WorldWideScience

Sample records for adult rat dorsal

  1. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  2. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2012-05-01

    Full Text Available Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4 treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5μg T4/100 g body weight (BW treated group, 20 μg T4/100g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 μg T4/100g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty μg T4/100g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations.

  3. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  4. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats.

    Science.gov (United States)

    Tajik, Azam; Rezayof, Ameneh; Ghasemzadeh, Zahra; Sardari, Maryam

    2016-07-01

    Tamoxifen (TAM), a selective estrogen receptor modulator, has frequently been used in the treatment of breast cancer. In view of the fact that cognitive deficits in women who receive adjuvant chemotherapy for breast cancer is a common health problem, using female animal models for investigating the cognitive effects of TAM administration may improve our knowledge of TAM therapy. Therefore, the present study assessed the role of dorsal hippocampal cholinergic nicotinic receptors (nAChRs) in the effect of TAM administration on memory retrieval in ovariectomized (OVX) and non-OVX female rats using a passive avoidance learning task. Our results showed that pre-test administration of TAM (2-6mg/kg) impaired memory retrieval. Pre-test intra-CA1 microinjection of nicotine (0.3-0.5μg/rat) reversed TAM-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (0.1-0.3μg/rat) plus 2mg/kg (an ineffective dose) of TAM impaired memory retrieval. Pre-test intra-CA1 microinjection of the same doses of nicotine and mecamylamine by themselves had no effect on memory retrieval. In OVX rats, the administration of TAM (6mg/kg) produced memory impairment but pre-test intra-CA1 microinjection of nicotine (0.5μg/rat) had no effect on TAM response. Moreover, the administration of an ineffective dose of TAM (2mg/kg) had no effect on memory retrieval in OVX rats, while pre-test intra-CA1 microinjection of mecamylamine (0.3μg/rat) impaired memory retrieval. Taken together, it can be concluded that the impairing effect of TAM on memory formation may be modulated by nAChRs of the CA1 regions. It seems that memory impairment may be considered as an important side effect of TAM. PMID:27072849

  5. Extensive juvenile "babysitting" facilitates later adult maternal responsiveness, decreases anxiety, and increases dorsal raphe tryptophan hydroxylase-2 expression in female laboratory rats.

    Science.gov (United States)

    Harding, Kaitlyn M; Lonstein, Joseph S

    2016-05-01

    Pregnancy and parturition can dramatically affect female neurobiology and behavior. This is especially true for laboratory-reared rodents, in part, because such rearing prevents a host of developmental experiences that females might undergo in nature, including juvenile alloparenting. We examined the effect of chronic exposure to pups during post-weaning juvenile life (days 22-36) on adult maternal responsiveness, anxiety-related behaviors, and dorsal raphe tryptophan hydroxylase-2 (TPH2) and serotonin transporter (SERT) levels in nulliparous rats. Adult females with juvenile alloparental experience showed significantly faster sensitized maternal responsiveness, less anxiety, and more dorsal raphe TPH2. Juvenile alloparenting did not affect females' later social novelty and preference behaviors toward adults, suggesting their increased interest in pups did not extend to all social partners. In a second experiment, suckling a pregnant dam (achieved by postpartum estrus reinsemination), interacting with her after standard laboratory weaning age, and a 3-day exposure to younger siblings also reduced juvenile females' later anxiety but did not affect maternal responsiveness or TPH2. Thus, extensive juvenile "babysitting" can have long-term effects reminiscent of pregnancy and parturition on maternal responsiveness and anxiety, and these effects may be driven by upregulated serotonin. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 492-508, 2016. PMID:26806471

  6. Intact sciatic myelinated primary afferent terminals collaterally sprout in the adult rat dorsal horn following section of a neighbouring peripheral nerve.

    Science.gov (United States)

    Doubell, T P; Mannion, R J; Woolf, C J

    1997-03-31

    Peripheral nerve section induces sprouting of the central terminals of axotomized myelinated primary afferents outside their normal dorsoventral termination zones in lamina I, III, and IV of the dorsal horn into lamina II, an area that normally only receives unmyelinated C-fiber input. This axotomy-induced regenerative sprouting is confined to the somatotopic boundaries of the injured nerve in the spinal cord. We examined whether intact myelinated sciatic afferents are able to sprout novel terminals into neighbouring areas of the dorsal horn in the adult rat following axotomy of two test nerves, either the posterior cutaneous nerve of the thigh or the saphenous nerve. These peripheral nerves have somatotopically organized terminal areas in the dorsal horn that overlap in some areas and are contiguous in others, with that of the sciatic central terminal field. Two weeks after cutting either the posterior cutaneous or the saphenous nerve, intact sciatic myelinated fibers labelled with the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) sprouted into an area of lamina II normally only innervated by the adjacent injured test nerve. This collateral sprouting was strictly limited, however, to those particular areas of the dorsal horn where the A-fiber terminal field of the control sciatic and the C-fiber terminal field of the injured test nerve overlapped in the dorsoventral plane. No mediolateral sprouting was seen into those areas of neuropil solely innervated by the test nerve. We conclude that intact myelinated primary afferents do have the capacity to collaterally sprout, but that any resultant somatotopic reorganization of central projections is limited to the dorsoventral plane. These changes may contribute to sensory hypersensitivity at the edges of denervated skin. PMID:9073085

  7. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    Directory of Open Access Journals (Sweden)

    Keast Janet R

    2009-12-01

    Full Text Available Abstract Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK and p38 mitogen-activated protein (MAP kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG neurons projecting to pelvic viscera (L1, L2, L6, S1 of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling. Results In studies of isolated DRG neurons in short-term (overnight culture, we found that estradiol and estrogen receptor (ER agonists rapidly stimulated ER-dependent p38 phosphorylation relative to total p38. Examination of DRGs following chronic estrogen deprivation in vivo (ovariectomy showed a parallel increase in total and phosphorylated p38 (relative to β-tubulin. We also observed an increase in ERK1 phosphorylation (relative to total ERK1, but no change in ERK1 expression (relative to β-tubulin. We observed no change in ERK2 expression or phosphorylation. Although ovariectomy increased the level of phosphorylated ERK1 (vs. total ERK1, cyclophosphamide-induced lower urinary tract inflammation did not cause a net increase of either ERK1 or ERK2, or their phosphorylation. Inflammation did, however, cause an increase in p38

  8. Cannabinoid inhibition of the capsaicin-induced calcium response in rat dorsal root ganglion neurones

    OpenAIRE

    Millns, Paul J; Chapman, Victoria; Kendall, David A.

    2001-01-01

    Cannabinoids have marked inhibitory effects on somatosensory processing, which may arise from actions at both peripheral and central cannabinoid receptors. Here, the effect of a synthetic cannabinoid agonist HU210 on capsaicin-evoked responses in adult rat dorsal root ganglion (DRG) neurones was studied. The vanilloid capsaicin produced a concentration-related increase in intracellular calcium in DRG neurones, which was significantly inhibited by HU210 (1 μM). The cannabinoid CB1 receptor ant...

  9. Collateral sprouting of uninjured primary afferent A-fibers into the superficial dorsal horn of the adult rat spinal cord after topical capsaicin treatment to the sciatic nerve.

    Science.gov (United States)

    Mannion, R J; Doubell, T P; Coggeshall, R E; Woolf, C J

    1996-08-15

    That terminals of uninjured primary sensory neurons terminating in the dorsal horn of the spinal cord can collaterally sprout was first suggested by Liu and Chambers (1958), but this has since been disputed. Recently, horseradish peroxidase conjugated to the B subunit of cholera toxin (B-HRP) and intracellular HRP injections have shown that sciatic nerve section or crush produces a long-lasting rearrangement in the organization of primary afferent central terminals, with A-fibers sprouting into lamina II, a region that normally receives only C-fiber input (Woolf et al., 1992). The mechanism of this A-fiber sprouting has been thought to involve injury-induced C-fiber transganglionic degeneration combined with myelinated A-fibers being conditioned into a regenerative growth state. In this study, we ask whether C-fiber degeneration and A-fiber conditioning are both necessary for the sprouting of A-fibers into lamina II. Local application of the C-fiber-specific neurotoxin capsaicin to the sciatic nerve has previously been shown to result in C-fiber damage and degenerative atrophy in lamina II. We have used B-HRP to transganglionically label A-fiber central terminals and have shown that 2 weeks after topical capsaicin treatment to the sciatic nerve, the pattern of B-HRP staining in the dorsal horn is indistinguishable from that seen after axotomy, with lamina II displaying novel staining in the identical region containing capsaicin-treated C-fiber central terminals. These results suggest that after C-fiber injury, uninjured A-fiber central terminals can collaterally sprout into lamina II of the dorsal horn. This phenomenon may help to explain the pain associated with C-fiber neuropathy. PMID:8756447

  10. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush.

    Science.gov (United States)

    Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai; Burke, Robert E; Detloff, Megan R; Côté, Marie-Pascale; Tom, Veronica J

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  11. Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord.

    Science.gov (United States)

    Baba, H; Doubell, T P; Moore, K A; Woolf, C J

    2000-02-01

    In vitro whole cell patch-clamp recording techniques were utilized to study silent pure-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in lamina II (substantia gelatinosa, SG) and lamina III of the spinal dorsal horn. To clarify whether these synapses are present in the adult and contribute to neuropathic pain, transverse lumbar spinal cord slices were prepared from neonatal, naive adult and adult sciatic nerve transected rats. In neonatal rats, pure-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were elicited in SG neurons either by focal intraspinal stimulation (n = 15 of 20 neurons) or focal stimulation of the dorsal root (n = 2 of 7 neurons). In contrast, in slices from naive adult rats, no silent pure-NMDA EPSCs were recorded in SG neurons following focal intraspinal stimulation (n = 27), and only one pure-NMDA EPSC was observed in lamina III (n = 23). Furthermore, in rats with chronic sciatic nerve transection, pure-NMDA EPSCs were elicited by focal intraspinal stimulation in only 2 of 45 SG neurons. Although a large increase in Abeta fiber evoked mixed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptor-mediated synapses was detected after sciatic nerve injury, Abeta fiber-mediated pure-NMDA EPSCs were not evoked in SG neurons by dorsal root stimulation. Pure-NMDA receptor-mediated EPSCs are therefore a transient, developmentally regulated phenomenon, and, although they may have a role in synaptic refinement in the immature dorsal horn, they are unlikely to be involved in receptive field plasticity in the adult. PMID:10669507

  12. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise; Nyborg, Niels C B; Fjalland, Bjarne;

    2013-01-01

    The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilatera......The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated...

  13. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compr...

  14. An Optimized Culture Method of Rat Dorsal Root Ganglion Neurons

    Institute of Scientific and Technical Information of China (English)

    LIUYin; CHENJing-Hong; GONGZe-Hui

    2004-01-01

    AIM: To establish a primary culture technique of acutely isolated dorsal root ganglion (DRG) neurons, and provide a simple & useful in vitro model for study of analgesia. Methods: Acutely isolated dorsal root ganglion (DRG) neurons were planted and cultured; the configuration and growth characters of DRG neurons were observed through inverted microscope.

  15. Altered neuronatin expression in the rat dorsal root ganglion after sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    Wu Chih-Hsien

    2010-05-01

    Full Text Available Abstract Background Several molecular changes occur following axotomy, such as gene up-regulation and down-regulation. In our previous study using Affymetrix arrays, it was found that after the axotomy of sciatic nerve, there were many novel genes with significant expression changes. Among them, neuronatin (Nnat was the one which expression was significantly up-regulated. Nnat was identified as a gene selectively expressed in neonatal brains and markedly reduced in adult brains. The present study investigated whether the expression of Nnat correlates with symptoms of neuropathic pain in adult rats with transected sciatic nerve. Methods Western blotting, immunohistochemistry, and the Randall and Selitto test were used to study the protein content, and subcellular localization of Nnat in correlation with pain-related animal behavior. Results It was found that after nerve injury, the expression of Nnat was increased in total protein extracts. Unmyelinated C-fiber and thinly myelinated A-δ fiber in adult dorsal root ganglions (DRGs were the principal sub-population of primary afferent neurons with distributed Nnat. The increased expression of Nnat and its subcellular localization were related to mechanical hyperalgesia. Conclusions The results indicated that there was significant correlation between mechanical hyperalgesia in axotomy of sciatic nerve and the increased expression of Nnat in C-fiber and A-δ fiber of adult DRG neurons.

  16. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle.

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-05-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  17. Morphological and immunohistochemical comparison of three rat prostate lobes (lateral, dorsal and ventral in experimental hyperprolactinemia.

    Directory of Open Access Journals (Sweden)

    Dariusz Gącarzewicz

    2010-11-01

    Full Text Available The prolactin plays an important role in the regulation of growth and differentiation of prostate gland besides androgens. The goal of this study was to reveal the influence of elevated prolactin concentration on epithelial cells of prostate. We compared the morphology of epithelial cells of prostate dorsal, lateral and ventral lobes and expression of androgen receptors in these cells in rats with hyperprolactinemia and in control rats. We used sexually mature male Wistar rats. The experimental rats received metoclopramide; the control group received saline in the same way. The prostate dorsal, lateral and ventral lobes were collected routinely for light and electron microscopy. The intensity of immunohistochemical reaction of androgen receptor in epithelial cells of dorsal, lateral and ventral lobes was evaluated by measure of optical density with computer image analysis. The light and electron (transmission and scanning microscopes were used for morphological observations. Results: In experimental rats twofold increase in prolactin and twofold decrease in testosterone found. In experimental group the expression of androgen receptor was lower in columnar epithelial cells of dorsal and ventral lobes but higher in lateral one. We observed morphological abnormalities in columnar epithelial cells of lateral and dorsal lobes. The columnar epithelial cells of ventral lobes didn't show any morphological changes in hyperprolactinemia.

  18. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  19. Evidence that dorsal locus coeruleus neurons can maintain their spinal cord projection following neonatal transection of the dorsal adrenergic bundle in rats.

    Science.gov (United States)

    Stanfield, B B

    1989-01-01

    In adult rats, locus coeruleus neurons which extend axons to the spinal cord are found only at mid-rostrocaudal levels of the nucleus, where they are essentially confined to its ventral, wedge-shaped half (Satoh et al. 1980; Westlund et al. 1983; Loughlin et al. 1986). However, during early postnatal development, coeruleospinal cells are found throughout the locus coeruleus (Cabana and Martin 1984; Chen and Stanfield 1987). This developmental restriction of the distribution of coeruleospinal neurons is due to axonal elimination rather than to cell death, since neurons retrogradely labeled through their spinal axons perinatally are still present in the dorsal portion of the locus coeruleus at survival periods beyond the age at which these cells lose their spinal projection (Chen and Stanfield 1987). I now report that if axons ascending from the locus coeruleus are cut by transecting the dorsal adrenergic bundle on the day of birth, a more widespread distribution of coeruleospinal neurons is retained beyond the perinatal period. These results not only indicate that the absence of the normally maintained collateral of a locus coeruleus neuron is sufficient to prevent the elimination of a collateral which would otherwise be lost, but also may imply that during normal postnatal development the presence of the maintained collateral is somehow causally involved in the elimination of the transient collateral. PMID:2612596

  20. Expression Profile of Tumor Endothelial Marker 7 and a Putative Ligand in the Rat Spinal Cord and Dorsal Root Ganglion

    OpenAIRE

    Wang, Lih; Lee, Kyu-Yeol; Park, Hwan-Tae; Kang, Dong-Sik

    2007-01-01

    Study Design To analyze the expression profile of tumor endothelial marker 7 (TEM7) in the spinal cord and dorsal root ganglion (DRG). Purpose To investigate the expression profile of TEM7 in the spinal cord and DRG of adult and developing rats. Overview of Literature Tumor endothelial marker 7 (TEM7) is a putative transmembrane protein that is highly expressed in the tumor endothelium and in cerebellar neurons. Methods In the present study, the expression profile of TEM7 in the spinal cord a...

  1. fMRI Evidence for Dorsal Stream Processing Abnormality in Adults Born Preterm

    Science.gov (United States)

    Chaminade, Thierry; Leutcher, Russia Ha-Vinh; Millet, Veronique; Deruelle, Christine

    2013-01-01

    We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20…

  2. Rabies virus infection of cultured adult mouse dorsal root ganglion neurons

    OpenAIRE

    Jaime Castellanos; Hernán Hurtado; Janeth Arias; Alvaro Velandia

    1996-01-01

    An in vitro model of adult dorsal root ganglion neurons infection by rabies virus is described. Viral marked neurotropism is observed, and the percentage and the degree of infection of the neurons is higher than in non neuronal cells, even if neurons are the minority of the cells in the culture. The neuritic tree is also heavily infected by the virus.

  3. Rabies virus infection of cultured adult mouse dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Jaime Castellanos

    1996-10-01

    Full Text Available An in vitro model of adult dorsal root ganglion neurons infection by rabies virus is described. Viral marked neurotropism is observed, and the percentage and the degree of infection of the neurons is higher than in non neuronal cells, even if neurons are the minority of the cells in the culture. The neuritic tree is also heavily infected by the virus.

  4. Ventilation induced apnea and its effect on dorsal brainstem inspiratory neurones in the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Balnave, Ron J.; Chow, Chin M.

    2007-01-01

    The purpose of this study was to examine the effect of mechanical ventilation (MV) on inherent breathing and on dorsal brainstem nucleus tractus solitarius (NTS) respiratory cell function. In pentobarbitone-anaesthetised rats, application of MV at combined high frequencies and volumes (representing

  5. LOCUS-COERULEUS PROJECTIONS TO THE DORSAL MOTOR VAGUS NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    TERHORST, GJ; TOES, GJ; VANWILLIGEN, JD

    1991-01-01

    The origin of the noradrenergic innervation of the preganglionic autonomic nuclei in the medulla oblongata and spinal cord is still controversial. In this investigation descending connections of the locus coeruleus to the dorsal motor vagus nucleus in the rat are studied with Phaseolus vulgaris leuc

  6. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    Science.gov (United States)

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-01

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. PMID:26612394

  7. Histology study on the dorsal root ganglia of rats with 125I seed brachytherapy at intervertebral foramen

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of the histological changes on rat dorsal root ganglia (DRG) after 125I seed brachytherapy.Methods Twelve adult male Sprague-Dawley rats (150-180 g each) were randomly divided into 6 groups,125I seeds with different activities of 0 (Titanium shell), 14.8, 18.5, 22.2, 25.9 and 29.6 MBq were implanted to 6 groups of rats respectively and the behavioral changes of rats were observed. The rats were killed in different periods after implantation,the morphological changes in DRG and surrounding muscle tissue were observed with an Olympus BX51 optical microscope and then the irradiation doses were estimated. Results: After 125I seed implantation, the movement function of rats was not affected and the weight of rats gained after 7 days. After the titanium shell implantation, very few mild swelling was induced in neuroganglion cells that still had clear nucleolus and normal cytoplasm. At 14 days after 18.5 MBq seed implantation, cell swelling was more serious and cell dehydrating, nuclear condensation and nuclear fragmentation appeared after 30 days. At 60 days after 29.6 MBq of seed implantation, nuclear dissolution and cytoplasmic shrinkage were induced in a large number of cells.In general, the severity of fibrosis was aggravated with the time post-irradiation and the dose in the muscles around the ganglion. Conclusions: After 125I seed implantation,the injury degree of DRG tissue is dose-dependent, and the 125I seed irradiation would have analgesic effect on releasing intractable pain. (authors)

  8. Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence

    International Nuclear Information System (INIS)

    The potential benefits of self-assembly in synthesizing materials for the treatment of both peripheral and central nervous system disorders are tremendous. In this study, we synthesized peptide-amphiphile (PA) molecules containing IKVAV sequence and induced self-assembly of the PA solutions in vitro to form nanofiber gels. Then, we tested the characterization of gels by transmission electron microscopy and demonstrated the biocompatibility of this gel towards rat dorsal root ganglion neurons. The nanofiber gel was formed by self-assembly of IKVAV PA molecules, which was triggered by metal ions. The fibers were 7-8 nm in diameter and with lengths of hundreds of nanometers. Gels were shown to be non-toxic to neurons and able to promote neurons adhesion and neurite sprouting. The results indicated that the self-assembling scaffold containing IKVAV sequence had excellent biocompatibility with adult sensory neurons and could be useful in nerve tissue engineering.

  9. Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zou Zhenwei; Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Wu Yongchao, E-mail: wuyongchao@hotmail.com [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Song Yulin; Wu Bin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China)

    2009-08-31

    The potential benefits of self-assembly in synthesizing materials for the treatment of both peripheral and central nervous system disorders are tremendous. In this study, we synthesized peptide-amphiphile (PA) molecules containing IKVAV sequence and induced self-assembly of the PA solutions in vitro to form nanofiber gels. Then, we tested the characterization of gels by transmission electron microscopy and demonstrated the biocompatibility of this gel towards rat dorsal root ganglion neurons. The nanofiber gel was formed by self-assembly of IKVAV PA molecules, which was triggered by metal ions. The fibers were 7-8 nm in diameter and with lengths of hundreds of nanometers. Gels were shown to be non-toxic to neurons and able to promote neurons adhesion and neurite sprouting. The results indicated that the self-assembling scaffold containing IKVAV sequence had excellent biocompatibility with adult sensory neurons and could be useful in nerve tissue engineering.

  10. Fos-like immunoreactivity in rat dorsal raphe nuclei induced by alkaloid extract of Mitragyna speciosa.

    Science.gov (United States)

    Kumarnsit, Ekkasit; Vongvatcharanon, Uraporn; Keawpradub, Niwat; Intasaro, Pranom

    2007-04-12

    Mitragyna speciosa (MS) has been traditionally used for medicinal purposes especially in southern Thailand. Previously, an alkaloid extract of this plant was demonstrated to mediate antinociception, partly, through the descending serotonergic system. The present study investigated the stimulatory effect of the MS extract on the dorsal raphe nucleus and its antidepressant-like activity. The MS extract containing approximately 60% mitragynine as a major indole alkaloid was used to treat the animals. The stimulatory effect of the MS extract was determined by detecting the expression of the immediate early gene, cfos, in the dorsal raphe nucleus of male Wistar rats. The immunohistochemistry was used to detect Fos protein, the protein product of cfos gene. The present data show that a significant increase in Fos expression was observed following long-term administration of the MS extract (40 mg/kg) for 60 consecutive days. In addition, the antidepressant-like activity of the MS extract was determined by using the forced swimming test (FST) in male mice. The results show that a single injection (either 60 or 90 mg/kg doses) significantly decreased immobility time in the FST. These findings indicate that the MS extract has a stimulatory effect on the dorsal raphe nucleus and an antidepressant-like activity. Stimulation of this brain area has been known to cause antinociception. These findings suggest that the MS extract might produce antinociceptive and/or antidepressive actions partly through activation of the dorsal raphe nucleus. Moreover, the dorsal raphe nucleus may be one of site of MS action in the central nervous system. PMID:17316993

  11. Stimulation of the rat dorsal raphe in vivo releases labeled serotonin from the parietal cortex

    International Nuclear Information System (INIS)

    In vivo release of labeled serotonin ([3H]5-HT) from the parietal cortex was investigated by cortical cup technique and electrical stimulation of midbrain raphe in rats anesthetized with pentobarbital sodium. The spontaneous efflux of tritium from the parietal cortex preloaded with [3H]5-HT followed a multiphasic exponential course. After 120 min, the rate of efflux appeared to fit the single exponential function (slow phase). Imipramine (10-6-10-3M) produced a dose-dependent increase in the spontaneous release. When pargyline in concentrations ranging from 10-4 to 10-3 M were added to the medium in the cup, the unchanged [3H]5-HT signficantly increased in a dose-dependent manner and the slow declining coefficient of tritium efflux significantly decreased in the presence of 10-4 pargyline. Stimulation of the rostral two-thirds of the dorsal raphe and the lateral 5-HT bundle originating from the dorsal raphe significantly increased the release of [3H]5-HT and its metabolites while stimulation of the caudal one-third of the dorsal raphe did not produce a significant increase in the release of [3H]5-HT and its metabolites. Stimulation of the median raphe produced no or only a slight increase in the release of [3H]5-HT and its metabolites. These findings are a direct demonstration of the in vivo release of [3H]5-HT from the parietal cortex with stimulation of the dorsal raphe, particularly the rostral two-thirds of the nucleus and provide the neurochemical evidence for the dorsal raphe-cortical 5-HT pathway via the lateral 5-HT bundle. (Auth.)

  12. The effect of collagenase on nerve conduction velocity of dorsal root ganglion in rats

    International Nuclear Information System (INIS)

    Objective: To study the functional effects of collagenase on dorsal root ganglion (DRG) in rats by evoked potential conduction velocity measurement. Methods: A total of 57 male healthy Sprague-Dawley rats were randomized into 7 groups: normal group, acute collagenase group, subacute collagenase group, chronic collagenase group, acute pseudo-operation group, subacute pseudo-operation group, chronic pseudo-operation group. 1200 units of collagenase was reconstituted in 4 ml isotonic saline prior for the experimental application. The left fifth lumbar DRG was exposed in each rat and followed by 1 ml collagenase solution (300 units) dropping on the exposed DRG in collagenase groups; and similarly 1 ml isotonic saline was applied to each of the exposed DRG in pseudo-operation groups. the effects of collagenase on nerve conduction velocity (NCV) were analyzed 1 hour, 1 week or 1 month after the procedure. The statistical analysis was carried out by software SPSS11.0. Results: The differences of NCV measured by evoked potential method between all groups including the normal group, collagenase groups, and pseudo-operation groups were not significant (P>0.05). Conclusion: The Neuroelectricity physiologic function of dorsal root ganglion and nerve would not be damaged by collagenase used in therapeutic concentration. (authors)

  13. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats

    Science.gov (United States)

    Busse, Sebastian; Schwarting, Rainer K. W.

    2016-01-01

    The present study is part of a series of experiments, where we analyze why and how damage of the rat’s dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning.

  14. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones

    OpenAIRE

    Sutton, K G; Martin, D. J.; Pinnock, R. D.; Lee, K.; Scott, R. H.

    2002-01-01

    This study examined the action of gabapentin (gabapentin,1-(aminomethyl) cyclohexane acetic acid (Neurontin®)) on voltage-gated calcium (Ca2+) channel influx recorded in cultured rat dorsal root ganglion (DRG) neurones.Voltage-gated Ca2+ influx was monitored using both fura-2 based fluorescence Ca2+ imaging and the whole-cell patch clamp technique.Imaging of intracellular Ca2+ transients revealed that gabapentin inhibited KCl (30 mM)-evoked voltage-dependent Ca2+ influx. Both the duration for...

  15. Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (-)-baclofen.

    OpenAIRE

    Dolphin, A.C.; Scott, R. H.

    1986-01-01

    Voltage-dependent inward calcium currents (ICa) activated in cultured rat dorsal root ganglion neurones were reversibly reduced in a dose-dependent manner by (-)-baclofen (10 microM to 100 microM). Baclofen (100 microM) reduced the calcium-dependent slow outward potassium current (IK(Ca)). This current was abolished in calcium-free medium and by 300 microM cadmium chloride. The action of baclofen on IK(Ca) was reduced when the calcium concentration in the medium was increased from 5 mM to 30 ...

  16. Morphology of the epithelial cells and expression of androgen receptor in rat prostate dorsal lobe in experimental hyperprolactinemia.

    OpenAIRE

    Marcin Wylot; Wojciech Głabowski; Maria Laszczyńska; Sylwia Słuczanowska-Głabowska

    2006-01-01

    The effect of hyperprolactinemia on the prostate has not been well investigated. Since androgens play an important role in prostate development, growth and function, the goal of the present study was to estimate the influence of hyperprolactinemia on expression of the androgen receptor (AR) in rat epithelial cells of prostate dorsal lobe and on morphology of these cells. Studies were performed on sexually mature male Wistar rats. The experimental group rats received metoclopramide (MCP) intra...

  17. Morphology of the epithelial cells and expression of androgen receptor in rat prostate dorsal lobe in experimental hyperprolactinemia.

    Directory of Open Access Journals (Sweden)

    Marcin Wylot

    2006-04-01

    Full Text Available The effect of hyperprolactinemia on the prostate has not been well investigated. Since androgens play an important role in prostate development, growth and function, the goal of the present study was to estimate the influence of hyperprolactinemia on expression of the androgen receptor (AR in rat epithelial cells of prostate dorsal lobe and on morphology of these cells. Studies were performed on sexually mature male Wistar rats. The experimental group rats received metoclopramide (MCP intraperitoneally to provoke hyperprolactinemia. The control group animals were given saline in the same way. For light and electron microscopy the prostate dorsal lobes were obtained routinely. To evaluate the intensity of immunohistochemical reaction for AR in epithelial cells, the optical density was measured and computer-assisted image analysis system was used. Morphological observations of the dorsal lobe epithelial cells were carried out in transmission electron microscope. MCP caused over twofold increase in prolactin (PRL serum levels. In rats with hyperprolactinemia, the testosterone levels (T were twofold decreased. The intensity of immunohistochemical reaction for AR in epithelial cells of dorsal lobe in the experimental group was significantly lower than in the control group. In the dorsal lobe epithelial cells of experimental group animals, the transmission electron microscopy (TEM revealed highly dilated RER cisternae and reduced number of microvilli on the cellular surface when compared to the control group. The results show that hyperprolactinemia in male rats causes morphological abnormalities in the dorsal lobe of prostate. The abnormalities are caused by elevated prolactin either directly or indirectly through decreased level of testosterone. Decreased expression of AR in epithelial cells of prostate dorsal lobe is likely to be caused by decreased testosterone level.

  18. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Liu Dongjuan

    2012-11-01

    Full Text Available Abstract Introduction Post-traumatic stress disorder (PTSD is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS. The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM. Levels of Cytochrome c (Cyt-C was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM. The change of thiamine monophosphatase (TMP levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated

  19. Deafferentation is insufficient to induce sprouting of A-fibre central terminals in the rat dorsal horn.

    Science.gov (United States)

    Mannion, R J; Doubell, T P; Gill, H; Woolf, C J

    1998-04-01

    The mechanism by which A-fibres sprout into lamina II of the dorsal horn of the adult rat after peripheral nerve injury, a region which normally receives input from noci- and thermoreceptive C-fibres alone, is not known. Recent findings indicating that selective C-fibre injury and subsequent degenerative changes in this region are sufficient to induce sprouting of uninjured A-fibres have raised the possibility that the structural reorganisation of A-fibre terminals is an example of collateral sprouting, in that deafferentation of C-fibre terminals alone in lamina II may be sufficient to cause A-fibre sprouting. Primary afferents of the sciatic nerve have their cell bodies located predominantly in the L4 and L5 dorsal root ganglia (DRGs), and the A-fibres of each DRG have central termination fields that show an extensive rostrocaudal overlap in lamina III in the L4 and L5 spinal segments. In this study, we have found that C-fibres from either DRG have central terminal fields that overlap much less in lamina II than A-fibres in lamina III. We have exploited this differential terminal organisation to produce deafferentation in lamina II of the L5 spinal segment, by an L5 rhizotomy, and then test whether A-fibres of the intact L4 dorsal root ganglion, which terminate within the L5 segment, sprout into the denervated lamina II in the L5 spinal segment. Neither intact nor peripherally injured A-fibres were seen to sprout into denervated lamina II after L5 rhizotomy. Sprouting was only ever seen into regions of lamina II containing the terminals of peripherally injured C-fibres. Therefore, it seems that the creation of synaptic space within lamina II is not the explanation for A-fibre sprouting after peripheral nerve section or crush, emphasising that injury-induced changes in C-fibres and subsequent chemotrophic effects in the superficial dorsal horn are the likely explanation. PMID:9548693

  20. Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Qiu Chun-Yu

    2012-05-01

    Full Text Available Abstract Background Prokineticin 2 (PK2 is a secreted protein and causes potent hyperalgesia in vivo, and is therefore considered to be a new pronociceptive mediator. However, the molecular targets responsible for the pronociceptive effects of PK2 are still poorly understood. Here, we have found that PK2 potentiates the activity of acid-sensing ion channels in the primary sensory neurons. Methods In the present study, experiments were performed on neurons freshly isolated from rat dorsal root ganglion by using whole-cell patch clamp and voltage-clamp recording techniques. Results PK2 dose-dependently enhanced proton-gated currents with an EC50 of 0.22 ± 0.06 nM. PK2 shifted the proton concentration-response curve upwards, with a 1.81 ± 0.11 fold increase of the maximal current response. PK2 enhancing effect on proton-gated currents was completely blocked by PK2 receptor antagonist. The potentiation was also abolished by intracellular dialysis of GF109203X, a protein kinase C inhibitor, or FSC-231, a protein interacting with C-kinase 1 inhibitor. Moreover, PK2 enhanced the acid-evoked membrane excitability of rat dorsal root ganglion neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, PK2 exacerbated nociceptive responses to the injection of acetic acid in rats. Conclusion These results suggest that PK2 increases the activity of acid-sensing ion channels via the PK2 receptor and protein kinase C-dependent signal pathways in rat primary sensory neurons. Our findings support that PK2 is a proalgesic factor and its signaling likely contributes to acidosis-evoked pain by sensitizing acid-sensing ion channels.

  1. Effects of Extracellular ATP on Survival of Sensory Neurons in the Dorsal Root Ganglia of Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    ATP was added to the cultured sensory neurons obtained from the dorsal root ganglia of the neonatal rats and PBS was added to serve as control. MTT assays were conducted to evaluate the survival and activity of the cultured neurons. And the silicone regenerative chamber was used after the sciatic nerve incision of the mature SD rat. 1 mmol/L ATP was injected into the left chamber and 0.09 % natrium chloride was injected into the right chamber as controls. The changes of nitric oxide synthase (NOS) activity in the corresponding dorsal root ganglia were measured histochemically and image analysis was also performed 4 days after the sciatic nerve injury. The results showed that extracellular ATP could enhance the survival of the neurons and the number of NOS positive neurons were significantly different between the ATP and control groups (P<0.05). It was suggested that extracellular ATP had neurotrophic effect on neurons survival and could inhibit the NOS activity of the sensory neurons after the peripheral nerve incision, hence exerting the protective effect on the neurons, which was valuable for nerve regeneration after nerve injury.

  2. Calcium-mediated paired pulse depression in juvenile rat dorsal striatum

    Institute of Scientific and Technical Information of China (English)

    Yufeng Xie; Michael F. Jackson; John F. MacDonald

    2012-01-01

    As the major division of the basal ganglia, neostriatum forms mutual connections with multiple brain areas and is critically involved in motor control and learning/memory. Long-term synaptic plasticity has been widely studied in different species recently. However, there are rare reports about the short-term synaptic plasticity in neostratium. In the present study, using field excitatory postsynaptic potentials recording, we reported one form of short-term synaptic plasticity that is paired pulse de-pression in juvenile rat dorsal striatum slices induced by stimuli of the white matter. The field exci-tatory postsynaptic potentials could be abolished by α-amino-3-hydroxy-5-methylizoxazole-4- propionic acid receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not by gamma-aminobutyric acid type A receptor antagonist bicuculline or dopamine D1 receptor antago-nist SKF-81297. The paired pulse depression in the corticostratial pathway was different from paired pulse facilitation in the hippocampal CA1 synapse. In addition, the paired pulse depression was not affected by bath application of gamma-aminobutyric acid type A receptor antagonist or dopamine D1 receptor antagonist. However, low calcium and high magnesium could attenuate the paired pulse depression. These findings suggest a more complicated plasticity form in the dorsal striatum of juvenile rats that is different from that in the hippocampus, which is related with extracellular calcium.

  3. A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons

    International Nuclear Information System (INIS)

    The expression of major cytoskeletal protein mRNAs was studied in adult rat dorsal root ganglion (DRG) neurons after crushing either their central or peripheral branch axons. mRNA levels in DRG neurons were examined by quantitative in situ hybridization with radiolabeled cDNA probes specific for the low-molecular-weight neurofilament protein (NF-L) and beta-tubulin. The large-sized (greater than 1000 microns 2) neurons which give rise to myelinated axons in lumbar ganglia (L4 and L5) were studied 1 d through 8 weeks after either dorsal root or sciatic nerve crush. NF-L and beta-tubulin mRNA levels in axotomized DRG neurons were compared to those in contralateral control DRG neurons, as well as to those in normal (completely untreated) DRG cells. In the case of NF-L mRNA, changes were observed after central as well as peripheral branch axotomy and the time course and magnitude of changes were similar after both types of axotomy. NF-L mRNA levels initially decreased (first 2 weeks after crush) and then began to return towards control levels at longer survival times. Similar, but less pronounced, changes in NF-L mRNA levels also occurred in contralateral DRG neurons (which were uninjured); the changes in contralateral neurons were not simply a result of surgical stress since no changes in NF-L mRNA levels were observed in sham-operated DRG neurons. In the case of tubulin mRNA, changes were observed after central as well as peripheral branch axotomy by in situ hybridization, but the time course and magnitude of changes were different after each type of axotomy

  4. Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury.

    Science.gov (United States)

    Wang, Dongmei; Xue, Yaping; Yan, Yanhua; Lin, Minjie; Yang, Jiajia; Huang, Jianzhong; Hong, Yanguo

    2016-07-01

    The rodent Mas-related gene (Mrg) receptor subtype C has been demonstrated to inhibit pathological pain. This study investigated the mechanisms underlying the reversal of pain hypersensitivity by the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) in a rat model of L5 spinal nerve ligation (SNL). Intrathecal (i.t.) administration of BAM8-22 (0.1-10nmol) attenuated mechanical allodynia in a dose-dependent manner on day 10 after SNL. The antiallodynia effect of BAM8-22 was abolished by MrgC receptor antibody, but not by naloxone. I.t. BAM8-22 (10nmol) inhibited SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) and phosphorylation of cyclic AMP response element-binding protein (p-CREB) in the spinal dorsal horn. The BAM8-22 treatment reversed the SNL-induced astrocyte activation, increase of interleukin-1β (IL-1β) expression and phosphorylation of extracellular signal-regulated kinase (p-ERK) in the spinal cord. BAM8-22 also reversed the upregulation of fractalkine and IL-1β in small- and medium-sized dorsal root ganglion (DRG) neurons. Furthermore, the BAM8-22 exposure suppressed the lipopolysaccharide (LPS)-induced increase of nNOS and IL-1β in the DRG explant cultures and the BAM8-22-induced suppression disappeared in the presence of MrgC receptor antibody. The present study provides evidence that activation of MrgC receptors inhibits nerve injury-induced increase of pronociceptive molecules in DRG neurons, suppressing astrocyte activation, the upregulation of excitatory mediators and phosphorylation of transcription factors in the spinal dorsal horn. As MrgC receptors are unequally expressed in the dorsal root and trigeminal ganglia, this study suggests that targeting MrgC receptors could be a new therapy for neuropathic pain with limited unwanted effects. PMID:27018398

  5. Ethanol consumption in the Sprague-Dawley rat increases sensitivity of the dorsal raphe nucleus to 5,7-dihydroxytryptamine.

    Science.gov (United States)

    Vasudeva, Rani K; Hobby, Alexander R; Kirby, Lynn G

    2015-12-15

    Alcoholism afflicts 1 in 13 US adults, and comorbidity with depression is common. Levels of serotonin (5-HT) metabolites in alcoholic or depressed humans and rat strains are lower compared to healthy counterparts. Rats bred for ethanol (EtOH) preference are common in EtOH studies, however out-bred strains better model the range of EtOH consumption in humans. We examined voluntary EtOH consumption in out-bred Sprague-Dawley (SD) rats placed in the 20% EtOH intermittent access drinking paradigm (IA). Acquisition of 20% EtOH consumption (g EtOH/kg/24h) was assessed during the first 6-8 weeks of IA. Rats naturally separated into two groups (Drinkers or Non-drinkers) based on EtOH intake above or below 0.5 g/kg/24h prior to treatment intervention. We examined the effect of central 5-HT depletion on EtOH consumption by infusing 5,7-dihyroxytryptamine (5,7-DHT; i.c.v., 200-300 μg) or vehicle and measured EtOH consumption for 4 weeks post-operatively in IA. Compared to baseline, there was no effect of vehicle or 5,7-DHT on EtOH consumption during the post-operative period. Quantification of 5-HT depletion in the dorsal raphe nucleus (DRN) using tryptophan hydroxylase-2 (TPH2) immunohistochemistry resulted in a 76% decrease in staining with 5,7-DHT treatment. Interestingly, preservation of the ventromedial (VM) sub-regions was evident in all animals treated with 5,7-DHT, regardless of drinking behavior. In addition, Drinkers treated with 5,7-DHT had significantly more TPH2 depletion in the DRN compared to Non-drinkers. Our findings indicate that out-bred SD rats exhibit a natural EtOH consumption behavior (Drinker or Non-drinker) that is stable across time and independent of 5-HT depletion in the CNS. In addition, rats that regularly consumed >0.5 g EtOH/kg had greater sensitivity to 5,7-DHT in the DRN, indicating an interaction between EtOH and sensitivity of DRN 5-HT cells to neurotoxic substances. This may contribute to the dysfunctionality of the 5-HT system in

  6. Cocaine induces ubiquitination of Egr-1 in the rat dorsal striatum.

    Science.gov (United States)

    Xu, Shijie; Kang, Ung Gu

    2014-12-01

    Early growth response (Egr) is a member of the zinc finger family of transcription factors that reflects neuronal activity induced by various stimuli. Acute cocaine administration elicits rapid and transient induction of several immediate early genes in brain neurons. However, the mechanism regulating the degradation of the Egr-1 protein is not clearly understood. In this study, rats were injected with cocaine and the relationships among locomotor activity, Egr-1 protein level, phosphorylation of upstream kinase extracellular regulated kinase (ERK)1/2, Egr-1 mRNA expression, and ubiquitination of the Egr-1 protein were measured in the dorsal striatum and the frontal cortex. Locomotor activity reached a peak at about 15 min, and phosphorylation of ERK1/2 and Egr-1 mRNA level also increased at that time. However, the Egr-1 protein level decreased initially in the dorsal striatum, probably due to ubiquitination-mediated degradation. When locomotor activity decreased substantially at 30 min, the phosphorylation of ERKs and expression levels of Egr-1 mRNA and protein reached their peak levels and the protein level subsequently increased. These findings indicate that immediate early gene protein levels would not be a reliable indicator of increased regional activity in the brain. Thus, observations spanning multiple time periods or the examination of mRNA rather than protein would be recommended in these situations. PMID:25325348

  7. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    OpenAIRE

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression o...

  8. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats.

    Science.gov (United States)

    Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-03-01

    Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. PMID:26802511

  9. Brainstem and thalamic projections from a craniovascular sensory nervous centre in the rostral cervical spinal dorsal horn of rats

    DEFF Research Database (Denmark)

    Liu, Y; Broman, J; Zhang, M;

    2009-01-01

    To examine the ascending projections from the headache-related trigeminocervical complex in rats, biotinylated dextran amine (BDA) was injected into the ventrolateral dorsal horn of segments C1 and C2, a region previously demonstrated to receive input from sensory nerves in cranial blood vessels...

  10. The effects of capsaicin and acidity on currents generated by noxious heat in cultured neonatal rat dorsal root ganglion neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Orkand, R. K.; Vyklický st., Ladislav

    2001-01-01

    Roč. 533, č. 3 (2001), s. 717-728. ISSN 0022-3751 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : capsaicin * dorsal root ganglion neurones * neonatal rat Subject RIV: FH - Neurology Impact factor: 4.476, year: 2001

  11. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision.Under the influence of neurotrophic factors,bFGF and NGF,the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia,which could directly induce the differentiation toward neurons,or SCs.

  12. Caspase-Mediated Apoptosis in Sensory Neurons of Cultured Dorsal Root Ganglia in Adult Mouse

    Directory of Open Access Journals (Sweden)

    Hamid Reza Momeni

    2013-01-01

    Full Text Available Objective: Sensory neurons in dorsal root ganglia (DRG undergo apoptosis after peripheral nerve injury. The aim of this study was to investigate sensory neuron death and the mechanism involved in the death of these neurons in cultured DRG.Materials and Methods: In this experimental study, L5 DRG from adult mouse were dissected and incubated in culture medium for 24, 48, 72 and 96 hours. Freshly dissected and cultured DRG were then fixed and sectioned using a cryostat. Morphological and biochemical features of apoptosis were investigated using fluorescent staining (Propidium iodide and Hoechst 33342 and the terminal Deoxynucleotide transferase dUTP nick end labeling (TUNEL method respectively. To study the role of caspases, general caspase inhibitor (Z-VAD.fmk, 100 μM and immunohistochemistry for activated caspase-3 were used.Results: After 24, 48, 72 and 96 hours in culture, sensory neurons not only displayed morphological features of apoptosis but also they appeared TUNEL positive. The application of Z-VAD.fmk inhibited apoptosis in these neurons over the same time period. In addition, intense activated caspase-3 immunoreactivity was found both in the cytoplasm and the nuclei of these neurons after 24 and 48 hours.Conclusion: Results of the present study show caspase-dependent apoptosis in the sensory neurons of cultured DRG from adult mouse.

  13. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  14. Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat

    OpenAIRE

    Garraway, Sandra M.; Hochman, Shawn

    2001-01-01

    Spinal cord slices and whole-cell patch clamp recordings were used to investigate the effects of serotonergic receptor ligands on dorsal root-evoked synaptic responses in deep dorsal horn (DDH) neurons of the neonatal rat at postnatal days (P) 3 – 6 and P10 – 14.Bath applied 5-hydroxytryptamine (5-HT) potently depressed synaptic responses in most neurons. Similarly, the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (5-CT) depressed synaptic responses. This action was probably mediated by ...

  15. Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats

    Institute of Scientific and Technical Information of China (English)

    Bin Yu; Songlin Zhou; Tianmei Qian; Yongjun Wang; Fei Ding; Xiaosong Gu

    2011-01-01

    MicroRNAs (miRNAs) are a class of small,non-coding RNAs (~22 nucleotides) that negatively regulate gene expression post-transcriptionally,either through translational inhibition or degradation of target mRNAs.We uncovered a previously unknown alteration in the expression of miRNAs in the dorsal root ganglia (DRG) at 1,4,7,and 14 days after resection of the sciatic nerve in rats using microarray analysis.Thirty-two significantly upregulated and 18 downregulated miRNAs were identified in the DRG at four time points following sciatic nerve injury.The expression of four consecutively deregulated miRNAs,analyzed by real-time Taqman polymerase chain reaction,was in agreement with the microarray data (upregulated: miR-21,miR-221; downregulated:miR-500,miR-551b),The potential targets for these miRNAs,altered after sciatic nerve resection,are involved mainly in nervous system development,multi-cellular organismal development,and the regulation of cellular processes.This study demonstrated a different involvement of miRNAs in the DRG after resection of the sciatic nerve in a rat model,and it may also contribute in illustrating the molecular mechanisms responsible for nerve regeneration.

  16. Expression changes of parvalbumin and microtubule-associated protein 2 induced by chronic constriction injury in rat dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-hui; JI Feng-tao; LIU Ling; LI Feng

    2011-01-01

    Background Parvalbumin (PV), as a mobile endogenous calcium buffer, plays an important role in affecting temporospatial characteristics of calcium transients and in modulating calcium homeostasis. PV is expressed in neurons in the dorsal root ganglion (DRG) and spinal dorsal horn and may be involved in synaptic transmission through regulating cytoplasm calcium concentrations. But the exact role of PV in peripheral sensory neurons remains unknown.Microtubule-associated protein 2 (MAP-2), belonging to structural microtubule-associated protein family, is especially vulnerable to acute central nervous system (CNS) injury, and there will be rapid loss of MAP-2 at the injury site. The present study investigated the changes of PV expressing neurons and the MAP-2 neurons in the DRG after an operation for chronic constriction injury to the unilateral sciatic nerve (CCI-SN), in order to demonstrate the possible roles of PV and MAP-2 in transmission and modulation of peripheral nociceptive information.Methods Seventy-two adult male Sprague-Dawley (SD) rats, weighing 180-220 g, were randomly divided into two groups (36 rats in each group), the sham operation group and chronic constriction injury (CCI) group. Six rats in each group were randomly selected to receive mechanical and thermal sensitivity tests at one day before operation and 1,3, 5,7, and 14 days after surgery. After pain behavioral test, ipsilateral lumbar fifth DRGs were removed and double immunofluorescence staining was performed to assess the expression changes of PV and of MAP2 expressing neurons in the L5 DRG before or after surgery.Results The animals with CCI-SN showed obvious mechanical allodynia and thermal hyperalgesia (P<0.05). Both the thermal and mechanical hyperalgesia decreased to their lowest degree at 7 days after surgery compared to the baseline before surgery (P<0.01). In normal rats before surgery, a large number of neurons were MAP-2 single labeled cells, and just a small number of PV

  17. Effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow in the rat

    International Nuclear Information System (INIS)

    We have studied the effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow (LCBF), as assessed by the quantitative [14C]-iodoantipyrine autoradiographic technique. Stimulation of the dorsal raphe nucleus in the alpha-chloralose anesthetized rat caused a significant decrease in LCBF, ranging from -13 to -26% in 24 brain structures out of 33 investigated. The most pronounced decreases (-23 to -26%) were observed in the accumbens, amygdaloid, interpeduncular nuclei and in the median raphe nucleus, limbic system relays. The decreases also concerned cortical regions and the extrapyramidal system. These results indicate that activation of ascending serotonergic system produces a vasoconstriction and that the dorsal raphe nucleus has a widespread modulatory influence on the cerebral circulation

  18. Effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Bonvento, G.; Lacombe, P.; Seylaz, J. (Universite Paris VII (France))

    1989-06-01

    We have studied the effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow (LCBF), as assessed by the quantitative ({sup 14}C)-iodoantipyrine autoradiographic technique. Stimulation of the dorsal raphe nucleus in the alpha-chloralose anesthetized rat caused a significant decrease in LCBF, ranging from -13 to -26% in 24 brain structures out of 33 investigated. The most pronounced decreases (-23 to -26%) were observed in the accumbens, amygdaloid, interpeduncular nuclei and in the median raphe nucleus, limbic system relays. The decreases also concerned cortical regions and the extrapyramidal system. These results indicate that activation of ascending serotonergic system produces a vasoconstriction and that the dorsal raphe nucleus has a widespread modulatory influence on the cerebral circulation.

  19. Immunohistochemical localization of glutamate transporter EAAC1 in the brainstem of adult rat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fu-xing; LIU Tao; ZHAO Jing-wei; LI Jin-lian; DONG Yu-lin; LI Ji-shuo

    2001-01-01

    Objective: To observe the distribution of EAAC1, a subtype of glutamate transporters, in the brainstem of adult rat. Methods: Immunocytochemical staining with avidin-biotin complex (ABC) method was employed. Results:EAAC1 was widely distributed throughout the brainstem. In many regions, the EAAC1-like immunoreactivity was primarily distributed in the neuropil. Cell body staining was observed in the prepositus hypoglossal nucleus, external cortex of the inferior colliculus, red nucleus, substantia nigra, mesencephalic raphe nuclei, ventral tegmental nucleus, superior olivary complex, nucleus of the trapezoid body, cochlear nucleus, sensory trigeminal complex, Barrington's nucleus,trigeminal motor nucleus, parabrachial nuclei, dorsal nucleus of vagus, hypoglossal nucleus, locus coeruleus, lateral and superior vestibular nuclei, lateral paragigantocellular nucleus and dorsal paragigantocellular nucleus. Conclusion: Glutamate transporter EAAC 1 is widely distributed throughout the brainstem of adult rat, which may play an important role in excitatory activities of the neurons induced by glutamate.

  20. Systemic physiology and neuroapoptotic profiles in young and adult rats exposed to surgery

    DEFF Research Database (Denmark)

    Ibrahim, Rami Mossad; Krammer, Caspar Weel; Hansen, Tom Giedsing;

    2015-01-01

    experimental groups receiving dexmedetomidine, while propofol administration was associated with increased systemic lactate levels and metabolic acidosis. A substantial difference in anaesthesia/surgery-induced neuroapoptosis was found between young and adult rats in several brain regions. Combination of...... one of four anaesthetics regimens: (i) sevoflurane/dexmedetomidine, (ii) sevoflurane/fentanyl; (iii) propofol/dexmedetomidine, and (iv) propofol/fentanyl. Animals underwent a dorsal skin flap procedure while physiologic, metabolic and biochemical parameters were closely monitored. Neuroapoptotic...

  1. Brainstem and thalamic projections from a craniovascular sensory nervous centre in the rostral cervical spinal dorsal horn of rats.

    OpenAIRE

    Liu, Y.; Broman, Jonas; Zhang, Mengliang; Edvinsson, Lars

    2009-01-01

    To examine the ascending projections from the headache-related trigeminocervical complex in rats, biotinylated dextran amine (BDA) was injected into the ventrolateral dorsal horn of segments C1 and C2, a region previously demonstrated to receive input from sensory nerves in cranial blood vessels. Following injections into laminae I-II, BDA-labelled terminations were found bilaterally in several nuclei in the pons and the midbrain, including the pontine reticular nucleus, the parabrachial nucl...

  2. Light-evoked Somatosensory Perception of Transgenic Rats That Express Channelrhodopsin-2 in Dorsal Root Ganglion Cells

    OpenAIRE

    Zhi-Gang Ji; Shin Ito; Tatsuya Honjoh; Hiroyuki Ohta; Toru Ishizuka; Yugo Fukazawa; Hiromu Yawo

    2012-01-01

    In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG) neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2) transgene is driven by the Thy-1.2 promot...

  3. Dorsal Hippocampal Regulation of Memory Reconsolidation Processes that Facilitate Drug Context-induced Cocaine-seeking Behavior in Rats

    OpenAIRE

    Ramirez, Donna R.; Bell, Guinevere H.; Lasseter, Heather C.; Xie, Xiaou; Traina, Stephanie A.; Fuchs, Rita A.

    2009-01-01

    Exposure to a cocaine-paired context increases the propensity for relapse in cocaine users and prompts cocaine-seeking behavior in rats. According to the reconsolidation hypothesis, upon context re-exposure, established cocaine-related associations are retrieved and can become labile. These associations must undergo reconsolidation into long-term memory to effect enduring stimulus control. The dorsal hippocampus (DH), dorsolateral caudate-putamen, and dorsomedial prefrontal cortex are critica...

  4. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice

    OpenAIRE

    Gao, Hong; Glatzer, Nicholas R.; Williams, Kevin W; Andrei V Derbenev; Liu, Dan; Bret N Smith

    2009-01-01

    The dorsal motor nucleus of the vagus (DMV) contains preganglionic motor neurons that control viscera along the subdiaphragmatic digestive tract, but may also contain neurons that do not project to the viscera. Neurons that expressed EGFP 60-72 h subsequent to PRV-152 inoculation of vagal terminals in the stomach wall were targeted for whole-cell patch-clamp recording and biocytin filling in transverse brainstem slices from rats and their quantitative morphological and electrophysiological ch...

  5. Dissociation of dorsal hippocampal regional activation under the influence of stress in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Johannes Passecker

    2011-10-01

    Full Text Available Stress has deleterious effects on brain, body and behaviour in humans and animals alike. The present work investigated how 30-minute acute photic stress exposure impacts on spatial information processing in the main subregions of the dorsal hippocampal formation (CA1, CA3 and Dentate Gyrus, a brain structure prominently implicated in memory and spatial representation. Recordings were performed from spatially tuned hippocampal and dentate gyrus cells in rats while animals foraged in a square arena for food. The stress procedure induced a decrease in firing frequencies in CA1 and CA3 place cells while sparing locational characteristics. In contrast to the CA1-CA3 network, acute stress failed to induce major changes in the DG neuronal population. These data demonstrate a clear dissociation of the effects of stress on the main hippocampal sub-regions. Our findings further support the notion of decreased hippocampal excitability arising from stress in areas CA1 and CA3, but not in dentate gyrus.

  6. Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats.

    Science.gov (United States)

    Gong, Leilei; Wu, Jiancheng; Zhou, Songlin; Wang, Yaxian; Qin, Jing; Yu, Bin; Gu, Xiaosong; Yao, Chun

    2016-09-01

    Peripheral nervous system has intrinsic regeneration ability after injury, accompanied with the coordination of numerous cells, molecules and signaling pathways. These post-injury biological changes are complex with insufficient understanding. Thus, to obtain a global perspective of changes following nerve injury and to elucidate the mechanisms underlying nerve regeneration are of great importance. By RNA sequencing, we detected transcriptional changes in dorsal root ganglia (DRG) neurons at 0 h, 3 h, 9 h, 1 d, 4 d and 7 d following sciatic nerve crush injury in rats. Differentially expressed genes were then selected and classified into major clusters according to their expression patterns. Cluster 2 (with genes high expressed before 9 h and then down expressed) and cluster 6 (combination of cluster 4 and 5 with genes low expressed before 1 d and then up expressed) were underwent GO annotation and KEGG pathway analysis. Gene act networks were then constructed for these two clusters and the expression of pivotal genes was validated by quantitative real-time PCR. This study provided valuable information regarding the transcriptome changes in DRG neurons following nerve injury, identified potential genes that could be used for improving axon regeneration after nerve injury, and facilitated to elucidate the biological process and molecular mechanisms underlying peripheral nerve injury. PMID:27450809

  7. Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats.

    Science.gov (United States)

    Braun, Amanda A; Graham, Devon L; Schaefer, Tori L; Vorhees, Charles V; Williams, Michael T

    2012-05-01

    Successful navigation requires interactions among multiple but overlapping neural pathways mediating distinct capabilities, including egocentric (self-oriented, route-based) and allocentric (spatial, map-based) learning. Route-based navigation has been shown to be impaired following acute exposure to the dopaminergic (DA) drugs (+)-methamphetamine and (+)-amphetamine, but not the serotoninergic (5-HT) drugs (±)-3,4-methylenedioxymethamphetamine or (±)-fenfluramine. The dopaminergic-rich neostriatum is involved in both allocentric and egocentric navigation. This experiment tested whether dorsal striatal DA loss using bilateral 6-hydroxydopamine (6-OHDA) injections impaired one or both types of navigation. Two weeks following 6-OHDA injections, rats began testing in the Cincinnati water maze (CWM) followed by the Morris water maze (MWM) for route-based and spatial navigation, respectively. 6-OHDA treatment significantly increased latency and errors in the CWM and path length, latency, and cumulative distance in the MWM with no difference on cued MWM trials. Neostriatal DA levels were reduced by 80% at 2 and 7 weeks post-treatment. In addition, 6-OHDA increased DA turnover and decreased norepinephrine (NE) levels. 6-OHDA injections did not alter monoamine levels in the prefrontal cortex. The data support that neostriatal DA modulates both types of navigation. PMID:22465436

  8. Early ultrastructural changes in the dorsal mucosa of rat tongue after irradiation, with special reference to the microvasculature

    International Nuclear Information System (INIS)

    To clarify the acute effects of irradiation on the ultrastructural conformation of the dorsal mucosa of the rat tongue, with special reference to the changes in microvasculature. The proboscis of seventy rats were irradiated. The animals were then perfusion-fixed, followed by India ink-injection or resin casting at 3 to 7 days after irradiation. The bulk, frozen sections, or plastic embedded sections of the treated rat tongues were examined by light and electron microscopy. In the dorsal epithelium of the rat tongue, multi-nucleated cells appeared in the basal layer at 3 days after irradiation. At day 5, the thickness of the epithelial layer and connective tissue papillae decreased dramatically, concomitant with the shortening of the capillary loops. At day 7, lingual papillae and connective tissue papillae disappeared, leaving dissociated epithelial cells and numerous neutrophils migrating throughout the tissue. Subepithelial blood vessels displayed drastic dilation with a number of neutrophils adhering to the endothelial surface, but without ultrastructural abnormalities in its cellular components. Early changes in the dorsal mucosa of the irradiated rat tongue were limited to the basal epithelial cells, leading to a total disruption of the epithelial layer. Atrophic changes of the capillary loops is due to the loss of the connective tissue papillae. Dilation and conformational changes of the subepithelial capillaries appear to result from the inflammatory reaction, taking place secondarily to the loss of the epithelial barrier of the irradiated tongue. A difference in radiosensitivity among the epithelial, endothelial, and mesenchymal cell components of the rat tongue in vivo is suggested. (author)

  9. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model

    OpenAIRE

    Ersel, Murat; Uyanikgil, Yigit; AKARCA, Funda Karbek; OZCETE, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Cetin, Emel Oyku

    2016-01-01

    Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was ...

  10. Etanercept decreases HMGB1 expression in dorsal root ganglion neuron cells in a rat chronic constriction injury model

    OpenAIRE

    WANG, RUI-KE; Zhang, Qin-Qin; PAN, YUN-DAN; Guo, Qu-Lian

    2012-01-01

    In the present study, we examined the effect of etanercept on high mobility group box 1 (HMGB1) expression in dorsal root ganglion (DRG) neuron cells in a rat model of chronic constriction injury (CCI) of the sciatic nerve, with the aim of exploring the molecular mechanism underlying the therapeutic effect of etanercept on sciatica-related nociception and the potential interaction between tumor necrosis factor-α (TNF-α) and HMGB1 in DRG neuron cells. A rat CCI model was employed and the anima...

  11. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy

    Directory of Open Access Journals (Sweden)

    Gemes Geza

    2010-01-01

    Full Text Available Abstract Background ATP-sensitive potassium (KATP channels in neurons mediate neuroprotection, they regulate membrane excitability, and they control neurotransmitter release. Because loss of DRG neuronal KATP currents is involved in the pathophysiology of pain after peripheral nerve injury, we characterized the distribution of the KATP channel subunits in rat DRG, and determined their alterations by painful axotomy using RT-PCR, immunohistochemistry and electron microscopy. Results PCR demonstrated Kir6.1, Kir6.2, SUR1 and SUR2 transcripts in control DRG neurons. Protein expression for all but Kir6.1 was confirmed by Western blots and immunohistochemistry. Immunostaining of these subunits was identified by fluorescent and confocal microscopy in plasmalemmal and nuclear membranes, in the cytosol, along the peripheral fibers, and in satellite glial cells. Kir6.2 co-localized with SUR1 subunits. Kir6.2, SUR1, and SUR2 subunits were identified in neuronal subpopulations, categorized by positive or negative NF200 or CGRP staining. KATP current recorded in excised patches was blocked by glybenclamide, but preincubation with antibody against SUR1 abolished this blocking effect of glybenclamide, confirming that the antibody targets the SUR1 protein in the neuronal plasmalemmal membrane. In the myelinated nerve fibers we observed anti-SUR1 immunostaining in regularly spaced funneled-shaped structures. These structures were identified by electron microscopy as Schmidt-Lanterman incisures (SLI formed by the Schwann cells. Immunostaining against SUR1 and Kir6.2 colocalized with anti-Caspr at paranodal sites. DRG excised from rats made hyperalgesic by spinal nerve ligation exhibited similar staining against Kir6.2, SUR1 or SUR2 as DRG from controls, but showed decreased prevalence of SUR1 immunofluorescent NF200 positive neurons. In DRG and dorsal roots proximal to axotomy SLI were smaller and showed decreased SUR1 immunofluorescence. Conclusions We

  12. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain

    Directory of Open Access Journals (Sweden)

    Zheng Qin

    2012-04-01

    Full Text Available Abstract Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1 depolarized resting membrane potential (RMP; 2 decreased input resistance (Rin; 3 a marked reduction in current threshold (CT and voltage threshold (TP of action potential (AP; 4 a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP; and 5 a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone

  13. Preemptive analgesic effects of low-dose ketamine on growth-associated protein expression in dorsal root ganglion of chronic constriction injury model rats

    Institute of Scientific and Technical Information of China (English)

    Shuyong Lin; Chen Wang

    2008-01-01

    BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain.OBJECTIVE: To analyze the preemptive analgesic effects of different doses of ketamine on growth-associated protein-43 (GAP-43) expression in dorsal root ganglion in a rat model of chronic sciatic nerve constricted injury, and to study the differences between high-dose and low-dose ketamineDESIGN: Randomized controlled animal study.SETTING: Medical College of Shantou University. MATERIALS: Thirty-five adult male Sprague Dawley rats were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine. Ketamine hydrochloride injection was provided by Hengrui Pharmaceutical Co., Ltd., Jiangsu. METHODS: This study was performed at the Immunological Laboratory, Medical College of Shantou University from September to December 2006. Model of chronic sciatic nerve constricted injury: after anesthesia, the right sciatic nerve was exposed and ligated 1-cm distal to the ischiadic tuberosity with a No. 3-0 cat gut suture. Grouping and intervention: 35 rats were randomly divided into 4 groups: normal control group (n = 5), chronic constriction injury (CCI) group (n = 10), low-dose ketamine group (n = 10), and high-dose ketamine group (n = 10). Rats in the normal control group did not undergo any surgery or drug intervention. Rats in the CCI group received intraperitoneal injection of saline (1 mL), and their sciatic nerves were ligated after 10 minutes. Rats in the low-dose ketamine group underwent intraperitoneal injection of ketamine (25 mg/kg) 10 minutes prior to ligation of sciatic nerve; while, rats in the high-dose ketamine group were given intraperitoneal injection of ketamine (50 mg/kg) 10 minutes prior to ligation of sciatic nerve. On the third and the seventh days after surgery, dorsal root ganglion were resected from the sciatic nerve and cut into sections. MAIN OUTCOME MEASURES: GAP-43

  14. Functional mapping of the cardiorespiratory effects of dorsal and median raphe nuclei in the rat

    Directory of Open Access Journals (Sweden)

    R.M. Alvarenga

    2005-11-01

    Full Text Available The dorsal (DRN and median (MRN raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv male Wistar rats (280-300 g were instrumented for pulsatile and mean blood pressure (MBP, heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1% and DRN (85.4% evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg. The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%, +40 ± 10 and +29 ± 7% (MRN, P < 0.05, respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c the stimulation of cell bodies in these nuclei also increases the respiratory rate.

  15. Inhibition by the chromaffin cell-derived peptide serine-histogranin in the rat's dorsal horn.

    Science.gov (United States)

    Hentall, Ian D; Hargraves, Walter A; Sagen, Jacqueline

    2007-05-23

    The heptadecapeptide histogranin, synthesized by adrenal chromaffin cells, is implicated in the analgesia produced by transplanting chromaffin cells into the spinal cord, including block of hyperalgesia mediated by NMDA-subtype glutamate receptors. To examine the neurophysiological basis for this analgesia, we applied the stable analog [Ser(1)]-histogranin (SHG) by iontophoresis near extracellularly recorded wide-dynamic range (WDR) neurons in anesthetized rats. When SHG was applied during peripheral electrical stimulation of A and C fibers at 0.1Hz, the C-fiber response was significantly inhibited but the A-fiber response was unaffected. SHG also opposed the NMDA-receptor-dependent post-tetanic facilitation (wind-up) of C-fiber responses produced by increasing the rate of peripheral afferent stimulation to 1Hz for 20s. To test whether block of NMDA-subtype receptors could be wholly or partially responsible for this suppression, SHG was applied during sequential pulsed iontophoresis of three agonists targeting distinct excitatory synaptic receptors: NMDA, kainate and substance P. All three excitatory effects were reversed by SHG; this reversal outlasted the 10-30min observation period when higher SHG doses were applied (>60nA). Histogranin therefore probably produces prolonged spinal analgesia by opposing the basal and potentiating synaptic effects of C-fibers on dorsal horn neurons. Actions besides or in addition to NMDA-receptor antagonism (e.g., agonism at inhibitory postsynaptic receptors or block of voltage-gated cation channels on C-fibers) are implied by the diversity of excitatory transmitters opposed by SHG. PMID:17442490

  16. Radiation nephropathy in young and adult rats

    International Nuclear Information System (INIS)

    The effects of bilateral kidney irradiation were compared in young and adult rats. During a 1 year period after a single dose of 0, 7.5, 10, 12.5, or 15 Gy on both kidneys, renal function (glomerular filtration rate and effective renal plasma flow), urine composition, and systolic blood pressure were measured periodically. The first changes after irradiation were observed in the glomerular filtration rate and urine osmolality. One month after 10, 12.5, and 15 Gy, glomerular filtration rate (GFR) and urine osmolality had declined below control values in the young rats. After this initial decline, renal function increased at control rate or even more during the third and fourth month after irradiation but decreased progressively thereafter. In the adult rats, GFR and urine osmolality started to decrease 3 months after 10, 12.5, and 15 Gy. A rise in systolic blood pressure and proteinuria started 2-3 months after 12.5 and 15 Gy in both age groups. Early changes in the glomerular filtration rate with a drop in urine osmolality in young rats, occurring during a period of rapid renal development indicated an irradiation-induced inhibition of glomerular and tubular development. Although renal function deteriorated at a later time in adult rats, dose-response relationships obtained in young and adult rats did not show significant differences

  17. Effects of nuclei ambiguus and dorsal motor nuclei of vagus on gastric H+ and HCO3- secretion in rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Zhang; Hong-Bin Ai; Xi-Yun Cui

    2006-01-01

    AIM: To determine the effects of electrical stimulation of nucleus ambiguus (NA) and dorsal motor nuclei of vagus (DMV) on gastric acid and bicarbonate secretion in rats.METHODS: NA and DMV in rats were electrically stimulated. Pylorus ligation or esophagus perfusion was used to collect the gastric secretion. The titratable H+ quantum, H+ concentration, HCO3- secretion quantum were measured.RESULTS: Electrical stimulation of NA had no effects on the volume of gastric juice, titratable acidity and acid concentration, but elicited a pronounced increase in the total bicarbonate. However, electrical stimulation of DMV significantly increased the titratable acidity, the volume of gastric juice and the acid concentration. Similarly,electrical stimulation of either NA or DMV decreased the respiratory frequency and sinus bradycardia.CONCLUSION: NA in rats can not control the secretion of gastric acid but the secretion of bicarbonate in gastric juice, while DMV controls the secretion of gastric acid.

  18. Correlation of the electrophysiological profiles and sodium channel transcripts of individual rat dorsal root ganglia neurons

    Directory of Open Access Journals (Sweden)

    Mohamed Chahine

    2014-09-01

    We used the patch-clamp technique in the whole-cell configuration to record Na+ currents and action potentials from acutely dissociated small diameter DRG neurons (<30 µM from adult rats. We also performed single cell qPCR on the same neurons. Our results revealed that there is a strong correlation between Na+ currents and mRNA transcripts in individual neurons. A cluster analysis showed that subgroups formed by Na+ channel transcripts by mRNA quantification have different biophysical properties. In addition, the firing frequency of the neurons was not affected by the relative populations of Na+ channel. The synergy between populations of Na+ channel in individual small diameter DRG neurons gives each neuron a unique electrophysiological profile. The Na+ channel remodeling that occurs in different pathological pain states may be responsible for the sensitization of the neurons.

  19. Changes in behaviors of rats with sciatic nerve injury and expression of growth associated protein-43 in dorsal root ganglion

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; Yongfa Zhang

    2006-01-01

    BACKGROUND: Neuropathic pain is closely related to neuroplasticity, and growth associated protein-43 (GAP 43) is a molecular marker for neuronal development and neuroplasticity. The expression of GAP-43 during the development of neuropathic pain should have its own characters.OBJECTIVE: To observe the changes in behaviors of rats with sciatic nerve injury and GAP-43 expression in dorsal root ganglion(DRG) affected ascribing to developing nerve transection and nerve crush, two types of neuropathic pain models.DESIGN: Randomized controlled animal experiment.SETTING: Department of Anesthesiology in Second Hospital of Xiamen City and Second Affiliated Hospital of Shantou University Medical College.MATERIALS: Totally 250 adult Wistar rats of either gender, weighing 180 to 250 g, were involved in the study. The rats were randomized into 3 groups: nerve transection group (n =120), nerve crush group (n =120), and normal control group (n =10). The rats in the nerve transection group and nerve crush group were subdivided separately into 6 groups,and were allowed to survive for 3, 7, 14, 21, 30 and 60 days after nerve injury (n =20). Mouse anti-GAP-43 monoclonal antibody (Sigma Co.,Ltd.), Supervision TM anti-mouse reagent (HRP, Changdao antibody diagnosis reagent Co.,Ltd., Shanghai), DAB/H2O2 (Boster Co.Ltd, Wuhan), and HMIAS-100 image analysis system (Qianping Image engineering Company, Tongji Medical University) were employed in this study.METHODS: This experiment was carried out in the Surgical Department and Pathological Laboratory, the Second Hospital Affiliated to Shantou Medical College during April 2004 to April 2005. ① Grouping intervention: Animals were anesthetized and the sciatic nerve of the right side was exposed at thigh around ischial tuberosity. Sciatic nerves of rats in nerve transection group were transected at 1 cm below infrapiriform foramen, and those in nerve crush group were exposed as well as the nerve transection group, and crushed at 0.5 cm below

  20. Actions of the GABAB agonist, (-)-baclofen, on neurones in deep dorsal horn of the rat spinal cord in vitro.

    OpenAIRE

    Allerton, C. A.; Boden, P. R.; Hill, R G

    1989-01-01

    1. The electrophysiological actions of the GABAB agonist, (-)-baclofen, on deep dorsal horn neurones were studied using an in vitro preparation of the spinal cord of 9-16 day old rat. 2. On all neurones tested, (-)-baclofen (100 nM-30 microM) had a hyperpolarizing action which was associated with a reduction in apparent membrane input resistance. The increase in membrane conductance was dose-dependent and had a Hill coefficient of 1.0. 3. The (-)-baclofen-activated hyperpolarization persisted...

  1. Substance P and calcitonin gene-related peptide expression in dorsal root ganglia in sciatic nerve injury rats

    OpenAIRE

    Fu, Changma; Yin, Zongsheng; YU, Defu; Yang, Zuhua

    2013-01-01

    The neuropeptides, substance P and calcitonin gene-related peptide, have been shown to be involved in pain transmission and repair of sciatic nerve injury. A model of sciatic nerve defect was prepared by dissecting the sciatic nerve at the middle, left femur in female Sprague Dawley rats. The two ends of the nerve were encased in a silica gel tube. L5 dorsal root ganglia were harvested 7, 14 and 28 days post sciatic nerve injury for immunohistochemical staining. Results showed that substance ...

  2. Palmitoyl-DL-carnitine has calcium-dependent effects on cultured neurones from rat dorsal root ganglia.

    OpenAIRE

    S. R. Stapleton; Currie, K. P.; Scott, R. H.; Bell, B A

    1992-01-01

    1. The effects of palmitoyl-DL-carnitine (0.01 to 1 mM) on whole cell voltage-activated calcium channel currents carried by calcium or barium and Ca(2+)-activated chloride currents were studied in cultured neurones from rat dorsal root ganglia. 2. Palmitoyl-DL-carnitine applied to the extracellular environment or intracellularly via the patch solution reduced Ca2+ currents activated over a wide voltage range from a holding potential of -90 mV. Inhibition of high voltage activated Ca2+ channel...

  3. Morphology, Classification, and Distribution of the Projection Neurons in the Dorsal Lateral Geniculate Nucleus of the Rat

    OpenAIRE

    Changying Ling; Hendrickson, Michael L.; Ronald E Kalil

    2012-01-01

    The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2). Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cro...

  4. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat.

    Science.gov (United States)

    Bellistri, Elisa; Aguilar, Juan; Brotons-Mas, Jorge R; Foffani, Guglielmo; de la Prida, Liset Menendez

    2013-05-15

    The hippocampus is a pivotal structure for episodic memory function. This ability relies on the possibility of integrating different features of sensory stimuli with the spatio-temporal context in which they occur. While recent studies now suggest that somatosensory information is already processed by the hippocampus, the basic mechanisms still remain unexplored. Here, we used electrical stimulation of the paws, the whisker pad or the medial lemniscus to probe the somatosensory pathway to the hippocampus in the anaesthetized rat, and multisite electrodes, in combination with tetrode and intracellular recordings, to look at the properties of somatosensory hippocampal responses. We found that peripheral and lemniscal stimulation elicited small local field potential responses in the dorsal hippocampus about 35-40 ms post-stimulus. Current source density analysis established the local nature of these responses, revealing associated synaptic sinks that were consistently confined to the molecular layer (ML) of the dentate gyrus (DG), with less regular activation of the CA1 stratum lacunosum moleculare (SLM). A delayed (40-45 ms), potentially active, current source that outlasted the SLM sink was present in about 50% cases around the CA1 pyramidal cell layer. Somatosensory stimulation resulted in multi-unit firing increases in the majority of DG responses (79%), whereas multi-unit firing suppression was observed in the majority of CA1 responses (62%). Tetrode and intracellular recordings of individual cells confirmed different firing modulation in the DG and the CA1 region, and verified the active nature of both the early ML sink and delayed somatic CA1 source. Hippocampal responses to somatosensory stimuli were dependent on fluctuations in the strength and composition of synaptic inputs due to changes of the ongoing local (hippocampal) and distant (cortical) state. We conclude that somatosensory signals reach the hippocampus mainly from layer II entorhinal cortex to

  5. Cytomorphometric changes in the dorsal raphe neurons after rapid eye movement sleep deprivation are mediated by noradrenalin in rats

    Directory of Open Access Journals (Sweden)

    Biswas Sudipta

    2010-10-01

    Full Text Available Abstract Objectives This study was carried out to investigate the effect of rapid eye movement sleep (REMS deprivation (REMSD on the cytomorphology of the dorsal raphe (DR neurons and to evaluate the possible role of REMSD-induced increased noradrenalin (NA in mediating such effects. Methods Rats were REMS deprived by the flowerpot method; free moving normal home cage rats, large platform and post REMS-deprived recovered rats were used as controls. Further, to evaluate if the effects were induced by NA, separate sets of experimental rats were treated (i.p. with α1-adrenoceptor antagonist, prazosin (PRZ. Histomorphometric analysis of DR neurons in stained brain sections were performed in experimental and control rats; neurons in inferior colliculus (IC served as anatomical control. Results The mean size of DR neurons was larger in REMSD group compared to controls, whereas, neurons in the recovered group of rats did not significantly differ than those in the control animals. Further, mean cell size in the post-REMSD PRZ-treated animals was comparable to those in the control groups. IC neurons were not affected by REMSD. Conclusions REMS loss has been reported to impair several physiological, behavioral and cellular processes. The mean size of the DR neurons was larger in the REMS deprived group of rats than those in the control groups; however, in the REMS deprived and prazosin treated rats the size was comparable to the normal rats. These results showed that REMSD induced increase in DR neuronal size was mediated by NA acting on α1-adrenoceptor. The findings suggest that the sizes of DR neurons are sensitive to REMSD, which if not compensated could lead to neurodegeneration and associated disorders including memory loss and Alzheimer's disease.

  6. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    Directory of Open Access Journals (Sweden)

    Anne Klomp

    Full Text Available The antidepressant drug fluoxetine (Prozac has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b effects on tryptophan hydroxylase (TPH expression, a measure of serotonin synthesis; c whether treatment effects during adolescence differed from treatment at an adult age, and d whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+ cells and of the number of young migratory neurons (doublecortin+, revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  7. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells

    International Nuclear Information System (INIS)

    Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8. Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed. Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain. These

  8. High Oestradiol Replacement Reverses Response Memory Bias in Ovariectomised Female Rats Regardless of Dopamine Levels in the Dorsal Striatum.

    Science.gov (United States)

    Hussain, D; Cossette, M-P; Brake, W G

    2016-05-01

    Oestrogens influence memory system bias in female rats such that high levels of oestrogen are associated with place (or spatial) memory use, and low oestrogen levels with response (or habitual) memory use. Moreover, striatal-dependent response memory is sensitive to dopamine transmission in the dorsal striatum, and oestrogens have been shown to affect dopamine release in that brain area. In the present study, the effects of oestrogens and dopamine transmission on multiple memory system bias were explored in ovariectomised rats receiving low or high 17β-oestradiol replacement under saline, autoreceptor-activating doses of the dopamine D2 receptor agonist, apomorphine (50 and 80 μg/kg), or amphetamine (0.5 mg/kg) administration. Furthermore, dorsal striatal dopamine release was measured after administration of the same drug conditions using in vivo microdialysis. As expected, high oestradiol rats predominantly used place memory, whereas the opposite pattern was observed in low oestradiol rats. However, the high apomorphine dose statistically significantly altered memory bias in high oestradiol rats from predominant place to predominant response memory, with a similar trend in the low apomorphine dose and the amphetamine group. There was no effect of drugs on memory bias in low oestradiol rats. Rats with high oestradiol replacement receiving amphetamine exhibited greater dorsal striatal dopamine release than low oestradiol replacement rats, and this difference was amplified in the right hemisphere. Furthermore, a logistic regression analysis revealed that oestradiol, but not dorsal striatal dopamine levels, significantly predicted response memory bias. These findings provide further evidence that oestradiol modulates memory system bias, and also that memory bias is changed by systemic apomorphine administration. However, although oestradiol affects dopamine transmission in the dorsal striatum in a lateralised manner, this does not predict memory system bias. PMID

  9. The subacute damage of the dorsal root ganglion induced by collagenase in rats: a study on the ultrastructure of neurons

    International Nuclear Information System (INIS)

    Objective: To study the effects of collagenase on the ultrastructure of dorsal root ganglion (DRG) in rats. The safety of collagenase on nerve tissue was investigated. Additionally, the safety of percutaneous collagenase chemonucleolysis (PCCN) on nerve tissue was evaluated. Methods: In total 27 male, healthy SD rats were enrolled. All rats were randomized into 3 groups: normal group (9 rats), subacute damage of collagenase group (9 rats), subacute intervention-analogue group (9 rats). The left L5 DRG was exposed in each rat. One milliliter of the collagenase solution (300 units) was carefully applied to the exposed DRG in collagenase group, and one milliliter of the isotonic saline was applied to the exposed DRG in intervention-analogue group. The morphology of the DRG under electron microscope were analyzed 7-9 days after the procedures. Results: The types, number, and morphology of cells; the membrane of neutrons; the nerve fibers and blood vessels in DRG had not been changed in all groups observed under optic microscope. The difference of the ultrastructure of neutrons in DRG among the normal groups, intervention-analogue group and collagenase group was significant: 1) The eccentric nucleolus were revealed; 2) Swelling mitochondria and absence of mitochondria crests and vesicles. Cytoclasis and apoptosis of neutrons had not been observed under electron microscope. Conclusion: The collagenase used in PCCN dose have a certain damage to the neutreons in DRG. In the procedure of PCCN, the volume and dosage of collagenase should be carefully selected and the intervention should be precisely performed by experienced hands. (authors)

  10. Postnatal manganese exposure does not alter dopamine autoreceptor sensitivity in adult and adolescent male rats.

    Science.gov (United States)

    McDougall, Sanders A; Mohd-Yusof, Alena; Kaplan, Graham J; Abdulla, Zuhair I; Lee, Ryan J; Crawford, Cynthia A

    2013-04-15

    Administering manganese chloride (Mn) to rats on postnatal day (PD) 1-21 causes long-term reductions in dopamine transporter levels in the dorsal striatum, as well as a persistent increase in D1 and D2 receptor concentrations. Whether dopamine autoreceptors change in number or sensitivity is uncertain, although D2S receptors, which may be presynaptic in origin, are elevated in Mn-exposed rats. The purpose of this study was to determine if early Mn exposure causes long-term changes in dopamine autoreceptor sensitivity that persist into adolescence and adulthood. To this end, male rats were exposed to Mn on PD 1-21 and autoreceptor functioning was tested 7 or 70 days later by measuring (a) dopamine synthesis (i.e., DOPA accumulation) in the dorsal striatum after quinpirole or haloperidol treatment and (b) behavioral responsiveness after low-dose apomorphine treatment. Results showed that low doses (i.e., "autoreceptor" doses) of apomorphine (0.06 and 0.12 mg/kg) decreased the locomotor activity of adolescent and adult rats, while higher doses increased locomotion. The dopamine synthesis experiment also produced classic autoreceptor effects, because quinpirole decreased dorsal striatal DOPA accumulation; whereas, haloperidol increased DOPA levels in control rats, but not in rats given the nerve impulse inhibitor γ-butyrolactone. Importantly, early Mn exposure did not alter autoreceptor sensitivity when assessed in early adolescence or adulthood. The lack of Mn-induced effects was evident in both the dopamine synthesis and behavioral experiments. When considered together with past studies, it is clear that early Mn exposure alters the functioning of various dopaminergic presynaptic mechanisms, while dopamine autoreceptors remain unimpaired. PMID:23458069

  11. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion.

    Science.gov (United States)

    Zhou, Yuan; Li, Rong-Ji; Li, Meng; Liu, Xuelian; Zhu, Hong-Yan; Ju, Zhong; Miao, Xiuhua; Xu, Guang-Yin

    2016-01-01

    G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway. PMID:27145805

  12. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons.

    Science.gov (United States)

    Li, Lei; Yu, Ting; Yu, Liling; Li, Haijun; Liu, Yongjuan; Wang, Dongqin

    2016-08-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking of effective treatments. Enhanced excitability of dorsal root ganglion (DRG) neuron plays a crucial role in the progression of diabetic neuropathic hyperalgesia. Brain-derived neurotrophic factor (BDNF) is known as a neuromodulator of nociception, but whether and how BDNF modulates the excitability of DRG neurons in the development of DPN remain to be clarified. This study investigated the role of exogenous BDNF and its high-affinity tropomyosin receptor kinase B (TrkB) in rats with streptozotocin-induced diabetic neuropathic pain. The results showed that continued intrathecal administration of BDNF to diabetic rats dramatically alleviated mechanical and thermal hyperalgesia, as well as inhibited hyperexcitability of DRG neurons. These effects were blocked by pretreatment with TrkB Fc (a synthetic fusion protein consisting of the extracellular ligand-binding domain of the TrkB receptor). The expression of BDNF and TrkB was upregulated in the DRG of diabetic rats. Intrathecal administration of BDNF did not affect this upregulation. These data provide novel information that exogenous BDNF relieved pain symptoms of diabetic rats by reducing hyperexcitability of DRG neurons and might be the potential treatment of painful diabetic neuropathy. PMID:26441011

  13. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    Science.gov (United States)

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. PMID:26558357

  14. Differences in rat dorsal striatal NMDA and AMPA receptors following acute and repeated cocaine-induced locomotor activation.

    Directory of Open Access Journals (Sweden)

    Dorothy J Yamamoto

    Full Text Available Sprague-Dawley rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively based on their locomotor activity induced by an acute low dose of cocaine. Upon repeated cocaine exposure, LCRs display greater locomotor sensitization, reward, and reinforcement than HCRs. Altered glutamate receptor expression in the brain reward pathway has been linked to locomotor sensitization and addiction. To determine if such changes contribute to the differential development of locomotor sensitization, we examined protein levels of total, phosphorylated, and cell surface glutamate N-methyl D-aspartate (NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA receptors (Rs following acute or repeated cocaine (10 mg/kg, i.p. in LCRs, HCRs and saline controls. Three areas involved in the development and expression of locomotor sensitization were investigated: the ventral tegmental area (VTA, nucleus accumbens (NAc and dorsal striatum (dSTR. Our results revealed differences only in the dSTR, where we found that after acute cocaine, GluN2B(Tyr-1472 phosphorylation was significantly greater in LCRs, compared to HCRs and controls. Additionally in dSTR, after repeated cocaine, we observed significant increases in total GluA1, phosphorylated GluA1(Ser-845, and cell surface GluA1 in all cocaine-treated animals vs. controls. The acute cocaine-induced increases in NMDARs in dSTR of LCRs may help to explain the more ready development of locomotor sensitization and susceptibility to addiction-like behaviors in rats that initially exhibit little or no cocaine-induced activation, whereas the AMPAR increases after repeated cocaine may relate to recruitment of more dorsal striatal circuits and maintenance of the marked cocaine-induced locomotor activation observed in all of the rats.

  15. Suramin affects capsaicin responses and capsaicin-noxious heat interactions in rat dorsal root ganglia neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Vyklický st., Ladislav; Orkand, R. K.

    2002-01-01

    Roč. 51, č. 2 (2002), s. 193-198. ISSN 0862-8408 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : dorsal root ganglia neurones * vanilloid receptor * capsaicin -noxious heat Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  16. The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats

    Czech Academy of Sciences Publication Activity Database

    Paleček, Jiří; Willis, W. D.

    2003-01-01

    Roč. 104, č. 3 (2003), s. 501-507. ISSN 0304-3959 R&D Projects: GA ČR GA309/03/0752 Grant ostatní: NIH(US) NS 09743; NIH(US) NS 11255 Institutional research plan: CEZ:AV0Z5011922 Keywords : visceral pain and visceral hyperalgesia * dorsal column * midline myelotomy Subject RIV: FH - Neurology Impact factor: 4.556, year: 2003

  17. Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum

    OpenAIRE

    Jeun, Seung Hyun; Cho, Hyeong Seok; Kim, Ki Jung; Li, Qing Zhong; Sung, Ki-Wug

    2009-01-01

    The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isol...

  18. Retrograde Labeling of Adult Rat Retinal Ganglion Cells with the Flurogold

    Institute of Scientific and Technical Information of China (English)

    WeiHuang; YannianHui; 等

    2002-01-01

    Purpose:To study the densities and distribution of retinal ganglion cells(RGC) in adult rat retinae with flurogold(FG) labeling retogradely.Methods:FG was injected to the superior colliculid(SC) and dorsal lateral geniculate nuclei(dLGN) in adult rats and the retinae were examined by fluorescence microscopy at various periods of time.Results:FG-labelled RGC were observed in the retina as early as 3 days after application of FG.The labeled cells gradually increased in density,reached 95% of the maximal number on days 7 and the maximal nuber on days 30.The density of labeled cells was higher in the posterior pole than in the peripheral area.The fluorescence intensity in labeled cells maintained up to 60 days.Conclusion:The FG retrograde labeling method is reliable and effective for quantity of RGC.Eye Science 2000;46:29-33.

  19. Effects of various frequency electrical stimulation of the dorsal raphe nucleus on spontaneous firing activities in the rat subthalamic nucleus

    Institute of Scientific and Technical Information of China (English)

    Hongmei Ran; Dongming Gao

    2008-01-01

    BACKGROUND: Some investigations have demonstrated that exogenous 5-hydroxytryptamine increases the spontaneous firing rate of subthalamic nucleus (STN) neurons in the rat brain.OBJECTIVE: To validate the effect of electrical stimulation to the dorsal raphe nucleus (DRN) on the neu-ronal activities of the STN in rats, as well as analyze the differences in the effects of electrical stimulation at various frequencies.DESIGN, TIME AND SETTING: Experiments were performed from March 2007 to June 2007 in the Electrophysiology Laboratory of Liaoning Medical University with a randomized controlled animal study design.MATERIALS: Twenty-four healthy male Sprague-Dawley (SD) rats, weighing 250-350 g, were selected for this study. An A320R constant electrical stimulator was purchased from World Precision Instruments Com-pany (USA); a Spike 2 biological signal acquisition system was purchased from British CED Company. METHODS: Twenty-four SD rats were randomly assigned into a model group and a normal group, with 12 rats in each group. To mimic Parkinson's disease, rats in the model group were injected with 4 μL of 6-hydroxydopamine into the right striatum, then received deep brain stimulation. Rats in the normal group re-ceived deep brain stimulation in same brain region without modeling. Electrical stimulation (width, 0.06 ms; intensity, 0.2-0.6 mA; frequency, 20-130 Hz; train duration, 5 seconds) was delivered to the DRN. MAIN OUTCOME MEASURES: The firing rates of STN neurons were observed by extracellular record-ing using a biological signal acquisition system. RESULTS: DRN-high-frequency stimulation (DRN-HFS) induced excitation in 59% of the STN neurons in the normal group and 50% of the STN neurons in the model group; mean firing rates increased significantly from (7.14± 0.75) and (7.94 ± 0.61) Hz to (11.17 ± 1.49) and (12.11 ± 1.05) Hz, respectively (P < 0.01). Spontaneous firing rate increased significantly in 53% of neurons in normal rats in a frequency

  20. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat.

    Science.gov (United States)

    Hu, S J; Xing, J L

    1998-07-01

    Under anesthesia and sterile surgery, a small stainless steel rod (4 mm in length and 0.5-0.8 mm in diameter) was inserted into the L5 intervertebral foramen in the rat, developing intervertebral foramen stenosis and hence producing a chronic steady compression of the dorsal root ganglion (DRG). The hind paw on the injured side exhibited a significant reduction in the latency of foot withdrawal to noxious heat and manifested a persistent heat hyperalgesia 5-35 days after surgery. Injection of 1% carrageenan into the intervertebral foramen, presumably causing inflammation of the DRG, also produced hyperalgesia to heat on the hind paw of the injured side 5-21 days after surgery. Extracellular electrophysiological recordings from myelinated dorsal root fibers were performed in vivo. Spontaneous activity was present in 21.5% of the fibers recorded from DRG neurons injured with chronic compression in contrast to 1.98% from uninjured DRG neurons. The pattern of spontaneous activity was periodic and bursting in 75.3% of the spontaneously active fibers. These neurons had a greatly enhanced sensitivity to mechanical stimulation of the injured DRG and a prolonged after discharge. In response to TEA, topically applied to the DRG, excitatory responses were evoked in the injured, but not the uninjured, DRG neurons. Application of this experimental model may further our understanding of the neural mechanisms by which chronic compression of DRG induces low back pain and sciatica. PMID:9755014

  1. Glucose injections into the dorsal hippocampus or dorsolateral striatum of rats prior to T-maze training: Modulation of learning rates and strategy selection

    OpenAIRE

    Canal, Clinton E.; Stutz, Sonja J; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial (Pcrit) administered after rats achieved criterion (nine of 10 correct choices) varied by group. All groups predominately exhibited a response strategy o...

  2. Expression and transport of Angiotensin II AT1 receptors in spinal cord, dorsal root ganglia and sciatic nerve of the rat

    OpenAIRE

    Pavel, Jaroslav; Tang, Hui; Brimijoin, Stephen; Moughamian, Armen; Nishioku, Tsuyoshi; Benicky, Julius; Saavedra, Juan M.

    2008-01-01

    To clarify the role of Angiotensin II in the regulation of peripheral sensory and motor systems, we initiated a study of the expression, localization and transport of Angiotensin II receptor types in the rat sciatic nerve pathway, including L4–L5 spinal cord segments, the corresponding dorsal root ganglia (DRGs) and the sciatic nerve.

  3. Upregulation of the dorsal raphe nucleus-prefrontal cortex serotonin system by chronic treatment with escitalopram in hyposerotonergic Wistar-Kyoto rats

    NARCIS (Netherlands)

    Yamada, Makiko; Kawahara, Yukie; Kaneko, Fumi; Kishikawa, Yuki; Sotogaku, Naoki; Poppinga, Wilfred J.; Folgering, Joost H. A.; Dremencov, Eliyahu; Kawahara, Hiroshi; Nishi, Akinori

    2013-01-01

    Wistar-Kyoto (WKY) rats are sensitive to chronic stressors and exhibit depression-like behavior. Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons projecting to the prefrontal cortex (PFC) comprise the important neurocircuitry underlying the pathophysiology of depression. To evaluate the DRN-PFC 5

  4. Glucose Injections into the Dorsal Hippocampus or Dorsolateral Striatum of Rats Prior to T-Maze Training: Modulation of Learning Rates and Strategy Selection

    Science.gov (United States)

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial…

  5. Nesfatin-1 increases intracellular calcium concentration by protein kinase C activation in cultured rat dorsal root ganglion neurons.

    Science.gov (United States)

    Ozcan, Mete; Gok, Zeynep Betul; Kacar, Emine; Serhatlioglu, Ihsan; Kelestimur, Haluk

    2016-04-21

    Nesfatin-1 is a recently identified anorexigenic hypothalamic polypeptide derived from the posttranslational processing of nucleobindin 2 (NUCB2). Several studies have indicated that this neuropeptide may be participated in somatosensory and visceral transmission including pain signals in addition to energy metabolism. The aim of this study was to explore the possible role of nesfatin-1 in the transmission of peripheral neural signals by investigating the effects of nesfatin-1 on intracellular free calcium levels ([Ca(2+)]i) in cultured neonatal rat dorsal root ganglion (DRG) neurons. The effects of nesfatin-1 on [Ca(2+)]i in DRG neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1-or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of nesfatin-1 on [Ca(2+)]i and role of the protein kinase C (PKC)-mediated pathway in nesfatin-1 effect were assessed. Nesfatin-1 elevated [Ca(2+)]i in cultured DRG neurons. The response was prevented by pretreating the cells with pertussis toxin. The protein kinase C inhibitor chelerythrine chloride suppressed nesfatin-1-induced rise in [Ca(2+)]i. The result shows that nesfatin-1 interacts with a G protein-coupled receptor, leading to an increase of [Ca(2+)]i, which is linked to protein kinase C activation in cultured rat DRG neurons. PMID:26975784

  6. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy.

    Science.gov (United States)

    Woolf, C J; Shortland, P; Reynolds, M; Ridings, J; Doubell, T; Coggeshall, R E

    1995-09-11

    We have investigated the time course and extent to which peripheral nerve lesions cause a morphological reorganization of the central terminals of choleragenoid-horseradish peroxidase (B-HRP)-labelled primary afferent fibers in the mammalian dorsal horn. Choleragenoid-horseradish peroxidase is retrogradely transported by myelinated (A) sensory axons to laminae I, III, IV and V of the normal dorsal horn of the spinal cord, leaving lamina II unlabelled. We previously showed that peripheral axotomy results in the sprouting of numerous B-HRP-labelled large myelinated sensory axons into lamina II. We show here that this spread of B-HRP-labelled axons into lamina II is detectable at 1 week, maximal by 2 weeks and persists for over 6 months postlesion. By 9 months, however, B-HRP fibers no longer appear in lamina II. The sprouting into lamina II occurs whether regeneration is allowed (crush) or prevented (section with ligation), and does not reverse at times when peripheral fibers reinnervate the periphery. We also show that 15 times more synaptic terminals in lamina II are labelled by B-HRP 2 weeks after axotomy than in the normal. We interpret this as indicating that the sprouting fibers are making synaptic contacts with postsynaptic targets. This implies that A-fiber terminal reorganization is a prominent and long-lasting but not permanent feature of peripheral axotomy. We also provide evidence that this sprouting is the consequence of a combination of an atrophic loss of central synaptic terminals and the conditioning of the sensory neurons by peripheral axotomy. The sprouting of large sensory fibers into the spinal territory where postsynaptic targets usually receive only small afferent fiber input may bear on the intractable touch-evoked pain that can follow nerve injury. PMID:7499558

  7. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia.

    Science.gov (United States)

    Joukal, Marek; Klusáková, Ilona; Dubový, Petr

    2016-05-01

    The anatomical position of the subarachnoid space (SAS) in relation to dorsal root ganglia (DRG) and penetration of tracer from the SAS into DRG were investigated. We used intrathecal injection of methylene blue to visualize the anatomical position of the SAS in relation to DRG and immunostaining of dipeptidyl peptidase IV (DPP-IV) for detecting arachnoid limiting the SAS. Intrathecal administration of fluorescent-conjugated dextran (fluoro-emerald; FE) was used to demonstrate direct communication between the SAS and DRG. Intrathecal injection of methylene blue and DPP-IV immunostaining revealed that SAS delimited by the arachnoid was extended up to the capsule of DRG in a fold-like recess that may reach approximately half of the DRG length. The arachnoid was found in direct contact to the neuronal body-rich area in the angle between dorsal root and DRG as well as between spinal nerve roots at DRG. Particles of FE were found in the cells of DRG capsule, satellite glial cells, interstitial space, as well as in small and medium-sized neurons after intrathecal injection. Penetration of FE from the SAS into the DRG induced an immune reaction expressed by colocalization of FE and immunofluorescence indicating antigen-presenting cells (MHC-II+), activated (ED1+) and resident (ED2+) macrophages, and activation of satellite glial cells (GFAP+). Penetration of lumbar-injected FE into the cervical DRG was greater than that into the lumbar DRG after intrathecal injection of FE into the cisterna magna. Our results demonstrate direct communication between DRG and cerebrospinal fluid in the SAS that can create another pathway for possible propagation of inflammatory and signaling molecules from DRG primary affected by peripheral nerve injury into DRG of remote spinal segments. PMID:26844624

  8. Toxicity of group B Streptococcus agalactiae in adult rats.

    OpenAIRE

    Warejcka, D. J.; Goodrum, K J; Spitznagel, J K

    1985-01-01

    Several strains of group B Streptococcus agalactiae were found to be lethal for young adult rats. When bacteria were heat killed and then injected intraperitoneally into rats, rapid death (14 to 18 h) of the rats occurred, characterized by labored breathing, hemolyzed serum, hemoglobinuria, and subungual hemorrhages. Sections of tissues from these rats failed to reveal the cause of death. Rats injected with toxic or nontoxic strains of group B S. agalactiae had reduced numbers of circulating ...

  9. Defense reaction induced by a metabotropic glutamate receptor agonist microinjected into the dorsal periaqueductal gray of rats

    Directory of Open Access Journals (Sweden)

    M.L. Molchanov

    1999-12-01

    Full Text Available The behavioral effects of trans-(±-1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD, a metabotropic glutamate receptor (mGluR agonist, or 0.9% (w/v saline, injected into the dorsal periaqueductal gray (DPAG, was investigated. Male Wistar rats showed defense reactions characterized by jumps toward the top edges of the cages (saline = 0 vs t-ACPD = 6.0, medians P<0.05 and gallops (saline = 0 vs t-ACPD = 10.0, medians P<0.05 during the 60-s period after the beginning of the injection. In another experiment animals were placed inside an open arena for 5 min immediately after injection. Their behavior was recorded by a video camera and a computer program analyzed the videotapes. Eleven of fifteen rats injected with t-ACPD showed a short-lasting (about 1 min flight reaction. No saline-treated animal showed this reaction (P<0.0005, chi-square test. The drug induced an increase in turning behavior (P = 0.002, MANOVA and a decrease in the number of rearings (P<0.001, MANOVA and grooming episodes (P<0.001, MANOVA. These results suggest that mGluRs play a role in the control of defense reactions in the DPAG.

  10. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Ji

    Full Text Available In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2 transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.

  11. Ethanol withdrawal induces anxiety-like effects: Role of nitric oxide synthase in the dorsal raphe nucleus of rats.

    Science.gov (United States)

    Gonzaga, Natália Almeida; Batistela, Melissa Resende; Padovan, Diego; de Martinis, Bruno Spinosa; Tirapelli, Carlos Renato; Padovan, Cláudia Maria

    2016-05-01

    Nitric oxide (NO) mediated transmission in the dorsal raphe nucleus (DRN) has been shown to be involved in the modulation of anxiety-like behaviors. We investigated whether inhibition of nitric oxide synthase (NOS) in the DRN would prevent anxiety-like behavior induced by ethanol withdrawal. Male Wistar rats were treated with ethanol 2-6% (v/v) for a period of 21 days. Ethanol withdrawal was induced by abrupt discontinuation of the treatment. Experiments were performed 48 h after ethanol discontinuation. Rats with a guide cannula aimed at the DRN received intra-DRN injections of the non-selective NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME), selective neuronal NOS (nNOS) inhibitor N(ω)-propyl-l-arginine (NPLA), or selective inhibitor of inducible NOS (iNOS) N-([3-(aminomethyl)phenyl] methyl) ethanimidamidedihydrochloride (1400W). Five minutes later, the animals were tested in the elevated plus maze (EPM). Plasma ethanol levels were determined by gas chromatography. There was a reduction in plasma ethanol levels 48 h after ethanol withdrawal. Rats from the ethanol withdrawal group showed decreased exploration of the open arms of the EPM with no change in the exploration of enclosed arms. Intra-DRN treatment with l-NAME (100 nmoles/0.2 μL) and 1400W (1 nmol/0.2 μL), but not NPLA (10 nmoles/0.2 μL) in the DRN attenuated the decrease in the exploration of the open arms of the EPM induced by ethanol withdrawal. The major new finding of the present study is that iNOS in the DRN plays a role in the anxiety-like behavior induced by ethanol withdrawal. PMID:27139232

  12. Interactions between respiratory oscillators in adult rats.

    Science.gov (United States)

    Huckstepp, Robert Tr; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. PMID:27300271

  13. Anatomical organization of MCH connections with the pallidum and dorsal striatum in the rat

    Directory of Open Access Journals (Sweden)

    Pierre-Yves Risold

    2014-10-01

    Full Text Available Neurons producing the melanin-concentrating hormone (MCH are distributed in the posterior hypothalamus, but project massively throughout the forebrain. Many aspects regarding the anatomical organization of these projections are still obscure. The present study has two goals: first to characterize the topographical organization of neurons projecting into the cholinergic basal forebrain (globus pallidus, medial septal complex, and second to verify if MCH neurons may indirectly influence the dorsal striatum (caudoputamen by innervating afferent sources to this structure. In the first series of experiments, the retrograde tracer fluorogold was injected into multiple sites in the pallidal and medial septal regions and the distribution of retrogradely labeled neurons were analyzed in the posterior lateral hypothalamus. In the second series of experiments, fluorogold was injected to the caudoputamen and the innervation by MCH axons of retrogradely labeled cells was analyzed. Our results revealed that the MCH system is able to interact with the basal nuclei in several different ways. First, MCH neurons provide topographic inputs to the globus pallidus, medial septal complex and substantia innominata. Second, striatal projecting neurons in the cortex, thalamus and substantia nigra presumably receive only sparse inputs from MCH neurons. Third, the subthalamic nucleus is heavily innervated by MCH projections, thus, presumably serves as one important intermediate station to mediate MCH influence on other parts of the basal nuclei.

  14. Connections from the rat dorsal column nuclei (DCN) to the periaqueductal gray matter (PAG).

    Science.gov (United States)

    Barbaresi, Paolo; Mensà, Emanuela

    2016-08-01

    Electrical stimulation of the dorsal columns (DCs; spinal cord stimulation; SCS) has been proposed to treat chronic neuropathic pain. SCS may activate a dual mechanism that would affect both the spinal cord and supraspinal levels. Stimulation of DCs or DC nuclei (DCN) in animals where neuropathic pain has been induced causes activation of brainstem centers including the periaqueductal gray (PAG), which is involved in the endogenous pain suppression system. Biotinylated dextran-amine (BDA) was iontophoretically injected into the DCN to analyze the ascending projection directed to the PAG. Separate injections into the gracile nucleus (GrN) and the cuneate nucleus (CunN) showed BDA-positive fibers terminating in different regions of the contralateral PAG. GrN-PAG afferents terminated in the caudal and middle portions of PAG-l, whereas CunN-PAG fibers terminated in the middle and rostral portions of PAG-l. Based on the DCN somatotopic map, the GrN sends information to the PAG from the contralateral hindlimb and the tail and the CunN from the contralateral forelimb, shoulder, neck and ear. This somatotopic organization is consistent with earlier electrophysiological and PAG stimulation studies. These fibers could form part of the DCs-brainstem-spinal cord loop, which may be involved in the inhibitory effects of SCS on neuropathic pain. PMID:26902642

  15. Glutaminase Increases in Rat Dorsal Root Ganglion Neurons after Unilateral Adjuvant-Induced Hind Paw Inflammation

    Directory of Open Access Journals (Sweden)

    E. Matthew Hoffman

    2016-01-01

    Full Text Available Glutamate is a neurotransmitter used at both the peripheral and central terminals of nociceptive primary sensory neurons, yet little is known concerning regulation of glutamate metabolism during peripheral inflammation. Glutaminase (GLS is an enzyme of the glutamate-glutamine cycle that converts glutamine into glutamate for neurotransmission and is implicated in producing elevated levels of glutamate in central and peripheral terminals. A potential mechanism for increased levels of glutamate is an elevation in GLS expression. We assessed GLS expression after unilateral hind paw inflammation by measuring GLS immunoreactivity (ir with quantitative image analysis of L4 dorsal root ganglion (DRG neurons after one, two, four, and eight days of adjuvant-induced arthritis (AIA compared to saline injected controls. No significant elevation in GLS-ir occurred in the DRG ipsilateral to the inflamed hind paw after one or two days of AIA. After four days AIA, GLS-ir was elevated significantly in all sizes of DRG neurons. After eight days AIA, GLS-ir remained elevated in small (<400 µm2, presumably nociceptive neurons. Western blot analysis of the L4 DRG at day four AIA confirmed the elevated GLS-ir. The present study indicates that GLS expression is increased in the chronic stage of inflammation and may be a target for chronic pain therapy.

  16. Glutaminase Increases in Rat Dorsal Root Ganglion Neurons after Unilateral Adjuvant-Induced Hind Paw Inflammation.

    Science.gov (United States)

    Hoffman, E Matthew; Zhang, Zijia; Schechter, Ruben; Miller, Kenneth E

    2016-01-01

    Glutamate is a neurotransmitter used at both the peripheral and central terminals of nociceptive primary sensory neurons, yet little is known concerning regulation of glutamate metabolism during peripheral inflammation. Glutaminase (GLS) is an enzyme of the glutamate-glutamine cycle that converts glutamine into glutamate for neurotransmission and is implicated in producing elevated levels of glutamate in central and peripheral terminals. A potential mechanism for increased levels of glutamate is an elevation in GLS expression. We assessed GLS expression after unilateral hind paw inflammation by measuring GLS immunoreactivity (ir) with quantitative image analysis of L4 dorsal root ganglion (DRG) neurons after one, two, four, and eight days of adjuvant-induced arthritis (AIA) compared to saline injected controls. No significant elevation in GLS-ir occurred in the DRG ipsilateral to the inflamed hind paw after one or two days of AIA. After four days AIA, GLS-ir was elevated significantly in all sizes of DRG neurons. After eight days AIA, GLS-ir remained elevated in small (<400 µm²), presumably nociceptive neurons. Western blot analysis of the L4 DRG at day four AIA confirmed the elevated GLS-ir. The present study indicates that GLS expression is increased in the chronic stage of inflammation and may be a target for chronic pain therapy. PMID:26771651

  17. Exercise alleviates hypoalgesia and increases the level of calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Patrícia Severo do Nascimento

    2012-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of treadmill training on nociceptive sensitivity and immunoreactivity to calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats. METHODS: Male Wistar rats were divided into three groups: control, diabetic and trained diabetic. Treadmill training was performed for 8 weeks. The blood glucose concentrations and body weight were evaluated 48 h after diabetes induction and every 30 days thereafter. The nociceptive sensitivity was evaluated using the tail-flick apparatus. The animals were then transcardially perfused, and the spinal cords were post-fixed, cryoprotected and sectioned in a cryostat. Immunohistochemistry for calcitonin gene-related peptide analysis was performed on the dorsal horn of the spinal cord. RESULTS: The nociceptive sensitivity analysis revealed that, compared with the control and trained diabetic animals, the latency to tail deflection on the apparatus was longer for the diabetic animals. Optical densitometry demonstrated decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord in diabetic animals, which was reversed by treadmill training. CONCLUSION: We concluded that treadmill training can alleviate nociceptive hypoalgesia and reverse decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord of diabetic animals without pharmacological treatment.

  18. Opiates inhibit neurogenesis in the adult rat hippocampus

    OpenAIRE

    Eisch, Amelia J.; Barrot, Michel; Schad, Christina A.; Self, David W; Nestler, Eric J.

    2000-01-01

    Recent work implicates regulation of neurogenesis as a form of plasticity in the adult rat hippocampus. Given the known effects of opiates such as morphine and heroin on hippocampal function, we examined opiate regulation of neurogenesis in this brain region. Chronic administration of morphine decreased neurogenesis by 42% in the adult rat hippocampal granule cell layer. A similar effect was seen in rats after chronic self-administration of heroin. Opiate regulation of neurogenesis was not me...

  19. Effects of Total Light Deprivation on Dorsal Lateral Geniculate Nucleus of Male Neonate Rats

    Directory of Open Access Journals (Sweden)

    Seyed Behnam E-Din Jameie

    2010-06-01

    Full Text Available Objectives: This study examines the effects of total light deprivation on the developing lateral geniculate nucleus, the primary integration centre for visual informationMethods: Sprague-Dawley rats were reared for one month in a dark room from 7th postnatal day before eye opening. A group of rats was taken back into normal condition for 15 days, and then perfused. Coronal sections of LGN were prepared and stained with Cresyl Violet and Cytochrome Oxidase to investigate the number of neurons, volume and length, as well as neuronal activity level.Results: The results showed that LD for one month causes progressive loss of neurons and decreases neuronal activity level in the LGN.Conclusion: It can be concluded that during early postnatal development of the rats’ visual system, light deprivation causes structural and functional changes in LGN.

  20. Vasodilatation in the rat dorsal hindpaw induced by activation of sensory neurons is reduced by Paclitaxel

    OpenAIRE

    Gracias, N.G.; Cummins, T.R.; Kelley, M R; Basile, D.P.; Iqbal, T.; Vasko, M.R.

    2010-01-01

    Peripheral neuropathy is a major side effect following treatment with the cancer chemotherapeutic drug paclitaxel. Whether paclitaxel-induced peripheral neuropathy is secondary to altered function of small diameter sensory neurons remains controversial. To ascertain whether the function of the small diameter sensory neurons was altered following systemic administration of paclitaxel, we injected male Sprague Dawley rats with 1 mg/kg paclitaxel every other day for a total of four doses and exa...

  1. Inhibition by the Chromaffin Cell-Derived Peptide Serine-Histogranin in the Rat's Dorsal Horn

    OpenAIRE

    Hentall, Ian D.; Hargraves, Walter A.; Sagen, Jacqueline

    2007-01-01

    The heptadecapeptide histogranin, synthesized by adrenal chromaffin cells, is implicated in the analgesia produced by transplanting chromaffin cells into the spinal cord, including block of hyperalgesia mediated by NMDA-subtype glutamate receptors. To examine the neurophysiological basis for this analgesia, we applied the stable analog [Ser1]-histogranin (SHG) by iontophoresis near extracellularly recorded wide-dynamic range (WDR) neurons in anesthetized rats. When SHG was applied during peri...

  2. Adrenomedullin mediates tumor necrosis factor-α-induced responses in dorsal root ganglia in rats.

    Science.gov (United States)

    Chen, Yajuan; Zhang, Yan; Huo, Yuanhui; Wang, Dongmei; Hong, Yanguo

    2016-08-01

    Adrenomedullin (AM), a member of the calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pain peptide. This study investigated the possible involvement of AM in tumor necrosis factor-alpha (TNF-α)-induced responses contributing to neuronal plasticity in the dorsal root ganglia (DRG). Exposure of the DRG explant cultures to TNF-α (5nM) for 48h upregulated the expression of AM mRNA. The treatment with TNF-α also increased the level of CGRP, CCL-2 and MMP-9 mRNA in the cultured DRG. This increase was attenuated by the co-treatment with the selective AM receptor antagonist AM22-52 (2μM). The blockade of AM receptors inhibited TNF-α-induced increase of the glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), phosphorylated cAMP response element binding protein (pCREB) and nuclear factor kappa B (pNF-κB) proteins. On the other hand, the treatment with the AM receptor agonist AM1-50 (10nM) for 96h induced an increase in the level of GFAP, IL-1β, pCREB and pNF-κB proteins. The inhibition of AM activity did not change TNF-α-induced phosphorylation of extracellular signal-related kinase (pERK) while the treatment with AM1-50 still increased the level of pERK in the cultured DRG. Immunofluorescence assay showed the colocalization of AM-like immunoreactivity (IR) with TNF-α-IR in DRG neurons. The present study suggests that the increased AM receptor signaling mediated the many, but not all, TNF-α-induced activities, contributing to peripheral sensitization in neuropathic pain. PMID:27184601

  3. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  4. Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum.

    Science.gov (United States)

    Jeun, Seung Hyun; Cho, Hyeong Seok; Kim, Ki Jung; Li, Qing Zhong; Sung, Ki-Wug

    2009-06-01

    The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at -70 and +40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between +50 and -50 mV. NMDA/AMPA ratio was 0.20+/-0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26+/-0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32+/-0.03. The rectification index (control 2.39+/-0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02+/-0.11 and 0.93+/-0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies. PMID:19885039

  5. Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats

    OpenAIRE

    Zhao, Li; Qu, Wei; Wu, Yuxuan; Ma, Hao; Jiang, Huajun

    2014-01-01

    Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and purification of Schwann cells are complicated by contamination with fibroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly purified Schwann c...

  6. Dorsal striatum mediation of cocaine-seeking after withdrawal from short or long daily access cocaine self-administration in rats

    OpenAIRE

    Pacchioni, Alejandra M.; Gabriele, Amanda; See, Ronald E.

    2010-01-01

    Accumulating evidence has suggested that prolonged use of cocaine may lead to progressive neuroadaptations proceeding from ventral to more dorsal areas of the corpus striatum. We have previously found that reversible inactivation of the dorsolateral caudate/putamen (dlCPu) significantly attenuated cocaine-seeking in rats following chronic cocaine self-administration and withdrawal. Since the cumulative amount of cocaine intake and the time course of withdrawal emergent patterns have been prev...

  7. Interaction between the basolateral amygdala and dorsal hippocampus is critical for cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior in rats

    OpenAIRE

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory reconsolidation; however, it is not known whether these brain regions interact or independently control this phenomenon. To investigate this question, rats ...

  8. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    OpenAIRE

    M. Camplesi Jr; V.C.de Bortoli; V. de Paula Soares; R. L. Nogueira; H. Zangrossi Jr.

    2012-01-01

    The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat...

  9. CB1 cannabinoid receptor stimulation modulates transient receptor potential vanilloid receptor 1 activities in calcium influx and substande P release in cultured rat dorsal root ganglion cells

    OpenAIRE

    Ohshita, Kyoko

    2005-01-01

    Cannabinoids have been reported to have analgesic properties in animals of acute nociception or of inflammatory and neuropathic pain models, but the mechanisms by which they exert such alleviative effects are not yet fully understood. We investigated whether the CB1- cannabinoid-receptor agonist HU210 modulates the capsaicin-induced 45Ca2+ influx and substance P like-immunoreactivity (SPLI) release in cultured rat dorsal root ganglion (DRG) cells. HU210 attenuated the capsaicin-induced 45Ca2+...

  10. Effects of Intermittent Aerobic Training on Passive Avoidance Test (Shuttle Box) and Stress Markers in the Dorsal Hippocampus Of Wistar Rats Exposed to Administration of Homocysteine

    OpenAIRE

    Hosseinzadeh, Somayeh; Dabidi Roshan, Valiollah; Pourasghar, Mehdi

    2013-01-01

    Objective: Elevated amino acid homocysteine (Hcy) levels and insufficient physical activity are the risk factors in Alzheimer disease (AD) development. The effect of intermittent aerobic training on memory retention test and Thiobarbituric Acid Reactive Substances (TBARS) and superoxide dismutase (SOD) levels in the dorsal hippocampus of rats which were stimulated with Hcy is investigated. Methods: In order to determine the dose at which using Shuttle Box Test recognizes degenerative changes ...

  11. Forskolin Enhances Synaptic Transmission in Rat Dorsal Striatum through NMDA Receptors and PKA in Different Phases

    OpenAIRE

    Cho, Hyeong Seok; Lee, Hyun Ho; Choi, Se Joon; Kim, Ki Jung; Jeun, Seung Hyun; Li, Qing-Zhong; Sung, Ki-Wug

    2008-01-01

    The effect of forskolin on corticostriatal synaptic transmission was examined by recording excitatory postsynaptic currents (EPSCs) in rat brain slices using the whole-cell voltage-clamp technique. Forskolin produced a dose-dependent increase of corticostriatal EPSCs (1, 3, 10, and 30 µM) immediately after its treatment, and the increase at 10 and 30 µM was maintained even after its washout. When the brain slices were pre-treated with (DL)-2-amino-5-phosphonovaleric acid (AP-V, 100 µM), an NM...

  12. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model

    Science.gov (United States)

    Ersel, Murat; Uyanikgil, Yigit; Akarca, Funda Karbek; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Cetin, Emel Oyku

    2016-01-01

    Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Results Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. Conclusions We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds. PMID:27032876

  13. Serotonin in the dorsal periaqueductal gray inhibits panic-like defensive behaviors in rats exposed to acute hypoxia.

    Science.gov (United States)

    Spiacci, A; Sergio, T de Oliveira; da Silva, G S F; Glass, M L; Schenberg, L C; Garcia-Cairasco, N; Zangrossi, H

    2015-10-29

    It has been proposed that spontaneous panic attacks are the outcome of the misfiring of an evolved suffocation alarm system. Evidence gathered in the last years is suggestive that the dorsal periaqueductal gray (dPAG) in the midbrain harbors a hypoxia-sensitive suffocation alarm system. We here investigated whether facilitation of 5-HT-mediated neurotransmission within the dPAG changes panic-like defensive reactions expressed by male Wistar rats submitted to a hypoxia challenge (7% O2), as observed in other animal models of panic. Intra-dPAG injection of 5-HT (20 nmol), (±)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) (8 nmol), a 5-HT1A receptor agonist, or (±)-2,5-dimethoxy-4-iodo amphetamine hydrochloride (DOI) (16 nmol), a preferential 5-HT2A agonist, reduced the number of upward jumps directed to the border of the experimental chamber during hypoxia, interpreted as escape attempts, without affecting the rats' locomotion. These effects were similar to those caused by chronic, but not acute, intraperitoneal administration of the antidepressant fluoxetine (5-15 mg/kg), or acute systemic administration of the benzodiazepine receptor agonist alprazolam (1-4 mg/kg), both drugs clinically used in the treatment of panic disorder. Our findings strengthen the view that the dPAG is a key encephalic area involved in the defensive behaviors triggered by activation of the suffocation alarm system. They also support the use of hypoxia-evoked escape as a model of respiratory-type panic attacks. PMID:26319117

  14. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms.

    Science.gov (United States)

    An, Lihong; Li, Guozhen; Si, Jiliang; Zhang, Cuili; Han, Xiaoying; Wang, Shuo; Jiang, Lulu; Xie, Keqin

    2016-05-01

    Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport. PMID:26721510

  15. The sensitivity of neurons with non-periodic activity to sympathetic stimulation in rat injured dorsal root ganglion

    Institute of Scientific and Technical Information of China (English)

    Hong-Jun YANG; San-Jue HU; Pu-Lin GONG; Jian-Hong DUAN

    2006-01-01

    Objective The relationship between firing pattern and sensitivity of neurons was studied in chronically compressed dorsal root ganglion (DRG) neurons and the Hindmarsh-Rose (HR) neuronal model. Methods Spontaneous activities from single fibers of chronically compressed DRG neurons in rats were recorded, and divided into periodic and non-periodic firing patterns. The sensitivity of the two kinds of firing pattern neuron to sympathetic stimulation (SS)was compared. Result It was found that 27.3% of periodic firing neurons and 93.2% of non-periodic firing neurons responded to SS respectively ( periodic vs non-periodic, P < 0.01 ). The responses to SS with different stimulation time were greater non-periodic firing neurons than periodic firing neurons (P < 0.01 ). The non-periodic firing neurons obviously responded to SS. After the firing pattern of these neurons transformed to periodic firing pattern, their responses to SS disappeared or decreased obviously. The HR neuronal model exhibited a significantly greater response to perturbation in non-periodic (chaotic) firing pattern than in periodic firing pattern. Conclusion The non-periodic firing neurons with deterministic chaos are more sensitive to external stimuli than the periodic firing neurons.

  16. P2X₇ receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia.

    Science.gov (United States)

    Liu, Shuangmei; Shi, Qingming; Zhu, Qicheng; Zou, Ting; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Wu, Qin; Xie, Qiuyu; Lin, Weijian; Xie, Wei; Wen, Shiyao; Zhang, Zhedong; Lv, Qiulan; Zou, Lifang; Zhang, Xi; Ying, Mofeng; Li, Guodong; Liang, Shangdong

    2015-06-01

    Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint "Dachangshu" and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor. PMID:25527178

  17. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons.

    Science.gov (United States)

    Murayama, Chiaki; Watanabe, Shimpei; Nakamura, Motokazu; Norimoto, Hisayoshi

    2015-01-01

    Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine) is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH), a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF) in cultured rat dorsal root ganglion (DRG) neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control), a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in "itch-scratch" animal models is under investigation. PMID:26287150

  18. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  19. Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of gudden in the rat: implications for path integration in the head direction cell circuit.

    Science.gov (United States)

    Sharp, P E; Tinkelman, A; Cho, J

    2001-06-01

    When a rat navigates through space, head direction (HD) cells provide an ongoing signal of the rat's directional heading. It is thought that these cells rely, in part, on angular path integration of the rat's head movements. This integration requires that the HD cell system receive information about angular head movements and that this information be combined with the current directional signal, to generate the next "predicted" direction. Recent data suggest that the dorsal tegmental nucleus (DTN) may play a critical role in helping to generate the HD cell signal. To test this, recordings were made from cells in the DTN in freely moving rats. The following cell types were found: (a) "classic" HD cells, (b) angular velocity cells, and (c) cells that fired as a function of both head direction and angular velocity. Thus, DTN cells exhibit firing characteristics that are critical to the neural circuit hypothesized for generation of the HD cell signal. PMID:11439447

  20. Forskolin Enhances Synaptic Transmission in Rat Dorsal Striatum through NMDA Receptors and PKA in Different Phases.

    Science.gov (United States)

    Cho, Hyeong Seok; Lee, Hyun Ho; Choi, Se Joon; Kim, Ki Jung; Jeun, Seung Hyun; Li, Qing-Zhong; Sung, Ki-Wug

    2008-12-01

    The effect of forskolin on corticostriatal synaptic transmission was examined by recording excitatory postsynaptic currents (EPSCs) in rat brain slices using the whole-cell voltage-clamp technique. Forskolin produced a dose-dependent increase of corticostriatal EPSCs (1, 3, 10, and 30 microM) immediately after its treatment, and the increase at 10 and 30 microM was maintained even after its washout. When the brain slices were pre-treated with (DL)-2-amino-5-phosphonovaleric acid (AP-V, 100 microM), an NMDA receptor antagonist, the acute effect of forskolin (10 microM) was blocked. However, after washout of forskolin, an increase of corticostriatal EPSCs was still observed even in the presence of AP-V. When KT 5720 (5 microM), a protein kinase A (PKA) inhibitor, was applied through the patch pipette, forskolin (10 microM) increased corticostriatal EPSCs, but this increase was not maintained. When forskolin was applied together with AP-V and KT 5720, both the increase and maintenance of the corticostriatal EPSCs were blocked. These results suggest that forskolin activates both NMDA receptors and PKA, however, in a different manner. PMID:19967070

  1. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn.

    Science.gov (United States)

    Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T

    2016-04-01

    Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. PMID:26826332

  2. Peripheral inflammation facilitates Abeta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord.

    Science.gov (United States)

    Baba, H; Doubell, T P; Woolf, C J

    1999-01-15

    Whole-cell patch-clamp recordings were made from substantia gelatinosa (SG) neurons in thick adult rat transverse spinal cord slices with attached dorsal roots to study changes in fast synaptic transmission induced by peripheral inflammation. In slices from naive rats, primary afferent stimulation at Abeta fiber intensity elicited polysynaptic EPSCs in only 14 of 57 (25%) SG neurons. In contrast, Abeta fiber stimulation evoked polysynaptic EPSCs in 39 of 62 (63%) SG neurons recorded in slices from rats inflamed by an intraplantar injection of complete Freund's adjuvant (CFA) 48 hr earlier (p < 0.001). Although the peripheral inflammation had no significant effect on the threshold and conduction velocities of Abeta, Adelta, and C fibers recorded in dorsal roots, the mean threshold intensity for eliciting EPSCs was significantly lower in cells recorded from rats with inflammation (naive: 33.2 +/- 15.1 microA, n = 57; inflamed: 22.8 +/- 11.3 microA, n = 62, p < 0.001), and the mean latency of EPSCs elicited by Abeta fiber stimulation in CFA-treated rats was significantly shorter than that recorded from naive rats (3.3 +/- 1.8 msec, n = 36 vs 6.0 +/- 3.5 msec, n = 12; p = 0.010). Abeta fiber stimulation evoked polysynaptic IPSCs in 4 of 25 (16%) cells recorded from naive rat preparations and 14 of 26 (54%) SG neurons from CFA-treated rats (p < 0.001). The mean threshold intensity for IPSCs was also significantly lower in CFA-treated rats (naive: 32.5 +/- 15.7 microA, n = 25; inflamed: 21. 9 +/- 9.9 microA, n = 26, p = 0.013). The facilitation of Abeta fiber-mediated input into the substantia gelatinosa after peripheral inflammation may contribute to altered sensory processing. PMID:9880605

  3. Dorsal and ventral hippocampus modulate autonomic responses but not behavioral consequences associated to acute restraint stress in rats.

    Science.gov (United States)

    Scopinho, América A; Lisboa, Sabrina F S; Guimarães, Francisco S; Corrêa, Fernando M A; Resstel, Leonardo B M; Joca, Sâmia R L

    2013-01-01

    Recent evidence has suggested that the dorsal (DH) and the ventral (VH) poles of the hippocampus are structurally, molecularly and functionally different regions. While the DH is preferentially involved in the modulation of spatial learning and memory, the VH modulates defensive behaviors related to anxiety. Acute restraint is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increases, skeletal muscle vasodilatation and cutaneous vasoconstriction, which are accompanied by a rapid skin temperature drop followed by body temperature increases. In addition to those autonomic responses, animals submitted to restraint also present behavioral changes, such as reduced exploration of the open arms of an elevated plus-maze (EPM), an anxiogenic-like effect. In the present work, we report a comparison between the effects of pharmacological inhibition of DH and VH neurotransmission on autonomic and behavioral responses evoked by acute restraint stress in rats. Bilateral microinjection of the unspecific synaptic blocker cobalt chloride (CoCl2, 1mM) into the DH or VH attenuated BP and HR responses, as well as the decrease in the skin temperature, elicited by restraint stress exposure. Moreover, DH or VH inhibition before restraint did not change the delayed increased anxiety behavior observed 24 h later in the EPM. The present results demonstrate for the first time that both DH and VH mediate stress-induced autonomic responses to restraint but they are not involved in the modulation of the delayed emotional consequences elicited by such stress. PMID:24147071

  4. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats.

    Science.gov (United States)

    Javdani, Fariba; Holló, Krisztina; Hegedűs, Krisztina; Kis, Gréta; Hegyi, Zoltán; Dócs, Klaudia; Kasugai, Yu; Fukazawa, Yugo; Shigemoto, Ryuichi; Antal, Miklós

    2015-09-01

    γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons. PMID:25764511

  5. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation. PMID:26510475

  6. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus.

    Science.gov (United States)

    Shikanai, Hiroki; Yoshida, Takayuki; Konno, Kohtarou; Yamasaki, Miwako; Izumi, Takeshi; Ohmura, Yu; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2012-10-10

    The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor. PMID:23055511

  7. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2. Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4 µm(2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  8. N-methyl-D-aspartate receptor expression in the spinal dorsal horn of a rat model of formalin-induced inflammatory pain following intrathecal injection of butorphanol

    Institute of Scientific and Technical Information of China (English)

    Yichun Wang; Yuan Zhang; Qulian Guo; Xiaohong Liu; Mingde Wang; Hui Luo

    2010-01-01

    Clinical and animal experiments have proved that intrathecal injection of butorphanol has an analgesic effect. However, whether the analgesic effect is associated with activation of the N-methyl-D-aspartate (NMDA) receptor remains unclear. This study presumed that intrathecal injection of butorphanol has an analgesic effect on formalin-induced inflammatory pain in rats, and its analgesic effect is associated with inhibition of NMDA receptors. Concurrently, ketamine was injected into the intrathecal space, which is a non-competitive NMDA receptor antagonist, to determine the analgesic mechanism of butorphanol. The total reflection time in phase 1 and phase 2 of rat hind paws carding action was reduced when the butorphanol dose was increased to 25 μg,or a low dose of butorphanol was combined with ketamine. Intrathecal injection of a high dose of butorphanol alone or a Iow dose of butorphanol combined with ketamine can remarkably reduce NMDA receptor expression in the L5 spinal dorsal horn of formalin-induced pain rats. The results suggest that intrathecal injection of butorphanol has analgesic effects on formalin-induced inflammatory pain, and remarkably reduces NMDA receptor expression in the rat spinal dorsal horn.Ketamine strengthens this analgesic effect. The analgesic mechanism of intrathecal injection of butorphanol is associated with inhibition of NMDA receptor activation.

  9. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    1978-01-01

    Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants...

  10. Roles of mitochondria and temperature in the control of intracellular calcium in adult rat sensory neurons

    OpenAIRE

    Kang, S. H.; Carl, A; McHugh, J.M.; Goff, H.R.; Kenyon, J L

    2007-01-01

    We recorded Ca2+ current and intracellular Ca2+ ([Ca2+]i) in isolated adult rat dorsal root ganglion (DRG) neurons at 20 and 30 °C. In neurons bathed in tetraethylammonium and dialyzed with cesium, warming reduced resting average [Ca2+]i from 87 to 49 nM and the time constant of the decay of [Ca2+]i transients (τr) from 1.3 s to 0.99 s (Q10 = 1.4). The Buffer Index, the ratio between Ca2+ influx and Δ[Ca2+]i (∫ICa·dt/Δ[Ca2+]i), increased 2- to 3-fold with warming. Neither inhibition of the pl...

  11. Low dose prenatal alcohol exposure does not impair spatial learning and memory in two tests in adult and aged rats.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol ethanol (EtOH or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult or 15 months (Aged of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance.

  12. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    Science.gov (United States)

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  13. Effect of TRPV4-p38 MAPK Pathway on Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion

    Directory of Open Access Journals (Sweden)

    Yu-Juan Qu

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationships among TRPV4, p38, and neuropathic pain in a rat model of chronic compression of the dorsal root ganglion. Mechanical allodynia appeared after CCD surgery, enhanced via the intrathecal injection of 4α-phorbol 12,13-didecanoate (4α-PDD, an agonist of TRPV4 and anisomycin (an agonist of p38, but was suppressed by Ruthenium Red (RR, an inhibitor of TRPV4 and SB203580 (an inhibitor of p38. The protein expressions of p38 and P-p38 were upregulated by 4α-PDD and anisomycin injection but reduced by RR and SB203580. Moreover, TRPV4 was upregulated by 4α-PDD and SB203580 and downregulated by RR and anisomycin. In DRG tissues, the numbers of TRPV4- or p38-positive small neurons were significantly changed in CCD rats, increased by the agonists, and decreased by the inhibitors. The amplitudes of ectopic discharges were increased by 4α-PDD and anisomycin but decreased by RR and SB203580. Collectively, these results support the link between TRPV4 and p38 and their intermediary role for neuropathic pain in rats with chronic compression of the dorsal root ganglion.

  14. Adolescent social isolation influences cognitive function in adult rats

    Institute of Scientific and Technical Information of China (English)

    Feng Shao; Xiao Han; Shuang Shao; Weiwen Wang

    2013-01-01

    Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate the effects of adolescent social isolation on latent inhibition and brain-derived neurotrophic factor levels in the forebrain of adult rats. Male Wistar rats were randomly divided into adolescent isolation (isolated housing, 38–51 days of age) and social groups. Latent inhibition was tested at adulthood. Brain-derived neurotrophic factor levels were measured in the medial prefrontal cortex and nucleus accumbens by an enzyme-linked immunosorbent assay. Adolescent social isolation impaired latent inhibition and increased brain-derived neurotrophic factor levels in the medial prefrontal cortex of young adult rats. These data suggest that adolescent social isolation has a profound effect on cognitive function and neurotrophin levels in adult rats and may be used as an animal model of neurodevelopmental disorders.

  15. Effects of intrathecal injection of glial cell inhibitor on spinal cord astrocytes following chronic compression of dorsal root ganglia in rats

    Institute of Scientific and Technical Information of China (English)

    Xianhong Zhang; Wen Shen; Mingde Wang; Yinming Zeng

    2009-01-01

    BACKGROUND: Astrocytes are considered to provide nutritional support in the central nervous system. However, recent studies have confirmed that astrocytes also play an important role in chronic pain. OBJECTIVE: To investigate the effects of intrathecal injection of fluorocitrate, minocycline or both on astrocyte activation and proliferation in the spinal dorsal horn of compressed dorsal root ganglion in rats. DESIGN, TIME AND SETTING: The neurology randomized controlled animal study was performed at the Jiangsu Institute of Anesthesia Medicine, from September 2006 to April 2007. MATERIALS: A total of 96 male Sprague Dawley rats, aged 6-8 weeks, were selected for this study. Following intrathecal catheterization, 80 rats underwent steel bar insertion into the L4-5 intervertebral foramina to make a stable compression on the L4-5 posterior root ganglion. Thus rat models of ganglion compression were established. Minocycline and fluorocitrate were purchased from Sigma, USA. METHODS: A total of 96 rats were randomly and equally divided into six groups. Rat L4, L5 transverse process and intervertebral foramina were exposed in the sham operation group, but without steel bar insertion. The model group did not receive any manipulations. Rats in the phosphate buffered saline (PBS) group were intrathecally injected with 0.01 mmol/L PBS (20 μL). Rats in the fluorocitrate group were subjected to 1 μmol/L fluorocitrate (20 μL). Rats in the minocycline group were intrathecally injected with 5 g/L minocycline (20 μL). Rats in the minocycline and fluorocitrate group received a mixture (20 μL) of 5 g/L minocycline and 1 μmol/L fluorocitrate. Following model establishment, drugs were administered once a day. MAIN OUTCOME MEASURES: At 7 and 14 days following model induction, glial fibrillary acidic protein expression in the spinal dorsal horn was measured by immunofluorescence microscopy. Six sections with significant glial fibrillary acidic protein -positive expression were

  16. The effects of huwentoxin-I on the voltage-gated sodium channels of rat hippocampal and cockroach dorsal unpaired median neurons.

    Science.gov (United States)

    Wang, Meichi; Rong, Mingqiang; Xiao, Yucheng; Liang, Songping

    2012-03-01

    Huwentoxin-I (HWTX-I) is a 33-residue peptide isolated from the venom of Ornithoctonus huwena and could inhibit TTX-sensitive voltage-gated sodium channels and N-type calcium channels in mammalian dorsal root ganglion (DRG) neurons. However, the effects of HWTX-I on mammalian central neuronal and insect sodium channel subtypes remain unknown. In this study, we found that HWTX-I potently inhibited sodium channels in rat hippocampal and cockroach dorsal unpaired median (DUM) neurons with the IC(50) values of 66.1±5.2 and 4.80±0.58nM, respectively. Taken together with our previous work on DRG neurons (IC(50)≈55nM), the order of sodium channel sensitivity to HWTX-I inhibition was insect central DUM≫mammalian peripheral>mammalian central neurons. HWTX-I exhibited no effect on the steady-state activation and inactivation of sodium channels in rat hippocampal and cockroach DUM neurons. PMID:22094230

  17. Involvement of opioid receptors in the CGRP8-37-induced inhibition of the activity of wide-dynamic-range neurons in the spinal dorsal horn of rats.

    Science.gov (United States)

    Yan, Yi; Yu, Long-Chuan

    2004-07-01

    The present study was performed to explore the involvement of opioid receptors in the calcitonin gene-related peptide 8-37 (CGRP8-37, an antagonist of CGRP receptor)-induced inhibition of the activity of wide-dynamic-range (WDR) neurons in the spinal dorsal horn of rats. Extracellular recording was performed with a multibarrelled glass micropipette, and the chemicals were delivered by micro-iontophoresis. The discharge frequency of WDR neurons was evoked by subcutaneous electrical stimulation applied to the ipsilateral hindpaw. Iontophoretic application of CGRP8-37 by an ejection current of 160 nA induced significant inhibition of the discharge frequency of WDR neurons. The inhibitory effect of CGRP8-37 on the activity of WDR neurons was attenuated by later iontophoretic application of the opioid antagonist naloxone. Furthermore, the effect of CGRP8-37 was attenuated by either iontophoretic application of the kappa-receptor antagonist nor-binaltorphimine (nor-BNI) or the mu-receptor antagonist beta-funaltrexamine (beta-FNA) but not by the delta-receptor antagonist naltrindole. The results indicate that kappa- and mu-opioid receptors on the membrane of WDR neurons are involved in the modulation of CGRP8-37-induced antinociception in dorsal horn of the spinal cord in rats. PMID:15197748

  18. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray.

    Science.gov (United States)

    Furuya-da-Cunha, Elke Mayumi; Souza, Rimenez Rodrigues de; Canto-de-Souza, Azair

    2016-07-01

    Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses. PMID:27059332

  19. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats.

    Directory of Open Access Journals (Sweden)

    Paula Duarte-Guterman

    Full Text Available Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER, a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol's effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg, G1 (0.1, 5, 10 μg, G15 (40 μg, G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO. After 30 min, animals received an injection of bromodeoxyuridine (BrdU and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus.

  20. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  1. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats.

    Science.gov (United States)

    Lee, Heekyung; Kang, Eunchai; GoodSmith, Douglas; Yoon, Do Yeon; Song, Hongjun; Knierim, James J; Ming, Guo-Li; Christian, Kimberly M

    2015-01-01

    Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function. PMID:26161071

  2. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats

    Directory of Open Access Journals (Sweden)

    Heekyung Lee

    2015-06-01

    Full Text Available Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1, the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, somatic hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function.

  3. Autologous nucleus pulposus transplantation to lumbar 5 dorsal root ganglion after epineurium discission in rats: a modified model of non-compressive lumbar herniated intervertebral disc

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-jun; SONG Wu; LUO Wen-ying; WEI Ming; SUN Lai-bao; ZOU Xue-nong; LIAO Wei-ming

    2011-01-01

    Background Nucleus pulposus of intervertebral discs has proinflammatory characteristics that play a key role in neuropathic pain in lumbar herniated intervertebral disc. One of the most commonly used animal models (the traditional model) of non-compressive lumbar hemiated intervertebral disc is created by L4-L5 hemilaminectomy and the application of autologous nucleus pulposus to cover the left L4 and L5 nerve roots in rats. However, such procedures have the disadvantages of excessive trauma and low success rate. We proposed a modified model of non-compressive lumbar herniated intervertebral disc in which only the left L5 dorsal root ganglion is exposed and transplanted with autologous nucleus pulposus following incision of epineurium. We aimed to compare the modified model with the traditional one with regard to trauma and success rate.Methods Thirty Sprague-Dawley male rats were randomized into three groups: sham operation group (n=6). traditional group (n=12), and modified group (n=12). The amount of blood loss and operative time for each group were analyzed. The paw withdrawal threshold of the left hind limb to mechanical stimuli and paw withdrawal latency to heat stimuli were examined from the day before surgery to day 35 after surgery.Results Compared with the traditional group, the modified group had shorter operative time, smaller amount of blood loss, and higher success rate (91.7% versus 58.3%, P <0.05). There was no decrease in paw withdrawal latency in any group. The sham operation group had no decrease in postoperative paw withdrawal threshold, whereas the modified and traditional groups had significant reduction in paw withdrawal threshold after surgery (mechanical hyperalgesia).Conclusions Transplantation of nucleus pulposus onto the L5 dorsal root ganglion following incision of epineurium in rats established an improved animal model of non-compressive lumbar herniated intervertebral disc with less trauma and more stable pain ethology.

  4. Increase of TRPV1-Immunoreactivity in Dorsal Root Ganglia Neurons Innervating the Femur in a Rat Model of Osteoporosis

    OpenAIRE

    Yoshino, Kensuke; Suzuki, Miyako; Kawarai, Yuya; Sakuma, Yoshihiro; Inoue, Gen; Orita, Sumihisa; Yamauchi, Kazuyo; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Kubota, Gou; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi

    2014-01-01

    Purpose Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel, which can be activated by capsaicin and other noxious stimuli. Recently, an association between bone pain and TRPV1 has been reported. However, the influence of osteoporosis on TRPV1 in the sensory system innervating the femur has not been reported. Materials and Methods TRPV1-immunoreactive (ir) in dorsal root ganglia (DRG) neurons labeled with neurotracer [Fluoro-Gold (FG)] innervating th...

  5. P2X7 receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia

    OpenAIRE

    Liu, Shuangmei; Shi, Qingming; Zhu, Qicheng; Zou, Ting; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Wu, Qin; Xie, Qiuyu; Lin, Weijian; XIE, Wei; Wen, Shiyao; Zhang, Zhedong

    2014-01-01

    Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying...

  6. Cellular and molecular basis of TNFa, IL-1ß and LPS mediated signaling in rat dorsal root ganglion

    OpenAIRE

    Li, Yanzhang

    2004-01-01

    The proinflammatory cytokines TNFa and IL-1ß as well as bacterial lipopolysaccharide (LPS) are known to affect primary afferent functions related to pain and neurogenic inflammation. However, it is not completely understood how these molecules signal to primary sensory neurons of the dorsal root ganglion (DRG). In order to clarify this question RT-PCR, Northern blot, Western blot, RT-PCR in combination with laser capture microdiss...

  7. ACUTE TOXICITY OF PESTICIDES IN ADULT AND WEANLING RATS

    Science.gov (United States)

    LD sub 50 values were determined for 57 pesticides administered by the oral or dermal route to adult male and female Sherman rats. Nine pesticides tested by the oral route (bufencarb, cacodylic acid, dialifor, deltamethrin, dicamba, diquat, quintozene, phoxim, pyrazon) and 4 test...

  8. Activation of group III metabotropic glutamate receptors inhibits basal and amphetamine-stimulated dopamine release in rat dorsal striatum: an in vivo microdialysis study.

    Science.gov (United States)

    Mao, L; Lau, Y S; Wang, J Q

    2000-09-22

    Group III metabotropic glutamate (mGlu) receptors are negatively coupled to adenylate cyclase and are distributed pre-synaptically in the striatum. A behavioral study previously conducted in this laboratory shows that activation of this group of mGlu receptors attenuates acute amphetamine-stimulated motor activity. By administering a group III selective agonist or antagonist via the dialysis probe, the present study employed in vivo microdialysis to evaluate the capacity of the group III selective agents to alter extracellular levels of dopamine in the dorsal striatum of normal and amphetamine-treated rats. It was found that the group III agonist L-2-amino-4-phosphonobutyrate (L-AP4) dose-dependently (1, 10 and 100 microM) reduced basal levels of extracellular dopamine. In contrast, the group III antagonist alpha-methyl-4-phosphonophenylglycine (MPPG) dose-dependently (10, 50 and 250 microM) elevated the basal release of extracellular dopamine. This elevation was antagonized by co-perfusion of L-AP4. Perfusion of 5-microM amphetamine through the dialysis probe increased extracellular dopamine in the dorsal striatum. Co-perfusion of L-AP4 (100 microM) significantly reduced amphetamine-stimulated dopamine levels, whereas co-perfusion of L-AP4 (100 microM) and MPPG (100 microM) did not alter the capacity of amphetamine to elicit dopamine release. The data obtained from this study demonstrate the presence of a tonically active glutamatergic tone on group III mGlu receptors in the dorsal striatum to pre-synaptically regulate basal dopamine release in an inhibitory fashion. Moreover, activation of L-AP4-sensitive group III mGlu receptors can suppress the phasic release of dopamine induced by a dopamine stimulant amphetamine. PMID:10996594

  9. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld;

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...... studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.......The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and...... in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing...

  10. Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Wei Qu; Yuxuan Wu; Hao Ma; Huajun Jiang

    2014-01-01

    Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (> 95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects.

  11. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    Science.gov (United States)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  12. Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event.

    Science.gov (United States)

    Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P

    2016-06-01

    Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain

  13. Protective effects of chronic treatment with a standardized extract of Ginkgo biloba L. in the prefrontal cortex and dorsal hippocampus of middle-aged rats.

    Science.gov (United States)

    Ribeiro, Marcelo L; Moreira, Luciana M; Arçari, Demetrius P; Dos Santos, Letícia França; Marques, Antônio Cezar; Pedrazzoli, José; Cerutti, Suzete M

    2016-10-15

    This study assessed the effects of chronic treatment with a standardized extract of Ginkgo biloba L. (EGb) on short-term and long-term memory as well as on anxiety-like and locomotor activity using the plus-maze discriminative avoidance task (PM-DAT). Additionally, we evaluated the antioxidant and neuroprotective effects of EGb on the prefrontal cortex (PFC) and dorsal hippocampus (DH) of middle-aged rats using the comet assay. Twelve-month-old male Wistar rats were administered vehicle or EGb (0.5mgkg(-1) or 1.0gkg(-1)) for 30days. Behavioural data showed that EGb treatment improved short-term memory. Neither an anti-anxiety effect nor a change in locomotor activity was observed. Twenty-four hours after the behavioural tests, the rats were decapitated, and the PFC and DH were quickly dissected out and prepared for the comet assay. The levels of DNA damage in the PFC were significantly lower in rats that were treated with 1.0gkg(-1) EGb. Both doses of EGb decreased H2O2-induced DNA breakage in cortical cells, whereas the levels of DNA damage in the EGb-treated animals were significantly lower than those in the control animals. No significant differences in the level of DNA damage in hippocampal cells were observed among the experimental groups. EGb treatment was not able to reduce H2O2-induced DNA damage in hippocampal cells. Altogether, our data provide the first demonstration that chronic EGb treatment improved the short-term memory of middle-aged rats, an effect that could be associated with a reduction in free radical production in the PFC. These data suggest that EGb treatment might increase the survival of cortical neurons and corroborate and extend the view that EGb has protective and therapeutic properties. PMID:27424157

  14. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    Directory of Open Access Journals (Sweden)

    Tomotsuka N

    2014-07-01

    Full Text Available Naoto Tomotsuka,1 Ryuji Kaku,1 Norihiko Obata,1 Yoshikazu Matsuoka,1 Hirotaka Kanzaki,2 Arata Taniguchi,1 Noriko Muto,1 Hiroki Omiya,1 Yoshitaro Itano,1 Tadasu Sato,3 Hiroyuki Ichikawa,3 Satoshi Mizobuchi,1 Hiroshi Morimatsu1 1Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Department of Pharmacy, Okayama University Hospital, Okayama, Japan; 3Department of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Japan Abstract: Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF, known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons but not in medium or large neurons (non-nociceptive neurons. Further, expression of nerve growth factor (NGF, which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. Keywords: BDNF, bone cancer pain, chronic pain, nerve growth

  15. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats

    Directory of Open Access Journals (Sweden)

    Sara ePalm

    2014-07-01

    Full Text Available Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction.

  16. Developmentally Regulated Expression of HDNF/NT-3 mRNA in Rat Spinal Cord Motoneurons and Expression of BDNF mRNA in Embryonic Dorsal Root Ganglion.

    Science.gov (United States)

    Ernfors, Patrik; Persson, Håkan

    1991-01-01

    Northern blot analysis was used to demonstrate high levels of hippocampus-derived neurotrophic factor/neurotrophin-3 (HDNF/NT-3) mRNA in the embryonic day (E) 13 - 14 and 15 - 16 spinal cord. The level decreased at E18 - 19 and remained the same until postnatal day (P) 1, after which it decreased further to a level below the detection limit in the adult. In situ hybridization revealed that the NT-3 mRNA detected in the developing spinal cord was derived from motoneurons and the decrease seen at E18 - 19 was caused by a reduction in the number of motoneurons expressing NT-3 mRNA. The distribution of NT-3 mRNA-expressing cells in the E15 spinal cord was very similar to the distribution of cells expressing choline acetyltransferase or nerve growth factor receptor (NGFR) mRNA. Moreover, a striking similarity between the developmentally regulated expression of NT-3 and NGFR mRNA was noted in spinal cord motoneurons. A subpopulation of all neurons in the dorsal root ganglia expressed brain-derived neurotrophic factor (BDNF) mRNA from E13, the earliest time examined, to adulthood. These results are consistent with a trophic role of NT-3 for proprioceptive sensory neurons innervating the ventral horn, and imply a local action of BDNF for developing sensory neurons within the dorsal root ganglia. PMID:12106253

  17. BMP3 expression in the adult rat CNS.

    Science.gov (United States)

    Yamashita, Kanna; Mikawa, Sumiko; Sato, Kohji

    2016-07-15

    Bone morphogenetic protein-3 (BMP3) is a very unique member of the TGF-β superfamily, because it functions as an antagonist to both the canonical BMP and activin pathways and plays important roles in multiple biological events. Although BMP3 expression has been described in the early development of the kidney, intestine and bone, little information is available for BMP3 expression in the central nervous system (CNS). We, thus, investigated BMP3 expression in the adult rat CNS using immunohistochemistry. BMP3 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP3 protein. These data indicate that BMP3 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that BMP3 plays important roles in the adult brain. PMID:27130896

  18. Dorsal fin anatomy (Cetacean dorsal fin Anatomy)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cetacean dorsal fin Anatomy for ONR. Comparison within populations to ascertain phenotypic differences. Findings corroborate field observation. dorsal fin description

  19. Corticotropin-releasing Factor in the Rat Dorsal Raphe Nucleus Promotes Different Forms of Behavioral Flexibility Depending on Social Stress History.

    Science.gov (United States)

    Snyder, Kevin P; Hill-Smith, Tiffany E; Lucki, Irwin; Valentino, Rita J

    2015-10-01

    The stress-related neuropeptide, corticotropin-releasing factor (CRF) regulates the dorsal raphe nucleus-serotonin (DRN-5-HT) system during stress and this may underlie affective and cognitive dysfunctions that characterize stress-related psychiatric disorders. CRF acts on both CRF1 and CRF2 receptor subtypes in the DRN that exert opposing inhibitory and excitatory effects on DRN-5-HT neuronal activity and 5-HT forebrain release, respectively. The current study first assessed the cognitive effects of intra-DRN microinfusion of CRF or the selective CRF2 agonist, urocortin II in stress-naive rats on performance of an operant strategy set-shifting task that is mediated by the medial prefrontal cortex (mPFC). CRF (30 ng) facilitated strategy set-shifting performance, whereas higher doses of CRF and urocortin II that would interact with CRF2 were without effect, consistent with a CRF1-mediated action. This dose decreased 5-HT extracellular levels in the mPFC, further supporting a role for CRF1. The effects of CRF were then assessed in rats exposed to repeated social stress using the resident-intruder model. Repeated social stress shifted the CRF effect from facilitation of strategy set shifting to facilitation of reversal learning and this was most prominent in a subpopulation of rats that resist defeat. Notably, in this subpopulation of rats 5-HT neuronal responses to CRF have been demonstrated to shift from CRF1-mediated inhibition to CRF2-mediated excitation. Because 5-HT facilitates reversal learning, the present results suggest that stress-induced changes in the cellular effects of CRF in the DRN translate to changes in cognitive effects of CRF. Together, the results underscore the potential for stress history to shift cognitive processing through changes in CRF neurotransmission in the DRN and the association of this effect with coping strategy. PMID:25865931

  20. Contrasting regional Fos expression in adolescent and young adult rats following acute administration of the antidepressant paroxetine.

    Science.gov (United States)

    Karanges, Emily A; Ramos, Linnet; Dampney, Bruno; Suraev, Anastasia S; Li, Kong M; McGregor, Iain S; Hunt, Glenn E

    2016-03-01

    Adolescents and adults may respond differently to antidepressants, with poorer efficacy and greater probability of adverse effects in adolescents. The mechanisms underlying this differential response are largely unknown, but likely relate to an interaction between the neural effects of antidepressants and brain development. We used Fos immunohistochemistry to examine regional differences in adolescent (postnatal day (PND) 28) and young adult (PND 56) male, Wistar rats given a single injection of the selective serotonin reuptake inhibitor paroxetine (10mg/kg). Paroxetine induced widespread Fos expression in both adolescent and young adult rats. Commonly affected areas include the bed nucleus of the stria terminalis (dorsolateral), medial preoptic area, paraventricular hypothalamic and thalamic nuclei and central nucleus of the amygdala. Fos expression was generally lower in adolescents with significantly greater Fos expression observed in young adults in the prelimbic cortex, supraoptic nucleus, basolateral amygdala, lateral parabrachial and Kölliker-Fuse nuclei. However, a small subset of regions showed greater adolescent Fos expression including the nucleus accumbens shell, lateral habenula and dorsal raphe. Paroxetine increased plasma corticosterone concentrations in young adults, but not adolescents. Plasma paroxetine levels were not significantly different between the age groups. These results indicate a different c-Fos signature of acute paroxetine in adolescent rats, with greater activation in key mesolimbic and serotonergic regions, but a more subdued cortical, brainstem and hypothalamic response. This suggests that the atypical response of adolescents to paroxetine may be related to a blunted neuroendocrine response, combined with insufficient top-down regulation of limbic regions involved in reward and impulsivity. PMID:26876759

  1. Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy

    Science.gov (United States)

    Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen

    2015-05-01

    Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.

  2. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and...... characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution of...... epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  3. The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats.

    Science.gov (United States)

    Cosme, Caitlin V; Gutman, Andrea L; LaLumiere, Ryan T

    2015-09-01

    Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague-Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement. PMID:25837282

  4. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    Directory of Open Access Journals (Sweden)

    M. Camplesi Jr

    2012-11-01

    Full Text Available The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol. Previous electrical (5, 15, 30 min, or 24 h before testing or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

  5. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    International Nuclear Information System (INIS)

    The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABAA receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety

  6. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    Energy Technology Data Exchange (ETDEWEB)

    Camplesi, M. Jr. [Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO (Brazil); Bortoli, V.C. de [Departamento de Ciências da Saúde, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, ES (Brazil); Paula Soares, V. de [Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Nogueira, R.L. [Laboratório de Psicologia Comparada, Universidade Estácio de Sá, Rio de Janeiro, RJ (Brazil); Zangrossi, H. Jr. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-08-03

    The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA{sub A} receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

  7. ERK1/2 Phosphorylation in the Rat Supraoptic Nucleus, Dorsal Raphe Nucleus, and Locus Coeruleus Neurons Following Noxious Stimulation to the Hind Paw.

    Science.gov (United States)

    Donnerer, Josef; Liebmann, Ingrid

    2016-01-01

    Phospho-ERK1/2 (pERK1/2) fluorescence-immunohistochemistry is specifically well suited to mirror neuronal activity in the pain pathway at the cellular level. This study employed this method to visualize neuronal activity in 3 rat CNS nuclei following an acute noxious stimulation. The rat hind paw was stimulated either by heat or by a sequence of mustard oil and heat. Two min after the thermal stimulation or after the combined mustard oil and thermal stimulation, there was a significant increase in cells showing pERK1/2 immunoreactivity in the supraoptic nucleus (SON), in the dorsal raphe nucleus (DRN), and in the locus coeruleus (LC). Pretreatment with the opioid analgesic morphine or the N-methyl-D-aspartate antagonist MK-801 markedly attenuated ERK1/2 phosphorylation. These findings support the concept that the SON, the DRN, and the LC are integrated into pain processing at the hypothalamic and brain stem level. PMID:26599629

  8. Effects of iontophoresis of noradrenaline and stimulation of the periaqueductal gray on single-unit activity in the rat superficial dorsal horn.

    Science.gov (United States)

    Millar, J; Williams, G V

    1989-09-01

    Recordings were made with a new form of low-noise carbon fibre microelectrode from 75 units in the superficial laminae of the lumbar dorsal horn of the anaesthetized rat. The response of each unit to adequate stimulation of its peripheral receptive field, to noradrenaline (NA) applied iontophoretically, and to electrical stimulation of the periaqueductal gray (PAG) was investigated. Only units that could be excited by iontophoresis of glutamate (10-100 nA) were analyzed. Recording sites in the spinal cord and stimulation sites in the brainstem were identified histologically at the end of each experiment. Forty-six units with low-threshold receptive fields and small spike amplitudes were found, mainly located in laminae II and III. Both stimulation of the PAG and NA iontophoresis excited the majority (32/46) of these units. The rest were unaffected. Eight high-threshold (HT) units were located in the region of lamina I. Twenty-one wide-dynamic-range (WDR) units were found mainly in deeper laminae. Both WDR and HT units were inhibited by NA and PAG stimulation. This inhibition affected both glutamate-evoked activity and responses to nociceptive stimuli. We suggest that the small LT units are inhibitory interneurones of the substantia gelatinosa (SG), which act on the WDR and HT units to produce nociceptive-specific inhibition. The inhibition can be modality-specific without necessarily being presynaptic because of the laminar arrangement of the dorsal horn. The PAG could thus exert its known antinociceptive effects at least partly via descending noradrenergic axons that excite these SG cells. PMID:2794123

  9. Identification of different types of respiratory neurones in the dorsal brainstem nucleus tractus solitarius of the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Chow, Chin Moi; Balnave, Ron J.

    2007-01-01

    In Nembutal anaesthetised, spontaneously breathing rats, stereotaxic mapping of the nucleus tractus solitarius (NTS) for respiratory neuronal activity was undertaken. Eight different types of respiratory cells were found between 0.25 and 1.5 mm lateral to midline, extending 0.5 mm caudal to 1.5 mm r

  10. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  11. Distinct miRNA expression in dorsal striatal subregions is associated with risk for addiction in rats.

    Science.gov (United States)

    Quinn, R K; Brown, A L; Goldie, B J; Levi, E M; Dickson, P W; Smith, D W; Cairns, M J; Dayas, C V

    2015-01-01

    Recently, we published data using an animal model that allowed us to characterize animals into two groups, addiction vulnerable and addiction resilient, where we identified that addiction/relapse vulnerability was associated with deficits in synaptic plasticity-associated gene expression in the dorsal striatum (DS). Notable was the strong reduction in expression for activity-regulated cytoskeleton-associated protein (Arc) considered a master regulator of synaptic plasticity. In the present study, we confirmed that Arc messenger RNA was significantly decreased in the DS, but importantly, we identified that this reduction was restricted to the dorsomedial (DMS) and not dorsolateral striatum (DLS). There is recent evidence of microRNA (miRNA)-associated posttranscriptional suppression of Arc and animal models of addiction have identified a key role for miRNA in the regulation of addiction-relevant genes. In further support of this link, we identified several differentially expressed miRNA with the potential to influence addiction-relevant plasticity genes, including Arc. A key study recently reported that miR-212 expression is protective against compulsive cocaine-seeking. Supporting this hypothesis, we found that miR-212 expression was significantly reduced in the DMS but not DLS of addiction-vulnerable animals. Together, our data provide strong evidence that miRNA promote ongoing plasticity deficits in the DS of addiction-vulnerable animals. PMID:25646592

  12. Langerhans′ cell histiocytosis involving posterior elements of the dorsal spine: An unusual cause of extradural spinal mass in an adult

    Directory of Open Access Journals (Sweden)

    Devendra K Tyagi

    2011-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a clonal proliferation of Langerhans cells occurring as an isolated lesion or as part of a systemic proliferation. It is commoner in children younger than 10 years of age with sparing of the posterior elements in more than 95% of cases. We describe a case of LCH in an adult female presenting with paraplegia. MRI revealed a well-defined extradural contrast enhancing mass at D2-D4 vertebral level involving the posterior elements of spine. D2-5 laminectomy with excision of lesion was performed which lead to marked improvement of patients neurological status. Histopathology was suggestive of eosinophilic granuloma. We describe the case, discuss its uniqueness and review the literature on this rare tumor presentation.

  13. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat.

    Directory of Open Access Journals (Sweden)

    Marie-Solenne eFELIX

    2012-04-01

    Full Text Available Spinal cord injury (SCI triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e. brain, remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels, which could explain the SCI-mediated distant effects on forebrain neurogenesis. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.

  14. Circumcision with “no-flip Shang Ring” and “Dorsal Slit” methods for adult males: a single-centered, prospective, clinical study

    Science.gov (United States)

    Lei, Jun-Hao; Liu, Liang-Ren; Wei, Qiang; Xue, Wen-Ben; Song, Tu-Run; Yan, Shi-Bing; Yang, Lu; Han, Ping; Zhu, Yu-Chun

    2016-01-01

    This paper was aimed to compare the clinical effectiveness and safety of adult male circumcision using the Shang Ring™ (SR) with the no-flip technique compared with Dorsal Slit (DS) surgical method. A single-centered, prospective study was conducted at the West China Hospital, where patients were circumcised using the no-flip SR (n = 408) or the DS (n = 94) procedure. The adverse events (AEs) and satisfaction were recorded for both groups, and ring-removal time and percentage of delayed removals were recorded for the SR group. Finally, complete follow-up data were collected for 76.1% of patients (SR: n = 306; DS: n = 76). The average ring-removal time for the SR group was 17.62 ± 6.30 days. The operation time (P flip SR method was found to be superior to the DS method for its short operation time (<5 min), involving less pain, bleeding, infection, and resulting in a satisfactory appearance. However, the time for recovery from edema took longer, and patients may wear device for 2–3 weeks after the procedure. PMID:26585694

  15. The negative effects of alcohol hangover on high-anxiety phenotype rats are influenced by the glutamate receptors of the dorsal midbrain.

    Science.gov (United States)

    Ezequiel Leite, L; Nobre, M J

    2012-06-28

    Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 μl) and l-glutamic acid diethyl ester - GDEE (160 nmol/0.2 μl), respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood

  16. Dorsal penile nerves and primary premature ejaculation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-feng; ZHANG Chun-ying; LI Xing-hua; FU Zhong-ze; CHEN Zhao-yan

    2009-01-01

    Background Based on our clinical experience, the number of dorsal penile nerves in patients with primary premature ejaculation (PPE) is not consistent with the average number (2 branches). In this study, we evaluated the number and distribution of dorsal penile nerves among healthy Chinese adults and patients with PPE.Methods The dorsal nerve of the penis, the deep dorsal vein of the penis, and the dorsal artery of the penis between the deep fascia of the penis and the albuginea penis were carefully educed, observed, and counted in 38 adult autopsy specimens. The number and distribution of the dorsal penile nerve in 128 surgical patients with PPE were determined. Results The numbers of dorsal penile nerves of the 38 cases were as follows:7 branches in 1 case; 6 branches in 1 case; 5 branches in 6 cases; 4 branches in 9 cases; 3 branches in 14 cases; and 2 branches in 7 cases. Most of the dorsal nerves were parallel to each other and in the dorsum of the penis. In only 8 cases, the branches were connected by some communicating branches. In 4 cases, 1 or 2 thin dorsal nerves continued their pathway over the ventral aspect of the penis. The average number of branches of the dorsal penile nerve in patients with PPE was 7.16. Conclusions Based on the study of 38 cases, the average number of dorsal penile nerves was 3.55 branches and that of patients with PPE was greater. These preliminary results suggest that the excessive dorsal penile nerves may have an impact on PPE via increased sensitivity and provide topographic data for the possible treatment of PPE.

  17. Inactivation of the Dorsal Raphé Nucleus Reduces the Anxiogenic Response of Rats Running an Alley for Intravenous Cocaine

    OpenAIRE

    Ettenberg, Aaron; Ofer, Oren A.; Mueller, Carl L.; Waldroup, Stephanie; Cohen, Ami; Ben-Shahar, Osnat

    2010-01-01

    Rats traversing a straight alley once a day for delivery of a single i.v. injection of cocaine develop over trials an ambivalence about entering the goal box. This ambivalence is characterized by the increasing occurrence of “retreat behaviors” where animals leave the start box and run quickly to the goal box, but then stop at the entry point and “retreat” back toward the start box. This unique pattern of retreat behavior has been shown to reflect a form of “approach-avoidance conflict” that ...

  18. 大鼠脊髓背角神经元痛放电确定性行为的年龄相关变化%Age-related changes in deterministic behaviors of nociceptive firing of rat dorsal horn neurons

    Institute of Scientific and Technical Information of China (English)

    郑继宏; 冯威; 菅忠; 陈军

    2004-01-01

    为阐明脊髓背角神经元痛放电的年龄相关的动力学变化,本研究采用非线性预报方法,对两组不同年龄大鼠(成年青龄鼠3~4月龄,老年鼠>22月龄)组织损伤诱发的脊髓背角神经元痛放电峰峰间期序列进行了确定性行为的定量分析.结果显示,皮下注入蜜蜂毒,在两组大鼠均诱发脊髓背角广动力域神经元长时程放电,而老龄大鼠的痛放电峰峰间期序列表现出更高的可确定性.本研究表明,单个神经元的痛放电动力学在整个生命过程中并不是恒定不变的,伤害性神经元活动的年龄相关动力学变化可能是老年人群中多样化痛反应的内在机制之一.%To demonstrate the age-related changes in the dynamics of the nociceptive discharge of dorsal horn nociceptive neurons, the nonlinear prediction method was used to quantify the degree of deterministic behavior within the interspike interval series of tissue injuryinduced firing of spinal nociceptive neurons in anesthetized adult young (3~4 months) and aged (>22 months) rats. Subcutaneous bee venom injection induced long-term discharge of spinal wide dynamic range (WDR) neurons in both groups. However, the nociceptive discharge of single WDR neurons in the aged group showed higher determinism when compared with the adult young rats. This result suggests that the dynamics of single nocicepfive neurons may not remain constant throughout the life span, and this age-associated change may be an underlying mechanism for various pain manifestations in the elderly population.

  19. Co-existence of calcium-binding proteins and γ-aminobutyric acid or glycine in neurons of the rat medullary dorsal horn

    Institute of Scientific and Technical Information of China (English)

    王文; 武胜昔; 李云庆

    2004-01-01

    Background We investigated the co-expression of calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV, a combination of the three is referred to as CaBPs) with γ-aminobutyric acid (GABA) or glycine in neurons of the rat medullary dorsal horn (MDH).Methods Immunofluorescence histochemical double-staining for CaBPs and GABA or glycine was performed on the sections from rat MDH.Results CB-, CR-, PV-, GABA- and glycine-like immunoreactive (LI) neurons were differentially observed in all layers of the MDH, but particularly in lamina Ⅱ. Neurons that exhibited immunoreactivity for both CaBPs and GABA or glycine were also observed mainly in lamina Ⅱ. A few of them were found in laminae I and III. The percentages of neurons which co-expressed CB/GABA or CB/glycine out of the total numbers of CB- and GABA-LI neurons or CB- and glycine-LI neurons were 5.3% and 12.1% or 4.1% and 10.0%, respectively. The ratios of CR/GABA or CR/glycine co-existing neurons out of the total numbers of CR- and GABA-LI neurons or CR- and glycine-LI neurons were 5.8% and 7.6% or 4.4% and 7.1%, respectively. The rates of PV/GABA or PV/glycine co-localized neurons out of the total numbers of PV- and GABA-LI neurons or PV- and glycine-LI neurons were 11.1% and 5.1% or 9.9% and 5.1%, respectively. Conclusion The results indicate that some neurons in the MDH contain both CaBPs and GABA or glycine.

  20. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    Science.gov (United States)

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. PMID:26970395

  1. The effects of rises in external K+ on the hyperpolarization-activated cation current Ih in rat dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    DU ZhengQing; WU WenJie; ZHOU YuFen

    2009-01-01

    The effects of rises in external K+ (Kent) were examined on the hyperpolarization-activated cation current (4,) in rat dorsal root ganglion neurons using the whole-cell patch clamp technique.The results showed that Kext,increased Ih in a certain concentration and voltage-dependent manner.At the basal Kext level (4 mmol/L),4,had a maximal amplitude of 1085 ±340 pA which was enhanced by~45% and~92% at 8 and 16 mmol/L Kext,respectively.The midpoint activation voltage was significantly shifted from-98 mV in the hyperpolarizing direction by 8 and 12 mV at 8 and 16 mmol/L Kext,respectively with alteration of the activation course of Ih.The short time constants of activation became longer with the increasing amplitude of the command potential upon rises in Kext.The long time constants became shorter.The reversal potentials were shifted in the positive direction without significant alterations upon rises in Kext.According to the functional role of 4,,Kext increased Ih resulting in an enhanced neuronal excitability,which might produce activation potential abnormality and perhaps neuropathic pain involved.

  2. The effects of rises in external K~+ on the hyperpolarization-activated cation current I_h in rat dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effects of rises in external K+(Kext) were examined on the hyperpolarization-activated cation current(Ih) in rat dorsal root ganglion neurons using the whole-cell patch clamp technique.The results showed that Kext increased Ih in a certain concentration and voltage-dependent manner.At the basal Kext level(4 mmol/L),Ih had a maximal amplitude of 1085 ± 340 pA which was enhanced by ~45% and ~92% at 8 and 16 mmol/L Kext,respectively.The midpoint activation voltage was significantly shifted from -98 mV in the hyperpolarizing direction by 8 and 12 mV at 8 and 16 mmol/L Kext,respectively with alteration of the activation course of Ih.The short time constants of activation became longer with the increasing amplitude of the command potential upon rises in Kext.The long time constants became shorter.The reversal potentials were shifted in the positive direction without significant alterations upon rises in Kext.According to the functional role of Ih,Kext increased Ih,resulting in an enhanced neuronal excitability,which might produce activation potential abnormality and perhaps neuropathic pain involved.

  3. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  4. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    Science.gov (United States)

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  5. The Venom of the Spider Selenocosmia Jiafu Contains Various Neurotoxins Acting on Voltage-Gated Ion Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Zhaotun Hu

    2014-03-01

    Full Text Available Selenocosmia jiafu is a medium-sized theraphosid spider and an attractive source of venom, because it can be bred in captivity and it produces large amounts of venom. We performed reversed-phase high-performance liquid chromatography (RP-HPLC and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS analyses and showed that S. jiafu venom contains hundreds of peptides with a predominant mass of 3000–4500 Da. Patch clamp analyses indicated that the venom could inhibit voltage-gated Na+, K+ and Ca2+ channels in rat dorsal root ganglion (DRG neurons. The venom exhibited inhibitory effects on tetrodotoxin-resistant (TTX-R Na+ currents and T-type Ca2+ currents, suggesting the presence of antagonists to both channel types and providing a valuable tool for the investigation of these channels and for drug development. Intra-abdominal injection of the venom had severe toxic effects on cockroaches and caused death at higher concentrations. The LD50 was 84.24 μg/g of body weight in the cockroach. However, no visible symptoms or behavioral changes were detected after intraperitoneal injection of the venom into mice even at doses up to 10 mg/kg body weight. Our results provide a basis for further case-by-case investigations of peptide toxins from this venom.

  6. Effect of piperine on the epididymis of adult male rats

    Institute of Scientific and Technical Information of China (English)

    S. C. D'cruz; P. P. Mathur

    2005-01-01

    Aim: To study the effect of piperine on the epididymal antioxidant system of adult male rats. Methods: Adult male rats were orally administered piperine at doses of 1 mg/kg, 10 mg/kg and 100 mg/kg body weight each day for 30consecutive days. Twenty-four hours after the last treatment, the rats were weighed and killed with ether and the epididymis was dissected from the bodies. Sperm collected from the cauda region of the epididymis was used for the assessment of its count, motility and viability. Caput, corpus and cauda regions of the epididymis were separated and homogenized separately to obtain 10 % homogenates. The supernatants were used for the assays of sialic acid,superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, lipid peroxidation and hydrogen peroxide generation. Results: Body weight of the piperine-treated rats remained unchanged. The weights of the caput,corpus and cauda regions of the epididymis significantly decreased at dose of 100 mg/kg. Epididymal sperm count and motility decreased at 10 mg/kg and 100 mg/kg, and sperm viability decreased significantly at 100 mg/kg. Sialic acid levels in the epididymis decreased significantly at 100 mg/kg while significant decrease in the cauda region alone was observed at 10 mg/kg. A significant decline in the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, along with an increase in hydrogen peroxide generation and lipid peroxidation were observed at 10 mg/kg and 100 mg/kg. Conclusion: Piperine caused a decrease in the activity of antioxidant enzymes and sialic acid levels in the epididymis and thereby increased reactive oxygen species levels that could damage the epididymal environment and sperm function.

  7. Enhanced dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus accumbens of prenatal cocaine treated mice

    Directory of Open Access Journals (Sweden)

    Thomas F. Tropea

    2011-12-01

    Full Text Available Previous work from our group and others utilizing animal models have demonstrated long lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine treatment. We have shown that prenatal cocaine treatment results in augmented D1 -induced cyclic AMP (cAMP and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str and nucleus accumbens (NAc of adult mice exposed to cocaine in utero. Basally, in the striatum of prenatal cocaine treated (PCOC mice there were significantly higher levels of a number of the transcription factors studied. Following acute administration of cocaine (15 mg/kg, i.p. or D1 agonist (SKF 82958; 1 mg/kg, i.p. there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str, that were significantly augmented in PCOC mice. In sharp contrast, in the NAc of those mice, we found increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed increased levels in PSAL mice, but significantly decreased levels in PCOC mice in both the Str and NAc following acute administration of cocaine or D1 agonist. We also found significantly higher levels of the BDNF precursor, pro-BDNF and one of its receptors, TrkB in the Str of PCOC mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the prenatal cocaine-induced phenotype.

  8. Dramatic Co-Activation of WWOX/WOX1 with CREB and NF-κB in Delayed Loss of Small Dorsal Root Ganglion Neurons upon Sciatic Nerve Transection in Rats

    OpenAIRE

    Li, Meng-Yen; Lai, Feng-Jie; Hsu, Li-Jin; Lo, Chen-Peng; Cheng, Ching-Li; Lin, Sing-Ru; Lee, Ming-Hui; Chang, Jean-Yun; Subhan, Dudekula; Tsai, Ming-Shu; Sze, Chun-I; Pugazhenthi, Subbiah; Chang, Nan-Shan; Chen, Shur-Tzu

    2009-01-01

    Background Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. Methodology/Principal Findings Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CRE...

  9. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Özdemir, Ümit Sinan; Nazıroğlu, Mustafa; Şenol, Nilgün; Ghazizadeh, Vahid

    2016-08-01

    Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through

  10. TIN DISTRIBUTION IN ADULT RAT TISSUES AFTER EXPOSURE TO TRIMETHYLTIN AND TRIETHYLTIN

    Science.gov (United States)

    The time course of distribution of tin in the adult rat was determined in brain, liver kidney, heart, and blood following single ip administrations of trimethyltin hydroxide (TMT) and triethyltin bromide (TET). Adult Long-Evans rats were killed 1 hr, 4 hr, 12 hr, 24 hr, 5 days, 1...

  11. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  12. Effect of MDMA (ecstasy) on activity and cocaine conditioned place preference in adult and adolescent rats

    OpenAIRE

    Åberg, Maria; Wade, Dean; Wall, Erin; Izenwasser, Sari

    2006-01-01

    MDMA (ecstasy) is a drug commonly used in adolescence, and many users of MDMA also use other illicit drugs. It is not known whether MDMA during adolescence alters subsequent responses to cocaine differently than in adults. This study examined the effects of MDMA in adolescent and adult rats on cocaine conditioned reward. At the start of these experiments, adolescent rats were at postnatal day (PND) 33 and adult rats at PND 60. Each rat was treated for seven days with MDMA (2 or 5 mg/kg/day or...

  13. Dobutamine stress echocardiography in healthy adult male rats

    Directory of Open Access Journals (Sweden)

    Couet Jacques

    2005-10-01

    Full Text Available Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe. Results Dobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate. Conclusion DSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.

  14. Effect of exposure to diazinon on adult rat's brain.

    Science.gov (United States)

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain. PMID:24217015

  15. Effects of neonatal peripheral tissue injury on pain-related behaviors in adult rats

    Directory of Open Access Journals (Sweden)

    Meng-meng LI

    2013-09-01

    Full Text Available Objective To observe the effects of peripheraltissueinjury in the developmental stage of newborn rats on pain-related behaviors in adult rats. Methods SD rats 1,4,7,14,21 and 28days after birth were selected in thepresent study(4litters at each time point and 10 rats per litter.Each litter of rats was randomly divided intoinjury group(receiving subcutaneous injection of 20μl bee venomand control group(receiving subcutaneous injection of 20μl normal saline, with20 in each group, and then raised for 2 months to adulthood. The baseline pain threshold was observed by measuring spontaneous paw flinching reflex,paw withdrawal thermal latency(PWTLand paw withdrawal mechanical threshold(PWMT, then 50μl 0.4% bee venom was subcutaneously injected to each rat, and the changesinpa in reaction and pain threshold were determined. Results The baseline thermal pain threshold in adult rats receiving bee venom or normal saline at different time points after birth was similar,but baseline mechanical pain threshold in adult rats receiving bee venom at1,4,7and14 days after birth was decreased significantly compared with the adult rats receiving normal saline at corresponding time points(P0.05.Mechanical hyperalgesia was not induced in rats injected with bee venom but induced in adult ratsinjected with normal saline4-21days after birth.Injection of bee venom 21 and 28 days after birth could obviously enhance the bee venom-induced hyperalgesiain adult rats compared with control group(P<0.01. Conclusions Bee venom stimuli at different time points after birth could affect the baseline PWMT and mechanical pain hypersensitivityin adult rats but not the baseline PWTL and thermal pain hypersensitivity. The 21st day maybe a key time point of nervous system development in rats.

  16. G protein-coupled inwardly rectifying potassium channels in dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao-fei GAO; Hai-lin ZHANG; Zhen-dong YOU; Chang-lin LU; Cheng HE

    2007-01-01

    Aim: G protein-coupled inwardly rectifying potassium channels (GIRK) are important for neuronal signaling and membrane excitability. In the present study, we intend to find whether GIRK channels express functionally in adult rat dorsal root ganglion (DRG) neurons. Methods: We used RT-PCR to detect mRNA for4 subunits of GIRK in the adult DRG. The whole-cell patch clamp recording was used to confirm GIRK channels functionally expressed. Results: The mRNA for the 4 subunits of GIRK were detected in the adult DRG. GTPγS enhanced inwardly rectifying potassium (K+) currents of the DRG neurons, while Ba2+inhibited such currents. Furthermore, the GIRK channels were shown to be coupled to the GABAB receptor, a member of the G protein-coupled receptor family, as baclofen increased the inwardly rectifying K+ currents. Conclusion: GIRK channels are expressed and functionally coupled with GABAB receptors in adult rat DRG neurons.

  17. Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons

    OpenAIRE

    SASAKI, MASANORI; HONMOU, OSAMU; Akiyama, Yukinori; Uede,Teiji; Hashi,Kazuo; Kocsis, Jeffery D.

    2001-01-01

    The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remov...

  18. The potential of the {beta}-Microprobe, an intracerebral radiosensitive probe, to monitor the [{sup 18}F]MPPF binding in the rat dorsal raphe nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, L. [CERMEP Biomedical Cyclotron, 59 Boulevard Pinel, 69003 Lyon (France); INSERM U512, Neuropharmacologie et Neurochimie University Lyon I, Lyon (France); Pain, F.; Mastrippolito, R.; Laniece, P. [Institut de Physique Nucleaire, University Paris XI, Orsay (France); Mauger, G.; Le Bars, D.; Pujol, J.F. [CERMEP Biomedical Cyclotron, 59 Boulevard Pinel, 69003 Lyon (France); Plenevaux, A. [Cyclotron Research Center, Liege University, Liege (Belgium); Renaud, B. [INSERM U512, Neuropharmacologie et Neurochimie University Lyon I, Lyon (France)

    2002-09-01

    The aim of this study was to demonstrate the ability of a recently developed {beta}{sup +}-range sensitive intracerebral probe ({beta}-Microprobe) to measure the binding kinetics of [{sup 18}F]MPPF, a well-documented 5-HT{sub 1A} serotoninergic receptor ligand, in the dorsal raphe nucleus (DRN) of the anaesthetised rat. This midbrain nucleus presents a high concentration of 5-HT{sub 1A} receptors known to be implicated in the effects of antidepressants. The difficulty confronting this study lay in the fact that the dimensions of the DRN are smaller than the detection volume of the {beta}-Microprobe. In the first part of the study, we studied the feasibility of this measurement from a theoretical point of view by autoradiography and a Monte Carlo simulation. We determined the optimal {beta}-Microprobe location close to the DRN and verified that this configuration allowed accurate determination of [{sup 18}F]MPPF specific binding in the nucleus. In the second part of our study, we measured the in vivo time-concentration curves of [{sup 18}F]MPPF binding in the DRN in comparison with the cerebellum. The specificity of [{sup 18}F]MPPF binding in the DRN was confirmed by its displacement after non-labelled 5-HT{sub 1A}antagonist injection (MPPF or WAY-100635). Moreover, we verified the feasibility of using {beta}-Microprobe monitoring and simultaneous validation by microdialysis to study the effect of an increase in extracellular serotonin, induced by fenfluramine injection, on [ {sup 18}F]MPPF binding in the DRN. Our theoretical simulations, confirmed by our experimental results, demonstrate the ability of this new device to monitor in vivo the binding of [ {sup 18}F]MPPF in the DRN of anaesthetised rodents. (orig.)

  19. Distinct inhibition of acute cocaine-stimulated motor activity following microinjection of a group III metabotropic glutamate receptor agonist into the dorsal striatum of rats.

    Science.gov (United States)

    Mao, L; Wang, J Q

    2000-09-01

    Group III metabotropic glutamate receptors (mGluRs) are negatively coupled to adenylate cyclase through G-proteins. Activation of this group of mGluRs shows an inhibition of dopaminergic transmission in the forebrain. To define the role of striatal group III mGluRs in the regulation of basal and dopamine-stimulated motor behavior, the recently developed agonist and antagonist relatively selective for group III mGluRs were utilized to pharmacologically enhance and reduce group III mGluR glutamatergic tone in the dorsal striatum of chronically cannulated rats. Bilateral injections of a group III agonist, L-2-amino-4-phosphonobutyrate (L-AP4), did not alter basal levels of motor activity at three doses surveyed (1, 10, and 100 nmol). Neither did intracaudate injection of a group III antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG), at 10, 30, and 100 nmol. However, pretreatment with L-AP4 (10 and 100 nmol) dose dependently blocked hyperlocomotion induced by acute injection of cocaine (20 mg/kg, i.p.), amphetamine (2.5 mg/kg, i.p.), or apomorphine (1 mg/kg, s.c.). The behavioral activity induced by cocaine was much more sensitive to L-AP4 than that induced by amphetamine and apomorphine. At 100 nmol, L-AP4 completely blocked cocaine effect whereas amphetamine- and apomorphine-stimulated behaviors were blocked only by 28% and 31%, respectively. The blocking effect of L-AP4 on cocaine action was reversed by pretreatment with MPPG. MPPG itself did not modify behavioral responses to cocaine, amphetamine, or apomorphine. These data indicate that the glutamatergic tone on the group III mGluRs is not active in the regulation of basal and acute dopamine-stimulated motor activity. However, enhanced group III mGluR glutamatergic transmission by an exogenous ligand is capable of suppressing behavioral responses to acute exposure of dopamine stimulants. PMID:11113488

  20. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Science.gov (United States)

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. PMID:26640169

  1. 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses.

    Science.gov (United States)

    Spiacci, Ailton; Pobbe, Roger Luis Henschel; Matthiesen, Melina; Zangrossi, Helio

    2016-08-01

    The dorsal raphe nucleus (DR), the main source of 5-HT projections to brain areas involved in anxiety regulation, is composed by 5 subnuclei that differ morphologically, functionally and neurochemically. Based on immunohistochemical evidence, it has been proposed that whereas 5-HT cells of the dorsomedial (dmDR) and caudal subnuclei are implicated in the pathophysiology of generalized anxiety disorder (GAD), neurons of the lateral wings (lwDR) are associated with panic disorder (PD). We here tested this hypothesis from a behavioral perspective by investigating the consequences of the non-selective stimulation of neurons within the dmDR and lwDR, or the pharmacological manipulation of 5-HT1A receptors located in these nuclei, of male Wistar rats exposed to the elevated T-maze. This test allows the measurement of both a GAD- (i.e. inhibitory avoidance) and a PD- (i.e. escape) related response in the same animal. Intra-dmDR injection of either the excitatory amino acid kainic acid or the 5-HT1A receptor antagonist WAY-100635 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, and inhibited escape expression, a panicolytic-like effect. Microinjection of the 5-HT1A receptor agonist 8-OH-DPAT caused the opposite effect. Administration of the same drugs into the lwDR only altered escape performance. Whereas kainic acid and 8-OH-DPAT facilitated its expression, WAY-100635 inhibited it. At higher doses, kainic acid administration evoked vigorous escape reactions as measured in an open-field. These findings implicate 5-HT neurons of the dmDR in the regulation of both GAD- and PD-related defensive behaviors. They also support a primary role of the lwDR in the mediation of PD-associated responses. PMID:26145183

  2. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  3. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  4. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  5. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert;

    2003-01-01

    The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain...

  6. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    International Nuclear Information System (INIS)

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus

  7. Roles of mitochondria and temperature in the control of intracellular calcium in adult rat sensory neurons.

    Science.gov (United States)

    Kang, S H; Carl, A; McHugh, J M; Goff, H R; Kenyon, J L

    2008-04-01

    We recorded Ca2+ current and intracellular Ca2+ ([Ca2+](i)) in isolated adult rat dorsal root ganglion (DRG) neurons at 20 and 30 degrees C. In neurons bathed in tetraethylammonium and dialyzed with cesium, warming reduced resting [Ca2+](i) from 87 to 49 nM and the time constant of the decay of [Ca2+](i) transients (tau(r)) from 1.3 to 0.99s (Q(10)=1.4). The Buffer Index, the ratio between Ca2+ influx and Delta[Ca2+](i) (f I(ca)d(t)/Delta[Ca2+]i) , increased two- to threefold with warming. Neither inhibition of the plasma membrane Ca2+ -ATPase by intracellular sodium orthovanadate nor inhibition of Ca2+ uptake by the endoplasmic reticulum by thapsigargin plus ryanodine were necessary for the effects of warming on these parameters. In contrast, inhibition of the mitochondrial Ca2+ uniporter by intracellular ruthenium red largely reversed the effects of warming. Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 500 nM) increased resting [Ca2+](i) at 30 degrees C. Ten millimolar intracellular sodium prolonged the recovery of [Ca2+](i) transients to 10-40s. This effect was reversed by an inhibitor of mitochondrial Na(+)/Ca2+ -exchange (CGP 37157, 10 microM). Thus, mitochondrial Ca2+ uptake is necessary for the temperature-dependent increase in Ca2+ buffering and mitochondrial Ca2+ fluxes contribute to the control of [Ca2+](i) between 50 and 150 nM at 30 degrees C. PMID:17716728

  8. Lithium pilocarpine-induced status epilepticus in postnatal day 20 rats results in greater neuronal injury in ventral versus dorsal hippocampus

    OpenAIRE

    Ekstrand, Jeffrey J.; Pouliot, Wendy; Scheerlinck, Peter; Dudek, F. Edward

    2011-01-01

    Many quantitative animal studies examining the possible relationship between hippocampal neuronal loss and the development of epilepsy have examined only the dorsal hippocampus. The ventral hippocampus, however, represents the more homologous structure to the anterior hippocampus in humans which is the area associated with the maximal damage in patients with temporal lobe epilepsy. This study tested the hypothesis that the ventral hippocampus has greater neuronal injury than the dorsal hippoc...

  9. Fertility of male adult rats submitted to forced swimming stress

    Directory of Open Access Journals (Sweden)

    G.Z. Mingoti

    2003-05-01

    Full Text Available We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004. No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001. These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.

  10. Evidence that the periaqueductal gray matter mediates the facilitation of panic-like reactions in neonatally-isolated adult rats.

    Science.gov (United States)

    Quintino-dos-Santos, Jeyce Willig; Müller, Cláudia Janaína Torres; Bernabé, Cristie Setúbal; Rosa, Caroline Azevedo; Tufik, Sérgio; Schenberg, Luiz Carlos

    2014-01-01

    Plenty of evidence suggests that childhood separation anxiety (CSA) predisposes the subject to adult-onset panic disorder (PD). As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG). Accordingly, here we examined whether the neonatal social isolation (NSI), a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST) respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2) until weaning (PN21) allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26) whilst siblings (sham-isolated rats, SHAM, n = 27) and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18) remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60) and subjected to sessions of intracranial stimulation (PN65), EPM (PN66) and FST (PN67-PN68). Groups were compared by Fisher's exact test (stimulation sites), likelihood ratio chi-square tests (stimulus-response threshold curves) and Bonferroni's post hoc t-tests (EPM and FST), for Ptrotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate the DPAG not only in panic attacks but also in separation-anxious children

  11. Maternal aggression in Wistar rats: effect of 5-HT2A/2C receptor agonist and antagonist microinjected into the dorsal periaqueductal gray matter and medial septum

    Directory of Open Access Journals (Sweden)

    Almeida R.M.M. de

    2005-01-01

    Full Text Available The objective of the present study was to assess the role of the 5-HT2A/2C receptor at two specific brain sites, i.e., the dorsal periaqueductal gray matter (DPAG and the medial septal (MS area, in maternal aggressive behavior after the microinjection of either a 5-HT2A/2C receptor agonist or antagonist. Female Wistar rats were microinjected on the 7th postpartum day with the selective agonist alpha-methyl-5-hydroxytryptamine maleate (5-HT2A/2C or the antagonist 5-HT2A/2C, ketanserin. The agonist was injected into the DPAG at 0.2 (N = 9, 0.5 (N = 10, and 1.0 µg/0.2 µl (N = 9, and the antagonist was injected at 1.0 µg/0.2 µl (N = 9. The agonist was injected into the medial septal area (MS at 0.2 (N = 9, 0.5 (N = 7, and 1.0 µg/0.2 µl (N = 6 and the antagonist was injected at 1.0 µg/0.2 µl (N = 5. For the control, saline was injected into the DPAG (N = 7 and the MS (N = 12. Both areas are related to aggressive behavior and contain a high density of 5-HT receptors. Non-aggressive behaviors such as horizontal locomotion (walking and social investigation and aggressive behaviors such as lateral threat (aggressive posture, attacks (frontal and lateral, and biting the intruder were analyzed when a male intruder was placed into the female resident's cage. For each brain area studied, the frequency of the behaviors was compared among the various treatments by analysis of variance. The results showed a decrease in maternal aggressive behavior (number of bites directed at the intruder after microinjection of the agonist at 0.2 and 1.0 µg/0.2 µl (1.6 ± 0.7 and 0.9 ± 0.3 into the DPAG compared to the saline group (5.5 ± 1.1. There was no dose-response relationship with the agonist. The present findings suggest that the 5-HT2A/2C receptor agonist has an inhibitory effect on maternal aggressive behavior when microinjected into the DPAG and no effect when microinjected into the MS. Ketanserin (1.0 µg/0.2 µl decreased locomotion when microinjected

  12. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats.

    Science.gov (United States)

    Zhu, W; Mao, Z; Zhu, C; Li, M; Cao, C; Guan, Y; Yuan, J; Xie, G; Guan, X

    2016-01-28

    Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults. PMID:26621120

  13. Adolescent male rats exposed to social defeat exhibit altered anxiety behavior and limbic monoamines as adults

    OpenAIRE

    Watt, Michael J.; Burke, Andrew R.; Renner, Kenneth J.; Forster, Gina L.

    2009-01-01

    Social stress in adolescence is correlated with emergence of psychopathologies during early adulthood. In this study, we investigated the impact of social defeat stress during mid-adolescence on adult male brain and behavior. Adolescent male Sprague-Dawley rats were exposed to repeated social defeat for five days while controls were placed into a novel empty cage. When exposed to defeat-associated cues as adults, previously defeated rats showed increased risk assessment and behavioral inhibit...

  14. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  15. Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland

    DEFF Research Database (Denmark)

    Shatos, Marie A; Haugaard-Kedstrom, Linda; Hodges, Robin R;

    2012-01-01

    PURPOSE: The purpose of this study was to investigate the presence of progenitor cells in the uninjured, adult rat lacrimal gland (LG). METHODS: The presence of progenitor cells was examined in LG sections from male rats using antibodies against selected stem cell markers and α-smooth muscle actin...

  16. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    OpenAIRE

    Bond, S. M.; Cervero, F; McQueen, D S

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaest...

  17. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats

    OpenAIRE

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J. Michael

    2010-01-01

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). I...

  18. Role of calcitonin gene-related peptide and its antagonist on the evoked discharge frequency of wide dynamic range neurons in the dorsal horn of the spinal cord in rats.

    Science.gov (United States)

    Yu, Yi; Lundeberg, Thomas; Yu, Long Chuan

    2002-01-15

    The present study was performed to explore the effect of calcitonin gene-related peptide (CGRP) and its antagonist CGRP8-37 on the evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. Recording was performed with a multibarrelled glass micropipette and the chemicals were delivered by iontophoresis. The discharge of WDR neurons was evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. (1) Iontophoretic application of CGRP at an ejection current of 100 nA increased the discharge frequency of WDR neurons significantly. (2) Iontophoretic application of CGRP8-37 at an ejection current of 80 or 160 nA induced significant decreases in the discharge frequency of WDR neurons, but not at 40 nA. (3) Iontophoretic application of CGRP8-37 not only antagonized the CGRP-induced increase in the evoked discharge frequency of WDR neurons but also induced a significant decrease in the evoked discharge frequency of WDR neurons compared to basal levels. The results indicate that CGRP and its receptors play a facilitary role on the transmission and/or modulation of nociceptive information in the dorsal horn of the spinal cord in rats. PMID:11738245

  19. Electrophysiological evidence for a direct link between the main and accessory olfactory bulbs in the adult rat

    Directory of Open Access Journals (Sweden)

    Victor eVargas-Barroso

    2016-01-01

    Full Text Available It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB and the main olfactory bulb (MOB. This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs of the anterior AOB (aAOB. Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8% send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX. Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB or antidromic action potentials (n = 8, aAOB; n = 7, pAOB when applying field stimulation to the opposite half of the recording site (e.g. recording in aAOB; stimulating in pAOB and vice-versa. Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24 % of the total that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17.

  20. Interaction between the Basolateral Amygdala and Dorsal Hippocampus Is Critical for Cocaine Memory Reconsolidation and Subsequent Drug Context-Induced Cocaine-Seeking Behaviorin Rats

    Science.gov (United States)

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory…

  1. Changes of the expression of prostatic acid phosphatase in spinal dorsal horn and dorsal root ganglion in different chronic pain models of the rat%前列腺酸性磷酸酶在慢性痛大鼠脊髓背角和背根神经节的表达变化

    Institute of Scientific and Technical Information of China (English)

    朱玲; 陈磊; 张富兴; 李云庆

    2012-01-01

    Objective; To observe the expression changes of prostatic acid phosphatase (PAP) in the spinal dorsal horn (SDH) and dorsal root ganglion (DRG) in different chronic pain models of the rat. Methods; Immunohistochemistry combined with multiple immunofluorescent histochemical technique was employed to detect the expression changes of PAP in different chronic pain models. Results; In the intact normal rats, PAP was principally located in small- to medium-sized non-peptidergic neurons in the DRG, and the number of PAP-immunoreactive (PAP-ir) neurons was about 64 ± 4.3% to the total number of the DRG neurons. In the SDH, only PAP-ir fibers and terminals but not PAP-ir neurons were exclusively observed in lamina Ⅰ and Ⅱ, especially in lamina Ⅱ. In a model of neuropathic pain rat, PAP immunoreactivi-ties were markedly decreased, or even vanished in the SDH and DRG ipsilateral to the nerve injury side. There were no remarkable changes of the PAP expression on the side contralateral to the nerve injury. In an inflammatory pain model induced by CFA injection into the rat hindpaw, however, there were no obvious expression changes of PAP-ir neurons, fibers and terminals in bilateral SDHs and DRGs. Conclusion: PAP is specifically expressed in the SDH and DRG. It might play important roles in the transduction and process of the signals of the neuropathic pain.%目的:观察前列腺酸性磷酸酶(prostatic acid phosphatase,PAP)在多种慢性痛大鼠脊髓背角(spinal dorsal horn,SDH)和背根神经节(dorsal root ganglion,DRG)内的表达变化.方法:应用免疫组织化学染色法以及免疫荧光多重染色技术在多种慢性痛模型大鼠观察PAP的表达变化.结果:在正常大鼠,PAP阳性反应产物主要位于DRG的中、小型的非肽能神经元,PAP阳性神经元约占DRG神经元总数的64±4.3%;在脊髓背角,PAP 阳性纤维和终末主要位于Ⅱ层.在神经病理性痛模型大鼠,术侧脊髓背角Ⅱ层的PAP

  2. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2015-01-01

    Full Text Available Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype.

  3. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  4. Adolescent social defeat alters neural, endocrine and behavioral responses to amphetamine in adult male rats

    OpenAIRE

    Burke, Andrew R.; Renner, Kenneth J.; Forster, Gina L.; Watt, Michael J.

    2010-01-01

    The mesocorticolimbic dopamine system, which governs components of reward and goal-directed behaviors, undergoes final maturation during adolescence. Adolescent social stress contributes to adult behavioral dysfunction, and is linked to adult psychiatric and addiction disorders. Here, behavioral, corticosterone, and limbic dopamine responses to amphetamine were examined in adult male rats previously exposed to repeated social defeat stress during mid-adolescence. Amphetamine (2.5 mg/kg, ip) w...

  5. 幻肢痛大鼠脊髓背角神经元和突触数量的变化%Changes in the number of synapses and neurons in spinal dorsal horn in a rat model of phantom limb pain

    Institute of Scientific and Technical Information of China (English)

    林菁艳; 彭彬; 杨正伟; 闵苏

    2010-01-01

    Objective To investigate the changes in the number of synapses and neurons in the spinal dorsal horn in a rat model of phantom limb pain. Methods Eleven healthy adult SD rats of both sexes weighing 209-300 g were randomly divided into 2 groups: sham operation group (group S, n = 5) and phantom limb pain group (group P, n = 6). Phantom limb pain was induced by resection of a 0.5 cm segment of unilateral sciatic nerve in group P. In group S unilateral sciatic nerve was exposed but not transected. The animals were observed for autotomy and scored (0 = no autotomy, 13 = the worst autotomy) after operation and were sacrificed on the 28th day after operation. The L3-6 segment of the spinal cord was removed for determination of the number of neurons (by Nissl's staining) and synapses (by synaptophysin immuno-histochemistry).Results In group S no animal developed autotomy. In group P autotomy started from the 2nd day after operation and the score reached 9-11. The number of the neurons in the spinal dorsal horn in all 4 segments and the number of synapses in L3 and 16 segments were comparable between the two sides and the 2 groups. The number of synapses in the spinal dorsal horn of L4and L5 segment was significantly larger in the operated side than in the contralateral side in group P. Conclusion The number of synapses in the spinal dorsal horn significantly increases in animals with plantom limb pain which induces no increase in the number of neurons in the spinal dorsal horn.%目的 探讨幻肢痛大鼠脊髓背角神经元和突触数量的变化.方法 健康成年SD大鼠11只,雄雌不拘,体重290~300 g,随机分为2组:假手术组(S组,n=5)和单侧坐骨神经横断组(P组,n=6).术后持续观察P组大鼠自噬情况,并进行自噬评分.术后28 d时,取L3~6节段脊髓组织,分别进行尼氏染色(显示神经元)和突触素免疫组织化学染色(显示突触数量),计数手术侧和非手术侧脊髓背角神经元和突触的数量.结果 P

  6. UK DRAFFT - A randomised controlled trial of percutaneous fixation with kirschner wires versus volar locking-plate fixation in the treatment of adult patients with a dorsally displaced fracture of the distal radius

    Directory of Open Access Journals (Sweden)

    Brown Jaclyn

    2011-09-01

    Full Text Available Abstract Background Fractures of the distal radius are extremely common injuries in adults. However, the optimal management remains controversial. In general, fractures of the distal radius are treated non-operatively if the bone fragments can be held in anatomical alignment by a plaster cast or orthotic. However, if this is not possible, then operative fixation is required. There are several operative options but the two most common in the UK, are Kirschner-wire fixation (K-wires and volar plate fixation using fixed-angle screws (locking-plates. The primary aim of this trial is to determine if there is a difference in the Patient-Reported Wrist Evaluation one year following K-wire fixation versus locking-plate fixation for adult patients with a dorsally-displaced fracture of the distal radius. Methods/design All adult patients with an acute, dorsally-displaced fracture of the distal radius, requiring operative fixation are potentially eligible to take part in this study. A total of 390 consenting patients will be randomly allocated to either K-wire fixation or locking-plate fixation. The surgery will be performed in trauma units across the UK using the preferred technique of the treating surgeon. Data regarding wrist function, quality of life, complications and costs will be collected at six weeks and three, six and twelve months following the injury. The primary outcome measure will be wrist function with a parallel economic analysis. Discussion This pragmatic, multi-centre trial is due to deliver results in December 2013. Trial registration Current Controlled Trials ISRCTN31379280 UKCRN portfolio ID 8956

  7. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    Science.gov (United States)

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  8. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    The binding of 3H-WB 4101, an α1-adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  9. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Argel Aguilar-Valles

    Full Text Available Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  10. Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats.

    Science.gov (United States)

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2016-07-01

    Many adolescents engage in heavy alcohol use. Limited research in humans indicates that adolescent alcohol use predicts adult tobacco use. The present study investigated whether adolescent intermittent ethanol (AIE) exposure alters nicotine sensitivity in adulthood. Adolescent male Wistar rats (postnatal day 28-53) were exposed to AIE exposure that consisted of 5 g/kg of 25 percent ethanol three times per day in a 2 days on/2 days off regimen. Control rats received water with the same exposure regimen. In adulthood, separate groups of rats were tested for nicotine intravenous self-administration (IVSA), drug discrimination and conditioned taste aversion (CTA). The dose-response function for nicotine IVSA under a fixed-ratio schedule of reinforcement was similar in AIE-exposed and control rats. However, AIE-exposed rats self-administered less nicotine at the lowest dose, suggesting that low-dose nicotine was less reinforcing in AIE-exposed, compared with control rats. AIE-exposed rats self-administered less nicotine under a progressive-ratio schedule, suggesting decreased motivation for nicotine after AIE exposure. The discriminative stimulus effects of nicotine were diminished in AIE-exposed rats compared with control rats. No group differences in nicotine CTA were observed, suggesting that AIE exposure had no effect on the aversive properties of nicotine. Altogether, these results demonstrate that AIE exposure decreases sensitivity to the reinforcing, motivational and discriminative properties of nicotine while leaving the aversive properties of nicotine unaltered in adult rats. These findings suggest that drinking during adolescence may result in decreased sensitivity to nicotine in adult humans, which may in turn contribute to the higher rates of tobacco smoking. PMID:25950618

  11. Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Chunlong Ke; Baili Chen; Shaolei Guo; Chao Yang

    2008-01-01

    BACKGROUND: It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson's disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats.OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro.DESIGN: Randomized grouping design.SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University.MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-scn University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male,Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University.METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1 ct, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry.MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells.RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylasc. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2

  12. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Coke, T; Karagiorgis, T; Sampson, C; Icaza-Cukali, D; Kest, K; Ranaldi, R; Bodnar, R J

    2015-02-01

    Overconsumption of nutrients high in fats and sugars can lead to obesity. Previous studies indicate that sugar or fat consumption activate individual brain sites using Fos-like immunoreactivity (FLI). Sugars and fats also elicit conditioned flavor preferences (CFP) that are differentially mediated by flavor-flavor (orosensory: f/f) and flavor-nutrient (post-ingestive: f/n) processes. Dopamine (DA) signaling in the medial prefrontal cortex (mPFC), the amygdala (AMY) and the nucleus accumbens (NAc), has been implicated in acquisition and expression of fat- and sugar-CFP. The present study examined the effects of acute consumption of fat (corn oil: f/f and f/n), glucose (f/f and f/n), fructose, (f/f only), saccharin, xanthan gum or water upon simultaneous FLI activation of DA mesotelencephalic nuclei (ventral tegmental area (VTA)) and projections (infralimbic and prelimbic mPFC, basolateral and central-cortico-medial AMY, core and shell of NAc as well as the dorsal striatum). Consumption of corn oil solutions, isocaloric to glucose and fructose, significantly increased FLI in all sites except for the NAc shell. Glucose intake significantly increased FLI in both AMY areas, dorsal striatum and NAc core, but not in either mPFC area, VTA or Nac shell. Correspondingly, fructose intake significantly increased FLI in the both AMY areas, the infralimbic mPFC and dorsal striatum, but not the prelimbic mPFC, VTA or either NAc area. Saccharin and xanthan gum intake failed to activate FLI relative to water. When significant FLI activation occurred, highly positive relationships were observed among sites, supporting the idea of activation of a distributed brain network mediating sugar and fat intake. PMID:25460109

  13. The effects of undernutrition on connectivity in the cerebellar cortex of adult rats.

    OpenAIRE

    Yucel, F; Warren, M. A.; Gumusburun, E

    1994-01-01

    The effects of a 30 d period of undernutrition, followed in some animals by nutritional rehabilitation, on neuronal connectivity in adult rat cerebellum were investigated using the disector method. There was no significant difference between well fed (719 +/- 74, mean +/- S.E.) and undernourished (709 +/- 53) synapse-to-neuron ratios in 134-d-old rat cerebellar cortex, nor was there a significant difference in synapse-to-neuron ratios between control animals (941 +/- 71) and previously undern...

  14. Investigation of liver tissue and biochemical parameters of adult wistar rats treated with Arctium lappa L.

    OpenAIRE

    Fabrícia de Souza Predes; Sérgio Luis Pinto da Matta; Juliana Castro Monteiro; Tânia Toledo de Oliveira

    2009-01-01

    This study was carried out to evaluate the effects of Arctium lappa L. (burdock) on the liver of adult male Wistar rats as measured by light microscopy and biochemical parameters. The rats received the extract in water bottles at doses of 10 or 20 g/L daily for 40 days. There were no significant changes in the plasma levels of albumin, aspartate transaminase (AST), alanine transaminase (ALT), gamma glutamyl transferase (GGT), total protein, total cholesterol, urea, uric acid, triacylglycerol,...

  15. Histology, Hyperglycemia and Dyslipidemia Evaluations of Aqueous Extract of Moringa oleifera Leaves on Adult Wistar Rat.

    OpenAIRE

    Oboma, Yibala .I; Asuqwo E.E

    2015-01-01

    Chronic hyperglycemia is an indicator of diabetes mellitus and chronic dyslipidemia a risk factor cardiovascular disease. OBJECTIVE: We aim at evaluating the effect of Moringa oleifera on glucose level, lipid profile, cardiac markers, liver enzymes, proteins and histology of the heart and liver. METHODOLOGY: Twenty six male (26) adult Wistar rats were enrolled for the study. Acclimatized and randomly divided into four groups (A, B, C&-D, n=6) and controls. They rat were given intraperitoneal ...

  16. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    OpenAIRE

    JOHNSON, RYAN T.; Breedlove, S. Marc; Jordan, Cynthia L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to de...

  17. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    Science.gov (United States)

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol. PMID:23454116

  18. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    Science.gov (United States)

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  19. In vivo dermal absorption of pyrethroid pesticides in the rat.

    Science.gov (United States)

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  20. Changes of arterial blood ketone body ratio following hypoperfusion in old and adult rats

    Institute of Scientific and Technical Information of China (English)

    Ling YE; Shiwen WANG; Songtao YU; Wei CHEN

    2004-01-01

    Objective To evaluate the sensitivity of arterial ketone body ratio as an indicator for multiple organ failure.Materials and methods The experimental model of multiple organ failure was made in adult and old rats by hypoperfusion-induced hemorrhagic shock. After blood sampling, the arterial acetoacetate, β-hydroxybutyrate, total ketone body, ALT, AST, BUN, creatinine at 2, 4, 8 hr in hypoperfusion were examined to compare the differences of ketone body ratio and organ failure between adult and old rats. Hepatic and mitochondrial metabolism were assessed by comparing ketone body ratios (AcAc/β-OHB) and free NAD+/NADH ratios. Results Ketone body ratio in old rats at 2, 4, 8 hr after the induction of hemorrhagic shock decreased from 0.68 to 0.31, 0.27 and 0.22, respectively. In adult rats, it decreased from 1.12 to 0.17, 0.12 and 0.09, respectively. Changes of ketone body ratio in the adult group were larger than in the elderly group ( P < 0.001). The development of multiple organ failure is associated with the time of hemorrhagic shock development. Conclusions There was a different ketone body ratio between multiple organ failure in the elderly (MOFE) and multiple organ failure (MOF) in general adults. Ketone body ratio is a better indicator than ALT and AST in reflecting hepatic function in the early status of MOF. (J Geriatr Cardiol 2004;1(2) :125-128. )

  1. Dorsal wrist ganglion: Current review of literature

    OpenAIRE

    Meena, Sanjay; Gupta, Ajay

    2014-01-01

    Ganglion cyst is the most common soft tissue tumour of hand. Sixty to seventy percent of ganglion cysts are found in the dorsal aspect of the wrist. They may affect any age group; however they are more common in the twenties to forties. Its origin and pathogenesis remains enigmatic. Non-surgical treatment is unreliable with a high recurrence rates. Open surgical excision leads to unsightly scar and poor outcome. Arthroscopy excision has shown very promising result with very low recurrence rat...

  2. Spontaneous inflammatory pelvic disease in adult non-castrated female rats treated with estrogen

    Directory of Open Access Journals (Sweden)

    Aristóteles M G Ramos

    2005-02-01

    Full Text Available The adaptive immune response of the genital tract is under the control of sexual steroids; however, the influence of sex hormones on innate immune mechanisms of the genital mucosa are only beginning to be understood. We found that long-term estrogen treatment increases the risk for inflammatory pelvic diseases in adult non-castrated female rats. Female rats (110 g to 130 g received estrogen (10 rats; 17-beta estradiol, 50 mg pellet; 10 rats: subcutaneous weekly injection of estradiol valerate 0.166 mg/kg. Ten rats received a pellet of 17-beta estradiol and were treated with amoxicillin, 50 mg/kg after the 90th day of exposure to estrogen. Three control groups of ten rats were also used. The estrogen-treated rats developed an inflammatory pelvic disease, with abscess formation after the third month of hormonal treatment. All the surviving animals were killed after six months of hormonal exposure. Among 15 survivors of the two groups that received estrogen 13 animals presented tuboovarian abscesses. Among eight survivors of the group treated with amoxicillin, six had tuboovarian abscesses. None of the 30 control rats presented macro or microscopic signs of inflammatory disease in the uterus, tubes or ovaries. We conclude that estrogen impairs the defense mechanisms of the genital tract of non-castrated female rats, enhancing bacterial growth in the vagina and ascending infection to the uterus, tubes and ovaries.

  3. HISTOLOGICAL EFFECTS OF CHRONIC CONSUMPTION OF NUTMEG ON THE LATERAL GENICULATE BODY OF ADULT WISTAR RATS.

    Directory of Open Access Journals (Sweden)

    J.O. Adjene

    2010-01-01

    Full Text Available The effects of chronic consumption of nutmeg commonly used as a spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the lateral geniculate body of adult wistar rats was studied.The rats of both sexes, with average weight of 200g were randomly assigned into treatment and control groups. The rats in the treatment group (n=8 received 2g of nutmeg thoroughly mixed with the feeds on a daily basis for thirty-two days. The control group (n=8 received equal amount of feeds daily without nutmeg added for thirty-two days. The growers mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo State, Nigeria and the rats were given water liberally. The rats were sacrificed on the thirty-three day of the experiment. The lateral geniculate body was carefully dissected out and quickly fixed in 10% formal saline for histological study.The findings indicate that rats in the treated group showed some cellular degenerative changes like sparse cellular population, pyknotic nuclei with some microcystic changes, edema and vacuolations in the stroma of the treated lateral geniculate body as compared to that of the control group.Chronic consumption of nutmeg may therefore have an adverse effect on the visual sensibilities by affecting the microanatomy of the lateral geniculate body of adult wistar rats. It is recommended for further studies aimed at corroborating these observations.

  4. Prenatal immune challenge alters the hypothalamic-pituitary-adrenocortical axis in adult rats.

    OpenAIRE

    Reul, J M; Stec, I; Wiegers, G J; Labeur, M S; Linthorst, A C; Arzt, E; Holsboer, F

    1994-01-01

    We investigated whether non-abortive maternal infections would compromise fetal brain development and alter hypothalamic-pituitary-adrenocortical (HPA) axis functioning when adult. To study putative teratogenic effects of a T cell-mediated immune response versus an endotoxic challenge, 10-d-pregnant rats received a single intraperitoneal injection of 5 x 10(8) human red blood cells (HRBC) or gram-negative bacterial endotoxin (Escherichia coli LPS: 30 micrograms/kg). The adult male progeny (3 ...

  5. The cortical response to sensory deprivation in adult rats is affected by gonadectomy

    OpenAIRE

    Mowery, Todd M.; Elliott, Kevin S.; Preston E. Garraghty

    2009-01-01

    The present study investigated the effects of adult-onset sensory deprivation and gonadectomy. Adult male and female rats underwent unilateral transection of the infraorbital nerve. Half of the subjects had been gonadectomized 1 week prior to the nerve injury. We found that the areas of deprived barrels were significantly reduced when compared to barrels in the contralateral control hemisphere, and that this shrinkage was independent of sex and gonadectomy. We also found significant reduction...

  6. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus

    OpenAIRE

    Williamson, Lauren L.; Chao, Agnes; Bilbo, Staci D.

    2012-01-01

    Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Environmental enrichment (EE) in rodents increases neurogenesis, enhances cognition, and promotes recovery from injury. However, little is known about the effects of EE on glia (astrocytes and microglia). Given their importance in neural repair, we predicted that EE would modulate glial phenotype and/or function within the hippocampus. Adult male rats were housed either 12 h/day in an enric...

  7. Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats

    OpenAIRE

    Li, Wan-Chun; Rukstalis, J. Michael; Nishimura, Wataru; Tchipashvili, Vaja; Habener, Joel F.; Arun SHARMA; Bonner-Weir, Susan

    2010-01-01

    The adult pancreas has considerable capacity to regenerate in response to injury. We hypothesized that after partial pancreatectomy (Px) in adult rats, pancreatic-duct cells serve as a source of regeneration by undergoing a reproducible dedifferentiation and redifferentiation. We support this hypothesis by the detection of an early loss of the ductal differentiation marker Hnf6 in the mature ducts, followed by the transient appearance of areas composed of proliferating ductules, called foci o...

  8. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats

    OpenAIRE

    Sheng-Feng Tsai; Chia-Yuan Chang; Lung Yu; Yu-Min Kuo

    2014-01-01

    Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old) and adult (8-week-old) rats with social instability stress for five weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the a...

  9. Effect of forced swimming stress on count, motility and fertilization capacity of the sperm in adult rats

    OpenAIRE

    Ghasem Saki; Fakher Rahim; Karim Alizadeh

    2009-01-01

    Aims: The purpose of this study was to determine whether 50 days of forced swimming stress applied to adult male rats affects count, motility and fertilization capacity of sperm. Settings and Design: It is a prospective study designed in vitro. Materials and Methods: A total 30 adult male wistar rats were used in this study. All rats were divided into two equal groups (n = 15): (1) control group and (2) experimental group. Animals of the experimental group were submitted to force swimming s...

  10. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  11. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 μg/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 μg/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.

  12. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats

    International Nuclear Information System (INIS)

    The amount of tracer [125I]T4 bound to serum thyronine-binding globulin (TBG) was measured by polyacrylamide gel electrophoresis in adult thyroidectomized (TX) rats and normal 1-day to 4-week-old rat puts. Thyroidectomy was associated with the appearance of significant amounts of [125I]T4 binding to serum TBG in lean rats, but not in obese Zucker rats. Treatment of the TX rats in vivo with replacement doses of T4 prevented this increase in TBG binding, but enrichment of serum from TX rats with T4 did not. Significant amounts of tracer [125I]T4 binding to TBG was present in serum from 1- to 3-week-old normal rat pups, but not in 1-day- or 4-week-old pups. There were significantly higher levels of TBG binding of [125I]T4 in serum from 2-week-old rat pups raised in litters of 16 pups compared to those raised in litters of 4 pups. All manipulations that result in the appearance of TBG in rat serum also result in either weight loss or a slowing in the rate of growth, suggesting that the appearance of TBG in rat serum has a nutritional component. This possibility is further supported by the observations that increases in TBG binding of [125I]T4 are not found in obese Zucker rats fed a low protein-high carbohydrate diet for 14 days or fasted for 7 days, or after thyroidectomy, perhaps owing to the large stores of fuel in the obese rat

  13. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu Kong

    2014-11-01

    Full Text Available Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH and luteinizing hormone (LH, and lowered etradiol (E2 serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.

  14. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats

    Institute of Scientific and Technical Information of China (English)

    R. Sujatha; K.C. Chitin; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the effect of lindane on testicular antioxidant system and testicular steroidogenesis in adult male rats. Methods: Adult male rats were orally administered with lindane at a dose of 5.0 mg/kg body weight per day for 30 days. Twenty-four hours after the last treatment the rats were killed using anesthetic ether. Testes, epididymis,seminal vesicles and ventral prostate were removed and weighed. A 10% testicular homogenate was prepared and cen trifuged at 4°C. The supematant was used for various biochemical estimations. Results: The body weight and the weights of testes, epididymis, seminal vesicles and ventral prostate were reduced in lindane-treated rars. There was asignificant decline in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione reduc tase while an increase in hydrogen peroxide (H2O2) generation was observed. The specific activities of testicular steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were decreased. The levels of DNA, RNA and protein were also decreased in lindane-treated rats. Conclusion: Lindane induces oxida tive stress and decreases antioxidant enzymes in adult male rats.

  15. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2006-02-01

    Full Text Available Abstract In this study, we show that capsaicin (CAP depresses primary afferent fiber terminal excitability by acting on vanilloid receptor 1 (TRPV1 channels of primary afferent fibers in adenosine 5'-triphosphate (ATP- and temperature-dependent manner using two optical imaging methods. First, transverse slices of spinal cord were stained with a voltage-sensitive dye and the net excitation in the spinal dorsal horn was recorded. Prolonged treatment (>20 min with the TRPV1 channel agonist, CAP, resulted in a long-lasting inhibition of the net excitation evoked by single-pulse stimulation of C fiber-activating strength. A shorter application of CAP inhibited the excitation in a concentration-dependent manner and the inhibition was reversed within several minutes. This inhibition was Ca++-dependent, was antagonized by the TRPV1 channel antagonist, capsazepine (CPZ, and the P2X and P2Y antagonist, suramin, and was facilitated by the P2Y agonist, uridine 5'-triphosphate (UTP. The inhibition of excitation was unaffected by bicuculline and strychnine, antagonists of GABAA and glycine receptors, respectively. Raising the perfusate temperature to 39°C from 27°C inhibited the excitation (-3%/°C. This depressant effect was antagonized by CPZ and suramin, but not by the P2X antagonist, 2', 3'-O-(2,4,6-trinitrophenyl adenosine 5'-triphosphate (TNP-ATP. Second, in order to record the presynaptic excitation exclusively, we stained the primary afferent fibers anterogradely from the dorsal root. CAP application and a temperature increase from 27°C to 33°C depressed the presynaptic excitation, and CPZ antagonized these effects. Thus, this study showed that presynaptic excitability is modulated by CAP, temperature, and ATP under physiological conditions, and explains the reported central actions of CAP. These results may have clinical importance, especially for the control of pain.

  16. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    Science.gov (United States)

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  17. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    Science.gov (United States)

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  18. Comparison and modification of Pu-239 kinetics in young and adult rats

    International Nuclear Information System (INIS)

    It is obvious that the biokinetics of bone-seeking radionuclides are influenced by skeletal growth and remodelling, the rate of which in general decreases with increasing age. For plutonium, Mahlum and Sikov (1974) observed that rats injected with Pu-239 as weanlings retained a lower percentage in the liver and more in the bones than the animals injected as adults. However, skeletal Pu-239 was diluted more rapidly in the young rats because of intensive new bone formation and this led to a more pronounced reduction in the accumulation of radiation dose than was the case in adult animals. The aim of the present experiments was to study: a) The age effect on Pu-239 biokinetics in adult rates as influenced by the sex of the animals. b) Early retention and distribution of Pu-239 in the bones of young and adult rats injected with an optimal osteosarcomogenic dose. c) The effectiveness of a delayed prolonged administration of Zn-DTPA in drinking water for the mobilization of injected Pu-239 in rats of various age. 3 refs.; 5 figs.; 1 table

  19. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    Science.gov (United States)

    Oosthuizen, M K; Amrein, I

    2016-06-01

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. PMID:26979050

  20. Strain differences in baroceptor reflex in adult Wistar Kyoto rats

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2010-01-01

    Full Text Available OBJECTIVES: A subset of normotensive Sprague-Dawley rats show lower baroreflex sensitivity; however, no previous study investigated whether there are differences in baroreflex sensitivity within this subset. Our study compared baroreflex sensitivity among conscious rats of this specific subtype. METHODS: Male Wistar Kyoto (WKY rats (16 weeks old were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure (MAP and heart rate (HR. Baroreflex gain was calculated as the ratio between change in HR and MAP variation (ΔHR/ΔMAP in response to a depressor dose of sodium nitroprusside (SNP, 50 µg/kg, i.v. and a pressor dose of phenylephrine (PE, 8 µg/kg, i.v.. Rats were divided into four groups: 1 low bradycardic baroreflex (LB, baroreflex gain (BG between -1 and -2 bpm/mmHg tested with PE; 2 high bradycardic baroreflex (HB, BG < -2 bpm/mmHg tested with PE; 3 low tachycardic baroreflex (LT, BG between -1 and -2 bpm/mmHg tested with SNP and; 4 high tachycardic baroreflex (HT, BG < -2 bpm/mmHg tested with SNP. Significant differences were considered for p < 0.05. RESULTS: Approximately 37% of the rats showed a reduced bradycardic peak, bradycardic reflex and decreased bradycardic gain of baroreflex while roughly 23% had a decreased basal HR, tachycardic peak, tachycardic reflex and reduced sympathetic baroreflex gain. No significant alterations were noted with regard to basal MAP. CONCLUSION: There is variability regarding baroreflex sensitivity among WKY rats from the same laboratory.

  1. Effect of oily Rosmarinus Officinalis extract on some reproductive and sperm parameters in adult male rats

    Directory of Open Access Journals (Sweden)

    H. M. Hameed

    2011-01-01

    Full Text Available The present investigation was conducted to examine the effect of oral administration of oily Rosmarinus Officinalis extract on spermatogenesis, accessory sex glands and serum testosterone level in adult male rats aged 2.5-3 months. The extract was administered orally daily at 250, 500 and 1000 mg/kg body weight for 6 weeks. The results showed that the extract at the three doses significantly reduced testis weight and testosterone level. Furthermore a significant reduction in sperm count, weight of body, tail of epididymis, seminal vesicles and prostate gland in rats treated with extract at 500 and 1000 mg/kg compared with control, associated with a significant reduction in the percentage of live sperms and significant increase in the percentage of dead sperms and morphologically abnormal sperms compared with control. It was concluded that Rosmarinus Officinalis extract administration to adult male rats caused adverse effects on some reproductive and semen parameters.

  2. srGAP3 promotes neurite outgrowth of dorsal root ganglion neurons by inactivating RAC1

    Institute of Scientific and Technical Information of China (English)

    Quan-Peng Zhang; Hai-Ying Zhang; Xian-Fang Zhang; Jiu-Hong Zhao; Zhi-Jian Ma; Dan Zhao; Xi-Nan Yi

    2014-01-01

    Objective:To explore effect of srGAP3 promotes neurite outgrowth of dorsal root ganglion neurons.Methods:In this study, expression ofSlit1 was observed predominantly in the glia, while expression ofRobo2 and srGAP3 was detected in sensory neurons of postnatal rat cultured dorsal root ganglion(DRG).Furthermore, upregulation of srGAP3 following sciatic nerve transection was detected by immunohistochemistry andWestern blotting.Results:It was observed that inhibition of neurite outgrowth in cultured adultDRG neurons following treatment with anti-srGAP3 or anti-Robo2 was more effectively(1.5-fold higher) than that following treatment with an anti-BDNF positive control antibody.It demonstrated that srGAP3 interacted withRobo2 andSlit1 protein to decreaseRac1-GTP activity in cultured adult ratDRG neurons and the opposite effect onRac1-GTP activity was detected by co-immunoprecipitation and immunoblotting analyses following treatment with anti-Robo2 or anti-srGAP3.These data demonstrated a role for srGAP3 in neurite outgrowth ofDRG sensory neurons.Conclusions:Our observations suggest that srGAP3 promotes neurite outgrowth and filopodial growth cones by interacting withRobo2 to inactivateRac1 in mammalianDRG neurons.

  3. Cochlear function in young and adult Fischer 344 rats

    Czech Academy of Sciences Publication Activity Database

    Popelář, Jiří; Groh, Daniel; Mazelová, Jana; Syka, Josef

    2003-01-01

    Roč. 186, - (2003), s. 75-84. ISSN 0378-5955 R&D Projects: GA ČR GA309/01/1063; GA MZd NK6454 Institutional research plan: CEZ:AV0Z5039906 Keywords : Fischer 344 rat Subject RIV: FF - HEENT, Dentistry Impact factor: 1.502, year: 2003

  4. Effects of psychostimulants on social interaction in adult male rats

    Czech Academy of Sciences Publication Activity Database

    Šlamberová, R.; Mikulecká, Anna; Macúchová, E.; Hrebíčková, I.; Ševčíková, M.; Nohejlová, K.; Pometlová, M.

    2015-01-01

    Roč. 26, č. 8 (2015), s. 776-785. ISSN 0955-8810 Institutional support: RVO:67985823 Keywords : amphetamine * cocaine * male rats * 3,4 methylenedimethoxyamphetamine * psychostimulants * social behavior Subject RIV: FH - Neurology Impact factor: 2.148, year: 2014

  5. Modification Of Cesium Toxicity By Prussian Blue In Adult Male Albino Rats

    International Nuclear Information System (INIS)

    The purposes of this study were to asses the toxicological effects of stable cesium chloride, and investigate the possible therapeutic role of Prussian blue (PB) in adult male albino rats.Thirty two adult male albino rats were used in this study and classified to 4 groups (8 rats/group) as follows:1- Group one (G1): rats were considered as controls and kept on the commercial diet without any treatments.2-Group two (G2): treated with daily oral cesium chloride (50 mg/300 g body weight).3-Group three (G3): treated with daily oral Prussian blue (250 mg/rats).4-Group four (G4): treated with cesium chloride at a daily oral dose of 50 mg/300 g body weight + Prussian blue at a daily oral dose of 250 mg/rats.All animals were administered the CsCl and/or PB via intubation tube and the duration of this study was 35 consecutive days. Hemoglobin (Hb), hematocrit (Ht%), red blood cells (RBC), white blood cells (WBC), folic acid, vitamin B12, total protein, albumin, globulin, A/G ratio, ALT, AST, total bilirubin, alkaline phosphatase, blood glucose, urea, creatinine, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), sodium, potassium, calcium and inorganic phosphorous and body weight were determined in all groups.The data obtained revealed that the intake of stable cesium chloride in adult male rats caused significant decreases in the Hb, hematocrit, folic acid, vitamin B12 and potassium contents, with significant increases in WBC count, urea and creatinine levels and no effect on the other parameters. On the other hand, PB as a therapeutic agent caused significant amelioration in the changes produced by CsCl with variable degrees leading to the conclusion that the therapeutic agents might provide a protection against the toxicological effects of CsCl.

  6. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  7. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  8. Inflammation reduces the contribution of N-type calcium channels to primary afferent synaptic transmission onto NK1 receptor-positive lamina I neurons in the rat dorsal horn.

    Science.gov (United States)

    Rycroft, Beth K; Vikman, Kristina S; Christie, MacDonald J

    2007-05-01

    N-type calcium channels contribute to the release of glutamate from primary afferent terminals synapsing onto nocisponsive neurons in the dorsal horn of the spinal cord, but little is known of functional adaptations to these channels in persistent pain states. Subtype-selective conotoxins and other drugs were used to determine the role of different calcium channel types in a rat model of inflammatory pain. Electrically evoked primary afferent synapses onto lumber dorsal horn neurons were examined three days after induction of inflammation with intraplantar complete Freund's adjuvant. The maximal inhibitory effect of the N-type calcium channel blockers, omega-conotoxins CVID and MVIIA, were attenuated in NK1 receptor-positive lamina I neurons after inflammation, but the potency of CVID was unchanged. This was associated with reduced inhibition of the frequency of asynchronous-evoked synaptic events by CVID studied in the presence of extracellular strontium, suggesting reduced N-type channel contribution to primary afferent synapses after inflammation. After application of CVID, the relative contributions of P/Q and L channels to primary afferent transmission and the residual current were unchanged by inflammation, suggesting the adaptation was specific to N-type channels. Blocking T-type channels did not affect synaptic amplitude under control or inflamed conditions. Reduction of N-type channel contribution to primary afferent transmission was selective for NK1 receptor-positive neurons identified by post hoc immunohistochemistry and did not occur at synapses in laminae II(o) or II(i), or inhibitory synapses. These results suggest that inflammation selectively downregulates N-type channels in the terminals of primary afferents synapsing onto (presumed) nociceptive lamina I NK1 receptor-positive neurons. PMID:17303639

  9. Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test

    Directory of Open Access Journals (Sweden)

    Carvalho M.C.

    2005-01-01

    Full Text Available It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM. The present study uses a new approach (HPLC by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance. The study involved two experiments: i saline or midazolam (0.5 mg/kg before the first trial, and ii saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%. Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%, amygdala (78.96%, dorsal hippocampus (70.33%, and nucleus accumbens (73.58% of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM. A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05. These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

  10. Postnatal high-fat diet leads to spatial deficit, obesity, and central and peripheral inflammation in prenatal dexamethasone adult offspring rats.

    Science.gov (United States)

    Hsieh, Chih-Sung; Li, Shih-Wen; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Tain, You-Lin; Su, Chung-Hao; Huang, Li-Tung

    2016-08-01

    Synthetic glucocorticoids are frequently used in clinical practice for treating pregnant women at risk of preterm delivery, but their long-term effects on the infant brain are largely unknown. Pregnant Sprague-Dawley rats were administered vehicle or dexamethasone between gestational days 14 and 21. Male offspring were then weaned onto either a standard chow or a high-fat diet. The postnatal levels of insulin-like growth factor I (IGF-1), tumor necrosis factor-α (TNF-α), and asymmetric dimethylarginine (ADMA) in the plasma, liver, and brain were examined, as well as the possible effects of prenatal dexamethasone on cognition. We found that a postnatal high-fat diet led to spatial deficits detected by the Morris water maze in adult offspring administered dexamethasone prenatally. The spatial deficit was accompanied by decreased IGF-1 mRNA and increased ADMA levels in the dorsal hippocampus. In peripheral systems, a postnatal high-fat diet resulted in decreased plasma IGF-1, increased plasma corticosterone, increased concentrations of transaminases, TNF-α mRNA, and ADMA in the liver, and associated obesity in adult offspring administered prenatal dexamethasone. In conclusion, a postnatal high-fat diet led to spatial deficits, obesity, and altered levels of IGF-1, TNF-α, and ADMA in the plasma, liver, or brain. PMID:27272689

  11. Effect of artemether on hematological parameters of healthy and uninfected adult Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Osonuga IO; Osonuga OA; Osonuga A; Onadeko AA; Osonuga AA

    2012-01-01

    Objective: To evaluate the effect of short term artemether administration on some blood parameters in adult male Wistar rats. Methods: Sixty five albino rats with body weight of 190-220 g were used for the four-phased study. The animals were randomly divided into five groups. The first-four groups of 15 rats were further divided into 3 subgroups of 5 rats. The drug was administered orally at sub-optimal, therapeutic, and high doses of 25, 50 and 75 mg/kg bw, respectively to the rats for 1 day, 2 days and 3 days. Blood samples were collected by cardio-puncture from the rats for hematology at the end of each phase. The last group served as control, and they were given water ad libitum. Results:Artemether caused significant reduction (P<0.05) of the hematological profile of the animals in a dose dependent manner. Discontinuation of the drug use however showed gradual recovery of the depressed indices of the blood parameters. Conclusions:The results suggest that artemether can induce reversible changes in hematological profiles of rats by extension man. This can probably aggravate anemia when artemether is administered to malaria patients. Hence, the study supports the use of the drug with caution especially in patients prone to anemic tendencies.

  12. Role of calpain in spinal dorsal horn in development of paw inflammatory pain in rats%脊髓背角卡配因在大鼠足底炎性痛形成中的作用

    Institute of Scientific and Technical Information of China (English)

    王静捷; 陈广俊; 陈雯; 杜金; 罗爱伦; 黄宇光

    2011-01-01

    目的 探讨脊髓背角卡配因在大鼠足底炎性痛形成中的作用.方法 雄性SD大鼠48只,6周龄,体重160~200 g,采用随机数字表法,将其随机分为3组:正常对照组(C组,n=8)、PBS组(n=16)和酵母多糖诱发足底炎性痛组(Z组,n=24).Z组于大鼠左侧后足足底皮下注射酵母多糖1.25 mg,制备酵母多糖诱发足底炎性痛模型,PBS组给予等容量PBS 100μl.分别于给药前(T0)、给药后30 min(T1)、1 h(T2)、2 h(T3)、4 h(T4)、8 h(T5)、24 h(T6)和48 h(T7)时测定左侧后足机械刺激缩足阈值(MWT)、热缩足反应潜伏期(PWTL)和左侧后足足底最大厚度.PBS组于T4时处死8只大鼠,Z组分别于T4、T6和T7时各处死8只大鼠,取左侧脊髓L4~6节段,采用Western blot法测定脊髓背角spectrin αⅡ降解产物、IκBα、环氧化酶-2(COX-2)的表达和NF-κB活性.结果 与C组比较,Z组MWT降低,PWTL缩短,足底最大厚度增厚,脊髓背角spectrin αⅡ降解产物和COX-2的表达上调,IκBα表达下调,NF-κB活性升高(P<0.05或0.01),PBS组上述指标差异无统计学意义(P>0.05).结论 脊髓背角卡配因活化参与了大鼠足底炎性痛的形成,其机制与激活NF-κB,上调COX-2表达有关.%Objective To investigate the role of calpain in the spinal dorsal horn in development of paw inflammatory pain in rats.Methods Forty-eight male SD rats,aged 6 weeks,weighing 160-200 g,were randomly divided into three groups:normal control group(group C,n =8),PBS group( n =16),zymosan-induced paw inflammatory pain group (group Z,n =24).Inflammatory pain was induced by injection of zymosan 1.25 mg into the plantar surface of left hindpaw.Group PBS received the equal volume of PBS 100 μl.The mechanical paw withdrawal threshold (MWT),paw withdrawal thermal latency (PWTL) and maximum thickness of the plantar surface of left hindpaw were measured before (T0 ) and at 30 min,1,2,4,8,24 and 48 h(T1-7 ) after zymosan or PBS injection.Eight rats were sacrificed at T4 in

  13. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age.

    Directory of Open Access Journals (Sweden)

    William Galbavy

    Full Text Available Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG, have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC, and DRG from young and middle-aged (3, 17 month naïve rats, or from rats subjected to chronic constriction injury (CCI of the sciatic nerve (after 7 days, or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3; whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however

  14. Bupropion Attenuates Methamphetamine Self-Administration in Adult Male Rats

    OpenAIRE

    Reichel, Carmela M.; Murray, Jennifer E.; Grant, Kathleen M.; Bevins, Rick A.

    2008-01-01

    Bupropion is a promising candidate medication for methamphetamine use disorder. As such, we used a preclinical model of drug-taking to determine the effects of bupropion on the reinforcing effects of methamphetamine (0.025, 0.05 or 0.1 mg/kg/infusion). Specificity was determined by investigating the effects of bupropion on responding maintained by sucrose. In the self-administration study, rats were surgically prepared with indwelling jugular catheters and trained to self-administer methamphe...

  15. Methamphetamine affects social interaction in adult male rats

    Czech Academy of Sciences Publication Activity Database

    Pometlová, M.; Mikulecká, Anna; Šlamberová, Romana; Schutová, B.; Hrubá, L.; Rokyta, R.

    2007-01-01

    Roč. 18, Suppl.1 (2007), S77-S77. ISSN 0955-8810. [Biennial Meeting of the European Behavioural Pharmacology Society /12./. 31.08.2007-03.09.2007, Tübingen] R&D Projects: GA MZd(CZ) 1A8610; GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z50110509 Keywords : metemphetamine * behavior * male rat Subject RIV: ED - Physiology

  16. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  17. Repair of acutely injured spinal cord through constructing tissue-engineered neural complex in adult rats

    Institute of Scientific and Technical Information of China (English)

    PU Yu; GUO Qing-shan; WANG Ai-min; WU Si-yu; XING Shu-xing; ZHANG Zhong-rong

    2007-01-01

    Objective: To construct tissue-engineered neural complex in vitro and study its effect in repairing acutely injured spinal cord in adult rats. Methods: Neural stem cells were harvested from the spinal cord of embryo rats and propagated in vitro. Then the neural stem cells were seeded into polyglycolic acid scaffolds and co-cultured with extract of embryonic spinal cord in vitro. Immunofluorescence histochemistry and scanning electron microscope were used to observe the microstructure of this complex. Animal model of spine semi-transection was made and tissue-engineered neural complex was implanted by surgical intervention. Six weeks after transplantation, functional evaluation and histochemistry were applied to evaluate the functional recovery and anatomic reconstruction. Results: The tissue-engineered neural complex had a distinct structure, which contained neonatal neurons, oligodendrocytes and astrocytes. After tissue-engineered neural complex was implanted into the injured spinal cord, the cell components such as neurons, astrocytes and oligodendrocytes, could survive and keep on developing. The adult rats suffering from spinal cord injury got an obvious neurological recovery in motor skills. Conclusions: The tissue-engineered neural complex appears to have therapeutic effects on the functional recovery and anatomic reconstruction of the adult rats with spinal cord injury.

  18. Radiation Sterilization of Green Tea Has No Effect on Its Beneficial Activity in Adult Rats

    International Nuclear Information System (INIS)

    The Effects of drinking green tea (GT) extract (made from non-irradiated or irradiated GT leaves) on certain physiological and biochemical parameters in adult rats were measured. Rats (n = 10 per treatment group) drank either water or GT extract (hot water extract of GT leaves that were either non-irradiated or irradiated at 10, 20 or 30 kGy) ad libitum for 5 week duration of the test. Neither control nor- irradiated GT extract had any effect on body wt, total body wt gain or relative internal organs wt. Both control and irradiated GT extract had beneficial effects on total plasma lipids. Consumption of GT extract (made from leaves irradiated to doses of 0, 10, 20 or 30 kGy) lowered blood glucose level by 24.3 %, 25.7 %, 24.3 % and 24.1 % respectively, compared to the control group that received only water (glucose in water control groups 107 mg dl ). The corresponding values for blood cholesterol were reduced by 23.0 %, 22.6 %, 21.3 % and 21.3 %, respectively, compared to the water control group (= 115.17 mg dl-1). The present study indicates that consumption of GT extract, either control or irradiated, raised the high density lipoprotein cholesterol in adult rats and subsequently lowered the atherogenic index. In conclusion, the present work demonstrates that consumption of GT extracts, from either control or irradiated GT leaves, beneficially affects the heart risk factors of disease in adult rats

  19. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia.

    Science.gov (United States)

    Song, X J; Hu, S J; Greenquist, K W; Zhang, J M; LaMotte, R H

    1999-12-01

    Chronic compression of the dorsal root ganglion (CCD) was produced in adult rats by implanting a stainless steel rod unilaterally into the intervertebral foramen, one rod at L(4) and another at L(5). Two additional groups of rats received either a sham surgery or an acute injury consisting of a transient compression of the ganglion. Withdrawal of the hindpaw was used as evidence of a nocifensive response to mechanical and thermal stimulation of the plantar surface. In addition, extracellular electrophysiological recordings of spontaneous discharges were obtained from dorsal root fibers of formerly compressed ganglia using an in vitro nerve-DRG-dorsal root preparation. The mean threshold force of punctate indentation and the mean threshold temperature of heating required to elicit a 50% incidence of foot withdrawal ipsilateral to the CCD were significantly lower than preoperative values throughout the 35 days of postoperative testing. The number of foot withdrawals ipsilateral to the CCD during a 20-min contact with a temperature-controlled floor was significantly increased over preoperative values throughout postoperative testing when the floor was 4 degrees C (hyperalgesia) and, to a lesser extent, when it was 30 degrees C (spontaneous pain). Stroking the foot with a cotton wisp never elicited a reflex withdrawal before surgery but did so in most rats tested ipsilateral to the CCD during the first 2 postoperative weeks. In contrast, the CCD produced no changes in responses to mechanical or thermal stimuli on the contralateral foot. The sham operation and acute injury produced no change in behavior other than slight, mechanical hyperalgesia for approximately 1 day, ipsilateral to the acute injury. Ectopic spontaneous discharges generated within the chronically compressed ganglion and, occurring in the absence of blood-borne chemicals and without an intact sympathetic nervous system, were recorded from neurons with intact, conducting, myelinated or unmyelinated

  20. Evaluating the Effect of Vitamins E and C on Sexual Cell Lineages in Adult Male Rats under Oxidative Stress Induced by Endosulfan Consumption

    OpenAIRE

    yazdan heydari; shirzad hosseini; mojtaba keshavarz; ahmad mozafar; mohammadhasaan meshkibaf; mohammadali takhshid

    2014-01-01

    Background & Objective: Endosulfan is one of the strong insecticides used in agriculture. This toxin is absorbed by inhalation and skin. Endosulfan has side effects such as infertility in men. This study surveys the effect of vitamins E and C on  preventing the harmful effects of Endosulfan on spermatogenesis in adult male rats. Materials & Methods: Adult male rats (200-250 g) from Wistar rats were divided into five groups of 10 rats. Rats in the experimental group...

  1. Repeated social defeat increases reactive emotional coping behavior and alters functional responses in serotonergic neurons in the rat dorsal raphe nucleus

    OpenAIRE

    Paul, Evan D; Hale, Matthew W.; Lukkes, Jodi L.; Valentine, McKenzie J.; Sarchet, Derek M.; Lowry, Christopher A.

    2011-01-01

    Chronic stress is a vulnerability factor for a number of psychiatric disorders, including anxiety and affective disorders. Social defeat in rats has proven to be a useful paradigm to investigate the neural mechanisms underlying physiologic and behavioral adaptation to acute and chronic stress. Previous studies suggest that serotonergic systems may contribute to the physiologic and behavioral adaptation to chronic stress, including social defeat in rodent models. In order to test the hypothesi...

  2. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.

    Science.gov (United States)

    Zhu, He-Quan; Xu, Jing; Shen, Kai-Feng; Pang, Rui-Ping; Wei, Xu-Hong; Liu, Xian-Guo

    2015-11-01

    Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect. PMID:26376216

  3. Effect of Cucurbita pepo L. Fruit Pulp on Testis Histological Changes in Adult Rats

    OpenAIRE

    M Mohsen pour; M. Shariati; Esfandiari, A

    2014-01-01

    Background & aim: The Cucurbita pepo L. fruit pulp contains anti-oxidant, vitamins A, C and E, cucurbitacin, β-carotene and α-carotene, B complex vitamins, vitamin B6, pantetonic acid and contains minerals as well. The aim of this study was to evaluate the effect of pumpkin fruits on spermatogenesis and testicular tissue changes in male rats. Methods: The present experimental study was conducted on forty adult male Wistar rats in four groups of ten. The control group received no drug tre...

  4. The histological effects of Moringa extract on mercury induced hepatotoxicity in adult wistar rats

    OpenAIRE

    2013-01-01

    This work focuses primarily on the histological effects of aqueous extract of moringa on mercury induced wistar rats. Twenty four adult wistar rats weighing between 190-270g were allocated into four groups of six animals each. Group A served as the control and received 0.5ml of distilled water, group B received 0.5ml of moringa extract, group C received 0.35ml of mercury while group D received 0.35ml of mercury and 0.5ml of moringa extract. The oral administration lasted for twenty eight days...

  5. Induction of abnormal oocyte division under the constant light in the young adult rat

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Fangxiong Shi

    2012-01-01

    In order to study the effect of constant light on the ovary, 12 young adult female rats were exposed to constant light for 37 days and their estrous cycles were recorded by daily examination and the ovaries were examined histologically. The results showed that constant light induced in an abnormal and uncontrolled division of oocytes. In these divided-oocyte follicles (DOFs), two or more divided-oocytes shared one zona pellucida and usually floated freely in the follicular antrum. This fantastic phenomenon was discovered for the first time, and it was different from multioocyte follicles (MOFs) and polyovular follicles (POFs) founded in rats, humans, rabbits, mice and dogs.

  6. The histological effects of Annona Muricata (Soursop) on the Adrenal Gland of Adult Wistar Rats

    OpenAIRE

    2014-01-01

    This study was undertaken to evaluate the histological effects of ethanolic extract of Annona muricata on the adrenal gland of adult wistar rats. Twenty wistar rats weighing between 180 – 210g were used for the study. They were divided into four groups (A, B, C & D) of five animals each. Group A animals served as the control and received 0.3 ml of distilled water; the experimental groups B, C & D were orally administered 0.2 ml, 0.4 ml and 0.6 ml of ethanolic extract of Annona muricat...

  7. Comparison of airway measurements during influenza-induced tachypnea in infant and adult cotton rats

    Directory of Open Access Journals (Sweden)

    Prince Gregory A

    2009-06-01

    Full Text Available Abstract Background Increased respiratory rate (tachypnea is frequently observed as a clinical sign of influenza pneumonia in pediatric patients admitted to the hospital. We previously demonstrated that influenza infection of adult cotton rats (Sigmodon hispidus also results in tachypnea and wanted to establish whether this clinical sign was observed in infected infant cotton rats. We hypothesized that age-dependent differences in lung mechanics result in differences in ventilatory characteristics following influenza infection. Methods Lung tidal volume, dynamic elastance, resistance, and pleural pressure were measured in a resistance and compliance system on mechanically-ventilated anesthestized young (14–28 day old and adult (6–12 week old cotton rats. Animals at the same age were infected with influenza virus, and breathing rates and other respiratory measurements were recorded using a whole body flow plethysmograph. Results Adult cotton rats had significantly greater tidal volume (TV, and lower resistance and elastance than young animals. To evaluate the impact of this increased lung capacity and stiffening on respiratory disease, young and adult animals were infected intra-nasally with influenza A/Wuhan/359/95. Both age groups had increased respiratory rate and enhanced pause (Penh during infection, suggesting lower airway obstruction. However, in spite of significant tachypnea, the infant (unlike the adult cotton rats maintained the same tidal volume, resulting in an increased minute volume. In addition, the parameters that contribute to Penh were different: while relaxation time between breaths and time of expiration was decreased in both age groups, a disproportionate increase in peak inspiratory and expiratory flow contributed to the increase in Penh in infant animals. Conclusion While respiratory rate is increased in both adult and infant influenza-infected cotton rats, the volume of air exchanged per minute (minute volume is

  8. Fertility of male adult rats submitted to forced swimming stress

    OpenAIRE

    Mingoti G.Z.; Pereira R.N.; Monteiro C.M.R.

    2003-01-01

    We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a s...

  9. A Method to Isolate Viable Schwann Cells from Adult Rat

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Schwann cells (SCs) are the glial cells of the peripheral nervous system, which play an important role for repairing nerve injuries and demyelination diseases. The ability to generate large numbers of viable SCs in a short period of time from adult peripheral nerves makes them potential candidates for the clinical application of cell transplantation to enhance remyelination in human demyelinating disease and repair nerve damage. Previously most methods to isolate SCs are not clinically accept...

  10. Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats.

    Science.gov (United States)

    Gellner, Candice A; Belluzzi, James D; Leslie, Frances M

    2016-10-01

    Although smoking initiation typically occurs during adolescence, most preclinical studies of tobacco use involve adult animals. Furthermore, their focus is largely on nicotine alone, even though cigarette smoke contains thousands of constituents. The present study therefore aimed to determine whether aqueous constituents in cigarette smoke affect acquisition of nicotine self-administration during adolescence in rats. Adolescent and adult male rats, aged postnatal day (P) 25 and 85, respectively, were food trained on a fixed ratio 1 (FR1) schedule, then allowed to self-administer one of 5 doses of nicotine (0, 3.75, 7.5, 15, or 30 μg/kg) or aqueous cigarette smoke extract (CSE) with equivalent nicotine content. Three progressively more difficult schedules of reinforcement, FR1, FR2, and FR5, were used. Both adolescent and adult rats acquired self-administration of nicotine and CSE. Nicotine and CSE similarly increased non-reinforced responding in adolescents, leading to enhanced overall drug intake as compared to adults. When data were corrected for age-dependent alterations in non-reinforced responding, adolescents responded more for low doses of nicotine and CSE than adults at the FR1 reinforcement schedule. No differences in adolescent responding for the two drugs were seen at this schedule, whereas adults had fewer responses for CSE than for nicotine. However, when the reinforcement schedule was increased to FR5, animals dose-dependently self-administered both nicotine and CSE, but no drug or age differences were observed. These data suggest that non-nicotine tobacco smoke constituents do not influence the reinforcing effect of nicotine in adolescents. PMID:27346207

  11. Differential effects of magnetic field exposure from domestic power supply on loco motor and exploratory behavior of an adult rat

    International Nuclear Information System (INIS)

    In the present study, we have examined the low intense magnetic field exposed on adult rats to understand effect of several behavioral parameters. The rats are tested in the open field and spontaneous alternation task after either a single or chronic exposure to the magnetic field. We found that magnetic field exposure had no effect on locomotor behavior in the adult. However, the exploratory behavior of adult rats in the open field was significantly affected. Indeed, we found a consistent increase in behavior performance viz. exploration time and number of exploration events in rats exposed to magnetic field. Our results demonstrate behavioral changes after magnetic field exposure in adult subjects. This also suggests possible deleterious effects of magnetic field exposure in the brain. (author)

  12. Resveratrol improves reproductive parameters of adult rats varicocelized in peripuberty.

    Science.gov (United States)

    Mendes, Talita Biude; Paccola, Camila Cicconi; de Oliveira Neves, Flávia Macedo; Simas, Joana Noguères; da Costa Vaz, André; Cabral, Regina Elisabeth L; Vendramini, Vanessa; Miraglia, Sandra Maria

    2016-07-01

    The aim of this study was to investigate the protective action of resveratrol against the reproductive damage caused by left-sided experimental varicocele. There was a reduction of testicular major axis in the varicocele group when compared with the other groups; the testicular volume was reduced in varicocele group in comparison to the sham-control and resveratrol groups. The frequency of morphologically abnormal sperm was higher in varicocele and varicocele treated with resveratrol groups than in sham-control and resveratrol groups. The frequency of sperm with 100% of mitochondrial activity and normal acrosome integrity were lower in varicocele group than in varicocele treated with resveratrol, sham-control and resveratrol groups. Sperm motility was also reduced in varicocele group than in other groups. The sperm DNA fragmentation was higher in varicocele group than in other groups. Testicular levels of malondialdehyde were higher in varicocele and varicocele treated with resveratrol groups. The varicocele and varicocele treated with resveratrol groups had a significantly higher frequency of TUNEL-positive cells than sham-control and resveratrol groups; however, immunolabeling of the testes from varicocele treated with resveratrol group showed a lower number of apoptotic germ cells in comparison with the left testis of rats of the varicocele group. Reproductive alterations produced by varicocele from peripuberty were reduced by resveratrol in adulthood. Resveratrol should be better investigated as an adjuvant in the treatment of varicocele. Daily administration of resveratrol to rats with varicocele from peripuberty improves sperm quality in the adulthood. PMID:27069006

  13. Temporal Expression of Mutant LRRK2 in Adult Rats Impairs Dopamine Reuptake

    Directory of Open Access Journals (Sweden)

    Hongxia Zhou, Cao Huang, Jianbin Tong, Weimin C Hong, Yong-Jian Liu, Xu-Gang Xia

    2011-01-01

    Full Text Available Parkinson's disease (PD results from progressive degeneration of dopaminergic neurons. Most PD cases are sporadic, but some have pathogenic mutation in the individual genes. Mutation of the leucine-rich repeat kinase-2 (LRRK2 gene is associated with familial and sporadic PD, as exemplified by G2019S substitution. While constitutive expression of mutant LRRK2 in transgenic mice fails to induce neuron death, transient expression of the disease gene by viral delivery causes a substantial loss of dopaminergic neurons in mice. To further assess LRRK2 pathogenesis, we created inducible transgenic rats expressing human LRRK2 with G2019S substitution. Temporal overexpression of LRRK2G2019S in adult rats impaired dopamine reuptake by dopamine transporter (DAT and thus enhanced locomotor activity, the phenotypes that were not observed in transgenic rats constitutively expressing the gene throughout life time. Reduced DAT binding activity is an early sign of dopaminergic dysfunction in asymptomatic subjects carrying pathogenic mutation in LRRK2. Our transgenic rats recapitulated the initiation process of dopaminergic dysfunction caused by pathogenic mutation in LRRK2. Inducible transgenic approach uncovered phenotypes that may be obscured by developmental compensation in constitutive transgenic rats. Finding in inducible LRRK2 transgenic rats would guide developing effective strategy in transgenic studies: Inducible expression of transgene may induce greater phenotypes than constitutive gene expression, particularly in rodents with short life time.

  14. Impairment in Spatial Memory in adult Rats following developmental Low Lead Exposure

    Directory of Open Access Journals (Sweden)

    Rajashekar Rao Barkur

    2012-11-01

    Full Text Available The present study was aimed to investigate the effect of environmentally relevant levels of lead exposure during gestational and early postnatal period on hippocampal dependent spatial memory in rats during adulthood. The pregnant rats were allowed to drink either normal water (control group or 0.2% lead acetate solution (Leadtreated group during pregnancy and lactation. Thus rats pups of lead treated group where exposed to lead indirectly through their mothers during this period. At weaning pups of lead treated group were allowed to drink normal water till they attain the adult hood. Blood lead level was estimated on postnatal day 22 and 120. Birth weight and weight gain of the rat pups as they grew were measured at regular intervals. Both the control and lead treated groups of rats were subjected to water maze test on postnatal day 30 and 120. Results showed that lead treatment had no effect on birth weight or weight gain. Blood lead level on postnatal day 22 was significantly high in treated group compared to the control group and it was normalized by end of four months. The rats born to lead treated mothers showed impaired in spatial memory during water maze test both on postnatal day 36 and 126. These data suggests that exposure to environmentally relevant levels of lead during intrauterine and early postnatal period of brain development causes impairment in spatial memory not only during infancy but also lasts till adulthood.

  15. Effect of the antioxidant dibunol on adrenocortical, thyroid, and adenohypopyseal function in adult and old rats

    International Nuclear Information System (INIS)

    This paper studies the effect of dibunol (4-methyl-2,6-di-tert-butylphenol) (D) on the function of the adrenal cortex, thyroid gland, and adenhypophysis, which produces trophic hormones for the other two glands. Experiments were carried out on adult rats. After injection of D concentrations of corticosterone (CS), triodothyronine (T3), ACTH, and thyrotrophin (TSH) in the blood plasma and the CS concentration in tssue of the adenohypophysis were determined. It is shown that injection of D caused biphasic changes in the CS concentration in both tissues studied in adult and old animals

  16. Dorsal metakarpal arter flepleri

    OpenAIRE

    Bora, Arslan; Ozerkan, Fuat; Kaplan, Ibrahim; Ada, Sait; Ademoglu, Yalcin

    2004-01-01

    We present dorsal metacarpal artery flaps applied to 10 cases with the aim of reconstruction of the skin defects at the dorsum of the fingers and hand and whole thumb. The main aim was to obtain the skin coverage. Average age of our patients was 25,7, and the average follow up period was 25.7 months (2 years and 2 months). 6 out of 10 were island flaps. 3 axial flaps and one was reverse flow (distally based) flap. Seven were to cover the defects on thumb, cne was dorsum of the index finger, o...

  17. Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats

    OpenAIRE

    Lang, Charles H; Korzick, Donna H.

    2013-01-01

    The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- v...

  18. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats

    OpenAIRE

    Wang, Kuo-Ching; Fan, Lir-Wan; Kaizaki, Asuka; Pang, Yi; Cai, Zhengwei; Tien, Lu-Tai

    2013-01-01

    Infection during early neonatal period has been shown to cause lasting neurological disabilities and is associated with the subsequent impairment in development of learning and memory ability and anxiety-related behavior in adults. We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in cognitive deficits in juvenile rats (P21); thus, the goal of the present study was to determine whether neonatal LPS exposure has long-lasting effects in adult rats. After an LP...

  19. Exposure to repeated maternal aggression induces depressive-like behavior and increases startle in adult female rats

    OpenAIRE

    Bourke, Chase H.; Neigh, Gretchen N

    2011-01-01

    The stress response is a multifaceted physiological reaction that engages a wide range of systems. Animal studies examining stress and the stress response employ diverse methods as stressors. While many of these stressors are capable of inducing a stress response in animals, a need exists for an ethologically relevant stressor for female rats. The purpose of the current study was to use an ethologically relevant social stressor to induce behavioral alterations in adult female rats. Adult (pos...

  20. Lactogenic and Cytogenetic Effects of Ochratoxin A in Adult Male Rats and Pups

    Directory of Open Access Journals (Sweden)

    Duraid A. Abbas

    2013-06-01

    Full Text Available Lactogenic and cytogenic effects were studied for Ochratoxin (OTA dosed daily orally throughout lactation period to four groups each consist of newly parturated female rats at doses (0, 60, 120, 180 µg/Kg. BW representing control, T1, T2, T3 group. Micronucleus test results indicated significant increase in number of fragmented and budding nuclei of T1, T2, T3 adult rat bone marrow in dose dependent manner in comparison with control group. The lactating results show no significant change in weekly pup group’s weight gain or length throughout lactating period. Alough there were no changes recorded in viability index of all pups groups, lactating index recorded considerable decline in T1, T2, T3 pups groups according with their adult OTA doses with maximum pups death at the third lactating week. Different histopathological lesions observed in pups liver, kidney and spleen that increase in severity proportionally with their OTA mother doses.

  1. Reduced body mass, food intake, and testis size in response to short photoperiod in adult F344 rats

    Directory of Open Access Journals (Sweden)

    Heideman Paul D

    2002-07-01

    Full Text Available Abstract Background Although laboratory rats are often considered classic nonseasonal breeders, peripubertal rats of two inbred strains, F344 and BN, have both reproductive and nonreproductive responses to short photoperiods. Unmanipulated adult rats have not been reported to have robust responses to short photoperiod alone, although several treatments can induce photoperiodic responses in adults. In this study, we tested the hypotheses that unmanipulated F344 rats retain responses to short photoperiod as adults and that they have the necessary elements for an endogenous circannual rhythm of sensitivity to short photoperiod. Results Relative to rats kept in long photoperiods (L16:D8, adult F344 rats transferred at 4.5 months of age to short photoperiods (L8:D16 had significantly lower testis size, food intake, and body weight. In a second experiment, newly weaned F344 rats underwent an initial period of inhibition of reproductive maturation, lower food intake, and lower body weight in short photoperiod or intermediate photoperiod (L12:D12 relative to rats in long photoperiod. By 18 weeks of treatment, rats in the two inhibitory photoperiods no longer differed from long photoperiod controls. In short photoperiod, rats underwent a second period of slight reproductive inhibition between weeks 35 and 48, but there was an effect on body weight and slight inhibition of food intake only in an intermediate photoperiod. Conclusion Male F344 rats retain photoresponsiveness as adults, with less reproductive inhibition but equivalent nonreproductive responses. There was only weak evidence for an endogenous timer controlling a circannual cycle of sensitivity to short photoperiod.

  2. Chronic Effects of Di (2-ethylhexyl phthalate on Stereological Parameters of Testis in Adult Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mehran Dorostghoal

    2010-09-01

    Full Text Available Objective(sIn recent years concerns have been raised regarding the incidence of male reproductive disorders from exposure to endocrine disruptors. So, chronic effects of di(2-ethylhexylphthalate were studied on histological and stereological structure of testis in adult Wistar rats. Materials and MethodsThirty two adult Wistar rats were randomly divided in four equal experiment groups; oil vehicle group and three treated groups which received 10, 100 and 500 mg/kg/day di(2-ethylhexylphthalate by gavage for 90 days, respectively. At the end of exposure period the volume of testes was measured by Cavellieri method, testes weight was recorded and then fixed in Bouin’s solution. Following tissue processing, 5 µm sections were stained with haematoxylin-eosin and evaluated with quantitative techniques. Seminiferous tubule diameter, germinal epithelium height, relative and total volumes of seminiferous tubules, tubular lumen and interstitial tissue were estimated.ResultsThe results showed that mean weight and volume of testis were decreased significantly (35.2% and 23.9% respectively in rats treated with 500 mg/kg/day DEHP for 90 days. Seminiferous tubules diameter reduced, 4.4% and 13.4% in 100 and 500 mg/kg/day DEHP-treated groups, respectively. Relative volumes of tubular lumen and interstitial tissue were increased significantly in 100 (P< 0.05 and 500 (P< 0.01 mg/kg/day doses groups. Also, testosterone serum levels were significantly higher (P< 0.05 in rats exposed to 500 mg/kg/day DEHP. ConclusionPresent study indicated dose-dependent reductions of testicular parameters in adult male rats chronically exposed to di(2-ethylhexylphthalate.

  3. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  4. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes

    OpenAIRE

    Shenouda, Sylvia K.; Varner, Kurt J.; Carvalho, Felix; Lucchesi, Pamela A.

    2009-01-01

    Repeated administration of MDMA (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown; oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included: al...

  5. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats

    OpenAIRE

    KONG, Lingfa; WEI, Quanwei; FEDAIL, Jaafar Sulieman; Shi, Fangxiong; NAGAOKA, Kentaro; WATANABE, Gen

    2015-01-01

    Thyroid hormones and oxidative stress play significant roles in the normal functioning of the female reproductive system. Nitric oxide (NO), a free radical synthesized by nitric oxide synthases (NOS), participates in the regulation of thyroid function and is also a good biomarker for assessment of the oxidative stress status. Therefore, the purpose of this study was to investigate effects of thyroid hormones on uterine antioxidative status in young adult rats. Thirty immature female Sprague-D...

  6. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo.

    OpenAIRE

    T. Hagg; Varon, S

    1993-01-01

    We have investigated the neuroprotective effects of recombinant human ciliary neurotrophic factor (CNTF) for injured dopaminergic neurons of the adult rat substantia nigra compacta. Fourteen days after a unilateral transection of the nigrostriatal pathway two-thirds of the neurons (identified by retrograde labeling) had degenerated. In sharp contrast, 73% (a few cases, > 90%) of this cell loss was prevented by continuous infusion of CNTF close to the injured neurons. However, CNTF did not pre...

  7. Isolation of Enteric Ganglia from the Myenteric Plexus of Adult Rats

    OpenAIRE

    Jaeger, Christine B.

    1994-01-01

    Enteric neurons and glia cells were isolated from adult Sprague Dawley rats. A procedure is described using a combination of microdissection and mechanical dissociation after enzyme treatment which yields large numbers of cell clusters suitable for tissue culture and grafting into the injured spinal cord. Differentiated enteric ganglia remained viable for at least 5 days in vitro Cultured neurons expressed histochemical reactivity for acetylcholinesterase and nicotinamide adenine dinucleotide...

  8. The intraglandular submandibular ganglion of postnatal and adult rats. I. A light and electron microscope study.

    OpenAIRE

    Ng, Y. K.; Wong, W C; Ling, E A

    1992-01-01

    The structure of the intraglandular submandibular ganglion is described in both postnatal and adult rats. The ganglion is localised mainly at the hilum where the majority of the cell bodies are observed. Ganglia are also present in the intralobular septa of both the submandibular and the sublingual glands. Often they are found along the main salivary ducts with the larger ganglia being encapsulated by connective tissue. On electron microscopy, the submandibular ganglion cells show the usual f...

  9. Alteration of Forebrain Neurogenesis after Cervical Spinal Cord Injury in the Adult Rat

    OpenAIRE

    ValeryAMatarazzo; PatrickGauthier

    2012-01-01

    Spinal cord injury (SCI) triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e. brain), remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neuron...

  10. Protective Effect of Rosemary (Rosmarinus Officinalis) Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    OpenAIRE

    Neveen M. El-Sherif; Noha Mohy Issa

    2015-01-01

    Background: Naphthalene (NA) is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis) is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group), G...

  11. Investigation of curcumin effects on liver tissue in adult male rats treated with cyclophosphamide

    OpenAIRE

    Zahra khodaparast; ali reza yousofi; ameneh khoshvagti

    2014-01-01

     Background & Objective: Cyclophosphamide is an antineoplastic drug that has many clinical uses in cancer treatment, but it has toxic effects due to creation of free radicals. In this study, the effects of curcumin" as an antioxidant drug” on liver tissue was investigated. Materials & methods: 50 wistar adult male rats were selected randomly and were divided in to five groups including control, sham (receiving normal saline and olive oil), cyclophosp...

  12. Memory and Motor Coordination Improvement by Folic Acid Supplementation in Healthy Adult Male Rats

    OpenAIRE

    Shooshtari, Maryam Khombi; Moazedi, Ahmad Ali; Parham, Gholam Ali

    2012-01-01

    Objective(s) Previous studies have shown that vitamin B as well as folate supplementation has been implicated in cognitive and neurodegenerative disorders including Alzheimer’s and Parkinson's diseases. The aim of present study was to evaluate the effects of folic acid on passive avoidance task and motor coordination in healthy adult male rats. Materials and Methods Animals were randomly divided into five groups with 10 in each. 1) Sham treated (Veh); received same volume of normal saline as ...

  13. Effects of Neonatal Antiepileptic Drug Exposure on Cognitive, Emotional, and Motor Function in Adult Rats

    OpenAIRE

    Patrick A Forcelli; Kozlowski, Ryan; Snyder, Charles; Kondratyev, Alexei; Gale, Karen

    2012-01-01

    Despite the potent proapoptotic effect of several antiepileptic drugs (AEDs) in developmental rodent models, little is known about the long-term impact of exposure during brain development. Clinically, this is of growing concern. To determine the behavioral consequences of such exposure, we examined phenobarbital, phenytoin, and lamotrigine for their effects on adult behaviors after administration to neonatal rats throughout the second postnatal week. AED treatment from postnatal days 7 to 13...

  14. Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhiyan Lu; Jinwei Wu; Guangyuan Cheng; Jianying Tian; Zeqing Lu; Yongyi Bi

    2014-01-01

    Previous studies have found that methylmercury can damage hippocampal neurons and accord-ingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmer-cury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride.

  15. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    International Nuclear Information System (INIS)

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: ► Boron distribution in male and female rats' normal brain was studied in this research. ► Coronal sections of animal tissue samples were irradiated with thermal neutrons. ► Alpha and Lithium tracks were counted using alpha autoradiography. ► Different boron concentration was seen in brain sections of male and female rats. ► The highest boron concentration was seen in 4 h after boron compound injection.

  16. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  17. Methods to evaluate functional nerve recovery in adult rats : walking track analysis, video analysis and the withdrawal reflex

    NARCIS (Netherlands)

    Dijkstra, [No Value; Meek, MF; Robinson, PH; Gramsbergen, A

    2000-01-01

    The aim of this study was to compare different methods for the evaluation of functional nerve recovery. Three groups of adult male Wistar rats were studied. In group A, a 12-mm gap between nerve ends was bridged by an autologous nerve graft; in rats of group B we performed a crush lesion of the scia

  18. Effects of 4-Vinylcyclohexene Diepoxide on Peripubertal and Adult Sprague–Dawley Rats: Ovarian, Clinical, and Pathologic Outcomes

    OpenAIRE

    Muhammad, F Salih; Goode, Amanda K; Kock, Nancy D.; Arifin, Esther A; Cline, J. Mark; Adams, Michael R.; Hoyer, Patricia B.; Christian, Patricia J.; Isom, Scott; Kaplan, Jay R.; Appt, Susan E.

    2009-01-01

    Young rats treated daily with intraperitoneal 4-vinylcyclohexene diepoxide (VCD) undergo selective destruction of primordial follicles, resulting in gradual ovarian failure resembling the menopausal transition in women. To determine whether VCD has similar effects on ovaries of older rats, adult and peripubertal Sprague–Dawley rats were injected intraperitoneally daily for 30 d with vehicle or VCD at 40 or 80 mg/kg. Body weight, food intake, complete blood counts, and markers of liver injury ...

  19. Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP.

    Science.gov (United States)

    Croom, J E; Foreman, R D; Chandler, M J; Barron, K W

    1997-02-01

    Dorsal column stimulation (DCS) is used clinically to provide pain relief from peripheral vascular disease and has the benefit of increasing cutaneous blood flow to the affected lower extremities. The purpose of this study was to examine the role of dorsal roots, calcitonin gene-related peptide (CGRP), and substance P in the cutaneous vasodilation induced by DCS. Male rats were anesthetized with pentobarbital sodium (60 mg/kg ip). A unipolar ball electrode was placed unilaterally on the spinal cord at the L1-L2 spinal segment. Blood flow was recorded in each hindpaw foot pad with laser Doppler flowmeters. Blood flow responses were assessed during 1 min of DCS (either 0.2 mA subdural or 0.6 mA epidural at 50 Hz, 0.2-ms pulse duration). Dorsal rhizotomy of L3-L5 (n = 5) abolished the cutaneous vasodilation to subdural DCS, whereas removal of T10-T12 (n = 5) and T13-L2 dorsal roots (n = 5) did not attenuate the DCS-induced vasodilation. The CGRP antagonist, CGRP-(8-37) (2.6 mg/kg iv, n = 7), eliminated the epidural DCS-induced vasodilation, whereas the substance P receptor antagonist, CP-96345 (1 mg/kg iv, n = 6), had no effect. In summary, L3-L5 dorsal roots and CGRP are essential for the DCS-induced vasodilation. We propose that DCS antidromically activates afferent fibers in the dorsal roots, thus causing peripheral release of CGRP, which produces cutaneous vasodilation. PMID:9124459

  20. Ketamine inhibits the excitability induced by formalin in spinal dorsal horn neurons of rats%氯胺酮对甲醛致痛诱导大鼠脊髓背角神经元兴奋性的抑制

    Institute of Scientific and Technical Information of China (English)

    颜明; 曾因明; 张励才; 戴体俊; 段世明

    2006-01-01

    performance of the rats in each group. ② Spinal sections were chosen, and stained with c-fos genetic immunohistochemical and NADPH-d histochemical methods. The changes of the number of Fos-like immuno-positive neurons (FLI) and FLI/nitric oxide synthase (NOS) double-labeled neurons in the 4-layer sections (layer Ⅰ -Ⅱ ,layer Ⅲ-Ⅳ ,layerⅤ-Ⅵ ,layer Ⅶ-X )of spinal dorsal horn of the rats were observed.RESULTS: All the thirty rats entered the stage of result analysis. ① Behavioral changes: The rats of formalin group and formalin+ normal salinegroup had apparent pain response; Several minutes after injection with ketamine, righting reflex disappeared and did not recover at perfusion period.Prolonged sleep was found without obvious pain response performance. ② FLI neuron expression: A lot of FLI positive neurons were found in the spinal dorsal horn of injec tion side of the rats in the formalin group and formalin+ normal saline group, and they distributed principally in the layer Ⅰ - Ⅱ of spinal dorsal horn.The distribution in the ketamine + formalin group and formalin + ketamine group was basically similar to that in the formalin group and formalin + normal saline group, but positive neuron counts were significantly reduced (P < 0.01). ③ The expression of FLI/NOS double-labeled neurons: The number of double-labeled neurons in the spinal dorsal horn layer Ⅰ - Ⅱ of the rats in the ketamine+ formalin group and formalin+ ketamine group were significantly less than that in the formalin group and formalin+normal saline group [(1±1), (1±1), (7±3), (8±3),P < 0.01].CONCLUSION: Some neurons of ipsilateral corresponding spinal segments participate in the transmission and mediation of pain signal. Ketamine can suppress the activities of these neurons and exert antinociceptive effect. The antinococeptive function of ketamine may be caused by the activity depression of the NOS-positive neurons in spinal cord.%背景:氯胺酮是否可通过影响脊髓水平

  1. Histological effects of oral administration of nutmeg on the kidneys of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-04-01

    Full Text Available Aims: The effects of oral administration of nutmeg commonly used as spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the kidneys of adult Wistar rats were carefully studied. Material and Methods: Rats of both sexes (n = 24, with average weight of 220g were randomly assigned into two treatments (A & B of (n=16 and Control (c (n=8 groups. The rats in the treatment groups (A & B received 0.1g (500mg/kg body weight and 0.2g (1000mg/kg body weight of nutmeg thoroughly mixed with the feeds respectively on a daily basis for forty-two days. The control group (c received equal amount of feeds daily without nutmeg added for forty-two days. The growers’ mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and the rats were given water liberally. The rats were sacrificed by cervical dislocation on the forty-third day of the experiment. The kidneys were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological study after hematoxylin and eosin method. Result: The histological findings in the treated sections of the kidneys showed distortion of the renal cortical structures, vacuolations appearing in the stroma and some degree of cellular necrosis, with degenerative and atrophic changes when compared to the control group. Conclusion: These findings indicate that oral administration of nutmeg may have some deleterious effects on the kidneys of adult Wistar rats at higher doses and by extension may affect its excretory and other metabolic functions. It is recommended that caution should therefore be advocated in the intake of this product and further studies be carried out to examine these findings.

  2. 6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats.

    Science.gov (United States)

    Hegazy, Ahmed M S; Mosaed, Mohammed M; Elshafey, Saad H; Bayomy, Naglaa A

    2016-06-01

    Ginger or Zingiber officinale which is used in traditional medicine has been found to possess antioxidant effect that can control the generation of free radicals. Free radicals are the causes of renal cell degeneration that leads to renal failure in case of gentamicin induced toxicity. This study was done to evaluate the possible protective effects of 6-gingerol as natural antioxidant on gentamicin-induced renal cortical oxidative stress and apoptosis in adult male albino rats. Forty adult male albino rats were used in this study and were randomly divided into four groups, control group; 6-gingerol treated group; gentamicin treated group and protected group (given simultaneous 6-gingerol and gentamicin). At the end of the study, blood samples were drawn for biochemical study. Kidney sections were processed for histological, and immunohistochemical examination for caspase-3 to detect apoptosis and anti heat shock protein 47 (HSP47) to detect oxidative damage. Gentamicin treated rats revealed a highly significant increase in renal function tests, tubular dilatation with marked vacuolar degeneration and desquamation of cells, interstitial hemorrhage and cellular infiltration. Immunohistochemically, gentamicin treated rats showed a strong positive immunoreaction for caspase-3 and anti heat shock protein 47 (HSP47). Protected rats showed more or less normal biochemical, histological, and immunohistochemical pictures. In conclusion, co-administration of 6-gingerol during gentamicin 'therapy' has a significant reno-protective effect in a rat model of gentamicin-induced renal damage. It is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections. PMID:27036327

  3. Effect of medroxyprogesterone acetate on thyrotropin secretion in adult and old female rats

    Directory of Open Access Journals (Sweden)

    Moreira R.M.

    2000-01-01

    Full Text Available Steroid hormones have been implicated in the modulation of TSH secretion; however, there are few and controversial data regarding the effect of progesterone (Pg on TSH secretion. Medroxyprogesterone acetate (MPA is a synthetic alpha-hydroxyprogesterone analog that has been extensively employed in therapeutics for its Pg-like actions, but that also has some glucocorticoid and androgen activity. Both hormones have been shown to interfere with TSH secretion. The objective of the present study was to investigate the effects of MPA or Pg administration to ovariectomized (OVX rats on in vivo and in vitro TSH release and pituitary TSH content. The treatment of adult OVX rats with MPA (0.25 mg/100 g body weight, sc, daily for 9 days induced a significant (P<0.05 increase in the pituitary TSH content, which was not observed when the same treatment was used with a 10 times higher MPA dose or with Pg doses similar to those of MPA. Serum TSH was similar for all groups. MPA administered to OVX rats at the lower dose also had a stimulatory effect on the in vitro basal and TRH-induced TSH release. The in vitro basal and TRH-stimulated TSH release was not significantly affected by Pg treatment. Conversely, MPA had no effect on old OVX rats. However, in these old rats, ovariectomy alone significantly reduced (P<0.05 basal and TRH-stimulated TSH release in vitro, as well as pituitary TSH content. The results suggest that in adult, but not in old OVX rats, MPA but not Pg has a stimulatory effect on TSH stores and on the response to TRH in vitro.

  4. Percutaneous absorption of triadimefon in the adult and young male and female rat

    International Nuclear Information System (INIS)

    The percutaneous absorption of 14C-phenoxy ring labeled triadimefon was studied in adult and young male and female Sprague-Dawley rats. Triadimefon was applied (41.1 to 46.4 micrograms/cm2) in 0.2 ml of acetone to areas comprising 3% of the body surface (7.0 to 14.5 cm2). Thirty-six animals were treated at the initiation of each study. Groups of three animals were subsequently killed at 1, 4, 8, 12, 24, 48, 72, 96, 120, 144, 168, and 192 hr after treatment. Skin from the treated area as well as blood, heart, liver, kidneys, remaining carcass, urine, and feces were analyzed for 14C by scintillation counting techniques. Based on 14C counts, triadimefon was lost more rapidly from the skin of young animals (t 1/2, 20 to 25 hr) than from the skin of adult animals (t 1/2, 29 to 53 hr). Recovery studies indicated that adult males, adult females, young males, and young females, respectively, absorbed 53, 82, 57, and 52% of the dose. The rest of the dose based on material balance was presumably lost by evaporation. Approximately 2.5 to 3.9% of the dose penetrated the skin in one hour and was available for absorption. The rate of entry triadimefon into blood was 2 to 2.5 times faster for young than that observed in adult animals. Elimination of it from blood was faster in the case of the young animals. Triadimefon was absorbed through the skins of the adult male, adult female, young male, and young female rats, respectively, at rates of 0.20, 0.50, 0.58, and 0.48 micrograms/hr/cm2 of skin

  5. Agenesis of the dorsal pancreas

    Institute of Scientific and Technical Information of China (English)

    Lale Pasaoglu; Murat Vural; Hatice Gul Hatipoglu; Gokce Tereklioglu; Suha Koparal

    2008-01-01

    Developmental anomalies of the pancreas have been reported but dorsal pancreatic agenesis is an extremely rare entity. We report an asymptomatic 62-year-old woman with complete agenesis of the dorsal pancreas.Abdominal computed tomography (CT) revealed a normal pancreatic head, but pancreatic body and tail were not visualized. Magnetic resonance imaging (MRI)findings were similar to CT. At magnetic resonance cholangiopancreatography (MRCP), the major pancreatic duct was short and the dorsal pancreatic duct was not visualized. The final diagnosis was dorsal pancreatic agenesis.

  6. GABA(A) receptor density is altered by cannabinoid treatment in the hippocampus of adult but not adolescent rats.

    Science.gov (United States)

    Verdurand, Mathieu; Dalton, Victoria Stephanie; Zavitsanou, Katerina

    2010-09-10

    Cannabinoids are known to induce transient psychotic symptoms and cognitive dysfunction in healthy individuals and contribute to trigger schizophrenia in vulnerable individuals, particularly during adolescence. Converging preclinical evidence suggests important interactions between cannabinoid and GABAergic systems. In the present study, we compared the effects of cannabinoid treatment on GABA(A) receptor binding in the brain of adolescent and adult rats. Adolescent (5 weeks old) and adult (10 weeks old) rats were treated with the synthetic cannabinoid HU210 (25, 50 or 100 microg/kg/day) or vehicle for 1, 4 or 14 days. Rats were sacrificed 24 h after the last injection and GABA(A) receptor density was measured in several brain regions using [(35)S]TBPS and in vitro autoradiography. Adolescent rats had higher numbers of GABA(A) receptors compared to adults. A 24% increase of binding in adult rats treated with 100 microg/kg HU210 for 14 days compared to controls was observed in the CA1 region of the hippocampus (16.1 versus 12.9 fmol/mg tissue equivalent, t=2.720, pHU210 did not affect GABA(A) receptors in adolescent rats in any treatment regimen and in adult rats treated with HU210 for 1 or 4 days. These data suggest that long-term, high-dose treatment with HU210 increases GABA(A) receptors in the hippocampus of adult rats, changes that may interfere with associated hippocampal cognitive functions such as learning and memory. In addition, our results suggest that the adolescent brain does not display the same compensatory mechanisms that are activated in the adult brain following cannabinoid treatment. PMID:20599838

  7. Differential expression of TRPM7 in rat hepatoma and embryonic and adult hepatocytes.

    Science.gov (United States)

    Lam, D Hung; Grant, Caroline E; Hill, Ceredwyn E

    2012-04-01

    TRPM7 channels are implicated in cellular survival, proliferation, and differentiation. However, a profile of TRPM7 activity in a specific cell type has not been determined from embryonic to terminally differentiated state. Here, we characterized TRPM7 expression in a spectrum of rat liver cells at different developmental stages. Using the whole-cell patch clamp technique, TRPM7-like Na(+) currents were identified in RLC-18 cells, a differentiated, proliferating hepatocellular line derived from day 17 embryonic rat liver. Currents were outwardly rectifying, enhanced in divalent-free solutions, and inhibited by intracellular Mg(2+). Reverse transcription - polymerase chain reaction (RT-PCR) revealed that RLC-18 cells express both TRPM6 and TRPM7. However, mean currents were reduced almost 80% by 1 mmol/L 2-aminoethoxyphenylborate (2-APB) and were abolished in RLC-18 cells heterologously expressing a dominant negative TRPM7 construct, suggesting that TRPM7 is the major current carrier in these cells. Functional comparison showed that relative to terminally differentiated adult rat hepatocytes, currents were 1.8 and 3.9 times higher in, respectively, RLC-18 and WIF-B cells, a rat hepatoma - human fibroblast cross. Our results demonstrate that plasma membrane TRPM7 channels are more highly expressed in proliferating cells as compared with terminally differentiated and nondividing rat hepatocytes and suggest that downregulation of this channel is associated with hepatocellular differentiation. PMID:22429021

  8. A SELF-PRIMING EFFECT OF LHRH ON LH SECRETION IN DISPERSED ANTERIOR PITUITARY CELLS OF ADULT MALE RAT

    Institute of Scientific and Technical Information of China (English)

    QUZhi-Chao; GUOJing; GUOJian

    1989-01-01

    LHRH self-priming effect is simply defmed as an enhancement of LH response to LHRH, i. e., a second challenge with LHRH elicits more LH secretion as compared to the first challenge. The present study is to observe whether this phenomenon exists in perfused anterior pituitary (AP) cells of adult male rat. Dispersed AP cells of adult SD

  9. Effects of Infantile Repeated Hyperglycemia on Behavioral Alterations in Adult Rats

    Directory of Open Access Journals (Sweden)

    Malihe Moghadami

    2012-09-01

    Full Text Available Anxiety symptoms have been reported to be present in many patients with diabetes mellitus. However, little is known about the effects of hyperglycemia in critical periods of the central nervous system development. We assessed locomotive, exploratory, and anxiety behaviors in adult rats that remained from infantile repeated hyperglycemia by the open field and elevated plus maze tests. Our findings showed significant hypo activity, reduced locomotive/exploratory activities, increased fear related behaviors, and anxiety state between hyperglycemic and control adult males and the same differences were observed among females. In addition, no significant behavioral alterations between male and female animals were observed. This study determined that repeated increments in daily blood sugar levels in newborns may affect neuronal functions and provide behavioral abnormalities in adults.

  10. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    Science.gov (United States)

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (pinfrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons. PMID:21946944

  11. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Chuang-Hsin Chiu

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA, also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI. Rats were injected subcutaneously six times with MDMA (5 mg/kg or saline once daily. Eight days after the last injection, manganese ions (Mn2+ were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB, and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.

  12. Influence of cryopreserved olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 殷德振; 唐勇; 吴燕峰; 程志安; 杨睿; 黄霖

    2004-01-01

    Objective: To observe the effects of cryopreserved olfactory ensheathing cells (OECs) transplantation on axonal regeneration and functional recovery following spinal cord injury in adult rats.Methods: Twenty-four rats were divided into experimental and control groups, each group having 12 rats. The spinal cord injury was established by transecting the spinal cord at T10 level with microsurgery scissors.OECs were purified from SD rat olfactory bulb and cultured in DMEM ( Dulbecco's minimum essential medium) and cryopreserved (-120℃) for two weeks.OECs suspension[(1-1.4)×105/ul] was transplanted into transected spinal cord, while the DMEM solution was injected instead in the control group. At 6 and 12 weeks after transplantation, the rats were evaluated with climbing test and MEP ( moter evoked potentials) monitoring. The samples of spinal cord were procured and studied with histological and immunohisto chemical stainings.Results: At 6 weeks after transplantation, all of the rats in both transplanted and control groups were paraplegic, and MEPs could not be recorded. Morphology of transplanted OECs was normal, and OECs were interfused with host well. Axons could regrow into gap tissue between the spinal cords. Both OECs and regrown axons were immunoreactive for MBP. No regrown axons were found in the control group. At 12 weeks after transplantation, 2 rats (2/7) had lower extremities muscle contraction, 2 rats (2/7) had hip and/or knee active movement, and MEP of 5 rats (5/7) could be recorded in the calf in the transplantation group. None of the rats (7/ 7) in the control group had functional improvement, and none had MEPs recorded. In the transplanted group,histological and immunohistochemical methods showed the number of transplanted OECs reduced and some regrown axons had reached the end of transected spinal cord.However, no regrown axons could be seen except scar formation in the control group.Conclusions: Cryopreserved OECs could integrated with the host and

  13. Antioxidant Effect of Carica papaya on Ethanol Induced Gastric Lesion in Adult Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    A.A. Okesina

    2012-06-01

    Full Text Available This study was performed to elucidate the role of some important constituents of antioxidant defence such as Glutathione Peroxidase (GPx, Thiobarbituric Acid Reaction (TBAR, the activity of the enzyme Glucose-6-Phosphate Dehydrogenase (G-6-PDH of Carica papaya on ethanol induced gastric lesion in adult male wistar rats. Twenty-four male adult Wistar rats weighing 180- 220 g were used in this study. Animals were divided into three groups (n = 8 per group. The control group A received phosphate buffered saline orally, with the aid of a cannula. 1 mL of 50% ethanol was administered orally, by a cannula, to produce the gastric lesion in group B (n = 8. And in the group C, 500 mg/kg body weight of paw paw leaf extract was administered orally, with a cannula, twelve hours after ethanol administration to the rats. This experiment lasted for twenty one consecutive days. The result showed that TBARS in gastric mucosa as an index for oxidative stress level was significantly increased after ethanol administration. CPL did not reduce significantly the levels of TBARS in the gastric mucosa. G-6-PDH activity was significantly increased in gastric mucosa after ethanol administration, but in rats treated with CPL, a reverse of G-6-PDH activity was observed. Ethanol induced a remarkable and significant decrease of GPx activity in gastric mucosa, whereas CPL induced a significant reversion of ethanol’s effect on the enzyme. The results therefore demonstrate that CPL treatment exerts antioxidant effects on ethanol-induced gastric lesions in wistar rats.

  14. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    Directory of Open Access Journals (Sweden)

    Bert J. M. van de Heijning

    2015-07-01

    Full Text Available Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control. A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  15. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  16. Application of Luxol Fast Blue staining in locating the corticospinal tract in adult rats

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Guangming Lü; Xiaosong Gu

    2006-01-01

    BACKGROUND: There are many methods for myelin staining,mordant,or the special reaction of osmic acid with lipoid is used according to different principles.The commonly used methods are classic Well staining ,classic lithium carbonate-haematine staining,fast green staining,silver staining ,etc.Luxol Fast Blue can brightly stain myelin sheath,and has certain specificity .The background can be very clean if there is proper differentiation,whereas Luxol Fast Blue is cheap and convenient to operate,thus it is an ideal staining reagent for routine myelin sheath.OBJECTIVE: To show the coricospinal tract of normal adult rats with Luxol Fast Blue shaining method.DESIGN:A repetitive measurement design.SETTINGS: Institute of Nuerobiology,Nantong University;Department of Rehabilitation Medicine,Affiliated Hospital of Nantong University.MATERIALS: Six healthy adult male SD rats of clean dergree,weighing averagely 300 g.were provided by the experimental animal center of Nantong University.1 g/L Luxol Fast Blue solution was provided by Sigma Company;Leica CM1900 cryostat microtome by Leica Company;Leica DMR microscope by Leica Company.METHODS:The experiment was carried out in the Staff Room of Human Anatomy,Nantong University in May 2005.The rats were given intraperitoneal injection of combined anesthetic(2 mL/kg),then the chest was open for perfusing saline and phosphate buffer containing formamint via heart. Brain and spinal cord were removed after 1 hour then fixed,then changed to phosphate buffer(pH 7.4)containing 300 g/L saccharu at 4 ℃.and stayed overnight,tissue blocks at pyramid,decussation of pyramid and cervical,thoracic,lumbar and sacral segments of spinal cord were removed to prepare continuous horizontal frozen sections(30 μm) after sedimentation,the sections were dried at room temperature.The corticospinal tract of normal adult rats were shown with Luxol Fast Blue staining method,and observed under Leica DMR microscope.MAIN OUTCOME MEASURES:Positive fibers in

  17. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  18. Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition.

    Science.gov (United States)

    Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J; Ren, Xuefang; Hu, Heng; Nurkiewicz, Timothy R; McBride, Carroll R; Yi, Jinghai; Engels, Kevin; Simpkins, James W

    2016-01-01

    It is generally accepted that gestational xenobiotic exposures result in systemic consequences in the adult F1 generation. However, data on detailed behavioral and cognitive consequences remain limited. Using our whole-body nanoparticle inhalation facility, pregnant Sprague-Dawley rats (gestational day [GD] 7) were exposed 4 d/wk to either filtered air (control) or nano-titanium dioxide aerosols (nano-TiO2; count median aerodynamic diameter of 170.9 ± 6.4 nm, 10.4 ± 0.4 mg/m(3), 5 h/d) for 7.8 ± 0.5 d of the remaining gestational period. All rats received their final exposure on GD 20 prior to delivery. The calculated daily maternal deposition was 13.9 ± 0.5 µg. Subsequently, at 5 mo of age, behavior and cognitive functions of these pups were evaluated employing a standard battery of locomotion, learning, and anxiety tests. These assessments revealed significant working impairments, especially under maximal mnemonic challenge, and possible deficits in initial motivation in male F1 adults. Evidence indicates that maternal engineered nanomaterial exposure during gestation produces psychological deficits that persist into adulthood in male rats. PMID:27092594

  19. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms.

    Science.gov (United States)

    Qiu, Fang; Li, Yang; Fu, Qiang; Fan, Yong-Yan; Zhu, Chao; Liu, Yan-Hong; Mi, Wei-Dong

    2016-07-01

    Stromal cell-derived factor 1 (SDF-1)/chemokine CXC motif ligand 12 (CXCL12), a chemokine that is upregulated in dorsal root ganglion (DRG) during chronic pain models, has recently been found to play a central role in pain hypersensitivity. The purpose of present study is to investigate the functional impact of SDF-1 and its receptor, chemokine CXC motif receptor 4 (CXCR4), on two TTXR sodium channels in rat DRG using electrophysiological techniques. Preincubation with SDF-1 caused a concentration-dependent increase of Nav1.8 and Nav1.9 currents amplitudes in acutely isolated small diameter DRG neurons in short-term culture. As to Nav1.9, changes in current density and kinetic properties of Nav1.9 current evoked by SDF-1(50 ng/ml) was eliminated by CXCR4 antagonist AMD3100 and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The increase in Nav1.9 current was also blocked by pertussis toxin (PTX) but not cholera toxin (CTX), showing involvement of Gi/o but not Gs subunits. As to Nav1.8, inhibitors (AMD3100, PTX, CTX, LY294002) used in present study didn't inhibit the increased amplitude of Nav1.8 current and shifted activation curve of Nav1.8 in a hyperpolarizing direction in the presence of SDF-1 (50 ng/ml). In conclusion, our data demonstrated that SDF-1 may excite primary nociceptive sensory neurons by acting on the biophysical properties of Nav1.8 and Nav1.9 currents but via different mechanisms. PMID:27038931

  20. Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights.

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    Full Text Available BACKGROUND: Exposure to early postnatal stress is known to hasten the progression of kindling epileptogenesis in adult rats. Despite the significance of this for understanding mesial temporal lobe epilepsy (MTLE and its associated psychopathology, research findings regarding underlying mechanisms are sparse. Of several possibilities, one important candidate mechanism is early life 'programming' of the hypothalamic-pituitary-adrenal (HPA axis by postnatal stress. Elevated corticosterone (CORT in turn has consequences for neurogenesis and cell death relevant to epileptogenesis. Here we tested the hypotheses that MS would augment seizure-related corticosterone (CORT release and enhance neuroplastic changes in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week old Wistar rats, previously exposed on postnatal days 2-14 to either maternal separation stress (MS or control brief early handling (EH, underwent rapid amygdala kindling. We measured seizure-induced serum CORT levels and post-kindling neurogenesis (using BrdU. Three weeks post-kindling, rats were euthanized for histology of the hippocampal CA3c region (pyramidal cell counts and dentate gyrus (DG (to count BrdU-labelled cells and measure mossy fibre sprouting. As in our previous studies, rats exposed to MS had accelerated kindling rates in adulthood. Female MS rats had heightened CORT responses during and after kindling (p<0.05, with a similar trend in males. In both sexes total CA3c pyramidal cell numbers were reduced in MS vs. EH rats post-kindling (p = 0.002. Dentate granule cell neurogenesis in female rats was significantly increased post-kindling in MS vs. EH rats. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that early life stress results in enduring enhancement of HPA axis responses to limbic seizures, with increased hippocampal CA3c cell loss and augmented neurogenesis, in a sex-dependent pattern. This implicates important candidate mechanisms through which early life

  1. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    Science.gov (United States)

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. PMID:25216800

  2. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats.

    Science.gov (United States)

    Beuk, Jonathan; Beninger, Richard J; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  3. Sodium metabisulfite-induced changes on testes, spermatogenesis and epididymal morphometric values in adult rats

    Directory of Open Access Journals (Sweden)

    Shahnaz Shekarforoush

    2015-12-01

    Full Text Available Background: Sulphites are widely used as a preservative and antioxidant additives in the food and pharmaceutical industries. Many types of biological and toxicological effects of sulphites in multiple organs of mammals have been shown in previous studies. Objective: The aim of this study was to investigate the effects of sodium metabisulfite (SMB on testicular function and morphometric values of epididymis in adult male Wistar rats. Materials and Methods: A total of 32 rats were randomly divided into four groups. The experimental groups received SMB at doses of 10 mg/kg (S10, 100mg/kg (S100, and 260 mg/kg (S260 while an equal volume of normal saline was administered to the control group via gavage. The rats were anaesthetized after 28 days and the left testis with the head of epididimis was excised following abdominal incision for histological observation using hematoxylin and eosin staining. Serum samples were collected for assay of testosterone level. The initial epididymis was analyzed for motility, morphology, and the number of sperms. Result: The results of this study showed that normal morphology, count, and motility of sperms and testosterone level were decreased in the SMB treated groups. In comparison with the control group, SMB resulted in a lower total number of spermatogonia, primary spermatocyte, spermatids, and Leydig cells. Conclusion: It is suggested that SMB decreases the sperm production and has the potential to affect the fertility adversely in male rats.

  4. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats

    Science.gov (United States)

    Beuk, Jonathan; Beninger, Richard J.; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  5. Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats

    Directory of Open Access Journals (Sweden)

    Dasal Vasantharaja

    2015-01-01

    Full Text Available Objective(s: Titanium dioxide (TiO2 nanoparticles (NPs are widely used in commercial food additives and cosmetics worldwide. Uptake of these nanoparticulate into humans by different routes and may exhibit potential side effects, lags behind the rapid development of nanotechnology. Thus, the present study designed to evaluate the toxic effect of mixed rutile and anatase TiO2 NPs on serum biochemical changes in rats. Materials and Methods: In this study, adult male Wistar rats were randomly allotted into the experimental and control groups (n=6, which were orally administered with 50 and 100 mg/kg body weight of TiO2 NPs. Toxic effects were assessed by the changes of serum biochemical parameters such as glucose, total protein, albumin, globulin, cholesterol, triglyceride, high density lipoprotein, alanine transaminase, aspartate transaminase, alkaline phosphatase, total bilirubin, blood urea nitrogen, uric acid and creatinine. All the serum biochemical markers were experimented in rats, after 14-days of post exposure. Results: Changes of the serum specific parameters indicated that liver and kidney were significantly affected in both experimental groups. The changes between the levels of total protein, glucose, aspartate transaminase, alanine transaminase and alkaline phosphatase indicate that TiO2 NPs induces liver damage. Significant increase in the blood urea nitrogen and uric acid indicates the renal damage in the TiO2 NPs treated rats. Conclusion: The data shows that the oral administration of TiO2 NPs (

  6. Both food restriction and high-fat diet during gestation induce low birth weight and altered physical activity in adult rat offspring: the "Similarities in the Inequalities" model.

    Directory of Open Access Journals (Sweden)

    Fábio da Silva Cunha

    Full Text Available We have previously described a theoretical model in humans, called "Similarities in the Inequalities", in which extremely unequal social backgrounds coexist in a complex scenario promoting similar health outcomes in adulthood. Based on the potential applicability of and to further explore the "similarities in the inequalities" phenomenon, this study used a rat model to investigate the effect of different nutritional backgrounds during gestation on the willingness of offspring to engage in physical activity in adulthood. Sprague-Dawley rats were time mated and randomly allocated to one of three dietary groups: Control (Adlib, receiving standard laboratory chow ad libitum; 50% food restricted (FR, receiving 50% of the ad libitum-fed dam's habitual intake; or high-fat diet (HF, receiving a diet containing 23% fat. The diets were provided from day 10 of pregnancy until weaning. Within 24 hours of birth, pups were cross-fostered to other dams, forming the following groups: Adlib_Adlib, FR_Adlib, and HF_Adlib. Maternal chow consumption and weight gain, and offspring birth weight, growth, physical activity (one week of free exercise in running wheels, abdominal adiposity and biochemical data were evaluated. Western blot was performed to assess D2 receptors in the dorsal striatum. The "similarities in the inequalities" effect was observed on birth weight (both FR and HF groups were smaller than the Adlib group at birth and physical activity (both FR_Adlib and HF_Adlib groups were different from the Adlib_Adlib group, with less active males and more active females. Our findings contribute to the view that health inequalities in fetal life may program the health outcomes manifested in offspring adult life (such as altered physical activity and metabolic parameters, probably through different biological mechanisms.

  7. The Role of Antioxidants in Biochemical Disorders Induced by Arsenic in Adult male Rats

    International Nuclear Information System (INIS)

    The present investigation included biochemical, radiometric, molecular studies and histopathological examination to evaluate the protective role of Antox tablets toward Arsenic toxicity in adult male albino rats (Rattus rattus). Arsenic were given as sodium arsenate to different groups in drinking water at a dose of 100 mg/L, for 3 and 6 weeks led to severe tissue damage as revealed by an elevation of serum total protein and alteration of serum protein fractions. Using radioimmunoassay it was found that serum total testosterone level was significantly decreased. The decreased level of total testosterone paralleled the observed testicular damage. Treatment of male rats with antioxidant (Antox) along with arsenic led to an improvement in both the biochemical and histological alterations induced by arsenic. Thus the protective role of Antox is attributed to its antioxidant and free radicals scavenging properties of its components (selenium, vitamin A acetate, ascorbic acid and vitamin E).

  8. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine.

    Science.gov (United States)

    Célia Moreira Borella, Vládia; Seeman, Mary V; Carneiro Cordeiro, Rafaela; Vieira dos Santos, Júnia; Romário Matos de Souza, Marcos; Nunes de Sousa Fernandes, Ethel; Santos Monte, Aline; Maria Mendes Vasconcelos, Silvânia; Quinn, John P; de Lucena, David F; Carvalho, André F; Macêdo, Danielle

    2016-05-01

    Neonatal N-methyl-D-aspartate (NMDA) receptor blockade in rodents triggers schizophrenia (SCZ)-like alterations during adult life. SCZ is influenced by gender in age of onset, premorbid functioning, and course. Estrogen, the hormone potentially driving the gender differences in SCZ, is known to present neuroprotective effects such as regulate oxidative pathways and the expression of brain-derived neurotrophic factor (BDNF). Thus, the aim of this study was to verify if differences in gender and/or estrous cycle phase during adulthood would influence the development of behavioral and neurochemical alterations in animals neonatally administered ketamine. The results showed that ketamine-treated male (KT-male) and female-in-diestrus (KTF-diestrus, the low estrogen phase) presented significant deficits in prepulse inhibition of the startle reflex and spatial working memory, two behavioral SCZ endophenotypes. On the contrary, female ketamine-treated rats during proestrus (KTF-proestrus, the high estradiol phase) had no behavioral alterations. This correlated with an oxidative imbalance in the hippocampus (HC) of both male and KTF-diestrus female rats, that is, decreased levels of GSH and increased levels of lipid peroxidation and nitrite. Similarly, BDNF was decreased in the KTF-diestrus rats while no alterations were observed in KTF-proestrus and male animals. The changes in the HC were in contrast to those in the prefrontal cortex in which only increased levels of nitrite in all groups studied were observed. Thus, there is a gender difference in the adult rat HC in response to ketamine neonatal administration, which is based on the estrous cycle. This is discussed in relation to neuropsychiatric conditions and in particular SCZ. PMID:26215537

  9. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  10. Histological changes in kidneys of adult rats treated with Monosodium glutamate: A light microscopic study

    Directory of Open Access Journals (Sweden)

    Singh BR, Ujwal Gajbe, Anil Kumar Reddy, Vandana Kumbhare

    2015-01-01

    Full Text Available Introduction: Monosodium Glutamate (MSG, which is chemically known as AJI-NO-MOTO also familiar as MSG in routine life. MSG is always considered to be a controversial food additive used in the world. It is a natural excitatory neurotransmitter, helps in transmitting the fast synaptic signals in one third of CNS. Liver and kidney play a crucial role in metabolism as well as elimination of MSG from the body. Present study is to detect structural changes in adult rat kidney tissue treated with MSG; observations are done with a light microscope. Materials & Methods: The study was conducted in the department of Anatomy, J.N.M.C, Sawangi (M Wardha. Thirty (30 adult Wistar rats (2-3 months old weighing about (200 ± 20g were used in the current study, animals were divided into three groups (Group – A, B, C. Group A: Control, Group B: 3 mg /gm body weight, Group C: 6 mg /gm body weight, MSG were administered orally daily for 45 days along with the regular diet. Observations & Results: The Mean values of animals weight at the end of experiment (46th day respectively were 251.2 ± 13, 244.4 ± 19.9 and 320 ± 31.1. Early degenerative changes like, Glomerular shrinkage (GSr, loss of brush border in proximal convoluted tubules and Cloudy degeneration was observed in sections of kidney treated with 3 mg/gm body weight of MSG. Animals treated with 6 mg/gm body weight of MSG showed rare changes like interstitial chronic inflammatory infiltrate with vacuolation in some of the glomeruli, and much glomerular shrinkage invaginated by fatty lobules. Conclusion: The effects of MSG on kidney tissues of adult rats revealed that the revelatory changes are directly proportional to the doses of MSG.

  11. Neutrophilic dermatosis of dorsal hands

    Directory of Open Access Journals (Sweden)

    S Kaur

    2015-01-01

    Full Text Available Sweet′s syndrome is characterized by erythematous tender nodules and plaques over face and extremities. Fever, leukocytosis with neutrophilia, and a neutrophilic infiltrate in the dermis are characteristic features. Neutrophilic dermatosis of dorsal hands is a rare localized variant of Sweet′s syndrome occurring predominantly over dorsa of hands. Various degrees of vascular damage may be observed on histopathology of these lesions. Both Sweet′s syndrome and its dorsal hand variant have been reported in association with malignancies, inflammatory bowel diseases, and drugs. We report a patient with neutrophilic dermatoses of dorsal hands associated with erythema nodosum. He showed an excellent response to corticosteroids and dapsone.

  12. Combination Therapy for the Cardiovascular Effects of Perinatal Lead Exposure in Young and Adult Rats

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Andréia Fresneda [Departamento de Farmacologia, Instituto de Biociências - Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Faculdade da Alta Paulista (FAP), Tupã, SP (Brazil); Cordellini, Sandra, E-mail: cordelli@ibb.unesp.br [Departamento de Farmacologia, Instituto de Biociências - Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-09-15

    Combination therapy can play a significant role in the amelioration of several toxic effects of lead (Pb) and recovery from associated cardiovascular changes. To investigate the effects of combination therapy on the cardiovascular effects of perinatal lead exposure in young and adult rats Female Wistar rats received drinking water with or without 500 ppm of Pb during pregnancy and lactation. Twenty-two- and 70-day-old rat offspring who were or were not exposed to Pb in the perinatal period received meso-dimercaptosuccinic acid (DMSA), L-arginine, or enalapril and a combination of these compounds for 30 additional days. Noradrenaline response curves were plotted for intact and denuded aortas from 23-, 52-, 70-, and 100-day-old rats stratified by perinatal Pb exposure (exposed/unexposed) and treatment received (treated/untreated). Systolic blood pressure was evaluated and shown to be higher in the 23-, 52-, 70-, and 100-day age groups with Pb exposure than in the corresponding control age groups: 117.8 ± 3.9*, 135.2 ± 1.3*, 139.6 ± 1.6*, and 131.7 ± 2.8*, respectively and 107.1 ± 1.8, 118.8 ± 2.1, 126.1 ± 1.1, and 120.5 ± 2.2, respectively (p < 0.05). Increased reactivity to noradrenaline was observed in intact, but not denuded, aortas from 52-, 70-, and 100-day-old exposed rats, and the maximum responses (g of tension) in the respective Pb-exposed and control age groups were as follows: 3.43 ± 0.16*, 4.32 ± 0.18*, and 4.21 ± 0.23*, respectively and 2.38 ± 0.33, 3.37 ± 0.13, and 3.22 ± 0.21, respectively (p < 0.05). All treatments reversed the changes in vascular reactivity to noradrenaline in rats perinatally exposed to Pb. The combination therapy resulted in an earlier restoration of blood pressure in Pb-exposed rats compared with the monotherapies, except for enalapril therapy in young rats. These findings represent a new approach to the development of therapeutic protocols for the treatment of Pb-induced hypertension.

  13. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... newly formed neurons in the hippocampal subgranular zone. Also estimated were the total number of neurons and the volume of the granule cell layer in adult rats subjected to chronic restraint stress and electroconvulsive stimulation either alone or in combination. We found that chronic restraint stress...... induces depression-like behavior, without significantly changing neurogenesis, the total number of neurons or the volume of the hippocampus. Further, electroconvulsive stimulation prevents stress-induced depression-like behavior and increases neurogenesis. The total number of neurons and the granule cell...

  14. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats.

    Directory of Open Access Journals (Sweden)

    Li-Hong Li

    Full Text Available Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX, a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%-induced nociceptive responses (such as elevating and licking or biting during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact. Using formalin-induced conditioned place avoidance (F-CPA, which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA. In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.

  15. Measurement of Ca channel activity of isolated adult rat heart cells using 54Mn

    International Nuclear Information System (INIS)

    Isolated adult rat heart cells incubated with 5 microM Mn in a medium with 1 mM Ca showed a rapid phase of Mn binding plus a slow phase of Mn uptake. The rapid phase was extracellular binding, as judged by its temperature-insensitive removal by ethylene glycol bis(beta-aminoethyl ether) N, N'-tetraacetic acid. The slow linear phase represented cellular uptake, as judged by its release with digitonin plus the ionophore A23187. Isoproterenol increased the linear rate of Mn uptake and induced spontaneous beating activity in some cells. Both effects were inhibited by nitrendipine. Electrical stimulation of the cells in suspension increased the linear rate of cellular Mn uptake. The increase was potentiated by isoproterenol, and inhibited by nitrendipine or verapamil. Stimulation-dependent Mn uptake (per milligram protein) was greater for cells from 5- to 6-week-old rats than for 8- to 9-month-old female retired breeder rats, in the presence of isoproterenol. Ryanodine increased the stimulation-dependent Mn uptake in the presence of isoproterenol, but not in its absence. We conclude: (i) that cellular uptake of 54Mn is a good probe of Ca channel function; (ii) that isoproterenol promotes Mn influx by the channel in isolated heart cells; (iii) that cells from young rats (5-6 weeks) have a higher beta-adrenergically induced Ca channel activity than cells from mature rats (8-9 months); and (iv) that ryanodine promotes Ca channel activity (perhaps indirectly) in the presence of isoproterenol

  16. Ethidium bromide-induced demyelination of the sciatic nerve of adult Wistar rats

    Directory of Open Access Journals (Sweden)

    Riet-Correa G.

    2002-01-01

    Full Text Available Peripheral nerve ultrastructure was assessed after single or multiple local injections of the intercalating dye ethidium bromide. Thirty-four adult Wistar rats of both sexes were divided into five groups and maintained in a controlled environment with rat chow and water ad libitum throughout the experiment. The experimental animals were injected with 1 µl of 0.1% ethidium bromide in 0.9% saline into the central third of the left sciatic nerve 1 (group 1, 2 (group 2, 4 (group 3, 6 (group 4 or 8 (group 5 times. In groups 2 to 5 the injections were made at 28-day intervals. Control animals received the same amount of 0.9% saline. The animals were killed at different times after injection: group 1 at 7 days (2 rats and 15 days (2 rats; for groups 2, 3, 4 and 5, all rats were killed 10 days after the last injection and the lesions were investigated by light and transmission electron microscopy. In the acute lesions, intoxicated Schwann cells showed a vacuolated cytoplasm and separation of the sheaths from the axon. Myelin sheaths underwent progressive vesiculation and subsequent segmental demyelination. Myelin debris were withdrawn by macrophages and remyelination by Schwann cells was prominent. With the increase in the number of injections collagen fibers also increased in number and progressively enveloped smaller numbers of remyelinated axons composing new fascicles. Wallerian degeneration of fibers apparently not affected by ethidium bromide was more intense in the nerves from groups 4 and 5. The peripheral nerve repairs itself after demyelinating challenges with a profusion of collagen fibers and new fasciculations. This experimental model is valid to mimic recurrent demyelinating neuropathies.

  17. Immunohistochemical distribution of Plexin A4 in the adult rat central nervous system

    Directory of Open Access Journals (Sweden)

    Claire-Anne Gutekunst

    2010-07-01

    Full Text Available PlexinA4 is the latest member to be identified of the plexin A subfamily, critical transducers of class 3 semaphorin signaling as co-receptors to neuropilins 1 and 2. Despite functional information regarding the role of PlexinA4 in development and guidance of specific neuronal pathways, little is known about its distribution in the adult central nervous system (CNS. Here we report an in depth immunohistochemical analysis of PlexinA4 expression in the adult rat CNS. PlexinA4 staining was present in neurons and fibers throughout the brain and spinal cord, including neocortex, hippocampus, lateral hypothalamus, red nucleus, facial nucleus and the mesencephalic trigeminal nucleus. PlexinA4 antibodies labeled fibers in the lateral septum, nucleus accumbens, several thalamic nuclei, substantia nigra pars reticulata, zona incerta, pontine reticular region, as well as in several cranial nerve nuclei. This constitutes the first detailed description of the topographic distribution of PlexinA4 in the adult CNS and will set the basis for future studies on the functional implications of PlexinA4 in adult brain physiology.

  18. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    International Nuclear Information System (INIS)

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-κB expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  19. Dorsal and ventral language pathways in persistent developmental stuttering.

    Science.gov (United States)

    Kronfeld-Duenias, Vered; Amir, Ofer; Ezrati-Vinacour, Ruth; Civier, Oren; Ben-Shachar, Michal

    2016-08-01

    Persistent developmental stuttering is a speech disorder that affects an individual's ability to fluently produce speech. While the disorder mainly manifests in situations that require language production, it is still unclear whether persistent developmental stuttering is indeed a language impairment, and if so, which language stream is implicated in people who stutter. In this study, we take a neuroanatomical approach to this question by examining the structural properties of the dorsal and ventral language pathways in adults who stutter (AWS) and fluent controls. We use diffusion magnetic resonance imaging and individualized tract identification to extract white matter volumes and diffusion properties of these tracts in samples of adults who do and do not stutter. We further quantify diffusion properties at multiple points along the tract and examine group differences within these diffusivity profiles. Our results show differences in the dorsal, but not in the ventral, language-related tracts. Specifically, AWS show reduced volume of the left dorsal stream, as well as lower anisotropy in the right dorsal stream. These data provide neuroanatomical support for the view that stuttering involves an impairment in the bidirectional mapping between auditory and articulatory cortices supported by the dorsal pathways, not in lexical access and semantic aspects of language processing which are thought to rely more heavily on the left ventral pathways. PMID:27179916

  20. Colonic Hypersensitivity and Sensitization of Voltage-gated Sodium Channels in Primary Sensory Neurons in Rats with Diabetes

    OpenAIRE

    Hu, Ji; Song, Zhen-Yuan; Zhang, Hong-Hong; Qin, Xin; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2016-01-01

    Background/Aims Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. Methods Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the...

  1. Effects of ciliary neurotrophic factor on retrograde cell reaction after facial nerve crush in young adults rats

    OpenAIRE

    Gispen, W.H.; Ulenkate, H.J.L.M.; Jennekens, F.G.I.

    1996-01-01

    Locally applied ciliary neurotrophic factor (CNTF) has a powerful effect on retrograde axonal reaction following facial nerve crush in neonatal rats. We examined whether it also exerts a strong effect on retrograde axonal reaction in young adult rats when administered subcutaneously. The dose was 1 mg/kg body weight, three times a week, similar to that used in a previous experiment in which CNTF was reported to have an effect. We studied changes in the morphology of the motor nerve cell bodie...

  2. Developmental exposure to polychlorinated biphenyls PCB153 or PCB126 impairs learning ability in young but not in adult rats.

    Science.gov (United States)

    Piedrafita, Blanca; Erceg, Slaven; Cauli, Omar; Monfort, Pilar; Felipo, Vicente

    2008-01-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants present in the food chain and in human blood and milk. Exposure to PCBs during pregnancy and lactation leads to cognitive impairment in children. The underlying mechanisms remain unclear. Some PCBs are endocrine disrupters. The aim of this work was to assess whether exposure of rats to PCB126 (dioxin-like) or PCB153 (non-dioxin-like) during pregnancy and lactation affects the ability of the pups to learn a Y maze conditional discrimination task and/or the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in vivo when the rats are young (3 months) or adult (7-8 months). After finishing the learning experiments, the function of the pathway was analysed in the same rats by in vivo brain microdialysis. The results obtained show that perinatal exposure to PCB153 or PCB126: (1) impairs learning ability in young but not in adult rats, (2) impairs the glutamate-NO-cGMP pathway function in cerebellum in vivo in young but not in adult rats and (3) affect these parameters in males and females similarly. PCB126 is around 10 000-fold more potent than PCB153. In control rats the function of the glutamate-NO-cGMP pathway and learning ability are lower in adult than in young rats. These age-related differences are not present in rats exposed to PCBs. The impairment of the glutamate-NO-cGMP pathway function induced at young age by developmental exposure to the PCBs could be one of the mechanisms contributing to the cognitive impairment found in children whose mothers ingested PCB-contaminated food during pregnancy and lactation. PMID:18093177

  3. Effect of Ruta graveolens and Cannabis sativa alcoholic extract on spermatogenesis in the adult wistar male rats

    OpenAIRE

    Sailani, M. R.; Moeini, H.

    2007-01-01

    Objective: The present study was undertaken to evaluate the effects of alcohol extracts of Ruta graveolens and Cannabis sativa that were used traditionally in medieval Persian medicine as male contraceptive drugs, on spermatogenesis in the adult male rats. Materials and Methods: Ethanol extracts of these plants were obtained by the maceration method. The male rats were injected intraperitionaly with C. sativa and R. graveolens 5% ethanol extracts at dose of 20 mg/day for 20 consecutive days, ...

  4. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction.

    Science.gov (United States)

    Thornton, S N; Padzys, G S; Trabalon, M

    2014-05-01

    The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult. PMID:24769524

  5. Effects of C8 ventral root avulsion or transection on spinal alpha motoneurons in adult rats A qualitative light and electron microscopic study

    Institute of Scientific and Technical Information of China (English)

    Khulood M.AL-Khater; Bassem Y.Sheikh

    2008-01-01

    BACKGROUND:Nerve root avulsion is a frequent finding in patients with brachial plexus injury following road traffic accidents or as a result of severe arm traction during complicated deliveries.This injury constitutes a challenging clinical and surgical problem.The orphological characteristics of motoneurons after nerve root avulsion deserve further analysis.OBJECTIVE:To study the different morphological changes of u -motoneurons under light and electron microscopy after C8 spinal ventral rootlets avulsion and transection at various stages.DESIGN:Controlled animal study.SETTING:Department of Anatomy,King Faisal University.MATERIALS:The experiment was carried out at the Department of Anatomy,College of Medicine,King Faisal University between January 2005 and March 2006.Six adult Sprague Dawley rats weighing 200-350 g, irrespective of gender,were used for this study.The animals were bred at the animal house,College of Medicine,King Faisal University,and fed on rat maintenance diet.Water and standard diet were supplied ad libitum.Animal interventions were carried out according to animal ethical standards.METHODS:Three animals were randomly chosen for avulsion of the right ventral rootlets of C8 spinal nerves.The other three received transection of the right ventral rootlets of C8 spinal nerves.①Avulsion experiment:After rats were anesthetized,the right ventral rootlets of C8 spinal nerves were identified.The ventral rootlets were avulsed from the spinal cord by traction with a fine hook(Fine Science Tools Inc.,No. 10031-13,Germany).Traction was exerted in a direction parallel to the course of the spinal root.Under the operating microscope,the Cs segment was exactly located.After checking the successfulness of the surgical procedure,the Ca segment was separated from the spinal cord.The outcome of the avulsion procedure was as follows:two animals had true avulsion,i.e.,no remaining stump was attached to the spinal cord surface.One rat had a stump still attached

  6. Special function of nestin+ neurons in the medial septum-diagonal band of Broca in adult rats

    OpenAIRE

    Zhao, Yuhong; Guo, Kaihua; Li, Dongpei; Yuan, Qunfang; Yao, Zhibin

    2014-01-01

    Nestin+ neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin+ neurons to the olfactory bulb and the time course of nestin+ neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin+ neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximate...

  7. THE POSSIBLE EFFECT OF SILDENAFIL CITRATE AND FENUGREEK SEED POWDER ON ENHANCING SERUM TESTOSTERONE LEVELS IN ADULT MALE ALBINO RATS

    International Nuclear Information System (INIS)

    Sildenafil citrate is a phosphodiesterase 5 inhibitor (PDE5) that increases cyclic guanosine monophosphate (cGMP) which improves vasodilatation and there is a hypothesis that fenugreek seeds have 3 mechanisms by which it may enhance serum testosterone levels. The present study aimed to evaluate the effect of sildenafil citrate and fenugreek seeds alone or in combination on serum testosterone levels in normal adult male albino rats. Besides, total protein, albumin, globulin, bilirubin levels and alanine transaminase, aspartate transaminase and alkaline phosphatase activities were evaluated. The present study claimed that single or combined treatment with sildenafil and fenugreek seed powder (FSP) may enhance serum testosterone levels in adult male albino rats

  8. Radioautographic characterization of a serotonin-accumulating nerve cell group in adult rat hypothalamus

    International Nuclear Information System (INIS)

    Intensely labeled nerve cell bodies were identified by radioautography within the pars ventralis of nucleus dorsomedialis hypothalami (hdv), following intraventricular perfusion with 10-5 or 10-4 M tritiated serotonin [3H]5-HT in adult rats pretreated with a monoamine oxidase inhibitor. This selective reaction, which involved approximately 1000 neurons on each side of the third ventricle, was unaltered by concomitant administration of 10-3 M non-radioactive norepinephrine, and was absent after intraventricular injection of 10-5 or 10-4 M tritiated norepinephrine. The 3H-labeled 5-HT nerve cell bodies were loosely grouped within the inner and caudal half of the hdv, and appeared morphologically similar to the unreactive neurons among which they were interspersed. Within the same region, numerous labeled axonal varicosities were also detected which were never found in synaptic contact with the reactive cells. If the 3H-labeled 5-HT neurons endogenous 5-HT, they might constitute an intrinsic source of 5-HT innervation in the adult rat hypothalamus. (Auth.)

  9. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    Science.gov (United States)

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches. PMID:26416672

  10. Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2016-04-21

    Methylphenidate (MPH) is a central stimulant, prescribed for the treatment of attention deficit/hyperactivity disorder. The long-term behavioral consequences of MPH treatment are unknown. In this study, the oxidative stress and neuroinflammation induced by various doses of MPH were investigated. Forty adult male rats were divided into 5 groups; and treated with different doses of MPH for 21 days. Twenty four hours after drug treatment, Open Field Test (OFT) was performed in all animals. At the end of the study, blood cortisol level (BCL) was measured and hippocampus was isolated and oxidative stress and inflammation parameters and histological changes were analyzed. Chronic MPH at all doses decreased central square entries, number of rearing, ambulation distance and time spent in central square in OFT. BCL increased in doses 10 and 20mg/kg of MPH. Furthermore, MPH in all doses markedly increased lipid peroxidation, mitochondrial oxidized glutathione (GSSG) level, Interleukin 1β (IL-1β) and Tumor Necrosis Factor α (TNF-α) in isolated hippocampus. MPH (10 and 20mg/kg) treated groups had decreased mitochondrial reduced glutathione (GSH) content, and reduced superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRx) activities. 10 and 20mg/kg of MPH change cell density and morphology of cells in Dentate Gyrus (DG) and CA1 areas of hippocampus. Chronic treatment with high doses of MPH can cause oxidative stress, neuroinflammation and neurodegeneration in hippocampus of adult rats. PMID:26687276

  11. Chronic effect of gabapentin on liver function in adult male rats.

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Meshkibaf

    2013-12-01

    Full Text Available Gabapentin (GPN is a new antiepileptic agent currently in used as add-on therapy in adult patients suffering from partial seizures. The extent of liver damage at different dosage and long term treatment with GPN is not yet clear. Therefore this study was undertaken to find out the possibility of liver damage by this drug. Adult male (Wistar rats of 180-220 g were administered intraperitoneally with GPN (20 or 100 mg/kg for 45 days. After the experimental period, the liver function tests were carried out in control and experimental groups. The activity of liver enzymes, with 20 mg/kg of GPN were not significantly different from the control group but, the serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, direct bilirubin and total bilirubin were enhanced significantly with 100 mg/kg of GPN. Total protein and albumin decreased in this group as compared with control animals. The histopathology of the liver parenchymal cells also showed minute foci of necrosis in a few rats treated with high dose of GPN, whereas, at therapeutic dose the histopathology and biochemical indices showed almost normal values. At therapeutic dose GPN is a safer drug with regards to liver function and hepatocellular damage as compared with other antiepileptic drugs.

  12. Extracellular space diffusion analysis in the infant and adult rat striatum using magnetic resonance imaging.

    Science.gov (United States)

    Yang, Shuangfeng; Wang, Yan; Li, Kai; Tang, Xiaolu; Zhang, Kuo; Shi, Chunyan; Han, Hongbin; Peng, Yun

    2016-10-01

    The extracellular space (ECS) in the brain provides an extrasynaptic transfer channel among neurons, axons and glial cells. It is particularly important in the early stage after birth, when angiogenesis is not yet complete and the ECS may provide the main pathway for metabolite transport. However, the characteristics of extracellular transport remain unclear. In this study, a novel magnetic resonance imaging (MRI) method was used to perform real-time visualization and quantification of diffusion in the brain ECS of infant (postnatal day 10 (P10)) and adult rats. Using a modified diffusion equation and the linear relationship between the signal intensity and the gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) concentration, diffusion parameters were obtained; these parameters include the effective diffusion coefficient (D*), clearance rate (k'), tortuosity (λ) and the volume fraction of distribution (Vd%). There were significant differences in the diffusion parameters between P10 and adult rats. This finding provides a reference for future treatment of brain diseases using drugs administered via interstitial pathways. PMID:27296518

  13. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Jodi L. Pawluski

    2014-01-01

    Full Text Available Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1 cookie and (2 osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat.

  14. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Osonuga Odusoga Adewale; Osonuga Ifabunmi Oduyemi; Osonuga Ayokunle

    2014-01-01

    Objective: To determine the effect of graded doses of aqueous leaf extracts of Momordica charantia on fertility hormones of female albino rats.Methods:moderate dose (MD) and high dose (HD) groups which received 12.5 g, 25.0 g, 50.0 g of the leaf extract respectively and control group that was given with water ad libatum.Result:Estrogen levels reduced by 6.40 nmol/L, 10.80 nmol/L and 28.00 nmol/L in the LD, MD and Twenty adult, healthy, female Wistar rats were divided into four groups: low dose (LD), HD groups respectively while plasma progesterone of rats in the LD, MD and HD groups reduced by 24.20 nmol/L, 40.8 nmol/L and 59.20 nmol/L respectively.Conclusion:Our study has shown that the antifertility effect of Momordica charantia is achieved in a dose dependent manner. Hence, cautious use of such medication should be advocated especially when managing couples for infertility.

  15. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico)); Rivera, F. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Babinski, E. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Berlanga, E. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Madrazo, M. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Franco-Bourland, R. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico)); Grijalva, I. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  16. Reduction of intraspecific aggression in adult rats by neonatal treatment with a selective serotonin reuptake inhibitor

    Directory of Open Access Journals (Sweden)

    Manhães de Castro R.

    2001-01-01

    Full Text Available Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days treated from the 1st to the 19th postnatal day with citalopram (CIT, a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days. Aggressive behavior was induced by placing a pair of rats (matched by weight in a box (20 x 20 x 20 cm, and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval. When compared to the control group (rats treated for the same period with equivalent volumes of saline solution, the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.

  17. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    International Nuclear Information System (INIS)

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  18. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats.

    Science.gov (United States)

    Hashemi Nosrat Abadi, T; Vaghef, L; Babri, S; Mahmood-Alilo, M; Beirami, M

    2013-06-01

    Chronic ethanol consumption is often accompanied by numerous cognitive deficits and may lead to long-lasting impairments in spatial learning and memory. The aim of the present study was to evaluate the therapeutic potential of regular treadmill exercise on hippocampal-dependent memory in ethanol-treated rats. Spatial memory was tested in a Morris Water Maze task. Adult male Wistar rats were exposed to ethanol (4 g/kg, 20% v/v for 4 weeks) and effects of three exercise protocols (pre-ethanol, post-ethanol and pre-to-post-ethanol treatment) were examined. Results showed that ethanol exposure resulted in longer escape latencies during the acquisition phase of the Morris Water Maze task. Moreover, all three exercise protocols significantly decreased the latency to locate the hidden platform. During the probe trial, ethanol led to decreased time spent in the target quadrant. In contrast, performance on the probe trial was significantly better in the rats that had done the post- and pre-to-post-ethanol, but not pre-ethanol, exercises. These findings suggest that treadmill running can attenuate the adverse effects of chronic ethanol exposure on spatial memory, and may serve as a non-pharmacological alcohol abuse treatment. PMID:23683528

  19. Prenatal Rosiglitazone Administration to Neonatal Rat Pups Does Not Alter the Adult Metabolic Phenotype

    Directory of Open Access Journals (Sweden)

    Hernan Sierra

    2012-01-01

    Full Text Available Prenatally administered rosiglitazone (RGZ is effective in enhancing lung maturity; however, its long-term safety remains unknown. This study aimed to determine the effects of prenatally administered RGZ on the metabolic phenotype of adult rats. Methods. Pregnant Sprague-Dawley rat dams were administered either placebo or RGZ at embryonic days 18 and 19. Between 12 and 20 weeks of age, the rats underwent glucose and insulin tolerance tests and de novo fatty acid synthesis assays. The lungs, liver, skeletal muscle, and fat tissue were processed by Western hybridization for peroxisome proliferator-activated receptor (PPARγ, adipose differentiation-related protein (ADRP, and surfactant proteins B (SPB and C (SPC. Plasma was assayed for triglycerides, cholesterol, insulin, glucagon, and troponin-I levels. Lungs were also morphometrically analyzed. Results. Insulin and glucose challenges, de novo fatty acid synthesis, and all serum assays revealed no differences among all groups. Western hybridization for PPARγ, ADRP, SPB, and SPC in lung, liver, muscle, and fat tissue showed equal levels. Histologic analyses showed a similar number of alveoli and septal thickness in all experimental groups. Conclusions. When administered prenatally, RGZ does not affect long-term fetal programming and may be safe for enhancing fetal lung maturation.

  20. The effect of omega-3 on cognition in hypothyroid adult male rats.

    Science.gov (United States)

    Abd Allah, Eman S H; Gomaa, Asmaa M S; Sayed, Manal M

    2014-09-01

    Thyroid hormones and omega-3 are essential for normal brain functions. Recent studies have suggested that omega-3 may protect against the risk of dementia. The aim of this study was to investigate the effect of hypothyroidism on spatial learning and memory in adult male rats, the underlying mechanisms and the possible therapeutic value of omega-3 supplementation. Thirty male rats were divided into three groups; control, hypothyroid and omega-3 treated. Hypothyroidism induced significant deficits in working and reference memories in radial arm maze, retention deficits in passive avoidance test and impaired intermediate and long-term memories in novel object recognition test. Serum total antioxidant capacity (TAC) and hippocampal serotonin and γ-aminobutyric acid (GABA) levels were decreased in the hypothyroid group as compared to the control group. Moreover, the hippocampus of hypothyroid rats showed marked structural changes as diffuse vacuolar degeneration and distortion of the pyramidal cells. Immunohistochemistry showed that the expression of Cav1.2 (the voltage dependent LTCC alpha 1c subunit) protein was increased in the hypothyroid group as compared to the control group. Omega-3 supplementation ameliorated memory deficits, increased TAC, decreased the structural changes and decreased the expression of Cav1.2 protein. In conclusion omega-3 could be useful as a neuroprotective agent against hypothyroidism-induced cognitive impairment. PMID:25183510

  1. Constraint-induced movement therapy enhanced neurogenesis and behavioral recovery after stroke in adult rats.

    Science.gov (United States)

    Zhao, Chuansheng; Wang, Jun; Zhao, Shanshan; Nie, Yingxue

    2009-08-01

    Constraint-induced movement therapy (CIMT) has been extensively used for stroke rehabilitation. CIMT encourages use of the impaired limb along with restraint of the ipsilesional limb in daily life, and may promote behavioral recovery and induce structural changes in brain after stroke. The aim of this study was to investigate whether CIMT enhances neurogenesis in rat brain after stroke that was generated by middle cerebral artery occlusion. Adult rats were divided into sham group, ischemia group and ischemia treated with CIMT group. Rats of CIMT group were treated with a plaster cast to restrain the healthy forelimb for 14 days beginning 1 week after ischemia. The proliferation of neuronal cells labeled with bromodeoxyuridine (BrdU) and behavioral recovery were analyzed at day 29 after ischemia. We also measured the tissue level of stromal cell-derived factor 1 (SDF-1) by ELISA. SDF-1 might be involved in the regulation of neurogenesis following stroke. In the subventricular zone of the animals treated with CIMT, there was a significant increase in the number of BrdU-positive cells (135 +/- 18, P behavioral performances and increased the SDF-1 protein levels in the cortex and dentate gyrus. In conclusion, CIMT treatment enhances neurogenesis and functional recovery after stroke. PMID:19638734

  2. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2 μg/kg bw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100 μg/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 in liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially following oral

  3. Differential Mechanisms of Ang (1-7)-Mediated Vasodepressor Effect in Adult and Aged Candesartan-Treated Rats

    OpenAIRE

    Jones, E S; K. M. Denton; Widdop, R. E.; Bosnyak, S.

    2012-01-01

    Angiotensin (1-7) (Ang (1-7)) causes vasodilator effects in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) via angiotensin type 2 receptors (AT2R). However, the role of vascular AT2R in aging is not known. Therefore, we examined the effect of aging on Ang (1-7)-mediated vasodepressor effects and vascular angiotensin receptor localization in aging. Blood pressure was measured in conscious adult (~17 weeks) and aged (~19 months) normotensive rats that received drug combinati...

  4. A combined phytohemagglutinin and a-ketoglutarate pharmacology study of gut morphology and growth in older adult rats

    DEFF Research Database (Denmark)

    Filip, R.; Harrison, Adrian Paul; Pierzynowski, S.G.

    2008-01-01

    This study has evaluated the effect of phytohaemagglutinin (PHA) in combination with alpha-ketoglutaric acid (AKG), on GI-tract morphology and N balance in adult rats. Rats, aged approx. 15 months, were assigned to one of four experimental groups, (1) Control group, (2) AKG group, (3) AKG+PHA 100.......3% lower), this difference was not found to be statistically significant. In conclusion, a combination of PHA and AKG treatment (AKG+PHA 100%) stimulates proliferation of GI-tract crypt depth and tunica mucosa thickness cf. that of Control rats, findings that would be of benefit to the elderly and to...

  5. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    OpenAIRE

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnata...

  6. Hormone responsiveness of cultured Sertoli cells obtained from adult rats after their rapid isolation under less harsh conditions.

    Science.gov (United States)

    Gautam, M; Bhattacharya, I; Devi, Y S; Arya, S P; Majumdar, S S

    2016-05-01

    During adulthood, testicular Sertoli cells (Sc) coordinate all stages of germ cell (Gc) development involved in sperm production. However, our understanding about the functions of adult Sc is limited because of the difficulties involved in the process of isolating these cells from the adult testis, mainly because of the presence of large number of advanced Gc which interfere with Sc isolation at this age. Most of our knowledge about Sc function are derived from studies which used pre-pubertal rat Sc (18 ± 2-day old) as it is easy to isolate and culture Sc at this age. To this end, we established a less time consuming and less harsh procedure of isolating Sc from adult (60 days of age) rat testis for facilitating research on Sc-mediated regulation of spermatogenesis during adulthood. The cells were isolated using collagenase digestion at higher temperature, reducing the exposure time of cells to the enzyme. Step-wise digestion with intermittent removal of small clusters of tissue helped in increasing the yield of Sc. Isolated Sc were cultured and treated with FSH and testosterone (T) to evaluate their hormone responsiveness in terms of lactate, E2 , cAMP production. Adult Sc were found to be active and produced high amounts of lactate in a FSH-independent manner. FSH-mediated augmentation of cAMP and E2 production by adult Sc was less as compared with that by pre-pubertal Sc obtained from 18-day-old rats. Androgen-binding ability of adult Sc was significantly higher than pre-pubertal Sc. Although T treatment remarkably augmented expression of Claudin 11, it failed to augment lactate production by adult Sc. This efficient and rapid procedure for isolation and culture of functionally viable adult rat Sertoli cells may pave the way for determining their role in regulation and maintenance of spermatogenesis. PMID:26991307

  7. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    Directory of Open Access Journals (Sweden)

    Jacqueline H Byrne

    Full Text Available BACKGROUND: Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. METHODS: Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT and the 5 choice continuous performance task (5C-CPT and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. RESULTS: AVD-deficient rats were deficient in vitamin D3 (<10 nM and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. CONCLUSIONS: AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  8. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    Science.gov (United States)

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood. PMID:26620193

  9. AVPV neurons containing estrogen receptor-beta in adult male rats are influenced by soy isoflavones

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2007-02-01

    Full Text Available Abstract Background Isoflavones, the most abundant phytoestrogens in soy foods, are structurally similar to 17beta-estradiol. It is known that 17beta-estradiol induces apoptosis in anteroventral periventricular nucleus (AVPV in rat brain. Also, there is evidence that consumption of soy isoflavones reduces the volume of AVPV in male rats. Therefore, in this study, we examined the influence of dietary soy isoflavones on apoptosis in AVPV of 150 day-old male rats fed either a soy isoflavone-free diet (Phyto-free or a soy isoflavone-rich diet (Phyto-600. Results The occurrence of apoptosis in AVPV was examined by TUNEL staining. The incidence of apoptosis was about 10 times higher in the Phyto-600 group (33.1 ± 1.7% than in the Phyto-free group (3.6 ± 1.0%. Furthermore, these apoptotic cells were identified as neurons by dual immunofluorescent staining of GFAP and NeuN as markers of astrocytes and neurons, respectively. Then the dopaminergic neurons in AVPV were detected by immunohistochemistry staining of tyrosine hydroxylase (TH. No significant difference in the number of TH neurons was observed between the diet treatment groups. When estrogen receptor (ER alpha and beta were examined by immunohistochemistry, we observed a 22% reduction of ERbeta-positive cell numbers in AVPV with consumption of soy isoflavones, whereas no significant change in ERalpha-positive cell numbers was detected. Furthermore, almost all the apoptotic cells were ERbeta-immunoreactive (ir, but not ERalpha-ir. Last, subcutaneous injections of equol (a major isoflavone metabolite that accounts for approximately 70–90% of the total circulating plasma isoflavone levels did not alter the volume of AVPV in adult male rats. Conclusion In summary, these findings provide direct evidence that consumption of soy isoflavones, but not the exposure to equol, influences the loss of ERbeta-containing neurons in male AVPV.

  10. Parenteral magnesium load testing with 28Mg in weanling and young adult rats

    International Nuclear Information System (INIS)

    A sound diagnostic test for Mg deficiency is needed. This is a report of the parenteral Mg load test conducted in weanling and young adult rats fed a purified basal diet containing 3 mg magnesium/100 g with 150 mg of added magnesium/100 g (control) or 0 added magnesium (deficient). Weanlings were studied at about 1 week of dietary treatment and young adults at 2 weeks. The protocol included: a) a 6-hour preload urinary collection; b) an intraperitoneal load of 15 mg of magnesium/kg (weanlings) or 12 mg/kg (young adults) with 2 microCi 28Mg given simultaneously with each load; c) a 6-hour postload urinary collection; d) chemical analysis of selected tissues and urine for Mg; and e) 28Mg counting 6 and 24 hours postload. Controls all excreted large amounts of Mg pre- and postload, retaining less than 26% of nonradioactive loads. They had high urinary 28Mg counts. In Mg-deficient animals, the concentration of Mg in bone more than halved. These animals avidly conserved Mg and retained over 85% of nonradioactive Mg loads. Their 28Mg activity in vital organs was 3--6 times greater than in controls. We concluded that the parenteral Mg load test reliably identifies severe Mg deficiency

  11. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    Science.gov (United States)

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring. PMID:26224008

  12. Histological studies of the effects of monosodium glutamate of the Fallopian tubes of adult female Wistar rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-01-01

    Full Text Available Background: The effect of monosodium glutamate used as food additive on the fallopian tubes of adult Wistar rat was investigated. Material and Methods: Adult female Wistar rats (n=24 of average weight of 230g were randomly assigned into three groups A, B and C in each group (n=8. The treatment groups (A & B were given 0.04mg/kg and 0.08mg/kg of monosodium glutamate thoroughly mixed with the growers′ mash, respectively on a daily basis. The control group (C received equal amount of feeds (Growers′ mash without monosodium glutamate added for fourteen days. The growers′ mash was obtained from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and the rats were given water liberally. The rats were sacrificed on day fifteen of the experiment. The fallopian tubes were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological procedures. Result: The histological findings in the treated groups showed evidence of cellular hypertrophy, degenerative and atrophic changes, and lysed red blood cells in lumen with the group that received 0.08mg/kg of monosodium glutamate more severe. Conclusion: MSG may have some deleterious effects on the fallopian tubes of adult female Wistar rats at higher doses and by extension may contribute to the causes of female infertility. It is recommended that further studies aimed at corroborating these findings be carried out.

  13. Reorganization of auditory map and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    Directory of Open Access Journals (Sweden)

    Weimin Zheng

    2012-09-01

    Full Text Available Behavioral adaption to a changing environment is critical for an animal’s survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment.

  14. Effects of adolescent social defeat on adult amphetamine-induced locomotion and corticoaccumbal dopamine release in male rats

    OpenAIRE

    Burke, Andrew R.; Forster, Gina L.; Novick, Andrew M.; Roberts, Christina L.; Watt, Michael J.

    2012-01-01

    Maturation of mesocorticolimbic dopamine systems occurs during adolescence, and exposure to social stress during this period results in behavioral dysfunction including substance abuse disorders. Adult male rats exposed to repeated social defeat in adolescence exhibit reduced basal dopamine tissue content in the medial prefrontal cortex, altered dopamine tissue content in corticoaccumbal dopamine regions following acute amphetamine, and increased amphetamine conditioned place preference follo...

  15. PRENATAL COCAINE ELIMINATES THE SEX-DEPENDENT DIFFERENCES IN ACTIVATION OBSERVED IN ADULT RATS AFTER COCAINE CHALLENGE

    Science.gov (United States)

    In the adult rat, acute administration of cocaine results in enhanced expression of certain behaviors. his activation is often referred to as "stereotypy" because of its repetitive nature. epeated exposure to the same dose of cocaine does not result in tolerance or a diminution o...

  16. EFFECTS OF SUBCHRONIC INHALATION OF LOW CONCENTRATIONS OF NITROGEN DIOXIDE. 1. THE PROXIMAL ALVEOLAR REGION OF JUVENILE AND ADULT RATS

    Science.gov (United States)

    Techniques were devised to isolate tissue from the epithelium of terminal airways and the alveoli proximal to the airways. One day old juveniles and six week old adult rats were exposed to either room air or 0.5 ppm NO2 for 23 hrs per day seven days per week. An additional group ...

  17. ALKYLTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM ADULT AND NEONATAL RATS (JOURNAL VERSION)

    Science.gov (United States)

    Inhibition of ATPase activities by triethyltin (TET), diethyltin (DET), monoethyltin (MET) and trimethyltin (TMT) was studied in homogenates of brain and liver from adult rats. MET did not produce significant inhibition. ATPase activities in brain and liver homogenates from TET-t...

  18. Role of 5-HT5A receptors in activation of astroglia in the spinal dorsal horn in a rat model of neuropathic pain by vincristine%5-HT5A受体在长春新碱致神经病理性痛大鼠脊髓背角星形胶质细胞活化中的作用

    Institute of Scientific and Technical Information of China (English)

    刘巍; 叶茂; 徐颖; 石远; 柏林

    2010-01-01

    目的 评价5-羟色胺5A受体(5-HT5AR)在长春新碱致神经病理性痛大鼠脊髓背角星形胶质细胞活化中的作用.方法 雄性成年SD大鼠40只,体重180~200 g,随机分为4组(n=10):对照组(C组)、神经病理性痛组(P组)、空载体腺病毒组(B组)和siRNA重组腺病毒载体组(S组).C组腹腔注射生理盐水1 ml;P组、B组和S组第1~5天和第8~12天每天定时腹腔注射0.1 mg/kg长春新碱建立大鼠神经病理性痛模型.腹腔给药结束第2天测定机械痛阈,然后P组、B组和S组分别鞘内注射人工脑脊液、空载体腺病毒和siRNA重组腺病毒载体25μl.鞘内给药后第7天测定机械痛阈,然后处死大鼠,取L4.5脊髓组织,测定脊髓背角5-HT5AR及胶原纤维酸性蛋白(GFAP)的表达.结果 与C组比较,P组、B组和S组各时点机械痛阈降低,脊髓背角5-HT5AR和GFAP的表达均上调(P<0.05);与P组比较,S组鞘内给药后第7天机械痛阈降低,脊髓背角5-HT5AR表达下调,GFAP表达上调(P<0.05),B组上述指标差异无统计学意义(P>0.05).结论 5-HT5AR参与了星形胶质细胞活化的抑制过程,从而减轻长春新碱致大鼠神经病理性痛.%Objective To evaluate the role of 5-HT5A receptors (5-HT5A R) in activation of astroglia in the spinal dorsal horn in a rat model of neuropathic pain induced by vincristine. Methods Forty adult male SD rats weighing 180-200 g were randomly divided into 4 groups ( n = 10 each): control group (group C);neuropathic pain group (group P);Ad-X-HK group (group B) and Ad-5-HT5A-siRNA group (group S). Neuropathic pain was induced by repeated intraperitoneal (IP) injection of vincristine 0.1 mg/kg according to the method described by Weng et al in group P, B and S. On the 2nd day after the last IP injection, the animals received artificial cerebrospinal fluid, Ad-X-HK and Ad-5-HT5A-siRNA 25 μl administered intrathecally (IT) in group P, B and S respectively. Paw withdrawal threshold to mechanical stimulus

  19. GABAA-Receptor-Mediated Conductance and Action Potential Waveform in Cutaneous and Muscle Afferent Neurons of the Adult Rat: Differential Expression and Response to Nerve Injury

    OpenAIRE

    OYELESE, ADETOKUNBO A.; Kocsis, Jeffery D.

    1996-01-01

    Whole cell patch-clamp recordings were obtained from identified cutaneous and muscle afferent neurons (33-60 μm diam) in dissociated L4 and L5 dorsal root ganglia (DRGs) from normal rats and from rats 2-3 wk after sciatic nerve ligation or crush injury. γ-Aminobutyric acid (GABA)-induced conductance was compared in normal and injured neurons from both functional classes of sensory neurons.Control cutaneous afferent neurons had a peak GABA-mediated conductance of 287 ± 27 (SE) nS compared with...

  20. Abnormal secretion of reproductive hormones and antioxidant status involved in quinestrol-induced reproductive toxicity in adult male rat.

    Science.gov (United States)

    Li, Jian; Wang, Hongwei; Zhang, Jiliang; Zhou, Bianhua; Si, Lifang; Wei, Lan; Li, Xiang

    2014-02-01

    This study aimed to evaluate the effects of quinestrol, a synthetic oestrogen homologue with reproductive toxicity, on the secretion of reproductive hormones and antioxidant status in adult male rat. Our results showed that quinestrol exposure significantly decreased the weight of the testis, epididymides, seminal vesicle, and prostate, as well as the sperm counts in the cauda epididymis of rats. Quinestrol significantly reduced the size of seminiferous tubules and the total number of spermatogenic cells. Serum testosterone, follitropin, and lutropin were also significantly reduced in a dose-related manner after quinestrol exposure. Meanwhile, the activity of superoxide dismutase, glutathione peroxidase, and total antioxide capacity significantly decreased, whereas the malondialdehyde and nitric oxide concentrations significantly increased in the testes. These findings revealed that endocrine disorders of reproductive hormones and oxidative stress may be involved in reproductive toxicity induced by quinestrol in adult male rats. PMID:24183492

  1. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen Yong

    2012-02-01

    Full Text Available Abstract Background The purinergic P2X3 receptor (P2X3R expressed in the dorsal root ganglion (DRG sensory neuron and the P2X7 receptor (P2X7R expressed in the surrounding satellite glial cell (SGC are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.

  2. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    OpenAIRE

    Keast Janet R; Cheng Ying

    2009-01-01

    Abstract Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. The...

  3. Expression of nestin by neural cells in the adult rat and human brain.

    Directory of Open Access Journals (Sweden)

    Michael L Hendrickson

    Full Text Available Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs. Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ of the lateral ventricle and the subgranular zone (SGZ of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions.

  4. Characteristics of dorsal root ganglia neurons sensitive to Substance P

    OpenAIRE

    Moraes, Eder Ricardo; Kushmerick, Christopher; Naves, Ligia Araujo

    2014-01-01

    Background Substance P modulates ion channels and the excitability of sensory neurons in pain pathways. Within the heterogeneous population of Dorsal Root Ganglia (DRG) primary sensory neurons, the properties of cells that are sensitive to Substance P are poorly characterized. To define this population better, dissociated rat DRG neurons were tested for their responsiveness to capsaicin, ATP and acid. Responses to ATP were classified according to the kinetics of current activation and desensi...

  5. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Ch. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)]. E-mail: meinecke@physik.uni-leipzig.de; Morawski, M. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Reinert, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Arendt, T. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Butz, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)

    2006-08-15

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 {mu}m thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 {mu}m) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques.

  6. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    International Nuclear Information System (INIS)

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 μm thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 μm) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques

  7. Dispase rapidly and effectively purifies Schwann cells from newborn mice and adult rats

    Institute of Scientific and Technical Information of China (English)

    Jiaxue Zhu; Jinbao Qin; Zunli Shen; James D. Kretlow; Xiaopan Wang; Zhangyin Liu; Yuqing Jin

    2012-01-01

    In the present study, Schwann cells were isolated from the sciatic nerve of neonatal mice and purified using dispase and collagenase. Results showed that after the first round of purification with dispase, most of the Schwann cells appeared round in shape and floated in culture solution after 15 minutes. In addition, cell yield and cell purity were higher when compared to the collagenase group. After the second round of purification, the final cell yield for the dispase group was higher than that for the collagenase group, but no significant difference was found in cell purity. Moreover, similar results in cell quantity and purity were observed in adult Sprague-Dawley rats. These findings indicate that purification with dispase can result in the rapid isolation of Schwann cells with a high yield and purity.

  8. The Effect of Dorsal Hippocampal α2-Adrenegic Receptors on WIN55,212-2 State-Dependent Memory of Passive Avoidance

    Directory of Open Access Journals (Sweden)

    Zarrindast M.R.

    2010-09-01

    Full Text Available Background and Objectives: Cannabinoids are a class of psychoactive compounds that produce a wide array of effects in a large number of species. In the present study, the effects of bilateral intra-CA1 injections of an α2-adrenergic receptor agents, on WIN55,212-2 state-dependent learning were examined in adult male Wistar rats. Methods: The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-down type inhibitory avoidance task, and tested 24h after training to measure step-down latency.Results: Post-training intra-CA1 injection of WIN55,212-2 (0.25 and 0.5µg/rat induced impairment of memory retention. Amnesia produced by post-training WIN55,212-2 (0.5µg/rat was reversed by pre-test administration of the same dose of WIN55,212-2 that is due to a state-dependent effect. Pre-test intra-CA1 injection of clonidine (0.5 and 0.75µg/rat, intra-CA1 improved post-training WIN55,212-2 (0.5µg/rat, intra-CA1-induced retrieval impairment, while pre-test intra-CA1 injection of yohimbine (1µg/rat, intra-CA1 2min before the administration of WIN55,212-2 (0.5µg/rat, intra-CA1 inhibited WIN55,212-2 state-dependent memory. Conclusion: These results suggest that α2-adrenergic receptors of the dorsal hippocampal CA1 regions may play an important role in Win55,212-2-induced amnesia and WIN55,212-2 state-dependent memory.

  9. Thyroxine, triiodothyronine, and reverse triiodothyronine processing in the cerebellum: Autoradiographic studies in adult rats

    International Nuclear Information System (INIS)

    Well confirmed evidence has demonstrated that the cerebellum is an important target of thyroid hormone action during development. Moreover, the presence of nuclear receptors and strong 5'-deiodinase activity in cerebella of adult rats have suggested that this region may continue to respond to thyroid hormones during maturity. Recent autoradiographic observations have focused attention on the cerebellar granular layer, in that [125I]T3 administered iv to adult rats was found to be selectively and saturably concentrated there. To determine the specificity of iodothyronine localization in the granular layer, we have now compared film autoradiographic observations made after iv [125I]T4 and iv [125I]rT3 with those found after iv [125I]T3. The results demonstrated that, as in the case of the latter hormone, labeling within the cerebellar cortex after iv [125I]T4 was both selective and saturable. Moreover, except for a lag in time to resolution and a longer retention time, the distribution of cerebellar radioactivity after iv labeled T4 was qualitatively similar to that seen after iv [125I]T3. However, the ability of T4 to become differentially concentrated in the granular layer of cerebellum was absolutely dependent on its ability to be converted intracerebrally to T3. Thus, pretreatment with ipodate, which blocks brain 5'-deiodinase activity and, therefore, the intracerebral formation of T3 from T4, completely prevented cerebellar granular layer labeling after iv [125I]T4 even though it did not interfere with differential labeling of this region by iv delivered [125I]T3. In the same experiments, propylthiouracil, a potent peripheral, but not central, 5'-deiodinase inhibitor, had no qualitative effect on the distribution of either T4 or T3 in cerebellum

  10. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    International Nuclear Information System (INIS)

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 μg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor β was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis

  11. Hyparrhenia hirta: A potential protective agent against hematotoxicity and genotoxicity of sodium nitrate in adult rats.

    Science.gov (United States)

    Bouaziz-Ketata, Hanen; Salah, Ghada Ben; Mahjoubi, Amira; Aidi, Zied; Kallel, Choumous; Kammoun, Hassen; Fakhfakh, Faiza; Zeghal, Najiba

    2015-11-01

    The present study was carried out to examine the adverse hematotoxic and genotoxic effects of water nitrate pollution on male adult rats and the use of hyparrhenia hirta methanolic extract in alleviating these effects. Sodium nitrate (NaNO3 ) was administered to adult rats by oral gavage at a dose of 400 mg kg(-1) bw daily for 50 days, while hyparrhenia hirta methanolic extract was given by drinking water at a dose of 1.5 mg mL(-1) (200 mg kg(-1) bw). The NaNO3 -treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Meanwhile, the results showed a marked reduction in the antioxidant enzyme activities, such as superoxide dismutase, catalase, and glutathione peroxidase, along with an elevation in the level of lipid peroxidation and a reduction in the total glutathione content, indicating the induction of oxidative stress in the erythrocytes of NaNO3 -treated group. Interestingly, NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. The oxidative stress induced by nitrate treatment might be the major cause for chromosomal rearrangements as free radicals leading to DNA damage. Hyparrhenia hirta methanolic extract appeared to be effective against hematotoxic and genotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above. PMID:24740966

  12. In vitro transformation of adult rat liver cells by 3'-methyl-4-dimethylaminoazobenzene.

    Directory of Open Access Journals (Sweden)

    Wahid,Syarifuddin

    1983-02-01

    Full Text Available Primary cultures of liver cells from normal adult rats were treated with 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB at various concentrations for 6 days. 3'-Me-DAB treatment induced rapid proliferation of epithelial clear cells with chromosomal abnormalities and gamma-glutamyl transpeptidase (GGT activity. In early culture, marker chromosomes were detected in 13 of 44 3'-Me-DAB-treated cultures but not in control cultures. GGT activity was not detected in the epithelial clear cells in either 3'-Me-DAB-treated or control cultures. In late culture, 21 cell lines established from 39 carcinogen-treated cultures consisted of 3 diploid cell lines, 5 pseudodiploid cell lines and 13 aneuploid cell lines. Eighteen of these 21 cell lines had marker chromosomes. Of the 2 cell lines established from 15 control cultures both were aneuploid, but a marker chromosome was detected in only one of these. GGT activity was detected in 11 of 21 cell lines established from the carcinogen-treated cultures but not in those from control cultures. Morphological features of the cell lines which varied from normal to cancerous included polymorphism, increased nuclear/cytoplasmic ratio and prominent nucleoli. No cell line established in this study developed tumors in host rats during a 1-year observation period.

  13. Effect of Cucurbita pepo L. Fruit Pulp on Testis Histological Changes in Adult Rats

    Directory of Open Access Journals (Sweden)

    M Mohsen pour

    2014-09-01

    Full Text Available Background & aim: The Cucurbita pepo L. fruit pulp contains anti-oxidant, vitamins A, C and E, cucurbitacin, β-carotene and α-carotene, B complex vitamins, vitamin B6, pantetonic acid and contains minerals as well. The aim of this study was to evaluate the effect of pumpkin fruits on spermatogenesis and testicular tissue changes in male rats. Methods: The present experimental study was conducted on forty adult male Wistar rats in four groups of ten. The control group received no drug treatment whereas the experimental groups were treated with 20, 40 and 80 percent of Cucurbita pepo L. fruit pulp orally for 28 days. At the end of the twenty-eighth day, the animals were operated and tissue sections were prepared after testes were removed. Histological changes between the experimental and control groups were examined by light microscopy. Using t-test, ANOVA and Tukey test data were analyzed. . Results: The consumption of pumpkin fruit at amounts of 40 and 80 percent increase in the number of spermatogonia, primary spermatocytes and spermatids were (p <0.05. It also showed that at 80% increase in the concentration of spermatozoa in the seminiferous tubules was observed. Conclusion: The results indicated that the pumpkin fruits containing ingredients such as cucurbitacin, pantothenic acid, vitamins and minerals that can increase testosterone level and improve the process of spermatogenesis.

  14. Recombinant adeno-associated virus vector expressing angiostatin inhibits preretinal neovascularization in adult rats.

    Science.gov (United States)

    Lai, Chi-Chun; Wu, Wei-Chi; Chen, Show-Li; Sun, Ming-Hui; Xiao, Xiao; Ma, Lih; Lin, Keng-Kuo; Tsao, Yeou-Ping

    2005-01-01

    Clinically, preretinal neovascularization (PNV) induced by vessel occlusion is one of the leading causes to induce blindness. The present study was designed to determine if a recombinant adeno-associated viral vector expressing mouse angiostatin (rAAV-angiostatin) can inhibit experimental PNV in an adult Sprague-Dawley rat model. rAAV-angiostatin and rAAV-lacZ were delivered by intravitreal injections to the right and left eyes of rats. Transgenetic expression of angiostatin in the retina was determined by reverse-transcriptase polymerase chain reaction (RT-PCR). PNV was established by rose-bengal-assisted laser-induced retinal vein occlusion 21 days after the viral injections. The total number and sizes of the neovascular tufts were analyzed 14 days after venous occlusion using retinal flat mount by fluorescein-isothiocyanate-dextran angiography. Electroretinograms (ERGs) were recorded to study any possibility of retinal toxicity of rAAV-angiostatin 3 months after the injections. Angiostatin gene expression in the retina was detectable by RT-PCR, and ERG analysis showed no reduction of b-waves in the rAAV-angiostatin-injected eyes. The number and size of neovascular tufts were significantly lower in rAAV-angiostatin-injected eyes (p = 0.001) than controls. These findings indicated that rAAV-angiostatin successfully suppressed experimental PNV, and no retinal toxicity of the rAAV-angiostatin injection was observed according to ERG recordings. PMID:15637422

  15. Fenugreek potent activity against nitrate-induced diabetes in young and adult male rats.

    Science.gov (United States)

    El-Wakf, Azza M; Hassan, Hanaa A; Mahmoud, Ashraf Z; Habza, Marwa N

    2015-05-01

    Nitrate has described as an endocrine disruptor that promotes onset of diabetes. This study was undertaken to evaluate diabetic effect of high nitrate intake in young and adult male rats and its amelioration by fenugreek administration. The study revealed significant increase in serum glucose and blood glycosylated hemoglobin (HbA1c%), while serum insulin and liver glycogen were decreased among nitrate exposed animals, in particular the young group. A significant reduction in the body weight gain and serum thyroid hormones (T4 & T3) was also recorded. Further reduction in serum levels of urea and creatinine, as well as total protein in serum, liver and pancreas was demonstrated, with elevation in their levels in the urine of all nitrate exposed groups. Meanwhile, the activity of serum transaminases (ALT and AST) was increased, with decline in their activity in the liver tissue. In addition, an elevation in serum total bilirubin, tissues (liver and pancreas) nitric oxide and lipid profile, as well as liver activity of glucose-6-phosphatase was recorded. Fenugreek administration to nitrate exposed rats was found to be effective in alleviating hyperglycemia and other biochemical changes characterizing nitrate-induced diabetes. So, fenugreek can be considered to possess potent activity against onset of nitrate induced-diabetes. PMID:24615531

  16. Effects of early maternal separation on the performance in the elevated plus maze in adult rats

    International Nuclear Information System (INIS)

    It has been demonstrated that disruption of mother pup interaction during early life exerts long lasting effects on the brain and behavioral development. Therefore subjects exposed to early maternal separation stress (MS) show variations in anxiety like behaviors. The aim of this study was to investigate the specific effects of SMT stress on anxiety like behaviors in adult male and female wistar rats. Rats were housed with reversed light dark cycle (light on at 7 p.m., off at 7 a.m.), water and food ad libitum. Separation was carried out in postnatal days 1 to 21, twice daily in dark cycle (7:00 a 10:00 y 13:00 a 16:00 p.m.). The anxiety like behaviors were tested through the elevated plus maze (EPM) when the pups reached 230 g of weigh. We found that the MS stress has sex specific effects on anxiety like behaviors: the maternal separated females displayed a lesser anxious outline than the not separated ones and the separated males showed a large exploration/avoidance conflict. These results confirm previous effects of our labs, which may be related to an interaction between vulnerability to environmental challenge and maternal care compensatory behaviors

  17. Reutilization of surfactant phosphatidylcholine by isolated adult rat type II cells in culture

    International Nuclear Information System (INIS)

    The reutilization of surfactant phospholipids by the mammalian lung has been demonstrated in vivo by other laboratories. The authors have reported the uptake of native surfactant labeled with radioisotopes or fluorescent fatty acids previously. This work has been extended to determine if surfactant lipids are utilized intact or metabolized and resynthesized. Adult rat type II cells were prepared by trypsin treatment and purified by albumin gradient centrifugation and differential adherence. After 22 hrs in culture the cells were incubated in serum-free medium containing 3% bovine serum albumin, rat lung surfactant (20 μM phosphatidylcholine), 1,2[1-14C]dipalmitoyl phosphatidylcholine and [3H-methyl-choline]dipalmitoyl phosphatidylcholine. After a 90 min incubation the cells were scraped from the culture dishes, disrupted by homogenization and lamellar bodies isolated from other cellular fractions. The ratio of the labeled lipids in the medium was compared to that in the lamellar body fractions and in the combined residual fractions. These experiments showed that the ratio of the lamellar body label to the medium label is 0.87 and that for the combined residual fractions the ratio is 1.05 suggesting that the phosphatidylcholine is taken up and reutilized as an intact molecule by the type II cells

  18. Dietary Antioxidants Effectiveness on Carbon Tetrachloride-Induced Hepatotoxicity in Adult Female Albino Rats

    International Nuclear Information System (INIS)

    Hepatic toxicity through carbon tetrachloride (CCI4) induced lipid peroxidation was extensively used in experimental models to understand the cellular mechanisms behind oxidative damage and to evaluate the therapeutic potential of drugs and dietary antioxidants. The ameliorative effect of Aloe vera juice and carrot supplementation on hepato carcinogenesis induced by carbon tetrachloride in adult female albino rats was investigated. The carcinogenic process was determined by measuring gamma-glutamyl transpeptidase (GGT), ornithine carbamyl transferase (OCT), thiobarbituric acid reactive substances (TBARs), representing levels of lipid peroxides, and carcinoembryonic antigen (CEA) in the sera of female albino rats. Carbon tetrachloride significantly elevated the serum GGT, OCT activities and the level of TBARs. Administration of Aloe vera leaf juice filtrate after CCl4 treatment resulted in a non-significant modification in GGT, OCT activities and significantly improved the level of TBARs in comparison with control. Supplementation of carrot to CCI4 treated animals led to a great amelioration in OCT activity and TBARs level, whereas GGT activity was ameliorated but statistically changed compared to control. There was a non-significant alteration in the level of CEA in all treated groups compared to normal control one

  19. PDX-1 Expression in Pancreatic Ductal Cells after Partial Pancreatectomy in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    刘涛; 王春友; 万赤丹; 熊炯忻; 许逸卿; 周峰

    2004-01-01

    To investigate the protein and mRNA expression of pancreas/duodenal homeobox-1(PDX-1), a transcription factor as a marker for pancreatic stem cells, in pancreatic ductal cells of rats after partial (90 %) pancreatectomy and evaluated the significance of the PDX-1 expression.Western blot and Reverse transcriptase-polymerase chain reaction (RT-PCR) were used to detect the expression of PDX-1 protein and mRNA respectively. PDX-1 protein was only faintly detected in pancreatic ductal cells on the day 1 after partial pancreatectomy. On the day 2 and 3 after operation in operation group, a 2-3 fold increased PDX-1 protein was observed, corresponding to the characteristic 42-kD protein in Western blot. There was significant difference between operation group and sham-operation group (P<0.05). PDX-1 protein expression on the day 5 and 7 after operation had already been no difference from control group (P>0.05). RT-PCR revealed the PDX-1mRNA expression showed no significant difference between operation group at various time points and sham-operation group (P>0.05). These results indicate that there was overexpression of PDX-1 in the cells of pancreatic epithelium during the regeneration of remnant pancreas after partial pancreatectomy in adult rats, suggesting the pancreatic stem cells in pancreatic ductal epithelial cells are involved in the regeneration of remnant pancreas and the expression of PDX-1 in ductal cells was regulated posttranscription.

  20. Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats

    Institute of Scientific and Technical Information of China (English)

    Ladachart Taepongsorat; Prakong Tangpraprutgul; Noppadon Kitana; Suchinda Malaivijitnond

    2008-01-01

    Aim: To investigate effects of quercetin on weight and histology of testis and accessory sex organs and on sperm quality in adult male rats. Methods: Male Sprague-Dawley rats were injected s.c. with quercetin at the dose of 0, 30,90, or 270 mg/kg body weight/day (hereafter abbreviated Q0, Q30, Q90 and Q270, respectively), and each dose was administered for treatment durations of 3, 7 and 14 days. Results: From our study, it was found that the effects of quercetin on reproductive organs and sperm quality depended on the dose and duration of treatment. After Q270 treatment for 14 days, the weights of testes, epididymis and vas deferens were significantly increased, whereas the weights of seminal vesicle and prostate gland were significantly decreased, compared with those of Q0. The histo-logical alteration of those organs was observed after Q270 treatment for 7 days as well as 14 days. The sperm motility, viability and concentration were significantly increased after Q90 and Q270 injections after both of 7 and 14 days. Changes in sperm quality were earlier and greater than those in sex organ histology and weight, respectively.Conclusion: Overall results indicate that quercetin might indirectly affect sperm quality through the stimulation of the sex organs, both at the cellular and organ levels, depending on the dose and the duration of treatment. Therefore, the use of quercetin as an alternative drug for treatment of male infertility should be considered.

  1. The Effect of the Alcoholic Extract of Walnut on the Testis Tissue of Adult Male Rats

    Directory of Open Access Journals (Sweden)

    M Abedinzade

    2012-08-01

    Methods: In the present experimental study, forty adult male Wistar rats weighing 250-300 grams were divided into five groups. The control group did not receive any treatment. Normal saline was intraperitoneally injected to the control group. Experimental groups received three different doses of alcoholic extract of walnut: 10, 20 and 50 mg/ kg intraperitoneally/daily, respectively. The testes were removed from the abdomen and the tissue sections were studied. The gathered data were analyzed using One-way Analysis of variance and Tukey's range test. Results: Results indicated that walnut extract affect the development and maintenance of spermatogenesis to its final stages, and increased the number of sperms and interstitial cells in the testis. Alcoholic extract of walnut during the test instrument did not have much impact on the structure of the sperm tube tissue. Conclusion: The alcoholic extract of walnut led to the increased activity of the testis and interstitial cells, followed by an increase in sperm cells and reproductive activity of male rats.

  2. Expression and role of PAK6 after spinal cord injury in adult rat

    Directory of Open Access Journals (Sweden)

    CHEN Xiang-dong

    2012-02-01

    Full Text Available 【Abstract】Objective: To observe p21-activated kinase 6 (PAK6 expression and its possible role after spinal cord injury (SCI in adult rat. Methods: Sprague-Dawley rats were subjected to spinal cord injury. To explore the pathological and physiological significance of PAK6, the expression patterns and distribution of PAK6 were observed by Western blot, immunohistochemistry and immunofluorescence. Results: Western blot analysis showed PAK6 protein level was significantly up-regulated on day 2 and day 4, then reduced and had no up-regulation till day 14. Immunohistochemistry analysis showed that the expression of PAK6 was significantly increased on day 4 compared with the control group. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and astrocytes in the control group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes were largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA and found its change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells on day 4 after injury. Conclusion: The up-regulation of PAK6 in the injured spinal cord may be associated with glial proliferation. Key words: PAK6 protein, human; p21-activated kinases; Spinal cord injury; Astrocytes

  3. The neurotoxic effects of artemether on the cytoarchitecture of the cerebellum of adult male wistar rats

    International Nuclear Information System (INIS)

    In a 70kg adult man, artemether is given at a total dosage of 480mg for five days in the treatment of malarial. Using t-test analysis technique at 95% confidence interval i.e t < 0.05 and P - value = 2.26, no significant difference was observed between the average brain and cerebellar weight, the average width of cerebellar cortical layers, the density and the average size of Purkinje Cells in the control groups C1 and C2 and the experimental group E. In the present study, there were no gross or morphological differences between the two groups of animals (control and experimental groups) on day 7 at the completion of experimental procedure. A significant statistical increase in average body weight was observed in the control groups C1 (which received only standard diet and water) and C2 (which received 1.23mg/kg body weight of normal saline intramuscularly in addition to standard diet and water) from 140 + 19.65g on day 1 to 146 + 19.90g on day 7 and 151 + 12.0g on day 1 to 156.2 + 12.2g on Day 7 respectively. There was a non-statistically significant apparent reduction in body weight in the experimental group E, (which received intramuscular injection of 1.23mg/kg body weight of artemether), from 160 + 9.0g on day 1 to 157.4 + 8.0g on day 7. The rats in the control groups CI and C2 displayed normal balance and co-ordination, while rats in the experimental group E, showed abnormalities of balance and co-ordination. This study investigated the effects of corresponding 1.23mg/kg body weight of artemether for a period of seven days on the functions of rats after drug administration. (author)

  4. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  5. Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat.

    Science.gov (United States)

    Haeno, Satoko; Maeda, Naoyuki; Yamaguchi, Kousuke; Sato, Michiko; Uto, Aika; Yokota, Hiroshi

    2016-04-01

    The synthetic estrogen diethylstilbestrol is used to prevent miscarriages and as a therapeutic treatment for prostate cancer, but it has been reported to have adverse effects on endocrine homeostasis. However, the toxicity mechanism is poorly understood. Recently, we reported that diethylstilbestrol impairs adrenal steroidogenesis via cholesterol insufficiency in adult male rats. In the present study, we found that the adrenal cholesterol level was significantly reduced without of the decrease in other precursors in the adrenal steroidogenesis 24 h after a single dose of diethylstilbestrol (0.33 μg/g body mass). The serum HDL/cholesterol level was also reduced only 12 h after the diethylstilbestrol exposure. The level of Apo E, which is indispensable for HDL/cholesterol maturation, was decreased in both the HDL and VLDL/LDL fractions, whereas the level of Apo A1, which is an essential constituent of HDL, was not altered in the HDL fraction. Because the liver is a major source of Apo E and Apo A1, the secretion rates of these proteins were examined using a liver perfusion experiment. The secretion rate of Apo A1 from the liver was consistent between DES-treated and control rats, but that of Apo E was comparatively suppressed in the DES-treated rats. The disruption of adrenal steroidogenesis by diethylstilbestrol was caused by a decrease in serum HDL/cholesterol, which is the main source of adrenal steroidogenesis, due to the inhibition of Apo E secretion from the liver. PMID:26349937

  6. Dorsal Hump Reduction and Osteotomies.

    Science.gov (United States)

    Azizzadeh, Babak; Reilly, Michael

    2016-01-01

    This article discusses the technique for planning, executing, and troubleshooting dorsal hump reduction for the cosmetic rhinoplasty patient. Details of the discussion include the necessary elements of the preoperative consultation with the patient, the specific instruments used to effectively and reproducibly create osteotomies, the anatomic and patient variables that require special attention, and the necessary measures to guard against potential complications. PMID:26616694

  7. [Comparative study of the long-term behavioral effects of noopept and piracetam in adult male rats and female rats in postnatal period].

    Science.gov (United States)

    Voronina, T A; Guzevatykh, L S; Trofimov, S S

    2005-01-01

    Adult male and female rats were treated with the peptide nootrope drug noopept (daily dose, 0.1 mg/kg) and piracetam (200 mg/kg). In the period from 8th to 20th day, both drugs (cognitive enhancers) suppressed the horizontal and vertical activity and the anxiety in test animals as compared to the control group treated with 0.9 % aqueous NaCl solution. Early postnatal injections of the nootropes influenced neither the morphology development nor the behavior of adult female rats in the plus maze, extrapolational escape, passive avoidance, and pain sensitivity threshold tests. Animals in the "intact" group (having received neither drugs not physiological solution, that is, developing in a poor sensor environment), showed less pronounced habituation in the open field test as compared to the control and drug treated groups. PMID:15934357

  8. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu-jing Chen

    2014-01-01

    Full Text Available Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood.

  9. The effects of early-life predator stress on anxiety- and depression-like behaviors of adult rats.

    Science.gov (United States)

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  10. 针刺下大鼠脊髓背根神经元放电的时间结构%Temporal Structures of Spikes in Spinal Dorsal Root Ganglion Neuron of the Rat Under Manual Acupuncture

    Institute of Scientific and Technical Information of China (English)

    陈颖源; 王江; 邓斌; 魏熙乐; 于海涛

    2015-01-01

    神经元放电的时间结构包含了大量的编码信息。为了研究针刺作用下神经元放电的时间结构,通过不同手法针刺刺激大鼠足三里穴在脊髓背根处获取神经放电序列,运用fano因子和分散分析等方法对神经充放电序列进行分形分析。结果表明:部分神经元放电序列的 fano 因子随统计时间窗的增加而增加,具有长时程相关性。部分神经元序列的 fano 因子在小时间窗处出现明显的峰值,具有短时程相关性。放电特征分析显示该峰值是由于簇放电所致。这些结果说明针刺能引起脊髓背根神经元放电时间结构的变化,针刺效应是长时程效应和短时程效应相结合的产物。这些结果为针刺注重时间效应提供了合理解释,也为量化针刺手法提供了参考。%The temporal structure of the neural spikes contains much information of neural coding. In order to under-stand the temporal structure of neural spikes under manual acupuncture(MA),the time series of spike discharge were obtained from spinal dorsal root ganglion(SDRG)during different manual acupuncture manipulations taken at Zusanli point of experiment rats. Fano factor and dispersional analysis(DA)were introduced to analyze these time series. Fano factors increase with time windows increasing in some time series of SDRG neurons,but not in the shuffled surrogate data. This phenomenon reveals that these time series have long-term correlation. Some fano factor curves have an ob-vious peak when the sizes of counting time window are relatively small,which reveals that these time series have short-term correlation. These peaks are proved to be correlated to the bursting evoked by MA stimulations through analyzing the discharge patterns of experimental data. These results suggest that MA stimulations change the temporal structure of SDRG neuron spiking. Both long-term correlation and short-term correlation are the characters of MA effects

  11. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioral, or gene expression measures in adult male rats

    OpenAIRE

    Bourke, Chase H.; Stowe, Zachary N.; Neigh, Gretchen N.; Olson, Darin E.; Owens, Michael J

    2013-01-01

    Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, preg...

  12. Functional capacity and cryopreservation of fetal rat pancreas in streptozotocin-diabetes. [Effectiveness of transplantation of fetal pancreas for control of diabetes in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.; Clark, W.; Molnar, I.G.; Kemp, J.; Mazur, P.; Mullen, Y.S.

    1976-01-01

    The fetal rat pancreas has a marked capacity for growth and maturation in glucose responsivity after transplantation under the kidney capsules of adult rats. The optimal conditions for function of the organ are a 3-week period of growth in a normal rat before transfer to a diabetic animal. Under these conditions diabetes is completely reversed by one fetal pancreas, and glucose disappearance rate and plasma insulin response to glucose are normal. Shunting of the venous drainage into the liver from fetal pancreases placed beneath the kidney capsule results in a marked improvement in diabetes control, and this technique may prove useful in experimental or human applications. Cryopreservation of the fetal pancreas has been successfully accomplished and will serve as a useful adjuvant to this method of reversing experimental diabetes.

  13. OPIOID RECEPTORS IN THE BASOLATERAL AMYGDALA BUT NOT DORSAL HIPPOCAMPUS MEDIATE CONTEXT-INDUCED ALCOHOL SEEKING

    OpenAIRE

    Marinelli, Peter W.; Funk, Douglas; Juzytsch, Walter; Lê, A.D.

    2010-01-01

    Contexts associated with the availability of alcohol can induce craving in humans and alcohol seeking in rats. The opioid antagonist naltrexone attenuates context-induced reinstatement (renewal) of alcohol seeking and suppresses neuronal activation in the basolateral amygdaloid complex and dorsal hippocampus induced by such reinstatement. The objective of this study was to determine whether pharmacological blockade of opioid receptors in the basolateral amygdala or dorsal hippocampus would at...

  14. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems. PMID:26915106

  15. The effects of gonadectomy and binge-like ethanol exposure during adolescence on open field behaviour in adult male rats.

    Science.gov (United States)

    Yan, Wensheng; Kang, Jie; Zhang, Guoliang; Li, Shuangcheng; Kang, Yunxiao; Wang, Lei; Shi, Geming

    2015-09-14

    Binge drinking ethanol exposure during adolescence can lead to long-term neurobehavioural damage. It is not known whether the pubertal surge in testosterone that occurs during adolescence might impact the neurobehavioural effects of early ethanol exposure in adult animals. We examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats around postnatal day (P) 23. From P28-65,the rats were administered 3.0g/kg ethanol using a binge-like model of exposure. Dependent measurements included tests of open field behaviour, blood ethanol concentrations, and testosterone levels. As adults, significant decreases in open field activity were observed in the GX rats. The open field behaviour of the GX rats was restored after testosterone administration. Binge-like ethanol exposure altered most of the parameters of the open field behaviour, suggestive of alcohol-induced anxiety, but rats treated with alcohol in combination with gonadectomy showed less motor behaviour and grooming behaviour and an increase in immobility, suggesting ethanol-induced depression. These results indicated that testosterone is required for ethanol-induced behavioural changes and that testicular hormones are potent stimulators of ethanol-induced behaviours. PMID:26238258

  16. Beneficial Effects of Coenzyme Q10 in Reduction of Testicular Tissue Alteration Following Induction of Diabetes in Adult Rats

    Directory of Open Access Journals (Sweden)

    Kianifard Davoud

    2015-03-01

    Full Text Available Background and Aims: Various types of infertility are associated with uncontrolled hyperglycemia and diabetes. Development of oxidative stress is one the most important factors in the alteration of spermatogenesis in diabetic conditions. Consequently, the reduction of oxidative stress with antioxidant compounds can be effective in the reduction of tissue alterations. The aim of this study was to evaluate the efficacy of coenzyme Q10 in improvement of spermatogenesis in adult diabetic rats. Material and Methods: 32 adult rats were divided into four groups of control and treatment. Coenzyme Q10 (10 mg/kg body weight - b.w. was administrated to one control and one diabetic (intraperitoneal injection of 45 mg/kg b.w. of Streptozotocin groups. Blood concentrations of FSH, LH and Testosterone were measured. Histology of testicular tissue and sperm analysis were considered for evaluation of spermatogenesis. Results: Administration of Coenzyme Q10 led to increase of pituitary gonadotropins levels in diabetic rats. Testosterone levels were not changed significantly. Testicular morphology, spermatogenic indices and sperm analysis were improved in treated diabetic rats. Conclusions: The results of this study suggest that the use of Coenzyme Q10 has positive effects in reduction of spermatogenic alterations following induction of experimental diabetes in rats.

  17. The protective effect of vitamin E against oxidative damage caused by formaldehyde in the testes of adult rats

    Institute of Scientific and Technical Information of China (English)

    Dang-Xia Zhou; Shu-Dong Qiu; Jie Zhang; Hong Tian; Hai-Xue Wang

    2006-01-01

    Aim: To investigate the effect of formaldehyde (FA) on testes and the protective effect of vitamin E (VE) against oxidative damage by FA in the testes of adult rats. Methods: Thirty rats were randomly divided into three groups: (1)control; (2) FA treatment group (Fat); and (3) Fat + VE group. Fat and Fat + VE groups were exposed to FA by inhalation at a concentration of 10 mg/m3 for 2 weeks. In addition, Fat + VE group were orally administered VE during the 2-week FA treatment. After the treatment, the histopathological and biochemical changes in testes, as well as the quantity and quality of sperm, were observed. Results: The testicular weight, the quantity and quality of sperm, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (GSH) were significantly decreased whereas the level of malondialdehyde (MDA) was significantly increased in testes of rats in Fat group compared with those in the control group. VE treatment restored these parameters in Fat + VE group. In addition,microscopy with hematoxylin-eosin (HE) staining showed that seminiferous tubules atrophied, seminiferous epithelial cells disintegrated and shed in rats in Fat group and VE treatment significantly improved the testicular structure in Fat + VE group. Conclusion: FA destroys the testicular structure and function in adult rats by inducing oxidative stress,and this damage could be partially reversed by VE.

  18. Whole-body retetion of 60CoCl2 and 58Co-cyanocobalamin in young and adult rats

    International Nuclear Information System (INIS)

    Whole-body retention of 60CoCl2 and 58Co-cyanocobalamin after oral and intravenous administration was investigated in young and adult rats. Whole-body retention of 58Co-cyanocobalamin was considerably higher than that of 60CoCl2 in rats of all age groups. Younger rats showed higher retention of both CoCl2 and cyanocobalamin than did the adult rats. The biological half life in the slowly decreasing phase after oral administration of 60CoCl2 and 58Co-cyanocobalamin was approximately equal in all age groups and was estimated to be about 10 and 25 days, respectively. These results suggested that the whole-body retention of orally administered 60CoCl2 and 58Co-cyanocobalamin in rats of various ages depends mainly on intestinal absorption rather than endogenous excretion rate. The excretion pattern of 58Co-cyanocobalamin, i.e., F/U ratio etc., is very different from that of inorganic cobalt, and it is therefore assumed that 58Co-cyanocobalamin is rather stable in the body. (auth.)

  19. Perinatal taurine exposure programs patterns of autonomic nerve activity responses to tooth pulp stimulation in adult male rats

    Science.gov (United States)

    Khimsuksri, Sawita; Wyss, J. Michael; Thaeomor, Atcharaporn; Paphangkorakit, Jarin; Jirakulsomchok, Dusit; Roysommuti, Sanya

    2016-01-01

    Perinatal taurine excess or deficit influences adult health and disease, especially relative to the autonomic nervous system. This study tests the hypothesis that perinatal taurine exposure influences adult autonomic nervous system control of arterial pressure in response to acute electrical tooth pulp stimulation. Female Sprague-Dawley rats were fed normal rat chow with 3% β-alanine (taurine depletion, TD), 3% taurine (taurine supplementation, TS) or water alone (control, C) from conception to weaning. Their male offspring were fed normal rat chow and tap water throughout the experiment. At 8–10 weeks of age, blood chemistry, arterial pressure, heart rate and renal sympathetic nerve activity were measured in anesthetized rats. Age, body weight, mean arterial pressure, heart rate, plasma electrolytes, blood urea nitrogen, plasma creatinine and plasma cortisol were not significantly different among the three groups. Before tooth pulp stimulation, low (0.3–0.5 Hz) and high frequency (0.5–4.0 Hz) power spectral densities of arterial pressure were not significantly different among groups, while the power spectral densities of renal sympathetic nerve activity were significantly decreased in TD compared to control rats. Tooth pulp stimulation did not change arterial pressure, heart rate, renal sympathetic nerve and arterial pressure power spectral densities in the 0.3–4.0 Hz spectrum or renal sympathetic nerve firing rate in any group. In contrast, perinatal taurine imbalance disturbed very low frequency power spectral densities of both arterial pressure and renal sympathetic nerve activity (below 0.1 Hz), both before and after the tooth pulp stimulation. The power densities of TS were most sensitive to ganglionic blockade and central adrenergic inhibition, while those of TD were sensitive to both central and peripheral adrenergic inhibition. The present data indicate that perinatal taurine imbalance can lead to aberrant autonomic nervous system responses in

  20. Effect of gibberellic acid on the quality of sperm and in vitro fertilization outcome in adult male rats

    OpenAIRE

    Mohammadreza Hosseinchi; Farhad Soltanalinejad; Gholamreza Najafi; Leila Roshangar

    2013-01-01

    Gibberellic acid (GA3) is a group of plant hormones identified in various plants. The aim of this study was to determine the effects of GA3 on sperm parameters and in vitro fertilization (IVF). Fifty six adult male rats were divided into seven groups as, control, treatment and sham. Following 15, 30 and 45 days of GA3 and methanol alcohol (MA) administration, rats were euthanized and epididymis tail was transferred to human tubular fluid (HTF) medium containing 4 mg mL-1 bovine serum albumin ...

  1. Effect of Monthly Injectable Contraceptive (Mesigyna) on the Uterus of Adult Female Albino Rat: Histological and Immunohistochemical Study

    OpenAIRE

    Abeer M. Hassan, Magda M. Naim, Somaya H. Mahmoud, Fouad M. Badr

    2006-01-01

    Thirty two adult female albino rats were randomized into 2 main groups (control and experimental). The control group (n=8) received IM injection of 0.3 ml of the drug vehicle (castor oil & benzyl benzoate) once every 5 days for 6 times. 50% of rats of this group were scarificed after 24 hours of the last injection while the other 50% were left for 15 days. Experimental group was divided into 2; experimental group 1; E1 (n=12) received IM injection of 1.5 mg/kg BW of the drug (Mesigyna), once ...

  2. Evaluation of some hormonal levels related to age in adult and aged male rats exposed to gamma radiation

    International Nuclear Information System (INIS)

    As we grow older, the ability to produce most hormones in adequate amounts declined. This decline in natural hormones production coincides with nearly every age-related health problems. The present work aims to evaluate the levels of some hormones related to age namely dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulphate (DHEA-s) and melatonin and also the alteration in lipid fractions using male rats subjected to acute sublethal dose of gamma radiation. This study included thirty two male albino rats divided into two main groups; adult group (four months old) and aged group (20 months old). Each group was divided into two subgroups; control group and group irradiated at a dose level of 5 Gray whole body gamma irradiation. Blood samples were collected from both adult and aged groups 3 days post-irradiation after 16 hours fasting. As related to age, the aged group showed significant decrease in DHEA, DHEA-s and melatonin levels and significant increase in total cholesterol, triglycerides, LDL-c and cholesterol/HDL ratio when compared to adult group. Concerning the effect of gamma radiation, the irradiated adult group showed significant (P<0.01) decrease in DHEA, DHEA-s and melatonin levels by values equal to -32.2%, - 39.8% and -67.9%, respectively, and nonsignificant changes in lipids concentrations except for LDL-c level, which showed significant (P<0.05) increase at +58.2 % in irradiated adult group as compared to adult controls. On the other hand, exposure to irradiation of aged rats did not affect the hormonal levels assayed except for the level of DHEA-s which was decreased significantly (P<0.05) by -26.4% as compared to control aged rats. Also, total cholesterol and LDL-c levels were increased significantly (P<0.01) by +17.1% and +27.4 %, respectively in irradiated rats as compared to control aged group. It could be concluded that y-radiation obviously accelerates the aging process in adults suggesting the need for protective agents to overcome the

  3. Growth-associated protein 43 immunoreactivity in the superficial dorsal horn of the rat spinal cord is localized in atrophic C-fiber, and not in sprouted A-fiber, central terminals after peripheral nerve injury.

    Science.gov (United States)

    Doubell, T P; Woolf, C J

    1997-09-15

    Peripheral nerve injury induces the up-regulation in dorsal root ganglion cells of growth-associated protein 43 (GAP-43) and its transport to the superficial laminae of the dorsal horn of the spinal cord, where it is located primarily in unmyelinated axons and growth-cone like structures. Peripheral nerve injury also induces the central terminals of axotomized myelinated axons to sprout and form novel synaptic contacts in lamina II of the dorsal horn. To investigate whether the sprouting of A-fiber central terminals into lamina II is the consequence of GAP-43 incorporation into their terminal membranes, we have used an ultrastructural analysis with double labelling to identify the localization of GAP-43 immunoreactivity. Transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was used to identify C-fiber terminals. Transganglionic transport of the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) was used to label A-fiber sciatic nerve central terminals in combination with GAP-43 immunocytochemistry. GAP-43 was found to colocalize only with WGA-HRP- and not with B-HRP-labelled synapses or axons. In addition, many single-labelled GAP-43 synapses were observed. Many of the WGA-HRP-labelled terminals that were characterized by degenerative changes were GAP-43 immunoreactive. Our results indicate that peripheral nerve injury induces novel synapse formation of A fibers in lamina II but that up-regulated levels of GAP-43 are present mainly in other axon projections to the superficial dorsal horn. PMID:9303528

  4. Arrest in ciliated cell expansion on the bronchial lining of adult rats caused by chronic exposure to industrial noise

    International Nuclear Information System (INIS)

    Workers chronically exposed to high-intensity/low-frequency noise at textile plants show increased frequency of respiratory infections. This phenomenon prompted the herein investigation on the cytology of the bronchial epithelium of Wistar rats submitted to textile noise. Workplace noise from a cotton-mill room of a textile factory was recorded and reproduced in a sound-insulated animal room. The Wistar rats were submitted to a weekly schedule of noise treatment that was similar to that of the textile workers (8h/day, 5 days/week). Scanning electron microscopy (SEM) was used to compare the fine morphology of the inner surface of the bronchi in noise-exposed and control rats. SEM quantitative cytology revealed that exposure to noise for 5-7 months caused inhibition in the natural expansion of the area occupied by ciliated cells on the bronchial epithelium as adult rats grow older. This difference between noise-exposed and age-matched control rats was statistically significant (P0.05) and documents that the cytology of the rat bronchial epithelium is mildly altered by noise exposure. The decrease in the area of bronchial cilia may impair the mucociliar clearance of the respiratory airways and, thus, increase vulnerability to respiratory infection

  5. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract.

    Science.gov (United States)

    Rai, Kiranmai S; Murthy, K Dilip; Rao, Muddanna S; Karanth, K Sudhakar

    2005-07-01

    Young adult (60 day old) Wistar rats of either sex were orally intubated with 50 mg/kg body weight and 100 mg/kg body weight of aqueous root extract of Clitoria ternatea (CTR) for 30 days, along with age-matched saline controls. These rats were then subjected to passive avoidance tests and the results from these studies showed a significant increase in passive avoidance learning and retention. Subsequent to the passive avoidance tests, these rats were killed by decapitation. The amygdala was processed for Golgi staining and the stained neurons were traced using a camera lucida and analysed. The results showed a significant increase in dendritic intersections, branching points and dendritic processes arising from the soma of amygdaloid neurons in CTR treated rats especially in the 100 mg/kg group of rats, compared with age-matched saline controls. This improved dendritic arborization of amygdaloid neurons correlates with the increased passive avoidance learning and memory in the CTR treated rats as reported earlier. The results suggest that Clitoria ternatea aqueous root extract enhances memory by increasing the functional growth of neurons of the amygdala. PMID:16161034

  6. Effects of chronic isoproterenol administration of β1-adrenoceptors and growth of pancreas of young and adult rats

    International Nuclear Information System (INIS)

    [3H]Dihydroalprenolol (DHA) binding of membranes of adult pancreas differed from that of pancreas of young rats, and the DHA binding in the presence of atenolol or butoxamine also was different in the two age groups. The adult pancreas had 93% β2- and 7% β1-adrenoceptors and did not exhibit an increased incorporation of [3H]thymidine into deoxyribonucleic acid (DNA) following 2 days of DL-isoproterenol (ISO) administration; in contrast, pancreas of the 20-day-old rat had 71% β2-adrenoceptors and 27% β1-adrenoceptors and exhibited a 34-fold increase over that of adult, and a 6-fold increase over that of the control 20-day-old pancreas. Acinar cell differentiation was also accelerated by a 7-day regimen of ISO administration from 13 to 20 days of age. These growth responses to ISO appear to be β1 mediated. The lack of β1-adrenoceptors in the adult may account for the failure of the adult pancreas to exhibit a growth response to ISO

  7. Exposure to Hyperoxia Decreases the Expression of Vascular Endothelial Growth Factor and Its Receptors in Adult Rat Lungs

    OpenAIRE

    Klekamp, Jessica G.; Jarzecka, Kasia; Perkett, Elizabeth A.

    1999-01-01

    Exposure to high levels of inspired oxygen leads to respiratory failure and death in many animal models. Endothelial cell death is an early finding, before the onset of respiratory failure. Vascular endothelial growth factor (VEGF) is highly expressed in the lungs of adult animals. In the present study, adult Sprague-Dawley rats were exposed to >95% FiO2 for 24 or 48 hours. Northern blot analysis revealed a marked reduction in VEGF mRNA abundance by 24 hours, which decreased to less than 50% ...

  8. Interaction Between Vitamin D Receptor and Caveolin-3 and Regulation by 1, 25 Dihydroxyvitamin D3 in Adult Rat Cardiomyocytes

    OpenAIRE

    Zhao, Guisheng; Simpson, Robert U.

    2010-01-01

    We show that 1alpha, 25-Dihydroxyvitamin D3 (1,25(OH)2D3) and a synthetic non-genotropic vitamin D analog agonist, 1a,25(OH)2-lumisterol (JN), exhibit similar rapid effects on sarcomere shortening (contraction) of isolated adult cardiomyocyte. We also report that the vitamin D receptor (VDR) specifically interacts with Caveolin-3 in the t-tubules and sarcolemma of isolated adult rat cardiac myocytes. Confocal immunofluorescence microscopy analysis showed co-localization of VDR and Caveolin-3 ...

  9. The Ginkgo biloba Extract Reverses the Renal Effects of Titanium Dioxide Nanoparticles in Adult Male Rats.

    Science.gov (United States)

    Escárcega-González, Carlos Enrique; Reynoso-Andeola, Irma Guadalupe; Jaramillo-Juárez, Fernando; Martínez-Ruvalcaba, Haydée; Posadas Del Rio, Francisco A

    2016-01-01

    The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200-300 g), divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO2-NPs) group (5.0 mg/kg, intravenous), GbE group (10 mg/kg, intraperitoneal), and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student's t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0-5, 5-24, 24-48, and 48-72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5-24, 24-48, and 48-72). Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats. PMID:27042354

  10. The Ginkgo biloba Extract Reverses the Renal Effects of Titanium Dioxide Nanoparticles in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Escárcega-González

    2016-01-01

    Full Text Available The Ginkgo biloba extract (GbE is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200–300 g, divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous, titanium dioxide nanoparticles (TiO2-NPs group (5.0 mg/kg, intravenous, GbE group (10 mg/kg, intraperitoneal, and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal, followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student’s t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0–5, 5–24, 24–48, and 48–72 h. Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5–24, 24–48, and 48–72. Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats.

  11. The GnRH analogue triptorelin confers ovarian radio-protection to adult female rats

    Energy Technology Data Exchange (ETDEWEB)

    Camats, N. [Institut de Biotecnologia i de Biomedicina (I.B.B.), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, F. [Institut de Biotecnologia i de Biomedicina (I.B.B.), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, J.J. [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, J. [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin-Mateo, M. [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, M. Garcia, E-mail: Montserrat.Garcia.Caldes@uab.es [Institut de Biotecnologia i de Biomedicina (I.B.B.), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)

    2009-10-02

    There is a controversy regarding the effects of the analogues of the gonadotrophin-releasing hormone (GnRH) in radiotherapy. This has led us to study the possible radio-protection of the ovarian function of a GnRH agonist analogue (GnRHa), triptorelin, in adult, female rats (Rattus norvegicus sp.). The effects of the X-irradiation on the oocytes of ovarian primordial follicles, with and without GnRHa treatment, were compared, directly in the female rats (F{sub 0}) with reproductive parameters, and in the somatic cells of the resulting foetuses (F{sub 1}) with cytogenetical parameters. In order to do this, the ovaries and uteri from 82 females were extracted for the reproductive analysis and 236 foetuses were obtained for cytogenetical analysis. The cytogenetical study was based on the data from 22,151 metaphases analysed. The cytogenetical parameters analysed to assess the existence of chromosomal instability were the number of aberrant metaphases (2234) and the number (2854) and type of structural chromosomal aberrations, including gaps and breaks. Concerning the reproductive analysis of the ovaries and the uteri, the parameters analysed were the number of corpora lutea, implantations, implantation losses and foetuses. Triptorelin confers radio-protection of the ovaries in front of chromosomal instability, which is different, with respect to the single and fractioned dose. The cytogenetical analysis shows a general decrease in most of the parameters of the triptorelin-treated groups, with respect to their controls, and some of these differences were considered to be statistically significant. The reproductive analysis indicates that there is also radio-protection by the agonist, although minor to the cytogenetical one. Only some of the analysed parameters show a statistically significant decrease in the triptorelin-treated groups.

  12. Investigation of liver tissue and biochemical parameters of adult wistar rats treated with Arctium lappa L.

    Directory of Open Access Journals (Sweden)

    Fabrícia Souza Predes

    2009-04-01

    Full Text Available This study was carried out to evaluate the effects of Arctium lappa L. (burdock on the liver of adult male Wistar rats as measured by light microscopy and biochemical parameters. The rats received the extract in water bottles at doses of 10 or 20 g/L daily for 40 days. There were no significant changes in the plasma levels of albumin, aspartate transaminase (AST, alanine transaminase (ALT, gamma glutamyl transferase (GGT, total protein, total cholesterol, urea, uric acid, triacylglycerol, calcium, phosphorus, chlorine and direct bilirubin. The morphological analysis did not reveal histopathological alterations in liver tissue. Both biochemical and morphological data did not indicate A. lappa toxicity.A bardana (Arctium lappa L é uma planta trazida do Japão e aclimatada no Brasil, e é extensamente utilizada na medicina popular em todo mundo. Este estudo foi realizado para avaliar os possíveis efeitos da A. lappa no fígado e nos parâmetros bioquímicos plasmáticos em ratos Wistar adultos. Estes receberam a infusão de bardana nas doses de 10 ou 20 g de folhas secas /L de água, por 40 dias. Não houve alteração significativa nos níveis plasmáticos de albumina, aspartato transaminase (AST, alanina transaminase (ALT, gamma glutamil transferase (GGT, proteínas totais, colesterol total, uréia, ácido úrico, triglicérides, cálcio, fósforo, bilirrubina direta e cloro. A análise morfológica não revelou alterações histopatológicas no fígado. Os dados bioquímicos e morfológicos não indicaram a toxicidade da bardana.

  13. Histology, Hyperglycemia and Dyslipidemia Evaluations of Aqueous Extract of Moringa oleifera Leaves on Adult Wistar Rat.

    Directory of Open Access Journals (Sweden)

    Oboma, Yibala .I

    2015-09-01

    Full Text Available Chronic hyperglycemia is an indicator of diabetes mellitus and chronic dyslipidemia a risk factor cardiovascular disease. OBJECTIVE: We aim at evaluating the effect of Moringa oleifera on glucose level, lipid profile, cardiac markers, liver enzymes, proteins and histology of the heart and liver. METHODOLOGY: Twenty six male (26 adult Wistar rats were enrolled for the study. Acclimatized and randomly divided into four groups (A, B, C&-D, n=6 and controls. They rat were given intraperitoneal injection of aqueous Moringa oleifera leaf extract. Sacrifice was carried out on 24hrs, 7days, 14days, and 28days respectively. Tissues collected were prepared for histology using heamatoxylin and eosin staining techniques while serum lipid profile, glucose level, creatine kinase, malondialdehyde (MDA and liver enzymes were analyze using Selectra and micro Elisa. RESULT: High doses (500mg/kg and prolonged exposure to the extract resulted in spectrum effects. Prolonged and increase concentration of extract administration causes increase in body weight and is statistically significant at P<0.05, t=35 and df=8, decrease in lipid profile, creatine kinase (CK-MB, malondialdehyde (MDA, liver enzymes and glucose at both higher and lower doses of 500mg/kg and 300mg/kg respectively. Photomicrograph with magnification of x400, show normal histology of the heart and liver. CONCLUSION: Aqueous leaf extract of Moringa oleifera show a potential anti-hyperglycemia and antilipidemic properties with no notable hepatotoxicity and cardiac injury. This study supports the popular sayings about the tradomedicinal use of Moringa oleifera in the treatment of diabetes mellitus and hypertension.

  14. The GnRH analogue triptorelin confers ovarian radio-protection to adult female rats

    International Nuclear Information System (INIS)

    There is a controversy regarding the effects of the analogues of the gonadotrophin-releasing hormone (GnRH) in radiotherapy. This has led us to study the possible radio-protection of the ovarian function of a GnRH agonist analogue (GnRHa), triptorelin, in adult, female rats (Rattus norvegicus sp.). The effects of the X-irradiation on the oocytes of ovarian primordial follicles, with and without GnRHa treatment, were compared, directly in the female rats (F0) with reproductive parameters, and in the somatic cells of the resulting foetuses (F1) with cytogenetical parameters. In order to do this, the ovaries and uteri from 82 females were extracted for the reproductive analysis and 236 foetuses were obtained for cytogenetical analysis. The cytogenetical study was based on the data from 22,151 metaphases analysed. The cytogenetical parameters analysed to assess the existence of chromosomal instability were the number of aberrant metaphases (2234) and the number (2854) and type of structural chromosomal aberrations, including gaps and breaks. Concerning the reproductive analysis of the ovaries and the uteri, the parameters analysed were the number of corpora lutea, implantations, implantation losses and foetuses. Triptorelin confers radio-protection of the ovaries in front of chromosomal instability, which is different, with respect to the single and fractioned dose. The cytogenetical analysis shows a general decrease in most of the parameters of the triptorelin-treated groups, with respect to their controls, and some of these differences were considered to be statistically significant. The reproductive analysis indicates that there is also radio-protection by the agonist, although minor to the cytogenetical one. Only some of the analysed parameters show a statistically significant decrease in the triptorelin-treated groups.

  15. Evaluation of possible toxic effects of spearmint (Mentha spicata) on the reproductive system, fertility and number of offspring in adult male rats

    OpenAIRE

    Fatemeh Nozhat; Sanaz Alaee; Khodabakhsh Behzadi; Najmeh Azadi Chegini

    2014-01-01

    Objective: In this study we investigated the effects of spearmint (Mentha spicata Labiatae) on the reproductive system, fertility and number of offspring in adult male rats. Materials and Methods: Adult Wistar male rats in one control (C) and three experimental groups (I, II and III) received 0, 10, 20 and 40 mg/kg spearmint extract orally for 45 days, respectively.  Following this treatment, the animals’ weights, and the standard weight of reproductive tissues, sperm count, sperm motility an...

  16. Differential effects of alprazolam and clonazepam on the immune system and blood vessels of non-stressed and stressed adult male albino rats

    OpenAIRE

    Elmesallamy, Ghada E.; Abass, Marwa A.; Ahmed Refat, Nahla A.G.; Atta, Amal H.

    2011-01-01

    Benzodiazepines belongs to one of the most commonly used anxiolytic and anticonvulsant drugs in the world. Full description of toxic effects on different organs is lacking for nearly all the current benzodiazepines. The aim of the current work was to study the immunologic and vascular changes induced by sub-chronic administration of alprazolam and clonazepam in non-stressed and stressed adult male albino rats. Forty-two adult male albino rats were divided into 6 groups (I): (Ia) Negative cont...

  17. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.

    Science.gov (United States)

    Le Guen, Marie; Chaté, Valérie; Hininger-Favier, Isabelle; Laillet, Brigitte; Morio, Béatrice; Pieroni, Gérard; Schlattner, Uwe; Pison, Christophe; Dubouchaud, Hervé

    2016-02-01

    Decline in skeletal muscle mass and function starts during adulthood. Among the causes, modifications of the mitochondrial function could be of major importance. Polyunsaturated fatty (ω-3) acids have been shown to play a role in intracellular functions. We hypothesize that docosahexaenoic acid (DHA) supplementation could improve muscle mitochondrial function that could contribute to limit the early consequences of aging on adult muscle. Twelve-month-old male Wistar rats were fed a low-polyunsaturated fat diet and were given DHA (DHA group) or placebo (control group) for 9 wk. Rats from the DHA group showed a higher endurance capacity (+56%, P supplementation could be of potential interest for the muscle function in adults and for fighting the decline in exercise tolerance with age that could imply energy-sensing pathway, as suggested by changes in phospho-AMPK/AMPK ratio. PMID:26646102

  18. Inputs to the dorsal striatum of the mouse conserve the parallel circuit architecture of the forebrain

    Directory of Open Access Journals (Sweden)

    Tianyi Mao

    2010-12-01

    Full Text Available The basal ganglia play a critical role in the regulation of voluntary action in vertebrates. Our understanding of the function of the basal ganglia relies heavily upon anatomical information, but continued progress will require an understanding of the specific functional roles played by diverse cell types and their connectivity. An increasing number of mouse lines allow extensive identification, characterization, and, manipulation of specified cell types in the basal ganglia. Despite the promise of genetically modified mice for elucidating the functional roles of diverse cell types, there is relatively little anatomical data obtained directly in the mouse. Here we have characterized the retrograde labeling obtained from a series of tracer injections throughout the dorsal striatum of adult mice. We found systematic variations in input along both the medial-lateral and anterior-posterior neuraxes in close agreement with canonical features of basal ganglia anatomy in the rat. In addition to the canonical features we have provided experimental support for the importance of non-canonical inputs to the striatum from the raphe nuclei and the amygdala. To look for organization at a finer scale we have analyzed the correlation structure of labeling intensity across our entire dataset. Using this analysis we found substantial local heterogeneity within the large-scale order. From this analysis we conclude that individual striatal sites receive varied combinations of cortical and thalamic input from multiple functional areas, consistent with some earlier studies in the rat that have suggested the presence of a combinatorial map.

  19. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus

    Directory of Open Access Journals (Sweden)

    Alice B. Loughridge

    2013-05-01

    Full Text Available Serotonin (5-HT is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN. The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 hours after stressor termination. Laser capture microdissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA. Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms.

  20. Effects of hypothyroidism upon the granular layer of the dentate gyrus in male and female adult rats: a morphometric study.

    Science.gov (United States)

    Madeira, M D; Cadete-Leite, A; Andrade, J P; Paula-Barbosa, M M

    1991-12-01

    The effects of hypothyroidism upon the structure of the central nervous system of adult rats are poorly understood in spite of evidence that the mature brain is vulnerable to this condition. Existing developmental studies show that the morphological changes induced by thyroid hormone deficiency are related to alterations in neurogenesis. We studied the granular layer of the dentate gyrus under different experimental conditions of hypothyroidism, because in rodents the neurogenesis of the granule cells continues during adulthood. The following groups of rats were analysed: 1) control; 2) hypothyroid from day 0 until day 180 (hypothyroid group); 3) hypothyroid until day 30 and henceforth maintained euthyroid (recovery group); and 4) hypothyroid since day 30 (adult hypothyroid group). Groups of 6 male rats and 6 female rats were analysed separately. The volume of the dentate gyrus granular layer and the numerical density of its neurons were evaluated, so we were able to estimate the total number of granule cells. Because in the experimental groups the volume of the granular layer and the numerical density of its neurons were reduced, the total number of granule cells was decreased. In the hypothyroid and recovery groups the alterations were identical and more striking than in the adult hypothyroid groups. The total number of granule cells displayed sexual differences in all groups studied except in the hypothyroid groups. The present results support the view that thyroid hormone deficiency interferes with the process of cell acquisition by reducing neuronal proliferation and that it also leads to increased cell death. These events underlie the irreversible morphological changes observed in the brain of hypothyroid rats, either during development or at maturity. The referred structural alterations are probably related to the functional deficits observed in this condition. PMID:1797872

  1. 体视学研究坐骨神经慢性限制性损伤对大鼠脊髓背角内突触数量的可塑性改变及COX-2抑制剂的作用%Stereological investigation on plasticity in synaptic number associated with chronic constriction injury in the rat spinal dorsal horn and effects of COX-2 inhibitor

    Institute of Scientific and Technical Information of China (English)

    商义; 张才全; 彭彬; 林菁艳; 杨正伟

    2011-01-01

    目的:探讨坐骨神经慢性限制性损伤(CCI)所致神经病理性疼痛是否伴有脊髓背角神经元和突触数量的可塑性变化以及帕瑞昔布干预的作用.方法:正常成年SD大鼠随机分为假手术组、CCI组及帕瑞昔布组.术后28d取第5腰段脊髓作石蜡包埋切片,分别用尼氏染色和突触素的免疫组织化学显色显示神经元和突触,采用体视学新技术--光学体视框估计脊髓背角内神经元和突触的数量.结果:与对侧未手术侧相比,CCI组手术侧单位长度脊髓背角内的突触数及突触数与神经元数之比分别增加了86%、98%;帕瑞昔布组手术侧单位长度脊髓背角内的突触数及突触数与神经元数之比分别增加了78%、68%.与假手术组手术侧相比,CCI组手术侧单位长度脊髓背角内的突触数及突触数与神经元数之比分别增加了78%、73%;帕瑞昔布组则分别增加了81%、71%.结论:CCI所致神经病理性疼痛伴有脊髓背角内突触数量增加的可塑性变化,COX-2抑制剂帕瑞昔布对CCI致突触数量的增加无作用.%Objective: To determine whether neuropathic pain induced by chronic constriction injury (CCI) is associated with a plasticity change in the number of synapses in the spinal dorsal horn and the effects of COX-2 inhibitor on it. Methods: 17 normal adult SD rats were randomly divided into 3 groups: sham-operated group, CCI group and parecoxib group. 28 days after operation, L5 segment of the spinal cord was removed, and paraffin-embedded sections were prepared and stained with Nissl's method and synaptophysin immunohistochemistry. The numbers of neurons and synapses in the spinal dorsal horn were estimated using a contemporary stereological technique - the optical disector. Results: In the CCI group, the number of synapses and the ratio between the numbers of synapses and neurons on the operated side increased significantly by 86%and 98%, respectively, compared to the non-operated side

  2. Protective Effect of Rosemary (Rosmarinus Officinalis Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    Directory of Open Access Journals (Sweden)

    Neveen M. El-Sherif

    2015-02-01

    Full Text Available Background: Naphthalene (NA is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group, Group II (NA treated group received NA at a dose of 200 mg/kg/day dissolved in 5 ml/kg corn oil orally by gastric tube, Group III (protected group received rosemary extract (10 ml/kg/day followed after 60 min by NA at the same previous dose orally by gastric tube. The experiment lasted 30 days. The following parameters were studied: Biochemical assessment of renal function, histological, immunohistochemical, morphometric studies and statistical analysis of the results. Results: NA treatment resulted in a highly significant increase in the mean values of serum urea and creatinine. NA induced histological changes in the form of glomerular congestion. Some glomeruli demonstrated marked mesangial expansion and hence that Bowman's spaces were almost completely obliterated. Shrinkage of renal glomeruli with widening of Bowman's spaces could also be seen. Focal tubular dilatation with appearance of casts inside the tubules was observed. Congested peritubular blood vessels and interstitial hemorrhage were also seen. The medullary region demonstrated vascular congestion and fibrosis. Focal cellular infiltration was presented in the interstitium. The renal cortex of NA treated rats showed a noticeable down regulation in alkaline phosphatase positive immunoreactive cells in some proximal convoluted tubules. NA induced up regulation of positive immunoreaction for inducible nitric oxide synthase in the proximal and distal convoluted tubules as well as in the collecting tubules

  3. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  4. ERK Is Involved in the Reorganization of Somatosensory Cortical Maps in Adult Rats Submitted to Hindlimb Unloading

    OpenAIRE

    Erwan Dupont; Laurence Stevens; Laetitia Cochon; Maurice Falempin; Bruno Bastide; Marie-Hélène Canu

    2011-01-01

    Sensorimotor restriction by a 14-day period of hindlimb unloading (HU) in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2) is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical ...

  5. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    OpenAIRE

    Zago, A.; R.M. Leão; P.E. Carneiro-de-Oliveira; Marin, M.T.; F.C. Cruz; C.S. Planeta

    2012-01-01

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have eva...

  6. Effect of Pistacia Vera Oil on Pituitary Gonad Axis and Histological Testis Changes in Adult Male Rats

    OpenAIRE

    f Porhemmat; M Shariati; L Sepehrara

    2013-01-01

    Abstract Background & aim: Pistachio oil contains the chemical compounds such as saturated and unsaturated fatty acids. Saturated fatty acids can inhibit 5-α- reductase enzyme and unsaturated fatty acids increase cholesterol levels in the body. The aim of the present study was to determine the effects of pistachio oil on adult male rats’ reproductive status. Methods: In the present experimental study, 40 male Wistar rat were divided into five groups of eight. The control group received ...

  7. Toxicological Profile of Ultrapure 2,29,3,4,49,5,59- Heptachlorbiphenyl (PCB 180) in Adult Rats

    OpenAIRE

    Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T. M.; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M.; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria

    2014-01-01

    Abstract: PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 ...

  8. Destruction and regeneration of seminiferous tubules after local x-irradiation of testes of the adult rats

    International Nuclear Information System (INIS)

    It was established that the local X-irradiation (1000 R) of testes of the adult rats results in a total destruction of seminiferous tubules. The restitution of the organ structure proceeds via formation of new seminiferous tubules in which spermatogenic epithelium later develops. Rete testis and germ cells preserved in its epithelium from embryogenesis are a source of regeneration material. The results obtained favour the suggestion about the dynamic structure of mammalian testis

  9. Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats

    OpenAIRE

    Adam, Clare L; Williams, Patricia A.; Dalby, Matthew J; Garden, Karen; Lynn M. Thomson; Richardson, Anthony J.; Gratz, Silvia W.; Ross, Alexander W

    2014-01-01

    Background Dietary fibre-induced satiety offers a physiological approach to body weight regulation, yet there is lack of scientific evidence. This experiment quantified food intake, body weight and body composition responses to three different soluble fermentable dietary fibres in an animal model and explored underlying mechanisms of satiety signalling and hindgut fermentation. Methods Young adult male rats were fed ad libitum purified control diet (CONT) containing 5% w/w cellulose (insolubl...

  10. Effect of nano-zinc oxide on doxorubicin- induced oxidative stress and sperm disorders in adult male Wistar rats

    OpenAIRE

    Puran Badkoobeh; Kazem Parivar; Seyed Mehdi Kalantar; Seyed Davood Hosseini; Alireza Salabat

    2013-01-01

    Background: Doxorubicin (DOX), an anthracycline antibiotic, is a widely used anticancer agent. In spite of its high antitumor efficacy, the use of DOX in clinical chemotherapy is limited due to diverse toxicities, including gonadotoxicity. Objective: We investigated the protective effect of nano-zinc oxide (nZnO) as an established antioxidant on DOX-induced testicular disorders. Materials and Methods: In this experimental study 24 adult male Wistar rats were divided into four groups including...

  11. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    OpenAIRE

    Lu-jing Chen; Bing-qing Shen; Dan-dan Liu; Sheng-tian Li

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spont...

  12. Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: Comparison of aged and adult rats

    Directory of Open Access Journals (Sweden)

    Emin Ozbek

    2013-09-01

    Full Text Available Because of the positive corelation between healthy cardiovascular system and sexual life we aimed to evaluate the effect of caloric restriction (CR on endothelial and neuronal nitric oxide synthase (eNOS, nNOS expression in cavernousal tissues and eNOS expression in the internal iliac artery in young and aged rats. Young (3 mo, n = 7 and aged (24 mo, n = 7 male Sprague-Dawley rats were subjected to 40% CR and were allowed free access to water for 3 months. Control rats (n = 14 fed ad libitum had free access to food and water at all times. On day 90, rats were sacrified and internal iliac arteries and penis were removed and parafinized, eNOS and nNOS expression evaluated with immunohistochemistry. Results were evaluated semiquantitatively. eNOS and nNOS expression in cavernousal tis- sue in CR rats were more strong than in control group in both young and old rats. eNOS expression was also higher in the internal iliac arteries of CR rats than in control in young and old rats. As a result of our study we can say that there is a positive link between CR and neurotransmitter of erection in cavernousal tissues and internal iliac arteries. CR has beneficial effect to prevent sexual dysfunction in young and old animals and possible humans.

  13. Gender-Related Differences in Sensitivity to Diazinon in Gonads of Adult Rats and the Protective Effect of Vitamin E

    Directory of Open Access Journals (Sweden)

    Zinat Sargazi

    2015-01-01

    Full Text Available Objectives: Diazinon (DZN is an organophosphate pesticide which is known to induce oxidative stress in the target tissues such as the reproductive system. The aim of present study was to compare and evaluate the effects of DZN on Malondialdehyde (MDA and Glutathione (GSH levels in testis and ovary of rats and to assess the protective role of vitamin E. Materials and Methods: This study was conducted on 60 adult Wistar rats including 30 male and 30 female rats. Each of male and female groups included 30 rats and were divided into 5 groups: control (without any intervention, sham group (received only pure olive oil daily, treatment group 1 (received DZN+olive oil daily, 60 mg/kg, treatment group 2 (received DZN, 60 mg/kg + vitamin E, 200 mg/kg daily and treatment group 3 (received vitamin E daily, 200 mg/kg. MDA and GSH levels were determined in gonads. Results: In both genders, due to administration of DZN, we found significant reduction in GSH content and increase in MDA level. The use of vitamin E plus DZN increased GSH content while decreased MDA level of ovary and testis compared with DZN treated rats. Gonad of female rats compared with male rats showed more increase in MDA level and further decline in GSH content in treatment groups 1 and 2. Conclusion: Oxidative stress contributes to DZN-induced sexual organ toxicity. Our results concluded that vitamin E may have a protective role in this toxicity. Female rats are likely more vulnerable to oxidative stress and its damages.

  14. Fetal programming of colon cancer in adult rats: correlations with altered neonatal trajectory, circulating IGF-I and IGFPBs, and testosterone

    Science.gov (United States)

    Lifelong consumption of soy protein isolate (SPI) reduces the incidence of azoxymethane (AOM)-induced colon tumors in adult male Sprague-Dawley rats. We determined if a maternal SPI diet during pregnancy could protect against colon cancer in progeny. Four groups of male rats were used: a lifetime ...

  15. Microarray analysis of thyroid hormone-induced changes in mRNA expression in the adult rat brain.

    Science.gov (United States)

    Haas, Michael J; Mreyoud, Amjad; Fishman, Miriam; Mooradian, Arshag D

    2004-07-15

    To determine which genes in the adult rat brain are regulated by thyroid hormone (TH), we used microarrays to examine the effect of hyperthyroidism on neuron-specific gene expression. Four-month-old male Fisher 344 rats were rendered hyperthyroid by intraperitoneal injection of 3,5,3'-L-triiodothyronine (T3, 15 microg/100 g body weight) for 10 consecutive days. To minimize interindividual variability, pooled cerebral tissue RNA from four-control and five-hyperthyroid rats was hybridized in duplicates to the Affymetrix (Santa Clara, CA) U34N rat neurobiology microarray, which contains probes for 1224 neural-specific genes. Changes in gene expression were considered significant only if they were observed in both pair-wise comparisons as well as by Northern blot analysis. Hyperthyroidism was associated with modest changes in the expression of only 11 genes. The expression of the phosphodiesterase Enpp2, myelin oligodendrocyte glycoprotein (Mog), microtubule-associated protein 2 (MAP2), growth hormone (GH), Ca(2+)/calmodulin-dependent protein kinase beta-subunit (Camk2b), neuron-specific protein PEP-19 (Pcp4), a sodium-dependent neurotransmitter, and the myelin-associated glycoprotein (S-MAG) was significantly increased. Three genes were suppressed by hyperthyroidism, including the activity and neurotransmitter-induced early genes-1 and -7 (ANIA-1 and ANIA-7) and the guanine nucleotide-binding protein one (Gnb1). The present study underscores the paucity of TH responsive genes in adult cerebral tissue. PMID:15234464

  16. Environmental Circadian Disruption Worsens Neurologic Impairment and Inhibits Hippocampal Neurogenesis in Adult Rats After Traumatic Brain Injury.

    Science.gov (United States)

    Li, Dongpeng; Ma, Shanshan; Guo, Dewei; Cheng, Tian; Li, Hongwei; Tian, Yi; Li, Jianbin; Guan, Fang