but altered inhibitory connectivity specific for newborn neurons. The changes were transient and expression of both gephyrin and NL-2 was normalized 3 months post-SE. Our findings indicate that seizure-induced brain pathology alters

  8. 4- to 6-week-old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning.

    Science.gov (United States)

    Denny, Christine A; Burghardt, Nesha S; Schachter, Daniel M; Hen, René; Drew, Michael R

    2012-05-01

    To explore the role of adult hippocampal neurogenesis in novelty processing, we assessed novel object recognition (NOR) in mice after neurogenesis was arrested using focal x-irradiation of the hippocampus, or a reversible, genetic method in which glial fibrillary acidic protein-positive neural progenitor cells are ablated with ganciclovir. Arresting neurogenesis did not alter general activity or object investigation during four exposures with two constant objects. However, when a novel object replaced a constant object, mice with neurogenesis arrested by either ablation method showed increased exploration of the novel object when compared with control mice. The increased novel object exploration did not manifest until 4-6 weeks after x-irradiation or 6 weeks following a genetic ablation, indicating that exploration of the novel object is increased specifically by the elimination of 4- to 6-week-old adult born neurons. The increased novel object exploration was also observed in older mice, which exhibited a marked reduction in neurogenesis relative to young mice. Mice with neurogenesis arrested by either ablation method were also impaired in one-trial contextual fear conditioning (CFC) at 6 weeks but not at 4 weeks following ablation, further supporting the idea that 4- to 6-week-old adult born neurons are necessary for specific forms of hippocampal-dependent learning, and suggesting that the NOR and CFC effects have a common underlying mechanism. These data suggest that the transient enhancement of plasticity observed in young adult-born neurons contributes to cognitive functions.

  9. Hippocampal and Cerebellar Single-Unit Activity During Delay and Trace Eyeblink Conditioning in the Rat

    Science.gov (United States)

    Green, John T.; Arenos, Jeremy D.

    2007-01-01

    In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the

  10. Point application withAngong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Dong-shu Zhang; Yuan-liang Liu; Dao-qi Zhu; Xiao-jing Huang; Chao-hua Luo

    2015-01-01

    Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we used transdermal enhancers to deliverAngong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg) were administered to theDazhui (DU14), Qihai(RN6) andMingmen (DU4) of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application ofAngong Niuhuangstickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efifcacy similar to interventions by electroacupuncture at Dazhui (DU14),Qihai (RN6) andMingmen (DU4). Our experimental ifndings indicate that point application withAngong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efifcacy to acupuncture.

  11. Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise.

    Science.gov (United States)

    Shafiee, Seyed Morteza; Vafaei, Abbas Ali; Rashidy-Pour, Ali

    2016-08-01

    Hypothyroidism during early development leads to numerous morphological, biochemical and functional changes in developing brain. In this study, we investigated the effects of voluntary and treadmill exercise on learning, memory and hippocampal BDNF levels in both hypothyroid male and female rat pups. To induce hypothyroidism in the mothers, 6-propyl-2-thiouracil (PTU) was added to their drinking water (100mg/L) from their embryonic day 6 to their postnatal day (PND) 21. For 14days, from PNDs 31 to 44, the rat pups were trained with one of the two different exercise protocols, namely the mild treadmill exercise and the voluntary wheel exercise. On PNDs 45-52, a water maze was used for testing their learning and memory ability. The rats were sacrificed one day later and their BDNF levels were then measured in the hippocampus. The findings of the present study indicate that hypothyroidism during the fetal period and the early postnatal period is associated with the impairment of spatial learning and memory and reduced hippocampal BDNF levels in both male and female rat offspring. Both the short-term treadmill exercise and the voluntary wheel exercise performed during the postnatal period reverse the behavioral and neurochemical deficits induced by developmental thyroid hormone insufficiency in both male and female rat offspring. The findings of this study thus demonstrate a marked reversibility of both behavioral and neurochemical disorders induced by developmental thyroid hormone insufficiency through the performance of exercise.

  12. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study.

    Science.gov (United States)

    Akane, Hirotoshi; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Abe, Hajime; Shibutani, Makoto

    2014-01-30

    Developmental exposure to glycidol induces aberrations of late-stage neurogenesis in the hippocampal dentate gyrus of rat offspring, whereas maternal animals develop axonopathy. To investigate the possibility whether similar effects on adult neurogenesis could be induced by exposure in a framework of 28-day toxicity study, glycidol was orally administered to 5-week-old male Sprague-Dawley rats by gavage at 0, 30 or 200 mg/kg for 28 days. At 200 mg/kg, animals revealed progressively worsening gait abnormalities as well as histopathological and immunohistochemical changes suggestive of axonal injury as evidenced by generation of neurofilament-L(+) spheroids in the cerebellar granule layer and dorsal funiculus of the medulla oblongata, central chromatolysis in the trigeminal nerve ganglion cells and axonal degeneration in the sciatic nerves. At the same dose, animals revealed aberrations in neurogenesis at late-stage differentiation as evidenced by decreases of both doublecortin(+) and dihydropyrimidinase-like 3(+) cells in the subgranular zone (SGZ) and increased reelin(+) or calbindin-2(+) γ-aminobutyric acid-ergic interneurons and neuron-specific nuclear protein(+) mature neurons in the dentate hilus. These effects were essentially similar to that observed in offspring after maternal exposure to glycidol. These results suggest that glycidol causes aberrations in adult neurogenesis in the SGZ at the late stage involving the process of neurite extension similar to the developmental exposure study in a standard 28-day toxicity study.

  13. Structural and functional abnormalities of the hippocampal formation in rats with environmentally induced reductions in prepulse inhibition of acoustic startle.

    Science.gov (United States)

    Greene, J R; Kerkhoff, J E; Guiver, L; Totterdell, S

    2001-01-01

    The effects of social isolation on prepulse inhibition of acoustic startle (PPI), electrophysiology and morphology of subicular pyramidal neurons and the densities of interneuronal sub-types in the hippocampal formation were examined. Wistar rats (male weanlings) were housed socially (socials, n=8) or individually (isolates, n=7). When tested eight weeks later, PPI was lower in isolates. Rats then received terminal anaesthesia before slices of hippocampal formation were made in which the electrophysiological properties of a total of 108 subicular neurons were characterized. There were no differences in neuronal sub-types recorded in socials compared with isolates. Intrinsically burst-firing and regular spiking pyramidal neurons were examined in detail. There were no differences in resting membrane potential or input resistance in isolates compared with socials but action potential height was reduced and action potential threshold raised in isolates. A limited morphological examination of Neurobiotin-filled intrinsically burst-firing neurons did not reveal differences in cell-body area or in number of primary dendrites. Sections from the contralateral hemispheres of the same rats were stained with antibodies to calretinin, parvalbumin and the neuronal isoform of nitric oxide synthase (nNOS). In isolates, the density of calretinin positive neurons was increased in the dentate gyrus but unchanged in areas CA3, CA1 and subiculum. Parvalbumin and nNOS positive neuronal densities were unchanged. Hence in rats with environmentally induced reductions in PPI there are structural and functional abnormalities in the hippocampal formation. If the reduction in PPI stems from these abnormalities, and reduced PPI in rats is relevant to schizophrenia, then drugs that correct the reported electrophysiological changes might have antipsychotic effects.

  14. Effects of Regular Treadmill Exercise on a DNA Oxidative-Damage Marker and Total Antioxidant Capacity in Rat Hippocampal Tissue

    Science.gov (United States)

    Mahjoub, Soleiman; Ghadi, Arezoo; Pourbagher, Roghayeh; Hajian-Tilaki, Karimollah

    2016-01-01

    Background and Purpose Regular exercise can result in changes in the levels of oxidative stress in the hippocampus; however, little attention has been paid to physical-activity-induced neuronal protection to exposure to lead compounds. This study investigated the effects of regular treadmill exercise on a DNA oxidative-damage marker [8-hydroxy-2'-deoxyguanosine (8-OHdG)] and the total antioxidant capacity (TAC) of hippocampal tissue in lead-acetate exposed rats. Methods This study investigated the effects of 8 weeks of regular treadmill exercise on 8-OHdG and the TAC of hippocampal tissue in lead-acetate-exposed rats. Wistar rats were randomly divided into four groups: baseline, sham (control), lead, and exercise+lead. The exercise program involved running on a treadmill with increasing intensity five times a week for 8 weeks. Animals in the lead and exercise+lead groups received lead acetate at 20 mg/kg body weight intraperitoneally three times weekly for 8 weeks. Animals in the sham group received solvent (ethyl oleate) at 30 mg/kg body weight three times weekly for 8 weeks. TAC and 8-OHdG were measured by spectrophotometric and ELISA techniques, respectively. Data were analyzed by ANOVA and Tukey's post-hoc test with a significance cutoff of p≤0.05. Results The level of 8-OHdG and the TAC were significantly higher and lower, respectively, in the lead group than in the baseline and sham groups (p<0.01). However, the 8-OHdG level and TAC value in hippocampal tissue were significantly decreased and increased, respectively, in the exercise+lead group relative to the lead group (p<0.05). Conclusions The TAC of hippocampal tissue may be directly associated with neural protection mechanisms of exercise following lead acetate injection, and the beneficial effects of regular exercise in preventing hippocampal neuronal damage could be due to decreased hippocampal oxidative stress such as reflected by a lower 8-OHdG level and increased TAC.

  15. Influence of Ginkgo Biloba extract on beta-secretase in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions

    Institute of Scientific and Technical Information of China (English)

    Xueneng Guan; Fuling Yan

    2008-01-01

    BACKGROUND: Preparation of Ginkgo leaf has been widely used to improve cognitive deficits and dementia, in particular in Alzheimer's disease patients. However, the precise mechanism of action of Ginkgo leaf remains unclear.OBJECTIVE: To explore the effect of Ginkgo Biloba extract (Egb761), Ginaton, on β-secretase expression in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions.DESIGN, TIME AND SETTNG: Completely by randomized, grouping study. The experiment was performed at the Laboratory of Molecular Imaging, Southeast University between August 2006 and August 2007.MATERIALS: A total of 128 Wistar rats aged 24 hours were selected, and hippocampal neurons were harvested for primary cultures.METHODS: On day 7, primary hippocampal neuronal cultures were treated with Egb761 (0, 25, 50, 100, 150, and 200 μ g/mL) under hypoxic/hypoglycemic or hypoglycemic culture conditions for 12, 24, and 36 hours, respectively. Hippocampal neurons cultured in primary culture medium served as control.MAIN OUTCOME MEASURES: Cell viability was assayed using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); fluorescence detection of β-secretase activity was performed; Western Blot was used to measure β -secretase expression.RESULTS: Cell viability under hypoxic/hypoglycemic or hypoglycemic culture conditions was significantly less than control cells (P 25 μ g/mL Egb761 induced greater cell viability (P 0.05). Α -secretase activity was increased after 12 hours in hypoxic/hypoglycemic culture (P 0.05). Β -secretase activity was greater after 12, 24, and 36 hours in hypoxic/hypoglycemic culture conditions, compared with control conditions (P < 0.05). Β-secretase activity was significantly decreased in neurons treated with Egb761 for 12, 24, or 36 hours, compared with the hypoxic/hypoglycemic group (P < 0.05).β-secretase protein expression was significantly up-regulated in neurons cultured in hypoxic/hypoglycemic conditions for

  16. Intracerebroventricular application of competitive and non-competitive NMDA antagonists induce similar effects upon rat hippocampal electroencephalogram and local cerebral glucose utilization

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Wiederhold, K.H.; Palacios, J.M.

    1992-01-01

    In this study we have used electrophysiological and metabolic markers to investigate the effects of competitive and non-competitive NMDA antagonists in rats after central or peripheral administration. The non-competitive antagonist, MK-801, induced dose-dependent suppression of rat hippocampal EEG e

  17. INTRACEREBROVENTRICULAR APPLICATION OF COMPETITIVE AND NONCOMPETITIVE NMDA ANTAGONISTS INDUCE SIMILAR EFFECTS UPON RAT HIPPOCAMPAL ELECTROENCEPHALOGRAM AND LOCAL CEREBRAL GLUCOSE-UTILIZATION

    NARCIS (Netherlands)

    BODDEKE, HWGM; WIEDERHOLD, KH; PALACIOS, JM

    1992-01-01

    In this study we have used electrophysiological and metabolic markers to investigate the effects of competitive and non-competitive NMDA antagonists in rats after central or peripheral administration. The non-competitive antagonist, MK-801, induced dose-dependent suppression of rat hippocampal EEG e

  18. Effects of Jiawei Wendan decoction on hippocampal p-CREB protein expression in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Liping Zhang; Meng Xia; Li Wu; Boli Zhang

    2008-01-01

    BACKGROUND: Jiawei Wendan decoction can elevate hippocampal brain-derived neurotrophic factor (BDNF) protein expression in rats with depression. It has been hypothesized that Jiawei Wendan decoction can exhibit antidepressant effects through the hippocampal signal transduction pathway of cyclic adenosine monophosphate response element binding protein (CREB)-BDNF. OBJECTIVE: Using phosphorylated-CREB (p-CREB) as an entry point, the present study was designed to observe intervention eftects ofJiawei Wendan decoction compared with fluoxetine. DESIGN, TIME AND SETTING: A randomized, controlled, cellular biology experiment was performed at the Central Laboratory of Guangxi University of Traditional Chinese Medicine. MATERIALS: A total of 40 healthy, male, Sprague-Dawley rats were included in the present study. Rhizoma Acori Talarinowii (Shichangpu), Flos Albiziae (Hehuanhua), Rhizoma Pinelliae (Banxia), Caulis Bambusae in Taeniam (Zhuru), Fructus Aurantii Immaturus (Zhishi), Poria (Fuling), and Radix Bupleuri (Chaihu), the primary ingredients ofJiawei Wendan decoction, were purchased from First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine. The raw drug was decocted at a concentration of 1.5 g/mL. Fluoxetine capsules were purchased from Shanghai Zhongxi Pharmaceutical Co., Ltd., China. METHODS: Following behavioral testing, 36 rats were selected from the initial 40 rats according to similar behavioral scores, and were randomly divided into 4 groups: model (n = 8), Jiawei Wendan decoction-treated (n = 10), fluoxetine-treated (n = 10), and normal control (n = 8). All rats, except for those in the normal control group, were separately raised in a chronic and unpredictable, mild-stimulation environment for 21 days to establish a depression model. The Jiawei Wendan decoction-treated and fluoxetine-treated groups were intragastrically administered Jiawei Wendan decoction ( 12 g/kg/d) and fluoxetine ( 1.8 mg/kg/d), respectively. The model and normal

  19. Inhibitory effects of jujuboside A on EEG and hippocampal glutamate in hyperactive rat

    Institute of Scientific and Technical Information of China (English)

    LU Ying-jun; ZHOU Jun; ZHANG Shao-min; ZHANG Heng-yi; ZHENG Xiao-xiang

    2005-01-01

    In this study, the inhibitory effect ofjujuboside A (JuA) on a penicillin sodium (Na-PCN) induced hyperactivity model was investigated. Cortical EEG (electroencephalogram) and the concentration of hippocampal Glutamate (Glu) were monitored simultaneously in vivo as indicators of rat's excitatory state. Power spectral density (PSD) and gravity frequency of PSD were calculated. JuA (0.05 g/L and 0.1 g/L) inhibited the EEG excitation effect caused by Na-PCN by increasing the power of δ1 and δ2bands (P<0.01 vs model) and lowering the gravity frequency of PSD (P<0.01 vs model). JuA also remarkably reduced the Glu elevation induced by Na-PCN (P<0.05 vs model). Diazepam also depressed Glu concentration and lowered the gravity frequency,but it showed a different EEG pattern in increased β2-activity (P<0.01 vs model). EEG excitation caused by Na-PCN correlated with Glu elevation during the first hour. Neurophysiological inhibitory effects of JuA and diazepam were more persistent than their Glu inhibitoty effects.

  20. Salvianolic Acids Attenuate Rat Hippocampal Injury after Acute CO Poisoning by Improving Blood Flow Properties

    Directory of Open Access Journals (Sweden)

    Li Guan

    2015-01-01

    Full Text Available Carbon monoxide (CO poisoning causes the major injury and death due to poisoning worldwide. The most severe damage via CO poisoning is brain injury and mortality. Delayed encephalopathy after acute CO poisoning (DEACMP occurs in forty percent of the survivors of acute CO exposure. But the pathological cause for DEACMP is not well understood. And the corresponding therapy is not well developed. In order to investigate the effects of salvianolic acid (SA on brain injury caused by CO exposure from the view point of hemorheology, we employed a rat model and studied the dynamic of blood changes in the hemorheological and coagulative properties over acute CO exposure. Compared with the groups of CO and 20% mannitol + CO treatments, the severe hippocampal injury caused by acute CO exposure was prevented by SA treatment. These protective effects were associated with the retaining level of hematocrit (Hct, plasma viscosity, fibrinogen, whole blood viscosities and malondialdehyde (MDA levels in red blood cells (RBCs. These results indicated that SA treatment could significantly improve the deformation of erythrocytes and prevent the damage caused by CO poisoning. Meanwhile, hemorheological indexes are good indicators for monitoring the pathological dynamic after acute CO poisoning.

  1. Nanoparticle Targeting to Neurons in a Rat Hippocampal Slice Culture Model

    Directory of Open Access Journals (Sweden)

    Ryan Walters

    2012-09-01

    Full Text Available We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots coated with PEG [poly(ethylene glycol]-appended DHLA (dihydrolipoic acid can bind AcWG(PalVKIKKP9GGH6 (Palm1 through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry, demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.

  2. Nanoparticle targeting to neurons in a rat hippocampal slice culture model

    Directory of Open Access Journals (Sweden)

    Richard P Kraig

    2012-10-01

    Full Text Available We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots coated with PEG [poly(ethylene glycol]-appended DHLA (dihydrolipoic acid can bind AcWG(PalVKIKKP9GGH6 (Palm1 through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry, demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.

  3. Effect of Propofol on Glutamate and γ-aminobutyric Acid Release from Rat Hippocampal Synaptosomes

    Institute of Scientific and Technical Information of China (English)

    SHANG You; YAO Shanglong; ZENG Yinming; LIU Hongliang; CAO Junli

    2005-01-01

    To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca2+were added from aCSF. The release of glutamate and GABA were evoked by 20μmol/L veratridine or 30 mmol/L KCl. The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 and 300 μmol/L propofol significantly inhibited veratridine-evoked Ca2+-dependent release of glutamate and GABA (P<0.01 or P<0.05). However, propofol showed no effect on elevated KCl-evoked Ca2+-dependent release of glutamate and GABA (P>0.05). Veratridine or elevated KCl evoked Ca2+ -independent release of glutamate and GABA was not affected significantly by propofol (P>0.05). Propofol could inhibit Ca2+-dependent release of glutamate and GABA. However, it has no effect on the Ca2+-independent release ofglutamate and GABA.

  4. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  5. Complement C1q expression induced by Abeta in rat hippocampal organotypic slice cultures.

    Science.gov (United States)

    Fan, Rong; Tenner, Andrea J

    2004-02-01

    Amyloid beta peptide (Abeta) is a major component of senile plaques, one of the principle pathological features in Alzheimer's disease (AD) brains. Fibrillar Abeta has been shown to bind C1 via C1q, the recognition component of the classical complement pathway, resulting in the activation of the complement pathway, thereby initiating an inflammatory cascade in the brain. C1q has also been shown to enhance phagocytic activities of microglia, which could benefit in clearance of apoptotic cells or cellular debris. To begin to define the role of C1q in tissue injury mediated by Abeta, we assessed the appearance of C1q in hippocampal slice cultures treated with freshly solubilized or fibrillar Abeta 1-42. Here we demonstrate a dose- and time-dependent uptake of exogenously applied Abeta by pyramidal neurons in organotypic slice cultures from rat hippocampus. Importantly, when slices were immunostained with antibody against rat C1q, a distinct reactivity for C1q in cells within the neuronal cell layer of cornu ammonis (CA) of hippocampus, primarily the CA1/CA2, was observed in the Abeta-treated slices. No such immunoreactivity was detected in untreated cultures or upon addition of control peptides. ELISA assays also showed an increase in C1q in tissue extracts from slices of the treated group. Similarly, the mRNA level of C1q in slices was increased within 24 h after Abeta treatment. These data demonstrate that upon exposure to Abeta, C1q is expressed in neurons in this organotypic system. The induction of C1q may be an early, perhaps beneficial, tissue or cellular response to injury triggered by particular pathogenic stimuli.

  6. Proteomic analysis of hippocampal proteins of F344 rats exposed to 1-bromopropane.

    Science.gov (United States)

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Takahashi, Masahide; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik; Wang, Yun; Ichihara, Gaku

    2011-11-15

    1-Bromopropane (1-BP) is a compound used as an alternative to ozone-depleting solvents and is neurotoxic both in experimental animals and human. However, the molecular mechanisms of the neurotoxic effects of 1-BP are not well known. To identify the molecular mechanisms of 1-BP-induced neurotoxicity, we analyzed quantitatively changes in protein expression in the hippocampus of rats exposed to 1-BP. Male F344 rats were exposed to 1-BP at 0, 400, or 1000 ppm for 8h/day for 1 or 4 weeks by inhalation. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) were conducted to detect and identify protein modification. Changes in selected proteins were further confirmed by western blot. 2D-DIGE identified 26 proteins with consistently altered model (increase or decrease after both 1- and 4-week 1-BP exposures) and significant changes in their levels (p<0.05; fold change ≥ ± 1.2) at least at one exposure level or more compared with the corresponding controls. Of these proteins, 19 were identified by MALDI-TOF-TOF/MS. Linear regression analysis of 1-BP exposure level identified 8 differentially expressed proteins altered in a dose-dependent manner both in 1- and 4-week exposure experiments. The identified proteins could be categorized into diverse functional classes such as nucleocytoplasmic transport, immunity and defense, energy metabolism, ubiquitination-proteasome pathway, neurotransmitter and purine metabolism. Overall, the results suggest that 1-BP-induced hippocampal damage involves oxidative stress, loss of ATP production, neurotransmitter dysfunction and inhibition of ubiquitination-proteasome system.

  7. Differences in antiepileptic drug efficacy in hippocampally kindled normal and microcephalic rats.

    Science.gov (United States)

    Majkowski, J; Danneberg, P; Knappen, F; Sersen, E A

    1986-10-29

    The difference in antiepileptic drug efficacy was investigated in two groups of animals: 5 normal and 4 microcephalic rats. The latter were produced by a single i.p. injection of 30 mg/kg methylazoxymethanol acetate in the mother on the 15th day of gestation. Hippocampal kindling was performed to a seizure criterion in all animals followed by testing of the antiepileptic drugs vs placebo. Besides carbamazepine (CBZ), two new anticonvulsants were tested: (E)-2-[(alpha-amino)phenylmethylene]-benzo-[b]-thiophene-3(2H)-one (AF-CX 921) and its metabolite (E)-2-[alpha-amino)phenylmethylene]-benzo-[b]-thiophene-3(2H)-one- 1- oxide (AF-CX 1325). Frequency of occurrence and duration of afterdischarges and seizures were statistically examined. The duration of early afterdischarges (AD1) tended to be shorter in microcephalic than in normal animals in control and placebo periods. In contrast, during treatment with the antiepileptic drugs, AD1 durations were longer in microcephalic than in normal animals. This suggests that the drugs inhibited AD1 to a lesser extent in the microcephalics. Two other characteristics of EEG epileptic activity, focal spiking (FS) and late afterdischarges (AD2) also varied in the two groups. Both were significantly lower in occurrence in the microcephalic rats independent of treatment. Three types of behavioral manifestations were also examined: convulsive seizures (CS), epileptic behavior (EB) and quiet states (Q). The two groups of animals responded differently to the drugs with respect to Q and CS. In the microcephalics, AFCX 1325 and AFCX 921 were superior to CBZ, which in turn, was superior to placebo.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche.

    Science.gov (United States)

    Mohammad, H; Marchisella, F; Ortega-Martinez, S; Hollos, P; Eerola, K; Komulainen, E; Kulesskaya, N; Freemantle, E; Fagerholm, V; Savontous, E; Rauvala, H; Peterson, B D; van Praag, H; Coffey, E T

    2016-11-15

    Promoting adult hippocampal neurogenesis is expected to induce neuroplastic changes that improve mood and alleviate anxiety. However, the underlying mechanisms remain largely unknown and the hypothesis itself is controversial. Here we show that mice lacking Jnk1, or c-Jun N-terminal kinase (JNK) inhibitor-treated mice, display increased neurogenesis in adult hippocampus characterized by enhanced cell proliferation and survival, and increased maturation in the ventral region. Correspondingly, anxiety behaviour is reduced in a battery of tests, except when neurogenesis is prevented by AraC treatment. Using engineered retroviruses, we show that exclusive inhibition of JNK in adult-born granule cells alleviates anxiety and reduces depressive-like behaviour. These data validate the neurogenesis hypothesis of anxiety. Moreover, they establish a causal role for JNK in the hippocampal neurogenic niche and anxiety behaviour, and advocate targeting of JNK as an avenue for novel therapies against affective disorders.Molecular Psychiatry advance online publication, 15 November 2016; doi:10.1038/mp.2016.203.

  9. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    Science.gov (United States)

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease.

  10. Developmental increase in ecto-5'-nucleotidase activity overlaps with appearance of two immunologically distinct enzyme isoforms in rat hippocampal synaptic plasma membranes.

    Science.gov (United States)

    Grkovic, Ivana; Bjelobaba, Ivana; Nedeljkovic, Nadezda; Mitrovic, Natasa; Drakulic, Dunja; Stanojlovic, Milos; Horvat, Anica

    2014-09-01

    Ecto-5'-nucleotidase (e-5NT), a glycosylphosphatidylinositol-linked membrane protein, catalyzes a conversion of AMP to adenosine, which influences nearly every aspect of brain physiology, including embryonic and postnatal brain development. The present study aimed to investigate a pattern of expression, activity and kinetic properties of e-5NT in the hippocampal formation and synaptic plasma membrane (SPM) preparations in rats at postnatal days (PDs) 7, 15, 20, 30 and 90. By combining gene expression analysis and enzyme histochemistry, we observed that e-5NT mRNA reached the adult level at PD20, while the enzyme activity continued to increase beyond this age. Further analysis revealed that hippocampal layers rich in synapses expressed the highest levels of e-5NT activity, while in layers populated with neuronal cell bodies, the enzyme activity was weak or absent. Therefore, activity and expression of e-5NT were analyzed in SPM preparations isolated from rats at different ages. The presence of two protein bands of about 65 and 68 kDa was determined by immunoblot analysis. The 65-kDa band was present at all ages, and its abundance increased from PD7 to PD20. The 68-kDa band appeared at PD15 and increased until PD30, coinciding with the increase of e-5NT activity, substrate affinity and enzymatic efficiency. Since distinct e-5NT isoforms may derive from different patterns of the enzyme protein N-glycosylation, we speculate that long-term regulation of e-5NT activity in adulthood may be effectuated at posttranslational level and without overall change in the gene and protein expression.

  11. Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus.

    Science.gov (United States)

    Tabatadze, Nino; Smejkalova, Tereza; Woolley, Catherine S

    2013-02-01

    Acute 17β-estradiol (E2) signaling in the brain is mediated by extranuclear estrogen receptors. Here we used biochemical methods to investigate the distribution, posttranslational modification, and E2 regulation of estrogen receptor-α (ERα) in synaptosomal fractions isolated by differential centrifugation from the adult female rat hippocampus. We find that ERα is concentrated presynaptically and is highly enriched with synaptic vesicles. Immunoisolation of vesicles using vesicle subtype-specific markers showed that ERα is associated with both glutamate and γ-aminobutyric acid-containing neurotransmitter vesicles as well as with some large dense core vesicles. Experiments using broad spectrum and residue-specific phosphatases indicated that a portion of ERα in synaptosomal fractions is phosphorylated at serine/threonine residues leading to a mobility shift in SDS-PAGE and creating a double band on Western blots. The phosphorylated form of ERα runs in the upper of the two bands and is particularly concentrated with synaptic vesicles. Finally, we used E2 with or without the acyl protein thioesterase 1 inhibitor, Palmostatin B, to show that 20 min of E2 treatment of hippocampal slices depletes ERα from the synaptosomal membrane by depalmitoylation. We found no evidence that E2 regulates phosphorylation of synaptosomal ERα on this time scale. These studies begin to fill the gap between detailed molecular characterization of extranuclear ERα in previous in vitro studies and acute E2 modulation of hippocampal synapses in the adult brain.

  12. Dual effect of DMPP on the resting release of noradrenaline from rat hippocampal slices.

    Science.gov (United States)

    Kiss, J P; Windisch, K; Balla, A; Sershen, H; Lajtha, A

    1997-01-01

    The effect of the nicotinic receptor agonist dimethylphenylpiperazinium iodide (DMPP) on the resting release of [3H]noradrenaline from superfused hippocampal slices was studied in rat. Continuous administration of DMPP at a concentration range of 1-100 microM increased the [3H]noradrenaline release in a dose-dependent manner. The response to DMPP was characterized by an immediate steep increase (peak response) followed by a sudden decline to a lower level that was constant with time (tall response) and still was significantly higher than the spontaneous release. Further analysis revealed that the release of noradrenaline in response to DMPP consists of two components. While nicotinic receptor antagonists (mecamylamine 10 microM, pancuronium 10 microM, pipecuronium 10 microM), the nonselective Ca-antagonist Cd2+ (125 microM) and tetrodotoxin (TTX, 1 microM) completely abolished the peak response (phase I), they had no effect on the tall response (phase II). Ca(2+)-free medium containing 1 mM EGTA also blocked phase I but in contrast with other drugs enhanced phase II. The release during phase I is subject to presynaptic feedback modulation, since the alpha 2-adrenoceptor agonist xylazine (3 microM) inhibited the DMPP-evoked stimulation of [3H]noradrenaline release, that inhibition was antagonized by a selective alpha 2-adrenoceptor antagonist, (+/-)-[7,8-(methylenedioxy)-14-alpha-hydroxyalloberbane hydrochloride [(+/-)-CH-38083] (2 microM). (+/-)-CH-38083 (2 microM) alone significantly enhanced the DMPP-evoked increase of [3H]noradrenaline release. Phase II was not effected by alpha 2-adrenergic drugs. Whereas the noradrenaline uptake blockers despramine (DMI, 1-10 microM), nisoxetine (1-10 microM), and nomifensine (10 microM) inhibited both phases, nomifensine at a concentration of 1 microM selectively blocked only phase II. Our data indicate that DMPP has a dual effect on the hippocampal noradrenaline release: phase I is a transient, nicotinic receptor

  13. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring.

    Directory of Open Access Journals (Sweden)

    Nelson Vilches

    Full Text Available Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring's rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL, these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum, we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of

  14. Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights.

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    Full Text Available BACKGROUND: Exposure to early postnatal stress is known to hasten the progression of kindling epileptogenesis in adult rats. Despite the significance of this for understanding mesial temporal lobe epilepsy (MTLE and its associated psychopathology, research findings regarding underlying mechanisms are sparse. Of several possibilities, one important candidate mechanism is early life 'programming' of the hypothalamic-pituitary-adrenal (HPA axis by postnatal stress. Elevated corticosterone (CORT in turn has consequences for neurogenesis and cell death relevant to epileptogenesis. Here we tested the hypotheses that MS would augment seizure-related corticosterone (CORT release and enhance neuroplastic changes in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week old Wistar rats, previously exposed on postnatal days 2-14 to either maternal separation stress (MS or control brief early handling (EH, underwent rapid amygdala kindling. We measured seizure-induced serum CORT levels and post-kindling neurogenesis (using BrdU. Three weeks post-kindling, rats were euthanized for histology of the hippocampal CA3c region (pyramidal cell counts and dentate gyrus (DG (to count BrdU-labelled cells and measure mossy fibre sprouting. As in our previous studies, rats exposed to MS had accelerated kindling rates in adulthood. Female MS rats had heightened CORT responses during and after kindling (p<0.05, with a similar trend in males. In both sexes total CA3c pyramidal cell numbers were reduced in MS vs. EH rats post-kindling (p = 0.002. Dentate granule cell neurogenesis in female rats was significantly increased post-kindling in MS vs. EH rats. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that early life stress results in enduring enhancement of HPA axis responses to limbic seizures, with increased hippocampal CA3c cell loss and augmented neurogenesis, in a sex-dependent pattern. This implicates important candidate mechanisms through which early life

  15. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  16. Nortriptyline mediates behavioral effects without affecting hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2009-01-01

    A prevailing hypothesis is that neurogenesis is reduced in depression and that the common mechanism for antidepressant treatments is to increase it in adult hippocampus. Reduced neurogenesis has been shown in healthy rats exposed to stress, but it has not yet been demonstrated in depressed patients....... Emerging studies now indicate that selective serotonin reuptake inhibitors can, exert behavioral effects without affecting neurogenesis in mice. Here we extend our previous findings demonstrating that the number of BrdU positive cells in hippocampus was significantly higher in a rat model of depression....... These results strengthen the arguments against hypothesis of neurogenesis being necessary in etiology of depression and as requisite for effects of antidepressants, and illustrate the importance of using a disease model and not healthy animals to assess effects of potential therapies for major depressive...

  17. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction.

    Directory of Open Access Journals (Sweden)

    Maria Veronica Baez

    Full Text Available NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1 adult rats that had explored an open field (OF for 5 minutes, a time sufficient to induce habituation, 2 mature rat hippocampal neuron cultures depolarized by KCl and 3 hippocampal slices from adult rats where long term potentiation (LTP was induced by theta-burst stimulation (TBS. GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes--but not 30 minutes--after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor or actinomycin D (a transcription inhibitor during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory.

  18. Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints

    Institute of Scientific and Technical Information of China (English)

    Dongmei Duan; Xiuyan Yang; Ya Tu; Liping Chen

    2014-01-01

    Preliminary basic research and clinical ifndings have demonstrated that electroacupuncture ther-apy exhibits positive effects in ameliorating depression. However, most studies of the underlying mechanism are at the single gene level;there are few reports regarding the mechanism at the whole-genome level. Using a rat genomic gene-chip, we proifled hippocampal gene expression changes in rats after electroacupuncture therapy. Electroacupuncture therapy alleviated depres-sion-related manifestations in the model rats. Using gene-chip analysis, we demonstrated that electroacupuncture at Baihui (DU20) and Yintang (EX-HN3) regulates the expression of 21 genes. Real-time PCR showed that the genes Vg f, Ig f2, Tmp32, Loc500373, Hif1a, Folr1, Nmb, and Rtn were upregulated or downregulated in depression and that their expression tended to nor-malize after electroacupuncture therapy. These results indicate that electroacupuncture at Baihui and Yintang modulates depression by regulating the expression of particular genes.

  19. Subregional Expression of Hippocampal Glutamatergic and GABAergic Genes in F344 Rats with Social Isolation after Weaning.

    Science.gov (United States)

    Iwata, Hisaya; Yamamuro, Yutaka

    2016-02-01

    Many studies have shown that postweaning social isolation (pwSI) alters various behavioral phenotypes, including hippocampusdependent tasks. Here, we report the comprehensive analysis of the expression of glutamatergic and GABAergic neurotransmissionrelated genes in the distinct hippocampal subregions of pwSI rats. Male F344 rats (age, 4 wk) experienced either pwSI or group housing (controls). At 7 wk of age, the hippocampus of each rat was removed and laser-microdissected into the CA1 and CA3 layers of pyramidal cells and the granule cell layer of the dentate gyrus. Subsequently, the expression of glutamatergic- and GABAergic- related genes was analyzed by quantitative RT-PCR. In the CA1 and CA3 pyramidal cell layers, 18 of 24 glutamate receptor subunit genes were at least 1.5-fold increased in expression after pwSI. In particular, the expression of several N-methyl-D-aspartate and kainate receptors (for example, Grin2a in CA1, Grik4 in CA3) was significantly increased after pwSI. In contrast, pwSI tended to decrease the expression of GABAA receptor subunit genes, and Gabra1, Gabra2, Gabra4, Gabra5, Gabrb2, Gabrg1, and Gabrg2 were all significantly decreased in expression compared with the levels in the group-housed rats. These results indicate a subregion- specific increase of glutamate receptors and reduction of GABAA receptors, suggesting that the hippocampal circuits of pwSI rats may be in more excitable states than those of group-housed rats.

  20. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  1. Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice.

    Science.gov (United States)

    Kohl, Christine; Wang, Xiao-Dong; Grosse, Jocelyn; Fournier, Céline; Harbich, Daniela; Westerholz, Sören; Li, Ji-Tao; Bacq, Alexandre; Sippel, Claudia; Hausch, Felix; Sandi, Carmen; Schmidt, Mathias V

    2015-05-01

    Early-life stress is a key risk factor for the development of neuropsychiatric disorders later in life. Neuronal cell adhesion molecules have been strongly implicated in the pathophysiology of psychiatric disorders and in modulating social behaviors associated with these diseases. Neuroligin-2 is a synaptic cell adhesion molecule, located at the postsynaptic membrane of inhibitory GABAergic synapses, and is involved in synaptic stabilization and maturation. Alterations in neuroligin-2 expression have previously been associated with changes in social behavior linked to psychiatric disorders, including schizophrenia and autism. In this study, we show that early-life stress, induced by limited nesting and bedding material, leads to impaired social recognition and increased aggression in adult mice, accompanied by increased expression levels of hippocampal neuroligin-2. Viral overexpression of hippocampal neuroligin-2 in adulthood mimics early-life stress-induced alterations in social behavior and social cognition. Moreover, viral knockdown of neuroligin-2 in the adult hippocampus attenuates the early-life stress-induced behavioral changes. Our results highlight the importance of neuroligin-2 in mediating early-life stress effects on social behavior and social cognition and its promising role as a novel therapeutic target for neuropsychiatric disorders.

  2. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    Directory of Open Access Journals (Sweden)

    Jessberger Sebastian

    2006-11-01

    Full Text Available Abstract Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2 the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3 positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  3. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats.

    Science.gov (United States)

    Ihalainen, Jouni; Sarajärvi, Timo; Rasmusson, Doug; Kemppainen, Susanna; Keski-Rahkonen, Pekka; Lehtonen, Marko; Banerjee, Pradeep K; Semba, Kazue; Tanila, Heikki

    2011-01-01

    This preclinical study investigated the ability of memantine (MEM) to stimulate brain acetylcholine (ACh) release, potentially acting synergistically with donepezil (DON, an acetylcholinesterase inhibitor). Acute systemic administration of either MEM or DON to anesthetized rats caused dose-dependent increases of ACh levels in neocortex and hippocampus, and the combination of MEM (5 mg/kg) and DON (0.5 mg/kg) produced significantly greater increases than either drug alone. To determine whether ACh release correlated with cognitive improvement, rats with partial fimbria-fornix (FF) lesions were treated with acute or chronic MEM or DON. Acute MEM treatment significantly elevated baseline hippocampal ACh release but did not significantly improve task performance on a delayed non-match-to-sample (DNMS) task, whereas chronic MEM treatment significantly improved DNMS performance but only marginally elevated baseline ACh levels. Acute or chronic treatment with DON (in the presence of neostigmine to allow ACh collection) did not significantly improve DNMS performance or alter ACh release. In order to investigate the effect of adding MEM to ongoing DON therapy, lesioned rats pretreated with DON for 3 weeks were given a single intraperitoneal dose of MEM. MEM significantly elevated baseline hippocampal ACh levels, but did not significantly improve DNMS task scores compared to chronic DON-treated animals. These data indicate that MEM, in addition to acting as an NMDA receptor antagonist, can also augment ACh release; however, in this preclinical model, increased ACh levels did not directly correlate with improved cognitive performance.

  4. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    Directory of Open Access Journals (Sweden)

    Julie Anne Seguin

    2008-12-01

    Full Text Available Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accordingly, the present investigation assessed whether three proinflammatory cytokines, namely interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α (associated with depression influenced cellular proliferation within the hippocampus. In this regard, systemic administration of TNF-α reduced 5-bromo-2-deoxyuridine (BrdU labeling within the hippocampus, whereas IL-1β and IL-6 had no such effect. However, repeated but not a single intra-hippocampal infusion of IL-6 and IL-1β actually increased cellular proliferation and IL-6 infusion also enhanced microglial staining within the hippocampus. Yet, no changes in doublecortin expression were apparent, suggesting that the cytokine did not influence the birth of cells destined to become neurons. Essentially, the route of administration and chronicity of cytokine administration had a marked influence upon the nature of hippocampal alterations provoked, suggesting that cytokines may differentially regulate hippocampal plasticity in neuropsychiatric conditions.Keywords: cytokine, depression, neuroplasticity, hippocampus, stressor

  5. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration.

    Science.gov (United States)

    Seguin, Julie Anne; Brennan, Jordan; Mangano, Emily; Hayley, Shawn

    2009-01-01

    Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accordingly, the present investigation assessed whether three proinflammatory cytokines, namely interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha) (associated with depression) influenced cellular proliferation within the hippocampus. In this regard, systemic administration of TNF-alpha reduced 5-bromo-2-deoxyuridine (BrdU) labeling within the hippocampus, whereas IL-1beta and IL-6 had no such effect. However, repeated but not a single intra-hippocampal infusion of IL-6 and IL-1beta actually increased cellular proliferation and IL-6 infusion also enhanced microglial staining within the hippocampus. Yet, no changes in doublecortin expression were apparent, suggesting that the cytokine did not influence the birth of cells destined to become neurons. Essentially, the route of administration and chronicity of cytokine administration had a marked influence upon the nature of hippocampal alterations provoked, suggesting that cytokines may differentially regulate hippocampal plasticity in neuropsychiatric conditions.

  6. Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis.

    Science.gov (United States)

    Chun, Hye Jeong; Lee, Yujeong; Kim, Ah Hyun; Lee, Jaewon

    2016-04-01

    Methylglyoxal (MG) is formed during normal metabolism by processes like glycolysis, lipid peroxidation, and threonine catabolism, and its accumulation is associated with various degenerative diseases, such as diabetes and arterial atherogenesis. Furthermore, MG has also been reported to have toxic effects on hippocampal neurons. However, these effects have not been studied in the context of neurogenesis. Here, we report that MG adversely affects hippocampal neurogenesis and induces neural progenitor cell (NPC) death. MG significantly reduced C17.2 NPC proliferation, and high concentration of MG (500 μM) induced cell death and elevated oxidative stress. Further, MG was found to activate the ERK signaling pathway, indicating elevated stress response. To determine the effects of MG in vivo, mice were administrated with vehicle or MG (0.5 or 1 % in drinking water) for 4 weeks. The numbers of BrdU-positive cells in hippocampi were significantly lower in MG-treated mice, indicating impaired neurogenesis, but MG did not induce neuronal damage or glial activations. Interestingly, MG reduced memory retention when administered to mice at 1 % but not at 0.5 %. In addition, the levels of hippocampal BDNF and synaptophysin were significantly lower in the hippocampi of mice treated with MG at 1 %. Collectively, our findings suggest MG could be harmful to NPCs and to hippocampal neurogenesis.

  7. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices.

    Science.gov (United States)

    Tattersall, J E; Scott, I R; Wood, S J; Nettell, J J; Bevir, M K; Wang, Z; Somasiri, N P; Chen, X

    2001-06-15

    Slices of rat hippocampus were exposed to 700 MHz continuous wave radiofrequency (RF) fields (25.2-71.0 V m(-1), 5-15 min exposure) in a stripline waveguide. At low field intensities, the predominant effect on the electrically evoked field potential in CA1 was a potentiation of the amplitude of the population spike by up to 20%, but higher intensity fields could produce either increases or decreases of up to 120 and 80%, respectively, in the amplitude of the population spike. To eliminate the possibility of RF-induced artefacts due to the metal stimulating electrode, the effect of RF exposure on spontaneous epileptiform activity induced in CA3 by 4-aminopyridine (50-100 microM) was investigated. Exposure to RF fields (50.0 V m(-1)) reduced or abolished epileptiform bursting in 36% of slices tested. The maximum field intensity used in these experiments, 71.0 V m(-1), was calculated to produce a specific absorption rate (SAR) of between 0.0016 and 0.0044 W kg(-1) in the slices. Measurements with a Luxtron fibreoptic probe confirmed that there was no detectable temperature change (+/- 0.1 degrees C) during a 15 min exposure to this field intensity. Furthermore, imposed temperature changes of up to 1 degrees C failed to mimic the effects of RF exposure. These results suggest that low-intensity RF fields can modulate the excitability of hippocampal tissue in vitro in the absence of gross thermal effects. The changes in excitability may be consistent with reported behavioural effects of RF fields.

  8. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    Science.gov (United States)

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  9. Protective effects of aloperine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Ma, Ning-Tian; Zhou, Ru; Chang, Ren-Yuan; Hao, Yin-Ju; Ma, Lin; Jin, Shao-Ju; Du, Juan; Zheng, Jie; Zhao, Cheng-Jun; Niu, Yang; Sun, Tao; Li, Wei; Koike, Kazuo; Yu, Jian-Qiang; Li, Yu-Xiang

    2015-10-01

    Aloperine (ALO), one of the alkaloids isolated from Sophora alopecuroides L., is traditionally used for various diseases including neuronal disorders. This study investigated the protective effects of ALO on neonatal rat primary-cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion (OGD/RP). Treatment with ALO (25, 50, and 100 mg/l) attenuated neuronal damage (p oxygen species and malondialdehyde production and enhanced the antioxidant enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase and the total antioxidant capacity. The results suggested that ALO has significant neuroprotective effects that can be attributed to anti-oxidative stress.

  10. Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat.

    Science.gov (United States)

    Coupé, B; Dutriez-Casteloot, I; Breton, C; Lefèvre, F; Mairesse, J; Dickes-Coopman, A; Silhol, M; Tapia-Arancibia, L; Lesage, J; Vieau, D

    2009-01-01

    Maternal perinatal undernutrition (MPU) modifies the activity of the hypothalamic-pituitary-adrenal axis and sensitises to the development of metabolic and cognitive adult diseases. Because the hypothalamus and hippocampus are involved in the regulation of neuroendocrine activity, energy metabolism and cognition, we hypothesised that a maternal 50% food restriction (FR50) from day 14 of pregnancy (E14) until postnatal day 21 (P21) would affect the development of these structures in male rat offspring. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) and cell proliferation [analysed by 5-bromodeoxyuridine (BrdU) incorporation] were compared in both control and FR50 rats from E21 to P22. Although the pattern of the evolution of BDNF concentration and cell proliferation throughout development was not strikingly different between groups, several disturbances at specific developmental stages were observed. FR50 rats exhibited a delayed increase of hippocampal BDNF content whereas, in the hypothalamus, BDNF level was augmented from E21 to P14 and associated, at this latter stage, with an increased mRNA expression of TRkB-T2. In both groups, a correlation between BDNF content and the number of BrdU positive cells was noted in the dentate gyrus, whereas opposite variations were observed in CA1, CA2 and CA3 layers, and in the arcuate and ventromedial nuclei. In the hippocampus, P15-FR50 rats showed an increased number of BrdU positive cells in all regions, whereas, at P22, a decrease was observed in the CA2. In the hypothalamus, between E21 and P8, MPU increases the number of BrdU positive cells in all regions analysed and, until P15, marked differences were noticed in the median eminence, the paraventricular nucleus and the arcuate nucleus. Taken together, the results obtained in the present study show that MPU changes the time course of production of BDNF and cell proliferation in specific hippocampal and hypothalamic areas during sensitive

  11. Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats

    Directory of Open Access Journals (Sweden)

    Yuan Chia-Yi

    2011-11-01

    Full Text Available Abstract Background High aluminum (Al content in certain infant formula raises the concern of possible Al toxicity on brain development of neonates during their vulnerable period of growing. Results of in vivo study showed that Al content of brain tissues reached to 74 μM when oral intake up to 1110 μM, 10 times of that in the hi-Al infant formula. Methods Utilizing a cultured neuron cells in vitro model, we have assessed Al influence on neuronal specific gene expression alteration by immunoblot and immunohistochemistry and neural proliferation rate changes by MTT assay. Results Microscopic images showed that the neurite outgrowth of hippocampal neurons increased along with the Al dosages (37, 74 μM Al (AlCl3. MTT results also indicated that Al increased neural cell viability. On the other hand, the immunocytochemistry staining suggested that the protein expressions of NMDAR 1A and NMDAR 2A/B decreased with the Al dosages (p Conclusion Treated hippocampal neurons with 37 and 74 μM of Al for 14 days increased neural cell viability, but hampered NMDAR 1A and NMDAR 2A/B expressions. It was suggested that Al exposure might alter the development of hippocampal neurons in neonatal rats.

  12. Effects of SO2 derivatives on sodium currents in acutely isolated rat hippocampal lead-exposed neurons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, the effects of acute SO2 derivatives and chronic lead exposure together on sodium cur-rents (INa) were investigated in acutely isolated rat hippocampal neurons by using the whole-cell patch clamp techniques. We found that chronic lead exposure hardly reduced the amplitudes of INa. In the normal condition, sodium current started to appear at around ?70 mV, and reached the peak current at around ?40 mV. After chronic lead exposure, the data changed to ?70 and ?30 mV. After adding SO2 derivatives, the data changed to ?80 and ?40 mV, respectively. SO2 derivatives caused a significant in-crease of INa in hippocampal chronic-lead exposed neurons. Chronic lead exposure induced a right shift of the activation curve and a left shift of the inactivation curve of sodium channels. SO2 derivatives caused negative shifts of the activation and inactivation curves of INa in hippocampal chronic-lead ex-posed neurons. Lead exposure put off the time reaching the peak of INa activation. SO2 derivatives in-creased the time constants of inactivation after lead exposure. The interaction of lead and SO2 deriva-tives with voltage-dependent sodium channels may lead to changes in electrical activity and contribute to worsening the neurotoxicological damage.

  13. Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia.

    Science.gov (United States)

    Chou, Shinnyi; Jones, Sean; Li, Ming

    2015-08-27

    Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidylic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed a similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5'-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation. The implications of the relationship between behavioral and neurobiological results are discussed.

  14. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    Science.gov (United States)

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion.

  15. Effect of dipotassium clorazepate on amygdaloid-kindling and comparison between amygdaloid- and hippocampal-kindled seizures in rats.

    Science.gov (United States)

    Amano, K; Takamatsu, J; Ogata, A; Katsuragi, S; Miyazaki, C; Deshimaru, M; Sumiyoshi, S; Miyakawa, T

    1999-12-03

    We examined the effect of dipotassium clorazepate (7-chloro-1, 3-dihydro-2-oxo-5-phenyl-1H-1, 4-benzodiazepine-3-carboxylate potassium hydroxide), an antianxiety drug, on amygdaloid kindling and compared its effects for 7 successive days on amygdaloid- versus hippocampal-kindled seizures, using the rat kindling model of epilepsy. Dipotassium clorazepate at 5 mg/kg significantly delayed amygdaloid kindling. The contralateral cortical after-discharge duration in the dipotassium clorazepate-treated group was significantly shorter than the after-discharge duration in the amygdala in the first seven stimulations, whereas it was significantly shorter only in the first three stimulations in the control group, indicating that dipotassium clorazepate suppressed the spread of seizure activity from focus to contralateral cortex. Dipotassium clorazepate suppressed amygdaloid-kindled seizures at 2 and 5 mg/kg, while 1 mg/kg or more suppressed hippocampal-kindled seizures. Thus, differences in effective dosages in both amygdaloid- and hippocampal-kindled seizures may suggest a difference in the neuronal mechanisms involved in this kindling.

  16. Reduction of rat hippocampal calcium-binding protein following commissural, amygdala, septal, perforant path, and olfactory bulb kindling.

    Science.gov (United States)

    Baimbridge, K G; Mody, I; Miller, J J

    1985-01-01

    The calcium-binding protein (CaBP) content of the hippocampal formation was determined by radioimmunoassay in control and kindled rats. Kindling of a number of different sites resulted in a reduction in the CaBP content of the hippocampal formation, which was shown immunohistochemically to be restricted to the dentate granule cells and their processes. The maximum decline in CaBP varied with the different kindling sites: perforant path, 33%; commissural path, 32%; septum, 30%; amygdala, 18%; and olfactory bulbs, 15%. There were no changes in the CaBP content of the stimulated areas themselves. In cases where the kindling stimulus was delivered unilaterally (perforant path and amygdala), the maximum decrease in hippocampal CaBP was observed ipsilateral to the site of stimulation when the criterion for full kindling was established (six consecutive stage 5 motor seizures). Further kindling trials were required to produce a similar magnitude decrease in the CaBP content of the contralateral hippocampus. These observations are discussed both in relation to the possible role of CaBP in the establishment of a seizure response to kindling and also as a potential compensatory mechanism that may serve to overcome the epileptogenic effects of kindling.

  17. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    Science.gov (United States)

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects.

  18. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sylvia eOrtega-Martinez

    2015-08-01

    Full Text Available Adult neurogenesis is the process by which new neurons are generated in the brains of adults. Since its discovery 50 years ago, adult neurogenesis has been widely studied in the mammalian brain and has provided a new perspective on the pathophysiology of many psychiatric and neurodegenerative disorders, some of which affect memory. In this regard, adult hippocampal neurogenesis (AHN, which occurs in the subgranular zone of the dentate gyrus, has been suggested to play a role in the formation and consolidation of new memories. This process involves many transcription factors, of which cyclic AMP-responsive element-binding protein (CREB is a well-documented one. In the developing brain, CREB regulates crucial cell stages, (e.g., proliferation, differentiation, and survival, and in the adult brain, it participates in neuronal plasticity, learning, and memory. In addition, new evidence supports the hypothesis that CREB may also participate in learning and memory through its involvement in AHN. This review examines the CREB family of transcription factors, including the different members and known signaling pathways. It highlights the role of CREB as a modulator of AHN, which could underlie its function in memory consolidation mechanisms.

  19. Age-related changes in rat hippocampal theta rhythms: a difference between type 1 and type 2 theta.

    Science.gov (United States)

    Abe, Y; Toyosawa, K

    1999-05-01

    The age-related changes in two types of theta rhythms recorded from the hippocampus in young (4 months-old), mature (12-13 months-old) and aged (22-25 months-old) rats were investigated. The type 1 theta rhythm was measured from hippocampal EEG recorded from walking rats and the type 2 theta was measured from the EEG induced by reticular pontin oralis nucleus (PON) stimulation in urethane anesthetized rats. The peak frequency and the peak power were detected from power spectra calculated on each theta sample by fast Fourier transformation (FFT). No age-related alteration was observed on the peak frequency of type 1 theta rhythm. However, on type 2 theta rhythm, the peak frequency was decreased in the aged rats compared with the young and the mature rats. The type 2 theta rhythm is cholinergic, and therefore this result suggests that age-related deterioration can be clearly observed in the cholinergic system including the hippocampus in rats.

  20. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... induces depression-like behavior, without significantly changing neurogenesis, the total number of neurons or the volume of the hippocampus. Further, electroconvulsive stimulation prevents stress-induced depression-like behavior and increases neurogenesis. The total number of neurons and the granule cell...

  1. Raman spectroscopic detection of rapid, reversible, early-stage inflammatory cytokine-induced apoptosis of adult hippocampal progenitors/stem cells

    CERN Document Server

    Ladiwala, Uma; Thakur, Bhushan; Santhosh, Chidangil; Mathur, Deepak

    2014-01-01

    The role of neuro-inflammation in diverse, acute and chronic brain pathologies is being increasingly recognized. Neuro-inflammation is accompanied by increased levels of both pro- and anti-inflammatory cytokines; these have deleterious as well as protective/reparative effects. Inflammation has varying effects on neurogenesis and is a subject of intense contemporary interest. We show that TNF-alpha and IFN-gamma, used concomitantly, cause apoptosis of adult rat hippocampal progenitor/stem cells in vitro as detected by the TUNEL and MTT assays on time scales of several hours. We have coupled Raman spectroscopy to an optical trap to probe early changes of apoptosis in single, live neural stem cells that have been treated with pro-inflammatory cytokines, TNF-alpha and IFN-gamma. Changes caused by inflammation-induced denaturation of DNA are observed in the Raman spectra that correspond to very early stages of apoptosis, occurring on very fast time scales: as short as 10 minutes. Addition of the anti-inflammatory ...

  2. Myelin-specific T helper 17 cells promote adult hippocampal neurogenesis through indirect mechanisms [v1; ref status: indexed, http://f1000r.es/3ny

    Directory of Open Access Journals (Sweden)

    Johannes Niebling

    2014-07-01

    Full Text Available CD4+ T cells provide a neuro-immunological link in the regulation of adult hippocampal neurogenesis, but the exact mechanisms underlying enhanced neural precursor cell proliferation and the relative contribution of different T helper (Th cell subsets have remained unclear. Here, we explored the proneurogenic potential of interleukin 17-producing T helper (Th17 cells, a developmentally and functionally distinct Th cell subset that is a key mediator of autoimmune neurodegeneration. We found that base-line proliferation of hippocampal precursor cells in a T cell-deficient mouse model of impaired hippocampal neurogenesis can be restored upon adoptive transfer with homogeneous Th17 populations enriched for myelin-reactive T cell receptors. In these experiments, enhanced proliferation was independent of direct interactions of infiltrating Th17 cells with precursor cells or neighboring cells in the hippocampal neurogenic niche. Complementary studies in immunocompetent mice identified several receptors for Th17 cell-derived cytokines with mRNA expression in hippocampal precursor cells and dentate gyrus tissue, suggesting that Th17 cell activity in peripheral lymphoid tissues might promote hippocampal neurogenesis through secreted cytokines.

  3. Effects of genistein and 17 beta-estradiol on hippocampal synaptophysin expression in ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    Ru Chen; Liming Tan; Bo Jiang

    2008-01-01

    surgery.②SYN expression in the hippocampus was measured using immunohistochemistry. RESULTS:A total of 16 out of 130 rats died due to infection,and 114 rats were included in the final analysis.①Comparison of water maze results from the five groups:by 3 and 15 weeks after surgery, escape latency was prolonged and platform-crossing times decreased in the ovariectomized group compared to the baseline,genistein,17 β-estradiol,and sham operation groups(t=4.17--14.64,P<0.05).However, there were no significant differences in escape latency and platform-crossing times among the sham operation,genistein,and 17 β-estradiol groups(P<0.05).②Distribution and quantity of SYN immunoreactive products in hippocampus:SYN-immunoreactive cells stained darkly in the baseline and sham operation groups,but were lightly stained in the genistein,17 β-estradiol,and ovariectomized groups.In particular,SYN-immunoreactive cells stained lightly in the ovariectomized group 15 weeks after surgery. SYN correction gray values in hippocampal sub-regions,especially in the mossy fiber layer of the CA3 region,of the ovariectomized group was lower compared to the baseline,sham operation,17 β-estradiol,and genistein groups(t=12.57-23.92,P<0.05)15 weeks after surgery.However,there were no significant differences in SYN correction gray values among the baseline,sham operation,17 β-estradiol and genistein groups(P<0.05).CONCLUSION:Genistein or 17 β-estradiol supplemental therapy antagonizes memory deterioration,due to endogenous estrogen deficiency and blocks the decrease of SYN expression in the hippocampus.The effect of genistein is similar to 17 β-estradiol.

  4. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    OpenAIRE

    Julie Anne Seguin; Jordan Brennan; Emily Mangano; Shawn Hayley

    2009-01-01

    Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accor...

  5. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    OpenAIRE

    Hayley, Shawn

    2008-01-01

    Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accor...

  6. Grafts of fetal locus coeruleus neurons in rat amygdala-piriform cortex suppress seizure development in hippocampal kindling.

    Science.gov (United States)

    Barry, D I; Wanscher, B; Kragh, J; Bolwig, T G; Kokaia, M; Brundin, P; Björklund, A; Lindvall, O

    1989-11-01

    Hippocampal kindling was investigated in rats with a 6-hydroxydopamine-induced lesion of the forebrain catecholamine system after implantation of neural tissue from the fetal locus coeruleus region either bilaterally into the amygdala-piriform cortex (i.e., distant to the kindling site) or unilaterally into the hippocampus (close to the kindling site). Lesioned animals with either sham grafts or control grafts consisting of fetal striatal tissue showed a kindling rate much faster than that of normal controls. In contrast, in rats with bilateral locus coeruleus grafts in the amygdala-piriform cortex (implanted at three sites) the development of seizures was similar to that of controls and significantly slower than that in lesioned animals with sham grafts. All these animals had bilateral surviving grafts with a mean of 125 noradrenergic cells per implantation site. In the animals with locus coeruleus grafts in the stimulated hippocampus the kindling rate did not differ from that in the lesioned animals with control grafts. Most of these animals had large surviving grafts and showed a dense noradrenergic reinnervation of the implanted hippocampus. The present findings indicate that grafting of fetal pontine tissue (rich in noradrenergic neurons) to a site distant to the stimulation focus, but important for the generalization and spread of seizures, can retard the development of seizures in hippocampal kindling. Together with the data of our previous report this study also indicates that noradrenergic reinnervation of both hippocampi is important for the seizure-suppressant action in hippocampal kindling of locus coeruleus grafts implanted in the hippocampus.

  7. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    -related behaviors. Based on such findings our aim was to investigate the molecular differentiation along the dorso-ventral axis of the hippocampal granular cell layer of the rat dentate gyrus. Homogeneous isolation of this specific area was performed by laser-capture microdissection and Illumina microarray chips......Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  8. Neurosharing: large-scale data sets (spike, LFP) recorded from the hippocampal-entorhinal system in behaving rats.

    Science.gov (United States)

    Mizuseki, Kenji; Diba, Kamran; Pastalkova, Eva; Teeters, Jeff; Sirota, Anton; Buzsáki, György

    2014-01-01

    Using silicon-based recording electrodes, we recorded neuronal activity of the dorsal hippocampus and dorsomedial entorhinal cortex from behaving rats. The entorhinal neurons were classified as principal neurons and interneurons based on monosynaptic interactions and wave-shapes. The hippocampal neurons were classified as principal neurons and interneurons based on monosynaptic interactions, wave-shapes and burstiness. The data set contains recordings from 7,736 neurons (6,100 classified as principal neurons, 1,132 as interneurons, and 504 cells that did not clearly fit into either category) obtained during 442 recording sessions from 11 rats (a total of 204.5 hours) while they were engaged in one of eight different behaviours/tasks. Both original and processed data (time stamp of spikes, spike waveforms, result of spike sorting and local field potential) are included, along with metadata of behavioural markers. Community-driven data sharing may offer cross-validation of findings, refinement of interpretations and facilitate discoveries.

  9. Alzheimer’s disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms

    Directory of Open Access Journals (Sweden)

    Orly eLazarov

    2016-05-01

    Full Text Available New neurons incorporate into the granular cell layer of the dentate gyrus throughout life. Neurogenesis is modulated by behavior and plays a major role in hippocampal plasticity. Along with older mature neurons, new neurons structure the dentate gyrus and determine its function. Recent data suggest that the level of hippocampal neurogenesis is substantial in the human brain, suggesting that neurogenesis may have important implications for human cognition. In support of that, impaired neurogenesis compromises hippocampal function and plays a role in cognitive deficits in Alzheimer’s disease mouse models. We review current work suggesting that neuronal differentiation is defective in Alzheimer’s disease, leading to dysfunction of the dentate gyrus. Additionally, alterations in critical signals regulating neurogenesis, such as presenilin-1, Notch 1, soluble amyloid precursor protein, CREB, and β-catenin underlie dysfunctional neurogenesis in Alzheimer’s disease. Lastly, we discuss the detectability of neurogenesis in the live mouse and human brain, as well as the therapeutic implications of enhancing neurogenesis for the treatment of cognitive deficits and Alzheimer’s disease.

  10. Novelty, but not operant aversive learning, enhances Fos and Egr-1 expression in the medial prefrontal cortex and hippocampal areas of rats.

    Science.gov (United States)

    Yochiy, Angélica; Britto, Luiz R G; Hunziker, Maria H L

    2012-12-01

    Immediate early genes (IEG) are presumed to be activated in response to stress, novelty, and learning. Evidence supports the involvement of prefrontal and hippocampal areas in stress and learning, but also in the detection of novel events. This study examined whether a previous experience with shocks changes the pattern of Fos and Egr-1 expression in the medial prefrontal cortex (mPFC), the hippocampal cornus ammonis 1 (CA1), and dentate gyrus (DG) of adult male Wistar rats that learned to escape in an operant aversive test. Subjects previously exposed to inescapable footshocks that learned to escape from shocks were assigned to the treated group (EXP). Subjects from Group Novelty (NOV) rested undisturbed during treatment and also learned to escape in the test. The nonshock group (NSH) rested undisturbed in both sessions. Standard immunohistochemistry procedures were used to detect the proteins in brain sections. The results show that a previous experience with shocks changed the pattern of IEG expression, then demonstrating c-fos and egr-1 induction as experience-dependent events. Compared with NSH and EXP an enhanced Fos expression was detected in the mPFC and CA1 subfield of Group NOV, which also exhibited increased Egr-1 expression in the mPFC and DG in comparison to NSH. No differences were found in the DG for Fos, or in the CA1 for Egr-1. Novelty, and not the operant aversive escape learning, seems to have generated IEG induction. The results suggest novel stimuli as a possible confounding factor in studies on Fos and/or Egr-1 expression in aversive conditions.

  11. Antiapoptotic effect both in vivo and in vitro of A20 gene when transfected into rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hong-sheng MIAO; Lu-yang YU; Guo-zhen HUI; Li-he GUO

    2005-01-01

    Aim: To evaluate the antiapoptotic effect of the A20 gene in primary hippocampal neurons both in vivo and in vitro. Methods: Primary hippocampal neurons in embryonic day 18 (El 8) rats were transfected with the A20 gene by using the new Nucleofector electroporation transfection method. We then examined, whether A20 -neurons possessed anti-apoptotic abilities after TNF-α stimulation in vitro.A20-neurons and pcDNA3 -neurons were transplanted into the penumbra of the brains of rats that had been subjected to 90-min of ischemia induced by left middle cerebral artery occlusion (MCAO). Results: A20-neurons resisted TNF-α induced apoptosis in vitro. The apoptosis rate of neurons overexpressing A20(28.46%±3.87%) was lower than that in neurons transfected with pcDNA3(53.06%±5.36%). More A20-neurons survived in the penumbra both 3-d and 7-d after transplantation than did sham pcDNA3 neurons. Conclusion: The novel function of A20 may make it a potential targets for the gene therapy for neurological diseases.

  12. Membrane voltage differently affects mIPSCs and current responses recorded from somatic excised patches in rat hippocampal cultures.

    Science.gov (United States)

    Pytel, Maria; Mozrzymas, Jerzy W

    2006-01-30

    Recent analysis of current responses to exogenous GABA applications recorded from excised patches indicated that membrane voltage affected the GABAA receptor gating mainly by altering desensitization and binding [M. Pytel, K. Mercik, J.W. Mozrzymas, Membrane voltage modulates the GABAA receptor gating in cultured rat hippocampal neurons, Neuropharmacology, in press]. In order investigate the impact of such voltage effect on GABAA receptors in conditions of synaptic transmission, mIPSCs and current responses to rapid GABA applications were recorded from the same culture of rat hippocampal neurons. We found that I-V relationship for mIPSCs amplitudes showed a clear outward rectification while for current responses an inward rectification was seen, except for very low GABA concentrations. A clear shift in amplitude cumulative distributions indicated that outward rectification resulted from the voltage effect on the majority of mIPSCs. Moreover, the decaying phase of mIPSCs was clearly slowed down at positive voltages and this effect was represented by a shift in cumulative distributions of weighted decaying time constants. In contrast, deactivation of current responses was only slightly affected by membrane depolarization. These data indicate that the mechanisms whereby the membrane voltage modulates synaptic and extrasynaptic receptors are qualitatively different but the mechanism underlying this difference is not clear.

  13. Effect of Repeated Electroacupuncture Intervention on Hippocampal ERK and p38MAPK Signaling in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-ying Wang

    2015-01-01

    Full Text Available Results of our past studies showed that hippocampal muscarinic acetylcholine receptor (mAChR-1 mRNA and differentially expressed proteins participating in MAPK signaling were involved in electroacupuncture (EA induced cumulative analgesia in neuropathic pain rats, but the underlying intracellular mechanism remains unknown. The present study was designed to observe the effect of EA stimulation (EAS on hippocampal extracellular signal-regulated kinases (ERK and p38 MAPK signaling in rats with chronic constrictive injury (CCI of the sciatic nerve, so as to reveal its related intracellular targets in pain relief. After CCI, the thermal pain thresholds of the affected hind were significantly decreased compared with the control group (P<0.05. Following one and two weeks’ EAS of ST 36-GB34, the pain thresholds were significantly upregulated (P<0.05, and the effect of EA2W was remarkably superior to that of EA2D and EA1W (P<0.05. Correspondingly, CCI-induced decreased expression levels of Ras, c-Raf, ERK1 and p-ERK1/2 proteins, and p38 MAPK mRNA and p-p38MAPK protein in the hippocampus tissues were reversed by EA2W (P<0.05. The above mentioned results indicated that EA2W induced cumulative analgesic effect may be closely associated with its function in removing neuropathic pain induced suppression of intracellular ERK and p38MAPK signaling in the hippocampus.

  14. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus.

    Science.gov (United States)

    Lunko, O O; Isaev, D S; Krishtal, O O; Isaeva, E V

    2015-01-01

    Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.

  15. Electro-acupuncture for STAT3 expression and nuclear translocation in hippocampal tissues of rats following cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Lihong Kong; Xiaoling Zeng; Guojie Sun; Shenghong Liu

    2006-01-01

    BACKGROUND: It has been found in recent years that STATS widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release of some cytokines and growth factors, while electro-acupuncture may have multi-level, multi-channel and multi-target protective and interventional effects on ischemic brain injury.OBJ ECTIVE: To observe the effects of electro-acupuncture on STAT3 expression and nuclear translocation in hippocampal CA1 region of rat models of brain ischemia/reperfusion.DESIGN: Randomized and controlled observation.SETTING: Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury,Hubei College of Traditional Chinese Medicine; Tongji Medical College, Huazhong University of Science and Technology.MATERTALS: Seventy-two healthy SD rats, of clean degree and either gender, weighing (200±20) g, were provided by the Experimental Animal Center of Hubei College of Traditional Chinese Medicine. STAT3monoclonal antibody was purchased from Santa Cruz Company, USA, and G-6805 electro-acupuncture instrument was purchased from Shanghai Medical Electronic Instruments Factory.METHODS: This experiment was carried out in the comprehensive laboratory of Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine between September 2005 and February 2006.Seventy-two rats were randomly divided into 4 groups: ① control group(n =6): Untouched. ② Sham-operation group (n =18): Artery was isolated, but without inserting thread bolt.③ Model group (n =24): Rat models of local brain ischemia/reperfusion were established with modified suture occlusion. ④Electro-acupuncture group (n =24): Dazhui and bilateral Neiguan points were selected for electro-acupuncture treatment. No. 28acupuncture needle of 3.33 cm was used in the treatment A G-6085 electro-acupuncture instrument with continuous wave, frequency of 120 times/min, intensity of 1 m

  16. A rat model of post-traumatic stress disorder reproduces the hippocampal deficits seen in the human syndrome

    Directory of Open Access Journals (Sweden)

    Sonal eGoswami

    2012-06-01

    Full Text Available Despite recent progress, the causes and pathophysiology of post-traumatic stress disorder (PTSD remain poorly understood, partly because of ethical limitations inherent to human studies. One approach to circumvent this obstacle is to study PTSD in a valid animal model of the human syndrome. In one such model, extreme and long-lasting behavioral manifestations of anxiety develop in a subset of Lewis rats after exposure to an intense predatory threat that mimics the type of life-and-death situation known to precipitate PTSD in humans. This study aimed to assess whether the hippocampus-associated deficits observed in the human syndrome are reproduced in this rodent model. Prior to predatory threat, different groups of rats were each tested on one of three object recognition memory tasks that varied in the types of contextual clues (i.e. that require the hippocampus or not the rats could use to identify novel items. After task completion, the rats were subjected to predatory threat and, one week later, tested on the elevated plus maze. Based on their exploratory behavior in the plus maze, rats were then classified as resilient or PTSD-like and their performance on the pre-threat object recognition tasks compared. The performance of PTSD-like rats was inferior to that of resilient rats but only when subjects relied on an allocentric frame of reference to identify novel items, a process thought to be critically dependent on the hippocampus. Therefore, these results suggest that even prior to trauma, PTSD-like rats show a deficit in hippocampal-dependent functions, as reported in twin studies of human PTSD.

  17. Hippocampal angiotensin II receptors play an important role in mediating the effect of voluntary exercise on learning and memory in rat.

    Science.gov (United States)

    Akhavan, Maziar M; Emami-Abarghoie, Mitra; Sadighi-Moghaddam, Bizhan; Safari, Manouchehr; Yousefi, Yasaman; Rashidy-Pour, Ali

    2008-09-26

    The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the possible role of hippocampal angiotensin II receptors in voluntary exercise-induced enhancement of learning and memory in rat. In order t