WorldWideScience

Sample records for adult rat dentate

  1. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    Science.gov (United States)

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress

    Science.gov (United States)

    Gould, Elizabeth; Tanapat, Patima; McEwen, Bruce S.; Flügge, Gabriele; Fuchs, Eberhard

    1998-01-01

    Although granule cells continue to be added to the dentate gyrus of adult rats and tree shrews, this phenomenon has not been demonstrated in the dentate gyrus of adult primates. To determine whether neurons are produced in the dentate gyrus of adult primates, adult marmoset monkeys (Callithrix jacchus) were injected with BrdU and perfused 2 hr or 3 weeks later. BrdU is a thymidine analog that is incorporated into proliferating cells during S phase. A substantial number of cells in the dentate gyrus of adult monkeys incorporated BrdU and ≈80% of these cells had morphological characteristics of granule neurons and expressed a neuronal marker by the 3-week time point. Previous studies suggest that the proliferation of granule cell precursors in the adult dentate gyrus can be inhibited by stress in rats and tree shrews. To test whether an aversive experience has a similar effect on cell proliferation in the primate brain, adult marmoset monkeys were exposed to a resident-intruder model of stress. After 1 hr in this condition, the intruder monkeys were injected with BrdU and perfused 2 hr later. The number of proliferating cells in the dentate gyrus of the intruder monkeys was compared with that of unstressed control monkeys. We found that a single exposure to this stressful experience resulted in a significant reduction in the number of these proliferating cells. Our results suggest that neurons are produced in the dentate gyrus of adult monkeys and that the rate of precursor cell proliferation can be affected by a stressful experience. PMID:9501234

  3. Temporal changes in prosaposin expression in the rat dentate gyrus after birth.

    Directory of Open Access Journals (Sweden)

    Midori Morishita

    Full Text Available Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM, neuronal nuclei (NeuN, doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A-D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3 and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.

  4. Temporal changes in prosaposin expression in the rat dentate gyrus after birth.

    Science.gov (United States)

    Morishita, Midori; Nabeka, Hiroaki; Shimokawa, Tetsuya; Miyawaki, Kyojy; Doihara, Takuya; Saito, Shouichiro; Kobayashi, Naoto; Matsuda, Seiji

    2014-01-01

    Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A-D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.

  5. Effects of butternut squash extract on dentate gyrus cell proliferation and spatial learning in male adult rats

    Institute of Scientific and Technical Information of China (English)

    Mohsen Marzban; Sara Soleimani Asl; Hassan Fallah Huseini; Mahdi Tondar; Samira Choopani; Mehdi Mehdizadeh

    2011-01-01

    Previous studies reported that some plants, including butternut squash, exert positive effects on the brain. However, few studies have examined the effects of butternut squash on learning, memory, and neurogenesis. This study studied the effects of butternut squash extract on spatial learning and cell proliferation in the dentate gyrus of healthy male rats. Thirty-five male Wistar rats were intrap-eritoneally injected with 0, 50, 100, 200 and 400 mg/kg butternut squash extract once daily for 2 months. After the last administration, rat's spatial memory was studied using the Morris water maze. Finally, rats were sacrificed and hippocampal sections were prepared for light microscopy and bromodeoxyuridine immunohistochemistry studies. The results revealed that escape latency and swim distance decreased in all treatment groups compared with the control rats, and that the number of bromodeoxyuridine-positive cells in the dentate gyrus was significantly increased in the treatment groups compared with the controls. These findings suggest that butternut squash extract improves the learning and memory abilities of male rats, and increases the proliferation of dentate gyrus cells.

  6. Nitrous Oxide Induces Prominent Cell Proliferation in Adult Rat Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Farah Chamaa

    2018-05-01

    Full Text Available The identification of distinct and more efficacious antidepressant treatments is highly needed. Nitrous oxide (N2O is an N-methyl-D-aspartic acid (NMDA antagonist that has been reported to exhibit antidepressant effects in treatment-resistant depression (TRD patients. Yet, no studies have investigated the effects of sub-anesthetic dosages of N2O on hippocampal cell proliferation and neurogenesis in adult brain rats. In our study, adult male Sprague-Dawley rats were exposed to single or multiple exposures to mixtures of 70% N2O and 30% oxygen (O2. Sham groups were exposed to 30% O2 and the control groups to atmospheric air. Hippocampal cell proliferation was assessed by bromodeoxyuridine (BrdU incorporation, and BrdU-positive cells were counted in the dentate gyrus (DG using confocal microscopy. Results showed that while the rates of hippocampal cell proliferation were comparable between the N2O and sham groups at day 1, levels increased by 1.4 folds at day 7 after one session exposure to N2O. Multiple N2O exposures significantly increased the rate of hippocampal cell proliferation to two folds. Therefore, sub-anesthetic doses of N2O, similar to ketamine, increase hippocampal cell proliferation, suggesting that there will ultimately be an increase in neurogenesis. Future studies should investigate added N2O exposures and their antidepressant behavioral correlates.

  7. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus

    International Nuclear Information System (INIS)

    Jenrow, Kenneth A; Brown, Stephen L; Liu, Jianguo; Kolozsvary, Andrew; Lapanowski, Karen; Kim, Jae Ho

    2010-01-01

    Sublethal doses of whole brain irradiation (WBI) are commonly administered therapeutically and frequently result in late delayed radiation injuries, manifesting as severe and irreversible cognitive impairment. Neural progenitors within the subgranular zone (SGZ) of the dentate gyrus are among the most radiosensitive cell types in the adult brain and are known to participate in hippocampal plasticity and normal cognitive function. These progenitors and the specialized SZG microenvironment required for neuronal differentiation are the source of neurogenic potential in the adult dentate gyrus, and provide a continuous supply of immature neurons which may then migrate into the adjacent granule cell layer to become mature granule cell neurons. The extreme radiosensitivity of these progenitors and the SGZ microenvironment suggests the hippocampus as a prime target for radiation-induced cognitive impairment. The brain renin-angiotensin system (RAS) has previously been implicated as a potent modulator of neurogenesis within the SGZ and selective RAS inhibitors have been implicated as mitigators of radiation brain injury. Here we investigate the angiotensin converting enzyme (ACE) inhibitor, ramipril, as a mitigator of radiation injury in this context. Adult male Fisher 344 rats received WBI at doses of 10 Gy and 15 Gy. Ramipril was administered beginning 24 hours post-WBI and maintained continuously for 12 weeks. Ramipril produced small but significant reductions in the deleterious effects of radiation on progenitor proliferation and neuronal differentiation in the rat dentate gyrus following 10 Gy-WBI, but was not effective following 15 Gy-WBI. Ramipril also reduced the basal rate of neurogenesis within the SGZ in unirradiated control rats. Our results indicate that chronic ACE inhibition with ramipril, initiated 24 hours post-irradiation, may reduce apoptosis among SGZ progenitors and/or inflammatory disruption of neurogenic signaling within SGZ microenvironment, and

  8. Qualitative analysis neurons in the adult human dentate nucleus

    Directory of Open Access Journals (Sweden)

    Marić Dušica

    2012-01-01

    Full Text Available Although many relevant findings regarding to the morphology and cytoarchitectural development of the dentate nucleus have been presented so far, very little qualitative information has been collected on neuronal morphology in the adult human dentate nucleus. The neurons were labelled by Golgi staining from thirty human cerebella, obtained from medico-legal forensic autopsies of adult human bodies and free of significant brain pathology. The human dentate neurons were qualitatively analyzed and these cells were classified into two main classes: the small and the large multipolar neurons. Considering the shape of the cell body, number of the primary dendrites, shape of the dendritic tree and their position within the dentate nucleus, three subclasses of the large multipolar neurons have been recognized. The classification of neurons from the human dentate nucleus has been qualitatively confirmed in fetuses and premature infants. This study represents the first qualitative analysis and classification of the large multipolar neurons in the dentate nucleus of the adult human.

  9. Dissection of Hippocampal Dentate Gyrus from Adult Mouse

    Science.gov (United States)

    Hagihara, Hideo; Toyama, Keiko; Yamasaki, Nobuyuki; Miyakawa, Tsuyoshi

    2009-01-01

    The hippocampus is one of the most widely studied areas in the brain because of its important functional role in memory processing and learning, its remarkable neuronal cell plasticity, and its involvement in epilepsy, neurodegenerative diseases, and psychiatric disorders. The hippocampus is composed of distinct regions; the dentate gyrus, which comprises mainly granule neurons, and Ammon's horn, which comprises mainly pyramidal neurons, and the two regions are connected by both anatomic and functional circuits. Many different mRNAs and proteins are selectively expressed in the dentate gyrus, and the dentate gyrus is a site of adult neurogenesis; that is, new neurons are continually generated in the adult dentate gyrus. To investigate mRNA and protein expression specific to the dentate gyrus, laser capture microdissection is often used. This method has some limitations, however, such as the need for special apparatuses and complicated handling procedures. In this video-recorded protocol, we demonstrate a dissection technique for removing the dentate gyrus from adult mouse under a stereomicroscope. Dentate gyrus samples prepared using this technique are suitable for any assay, including transcriptomic, proteomic, and cell biology analyses. We confirmed that the dissected tissue is dentate gyrus by conducting real-time PCR of dentate gyrus-specific genes, tryptophan 2,3-dioxygenase (TDO2) and desmoplakin (Dsp), and Ammon's horn enriched genes, Meis-related gene 1b (Mrg1b) and TYRO3 protein tyrosine kinase 3 (Tyro3). The mRNA expressions of TDO2 and Dsp in the dentate gyrus samples were detected at obviously higher levels, whereas Mrg1b and Tyro3 were lower levels, than those in the Ammon's horn samples. To demonstrate the advantage of this method, we performed DNA microarray analysis using samples of whole hippocampus and dentate gyrus. The mRNA expression of TDO2 and Dsp, which are expressed selectively in the dentate gyrus, in the whole hippocampus of alpha

  10. Adult neurogenesis modifies excitability of the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Taruna eIkrar

    2013-12-01

    Full Text Available Adult-born dentate granule neurons contribute to memory encoding functions of the dentate gyrus (DG such as pattern separation. However, local circuit-mechanisms by which adult-born neurons partake in this process are poorly understood. Computational, neuroanatomical and electrophysiological studies suggest that sparseness of activation in the granule cell layer (GCL is conducive for pattern separation. A sparse coding scheme is thought to facilitate the distribution of similar entorhinal inputs across the GCL to decorrelate overlapping representations and minimize interference. Here we used fast voltage-sensitive dye (VSD imaging combined with laser photostimulation and electrical stimulation to examine how selectively increasing adult DG neurogenesis influences local circuit activity and excitability. We show that DG of mice with more adult-born neurons exhibits decreased strength of neuronal activation and more restricted excitation spread in GCL while maintaining effective output to CA3c. Conversely, blockade of adult hippocampal neurogenesis changed excitability of the DG in the opposite direction. Analysis of GABAergic inhibition onto mature dentate granule neurons in the DG of mice with more adult-born neurons shows a modest readjustment of perisomatic inhibitory synaptic gain without changes in overall inhibitory tone, presynaptic properties or GABAergic innervation pattern. Retroviral labeling of connectivity in mice with more adult-born neurons showed increased number of excitatory synaptic contacts of adult-born neurons onto hilar interneurons. Together, these studies demonstrate that adult hippocampal neurogenesis modifies excitability of mature dentate granule neurons and that this non-cell autonomous effect may be mediated by local circuit mechanisms such as excitatory drive onto hilar interneurons. Modulation of DG excitability by adult-born dentate granule neurons may enhance sparse coding in the GCL to influence pattern

  11. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Lapanowski Karen

    2010-02-01

    Full Text Available Abstract Background Sublethal doses of whole brain irradiation (WBI are commonly administered therapeutically and frequently result in late delayed radiation injuries, manifesting as severe and irreversible cognitive impairment. Neural progenitors within the subgranular zone (SGZ of the dentate gyrus are among the most radiosensitive cell types in the adult brain and are known to participate in hippocampal plasticity and normal cognitive function. These progenitors and the specialized SZG microenvironment required for neuronal differentiation are the source of neurogenic potential in the adult dentate gyrus, and provide a continuous supply of immature neurons which may then migrate into the adjacent granule cell layer to become mature granule cell neurons. The extreme radiosensitivity of these progenitors and the SGZ microenvironment suggests the hippocampus as a prime target for radiation-induced cognitive impairment. The brain renin-angiotensin system (RAS has previously been implicated as a potent modulator of neurogenesis within the SGZ and selective RAS inhibitors have been implicated as mitigators of radiation brain injury. Here we investigate the angiotensin converting enzyme (ACE inhibitor, ramipril, as a mitigator of radiation injury in this context. Methods Adult male Fisher 344 rats received WBI at doses of 10 Gy and 15 Gy. Ramipril was administered beginning 24 hours post-WBI and maintained continuously for 12 weeks. Results Ramipril produced small but significant reductions in the deleterious effects of radiation on progenitor proliferation and neuronal differentiation in the rat dentate gyrus following 10 Gy-WBI, but was not effective following 15 Gy-WBI. Ramipril also reduced the basal rate of neurogenesis within the SGZ in unirradiated control rats. Conclusions Our results indicate that chronic ACE inhibition with ramipril, initiated 24 hours post-irradiation, may reduce apoptosis among SGZ progenitors and/or inflammatory

  12. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats.

    Science.gov (United States)

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F

    1986-01-01

    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  13. Prenatal Alcohol Exposure Increases Histamine H3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus.

    Science.gov (United States)

    Varaschin, Rafael K; Allen, Nyika A; Rosenberg, Martina J; Valenzuela, C Fernando; Savage, Daniel D

    2018-02-01

    We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H 3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H 3 receptor number and function. Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. Radiohistochemical studies in adult offspring revealed that specific [ 3 H]-A349821 binding to histamine H 3 receptors was not different in PAE rats compared to controls. However, H 3 receptor-mediated G i /G o protein-effector coupling, as measured by methimepip-stimulated [ 35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H 3 receptor population without significantly altering the affinities of H 3 receptor subpopulations. In agreement with the [ 35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. These results suggest that a PAE-induced elevation in H 3 receptor-mediated inhibition of glutamate release from

  14. Neurogenesis in the septal and temporal part of the adult rat dentate gyrus.

    Science.gov (United States)

    Bekiari, Chryssa; Giannakopoulou, Aggeliki; Siskos, Nikistratos; Grivas, Ioannis; Tsingotjidou, Anastasia; Michaloudi, Helen; Papadopoulos, Georgios C

    2015-04-01

    Structural and functional dissociation between the septal and the temporal part of the dentate gyrus predispose for possible differentiations in the ongoing neurogenesis process of the adult hippocampus. In this study, BrdU-dated subpopulations of the rat septal and temporal dentate gyrus (coexpressing GFAP, DCX, NeuN, calretinin, calbindin, S100, caspase-3 or fractin) were quantified comparatively at 2, 5, 7, 14, 21, and 30 days after BrdU administration in order to examine the successive time-frames of the neurogenesis process, the glial or neuronal commitment of newborn cells and the occurring apoptotic cell death. Newborn neurons' migration from the neurogenic subgranular zone to the inner granular cell layer and expression of glutamate NMDA and AMPA receptors were also studied. BrdU immunocytochemistry revealed comparatively higher numbers of BrdU(+) cells in the septal part, but stereological analysis of newborn and total granule cells showed an identical ratio in the two parts, indicating an equivalent neurogenic ability, and a common topographical pattern along each part's longitudinal and transverse axis. Similarly, both parts exhibited extremely low levels of newborn glial and apoptotic cells. However, despite the initially equal division rate and pattern of the septal and temporal proliferating cells, their later proliferative profile diverged in the two parts. Dynamic differences in the differentiation, migration and maturation process of the two BrdU-incorporating subpopulations of newborn neurons were also detected, along with differences in their survival pattern. Therefore, we propose that various factors, including developmental date birth, local DG microenvironment and distinct functionality of the two parts may be the critical regulators of the ongoing neurogenesis process, leading the septal part to a continuous, rapid, and less-disciplined genesis rate, whereas the quiescent temporal microenvironment preserves a quite steady, less

  15. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  16. Effects of exercise on neurogenesis in the dentate gyrus and ability of learning and memory after hippocampus lesion in adult rats

    Institute of Scientific and Technical Information of China (English)

    Lin CHEN; Shan GONG; Li-Dong SHAN; Wei-Ping XU; Yue-Jin ZHANG; Shi-Yu GUO; Tadashi Hisamitsu; Qi-Zhang YIN; Xing-Hong JIANG

    2006-01-01

    Objective To explore the effects of exercise on dentate gyrus (DG) neurogenesis and the ability of learning and memory in hippocampus-lesioned adult rats. Methods Hippocampus lesion was produced by intrahippocampal microinjection of kainic acid (KA). Bromodeoxyuridine (BrdU) was used to label dividing cells. Y maze test was used to evaluate the ability of learning and memory. Exercise was conducted in the form of forced running in a motor-driven running wheel. The speed of wheel revolution was regulated at 3 kinds of intensity: lightly running, moderately running, or heavily running. Results Hippocampus lesion could increase the number of BrdU-labeled DG cells, moderately running after lesion could further enhance the number of BrdU-labeled cells and decrease the error number (EN) in Y maze test,while neither lightly running, nor heavily running had such effects. There was a negative correlation between the number of DG BrdU-labeled cells and the EN in the Y maze test after running. Conclusion Moderate exercise could enhance the DG neurogenesis and ameliorate the ability of learning and memory in hippocampus-lesioned rats.

  17. Chronic unpredictable stress alters gene expression in rat single dentate granule cells

    NARCIS (Netherlands)

    Qin, Y.J.; Karst, H.; Joëls, M.

    2004-01-01

    The rat adrenal hormone corticosterone binds to low and high affinity receptors, discretely localized in brain, including the dentate gyrus. Differential activation of the two receptor types under physiological conditions alters gene expression and functional characteristics of hippocampal neurones.

  18. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation.

    Science.gov (United States)

    Beheshti, Siamak; Aslani, Neda

    2018-02-01

    It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance. Copyright © 2017. Published by Elsevier Ltd.

  19. Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Bai Hui Chen

    2015-01-01

    Full Text Available Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation and doublecortin (a marker for neuroblast. Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus.

  20. Radial glial cells in the adult dentate gyrus: what are they and where do they come from?

    Science.gov (United States)

    Berg, Daniel A; Bond, Allison M; Ming, Guo-Li; Song, Hongjun

    2018-01-01

    Adult neurogenesis occurs in the dentate gyrus in the mammalian hippocampus. These new neurons arise from neural precursor cells named radial glia-like cells, which are situated in the subgranular zone of the dentate gyrus. Here, we review the emerging topic of precursor heterogeneity in the adult subgranular zone. We also discuss how this heterogeneity may be established during development and focus on the embryonic origin of the dentate gyrus and radial glia-like stem cells. Finally, we discuss recently developed single-cell techniques, which we believe will be critical to comprehensively investigate adult neural stem cell origin and heterogeneity.

  1. Hippocampal dentation: Structural variation and its association with episodic memory in healthy adults.

    Science.gov (United States)

    Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence

    2017-07-01

    While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Low-Dose Sevoflurane Promotes Hippocampal Neurogenesis and Facilitates the Development of Dentate Gyrus-Dependent Learning in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2015-04-01

    Full Text Available Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8% sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6 were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  3. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  4. Neurotoxic Doses of Chronic Methamphetamine  Trigger Retrotransposition of the Identifier Element  in Rat Dorsal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Anna Moszczynska

    2017-03-01

    Full Text Available Short interspersed elements (SINEs are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH trigger retrotransposition of the identifier (ID element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague‐Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next‐generation sequencing (NGS were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG‐2 site. Both METH regimens were associated with increased intensities in poly(A‐binding protein 1 (PABP1, a SINE regulatory protein‐like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis.

  5. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Science.gov (United States)

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. © The Author(s) 2015.

  6. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    Science.gov (United States)

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  7. Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele Lana

    2017-09-01

    Full Text Available The hippocampus is negatively affected by aging and neurodegenerative diseases leading to impaired learning and memory abilities. A diverse series of progressive modifications in the intercellular communication among neurons, astrocytes and microglia occur in the hippocampus during aging or inflammation. A detailed understanding of the neurobiological modifications that contribute to hippocampal dysfunction may reveal new targets for therapeutic intervention. The current study focussed on the interplay between neurons and astroglia in the Granule Layer (GL and the Polymorphic Layer (PL of the Dentate Gyrus (DG of adult, aged and LPS-treated rats. In GL and PL of aged and LPS-treated rats, astrocytes were less numerous than in adult rats. In GL of LPS-treated rats, astrocytes acquired morphological features of reactive astrocytes, such as longer branches than was observed in adult rats. Total and activated microglia increased in the aged and LPS-treated rats, as compared to adult rats. In the GL of aged and LPS-treated rats many neurons were apoptotic. Neurons decreased significantly in GL and PL of aged but not in rats treated with LPS. In PL of aged and LPS-treated rats many damaged neurons were embraced by microglia cells and were infiltrated by branches of astrocyte, which appeared to be bisecting the cell body, forming triads. Reactive microglia had a scavenging activity of dying neurons, as shown by the presence of neuronal debris within their cytoplasm. The levels of the chemokine fractalkine (CX3CL1 increased in hippocampal homogenates of aged rats and rats treated with LPS, and CX3CL1 immunoreactivity colocalized with activated microglia cells. Here we demonstrated that in the DG of aged and LPS-treated rats, astrocytes and microglia cooperate and participate in phagocytosis/phagoptosis of apoptotic granular neurons. The differential expression/activation of astroglia and the alteration of their intercommunication may be responsible for

  8. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    Science.gov (United States)

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Science.gov (United States)

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  10. Early postischemic 45Ca accumulation in rat dentate hilus

    International Nuclear Information System (INIS)

    Benveniste, H.; Diemer, N.H.

    1988-01-01

    Several studies have found postischemic regional accumulation of calcium to be time-dependent and coincident with the progression of ischemic cell change. In the most vulnerable cells in the hippocampus one would therefore expect to find a primary and specific early uptake of calcium after ischemia. Autoradiograms of 45 Ca and 3 H-inulin distribution were investigated before and 1 h after 20 min ischemia in the rat hippocampus. Two different methodological approaches were used for administration of 45 Ca: (a) administration via microdialysis probes, (b) intraventricular injection. During control conditions the 45 Ca autoradiograms showed variations in distribution volume in accordance with 3 H-inulin determination of extracellular space size. One hour after ischemia a massive accumulation of 45 Ca was found in the dentate hilus. No change in the distribution pattern of 3 H-inulin could be demonstrated 1 h after ischemia. We suggest that 45 Ca accumulation in dentate hilus 1 h after ischemia is a result of increased Ca 2+ uptake before irreversible cell damage occurs and is not due to passive influx of calcium across a leaky plasma membrane

  11. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior.

    Science.gov (United States)

    Deroche-Gamonet, Véronique; Revest, Jean-Michel; Fiancette, Jean-François; Balado, Eric; Koehl, Muriel; Grosjean, Noëlle; Abrous, Djoher Nora; Piazza, Pier-Vincenzo

    2018-03-05

    The hippocampus is the main locus for adult dentate gyrus (DG) neurogenesis. A number of studies have shown that aberrant DG neurogenesis correlates with many neuropsychiatric disorders, including drug addiction. Although clear causal relationships have been established between DG neurogenesis and memory dysfunction or mood-related disorders, evidence of the causal role of DG neurogenesis in drug-seeking behaviors has not been established. Here we assessed the role of new DG neurons in cocaine self-administration using an inducible transgenic approach that selectively depletes adult DG neurogenesis. Our results show that transgenic mice with decreased adult DG neurogenesis exhibit increased motivation to self-administer cocaine and a higher seeking response to cocaine-related cues. These results identify adult hippocampal neurogenesis as a key factor in vulnerability to cocaine addiction.

  12. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    Science.gov (United States)

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], pFourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis

  13. Radial glial cells in the adult dentate gyrus: what are they and where do they come from? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Daniel A. Berg

    2018-03-01

    Full Text Available Adult neurogenesis occurs in the dentate gyrus in the mammalian hippocampus. These new neurons arise from neural precursor cells named radial glia-like cells, which are situated in the subgranular zone of the dentate gyrus. Here, we review the emerging topic of precursor heterogeneity in the adult subgranular zone. We also discuss how this heterogeneity may be established during development and focus on the embryonic origin of the dentate gyrus and radial glia-like stem cells. Finally, we discuss recently developed single-cell techniques, which we believe will be critical to comprehensively investigate adult neural stem cell origin and heterogeneity.

  14. Weakened Intracellular Zn2+-Buffering in the Aged Dentate Gyrus and Its Involvement in Erasure of Maintained LTP.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Murakami, Taku; Nakada, Hiroyuki; Minamino, Tatsuya; Koike, Yuta

    2018-05-01

    Memory is lost by the increased influx of extracellular Zn 2+ into neurons. It is possible that intracellular Zn 2+ dynamics is modified even at non-zincergic medial perforant pathway-dentate granule cell synapses along with aging and that vulnerability to the modification is linked to age-related cognitive decline. To examine these possibilities, vulnerability of long-term potentiation (LTP) maintenance, which underlies memory retention, to modification of synaptic Zn 2+ dynamics was compared between young and aged rats. The influx of extracellular Zn 2+ into dentate granule cells was increased in aged rats after injection of high K + into the dentate gyrus, but not in young rats. This increase impaired maintained LTP in aged rats. However, the impairment was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator, or CNQX, an AMPA receptor antagonist, which suppressed the Zn 2+ influx. Maintained LTP was also impaired in aged rats after injection of ZnAF-2DA into the dentate gyrus that chelates intracellular Zn 2+ , but not in young rats. Interestingly, the capacity of chelating intracellular Zn 2+ with intracellular ZnAF-2 was almost lost in the aged dentate gyrus 2 h after injection of ZnAF-2DA into the dentate gyrus, suggesting that intracellular Zn 2+ -buffering is weakened in the aged dentate gyrus, compared to the young dentate gyrus. In the dentate gyrus of aged rats, maintained LTP is more vulnerable to modification of intracellular Zn 2+ dynamics than in young rats, probably due to weakened intracellular Zn 2+ -buffering.

  15. Relationship between chewing behavior and body weight status in fully dentate healthy adults.

    Science.gov (United States)

    Zhu, Yong; Hollis, James H

    2015-03-01

    Recent research indicates that chewing behavior may influence energy intake and energy expenditure. However, little is known about the relationship between chewing behavior and body weight status. In the present study, 64 fully dentate normal-weight or overweight/obese adults were asked to consume five portions of a test food and the number of chewing cycles, chewing duration before swallowing and chewing rate were measured. Adjusting for age and gender, normal-weight participants used a higher number of chewing cycles (p = 0.003) and a longer chewing duration (p chewing rate (p = 0.597). A statistically significant negative correlation between body mass index and the number of chewing cycles (r = -0.296, p = 0.020) and chewing duration (r = -0.354, p = 0.005) was observed. In conclusion, these results suggest that chewing behavior is associated with body weight status in fully dentate healthy adults.

  16. Characteristic of Extracellular Zn2+ Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP.

    Science.gov (United States)

    Takeda, Atsushi; Koike, Yuta; Osaw, Misa; Tamano, Haruna

    2018-03-01

    An increased influx of extracellular Zn 2+ into neurons is a cause of cognitive decline. The influx of extracellular Zn 2+ into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn 2+ into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K + into the dentate gyrus, but not in young rats. Simultaneously, high K + -induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator. Intracellular Zn 2+ in dentate granule cells was also increased in middle-aged slices with high K + , in which the increase in extracellular Zn 2+ was the same as young slices with high K + , suggesting that ability of extracellular Zn 2+ influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn 2+ into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.

  17. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  18. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente

    2006-01-01

    We have investigated the glutamic acid dexcarboxylase (GAD) mRNA and protein isoforms as markers for ischemic loss of GABAergic neurons in the dentate hilus. Stereological counts of these neurons were performed in rats surviving 8 days after 10 min of transient forebrain ischemia, and in control...

  19. Dentate Gyrus-Specific Knockdown of Adult Neurogenesis Impairs Spatial and Object Recognition Memory in Adult Rats

    Science.gov (United States)

    Jessberger, Sebastian; Clark, Robert E.; Broadbent, Nicola J.; Clemenson, Gregory D., Jr.; Consiglio, Antonella; Lie, D. Chichung; Squire, Larry R.; Gage, Fred H.

    2009-01-01

    New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons…

  20. Factors specifying the development of synapse number in the rat dentate gyrus: effects of partial target loss

    International Nuclear Information System (INIS)

    Lewis, E.R.; Cotman, C.W.

    1980-01-01

    The development of the dentate gyrus has been studied under conditions of partial reduction of granule cell number. Neonatal rats were subjected to X-irradiation, a procedure which reduces the number of granule cells to 20% of control values. In X-irradiated rats, quantitative analyses were performed on cells in the entorhinal cortex which give rise to the perforant path projection to the dentate granule cells, and on the remaining, undamaged dentate granule cells. These residual cells were examined morphologically for possible hyperdevelopment in comparison to granule cells from control animals. Granule cells in X-irradiated animals were similar to granule cells in control animals with respect to dendritic structure and synaptic density. The number of neurons in both the medical and lateral entorhinal cortices in X-irradiated animals appeared normal until day 12, at which time a selective reduction in cell numbers became apparent. By day 30, 25-55% of the cells of origin of the perforant path were absent in X-irradiated animals. It is hypothesized that these cells are subject to retrograde transynaptic degeneration as a result of target removal. Further, it appears that granule cells play an important role in determining the density of their innervation. (Auth.)

  1. Differential Involvement of the Dentate Gyrus in Adaptive Forgetting in the Rat.

    Directory of Open Access Journals (Sweden)

    Mickaël Antoine Joseph

    Full Text Available How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM refers to the long-term storage of invariable information whereas Working Memory (WM depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting.

  2. The effect of Urtica dioica extract on the number of astrocytes in the dentate gyrus of diabetic rats.

    Science.gov (United States)

    Jahanshahi, M; Golalipour, M J; Afshar, M

    2009-05-01

    Diabetes mellitus is associated with cerebral alterations in both human and animal models of the disease. These alterations include abnormal expression of hypothalamic neuropeptides and hippocampal astrogliosis. Urtica dioica (Nettle) is among several species listed for their use against diabetes in folk medicine. The aim of this study was the evaluation of the astrocyte number in the dentate gyrus of diabetic rats after treatment with nettle. A total of 21 male albino Wistar rats were used in the present study. The animals were divided into three groups: control, nettle-untreated diabetic, and nettle treated diabetic. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin, the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. After a 5-week survival period, all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres. The area densities of the astrocytes were measured and compared between the three groups (p < 0.05). The number of astrocytes increased in the diabetic rats (24.06 +/- 9.57) compared with the controls (17.52 +/- 6.66). The densities in the treated rats (19.50 +/- 6.16) were lower than in the diabetic rats. Furthermore, the control and treated rats showed similar densities. We concluded that U. dioica extract helped compensate for astrocytes in the treatment rats dentate gyrus in comparison with diabetic rats.

  3. Granule cell potentials in the dentate gyrus of the hippocampus: coping behavior and stress ulcers in rats.

    Science.gov (United States)

    Henke, P G

    1990-01-01

    Evoked population potentials of the granule cells in the dentate gyrus of the hippocampus were increased in stress-resistant rats and decreased in stress-susceptible rats, as indexed by restraint-induced gastric ulcers. Inescapable, uncontrollable shock stimulation also suppressed granule cell population spikes and interfered with subsequent coping responses when escape was possible, i.e. the so-called helplessness effect. The data were interpreted to indicate that the hippocampus is part of a coping system in stressful situations.

  4. Doublecortin (DCX is not essential for survival and differentiation of newborn neurons in the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Jagroop eDhaliwal

    2016-01-01

    Full Text Available In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX is associated with neural progenitor cells (NPCs that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX.

  5. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats

    International Nuclear Information System (INIS)

    Yin Jinbo; Ma Yuxin; Yin Qing; Xu Haiwei; An Ning; Liu Shiyong; Fan Xiaotang; Yang Hui

    2007-01-01

    The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after First PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression

  6. The granule cell density of the dentate gyrus following administration of Urtica dioica extract to young diabetic rats.

    Science.gov (United States)

    Fazeli, S A; Gharravi, A M; Ghafari, S; Jahanshahi, M; Golalipour, M J

    2008-08-01

    Urtica dioica L. Stinging nettle has long been known worldwide as a medicinal plant. To study the benefits of the nettle in diabetic encephalopathy, the granule cell density of the dentate gyrus of diabetic rats was studied following administration of Urtica dioica extract. A total of 24 male albino Wistar rats were allocated equally to normal, diabetic, preventive and treatment groups. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. The rats of the preventive group received hydroalcoholic extract of U. dioica (100 mg/kg/day) IP for the first 5 days and an injection of streptozotocin (80 mg/kg) on the 6th day. After 5 weeks of study all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres and stained with cresyl violet. The area densities of the granule cells were measured and compared in the four groups. The density was lower in the diabetic rats compared with the controls (p > 0.05). The preventive group showed lower cell density than the controls (p > 0.05). The densities in the treated rats were higher than in the diabetic rats (p > 0.05). Furthermore, the control and treated rats showed similar densities (p > 0.05). It seems that U. dioica extract can help compensate for granule cell loss in the diabetic rat dentate gyrus, which can ameliorate cognitive impairment in diabetes. However, preventive use of the extract showed no significant benefit.

  7. Differential Postnatal Expression of Neuronal Maturation Markers in the Dentate Gyrus of Mice and Rats

    Directory of Open Access Journals (Sweden)

    Tijana Radic

    2017-11-01

    Full Text Available The dentate gyrus (DG is a unique structure of the hippocampus that is distinguished by ongoing neurogenesis throughout the lifetime of an organism. The development of the DG, which begins during late gestation and continues during the postnatal period, comprises the structural formation of the DG as well as the establishment of the adult neurogenic niche in the subgranular zone (SGZ. We investigated the time course of postnatal maturation of the DG in male C57BL/6J mice and male Sprague-Dawley rats based on the distribution patterns of the immature neuronal marker doublecortin (DCX and a marker for mature neurons, calbindin (CB. Our findings demonstrate that the postnatal DG is marked by a substantial maturation with a high number of DCX-positive granule cells (GCs during the first two postnatal weeks followed by a progression toward more mature patterns and increasing numbers of CB-positive GCs within the subsequent 2 weeks. The most substantial shift in maturation of the GC population took place between P7 and P14 in both mice and rats, when young, immature DCX-positive GCs became confined to the innermost part of the GC layer (GCL, indicative of the formation of the SGZ. These results suggest that the first month of postnatal development represents an important transition phase during which DG neurogenesis and the maturation course of the GC population becomes analogous to the process of adult neurogenesis. Therefore, the postnatal DG could serve as an attractive model for studying a growing and functionally maturing neural network. Direct comparisons between mice and rats revealed that the transition from immature DCX-positive to mature CB-positive GCs occurs more rapidly in the rat by approximately 4–6 days. The remarkable species difference in the speed of maturation on the GC population level may have important implications for developmental and neurogenesis research in different rodent species and strains.

  8. Differences in chewing behaviors between healthy fully dentate young and older adults assessed by electromyographic recordings.

    Science.gov (United States)

    Zhu, Yong; Hollis, James H

    2015-01-01

    To characterize changes in chewing behaviors associated with healthy aging, 10 young and 10 older fully dentate healthy participants were enrolled in this study. They chewed carrot samples that differed in hardness until their normal swallowing threshold. Their chewing behaviors were assessed using an electromyographic recording device. Adjusting for gender and body mass index, older adults had a higher number of chewing cycles (p = 0.020), a longer chewing duration (p chewing rate (p = 0.002), a greater maximal electromyographic voltage (p = 0.003) and a greater muscle activity (p = 0.002) before they could comfortably swallow the food bolus. A statistically significant main effect of food hardness on the number of chewing cycles, chewing duration, chewing rate and muscle activity was also observed (p < 0.001 for all). These results suggest that reduced mastication efficiency is associated with healthy aging in fully dentate adults. This ingestive behavior may contribute to aging-related reduction in appetite in older adults.

  9. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.

    Science.gov (United States)

    Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won

    2014-08-01

    Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.

  10. Regrowing the adult brain: NF-κB controls functional circuit formation and tissue homeostasis in the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Yvonne Imielski

    Full Text Available Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-κB resulted in severe defects in the neurogenic region (dentate gyrus of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-κB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-κB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-κB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-κB to be a therapeutic target for treating cognitive and mood disorders.

  11. Regrowing the Adult Brain: NF-κB Controls Functional Circuit Formation and Tissue Homeostasis in the Dentate Gyrus

    Science.gov (United States)

    Imielski, Yvonne; Schwamborn, Jens C.; Lüningschrör, Patrick; Heimann, Peter; Holzberg, Magdalena; Werner, Hendrikje; Leske, Oliver; Püschel, Andreas W.; Memet, Sylvie; Heumann, Rolf; Israel, Alain; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2012-01-01

    Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-κB resulted in severe defects in the neurogenic region (dentate gyrus) of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-κB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-κB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-κB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-κB to be a therapeutic target for treating cognitive and mood disorders. PMID:22312433

  12. The roles of BDNF, pCREB and Wnt3a in the latent period preceding activation of progenitor cell mitosis in the adult dentate gyrus by fluoxetine.

    Directory of Open Access Journals (Sweden)

    Scarlett B Pinnock

    2010-10-01

    Full Text Available The formation of new neurons continues into adult life in the dentate gyrus of the rat hippocampus, as in many other species. Neurogenesis itself turns out to be highly labile, and is regulated by a number of factors. One of these is the serotoninergic system: treatment with drugs (such as the SSRI fluoxetine markedly stimulates mitosis in the progenitor cells of the dentate gyrus. But this process has one remarkable feature: it takes at least 14 days of continuous treatment to be effective. This is despite the fact that the pharmacological action of fluoxetine occurs within an hour or so of first administration. This paper explores the role of BDNF in this process, using the effect of a Trk antagonist (K252a on the labelling of progenitor cells with the mitosis marker Ki67 and the associated expression of pCREB and Wnt3a. These experiments show that (i Fluoxetine increased Ki67 counts, as well as pCREB and Wnt3a expression in the dentate gyrus. The action of fluoxetine on the progenitor cells and on pCREB (but not Wnt3a depends upon Trk receptor activation, since it was prevented by icv infusion of K252a. (ii These receptors are required for both the first 7 days of fluoxetine action, during which no apparent change in progenitor mitosis occurs, as well as the second 7 days. Increased pCREB was always associated with progenitor cell mitosis, but Wnt3a expression may be necessary but not sufficient for increased progenitor cell proliferation. These results shed new light on the action of fluoxetine on neurogenesis in the adult dentate gyrus, and have both clinical and experimental interest.

  13. A STEREOLOGICAL ANALYSIS OF THE EFFECT OF EARLY POSTNATAL ETHANOL EXPOSURE ON NEURONAL NUMBERS IN RAT DENTATE GYRUS

    Directory of Open Access Journals (Sweden)

    Takanori Miki

    2011-05-01

    Full Text Available Maternal ethanol ingestion during pregnancy can cause fetal alcohol syndrome (FAS in their offspring. Among the symptoms of FAS, damage to the central nervous system has emerged as one of the most serious problems. We have previously shown that a relatively high dose of ethanol exposure during early postnatal life can cause alterations in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rat pups to ethanol during early postnatal life had effects on the total number of the dentate gyrus neurons. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 to 15. Ethanol exposure was achieved by placing rat pups in a chamber containing ethanol vapour for 3 hours a day. The blood ethanol concentration was found to be about 430 mg/dL at the end of the exposure period. Groups of ethanol treated (ET, separation controls (SC and mother reared controls (MRC were anaesthetised and killed at 16-days-of-age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volume of subdivisions of the dentate gyrus, and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There was, on average, about 421,000 granule cells in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This value was significantly smaller than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. It is concluded that neurons in the hilus region of the dentate gyrus may be particularly vulnerable to the effects of a high dose of ethanol exposure during PND 10-15. It is likely that this deficit was due to neuronal death induced by some mechanisms related to

  14. Morphological Characterization of the African Giant Rat (Cricetomys ...

    African Journals Online (AJOL)

    olayemitoyin

    gambianus, Waterhouse) Brain Across Age Groups: Gross Features of. Cortices ... Keywords: African giant rats, Brain, Morphology, Cerebrum, Cerebellum, Olfactory bulb ..... as shrinkage with aging rather than selective .... lasting increase in the number of proliferating cells, ... radial glia in the adult rat dentate gyrus.

  15. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling.

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    Full Text Available Our previous research highlighted an inconsistency with Notch1 signaling-related compensatory neurogenesis after chronic mild stress (CMS in rodents suffering from cerebral ischemia, which continue to display post-stroke depressive symptoms. Here, we hypothesize that CMS aggrandized ischemia-related apoptosis injury and worsened synaptic integrity via gamma secretase-meditated Notch1 signaling. Adult rats were exposed to a CMS paradigm after left middle cerebral artery occlusion (MCAO. Open-field and sucrose consumption testing were employed to assess depression-like behavior. Gene expression of pro-apoptotic Bax, anti-apoptotic Bcl-2, and synaptic density-related synaptophysin were measured by western blotting and real-time PCR on Day 28 after MCAO surgery. CMS induced depressive behaviors in ischemic rats, which was accompanied by an elevation in Bax/bcl-2 ratio, TUNEL staining in neurons and reduced synaptophysin expression in the dentate gyrus. These collective effects were reversed by the gamma-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl]-S-phenyl-glycine t-butyl ester. We found that post-stroke stressors made neurons in the dentate gyrus vulnerable to apoptosis, which supports a putative role for Notch signaling in neural integrity, potentially in newborn cells' synaptic deficit with regard to preexisting cells. These findings suggest that post-stroke depression therapeutically benefits from blocking gamma secretase mediated Notch signaling, and whether this signaling pathway could be a therapeutic target needs to be further investigated.

  16. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  17. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    International Nuclear Information System (INIS)

    Schindler, Matthew K.; Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-01-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals

  18. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-01-01

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  19. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  20. Structural plasticity in the dentate gyrus- revisiting a classic injury model.

    Directory of Open Access Journals (Sweden)

    Julia V. Perederiy

    2013-02-01

    Full Text Available The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.

  1. Evaluation of the protective effects of tocotrienol-rich fraction from palm oil on the dentate gyrus following chronic restraint stress in rats

    Directory of Open Access Journals (Sweden)

    Saiful Bhari Talip

    2013-06-01

    Full Text Available Exposure to chronic restraint stress has been shown to cause a number of morphological changes in the hippocampal formation of rats. Tocotrienol, an isoform of vitamin E, exhibits numerous health benefits, different from those of tocopherol. Recent studies have demonstrated that tocotrienol prevents stress-induced changes in the gastric mucosa, thus indicating that it may also protect other organs such as the brain from the damaging effects of stress. Therefore, the aim of the present study was to investigate the protective effect of tocotrienol-rich fraction (TRF extracted from palm oil on the dentate gyrus of rats following exposure to chronic restraint stress. Thirty-six male Sprague Dawley rats were divided into four groups: control, stress, tocotrienol and combination of stress and tocotrienol. Animals were stressed by restraining them for 5 hours every day for 21 consecutive days. TRF was administered via oral gavage at a dose of 200 mg/kg body weight. Our results showed that the plasma corticosterone level was significantly increased in response to stress, compared to the control. The results confirmed previous findings that chronic restraint stress suppresses cellular proliferation and reduces granule cell number in the dentate gyrus. However, TRF supplementation failed to prevent or minimize these stress-induced changes. Therefore, we conclude that TRF at the current dosage is not effective in preventing the morphological changes in the dentate gyrus induced by chronic restraint stress.

  2. Mandibular thickness measurements in young dentate adults.

    Science.gov (United States)

    Beaty, Narlin B; Le, Thomas T

    2009-09-01

    To measure thicknesses in clinical landmark areas of the dentate mandibles of young men and women. Using standard radiologic software, we obtained mean (SD) thickness measurements at the inferior or posterior borders of the mandible at the following 7 surgically useful sites: (1) the symphysis, (2) a point halfway between the symphysis and the mental nerve, (3) the mental nerve, (4) a point halfway between the mental nerve and the facial artery notch, (5) the facial artery notch, (6) the angle vertex, and (7) the ramus-condylar neck border. University hospital. A total of 150 dentate men and 75 dentate women aged 18 to 30 years who had undergone computed tomography of the head and neck region during the period of December 20, 2006 to February 20, 2007. Thicknesses of 7 mandibular sites. Mean (SD) thicknesses at the 7 mandibular sites were as follows: symphysis, 14.03 (1.53) mm for men and 13.21 (1.46) mm for women; halfway between the symphysis and the mental nerve, 11.17 (1.37) mm for men and 10.00 (1.08) mm for women; mental nerve, 9.48 (1.28) mm for men and 8.72 (1.00) mm for women; halfway between the mental nerve and the facial artery notch, 10.33 (1.24) mm for men and 9.45 (0.92) mm for women; facial artery notch, 7.27 (0.82) mm for men and 7.10 (0.88) mm for women; angle vertex, 5.42 (0.90) mm for men and 5.39 (0.66) mm for women; and ramus-condylar neck border, 5.90 (0.86) mm for men and 5.85 (0.71) mm for women. Clinical landmark areas in young dentate mandibles have mean thicknesses with limited SDs. The thickness measurements obtained at the sites in this study provide practical reference information for mandibular reconstruction and bicortical screw length estimation.

  3. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  4. Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth

    Directory of Open Access Journals (Sweden)

    Andrea ePedroni

    2014-02-01

    Full Text Available Granule cells (GCs in the dentate gyrus are generated mainly postnatally. Between embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a peak at the end of the first postnatal week and it is completed at the end of the first postnatal month. This process continues at a reduced rate throughout life. Interestingly, immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate the classical glutamatergic trisynaptic hippocampal circuit. Here, whole patch clamp recordings, in current clamp mode, were performed from immature GCs, intracellularly loaded with biocytin (in hippocampal slices from P0-P3 old rats in order to compare their morphological characteristics with their electrophysiological properties. The vast majority of GCs were very immature with small somata, few dendritic branches terminating with small varicosities and growth cones. In spite of their immaturity their axons reached often the CA3 area. Immature GCs generated, upon membrane depolarization, either rudimentary sodium spikes or more clear overshooting action potentials that fired repetitively. They exhibited also low threshold calcium spikes. In addition, most spiking neurons showed spontaneous synchronized network activity, reminiscent of giant depolarizing potentials (GDPs generated in the hippocampus by the synergistic action of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity, absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal circuits within the developing dentate gyrus.

  5. Postischemic Anhedonia Associated with Neurodegenerative Changes in the Hippocampal Dentate Gyrus of Rats

    Directory of Open Access Journals (Sweden)

    Jiro Kasahara

    2016-01-01

    Full Text Available Poststroke depression is one of the major symptoms observed in the chronic stage of brain stroke such as cerebral ischemia. Its pathophysiological mechanisms, however, are not well understood. Using the transient right middle cerebral artery occlusion- (MCAO-, 90 min operated rats as an ischemia model in this study, we first observed that aggravation of anhedonia spontaneously occurred especially after 20 weeks of MCAO, and it was prevented by chronic antidepressants treatment (imipramine or fluvoxamine. The anhedonia specifically associated with loss of the granular neurons in the ipsilateral side of hippocampal dentate gyrus and was also prevented by an antidepressant imipramine. Immunohistochemical analysis showed increased apoptosis inside the granular cell layer prior to and associated with the neuronal loss, and imipramine seemed to recover the survival signal rather than suppressing the death signal to prevent neurons from apoptosis. Proliferation and development of the neural stem cells were increased transiently in the subgranular zone of both ipsi- and contralateral hippocampus within one week after MCAO and then decreased and almost ceased after 6 weeks of MCAO, while chronic imipramine treatment prevented them partially. Overall, our study suggests new insights for the mechanistic correlation between poststroke depression and the delayed neurodegenerative changes in the hippocampal dentate gyrus with effective use of antidepressants on them.

  6. Age-dependent role for Ras-GRF1 in the late stages of adult neurogenesis in the dentate gyrus.

    Science.gov (United States)

    Darcy, Michael J; Trouche, Stéphanie; Jin, Shan-Xue; Feig, Larry A

    2014-03-01

    The dentate gyrus of the hippocampus plays a pivotal role in pattern separation, a process required for the behavioral task of contextual discrimination. One unique feature of the dentate gyrus that contributes to pattern separation is adult neurogenesis, where newly born neurons play a distinct role in neuronal circuitry. Moreover,the function of neurogenesis in this brain region differs in adolescent and adult mice. The signaling mechanisms that differentially regulate the distinct steps of adult neurogenesis in adolescence and adulthood remain poorly understood. We used mice lacking RASGRF1(GRF1), a calcium-dependent exchange factor that regulates synaptic plasticity and participates in contextual discrimination performed by mice, to test whether GRF1 plays a role in adult neurogenesis.We show Grf1 knockout mice begin to display a defect in neurogenesis at the onset of adulthood (~2 months of age), when wild-type mice first acquire the ability to distinguish between closely related contexts. At this age, young hippocampal neurons in Grf1 knockout mice display severely reduced dendritic arborization. By 3 months of age, new neuron survival is also impaired. BrdU labeling of new neurons in 2-month-old Grf1 knockout mice shows they begin to display reduced survival between 2 and 3 weeks after birth, just as new neurons begin to develop complex dendritic morphology and transition into using glutamatergic excitatory input. Interestingly, GRF1 expression appears in new neurons at the developmental stage when GRF1 loss begins to effect neuronal function. In addition, we induced a similar loss of new hippocampal neurons by knocking down expression of GRF1 solely in new neurons by injecting retrovirus that express shRNA against GRF1 into the dentate gyrus. Together, these findings show that GRF1 expressed in new neurons promotes late stages of adult neurogenesis. Overall our findings show GRF1 to be an age-dependent regulator of adult hippocampal neurogenesis, which

  7. Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus

    Science.gov (United States)

    Li, Bin; Yamamori, Hidenaga; Tatebayashi, Yoshitaka; Shafit-Zagardo, Bridget; Tanimukai, Hitoshi; Chen, She; Iqbal, Khalid; Grundke-Iqbal, Inge

    2011-01-01

    The dentate gyrus, an important anatomic structure of the hippocampal formation, is one of the major areas in which neurogenesis takes place in the adult mammalian brain. Neurogenesis in the dentate gyrus is thought to play an important role in hippocampus-dependent learning and memory. Neurogenesis has been reported to be increased in the dentate gyrus of patients with Alzheimer disease, but it is not known whether the newly generated neurons differentiate into mature neurons. In this study, the expression of the mature neuronal marker high molecular weight microtubule-associated protein (MAP) isoforms MAP2a and b was found to be dramatically decreased in Alzheimer disease dentate gyrus, as determined by immunohistochemistry and in situ hybridization. The total MAP2, including expression of the immature neuronal marker, the MAP2c isoform, was less affected. These findings suggest that newly generated neurons in Alzheimer disease dentate gyrus do not become mature neurons, although neuroproliferation is increased. PMID:18091557

  8. Altered expression of the cell cycle regulatory protein cyclin D1 in the rat dentate gyrus after adrenalectomy-induced granular cell lass

    NARCIS (Netherlands)

    Postigo, JA; Van der Werf, YD; Korf, J; Krugers, HJ

    1998-01-01

    The loss of dentate gyrus (DG) granular cells after removal of the rat adrenal glands (ADX) is mediated by a process that is apoptotic in nature. The present study was initiated to compare changes in the immunocytochemical distribution of the cell-cycle regulatory protein cyclin D1, which has been

  9. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  10. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies).

    OpenAIRE

    Amaral David G; Scharfman Helen E; Lavenex Pierre

    2007-01-01

    The dentate gyrus is a simple cortical region that is an integral portion of the larger functional brain system called the hippocampal formation. In this review, the fundamental neuroanatomical organization of the dentate gyrus is described, including principal cell types and their connectivity, and a summary of the major extrinsic inputs of the dentate gyrus is provided. Together, this information provides essential information that can serve as an introduction to the dentate gyrus — a “dent...

  11. Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus.

    Science.gov (United States)

    Shaw, K N; Commins, S; O'Mara, S M

    2001-09-28

    We investigated the effects of a single injection and a daily injection of lipopolysaccharide (LPS) on spatial learning and brain-derived neurotrophic factor (BDNF) expression in the rat dentate gyrus. LPS is derived from the cell wall of Gram-negative bacteria and is a potent endotoxin that causes the release of cytokines such as interleukin-1 and tumour necrosis factor. LPS is thought to activate both the neuroimmune and neuroendocrine systems; it also blocks long-term potentiation in the hippocampus. Here, we examined the effects of LPS on a form of hippocampal-dependent learning-spatial learning in the water maze. Rats were injected with LPS intraperitoneally (100 microg/kg) and trained in the water maze. The first group of rats were injected on day 1 of training, 4 h prior to learning the water maze task. Groups 2 and 3 were injected daily, again 4 h prior to the water-maze task; group 2 with LPS and group 3 with saline. A number of behavioural variables were recorded by a computerised tracking system for each trial. The behavioural results showed a single injection of LPS (group 1) impaired escape latency in both the acquisition and retention phases of the study, whereas a daily injection of LPS did not significantly impair acquisition or retention. BDNF expression was analysed in the dentate gyrus of all animals. No significant differences in BDNF expression were found between the three groups.

  12. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model.

    Science.gov (United States)

    Althaus, A L; Sagher, O; Parent, J M; Murphy, G G

    2015-02-15

    Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model. Copyright © 2015 the American Physiological Society.

  13. Tooth replacement related to number of natural teeth in a dentate adult population in Bulgaria: a cross-sectional study

    NARCIS (Netherlands)

    Damyanov, N.D.; Witter, D.J.; Bronkhorst, E.M.; Creugers, N.H.J.

    2013-01-01

    PURPOSE: This study aimed to explore the relationships among tooth replacement, number of present natural teeth, and sociodemographic and behavioral factors in an adult population in Bulgaria. MATERIALS AND METHODS: Quota sampling was used to recruit 2,531 dentate subjects aged 20 years and over

  14. Tricyclic antidepressant amitriptyline indirectly increases the proliferation of adult dentate gyrus-derived neural precursors: an involvement of astrocytes.

    Directory of Open Access Journals (Sweden)

    Shuken Boku

    Full Text Available Antidepressants increase the proliferation of neural precursors in adult dentate gyrus (DG, which is considered to be involved in the therapeutic action of antidepressants. However, the mechanism underlying it remains unclear. By using cultured adult rat DG-derived neural precursors (ADP, we have already shown that antidepressants have no direct effects on ADP. Therefore, antidepressants may increase the proliferation of neural precursors in adult DG via unknown indirect mechanism. We have also shown that amitriptyline (AMI, a tricyclic antidepressant, induces the expressions of GDNF, BDNF, FGF2 and VEGF, common neurogenic factors, in primary cultured astrocytes (PCA. These suggest that AMI-induced factors in astrocytes may increase the proliferation of neural precursors in adult DG. To test this hypothesis, we examined the effects of AMI-induced factors and conditioned medium (CM from PCA treated with AMI on ADP proliferation. The effects of CM and factors on ADP proliferation were examined with BrdU immunocytochemistry. AMI had no effect on ADP proliferation, but AMI-treated CM increased it. The receptors of GDNF, BDNF and FGF2, but not VEGF, were expressed in ADP. FGF2 significantly increased ADP proliferation, but not BDNF and GDNF. In addition, both of a specific inhibitor of FGF receptors and anti-FGF2 antibody significantly counteracted the increasing effect of CM on ADP proliferation. In addition, FGF2 in brain is mainly derived from astrocytes that are key components of the neurogenic niches in adult DG. These suggest that AMI may increase ADP proliferation indirectly via PCA and that FGF2 may a potential candidate to mediate such an indirect effect of AMI on ADP proliferation via astrocytes.

  15. Hyposalivation and xerostomia in dentate older adults

    Science.gov (United States)

    Wiener, R. Constance; Wu, Bei; Crout, Richard; Wiener, Michael; Plassman, Brenda; Kao, Elizabeth; McNeil, Daniel

    2010-01-01

    Background Older adults are susceptible to reduced saliva production related to certain medications, radiation and chronic conditions. Many of these people have many physical and oral health problems and limited access to dental care. The use of effective screening tools for xerostomia and hyposalivation would be helpful in identifying those at risk. The authors conducted a study to investigate the association between three measures of oral dryness: hyposalivation (low unstimulated salivary flow), self-reported xerostomia and clinically assessed dry mouth. Methods The authors included a convenience sample of 252 nondemented and dentate West Virginia participants 70 years and older who were part of a larger study on oral health and cognition among older adults. Participants completed a self-reported xerostomia index, provided an unstimulated salivary sample and underwent an oral assessment for the study. Results Twenty-eight (11.1 percent) had hyposalivation, eight of whom reported having xerostomia (sensitivity = 28.6 percent). Of the 43 participants who reported having xerostomia, only eight had hyposalivation (positive predictive value = 18.6 percent). Hyposalivation and self-reported xerostomia were not significantly related. Clinically assessed dry mouth correlated modestly, but significantly, with hyposalivation and self-reported xerostomia. Conclusions Obtaining routine unstimulated salivary flow rates in addition to self-reported information and oral evaluations may increase early detection of oral dryness, which would assist in implementing early interventions to improve patients’ quality of life. Clinical Implications Visually inspecting oral tissues for dryness and asking a patient if his or her mouth is dry are insufficient measures for clinicians to use to determine if the patient has hyposalivation. The authors recommend that clinicians determine the patients’ unstimulated salivary flow rate. PMID:20194383

  16. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    Science.gov (United States)

    Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  17. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    Directory of Open Access Journals (Sweden)

    Anne Klomp

    Full Text Available The antidepressant drug fluoxetine (Prozac has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b effects on tryptophan hydroxylase (TPH expression, a measure of serotonin synthesis; c whether treatment effects during adolescence differed from treatment at an adult age, and d whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+ cells and of the number of young migratory neurons (doublecortin+, revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  18. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    Directory of Open Access Journals (Sweden)

    Irmgard eAmrein

    2014-05-01

    Full Text Available African mole-rats (family Bathyergidae are small to medium sized, long-lived and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of one year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin. Solitary Cape mole-rats (Georychus capensis, social highveld mole-rats (Cryptomys hottentotus pretoriae, and eusocial naked mole-rats (Heterocephalus glaber were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean

  19. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species.

    Science.gov (United States)

    Amrein, Irmgard; Becker, Anton S; Engler, Stefanie; Huang, Shih-Hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents.

  20. Effects of developmental hyperserotonemia on the morphology of rat dentate nuclear neurons.

    Science.gov (United States)

    Hough, L H; Segal, S

    2016-05-13

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social cognition, disordered communication, restricted interests and repetitive behaviors. Furthermore, abnormalities in basic motor control, skilled motor gestures, and motor learning, are common in ASD. These characteristics have been attributed to a possible defect in the pre- and postnatal development of specific neural networks including the dentate-thalamo-cortical pathway, which is involved in motor learning, automaticity of movements, and higher cognitive functions. The current study utilized custom diolistic labeling and unbiased stereology to characterize morphological alterations in neurons of the dentate nucleus of the cerebellum in developing rat pups exposed to abnormally high levels of the serotonergic agonist 5-methyloxytryptamine (5-MT) pre-and postnatally. Occurring in as many as 30% of autistic subjects, developmental hyperserotonemia (DHS) is the most consistent neurochemical finding reported in autism and has been implicated in the pathophysiology of ASD. This exposure produced dramatic changes in dendritic architecture and synaptic features. We observed changes in the dendritic branching morphology which did not lead to significant differences (p>0.5) in total dendritic length. Instead, DHS groups presented with dendritic trees that display changes in arborescence, that appear to be short reaching with elaborately branched segments, presenting with significantly fewer (p>0.001) dendritic spines and a decrease in numeric density when compared to age-matched controls. These negative changes may be implicated in the neuropathological and functional/behavioral changes observed in ASD, such as delays in motor learning, difficulties in automaticity of movements, and deficits in higher cognitive functions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Na Liu

    Full Text Available The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE. Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2 at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95 and receptor proteins (GluR2 and GABA(ARγ2 of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.

  2. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Hochgerner, Hannah; Zeisel, Amit; Lönnerberg, Peter; Linnarsson, Sten

    2018-02-01

    The dentate gyrus of the hippocampus is a brain region in which neurogenesis persists into adulthood; however, the relationship between developmental and adult dentate gyrus neurogenesis has not been examined in detail. Here we used single-cell RNA sequencing to reveal the molecular dynamics and diversity of dentate gyrus cell types in perinatal, juvenile, and adult mice. We found distinct quiescent and proliferating progenitor cell types, linked by transient intermediate states to neuroblast stages and fully mature granule cells. We observed shifts in the molecular identity of quiescent and proliferating radial glia and granule cells during the postnatal period that were then maintained through adult stages. In contrast, intermediate progenitor cells, neuroblasts, and immature granule cells were nearly indistinguishable at all ages. These findings demonstrate the fundamental similarity of postnatal and adult neurogenesis in the hippocampus and pinpoint the early postnatal transformation of radial glia from embryonic progenitors to adult quiescent stem cells.

  3. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    International Nuclear Information System (INIS)

    Goldowitz, D.; Cotman, C.W.

    1980-01-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of [ 3 H]-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of [ 3 H]proline, [ 3 H]leucine or [ 3 H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography. (author)

  4. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Goldowitz, D; Cotman, C W [California Univ., Irvine (USA)

    1980-12-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of (/sup 3/H)-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of (/sup 3/H)proline, (/sup 3/H)leucine or (/sup 3/H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography.

  5. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  6. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Andrew Collins

    Full Text Available We have shown previously that exercise benefits stress resistance and stress coping capabilities. Furthermore, we reported recently that epigenetic changes related to gene transcription are involved in memory formation of stressful events. In view of the enhanced coping capabilities in exercised subjects we investigated epigenetic, gene expression and behavioral changes in 4-weeks voluntarily exercised rats.Exercised and control rats coped differently when exposed to a novel environment. Whereas the control rats explored the new cage for the complete 30-min period, exercised animals only did so during the first 15 min after which they returned to sleeping or resting behavior. Both groups of animals showed similar behavioral responses in the initial forced swim session. When re-tested 24 h later however the exercised rats showed significantly more immobility behavior and less struggling and swimming. If rats were killed at 2 h after novelty or the initial swim test, i.e. at the peak of histone H3 phospho-acetylation and c-Fos induction, then the exercised rats showed a significantly higher number of dentate granule neurons expressing the histone modifications and immediate-early gene induction.Thus, irrespective of the behavioral response in the novel cage or initial forced swim session, the impact of the event at the dentate gyrus level was greater in exercised rats than in control animals. Furthermore, in view of our concept that the neuronal response in the dentate gyrus after forced swimming is involved in memory formation of the stressful event, the observations in exercised rats of enhanced neuronal responses as well as higher immobility responses in the re-test are consistent with the reportedly improved cognitive performance in these animals. Thus, improved stress coping in exercised subjects seems to involve enhanced cognitive capabilities possibly resulting from distinct epigenetic mechanisms in dentate gyrus neurons.

  7. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    Science.gov (United States)

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  8. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus.

    Science.gov (United States)

    Pereira, Pedro A; Rocha, João P; Cardoso, Armando; Vilela, Manuel; Sousa, Sérgio; Madeira, M Dulce

    2016-05-01

    Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6months) and subsequent withdrawal (2months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    Science.gov (United States)

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this

  10. Effect of parental morphine addiction on extracellular glutamate concentration of dentate gyrus in rat offsprings

    Directory of Open Access Journals (Sweden)

    rahele Assaee

    2004-01-01

    Findings: In male offsprings of sham control1, sham control2, test1 and test2 basal and electrical stimulated of extracellular glutamate concentration of dentate gyrus were: 0.67±0.04, 1.11±0.1, and in female offsprings were 0.47±0.06, 0.88±0.05 (n=5. The basal and stimulated extra cellular glutamate concentration of dentate gyrus was decreased in both test1 and test2 offsprings. It was less in test1 than test2 offsprings. The glutamate concentration of dentate gyrus in female offsprings of test1 group was less than that of the male offsprings. conclusion: The results suggest that parental morphine addiction may cause learning deficiency through reduction of extracellular glutamate concentration in dentate gyrus so the side effects of parental morphine addiction in offsprings must be considered.

  11. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  12. Dentate Gyrus Neurogenesis, Integration, and microRNAs

    OpenAIRE

    Luikart, Bryan W; Perederiy, Julia V; Westbrook, Gary L

    2011-01-01

    Neurons are born and become a functional part of the synaptic circuitry in adult brains. The proliferative phase of neurogenesis has been extensively reviewed. We therefore focus this review on a few topics addressing the functional role of adult-generated newborn neurons in the dentate gyrus. We discuss the evidence for a link between neurogenesis and behavior. We then describe the steps in the integration of newborn neurons into a functioning mature synaptic circuit. Given the profound effe...

  13. Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable.

    Directory of Open Access Journals (Sweden)

    Julián Tejada

    Full Text Available Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.

  14. Properties of doublecortin-(DCX-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice.

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    Full Text Available The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise, also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.

  15. Effects of treadmill running on extracellular basal levels of glutamate and GABA at dentate gyrus of streptozotocin-induced diabetic rats

    Science.gov (United States)

    Reisi, Parham; Alaei, Hojjatallah; Babri, Shirin; Sharifi, Mohammad Reza; Mohaddes, Gisue; Soleimannejad, Elaheh; Rashidi, Bahman

    2010-01-01

    BACKGROUND: The present study evaluated the effects of treadmill running on extracellular basal levels of glutamate and GABA at dentate gyrus of streptozotocin-induced diabetic rats. METHODS: After 12 weeks of diabetes induction and exercise period, extracellular levels of glutamate and GABA were investigated. RESULTS: The results showed that glutamate levels were significantly decreased in diabetes-rest group comparing to the control-rest and the diabetes-exercise groups. CONCLUSIONS: The findings support the possibility that treadmill running is helpful in alleviating neurotransmitter homeostasis and alterations in transmission in diabetes mellitus. PMID:21526077

  16. Dehydroepiandrosterone increases the number and dendrite maturation of doublecortin cells in the dentate gyrus of middle age male Wistar rats exposed to chronic mild stress.

    Science.gov (United States)

    Herrera-Pérez, J J; Martínez-Mota, L; Jiménez-Rubio, G; Ortiz-López, L; Cabrera-Muñoz, E A; Galindo-Sevilla, N; Zambrano, E; Hernández-Luis, F; Ramírez-Rodríguez, G B; Flores-Ramos, M

    2017-03-15

    Aging increases the vulnerability to stress and risk of developing depression. These changes have been related to a reduction of dehydroepiandrosterone (DHEA) levels, an adrenal steroid with anti-stress effects. Also, adult hippocampal neurogenesis decreases during aging and its alteration or impaired is related to the development of depression. Besides, it has been hypothesized that DHEA increases the formation of new neurons. However, it is unknown whether treatment with DHEA in aging may stimulate the dendrite maturation of newborn neurons and reversing depressive-like signs evoked by chronic stress exposure. Here aged male rats (14 months old) were subjected to a scheme of chronic mild stress (CMS) during six weeks, received a treatment with DHEA from the third week of CMS. Changes in body weight and sucrose preference (SP) were measured once a week. DHEA levels were measured in serum, identification of doublecortin-(DCX)-, BrdU- and BrdU/NeuN-labeled cells was done in the dentate gyrus of the hippocampus. CMS produced a gradual reduction in the body weight, but no changes in the SP were observed. Treatment enhanced levels of DHEA, but lack of recovery on body weight of stressed rats. Aging reduced the number of DCX-, BrdU- and BrdU/NeuN- cells but DHEA just significantly increased the number of DCX-cells in rats under CMS and controls, reaching levels of young non-stressed rats (used here as a reference of an optimal status of health). In rats under CMS, DHEA facilitated dendritic maturation of immature new neurons. Our results reveal that DHEA improves neural plasticity even in conditions of CMS in middle age rats. Thus, this hormone reverted the decrement of DCX-cells caused during normal aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dentate Gyrus

    OpenAIRE

    Allen Institute for Brain Science; Rachel A. Dalley; Lydia L. Ng; Angela L. Guillozet-Bongaarts

    2008-01-01

    This report contains a gene expression summary of the dentate gyrus (DG), derived from the Allen Brain Atlas (ABA) _in situ_ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the dentate gyrus were compared to the values of the macro/parent-structure, in this case the hippocampal region, for the purpose o...

  18. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    Science.gov (United States)

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups.

  19. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    Science.gov (United States)

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  20. Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat

    Directory of Open Access Journals (Sweden)

    Roman Smidak

    2017-11-01

    Full Text Available Fragile X mental retardation protein (FMRP encoded by Fragile X mental retardation 1 (FMR1 gene is a RNA-binding regulator of mRNA translation, transport and stability with multiple targets responsible for proper synaptic function. Epigenetic silencing of FMR1 gene expression leads to the development of Fragile X syndrome (FXS that is characterized by intellectual disability and other behavioral problems including autism. In the rat FXS model, the lack of FMRP caused a deficit in hippocampal-dependent memory. However, the hippocampal changes of FMRP in aging rats are not fully elucidated. The current study addresses the changes in FMRP levels in dentate gyrus (DG from young (17 weeks and aging (22 months Sprague – Dawley rats. The aging animal group showed significant decline in spatial reference memory. Protein samples from five rats per each group were analyzed by quantitative proteomic analysis resulting in 153 significantly changed proteins. FMRP showed significant reduction in aging animals which was confirmed by immunoblotting and immunofluorescence microscopy. Furthermore, bioinformatic analysis of the differential protein dataset revealed several functionally related protein groups with individual interactions with FMRP. These include high representation of the RNA translation and processing machinery connected to FMRP and other RNA-binding regulators including CAPRIN1, the members of Pumilio (PUM and CUG-BP, Elav-like (CELF family, and YTH N(6-methyladenosine RNA-binding proteins (YTHDF. The results of the current study point to the important role of FMRP and regulation of RNA processing in the rat DG and memory decline during the aging process.

  1. Kindled seizures selectively reduce a subpopulation of [3H]quinuclidinyl benzilate binding sites in rat dentate gyrus

    International Nuclear Information System (INIS)

    Savage, D.D.; McNamara, J.O.

    1982-01-01

    Amygdala-kindled seizures reduced significantly the total number of [ 3 H]quinuclidinyl benzilate binding sites in both dentate and hippocampal gyri compared to electrode implanted unstimulated controls. Both high and low affinity carbachol displaceable binding site populations were significantly reduced in hippocampal gyrus. By contrast, a selective decline of low affinity sites was found in dentate gyrus membranes. The selectivity of the decline in dentate but not hippocampus gyrus underscores the specificity of this molecular response to amygdala-kindled seizures. We suggest that these receptor alterations underlie adaptive mechanisms which antagonize kindled epileptogenesis

  2. Ongoing neurogenesis in the adult dentate gyrus mediates behavioral responses to ambiguous threat cues.

    Directory of Open Access Journals (Sweden)

    Lucas R Glover

    2017-04-01

    Full Text Available Fear learning is highly adaptive if utilized in appropriate situations but can lead to generalized anxiety if applied too widely. A role of predictive cues in inhibiting fear generalization has been suggested by stress and fear learning studies, but the effects of partially predictive cues (ambiguous cues and the neuronal populations responsible for linking the predictive ability of cues and generalization of fear responses are unknown. Here, we show that inhibition of adult neurogenesis in the mouse dentate gyrus decreases hippocampal network activation and reduces defensive behavior to ambiguous threat cues but has neither of these effects if the same negative experience is reliably predicted. Additionally, we find that this ambiguity related to negative events determines their effect on fear generalization, that is, how the events affect future behavior under novel conditions. Both new neurons and glucocorticoid hormones are required for the enhancement of fear generalization following an unpredictably cued threat. Thus, adult neurogenesis plays a central role in the adaptive changes resulting from experience involving unpredictable or ambiguous threat cues, optimizing behavior in novel and uncertain situations.

  3. Basic fibroblast growth factor enhances cell proliferation in the dentate gyrus of neonatal rats following hypoxic-ischemic brain damage.

    Science.gov (United States)

    Zhu, Huan; Qiao, Lixing; Sun, Yao; Yin, Liping; Huang, Li; Jiang, Li; Li, Jiaqing

    2018-04-23

    Perinatal hypoxic-ischemic insult is considered a major contributor to child mortality and morbidity and leads to neurological deficits in newborn infants. There has been a lack of promising neurotherapeutic interventions for hypoxic-ischemic brain damage (HIBD) for clinical application in infants. The present study aimed to investigate the correlation between neurogenesis and basic fibroblast growth factor (bFGF) in the hippocampal dentate gyrus (DG) region in neonatal rats following HIBD. Cell proliferation was examined by detecting BrdU signals, and the role of bFGF in cell proliferation in the DG region following neonatal HIBD was investigated. Cell proliferation was induced by HIBD in the hippocampal DG of neonatal rats. Furthermore, bFGF gene expression was upregulated in the hippocampus in neonatal rats, particularly between 7 and 14 days after HIBD. Moreover, intraperitoneal injection of exogenous bFGF enhanced cell proliferation in the hippocampal DG following neonatal HIBD. Taken together, these data indicate that cell proliferation in the DG could be induced by neonatal HIBD, and bFGF promotes proliferation following neonatal HIBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.

    Science.gov (United States)

    Feng, Shufang; Shi, Tianyao; Qiu, Jiangxia; Yang, Haihong; Wu, Yan; Zhou, Wenxia; Wang, Wei; Wu, Haitao

    2017-10-01

    It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX) + neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1 -/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. © FASEB.

  5. Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats.

    Science.gov (United States)

    Chauhan, G; Ray, K; Sahu, S; Roy, K; Jain, V; Wadhwa, M; Panjwani, U; Kishore, K; Singh, S B

    2016-11-19

    Sleep deprivation (SD) upsurges intracellular levels of adenosine, impairs adult neuronal cell proliferation (NCP) and cognition while caffeine, a non-selective adenosine A1 receptor (A1R) antagonist improves cognition and adult NCP during SD. We examined the selective antagonistic effects of adenosine A1R using 8-cyclopentyl-1,3-dimethylxanthine (8-CPT) on impairment of spatial reference memory and adult NCP during 48h SD. Adult male Sprague Dawley rats were sleep deprived for 48h, using an automatic cage vibrating stimulus based on animal activity. Spatial reference memory was tested as a measure of cognitive performance employing Morris Water Maze. Rats were given 8-CPT dissolved in 50% dimethyl sulfoxide (DMSO), twice daily (10mg/kg, i.p.) along with 5-bromo-2-deoxyuridine (BrdU) (50mg/kg/day, i.p.). The rats treated with 8-CPT showed significantly short mean latency and path-length to reach the platform compared to the SD rats. Consistent with these findings, 8-CPT-treated group was found to have significantly increased the number of BrdU, Ki-67 and doublecortin (DCX) positive cells. However, no significant difference was seen in NeuN expression in the Dentate Gyrus (DG). Brain-derived neurotropic factor (BDNF) expression in the DG and CA1 region was observed to decrease significantly after SD and be rescued by 8-CPT treatment. Furthermore, latency to reach platform showed a negative correlation with number of BrdU, DCX type-1 cells and BDNF expression in DG. Thus, it may be concluded that treatment with 8-CPT, an adenosine A1R antagonist during SD mitigates SD induced decline in spatial reference memory and adult NCP possibly via up regulation of BDNF levels in DG and CA1 regions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. The dentate mossy fibers

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Zimmer, Jens

    2007-01-01

    Hippocampal mossy fibers are the axons of the dentate granule cells and project to hippocampal CA3 pyramidal cells and mossy cells of the dentate hilus (CA4) as well as a number of interneurons in the two areas. Besides their role in hippocampal function, studies of which are still evolving...

  7. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  8. Kindled seizures selectively reduce a subpopulation of (/sup 3/H)quinuclidinyl benzilate binding sites in rat dentate gyrus

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.D.; McNamara, J.O.

    1982-09-01

    Amygdala-kindled seizures reduced significantly the total number of (/sup 3/H)quinuclidinyl benzilate binding sites in both dentate and hippocampal gyri compared to electrode implanted unstimulated controls. Both high and low affinity carbachol displaceable binding site populations were significantly reduced in hippocampal gyrus. By contrast, a selective decline of low affinity sites was found in dentate gyrus membranes. The selectivity of the decline in dentate but not hippocampus gyrus underscores the specificity of this molecular response to amygdala-kindled seizures. We suggest that these receptor alterations underlie adaptive mechanisms which antagonize kindled epileptogenesis.

  9. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  10. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  11. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Zhao

    2018-01-01

    Full Text Available Summary: Dentate gyrus (DG development requires specification of granule cell (GC progenitors in the hippocampal neuroepithelium, as well as their proliferation and migration into the primordial DG. We identify the Plexin family members Plxna2 and Plxna4 as important regulators of DG development. Distribution of immature GCs is regulated by Sema5A signaling through PlxnA2 and requires a functional PlxnA2 GTPase-activating protein (GAP domain and Rap1 small GTPases. In adult Plxna2−/− but not Plxna2-GAP-deficient mice, the dentate GC layer is severely malformed, neurogenesis is compromised, and mossy fibers form aberrant synaptic boutons within CA3. Behavioral studies with Plxna2−/− mice revealed deficits in associative learning, sociability, and sensorimotor gating—traits commonly observed in neuropsychiatric disorder. Remarkably, while morphological defects are minimal in Plxna2-GAP-deficient brains, defects in fear memory and sensorimotor gating persist. Since allelic variants of human PLXNA2 and RAP1 associate with schizophrenia, our studies identify a biochemical pathway important for brain development and mental health. : Zhao et al. find that Sema5A-PlexinA2 forward signaling through Rap1 GTPases is required for progenitor distribution in the developing mouse dentate gyrus. Adult Plxna2−/−, but not Plxna2-GAP-deficient, mice show defects in dentate morphology, neurogenesis, and mossy fiber connectivity. Plxna2−/− and Plxna2-GAP mice exhibit behavioral defects suggestive of neuropsychiatric illness. Keywords: PlexinA2, semaphoring, Rap1, GAP, dentate gyrus, adult neurogenesis, mossy fiber, fear memory, sensorimotor gating, schizophrenia

  12. Status Epilepticus Induced Spontaneous Dentate Gyrus Spikes: In Vivo Current Source Density Analysis.

    Directory of Open Access Journals (Sweden)

    Sean P Flynn

    Full Text Available The dentate gyrus is considered to function as an inhibitory gate limiting excitatory input to the hippocampus. Following status epilepticus (SE, this gating function is reduced and granule cells become hyper-excitable. Dentate spikes (DS are large amplitude potentials observed in the dentate gyrus (DG of normal animals. DS are associated with membrane depolarization of granule cells, increased activity of hilar interneurons and suppression of CA3 and CA1 pyramidal cell firing. Therefore, DS could act as an anti-excitatory mechanism. Because of the altered gating function of the dentate gyrus following SE, we sought to investigate how DS are affected following pilocarpine-induced SE. Two weeks following lithium-pilocarpine SE induction, hippocampal EEG was recorded in male Sprague-Dawley rats with 16-channel silicon probes under urethane anesthesia. Probes were placed dorso-ventrally to encompass either CA1-CA3 or CA1-DG layers. Large amplitude spikes were detected from EEG recordings and subject to current source density analysis. Probe placement was verified histologically to evaluate the anatomical localization of current sinks and the origin of DS. In 9 of 11 pilocarpine-treated animals and two controls, DS were confirmed with large current sinks in the molecular layer of the dentate gyrus. DS frequency was significantly increased in pilocarpine-treated animals compared to controls. Additionally, in pilocarpine-treated animals, DS displayed current sinks in the outer, middle and/or inner molecular layers. However, there was no difference in the frequency of events when comparing between layers. This suggests that following SE, DS can be generated by input from medial and lateral entorhinal cortex, or within the dentate gyrus. DS were associated with an increase in multiunit activity in the granule cell layer, but no change in CA1. These results suggest that following SE there is an increase in DS activity, potentially arising from

  13. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  14. Is the goal of mastication reached in young dentates, aged dentates and aged denture wearers?

    Science.gov (United States)

    Mishellany-Dutour, Anne; Renaud, Johanne; Peyron, Marie-Agnès; Rimek, Frank; Woda, Alain

    2008-01-01

    The objective of the present study was to assess the impact of age and dentition status on masticatory function. A three-arm case-control study was performed. Group 1 (n 14) was composed of young fully dentate subjects (age 35.6 +/- 10.6 years), group 2 (n 14) of aged fully dentate subjects (age 68.8 +/- 7.0 years) and group 3 (n 14) of aged full denture wearers (age 68.1 +/- 7.2 years). Mastication adaptation was assessed in the course of chewing groundnuts and carrots to swallowing threshold. Particle size distribution of the chewed food, electromyographic (EMG) activity of the masseter and temporalis muscles during chewing, and resting and stimulated whole saliva rates were measured. Aged dentate subjects used significantly more chewing strokes to reach swallowing threshold than younger dentate subjects (P < 0.05), with increased particle size reduction, longer chewing sequence duration (P < 0.05) and greater total EMG activity (P < 0.05) for both groundnuts and carrots. In addition, aged denture wearers made significantly more chewing strokes than aged dentate subjects (P < 0.001) to reach swallowing threshold for groundnuts. Particle size reduction at time of swallowing was significantly poorer for denture wearers than for their aged dentate counterparts, despite an increase in chewing strokes, sequence duration and EMG activity per sequence. Masticatory function was thus adapted to ageing, but was impaired in denture wearers, who failed to adapt fully to their deficient masticatory apparatus.

  15. Pyramid-like basket cells in the granular layer of the dentate gyrus in the rat.

    Science.gov (United States)

    Seress, L

    1978-01-01

    Basket cells of the dentate gyrus were identified using Nissl (cresyl violet) staining. It has been found that the ratio between basket and granule cells is 1:150--210. Only a few glial cells, mainly astroglia, were found in the granular layer of the dentate gyrus. In accordance with earlier data it was found that the granule cells and glial cells originate mainly postnatally, but the basket cells, like the pyramidal cells of the hippocampus, originate prenatally. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:701192

  16. Effects of amitriptyline and fluoxetine on synaptic plasticity in the dentate gyrus of hippocampal formation in rats

    Directory of Open Access Journals (Sweden)

    Ghasem Zarei

    2014-01-01

    Full Text Available Background: Several studies have been shown that antidepressant drugs have contradictory effects on cognitive processes. Therefore, the aim of this study was to investigate the effects of amitriptyline and fluoxetine on synaptic plasticity in the dentate gyrus (DG of the hippocampal formation in rat. Materials and Methods: Experimental groups were the control, the fluoxetine, and amitriptyline. The rats were treated for 21 days and then, paired pulse facilitation/inhibition (PPF/I and long-term potentiation (LTP in perforant path-DG synapses were assessed (by 400 Hz tetanization. Field excitatory post-synaptic potential (fEPSP slope and population spike (PS amplitude were measured. Results: The results of PPF/I showed that PS amplitude ratios were increased in 10-70 ms inter-stimulus intervals in the amitriptyline group compared to the control group. In the fluoxetine group, EPSP slope ratios were decreased in intervals 30, 40, and 50 ms inter-stimulus intervals compared to the control group. The PS-LTP was significantly lower in the fluoxetine and the amitriptyline groups with respect to the control group. Conclusion: The results showed that fluoxetine and amitriptyline affect synaptic plasticity in the hippocampus and these effects is probably due to the impact on the number of active neurons.

  17. BTG1 is required to maintain the pool of stem and progenitor cells of dentate gyrus and subventricular zone

    OpenAIRE

    Stefano eFarioli-Vecchioli; Laura eMicheli; Daniele eSaraulli; Manuela eCeccarelli; Sara eCannas; Raffaella eScardigli; Luca eLeonardi; Irene eCinà; Marco eCostanzi; Maria Teresa eCiotti; Pedro eMoreira; Jean-Pierre eRouault; Vincenzo eCestari; Felice eTirone

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons.Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at two months of age the number of these proliferating cells, a...

  18. Interleukin-1β increases neuronal death in the hippocampal dentate gyrus associated with status epilepticus in the developing rat.

    Science.gov (United States)

    Rincón-López, C; Tlapa-Pale, A; Medel-Matus, J-S; Martínez-Quiroz, J; Rodríguez-Landa, J F; López-Meraz, M-L

    Interleukin-1β (IL-1β) increases necrotic neuronal cell death in the CA1 area after induced status epilepticus (SE) in developing rats. However, it remains uncertain whether IL-1β has a similar effect on the hippocampal dentate gyrus (DG). In this study, we analysed the effects of IL-1β on 14-day-old Wistar rats experiencing DG neuronal death induced by SE. SE was induced with lithium-pilocarpine. Six hours after SE onset, a group of pups was injected with IL-1β (at 0, 0.3, 3, 30, or 300ng/μL) in the right ventricle; another group was injected with IL-1β receptor (IL-1R1) antagonist (IL-1Ra, at 30ng/μL) of IL-1RI antagonist (IL-1Ra) alone, and additional group with 30ng/μL of IL-1Ra plus 3ng/μL of IL-1β. Twenty-four hours after SE onset, neuronal cell death in the dentate gyrus of the dorsal hippocampus was assessed using haematoxylin-eosin staining. Dead cells showed eosinophilic cytoplasm and condensed and fragmented nuclei. We observed an increased number of eosinophilic cells in the hippocampal DG ipsilateral to the site of injection of 3ng/μL and 300ng/μL of IL-1β in comparison with the vehicle group. A similar effect was observed in the hippocampal DG contralateral to the site of injection of 3ng/μL of IL-1β. Administration of both of IL-1β and IL-1Ra failed to prevent an increase in the number of eosinophilic cells. Our data suggest that IL-1β increases apoptotic neuronal cell death caused by SE in the hippocampal GD, which is a mechanism independent of IL-1RI activation. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal. PMID:22969701

  20. Occurrence and impact of xerostomia among dentate adult New Zealanders: findings from a national survey.

    Science.gov (United States)

    Benn, A M L; Broadbent, J M; Thomson, W M

    2015-09-01

    We investigated the prevalence, associations and impact of xerostomia in a nationally representative sample of dentate adult community-dwelling New Zealanders aged 18 years and over. The data were collected from a representative sample of 2209 adults, as part of the 2009 New Zealand Oral Health Survey (NZOHS). Data were collected using face-to-face interviews, dental examinations and the short-form Oral Health Impact Profile (OHIP-14). Data analysis used appropriate weighting for all procedures to account for the complex survey design. The overall prevalence estimate for xerostomia was 13.1% (95% CI 11.7, 14.7), and it was more common among females. Those in the 75+  and 25-34 age groups were more likely (odds ratios of 6.5 and 4.0, respectively) to have xerostomia. After controlling for sociodemographic characteristics and clinical oral disease, the mean OHIP-14 score among xerostomics was 50% higher than among those who did not have the condition. These data indicate that xerostomia is a common condition which can affect quality of life among people of all ages. © 2015 Australian Dental Association.

  1. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    Science.gov (United States)

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  2. Suspension of Mitotic Activity in Dentate Gyrus of the Hibernating Ground Squirrel

    Directory of Open Access Journals (Sweden)

    Victor I. Popov

    2011-01-01

    Full Text Available Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4–6°C permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus.

  3. Functional circuits of new neurons in the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Carmen eVivar

    2013-02-01

    Full Text Available The hippocampus is crucial for memory formation. New neurons are added throughout life to the hippocampal dentate gyrus (DG, a brain area considered important for differential storage of similar experiences and contexts. To better understand the functional contribution of adult neurogenesis to pattern separation processes, we recently used a novel synapse specific trans-neuronal tracing approach to identify the (sub cortical inputs to new dentate granule cells. It was observed that newly born neurons receive sequential innervation from structures important for memory function. Initially, septal-hippocampal cells provide input to new neurons, followed after about one month by perirhinal and lateral entorhinal cortex. These cortical areas are deemed relevant to encoding of novel environmental information and may enable pattern separation. Here, we review the developmental time-course and proposed functional relevance of new neurons, within the context of their unique neural circuitry.  

  4. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    OpenAIRE

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as...

  5. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Science.gov (United States)

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  6. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    International Nuclear Information System (INIS)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-01-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc + neurons at 1000 ppm and Fos + neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased

  7. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    Science.gov (United States)

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  8. Memory retrieval-induced activation of adult-born neurons generated in response to damage to the dentate gyrus.

    Science.gov (United States)

    Aguilar-Arredondo, Andrea; Zepeda, Angélica

    2018-04-16

    The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.

  9. Late maturation of adult-born neurons in the temporal dentate gyrus.

    Science.gov (United States)

    Snyder, Jason S; Ferrante, Sarah C; Cameron, Heather A

    2012-01-01

    Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1-2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter

  10. Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats.

    Science.gov (United States)

    Ardeshiri, Motahareh Rouhi; Hosseinmardi, Narges; Akbari, Esmaeil

    2018-03-01

    Involvement of amygdalo-hippocampal substructures in patients with narcolepsy due to deficiencies in the orexinergic system, and the presence of hippocampus-dependent memory impairments in this disorder, have led us to investigate the effects of orexin 1 and 2 receptor antagonism in the basolateral amygdala (BLA) on long-term potentiation (LTP) of dentate gyrus (DG) granular cells. We used a 200-Hz high-frequency stimulation protocol in anesthetized rats. We studied the long-term synaptic plasticity of perforant path-dentate gyrus granule cells following the inactivation of orexin receptors before and after tetanic stimulation. LTP of the DG population spike was attenuated in the presence of orexin 1 and 2 receptor antagonism (treatment with SB-334867-A and TCS-OX2-29, respectively) in the BLA when compared to that observed following treatment with dimethyl sulfoxide (DMSO). However, the population excitatory post-synaptic potentials were not affected. Moreover, when orexin 1 and 2 receptors in the BLA were blocked after LTP induction, there were no differences between the DMSO and treatment groups. Our findings suggest that the orexinergic system of the BLA plays a modulatory role in the regulation of hippocampal plasticity in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effects of Scopolamine and Melatonin Cotreatment on Cognition, Neuronal Damage, and Neurogenesis in the Mouse Dentate Gyrus.

    Science.gov (United States)

    Chen, Bai Hui; Ahn, Ji Hyeon; Park, Joon Ha; Choi, Soo Young; Lee, Yun Lyul; Kang, Il Jun; Hwang, In Koo; Lee, Tae-Kyeong; Shin, Bich-Na; Lee, Jae-Chul; Hong, Seongkweon; Jeon, Yong Hwan; Shin, Myoung Cheol; Cho, Jun Hwi; Won, Moo-Ho; Lee, Young Joo

    2018-03-01

    It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.

  12. Early postnatal x-irradiation of the hippocampus and discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.; Altman, J.

    1981-01-01

    Rats with X-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task difficulty) and reversal (moderate task difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that rats with hippocampal damage are inattentive due to hyperactivity

  13. Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus.

    Science.gov (United States)

    Wright, Brandon J; Jackson, Meyer B

    2014-07-16

    The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus. Copyright © 2014 the authors 0270-6474/14/349743-11$15.00/0.

  14. The ethanol metabolite acetaldehyde inhibits the induction of long-term potentiation in the rat dentate gyrus in vivo

    Science.gov (United States)

    Abe, Kazuho; Yamaguchi, Shinichi; Sugiura, Minoru; Saito, Hiroshi

    1999-01-01

    Ethanol has been reported to inhibit the induction of long-term potentiation (LTP) in the hippocampus. However, the correlation between the effects of ethanol in vivo and in vitro remained unclear. In addition, previous works have little considered the possibility that the effect of ethanol is mediated by its metabolites. To solve these problems, we investigated the effects of ethanol and acetaldehyde, the first metabolite in the metabolism of ethanol, on the induction of LTP at medial perforant path-granule cell synapses in the dentate gyrus of anaesthetized rats in vivo.Oral administration of 1 g kg−1 ethanol significantly inhibited the induction of LTP, confirming the effectiveness of ethanol in vivo.A lower dose of ethanol (0.5 g kg−1) failed to inhibit the induction of LTP in intact rats, but significantly inhibited LTP in rats treated with disulfiram, an inhibitor of aldehyde dehydrogenase, demonstrating that LTP is inhibited by acetaldehyde accumulation following ethanol administration.Intravenous injection of acetaldehyde (0.06 g kg−1) significantly inhibited the induction of LTP.The inhibitory effect of acetaldehyde on LTP induction was also observed when it was injected into the cerebroventricules, suggesting that acetaldehyde has a direct effect on the brain. The intracerebroventricular dose of acetaldehyde effective in inhibiting LTP induction (0.1–0.15 mg brain−1) was approximately 10 fold lower than that of ethanol (1.0–1.5 mg brain−1).It is possible that acetaldehyde is partly responsible for memory impairments induced by ethanol intoxication. PMID:10482910

  15. Prolonged induction of c-fos in neuropeptide Y- and somatostatin-immunoreactive neurons of the rat dentate gyrus after electroconvulsive stimulation

    DEFF Research Database (Denmark)

    Woldbye, D P; Greisen, M H; Bolwig, T G

    1996-01-01

    Induction of c-fos mRNA and Fos was studied in the hilus and granular layer of the dentate gyrus at various times up to 24 h after single electroconvulsive stimulation (ECS) using in situ hybridization and immunocytochemistry. In both areas of the dentate gyrus, a prominent induction of c-fos m...

  16. Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo.

    Science.gov (United States)

    Li, Z; Richter-Levin, G

    2013-08-29

    The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy.

    Science.gov (United States)

    Jiruska, Premysl; Shtaya, Anan B Y; Bodansky, David M S; Chang, Wei-Chih; Gray, William P; Jefferys, John G R

    2013-06-01

    Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models induced by an initial prolonged status epilepticus associated with substantial cell death. In these models, neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase, we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not cause status or, in most cases, detectable neuronal loss. We found a 4.5 times increase in BrdU labeling (estimating precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7days) in dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the rats experienced 112±24 seizures, lasting 88±11s each, over a period of 8.6±1.3days from the first electrographic seizure. On the first day of seizures, their duration was a median of 103s, and the median interictal period was 23min, confirming the absence of experimentally defined status epilepticus. The total increase in cell proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I; 7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are sufficient to promote increased hippocampal neurogenesis in the absence of status epilepticus. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Uptake of trace elements in adult and suckling rat lenses

    International Nuclear Information System (INIS)

    Nabekura, Tomohiro; Ito, Yoshimasa; Minami, Takeshi; Hirunuma, Rieko; Enomoto, Shuichi

    2001-01-01

    The uptake of trace elements in the lens was compared in adult and suckling rat lenses. Multitracers, including 15 trace elements, As, Be, Co, Fe, Mn, Rb, Rh, Ru, Sc, Se, Sr, Y, V, Zn, and Zr, were incubated with the lenses for 4 hr and their concentrations in the lens were measured. A high uptake rate of Zn was observed in the lenses of both adult and suckling rats in comparison with those of the other elements, and the Zn concentration in the lens of suckling rats was higher than that of adult rats. The uptake rate of Sr was higher in adult rats than in suckling rats. On the other contrary, Rb and Se concentrations in the lens were higher in suckling rats than in adult rats. The present study suggests that the different mechanisms depending on development serve to transport trace elements into the lens. (author)

  19. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  20. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    Science.gov (United States)

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus

    Science.gov (United States)

    Moretto, Jillian N.; Duffy, Áine M.

    2017-01-01

    Although a great deal of information is available about the circuitry of the mossy cells (MCs) of the dentate gyrus (DG) hilus, their activity in vivo is not clear. The immediate early gene c-fos can be used to gain insight into the activity of MCs in vivo, because c-fos protein expression reflects increased neuronal activity. In prior work, it was identified that control rats that were perfusion-fixed after removal from their home cage exhibited c-fos immunoreactivity (ir) in the DG in a spatially stereotyped pattern: ventral MCs and dorsal granule cells (GCs) expressed c-fos protein (Duffy et al., Hippocampus 23:649–655, 2013). In this study, we hypothesized that restraint stress would alter c-fos-ir, because MCs express glucocorticoid type 2 receptors and the DG is considered to be involved in behaviors related to stress or anxiety. We show that acute restraint using a transparent nose cone for just 10 min led to reduced c-fos-ir in ventral MCs compared to control rats. In these comparisons, c-fos-ir was evaluated 30 min after the 10 min-long period of restraint, and if evaluation was later than 30 min c-fos-ir was no longer suppressed. Granule cells (GCs) also showed suppressed c-fos-ir after acute restraint, but it was different than MCs, because the suppression persisted for over 30 min after the restraint. We conclude that c-fos protein expression is rapidly and transiently reduced in ventral hilar MCs after a brief period of restraint, and suppressed longer in dorsal GCs. PMID:28190104

  2. Early effects of trimethyltin on the dentate gyrus basket cells: a morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.W.; Dyer, R.S.

    1985-01-01

    Electrophysiological evidence for reduction of recurrent inhibition in the dentate gyrus in animals exposed to trimethyltin (TMT) suggested alterations in the inhibitory neurons (basket cells) by TMT. The present study was designed to investigate the morphology of basket cells after TMT exposure. Long-Evans hooded rats were injected with TMT chloride in a dose of 6.0 mg/kg body weight (b.w.). Tissue samples from the dentate gyri were examined by both light and electron microscopy at 24 and 72 h after TMT exposure. Except for isolated basket cell damage at 72 h, no remarkable pathological changes were observed with light microscopy. Consistent with previous data, electron microscopy revealed that the basket cells of the dentate gyrus are large neurons situated just below the granule cell layer with characteristic large, infolded nuclei and intranuclear filamentous rods. Increased cytoplasmic density and degenerative changes of the Golgi complex were evident in the basket cells as early as 24 h after TMT exposure. By 72 h, neuronal vacuolation, accumulation of lysosomes, and occasional neuronal necrosis were observed. No significant pathological changes were found among the granule cells at this time. This report provides the first morphological evidence for early damage to the basket cells by TMT, which may account for the reduction of recurrent inhibition and hyperexcitability among the granule cells reported previously.

  3. Ex vivo study of dentate gyrus neurogenesis in human pharmacoresistant temporal lobe epilepsy.

    Science.gov (United States)

    Paradisi, M; Fernández, M; Del Vecchio, G; Lizzo, G; Marucci, G; Giulioni, M; Pozzati, E; Antonelli, T; Lanzoni, G; Bagnara, G P; Giardino, L; Calzà, L

    2010-10-01

    Neurogenesis in adult humans occurs in at least two areas of the brain, the subventricular zone of the telencephalon and the subgranular layer of the dentate gyrus in the hippocampal formation. We studied dentate gyrus subgranular layer neurogenesis in patients subjected to tailored antero-mesial temporal resection including amygdalohippocampectomy due to pharmacoresistant temporal lobe epilepsy (TLE) using the in vitro neurosphere assay. Sixteen patients were enrolled in the study; mesial temporal sclerosis (MTS) was present in eight patients. Neurogenesis was investigated by ex vivo neurosphere expansion in the presence of mitogens (epidermal growth factor + basic fibroblast growth factor) and spontaneous differentiation after mitogen withdrawal. Growth factor synthesis was investigated by qRT-PCR in neurospheres. We demonstrate that in vitro proliferation of cells derived from dentate gyrus of TLE patients is dependent on disease duration. Moreover, the presence of MTS impairs proliferation. As long as in vitro proliferation occurs, neurogenesis is maintained, and cells expressing a mature neurone phenotype (TuJ1, MAP2, GAD) are spontaneously formed after mitogen withdrawal. Finally, formed neurospheres express mRNAs encoding for growth (vascular endothelial growth factor) as well as neurotrophic factors (brain-derived neurotrophic factor, ciliary neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor). We demonstrated that residual neurogenesis in the subgranular layer of the dentate gyrus in TLE is dependent on diseases duration and absent in MTS. © 2010 The Authors. Neuropathology and Applied Neurobiology © 2010 British Neuropathological Society.

  4. Radiation nephropathy in young and adult rats

    International Nuclear Information System (INIS)

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-01-01

    The effects of bilateral kidney irradiation were compared in young and adult rats. During a 1 year period after a single dose of 0, 7.5, 10, 12.5, or 15 Gy on both kidneys, renal function (glomerular filtration rate and effective renal plasma flow), urine composition, and systolic blood pressure were measured periodically. The first changes after irradiation were observed in the glomerular filtration rate and urine osmolality. One month after 10, 12.5, and 15 Gy, glomerular filtration rate (GFR) and urine osmolality had declined below control values in the young rats. After this initial decline, renal function increased at control rate or even more during the third and fourth month after irradiation but decreased progressively thereafter. In the adult rats, GFR and urine osmolality started to decrease 3 months after 10, 12.5, and 15 Gy. A rise in systolic blood pressure and proteinuria started 2-3 months after 12.5 and 15 Gy in both age groups. Early changes in the glomerular filtration rate with a drop in urine osmolality in young rats, occurring during a period of rapid renal development indicated an irradiation-induced inhibition of glomerular and tubular development. Although renal function deteriorated at a later time in adult rats, dose-response relationships obtained in young and adult rats did not show significant differences

  5. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xia Chen

    Full Text Available We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG, but not undifferentiated neuronal progenitor cells (NPCs from ventral subventricular zone (SVZ, results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2. NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control. By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+, whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+. At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative. Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78% expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

  6. Age-dependent kinetics of dentate gyrus neurogenesis in the absence of cyclin D2

    Directory of Open Access Journals (Sweden)

    Ansorg Anne

    2012-05-01

    Full Text Available Abstract Background Adult neurogenesis continuously adds new neurons to the dentate gyrus and the olfactory bulb. It involves the proliferation and subsequent differentiation of neuronal progenitors, and is thus closely linked to the cell cycle machinery. Cell cycle progression is governed by the successive expression, activation and degradation of regulatory proteins. Among them, D-type cyclins control the exit from the G1 phase of the cell cycle. Cyclin D2 (cD2 has been shown to be required for the generation of new neurons in the neurogenic niches of the adult brain. It is differentially expressed during hippocampal development, and adult cD2 knock out (cD2KO mice virtually lack neurogenesis in the dentate gyrus and olfactory bulb. In the present study we examined the dynamics of postnatal and adult neurogenesis in the dentate gyrus (DG of cD2KO mice. Animals were injected with bromodeoxyuridine at seven time points during the first 10 months of life and brains were immunohistochemically analyzed for their potential to generate new neurons. Results Compared to their WT litters, cD2KO mice had considerably reduced numbers of newly born granule cells during the postnatal period, with neurogenesis becoming virtually absent around postnatal day 28. This was paralleled by a reduction in granule cell numbers, in the volume of the granule cell layer as well as in apoptotic cell death. CD2KO mice did not show any of the age-related changes in neurogenesis and granule cell numbers that were seen in WT litters. Conclusions The present study suggests that hippocampal neurogenesis becomes increasingly dependent on cD2 during early postnatal development. In cD2KO mice, hippocampal neurogenesis ceases at a time point at which the tertiary germinative matrix stops proliferating, indicating that cD2 becomes an essential requirement for ongoing neurogenesis with the transition from developmental to adult neurogenesis. Our data further support the notion that

  7. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Energy Technology Data Exchange (ETDEWEB)

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  8. Temporal associations for spatial events: the role of the dentate gyrus.

    Science.gov (United States)

    Morris, Andrea M; Curtis, Brian J; Churchwell, John C; Maasberg, David W; Kesner, Raymond P

    2013-11-01

    Previous research suggests that the dorsal dentate gyrus (DG) hippocampal subregion mediates spatial processing functions. However, a novel role for the DG in temporal processing for spatial information has begun to emerge based on the development of a computational model of neurogenesis. According to this model, adult born granule cells in the DG contribute to a temporal associative integration process for events presented closer in time. Currently, there is a paucity of behavioral evidence to support the temporal integration theory. Therefore, we developed a novel behavioral paradigm to investigate the role of the dDG in temporal integration for proximal and distal spatial events. Male Long-Evans rats were randomly assigned to a control group or to receive bilateral intracranial infusions of colchicine into the dDG. Following recovery from surgery, each rat was tested on a cued-recall of sequence paradigm. In this task, animals were allowed to explore identical objects placed in designated spatial locations on a cheeseboard maze across 2 days (e.g., Day 1: A and B; Day 2: C and D). One week later, animals were given a brief cue (A or C) followed by a preference test between spatial location B and D. Control animals had a significant preference for the spatial location previously paired with the cue (the temporal associate) whereas dDG lesioned animals failed to show a preference. These findings suggest that selective colchicine-induced dDG lesions are capable of disrupting the formation of temporal associations between spatial events presented close in time. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice.

    Science.gov (United States)

    Swift-Gallant, A; Duarte-Guterman, P; Hamson, D K; Ibrahim, M; Monks, D A; Galea, L A M

    2018-04-01

    Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear. © 2018 British Society for Neuroendocrinology.

  10. Effects of early postnatal X-irradiation of the hippocampus on discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.

    1980-01-01

    Rats with x-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure, but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task-difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task-difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task-difficulty) and reversal (moderate task-difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that hippocampal-damaged rats are inattentive due to hyperactivity

  11. A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.

    Science.gov (United States)

    Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W

    2015-01-01

    This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatiotemporal "clustering". To identify the network property or properties responsible for generating such firing "clusters", we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" that organize the processing of entorhinal signals.

  12. Long-term potentiation expands information content of hippocampal dentate gyrus synapses.

    Science.gov (United States)

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M

    2018-03-06

    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  13. Norepinephrine induces pathway-specific long-lasting potentiation and depression in the hippocampal dentate gyrus.

    Science.gov (United States)

    Dahl, D; Sarvey, J M

    1989-01-01

    The study presented here indicates that norepinephrine (NE) selectively induces long-lasting modifications of synaptically mediated responses in the dentate gyrus of the rat hippocampal slice. A low concentration of NE (1.0 microM; in the presence of 50 microM phentolamine, an alpha-adrenergic antagonist) or a 1.0 microM concentration of the specific beta-adrenergic agonist isoproterenol induced long-lasting pathway-specific alterations of granule cell electrophysiological responses. Excitatory postsynaptic potentials and population spikes evoked by stimulation of the medial perforant pathway (PP) were potentiated for more than 45 min. In contrast, responses to lateral PP stimulation were depressed for the same period. Both potentiation and depression were blocked by the beta-adrenergic antagonist propranolol (1.0 microM). These results indicate that NE can act differentially on projections to the dentate gyrus arising in the entorhinal cortex. Such selective persistent modifications of cortical circuits may be involved in processes in the mammalian brain underlying attention, learning, and memory. PMID:2734319

  14. Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats.

    Science.gov (United States)

    Hulshof, Henriëtte J; Novati, Arianna; Sgoifo, Andrea; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2011-01-20

    Stressful events during childhood are thought to increase the risk for the development of adult psychopathology. A widely used animal model for early life stress is maternal separation (MS), which is thought to affect development and cause alterations in neuroendocrine stress reactivity and emotionality lasting into adulthood. However, results obtained with this paradigm are inconsistent. Here we investigated whether this variation may be related to the type of stressor or the tests used to assess adult stress sensitivity and behavioral performance. Rat pups were exposed to a 3h daily MS protocol during postnatal weeks 1-2. In adulthood, animals were subjected to a wide variety of stressors and tests to obtain a better view on the effects of MS on adult hypothalamic-pituitary-adrenal (HPA) axis regulation, anxiety-like behavior, social interaction and cognition. Also, the influence of MS on adult hippocampal neurogenesis was studied because it might underlie changes in neuroendocrine regulation and behavioral performance. The results show that, independent of the nature of the stressor, MS did not affect the neuroendocrine response. MS did not influence anxiety-like behavior, explorative behavior and social interaction, but did affect cognitive function in an object recognition task. The amount of new born cells in the hippocampal dentate gyrus was significantly decreased in MS animals; yet, cell differentiation and survival were not altered. In conclusion, while interfering with the mother-infant relationship early in life did affect some aspects of adult neuroplasticity and cognitive function, it did not lead to permanent changes in stress sensitivity and emotionality. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The dentate nucleus in children: normal development and patterns of disease

    Energy Technology Data Exchange (ETDEWEB)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie [Children' s University Hospital, Radiology Department, Dublin (Ireland)

    2010-03-15

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  16. The dentate nucleus in children: normal development and patterns of disease

    International Nuclear Information System (INIS)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie

    2010-01-01

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  17. Increases in Doublecortin Immunoreactivity in the Dentate Gyrus following Extinction of Heroin-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Megan P. Hicks

    2012-01-01

    Full Text Available Adult-generated neurons in the dentate gyrus (DG of the hippocampus play a role in various forms of learning and memory. However, adult born neurons in the DG, while still at an immature stage, exhibit unique electrophysiological properties and are also functionally implicated in learning and memory processes. We investigated the effects of extinction of drug-seeking behavior on the formation of immature neurons in the DG as assessed by quantification of doublecortin (DCX immunoreactivity. Rats were allowed to self-administer heroin (0.03 mg/kg/infusion for 12 days and then subjected either to 10 days of extinction training or forced abstinence. We also examined extinction responding patterns following heroin self-administration in glial fibrillary acidic protein thymidine kinase (GFAP-tk transgenic mice, which have been previously demonstrated to show reduced formation of immature and mature neurons in the DG following treatment with ganciclovir (GCV. We found that extinction training increased DCX immunoreactivity in the dorsal DG as compared with animals undergoing forced abstinence, and that GCV-treated GFAP-tk mice displayed impaired extinction learning as compared to saline-treated mice. Our results suggest that extinction of drug-seeking behavior increases the formation of immature neurons in the DG and that these neurons may play a functional role in extinction learning.

  18. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2008-02-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  19. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience. PMID:18301720

  20. A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study

    DEFF Research Database (Denmark)

    Popov, Victor I; Medvedev, Nikolay I; Kraev, Igor V

    2008-01-01

    pits. Three-dimensional analysis showed a significant decrease in both post-synaptic density and apposition zone curvature of mushroom spines following FGL treatment, whereas for thin spines the convexity of the apposition zone increased. These data indicate that FGL induces large changes in the fine...... 100 serial ultrathin sections. FGL affected neither hippocampal volume nor spine or synaptic density in the middle molecular layer of the dentate gyrus. However, it increased the ratio of mushroom to thin spines, number of multivesicular bodies and also increased the frequency of appearance of coated...... structure of synapses and dendritic spines in hippocampus of aged rats, complementing data showing its effect on cognitive processes....

  1. Replacement of asymmetric synaptic profiles in the molecular layer of dentate gyrus following cycloheximide in the pilocarpine model in rats.

    Directory of Open Access Journals (Sweden)

    Simone eBittencourt

    2015-11-01

    Full Text Available Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine model of status epilepticus to induce mossy fiber sprouting, and cycloheximide to block this sprouting, we evaluated at the ultrastructural level the number and type of asymmetric synaptic contacts in the molecular layer of the dentate gyrus. As expected, whereas pilocarpine-treated rats had dense silver grain deposits in the inner molecular layer (reflecting mossy fiber sprouting, pilocarpine+cycloheximide-treated animals did not differ from controls. Both groups of treated rats (Pilo group and CHX+Pilo group had reduced density of asymmetric synaptic profiles (putative excitatory synaptic contacts, which was greater for cycloheximide-treated animals. For both treated groups the loss of excitatory synaptic contacts was even greater in the outer molecular layer than in the best studied inner molecular layer (in which mossy fiber sprouting occurs. These results indicate that mossy fiber sprouting tends to replace lost synaptic contacts rather than increase the absolute number of contacts. We speculate that the overall result is more consistent with restored rather than with increased excitability.

  2. Excitotoxic median raphe lesions aggravate working memory storage performance deficits caused by scopolamine infusion into the dentate gyrus of the hippocampus in the inhibitory avoidance task in rats

    Directory of Open Access Journals (Sweden)

    Babar E.

    2002-01-01

    Full Text Available The interactions between the median raphe nucleus (MRN serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.

  3. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats.

    Science.gov (United States)

    Iwata, Masaaki; Shirayama, Yukihiko; Ishida, Hisahito; Hazama, Gen-i; Nakagome, Kazuyuki

    2011-08-01

    The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus. Copyright © 2010 Wiley-Liss, Inc.

  4. Improvement in Memory and Brain Long-term Potentiation Deficits Due to Permanent Hypoperfusion/Ischemia by Grape Seed Extract in Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sarkaki

    2013-09-01

    Full Text Available   Objective(s: Cerebral hypoperfusion/ischemia (CHI is a neurological disease where impaired hippocampus electrical activity and cognition caused by a serial pathophysiological events. This study aimed to evaluate the effects of chronic oral administration of grape seed extract (GSE on passive avoidance memory and long-term potentiation (LTP after permanent bilateral common carotid arteries occlusion (2CCAO in male adult rats.   Materials and Methods: Thirty-two adult male Wistar rats were randomly divided into: 1 Sham+Veh, 2 Isch+Veh, 3 Sham+GSE, 4 Isch+GSE. In order to make 2CCAO as an animal model of CHI, carotid arteries were ligatured and then cut bilaterally. To evaluation of passive avoidance memory, step-down latency (STL was measured and LTP was recorded from hippocampal dentate gyrus (DG after high frequency stimulation (HFS in all rats. Results: We found that memory was significantly impaired in rats after CHI (P

  5. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    Science.gov (United States)

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of gadolinium deposition requires tissue analysis. Any potential clinical sequelae of gadolinium retention in

  6. Cerebellar dentate nuclei lesions reduce motivation in appetitive operant conditioning and open field exploration.

    Science.gov (United States)

    Bauer, David J; Kerr, Abigail L; Swain, Rodney A

    2011-02-01

    Recently identified pathways from the dentate nuclei of the cerebellum to the rostral cerebral cortex via the thalamus suggest a cerebellar role in frontal and prefrontal non-motor functioning. Disturbance of cerebellar morphology and connectivity, particularly involving these cerebellothalamocortical (CTC) projections, has been implicated in motivational and cognitive deficits. The current study explored the effects of CTC disruption on motivation in male Long Evans rats. The results of two experiments demonstrate that electrolytic lesions of the cerebellar dentate nuclei lower breaking points on an operant conditioning progressive ratio schedule and decrease open field exploration compared to sham controls. Changes occurred in the absence of motor impairment, assessed via lever pressing frequency and rotarod performance. Similar elevated plus maze performances between lesioned and sham animals indicated that anxiety did not influence task performance. Our results demonstrate hedonic and purposive motivational reduction and suggest a CTC role in global motivational processes. These implications are discussed in terms of psychiatric disorders such as schizophrenia and autism, in which cerebellar damage and motivational deficits often present concomitantly. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running

    Directory of Open Access Journals (Sweden)

    Andrea T. U. Schaefers

    2010-01-01

    Full Text Available Hippocampal cell proliferation is strongly increased and synaptic turnover decreased after rearing under social and physical deprivation in gerbils (Meriones unguiculatus. We examined if a similar epigenetic effect of rearing environment on adult neuroplastic responses can be found in mice (Mus musculus. We examined synaptic turnover rates in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex. No direct effects of deprived rearing on rates of synaptic turnover were found in any of the studied regions. However, adult wheel running had the effect of leveling layer-specific differences in synaptic remodeling in the dentate gyrus, CA3, and CA1, but not in the entorhinal cortex and subiculum of animals of both rearing treatments. Epigenetic effects during juvenile development affected adult neural plasticity in mice, but seemed to be less pronounced than in gerbils.

  8. Neuronal reorganization in adult rats neonatally exposed to (±-3,4-methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Michael T. Williams

    2014-01-01

    Full Text Available The abuse of methylenedioxymethamphetamine (MDMA during pregnancy is of concern. MDMA treatment of rats during a period of brain growth analogous to late human gestation leads to neurochemical and behavioral changes. MDMA from postnatal day (P11–20 in rats produces reductions in serotonin and deficits in spatial and route-based navigation. In this experiment we examined the impact of MDMA from P11 to P20 (20 mg/kg twice daily, 8 h apart on neuronal architecture. Golgi impregnated sections showed significant changes. In the nucleus accumbens, the dendrites were shorter with fewer spines, whereas in the dentate gyrus the dendritic length was decreased but with more spines, and for the entorhinal cortex, reductions in basilar and apical dendritic lengths in MDMA animals compared with saline animals were seen. The data show that neuronal cytoarchitectural changes are long-lasting following developmental MDMA exposure and are in regions consistent with the learning and memory deficits observed in such animals.

  9. The psychostimulant modafinil facilitates water maze performance and augments synaptic potentiation in dentate gyrus.

    Science.gov (United States)

    Tsanov, Marian; Lyons, Declan G; Barlow, Sally; González Reyes, Rodrigo E; O'Mara, Shane M

    2010-01-01

    Modafinil is a psychostimulant drug used widely for the treatment of narcolepsy, which also has additional positive effects on cognition. Here, we investigate the effects of modafinil on behavioural performance and synaptic plasticity in rats. Improved acquisition in the water maze task was observed in animals that underwent chronic treatment with modafinil. We found that the distance traveled and escape latency were reduced after the first day in chronically-treated rats, compared to controls. Importantly, swim velocity was similar for both groups, excluding pharmacological effects on motor skills. We also found that modafinil increases synaptic plasticity in the dentate gyrus of urethane-anaesthetized rats; modafinil induced a robust augmentation of the population spike, evident after application of 2 bursts of 200 Hz high-frequency stimulation. Furthermore, the modafinil-dependent enhancement of postsynaptic potentials correlated selectively with theta rhythm augmentation. We propose that modafinil may facilitate hippocampal-associated spatial representation via increased theta-related hippocampal plasticity. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    Science.gov (United States)

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  11. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells

    International Nuclear Information System (INIS)

    Altman, J.; Bayer, S.A.

    1990-01-01

    This study deals with the site of origin, migration, and settling of the principal cell constituents of the rat hippocampus during the embryonic period. The results indicate that the hippocampal neuroepithelium consists of three morphogenetically discrete components--the Ammonic neuroepithelium, the primary dentate neuroepithelium, and the fimbrial glioepithelium--and that these are discrete sources of the large neurons of Ammon's horn, the smaller granular neurons of the dentate gyrus, and the glial cells of the fimbria. The putative Ammonic neuroepithelium is marked in short-survival thymidine radiograms by a high level of proliferative activity and evidence of interkinetic nuclear migration from day E16 until day E19. On days E16 and E17 a diffuse band of unlabeled cells forms outside the Ammonic neuroepithelium. These postmitotic cells are considered to be stratum radiatum and stratum oriens neurons, which are produced in large numbers as early as day E15. A cell-dense layer, the incipient stratum pyramidale, begins to form on day E18 and spindle-shaped cells can be traced to it from the Ammonic neuroepithelium. This migratory band increases in size for several days, then declines, and finally disappears by day E22. It is inferred that this migration contains the pyramidal cells of Ammon's horn that are produced mostly on days E17 through E20. The putative primary dentate neuroepithelium is distinguished from the Ammonic neuroepithelium during the early phases of embryonic development by its location, shape, and cellular dynamics. It is located around a ventricular indentation, the dentate notch, contains fewer mitotic cells near the lumen of the ventricle than the Ammonic neuroepithelium, and shows a different labeling pattern both in short-survival and sequential-survival thymidine radiograms

  12. Proteomic profiling of the epileptic dentate gyrus

    OpenAIRE

    Li, Aiqing; Choi, Yun-Sik; Dziema, Heather; Cao, Ruifeng; Cho, Hee-Yeon; Jung, Yeon Joo; Obrietan, Karl

    2010-01-01

    The development of epilepsy is often associated with marked changes in central nervous system cell structure and function. Along these lines, reactive gliosis and granule cell axonal sprouting within the dentate gyrus of the hippocampus are commonly observed in individuals with temporal lobe epilepsy. Here we used the pilocarpine model of temporal lobe epilepsy in mice to screen the proteome and phosphoproteome of the dentate gyrus to identify molecular events that are altered as part of the ...

  13. The development of the glucocorticoid receptor system in the rat limbic brain. 2

    International Nuclear Information System (INIS)

    Meaney, M.J.; Sapolsky, R.M.; McEwen, B.S.

    1985-01-01

    The authors report the results of an autoradiographic analysis of the postnatal development of the hippocampal glucocorticoid receptor system in the rat brain. Quantitative analysis of the autoradiograms revealed a varied pattern of gradual development towards adult receptor concentrations during the second week of life. Receptor concentrations in the dentate gyrus increased dramatically between Days 9 and 15, while the changes during this period in the pyramidal layers of Ammon's horn seemed to reflect both structural changes in these regions as well as increases in receptor concentrations. (orig.)

  14. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  15. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  16. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice.

    Science.gov (United States)

    Seong, Kyung-Joo; Kim, Hyeong-Jun; Cai, Bangrong; Kook, Min-Suk; Jung, Ji-Yeon; Kim, Won-Jae

    2018-03-01

    The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

  17. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat

    Directory of Open Access Journals (Sweden)

    Jasper V. Smit

    2017-10-01

    Full Text Available Background Recently it has been shown in animal studies that deep brain stimulation (DBS of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. Methods The auditory brainstem response (ABR was measured in rats during high frequency stimulation (HFS and low frequency stimulation (LFS in the central nucleus of the inferior colliculus (CIC, n = 5 or dentate cerebellar nucleus (DCBN, n = 5. Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I–III, III–V, I–V and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. Results In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. Discussion DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.

  18. Persistent discharges in dentate gyrus perisoma-inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation.

    Science.gov (United States)

    Elgueta, Claudio; Köhler, Johannes; Bartos, Marlene

    2015-03-11

    Parvalbumin (PV)-expressing perisoma-inhibiting interneurons (PIIs) of the dentate gyrus integrate rapidly correlated synaptic inputs and generate short-duration action potentials that propagate along the axon to their output synapses, supporting fast inhibitory signaling onto their target cells. Here we show that PV-PIIs in rat and mouse dentate gyrus (DG) integrate their intrinsic activity over time and can turn into a persistent firing mode characterized by the ability to generate long-lasting trains of action potentials at ∼50 Hz in the absence of additional inputs. Persistent firing emerges in the axons remote from the axon initial segment and markedly depends on hyperpolarization-activated cyclic nucleotide-gated channel (HCNC) activation. Persistent firing properties are modulated by intracellular Ca(2+) levels and somatic membrane potential. Detailed computational single-cell PIIs models reveal that HCNC-mediated conductances can contribute to persistent firing during conditions of a shift in their voltage activation curve to more depolarized potentials. Paired recordings from PIIs and their target granule cells show that persistent firing supports strong inhibitory output signaling. Thus, persistent firing may emerge during conditions of intense activation of the network, thereby providing silencing to the circuitry and the maintenance of sparse activity in the dentate gyrus. Copyright © 2015 the authors 0270-6474/15/354131-09$15.00/0.

  19. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro eJinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the dormant basket cell and the irritable mossy cell hypotheses. The dormant basket cell hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The irritable mossy cell hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  20. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2012-05-01

    Full Text Available Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4 treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5μg T4/100 g body weight (BW treated group, 20 μg T4/100g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 μg T4/100g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty μg T4/100g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations.

  1. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis.

    Science.gov (United States)

    Albert, Monika; Barrantes-Freer, Alonso; Lohrberg, Melanie; Antel, Jack P; Prineas, John W; Palkovits, Miklós; Wolff, Joachim R; Brück, Wolfgang; Stadelmann, Christine

    2017-11-01

    In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis. © 2016 International Society of Neuropathology.

  2. Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Carolina eCabezas

    2013-04-01

    Full Text Available Dentate gyrus granule cells (GCs have been suggested to synthesize both GABA and glutamate immediately after birth and under pathological conditions in the adult. Expression of the GABA synthesizing enzyme GAD67 by GCs during the first few weeks of postnatal development may then allow for transient GABA synthesis and synaptic release from these cells. Here, using the GAD67-EGFP transgenic strain G42, we explored the phenotype of GAD67-expressing GCs in the mouse dentate gyrus. We report a transient, GAD67-driven EGFP expression in differentiating GCs throughout ontogenesis. EGFP expression correlates with the expression of GAD and molecular markers of GABA release and uptake in 2-4 weeks postmitotic GCs. These rather immature cells are able to fire action potentials and are synaptically integrated in the hippocampal network. Yet they show physiological properties that differentiate them from mature GCs. Finally, GAD67-expressing GCs express a specific complement of GABAA receptor subunits as well as distinctive features of synaptic and tonic GABA signaling. Our results reveal that GAD67 expression in dentate gyrus granule cells is a transient marker of late differentiation that persists throughout life and the G42 strain may be used to visualize newborn GCs at a specific, well-defined differentiation stage.

  3. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  4. Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.

    Science.gov (United States)

    Horrigan, D J; Fuller, C A; Horowitz, J M

    1997-10-01

    The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.

  5. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats.

    Science.gov (United States)

    Ebrahimzadeh-Bideskan, Ali Reza; Mansouri, Somaieh; Ataei, Mariam Lale; Jahanshahi, Mehrdad; Hosseini, Mahmoud

    2018-03-01

    The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.

  6. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood.

    Science.gov (United States)

    Daugherty, Ana M; Flinn, Robert; Ofen, Noa

    2017-06-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood

    Science.gov (United States)

    Daugherty, Ana M.; Flinn, Robert; Ofen, Noa

    2017-01-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution proton density-weighted images in a sample of healthy participants (age 8–25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. PMID:28342999

  8. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    International Nuclear Information System (INIS)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka; Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3 + apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB + interneurons, although the number of reelin + interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic

  9. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  10. Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes.

    Science.gov (United States)

    Diniz, Daniel G; Foro, César A R; Rego, Carla M D; Gloria, David A; de Oliveira, Fabio R R; Paes, Juliana M P; de Sousa, Aline A; Tokuhashi, Tatyana P; Trindade, Lucas S; Turiel, Maíra C P; Vasconcelos, Erick G R; Torres, João B; Cunnigham, Colm; Perry, Victor H; Vasconcelos, Pedro F da Costa; Diniz, Cristovam W P

    2010-08-01

    Environmental and age-related effects on learning and memory were analysed and compared with changes observed in astrocyte laminar distribution in the dentate gyrus. Aged (20 months) and young (6 months) adult female albino Swiss mice were housed from weaning either in impoverished conditions or in enriched conditions, and tested for episodic-like and water maze spatial memories. After these behavioral tests, brain hippocampal sections were immunolabeled for glial fibrillary acid protein to identify astrocytes. The effects of environmental enrichment on episodic-like memory were not dependent on age, and may protect water maze spatial learning and memory from declines induced by aging or impoverished environment. In the dentate gyrus, the number of astrocytes increased with both aging and enriched environment in the molecular layer, increased only with aging in the polymorphic layer, and was unchanged in the granular layer. We suggest that long-term experience-induced glial plasticity by enriched environment may represent at least part of the circuitry groundwork for improvements in behavioral performance in the aged mice brain.

  11. Synaptic plasticity and the analysis of the field-EPSP as well as the population spike using separate recording electrodes in the dentate gyrus in freely moving rats.

    Science.gov (United States)

    Frey, Sabine; Frey, Julietta U

    2009-10-30

    Commonly, synaptic plasticity events such as long-term potentiation (LTP) are investigated by using a stimulation electrode and a single, monopolar field recording electrode in the dentate gyrus in intact, freely moving rats. The recording electrode is mostly positioned in the granular cell layer, or the hilar region of the dentate gyrus, i.e. far away from the place of generation of monosynaptic postsynaptic excitatory potentials (EPSP). Since LTP is a synaptic phenomenon and field recordings far away from the activated synapses do not guarantee a specific interpretation of the overlaid, mixture of complex potentials of several different electrical fields it is often difficult or even impossible to interpret the data obtained by such a single recording electrode. Therefore, at least a separate or two recording electrodes should be used to record the EPSP as well as the spike, respectively, ideally at their places of generation. Here, we describe a method by implanting a chronic bipolar recording electrode which fulfils the above requirements by recording the field-EPSP as well as the population spike at their places of generation and describe the time course of LTP measured using this "double-recording" electrode. We show that different tetanization protocols resulted in EPSP- or population spike-LTP but only if the potentials were recorded by electrodes positioned within adequate places of potential generation. Interestingly, the commonly used recording in the hilus of a distinct part of a potential, mistakenly analyzed as an "EPSP" did not reveal any LTP.

  12. Influence of iron on plutonium absorption by the adult and neonatal rat

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Ruemmler, P.S.; Buschbom, R.L.

    1986-01-01

    To determine how iron affects plutonium absorption, adult rats were gavaged with 238 Pu nitrate (pH 2) after they had been fed an iron-deficient diet or treated with iron supplements. Neonatal rats born to dams on an iron-deficient diet were also gavaged with 238 Pu. An iron-deficient diet resulted in enhanced 238 Pu absorption both in the adults and in neonates born to iron-deficient dams. Ferric iron increased 238 Pu absorption 12-fold in adult rats; injected iron-dextran reduced that increase; gavaged ferrous iron reduced 238 Pu absorption to one-third of the control value. Rat neonates absorbed 30 to 40 times as much 238 Pu as adults; absorption was lowered in groups that received iron supplements: Iron-dextran caused a 50% reduction; ferric iron, 95%; and ferrous iron, greater than 95%. The results demonstrate an effect of the oxidation state of iron on plutonium absorption in adult rats different from that observed in suckling rats. The results suggest that the high rate of 238 Pu absorption by neonatal animals is due not only to the permeability of their intestines but also to their high demand for iron

  13. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    Science.gov (United States)

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  14. Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress.

    Science.gov (United States)

    Saha, Rinki; Kriebel, Martin; Volkmer, Hansjürgen; Richter-Levin, Gal; Albrecht, Anne

    2018-02-05

    Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.

  15. Hippocampal volume is decreased in adults with hypothyroidism.

    Science.gov (United States)

    Cooke, Gillian E; Mullally, Sinead; Correia, Neuman; O'Mara, Shane M; Gibney, James

    2014-03-01

    Thyroid hormones are important for the adult brain, particularly regions of the hippocampus including the dentate gyrus and CA1 and CA3 regions. The hippocampus is a thyroid hormone receptor-rich region of the brain involved in learning and memory. Consequently, alterations in thyroid hormone levels have been reported to impair hippocampal-associated learning and memory, synaptic plasticity, and neurogenesis. While these effects have been shown primarily in developing rats, as well as in adult rats, little is known about the effects in adult humans. There are currently no data regarding structural changes in the hippocampus as a result of adult-onset hypothyroidism. We aimed to establish whether hippocampal volume was reduced in patients with untreated adult-onset hypothyroidism compared to age-matched healthy controls. High-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scans were performed on 11 untreated hypothyroid adults and 9 age-matched control subjects. Hypothyroidism was diagnosed based on increased levels of thyrotropin (TSH) and reduced levels of free thyroxine (fT4). Volumetric analysis of the right and left hippocampal regions, using functional magnetic resonance imaging of the brain (FMRIB) integrated registration and segmentation tool (FIRST), demonstrated significant volume reduction in the right hippocampus in the hypothyroid patients relative to the control group. These findings provide preliminary evidence that hypothyroidism results in structural deficits in the adult human brain. Decreases in volume in the right hippocampus were evident in patients with adult-onset overt hypothyroidism, supporting some of the findings in animal models.

  16. The effect of low dose radiation on the neuronal cell proliferation in diabetic rats

    International Nuclear Information System (INIS)

    Kim, Doo Soon; Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Ki; Lee, Taeck Hyun; Kim, Chang Ju

    2005-01-01

    To investigate the effect of low dose radiation on neuronal cell proliferation in diabetic rats. A group of rats (first group) were divided into three subgroups (nondiabetic control, nondiabetic 0.1 Gy and nondiabetic 10 Gy groups) to determine the effect of radiation on normal hippocampal neuronal cell proliferation. A further group of rats (second group) were divided into six subgroups (nondiabetic control, diabetic control, diabetic 0.01 Gy, diabetic 0.1 Gy, diabetic 1 Gy and diabetic 10 Gy groups) to determine the effect of radiation on hippocampal neuronal cell proliferation under diabetic conditions. Using immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU), the number of neuronal cells in the dentate gyrus of all the groups was counted. The number of BrdU-positive cells in the dentate Gyrus of the nondiabetic control, nondiabetic 0.1 Gy and nondiabetic 10 Gy subgroups of the first group were 45.96 ± 3.42, 59.34 ± 5.20 and 19.26 ± 2.98/mm 2 , respectively. The number of BrdU-positive cells in the dentate gyrus of the diabetic control, diabetic 0.01 Gy, diabetic 0.1 Gy, diabetic 1 Gy and diabetic 10 Gy subgroups of the second group were 55.44 ± 8.57, 33.33 ±6.46, 67.75 ± 10.54, 66.63 ± 10.05, 23.59 ± 6.37 and 14.34± 7.22/mm 2 , respectively. Low dose radiation enhances cell proliferation in the dentate gyrus of STZ-induced diabetic rats

  17. a-Band Oscillations in Intracellular Membrane Potentials of Dentate Gyrus Neurons in Awake Rodents

    Science.gov (United States)

    Anderson, Ross W.; Strowbridge, Ben W.

    2014-01-01

    The hippocampus and dentate gyrus play critical roles in processing declarative memories and spatial information. Dentate granule cells, the first relay in the trisynaptic circuit through the hippocampus, exhibit low spontaneous firing rates even during locomotion. Using intracellular recordings from dentate neurons in awake mice operating a…

  18. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    Science.gov (United States)

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  19. Hippocampal development in the rat: cytogenesis and morphogenesis examined with autoradiography and low-level x-irradiation

    International Nuclear Information System (INIS)

    Bayer, S.A.; Altman, J.

    1974-01-01

    The cytogenesis and morphogenesis of the rat hippocampus was examined with the techniques of 3 H-thymidine autoradiography, cell pyknosis produced by low-level x-irradiation, and quantitative histology. The procedure of progressively delayed cumulative labelling was used for autoradiography. Groups of rats were injected with four successive daily doses of 3 H-thymidine during non-overlapping periods ranging from birth to day 19. They were killed at 60 days of age, and the percentage of labelled cells was determined. Cell pyknosis in Ammon's horn reaches a maximal level prenatally and declines rapidly during the early postnatal period. Cell pyknosis in the dentate gyrus reaches its highest level during the second postnatal week and declines gradually with some radiosensitive cells still present in the adult. Immature granule cells are also at their highest level during the second postnatal week, while mature granule cells gradually accumulate to attain asymptotic levels at around two months of age. The alignment of the pyramidal cells to form the characteristic curvature of Ammon's horn occurs shortly after pyramidal cell cytogenesis is completed. Mechanisms for the morphological development of the dentate gyrus along with a consideration of the possible migratory route of granule cell precursors are discussed. (U.S.)

  20. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. In vitro uptake of 75Se-selenite by lens of young and adult rats

    International Nuclear Information System (INIS)

    Sladkova, J.; Ostadalova, I.; Babicky, A.; Obenberger, J.

    1988-01-01

    The uptake was observed of 75 Se-selenite by the lens in Wistar strain rats in adult animals, in 17-day old rats kept with their mothers and in prematurely weaned rats. Also measured was the excretion of 75 Se by the lens of young and adult rats following incubation in the medium with radioselenium. The metabolites were analysed which were discharged by the lens containing 75 Se. In Brattleboro rats the uptake of 75 Se-selenite was also measured by the lens in young and adult rats. The uptake of 75 Se-selenite by the lens in young Wistar rats was found to be 1.6 times higher than by the lens of adult rats and the time course of the radioselenium uptake was slightly different. In the lens of prematurely weaned rats no significant difference was found in the uptake of radioselenium after 4 hours as compared with rats of the same age kept with their mothers. In homozygous Brattleboro rats, a higher uptake of 75 Se-selenite was found as compared with both young and adult heterozygous rats. The time course and the quantity of 75 Se efflux from the lens of young and adult Wistar rats differed significantly after 0.5 hour of pre-incubation. From metabolites containing 75 Se excreted by the lens following preincubation, glutathione selenotrisulfide and a not yet accurately determined fraction with a large share of radioactivity were isolated. The stated results provide yet more proof that selenium cataract is a manifestation of the ontogenic dependence of selenium metabolism in the lens and in the entire organism. (author). 4 tabs., 30 refs

  2. α1-Adrenoceptors in the hippocampal dentate gyrus involved in learning-dependent long-term potentiation during active-avoidance learning in rats.

    Science.gov (United States)

    Lv, Jing; Zhan, Su-Yang; Li, Guang-Xie; Wang, Dan; Li, Ying-Shun; Jin, Qing-Hua

    2016-11-09

    The hippocampus is the key structure for learning and memory in mammals and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. The influences of norepinephrine (NE) on the modulation of learning and memory, as well as LTP, through β-adrenoceptors are well documented, whereas the role of α1-adrenoceptors in learning-dependent LTP is not yet clear. In the present study, we measured extracellular concentrations of NE in the hippocampal dentate gyrus (DG) region using an in-vivo brain microdialysis and high-performance liquid chromatography techniques during the acquisition and extinction of active-avoidance behavior in freely moving conscious rats. Next, the effects of prazosin (an antagonist of α1-adrenoceptor) and phenylephrine (an agonist of the α1-adrenoceptor) on amplitudes of field excitatory postsynaptic potential were measured in the DG region during the active-avoidance behavior. Our results showed that the extracellular concentration of NE in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to the baseline level following extinction training. A local microinjection of prazosin into the DG significantly accelerated the acquisition of the active-avoidance behavior, whereas a local microinjection of phenylephrine retarded the acquisition of the active-avoidance behavior. Furthermore, in all groups, the changes in field excitatory postsynaptic potential amplitude were accompanied by corresponding changes in active-avoidance behavior. Our results suggest that NE activation of α1-adrenoceptors in the hippocampal DG inhibits active-avoidance learning by modulation of synaptic efficiency in rats.

  3. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    Science.gov (United States)

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  4. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.

    Science.gov (United States)

    Li, Y Q; Wong, C S

    2000-09-01

    This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2-T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were

  6. Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments.

    Science.gov (United States)

    Morris, Ken A; Gold, Paul E

    2013-02-01

    Epinephrine enhances memory in young adult rats, in part, by increasing blood glucose levels needed to modulate memory. In old rats, epinephrine is deficient at raising blood glucose levels and thus is only moderately effective at enhancing memory. In contrast, systemic glucose injections improve memory in old rats, with resulting memory performance equal to that of young rats. The diminished response of glucose to training in old rats may blunt downstream neurochemical and molecular mechanisms needed to upregulate memory processes. In the first experiment, young adult and old rats were trained on an inhibitory avoidance task with immediate post-training injections of aCSF or glucose into the dorsal hippocampus. Old rats had significant memory impairments compared to young rats 7 days after training. Intrahippocampal injections of glucose reversed age-related deficits, improving memory scores in old rats to values seen in young rats. A second experiment examined age-related changes in activation of the transcription factor CREB, which is widely implicated in memory formation and may act downstream of hormonal and metabolic signals. Activation was assessed in response to training with systemic injections of epinephrine and glucose at doses known to enhance memory. Young adult and old rats were trained on inhibitory avoidance with immediate post-training systemic injections of saline, epinephrine, or glucose. After training, old rats had significant impairments in CREB phosphorylation in area CA1 and the dentate gyrus region of the hippocampus, and in the basolateral and lateral amygdala. Epinephrine and glucose attenuated age-related deficits in CREB phosphorylation, but were more effective in the amygdala and hippocampus, respectively. Together, these results support the view that age-related changes in blood glucose responses to epinephrine contribute to memory impairments, which may be related to alterations in regional patterns of CREB phosphorylation. Copyright

  7. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  8. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus

    NARCIS (Netherlands)

    Bagot, R.C.; van Hasselt, F.N.; Champagne, D.L.; Meaney, M.J.; Krugers, H.J.; Joëls, M.

    2009-01-01

    Maternal care in the rat influences hippocampal development, synaptic plasticity and cognition. Previous studies, however, have examined animals under minimally stressful conditions. Here we tested the hypothesis that maternal care influences hippocampal function differently when this structure is

  9. Aquisição de uma tarefa temporal (DRL por ratos submetidos a lesão seletiva do giro denteado The acquisition of a temporal task (DRL by dentate gyrus-selective colchicine lesioned rats

    Directory of Open Access Journals (Sweden)

    José Lino Oliveira Bueno

    2006-01-01

    Full Text Available A lesão seletiva do giro denteado (DG reduz a eficiência do desempenho de ratos treinados pré-operatoriamente em um esquema de reforçamento diferencial de baixas taxas (DRL; embora os animais lesados sejam capazes de suprimir a resposta de pressão na barra por determinado intervalo de tempo após a resposta anterior, eles subestimam esse intervalo, resultando em um desempenho menos eficiente. Como os animais tinham recebido treinamento pré-operatório, não ficou claro se a lesão interfere na aquisição da discriminação temporal. Este estudo avaliou o efeito da lesão do DG na aquisição de uma tarefa de DRL-20 s. Ratos foram submetidos à neurocirurgia e então ao treino na tarefa de DRL-20 s. Os resultados mostraram que embora os animais lesados se beneficiem do treinamento na tarefa, sua aquisição não é tão eficiente quanto a exibida pelos animais controle. Os resultados sugerem ainda que a lesão do giro denteado interfere na acuidade da discriminação temporal.Previous studies have shown that dentate gyrus damage render rats less efficient than sham-operated controls in the performance of a differential reinforcement of low rates of responding (DRL-20 s task acquired prior to the lesion; even though the lesioned rats were able to postpone their responses after a previous bar press, they seem to underestimate time relative to sham-operated controls, which interferes with their performance. This study investigated the effects of multiplesite, intradentate, colchicine injections on the acquisition and performance of a DRL-20 s task in rats not exposed to preoperatory training, i.e., trained after the lesion. Results showed that the lesioned rats improved along repetitive training in the DRL-20 s task; however, relative to the sham-operated controls, their acquisition rate was slower and the level of proficiency achieved was poorer, indicating that damage to the dentate gyrus interferes with temporal discrimination.

  10. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    International Nuclear Information System (INIS)

    Kurumaji, A.; McCulloch, J.

    1989-01-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic [14C]-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus

  11. Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions

    International Nuclear Information System (INIS)

    Altman, J.; Bayer, S.

    Studies on postnatal maturation of the dentate gyrus are reviewed. Some topics discussed are: normal development of the dentate gyrus, cytogenesis, morphogenesis, synaptogenesis, gleogenesis, myelogenesis, development of the gyrus under experimental conditions, and effects of x radiation on cytogenesis and morphogenesis

  12. Comparison of the dose-response relationship of radiation-induced apoptosis in the hippocampal dentate gyrus and intestinal crypt of adult mice

    International Nuclear Information System (INIS)

    Kim, J. S.; Yang, M.; Kim, J.; Lee, D.; Kim, J. C.; Shin, T.; Kim, S. H.; Moon, C.

    2012-01-01

    The present study compared the dose-response curves for the frequency of apoptosis in mouse hippocampal dentate gyrus (DG) and intestinal crypt using whole-body gamma irradiation. The incidence of gamma-ray-induced apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end-labelling (TUNEL) method. TUNEL-positive apoptotic nuclei in the DG and intestinal crypt were increased in a dose-dependent pattern (0-2 Gy). The dose-response curves were linear-quadratic, with a significant relationship between the appearance of apoptosis and irradiation dose. The slopes of the dose-response curves in the DG were much steeper (∼5-6-fold) than those in the intestinal crypt within the range of 0-1 Gy exposure. Hippocampal DG might be a more effective and sensitive evaluation structure than the intestinal crypt to estimate the degree of radiation exposure in damaged organs of adult mice exposed to low irradiation dose. copy; The Author 2011. Published by Oxford Univ. Press. All rights reserved. (authors)

  13. In Vivo Dentate Nucleus Gamma-aminobutyric Acid Concentration in Essential Tremor vs. Controls.

    Science.gov (United States)

    Louis, Elan D; Hernandez, Nora; Dyke, Jonathan P; Ma, Ruoyun E; Dydak, Ulrike

    2018-04-01

    Despite its high prevalence, essential tremor (ET) is among the most poorly understood neurological diseases. The presence and extent of Purkinje cell (PC) loss in ET is the subject of controversy. PCs are a major storehouse of central nervous system gamma-aminobutyric acid (GABA), releasing GABA at the level of the dentate nucleus. It is therefore conceivable that cerebellar dentate nucleus GABA concentration could be an in vivo marker of PC number. We used in vivo 1 H magnetic resonance spectroscopy (MRS) to quantify GABA concentrations in two cerebellar volumes of interest, left and right, which included the dentate nucleus, comparing 45 ET cases to 35 age-matched controls. 1 H MRS was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in two cerebellar volumes of interest (left and right) that included the dentate nucleus. The two groups did not differ with respect to our primary outcome of GABA concentration (given in institutional units). For the right dentate nucleus, [GABA] in ET cases = 2.01 ± 0.45 and [GABA] in controls = 1.86 ± 0.53, p = 0.17. For the left dentate nucleus, [GABA] in ET cases = 1.68 ± 0.49 and [GABA] controls = 1.80 ± 0.53, p = 0.33. The controls had similar dentate nucleus [GABA] in the right vs. left dentate nucleus (p = 0.52); however, in ET cases, the value on the right was considerably higher than that on the left (p = 0.001). We did not detect a reduction in dentate nucleus GABA concentration in ET cases vs. One interpretation of the finding is that it does not support the existence of PC loss in ET; however, an alternative interpretation is the observed pattern could be due to the effects of terminal sprouting in ET (i.e., collateral sprouting from surviving PCs making up for the loss of GABA-ergic terminals from PC degeneration). Further research is needed.

  14. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Fisher, Jeffrey W.

    2010-01-01

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 μg/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 μg/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.

  15. Kinetics of lead retention and distribution in suckling and adult rats

    International Nuclear Information System (INIS)

    Momcilovic, B.; Kostial, K.

    1974-01-01

    The kinetics of lead distribution was studied in suckling and adult rats 8 days after a single intraperitoneal injection of 203 Pb. Marked differences were observed in the kinetics of lead retention and distribution in suckling as compared to adult rats. The rate of 203 Pb disappearance was lower in the whole body, blood and kidneys, but higher in the liver, while the deposition processes predominated in the brain, femur and teeth of sucklings as compared to adult animals. (auth)

  16. The effects of a reminder of underwater trauma on behaviour and memory-related mechanisms in the rat dentate gyrus.

    Science.gov (United States)

    Ardi, Ziv; Ritov, Gilad; Lucas, Morgan; Richter-Levin, Gal

    2014-04-01

    Intrusive re-experiencing is a core symptom in post-traumatic stress disorder (PTSD), often triggered by contextual cues associated with the trauma. It is not yet clear if intrusive re-experiencing is only the result, or whether it may contribute to the establishment of PTSD following acute stress. This study aimed at examining the impact of an underwater trauma (UWT) reminder on anxiety-like behaviour and on neuronal activity and plasticity in the hippocampus and the amygdala. Sprague-Dawley rats were exposed to UWT and 24 h later were re-exposed to the context. The effects on behaviour, activation of the amygdala (BLA) and dentate gyrus (DG), and on long-term potentiation (LTP) and local circuit activity (frequency-dependent inhibition (FDI) and paired-pulse inhibition (PPI)) in the DG were assessed. The exposure to UWT by itself resulted in increased anxiety behaviour in the open field, together with increased PPI. Upon exposure to the UWT reminder, an additional increase in anxiety was also observed in the EPM and in FDI. Moreover, reminder exposure resulted in impaired DG LTP and a significant BLA extracellular-signal-regulated kinases (ERK) 2 activation. In conclusion, these observed effects of exposure to a trauma reminder, following the exposure to the initial trauma, might be associated with the progression of trauma-related pathologies and the development of related disorders.

  17. Hypertension after bilateral kidney irradiation in young and adult rats

    International Nuclear Information System (INIS)

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-01-01

    The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension

  18. Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life

    NARCIS (Netherlands)

    van Hasselt, F.N.; Cornelisse, S.; Zhang, T.Y.; Meaney, M.J.; Velzing, E.H.; Krugers, H.J.; Joëls, M.

    2012-01-01

    Maternal care in mammals is the prevailing environmental influence during perinatal development. The adult rat offspring of mothers exhibiting increased levels of pup licking/grooming (LG; High LG mothers), compared to those reared by Low LG dams, show increased hippocampal glucocorticoid receptor

  19. A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus.

    Science.gov (United States)

    Olariu, Ana; Cleaver, Kathryn M; Shore, Lauren E; Brewer, Michelle D; Cameron, Heather A

    2005-01-01

    Granule cells born in the adult dentate gyrus undergo a 4-week developmental period characterized by high susceptibility to cell death. Two forms of hippocampus-dependent learning have been shown to rescue many of the new neurons during this critical period. Here, we show that a natural form of associative learning, social transmission of food preference (STFP), can either increase or decrease the survival of young granule cells in adult rats. Increased numbers of pyknotic as well as phospho-Akt-expressing BrdU-labeled cells were seen 1 day after STFP training, indicating that training rapidly induces both cell death and active suppression of cell death in different subsets. A single day of training for STFP increased the survival of 8-day-old BrdU-labeled cells when examined 1 week later. In contrast, 2 days of training decreased the survival of BrdU-labeled cells and the density of immature neurons, identified with crmp-4. This change from increased to decreased survival could not be accounted for by the ages of the cells. Instead, we propose that training may initially increase young granule cell survival, then, if continued, cause them to die. This complex regulation of cell death could potentially serve to maintain granule cells that are actively involved in memory consolidation, while rapidly using and discarding young granule cells whose training is complete to make space for new naïve neurons. Published 2005 Wiley-Liss, Inc.

  20. Fluoxetine pretreatment promotes neuronal survival and maturation after auditory fear conditioning in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Lizhu Jiang

    Full Text Available The amygdala is a critical brain region for auditory fear conditioning, which is a stressful condition for experimental rats. Adult neurogenesis in the dentate gyrus (DG of the hippocampus, known to be sensitive to behavioral stress and treatment of the antidepressant fluoxetine (FLX, is involved in the formation of hippocampus-dependent memories. Here, we investigated whether neurogenesis also occurs in the amygdala and contributes to auditory fear memory. In rats showing persistent auditory fear memory following fear conditioning, we found that the survival of new-born cells and the number of new-born cells that differentiated into mature neurons labeled by BrdU and NeuN decreased in the amygdala, but the number of cells that developed into astrocytes labeled by BrdU and GFAP increased. Chronic pretreatment with FLX partially rescued the reduction in neurogenesis in the amygdala and slightly suppressed the maintenance of the long-lasting auditory fear memory 30 days after the fear conditioning. The present results suggest that adult neurogenesis in the amygdala is sensitive to antidepressant treatment and may weaken long-lasting auditory fear memory.

  1. [Effect of tail-suspension on the reproduction of adult male rats].

    Science.gov (United States)

    Zhou, Dang-xia; Qiu, Shu-dong; Wang, Zhi-yong; Zhang, Jie

    2006-04-01

    To study the effects on the male reproduction in adult male rats and its mechanisms through simulated weightlessness using tail-suspension, in order to do a basic works of exploring the effects on human being's reproduction in outer space. Forty Spraque-Dawley adult male rats were randomly divided into four groups, two experimental groups and two control groups. Rats in the two experimental groups were tail-suspended for 14 d and 28 d respectively, then we examined the weight and morphology of testis, the quality and amount of sperm, also tested the serum hormone by radioimmunoassay and analyzed apoptosis rate of testicular cells by TUNEL in the experimental rats and control rats. After tail-suspension, the weight of testis, the sperm count and sperm motility significantly decreased (P 0.05). These changes were not significant between two experimental groups (P > 0.05). In addition, the seminiferous tubules became atrophy with the reduction of the layers of seminiferous epithelium, and sperm amount in lumens of seminiferous tubules decreased in experimental groups. The above were more remarkable in the 28 d experimental group. Simulating weightlessness has a harmful effect on reproduction of adult male rats. These may be caused by inducing apoptosis. The blocking apoptosis of testicular cells may be useful in improving the harmful effect.

  2. MORPHOLOGICAL CHANGES IN THE HIPPOCAMPUS OF RATS IN ACCELERATED AGING

    Directory of Open Access Journals (Sweden)

    K. Yu. Maksimova

    2014-01-01

    Full Text Available The aim of this work was the analysis of structural changes with age in the hippocampus of senescenceaccelerated OXYS rats when signs of accelerated brain aging are missing (age 14 days, developments (age 5 months, and active progresses (age 15 months. The study was performed on 15 OXYS rats and 15 Wistar rats (as a control. After dislocation, brains were dissected, fixed with 10% formalin, embedded in paraffin, and serially cut in coronal sections (5μm thickness. These sections were stained with Cresyl violet and examined with a photomicroscope (Carl Zeiss Axiostar plus, Germany. The total number of hippocampal pyramidal cells in the CA1, CA3 and the dentate gyrus regions were estimated in 14-dayold, 5and 15-month-old OXYS and Wistar rats (n = 5 on the 5 slices of each brain sections. The number of neurons with chromatolysis, hyperchromatic with darkly stained cytoplasm and shrunken neurons were calculated as degenerative neurons. The pictures obtained with the program Carl Zeiss Axio Vision 8.0 with increasing 10  100, determined the average area bodies and nuclei of neurons (mkm2. The significant structural changes of neurons in the CA1, CA3 and dentate gyrus regions of the hippocampus in OXYS rats at 5 month of age are revealed by light microscopy. This results indicates the early develop neurodegeneration in OXYS rats. The most pronounced morphological changes occur in the CA1 region of the hippocampus of OXYS rats and irreversible. The degenerative changes of neurons in the hippocampus increases by the age of 15 months. Morphometric analysis of the average area of bodies and the nuclei of hippocampal neurons in CA1, CA3 and the dentate gyrus regions of OXYS and Wistar rats at 14 days of age showed no significant interline differences. At 5 months of age in the CA1 region of the hippocampus of OXYS rats was determined a significantly lower average body size and nuclei of pyramidal neurons compared with Wistar rats. With age, these

  3. Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies.

    Science.gov (United States)

    Hajipour, Somayeh; Sarkaki, Alireza; Farbood, Yaghoob; Eidi, Akram; Mortazavi, Pejman; Valizadeh, Zohreh

    2016-04-01

    To study the effect of gallic acid (GA) on hippocampal long-term potentiation (LTP) and histological changes in animal model of Alzheimer disease (AD) induced by beta-amyloid (Aβ). Sixty-four adult male Wistar rats (300±20 g) were divided into 8 groups: 1) Control (Cont); 2) AD; 3) Sham; 4-7) AD+GA (50, 100, and 200 mg/kg for 10 days, orally) or vehicle, 8) Cont+GA100, Aβ (1μg/μL in each site) was infused into hippocampus bilaterally. Changes of amplitude and slope of LTP induced in hippocampal dentate gyrus (DG) were evaluated by high frequency stimulation (HFS) of perforant path (PP). Data showed that LTP amplitude and area under curve significantly impaired in AD rats (P<0.001), while significantly improved in AD rats treated with GA (P<0.05, P<0.01). Current findings suggest that GA reduces neural damage and brain amyloid neuropathology and improves cognitive function via free radicals scavenging and inhibiting oligomerization of Aβ but with no effect on healthy rats.

  4. Ontogeny of phorbol ester receptors in rat brain studied by in vitro autoradiography

    International Nuclear Information System (INIS)

    Miyoshi, R.; Kito, S.

    1990-01-01

    The ontogeny of phorbol ester receptors, which have been considered to correspond to protein kinase C, in the rat brain was studied through in vitro autoradiography with 3 H-phorbol 12,13-dibutyrate ( 3 H-PDBu). The distribution of 3 H-PDBu binding sites in the adult rat brain was similar to the previous reports by other researchers. The developmental pattern of 3 H-PDBu binding sites varried with brain region. 3 H-PDBu binding sites in the amygdala, thalamus, stratum pyramidale of CA 1 of the hippocampus, dentate gyrus, superior colliculus, substantia nigra, interpeduncular nucleus and cerebellar molecular layer were postnatally increased to adult levels and after that they remained constant. On the other hand, in the stratum oriens and stratum radiatum of CA 1 of the hippocampus, and in the lateral and medial geniculate bodies, 3 H-PDBu binding sites reached peaks at 21 or 28 days of postnatal age and after that they declined to adult levels. The cerebellar granular layer showed a low level of 3 H-PDBu binding sites throughout all the ontogenetic stages. A distinct ontogenetic pattern of phorbol ester receptors in various regions of the brain may reflect a role of protein kinase C in the neural development of each discrete area. (Authors)

  5. Effects of Mercury Chloride on the Cerebral Cortex of Adult Wistar Rats

    African Journals Online (AJOL)

    Mercury is among the heavy metals that have been reported to cause devastating health problem worldwide. The primary site of action of mercury chloride is the central nervous system. This study investigated the effect of mercury chloride on the cerebral cortex of adult wistar rats. Twenty-four (24) adult wistar rats were used ...

  6. Comparison and modification of Pu-239 kinetics in young and adult rats

    International Nuclear Information System (INIS)

    Volf, V.; Gamer, A.; Laengle, U.

    1987-01-01

    It is obvious that the biokinetics of bone-seeking radionuclides are influenced by skeletal growth and remodelling, the rate of which in general decreases with increasing age. For plutonium, Mahlum and Sikov (1974) observed that rats injected with Pu-239 as weanlings retained a lower percentage in the liver and more in the bones than the animals injected as adults. However, skeletal Pu-239 was diluted more rapidly in the young rats because of intensive new bone formation and this led to a more pronounced reduction in the accumulation of radiation dose than was the case in adult animals. The aim of the present experiments was to study: a) The age effect on Pu-239 biokinetics in adult rates as influenced by the sex of the animals. b) Early retention and distribution of Pu-239 in the bones of young and adult rats injected with an optimal osteosarcomogenic dose. c) The effectiveness of a delayed prolonged administration of Zn-DTPA in drinking water for the mobilization of injected Pu-239 in rats of various age. 3 refs.; 5 figs.; 1 table

  7. Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts

    Directory of Open Access Journals (Sweden)

    Oberland Julia

    2010-11-01

    Full Text Available Abstract Background It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion. Results Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14. These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct. Conclusions Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.

  8. How informative are spatial CA3 representations established by the dentate gyrus?

    Directory of Open Access Journals (Sweden)

    Erika Cerasti

    2010-04-01

    Full Text Available In the mammalian hippocampus, the dentate gyrus (DG is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers. Mossy fiber synapses appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the dentate gyrus and to CA3. Computational models of episodic memory have hypothesized that the function of the mossy fibers is to enforce a new, well-separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Can this hypothesis apply also to spatial representations, as described by recent neurophysiological recordings in rats? To address this issue quantitatively, we estimate the amount of information DG can impart on a new CA3 pattern of spatial activity, using both mathematical analysis and computer simulations of a simplified model. We confirm that, also in the spatial case, the observed sparse connectivity and level of activity are most appropriate for driving memory storage-and not to initiate retrieval. Surprisingly, the model also indicates that even when DG codes just for space, much of the information it passes on to CA3 acquires a non-spatial and episodic character, akin to that of a random number generator. It is suggested that further hippocampal processing is required to make full spatial use of DG inputs.

  9. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats.

    Science.gov (United States)

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.

  10. Receptor autoradiography in the hippocampus of man and rat

    International Nuclear Information System (INIS)

    Zilles, K.

    1988-01-01

    This chapter deals with the following questions: regional distribution of binding sites for 5-HT, glutamate, and acetylcholine in Ammon's horn and the dentate gyrus of rat and human brain; comparison of receptor distribution and neuronal pathways with identified transmitters; correlation of region-specific densities between different receptors and receptor subtypes (colocalization of different receptors on the level of hippocampal layers) and comparison of receptor distribution in human and rat hippocampus

  11. Neurons of the dentate molecular layer in the rabbit hippocampus.

    Directory of Open Access Journals (Sweden)

    Francisco J Sancho-Bielsa

    Full Text Available The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections, eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.

  12. Early Life Stress and Sleep Restriction as Risk Factors in PTSD: An Integrative Pre-Clinical Approach

    Science.gov (United States)

    2012-04-01

    Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res. 922(2):250-60...to SR or SRcont, are exposed to the UWT that serves as an ’ Adult -Stress’. Two hours following the UWT, blood samples are taken from all rats’ tail and...exposure to the ’ Adult -stress’. In order to evaluate the chronic response to an ’ adult -stress’, an additional assessment of the animals’ behavioral

  13. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.

    Science.gov (United States)

    Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L

    2016-05-04

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.

  14. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short-term facilitation at mossy fibre to CA3 pyramidal cell synapses.

    Science.gov (United States)

    Booker, Sam A; Campbell, Graham R; Mysiak, Karolina S; Brophy, Peter J; Kind, Peter C; Mahad, Don J; Wyllie, David J A

    2017-03-15

    Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses

  15. Sampling the Mouse Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Lisa Basler

    2017-12-01

    Full Text Available Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus. We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.

  16. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Deficit of Kcnma1 mRNA expression in the dentate gyrus of epileptic rats

    Science.gov (United States)

    Ermolinsky, Boris; Arshadmansab, Massoud F.; Pacheco Otalora, Luis F.; Zarei, Masoud M.; Garrido-Sanabria, Emilio R.

    2008-01-01

    Epileptogenesis in mesial temporal lobe epilepsy is determined by several factors including abnormalities in the expression and function of ion channels. Here, we report a long-lasting deficit in gene expression of Kcnma1 coding for the large-conductance calcium-activated potassium (BK, MaxiK) channel α-subunits after pilocarpine-induced status epilepticus. By using comparative real-time PCR, Taqman gene expression assays, and the delta-delta comparative threshold method we detected a significant reduction in Kcnma1 expression in microdissected dentate gyrus at different intervals after status epilepticus (24 h, 10 days, 1 month, and more than 2 months). BK channels are key regulators of neuronal excitability and transmitter release. Hence, defective Kcnma1 expression may play a critical role in the pathogenesis of mesial temporal lobe epilepsy. PMID:18695509

  18. Different Astrocytic Activation between Adult Gekko japonicus and Rats during Wound Healing In Vitro.

    Directory of Open Access Journals (Sweden)

    Yun Gu

    Full Text Available Glial scar formation is a major obstacle to regeneration after spinal cord injury. Moreover, it has been shown that the astrocytic response to injury differs between species. Gekko japonicas is a type of reptile and it shows differential glial activation compared to that of rats. The purpose of the present study was to compare the proliferation and migration of astrocytes in the spinal cords of geckos and rats after injury in vitro. Spinal cord homogenate stimulation and scratch wound models were used to induce astrocytic activation in adult and embryonic rats, as well as in adult geckos. Our results indicated that astrocytes from the adult rat were likely activated by mechanical stimulation, even though they showed lower proliferation abilities than the astrocytes from the gecko under normal conditions. Furthermore, a transcriptome analysis revealed that the differentially expressed genes in astrocytes from adult rats and those from geckos were enriched in pathways involved in proliferation and the response to stimuli. This implies that intrinsic discrepancies in gene expression patterns might contribute to the differential activation of astrocytes between species.

  19. Blockade of intracellular Zn2+ signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP.

    Science.gov (United States)

    Tamano, Haruna; Minamino, Tatsuya; Fujii, Hiroaki; Takada, Shunsuke; Nakamura, Masatoshi; Ando, Masaki; Takeda, Atsushi

    2015-08-01

    There is no evidence on the precise role of synaptic Zn2+ signaling on the retention and recall of recognition memory. On the basis of the findings that intracellular Zn2+ signaling in the dentate gyrus is required for object recognition, short-term memory, the present study deals with the effect of spatiotemporally blocking Zn2+ signaling in the dentate gyrus after LTP induction and learning. Three-day-maintained LTP was impaired 1 day after injection of clioquinol into the dentate gyrus, which transiently reduced intracellular Zn2+ signaling in the dentate gyrus. The irreversible impairment was rescued not only by co-injection of ZnCl2 , which ameliorated the loss of Zn2+ signaling, but also by pre-injection of Jasplakinolide, a stabilizer of F-actin, prior to clioquinol injection. Simultaneously, 3-day-old space recognition memory was impaired 1 day after injection of clioquinol into the dentate gyrus, but not by pre-injection of Jasplakinolide. Jasplakinolide also rescued both impairments of 3-day-maintained LTP and 3-day-old memory after injection of ZnAF-2DA into the dentate gyrus, which blocked intracellular Zn2+ signaling in the dentate gyrus. The present paper indicates that the blockade and/or loss of intracellular Zn2+ signaling in the dentate gyrus coincidently impair maintained LTP and recognition memory. The mechanism maintaining LTP via intracellular Zn2+ signaling in dentate granule cells, which may be involved in the formation of F-actin, may retain space recognition memory. © 2015 Wiley Periodicals, Inc.

  20. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  1. Hilar mossy cells of the dentate gyrus: a historical perspective

    Directory of Open Access Journals (Sweden)

    Helen E Scharfman

    2013-01-01

    Full Text Available The circuitry of the dentate gyrus of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the dentate gyrus, and the so-called ‘mossy cells.’ The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the dentate gyrus network, reasons for their vulnerability and their implications for disease.

  2. Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus

    Science.gov (United States)

    Sun, Yanjun; Grieco, Steven F.; Holmes, Todd C.

    2017-01-01

    Abstract Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through “back-projection” pathways. PMID:28451637

  3. Theta and beta oscillatory dynamics in the dentate gyrus reveal a shift in network processing state during cue encounters

    Directory of Open Access Journals (Sweden)

    Lara Maria Rangel

    2015-07-01

    Full Text Available The hippocampus is an important structure for learning and memory processes, and has strong rhythmic activity. Although a large amount of research has been dedicated towards understanding the rhythmic activity in the hippocampus during exploratory behaviors, specifically in the theta (5-10 Hz frequency range, few studies have examined the temporal interplay of theta and other frequencies during the presentation of meaningful cues. We obtained in vivo electrophysiological recordings of local field potentials (LFP in the dentate gyrus (DG of the hippocampus as rats performed three different associative learning tasks. In each task, cue presentations elicited pronounced decrements in theta amplitude in conjunction with increases in beta (15-30Hz amplitude. These changes were often transient but were sustained from the onset of cue encounters until the occurrence of a reward outcome. This oscillatory profile shifted in time to precede cue encounters over the course of the session, and was not present during similar behavior in the absence of task relevant stimuli. The observed decreases in theta amplitude and increases in beta amplitude in the dentate gyrus may thus reflect a shift in processing state that occurs when encountering meaningful cues.

  4. Endocannabinoids in the Dentate Gyrus

    OpenAIRE

    Frazier, Charles J.

    2007-01-01

    Recent years have produced rapid and enormous growth in our understanding of endocannabinoid-mediated signalling in the CNS. While much of the recent progress has focused on other areas of the brain, a significant body of evidence has developed that indicates the presence of a robust system for endocannabinoid-mediated signalling in the dentate gyrus. This chapter will provide an overview of our current understanding of that system based on available anatomical and physiological data.

  5. Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Apiwat Sirichoat

    2015-10-01

    Full Text Available Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol while treated rats received asiatic acid (30 mg/kg orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis.

  6. Does developmental hypothyroidism produce lasting effects on adult neurogenesis?

    Science.gov (United States)

    The subgranular zone of the dentate gyrus (DO) of the adult hippocampus generates new neurons throughout life. Thyroid hormones (TH) are essential for brain development, but impaired neurogenesis with adult hypothyroidism has also been reported. We investigated the role of milder...

  7. The timing of differentiation of adult hippocampal neurons is crucial for spatial memory.

    Directory of Open Access Journals (Sweden)

    Stefano Farioli-Vecchioli

    2008-10-01

    Full Text Available Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2 in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3-4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits.

  8. Dietary modulation of parathion-induced neurotoxicity in adult and juvenile rats.

    Science.gov (United States)

    Liu, Jing; Karanth, Subramanya; Pope, Carey

    2005-06-01

    Previous studies indicated that dietary glucose (15% in drinking water) could markedly exacerbate the toxicity of parathion in adult rats. The present study evaluated the effect of consumption of the commonly used sweetener, high fructose corn syrup (HFCS), on parathion toxicity in adult and juvenile rats. Animals were given free access to either water or 15% HFCS in drinking water for a total of 10 days and challenged with parathion (6 or 18 mg/kg, s.c., for juveniles or adults, respectively) on the 4th day. Signs of cholinergic toxicity, body weight and chow/fluid intake were recorded daily. Acetylcholinesterase (AChE) activity and immunoreactivity (AChE-IR) in frontal cortex and diaphragm were measured at 2, 4, and 7 days after parathion. As HFCS was associated with significant reduction in chow intake, adult rats were also pair-fed to evaluate the effect of similar reduced chow intake alone on parathion toxicity. The results indicated that the cholinergic toxicity of parathion was significantly increased by HFCS feeding in both age groups. The excess sugar consumption, however, did not significantly affect parathion-induced AChE inhibition in either tissue or either age group. Enzyme immunoreactivity in frontal cortex was generally not affected in either age group while diaphragm AChE-IR was significantly reduced by parathion and HFCS alone in adult animals at 2 and 4 days timepoints, and more so by the combination of sugar feeding and parathion exposure in both age groups. Food restriction alone did not exacerbate parathion toxicity. While the mechanism(s) remains unclear, we conclude that voluntary consumption of the common sweetener HFCS can markedly amplify parathion acute toxicity in both juvenile and adult rats.

  9. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats.

    Science.gov (United States)

    Alvandi, Mina Sadighi; Bourmpoula, Maria; Homberg, Judith R; Fathollahi, Yaghoub

    2017-11-01

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse. © 2017 Society for the Study of Addiction.

  10. BACE1 Deficiency Causes Abnormal Neuronal Clustering in the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Hailong Hou

    2017-07-01

    Full Text Available BACE1 is validated as Alzheimer's β-secretase and a therapeutic target for Alzheimer's disease. In examining BACE1-null mice, we discovered that BACE1 deficiency develops abnormal clusters of immature neurons, forming doublecortin-positive neuroblasts, in the developing dentate gyrus, mainly in the subpial zone (SPZ. Such clusters were rarely observed in wild-type SPZ and not reported in other mouse models. To understand their origins and fates, we examined how neuroblasts in BACE1-null SPZ mature and migrate during early postnatal development. We show that such neuroblasts are destined to form Prox1-positive granule cells in the dentate granule cell layer, and mainly mature to form excitatory neurons, but not inhibitory neurons. Mechanistically, higher levels of reelin potentially contribute to abnormal neurogenesis and timely migration in BACE1-null SPZ. Altogether, we demonstrate that BACE1 is a critical regulator in forming the dentate granule cell layer through timely maturation and migration of SPZ neuroblasts.

  11. Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

    Science.gov (United States)

    Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu

    2012-01-01

    Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953

  12. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    Shamsuddin, A.K.M.; Barrett, L.A.; Autrup, Herman

    1978-01-01

    . The effect of in vivo carcinogen pretreatment was also studied. The explant culture from control untreated animals showed good epithelial differentiation with crypts until 6 weeks. In contrast, the explants from animals pretreated with 4 weekly doses of azoxymethane consistently showed epithelial......Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants...

  13. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  14. Immature rats show ovulatory defects similar to those in adult rats lacking prostaglandin and progesterone actions

    Directory of Open Access Journals (Sweden)

    Sanchez-Criado Jose E

    2004-09-01

    Full Text Available Abstract Gonadotropin-primed immature rats (GPIR constitute a widely used model for the study of ovulation. Although the equivalence between the ovulatory process in immature and adult rats is generally assumed, the morphological and functional characteristics of ovulation in immature rats have been scarcely considered. We describe herein the morphological aspects of the ovulatory process in GPIR and their response to classical ovulation inhibitors, such as the inhibitor of prostaglandin (PG synthesis indomethacin (INDO and a progesterone (P receptor (PR antagonist (RU486. Immature Wistar rats were primed with equine chorionic gonadotropin (eCG at 21, 23 or 25 days of age, injected with human chorionic gonadotropin (hCG 48 h later, and sacrificed 16 h after hCG treatment, to assess follicle rupture and ovulation. Surprisingly, GPIR showed age-related ovulatory defects close similar to those in adult rats lacking P and PG actions. Rats primed with eCG at 21 or 23 days of age showed abnormally ruptured corpora lutea in which the cumulus-oocyte complex (COC was trapped or had been released to the ovarian interstitum, invading the ovarian stroma and blood and lymphatic vessels. Supplementation of immature rats with exogenous P and/or PG of the E series did not significantly inhibit abnormal follicle rupture. Otherwise, ovulatory defects were practically absent in rats primed with eCG at 25 days of age. GPIR treated with INDO showed the same ovulatory alterations than vehicle-treated ones, although affecting to a higher proportion of follicles. Blocking P actions with RU486 increased the number of COC trapped inside corpora lutea and decreased ovulation. The presence of ovulatory defects in GPIR, suggests that the capacity of the immature ovary to undergo the coordinate changes leading to effective ovulation is not fully established in Wistar rats primed with eCG before 25 days of age.

  15. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring.

    Science.gov (United States)

    Dembele, Korami; Yao, Xing-Hai; Chen, Li; Nyomba, B L Grégoire

    2006-09-01

    Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.

  16. Plasticity of hippocampal stem/progenitor cells to enhance neurogenesis in response to kainate-induced injury is lost by middle age

    OpenAIRE

    Hattiangady, Bharathi; Rao, Muddanna S.; Shetty, Ashok K.

    2008-01-01

    A remarkable up-regulation of neurogenesis through increased proliferation of neural stem/progenitor cells (NSCs) is a well-known plasticity displayed by the young dentate gyrus (DG) following brain injury. To ascertain whether this plasticity is preserved during aging, we quantified DG neurogenesis in the young adult, middle-aged and aged F344 rats after kainic acid induced hippocampal injury. Measurement of new cells that are added to the dentate granule cell layer (GCL) between post-injury...

  17. Objective assessment of mastication predominance in healthy dentate subjects and patients with unilateral posterior missing teeth.

    Science.gov (United States)

    Yamasaki, Y; Kuwatsuru, R; Tsukiyama, Y; Oki, K; Koyano, K

    2016-08-01

    We aimed to investigate mastication predominance in healthy dentate individuals and patients with unilateral posterior missing teeth using objective and subjective methods. The sample comprised 50 healthy dentate individuals (healthy dentate group) and 30 patients with unilateral posterior missing teeth (partially edentulous group). Subjects were asked to freely chew three kinds of test foods (peanuts, beef jerky and chewing gum). Electromyographic activity of the bilateral masseter muscles was recorded. The chewing side (right side or left side) was judged by the level of root mean square electromyographic amplitude. Mastication predominance was then objectively assessed using the mastication predominant score and the mastication predominant index. Self-awareness of mastication predominance was evaluated using a modified visual analogue scale. Mastication predominance scores of the healthy dentate and partially edentulous groups for each test food were analysed. There was a significant difference in the distribution of the mastication predominant index between the two groups (P mastication predominant score was weakly correlated with self-awareness of mastication predominance in the healthy dentate group, whereas strong correlation was observed in the partially edentulous group (P mastication predominance and were more aware of mastication predominance than healthy dentate individuals. Our findings suggest that an objective evaluation of mastication predominance is more precise than a subjective method. © 2016 John Wiley & Sons Ltd.

  18. Some behavioral aspects of adult rats irradiated prenatally

    International Nuclear Information System (INIS)

    Vekovishcheva, O.Yu.; Blagova, O.E.; Borovitskaya, A.E.; Evtushenko, V.I.; Khanson, K.P.

    1992-01-01

    This is a study of the effects of prenatal irradiation on the behavior of rats. The experiments were performed on 42 eighteen month old rats of both sexes. Eight of the males and thirteen females had been irradiated prenatally. The results of this experiment indicated that in general, the activation of behavior, the appearance of aggression and the increase in chaos along with the presence of behavior poses were typical of the suppressed condition of the prenatal irradiated animal. Also, among prenatally irradiated animals, there was a greater degree of anxiety, a slow rate of adjustment to unfamiliar situations and unfriendly relationships between animals of the same sex. These results were compared with the results of behavioral experiments on irradiated adult rats

  19. Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation

    Science.gov (United States)

    Scharfman, Helen E.; Schwartzkroin, Philip A.

    1989-10-01

    Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.

  20. Lesions of entorhinal cortex produce a calpain-mediated degradation of brain spectrin in dentate gyrus. I. Biochemical studies.

    Science.gov (United States)

    Seubert, P; Ivy, G; Larson, J; Lee, J; Shahi, K; Baudry, M; Lynch, G

    1988-09-06

    Lesions of the rat entorhinal cortex cause extensive synaptic restructuring and perturbation of calcium regulation in the dentate gyrus of hippocampus. Calpain is a calcium-activated protease which has been implicated in degenerative phenomena in muscles and in peripheral nerves. In addition, calpain degrades several major structural neuronal proteins and has been proposed to play a critical role in the morphological changes observed following deafferentation. In this report we present evidence that lesions of the entorhinal cortex produce a marked increase in the breakdown of brain spectrin, a substrate for calpain, in the dentate gyrus. Two lines of evidence indicate that this effect is due to calpain activation: (i) the spectrin breakdown products observed following the lesion are indistinguishable from calpain-generated spectrin fragments in vitro; and (ii) their appearance can be reduced by prior intraventricular in fusion of leupeptin, a calpain inhibitor. Levels of spectrin breakdown products are increased as early as 4 h post-lesion, reach maximal values at 2 days, and remain above normal to some degree for at least 27 days. In addition, a small but significant increase in spectrin proteolysis is also observed in the hippocampus contralateral to the lesioned side in the first week postlesion. At 2 days postlesion the total spectrin immunoreactivity (native polypeptide plus breakdown products) increases by 40%, suggesting that denervation of the dentate gyrus produces not only an increased rate of spectrin degradation but also an increased rate of spectrin synthesis. These results indicate that calpain activation and spectrin degradation are early biochemical events following deafferentation and might well participate in the remodelling of postsynaptic structures. Finally, the magnitude of the observed effects as well as the stable nature of the breakdown products provide a sensitive assay for neuronal pathology.

  1. The effect of prenatal methamphetamine exposure on recognition memory in adult rats.

    Science.gov (United States)

    Fialová, Markéta; Šírová, Jana; Bubeníková-Valešová, Věra; Šlamberová, Romana

    2015-01-01

    The use of methamphetamine (MA) among pregnant women is an increasing world-wide health problem. Prenatal MA exposure may cause changes in foetus but the exact effects have remained unclear. The aim of this study is to present the effect of prenatal MA exposure on recognition memory in adult rats. Adult female Wistar rats were injected daily with D-methamphetamine HCl (MA; 5 mg/kg, s.c.) during the entire gestation period. Control females were treated with saline in the same regime. Adult male offspring was administrated acutely by MA (1 mg/kg i.p.) or saline 30 minutes before beginning of an experiment. For testing recognition memory two tasks were chosen: Novel Object Recognition Test (NORT) and Object Location Test (OLT). Our results demonstrate that prenatally MA-exposed animals were worse in NORT independently on an acute administration of MA in adulthood. Prenatally MA-exposed rats did not deteriorate in OLT, but after acute administration of MA in adulthood, there was significant worsening compared to appropriate control. Prenatally saline-exposed offspring did not deteriorate in any test even after acute administration of MA. Our data suggest that prenatal MA exposure in rats cause impairment in recognition memory in adult offspring, but not in spatial memory. In addition, acute administration of MA to controls did not deteriorate either recognition or spatial memory.

  2. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    International Nuclear Information System (INIS)

    Oleskevich, S.; Descarries, L.; Lacaille, J.C.

    1989-01-01

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus

  3. EFFECTS OF EARLY POSTNATAL ANOXIA ON ADULT LEARNING AND EMOTION IN RATS

    NARCIS (Netherlands)

    BUWALDA, B; NYAKAS, C; VOSSELMAN, HJ; LUITEN, PGM; Vosselman, Henk Jan

    Cognitive functioning, behavioural attention and anxiety were studied in adult male Wistar rats after early postnatal anoxia. Spatial memory performance in the holeboard learning task was impaired in anoxic rats when compared with control animals. Attention assessed by the behavioural immobility

  4. Turnover time of Leydig cells and other interstitial cells in testes of adult rats

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; Rommerts, F. F.; van der Tweel, I.; Wensing, C. J.

    1989-01-01

    The aim of this study was to investigate the turnover of Leydig cells and other interstitial cells in the adult rat testis. Normal adult rats received injections of [3H]thymidine at 9:00 and 21:00 for 2, 5, or 8 days. The percentage of labeled Leydig cells, which was initially low (0.8% +/- 0.2%),

  5. Role of corticosteroid hormones in the dentate gyrus.

    NARCIS (Netherlands)

    Joëls, M.

    2007-01-01

    Dentate granule cells are enriched with receptors for the stress hormone corticosterone, i.e., the high-affinity mineralocorticoid receptor (MR), which is already extensively occupied with low levels of the hormone, and the glucocorticoid receptor (GR), which is particularly activated after stress.

  6. Trends in annual dental visits among US dentate adults with and without self-reported diabetes and prediabetes, 2004-2014.

    Science.gov (United States)

    Luo, Huabin; Bell, Ronny A; Wright, Wanda; Wu, Qiang; Wu, Bei

    2018-03-31

    The authors assessed the trends of annual dental visits in dentate adults with diabetes or prediabetes or no diabetes, and assessed whether the racial and ethnic disparities in dental visits changed from 2004 through 2014. Data for this analysis came from the Behavioral Risk Factor Surveillance System, a US health survey that looks at behavioral risk factors that was developed by the Centers for Disease Control and Prevention in cooperation with state health departments. Respondents indicated whether they had a dental visit in the past 12 months. Weighted proportions were calculated for annual dental visits in adults by diabetes status, and trends were assessed by racial and ethnic groups. From 2004 through 2014, the proportion of annual dental visits declined from 66.1% to 61.4% (trend P = .02) in the diabetes group, 71.9% to 66.5% (trend P = .01) in the no diabetes group, and 66.0% to 64.9% (trend P = .33) in the prediabetes group. Age, income, and health insurance were moderators of the association between diabetes status and dental visits. Overall, the racial and ethnic disparity in dental visits did not change significantly during the period. Dental visits and services were less frequent in people with diabetes and prediabetes. Racial and ethnic disparities in use of dental services persisted during the observed period. All patients, especially those with diabetes, are encouraged to visit a dentist at least annually. It is important for health care providers, such as primary care physicians and dental care and public health professionals, to make concerted efforts to promote oral health care in diabetes management. Improving access to dental services is vital to achieving this goal. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  7. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways

    OpenAIRE

    Yujing Tian; Mengwen Qi; Zhouqing Wang; Chunfeng Wu; Zhen Sun; Yingchun Li; Sha Sha; Yimei Du; Lei Chen; Lei Chen; Ling Chen

    2017-01-01

    Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i). Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG). The present study aimed to examine the effect of TRPV4 activati...

  8. The effect of hypertension on adult hippocampal neurogenesis in young adult spontaneously hypertensive rats and Dahl rats

    Czech Academy of Sciences Publication Activity Database

    Pištíková, Adéla; Brožka, Hana; Bencze, Michal; Radostová, Dominika; Valeš, Karel; Stuchlík, Aleš

    2017-01-01

    Roč. 66, č. 5 (2017), s. 881-887 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : adult neurogenesis * Captopril * hypertension * Dahl rats * SHR * young animals Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 1.461, year: 2016

  9. Effect of Consuming Iodized Salt on Fertility Indices in Male Adult Rats

    Directory of Open Access Journals (Sweden)

    M. Mehrabani Natanzi

    2017-06-01

    Full Text Available Introduction: Today about 27.4 percent of female 15-44 years and 1 percent of female in fertility age are affected by infertility. Iodine is a rare element that is essential for the synthesis of thyroid hormones. Concentration of the thyroid hormones in blood under the influence of iodine intake and changes in thyroid hormones levels interact with reproductive system. Today, all the people of Iran consuming iodized salt regardless of iodine status in their body. In this study according to high prevalence of the infertility among young couples, iodized salt intake on fertility in male rats were investigated. Materials and Methods: In this study 20 male and 20 female adult Wistar rats were used. Twenty male adult Wistar rats were randomly divided into 2 groups. Including the control group and treatment group that received iodine and female adult Wistar were fed with a regular diet. Five male rats from each group were killed at the end of the fourth weeks in order to evaluate the possible effect of iodized salt on sperm analysis and weight of testis. After a month, male and female rats were placed in pairs in separate cages and their offspring were investigated in terms of number, gender and health. Results: The result of this study showed that the number of healthy offspring of treated male rats was significantly lower than the control group. Conclusion: Due to the negative effect of excessive iodine intake on fertility rate, it is recommended to couples to perform functional tests of their thyroid glands before intake of iodized salts.

  10. A terrified-sound stress induced proteomic changes in adult male rat hippocampus.

    Science.gov (United States)

    Yang, Juan; Hu, Lili; Wu, Qiuhua; Liu, Liying; Zhao, Lingyu; Zhao, Xiaoge; Song, Tusheng; Huang, Chen

    2014-04-10

    In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats.

    Science.gov (United States)

    Madsen, Heather B; Zbukvic, Isabel C; Luikinga, Sophia J; Lawrence, Andrew J; Kim, Jee Hyun

    2017-09-01

    Relapse to drug use is often precipitated by exposure to drug associated cues that evoke craving. Cue-induced drug craving has been observed in both animals and humans to increase over the first few weeks of abstinence and remain high over extended periods, a phenomenon known as 'incubation of craving'. As adolescence represents a period of vulnerability to developing drug addiction, potentially due to persistent reactivity to drug associated cues, we first compared incubation of cocaine craving in adolescent and adult rats. Adolescent (P35) and adult (P70) rats were trained to lever press to obtain intravenous cocaine, with each drug delivery accompanied by a light cue that served as the conditioned stimulus (CS). Following acquisition of stable responding, rats were tested for cue-induced cocaine-seeking after either 1 or 30days of abstinence. Additional groups of rats were also tested after 30days of abstinence, however these rats were subjected to a cue extinction session 1week into the abstinence period. Rats were injected with aripiprazole, a dopamine 2 receptor (D2R)-like partial agonist, or vehicle, 30min prior to cue extinction. We found that adolescent and adult rats acquired and maintained a similar level of cocaine self-administration, and rats of both ages exhibited a higher level of cue-induced cocaine-seeking if they were tested after 30days of abstinence compared to 1day. Incubation of cocaine craving was significantly reduced to 1day levels in both adults and adolescents that received cue extinction training. Administration of aripiprazole prior to cue extinction did not further reduce cue-induced drug-seeking. These results indicate that cue extinction training during abstinence may effectively reduce cue-induced relapse at a time when cue-induced drug craving is usually high. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    Science.gov (United States)

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  13. Analysis of testosterone effects on sonic hedgehog signaling in juvenile, adolescent and adult sprague dawley rat penis.

    Science.gov (United States)

    Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A

    2010-03-01

    Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.

  14. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    Science.gov (United States)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  15. MicroRNA profiling in the dentate gyrus in epileptic rats: The role of miR-187-3p.

    Science.gov (United States)

    Zhang, Suya; Kou, Yubin; Hu, Chunmei; Han, Yan

    2017-06-01

    This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.

  16. Histological changes in the cerebelli of adult wistar rats exposed to ...

    African Journals Online (AJOL)

    The different constituents of tobacco smoke have been linked to different diseased conditions. In this work, the histological effects of cigarette smoke on the cerebellum of adult male Wistar rats were studied. Sixteen Wistar rats with mean weight of 153.24 ± 4.12 g were grouped equally into four. The Control Group A was ...

  17. Chronic treatment with AMPA receptor potentiator Org 26576 increases neuronal cell proliferation and survival in adult rodent hippocampus.

    Science.gov (United States)

    Su, Xiaowei W; Li, Xiao-Yuan; Banasr, Mounira; Koo, Ja Wook; Shahid, Mohammed; Henry, Brian; Duman, Ronald S

    2009-10-01

    Currently available antidepressants upregulate hippocampal neurogenesis and prefrontal gliogenesis after chronic administration, which could block or reverse the effects of stress. Allosteric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators (ARPs), which have novel targets compared to current antidepressants, have been shown to have antidepressant properties in neurogenic and behavioral models. This study analyzed the effect of the ARP Org 26576 on the proliferation, survival, and differentiation of neurons and glia in the hippocampus and prelimbic cortex of adult rats. Male Sprague-Dawley rats received acute (single day) or chronic (21 day) twice-daily intraperitoneal injections of Org 26576 (1-10 mg/kg). Bromodeoxyuridine (BrdU) immunohistochemistry was conducted 24 h or 28 days after the last drug injection for the analysis of cell proliferation or survival, respectively. Confocal immunofluorescence analysis was used to determine the phenotype of surviving cells. Acute administration of Org 26576 did not increase neuronal cell proliferation. However, chronic administration of Org 26576 increased progenitor cell proliferation in dentate gyrus (approximately 40%) and in prelimbic cortex (approximately 35%) at the 10-mg/kg dosage. Cells born in response to chronic Org 26576 in dentate gyrus exhibited increased rates of survival (approximately 30%) with the majority of surviving cells expressing a neuronal phenotype. Findings suggest that Org 26576 may have antidepressant properties, which may be attributed, in part, to upregulation of hippocampal neurogenesis and prelimbic cell proliferation.

  18. Modification Of Cesium Toxicity By Prussian Blue In Adult Male Albino Rats

    International Nuclear Information System (INIS)

    MANGOOD, S.A.; HAGGAG, A.M.

    2009-01-01

    The purposes of this study were to asses the toxicological effects of stable cesium chloride, and investigate the possible therapeutic role of Prussian blue (PB) in adult male albino rats.Thirty two adult male albino rats were used in this study and classified to 4 groups (8 rats/group) as follows:1- Group one (G1): rats were considered as controls and kept on the commercial diet without any treatments.2-Group two (G2): treated with daily oral cesium chloride (50 mg/300 g body weight).3-Group three (G3): treated with daily oral Prussian blue (250 mg/rats).4-Group four (G4): treated with cesium chloride at a daily oral dose of 50 mg/300 g body weight + Prussian blue at a daily oral dose of 250 mg/rats.All animals were administered the CsCl and/or PB via intubation tube and the duration of this study was 35 consecutive days. Hemoglobin (Hb), hematocrit (Ht%), red blood cells (RBC), white blood cells (WBC), folic acid, vitamin B12, total protein, albumin, globulin, A/G ratio, ALT, AST, total bilirubin, alkaline phosphatase, blood glucose, urea, creatinine, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), sodium, potassium, calcium and inorganic phosphorous and body weight were determined in all groups.The data obtained revealed that the intake of stable cesium chloride in adult male rats caused significant decreases in the Hb, hematocrit, folic acid, vitamin B12 and potassium contents, with significant increases in WBC count, urea and creatinine levels and no effect on the other parameters. On the other hand, PB as a therapeutic agent caused significant amelioration in the changes produced by CsCl with variable degrees leading to the conclusion that the therapeutic agents might provide a protection against the toxicological effects of CsCl.

  19. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  20. Comparison of airway measurements during influenza-induced tachypnea in infant and adult cotton rats

    Directory of Open Access Journals (Sweden)

    Prince Gregory A

    2009-06-01

    Full Text Available Abstract Background Increased respiratory rate (tachypnea is frequently observed as a clinical sign of influenza pneumonia in pediatric patients admitted to the hospital. We previously demonstrated that influenza infection of adult cotton rats (Sigmodon hispidus also results in tachypnea and wanted to establish whether this clinical sign was observed in infected infant cotton rats. We hypothesized that age-dependent differences in lung mechanics result in differences in ventilatory characteristics following influenza infection. Methods Lung tidal volume, dynamic elastance, resistance, and pleural pressure were measured in a resistance and compliance system on mechanically-ventilated anesthestized young (14–28 day old and adult (6–12 week old cotton rats. Animals at the same age were infected with influenza virus, and breathing rates and other respiratory measurements were recorded using a whole body flow plethysmograph. Results Adult cotton rats had significantly greater tidal volume (TV, and lower resistance and elastance than young animals. To evaluate the impact of this increased lung capacity and stiffening on respiratory disease, young and adult animals were infected intra-nasally with influenza A/Wuhan/359/95. Both age groups had increased respiratory rate and enhanced pause (Penh during infection, suggesting lower airway obstruction. However, in spite of significant tachypnea, the infant (unlike the adult cotton rats maintained the same tidal volume, resulting in an increased minute volume. In addition, the parameters that contribute to Penh were different: while relaxation time between breaths and time of expiration was decreased in both age groups, a disproportionate increase in peak inspiratory and expiratory flow contributed to the increase in Penh in infant animals. Conclusion While respiratory rate is increased in both adult and infant influenza-infected cotton rats, the volume of air exchanged per minute (minute volume is

  1. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  2. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Zago, A.; Leão, R.M.; Carneiro-de-Oliveira, P.E.; Marin, M.T.; Cruz, F.C.; Planeta, C.S.

    2011-01-01

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  3. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  4. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    Science.gov (United States)

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  5. Gastrointestinal absorption and retention of polonium in adult and newborn rats and guinea pigs

    International Nuclear Information System (INIS)

    Haines, J.W.; Naylor, G.P.L.; Pottinger, H.; Harrison, J.D.

    1993-01-01

    The gastrointestinal absorption of 210 Po was determined by comparing tissue retention after oral and systemic administration. The results indicate an increase in absorption in adult rats for 210 Po administered in liver compared with 210 Po nitrate with estimated absorption of 5 and 13%, respectively. For 210 Po citrate, values of about 7% were obtained in 1-day-old neonate and adult rats while absorption in guinea pigs was estimated to be about 23% in 1-day-old neonates, 17% in 5-day-old neonates, and 9% in adults. Gut retention of ingested 210 Po in neonates was high in rats but not guinea pigs. In adult animals, but not neonates, the liver accounted for a greater proportion of 210 Po reaching the bloodstream after ingestion than after systemic injection. The significance of these results is discussed in relation to current assumptions made in the calculation of doses from 210 Po. (author)

  6. Insomnia severity is associated with a decreased volume of the CA3/Dentate Gyrus Hippocampal Subfield

    Science.gov (United States)

    Neylan, Thomas C.; Mueller, Susanne G.; Wang, Zhen; Metzler, Thomas J.; Lenoci, Maryann; Truran, Diana; Marmar, Charles R.; Weiner, Michael W.; Schuff, Norbert

    2010-01-01

    Background Prolonged disruption of sleep in animal studies is associated with decreased neurogenesis in the dentate gyrus. Our objective was to determine if insomnia severity in a sample of PTSD and controls was associated with decreased volume in the CA3/dentate hippocampal subfield. Methods Volumes of hippocampal subfields in seventeen veteran males positive for PTSD (41 ±12 years) and nineteen age-matched male veterans negative for PTSD were measured using 4 Tesla MRI. Subjective sleep quality was measured by the Insomnia Severity Index (ISI) and the Pittsburgh Sleep Quality Index (PSQI). Results Higher scores on the ISI, indicating worse insomnia, were associated with smaller volumes of the CA3/dentate subfields (r= −.48, p < 0.01) in the combined sample. Adding the ISI score as a predictor for CA3/dentate volume to a hierarchical linear regression model after first controlling for age and PTSD symptoms accounted for a 13 % increase in incremental variance (t= −2.47, p= 0.02). Conclusions The findings indicate for the first time in humans that insomnia severity is associated with volume loss of the CA3/dentate subfields. This is consistent with animal studies showing that chronic sleep disruption is associated with decreased neurogenesis and dendritic branching in these structures. PMID:20598672

  7. Beneficial effects of enriched environment following status epilepticus in immature rats.

    Science.gov (United States)

    Faverjon, S; Silveira, D C; Fu, D D; Cha, B H; Akman, C; Hu, Y; Holmes, G L

    2002-11-12

    There is increasing evidence that enriching the environment can improve cognitive and motor deficits following a variety of brain injuries. Whether environmental enrichment can improve cognitive impairment following status epilepticus (SE) is not known. To determine whether the environment in which animals are raised influences cognitive function in normal rats and rats subjected to SE. Rats (n = 100) underwent lithium-pilocarpine-induced SE at postnatal (P) day 20 and were then placed in either an enriched environment consisting of a large play area with toys, climbing objects, and music, or in standard vivarium cages for 30 days. Control rats (n = 32) were handled similarly to the SE rats but received saline injections instead of lithium-pilocarpine. Rats were then tested in the water maze, a measure of visual-spatial memory. A subset of the rats were killed during exposure to the enriched or nonenriched environment and the brains examined for dentate granule cell neurogenesis using bromodeoxyuridine (BrdU) and phosphorylated cyclic AMP response element binding protein (pCREB) immunostaining, a brain transcription factor important in long-term memory. Both control and SE rats exposed to the enriched environment performed significantly better than the nonenriched group in the water maze. There was a significant increase in neurogenesis and pCREB immunostaining in the dentate gyrus in both control and SE animals exposed to the enriched environment compared to the nonenriched groups. Environmental enrichment resulted in no change in SE-induced histologic damage. Exposure to an enriched environment in weanling rats significantly improves visual-spatial learning. Even following SE, an enriched environment enhances cognitive function. An increase in neurogenesis and activation of transcription factors may contribute to this enhanced visual-spatial memory.

  8. Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus.

    Science.gov (United States)

    Davis, Cyndy D; Jones, Floretta L; Derrick, Brian E

    2004-07-21

    The induction of long-term potentiation (LTP) in the hippocampal formation can be modulated by different behavioral states. However, few studies have addressed modulation of LTP during behavioral states in which the animal is likely acquiring new information. Here, we demonstrate that both the induction and the longevity of LTP in the dentate gyrus are enhanced when LTP is induced during the initial exploration of a novel environment. These effects are independent from locomotor activity, changes in brain temperature, and theta rhythm. Previous exposure to the novel environment attenuated this enhancement, suggesting that the effects of novelty habituate with familiarity. LTP longevity also was enhanced when induced in familiar environments containing novel objects. Together, these data indicate that both LTP induction and maintenance are enhanced when LTP is induced while rats investigate novel stimuli. We suggest that novelty initiates a transition of the hippocampal formation to a mode that is particularly conducive to synaptic plasticity, a process that could allow for new learning while preserving the stability of previously stored information. In addition, LTP induced in novel environments elicited a sustained late LTP. This suggests that a single synaptic population can display distinct profiles of LTP maintenance and that this depends on the animal's behavioral state during its induction. Furthermore, the duration of LTP enhanced by novelty parallels the time period during which the hippocampal formation is thought necessary for memory, consistent with the view that dentate LTP is of a duration sufficient to sustain memory in the hippocampal formation.

  9. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats.

    Science.gov (United States)

    Lukas, Michael; Bredewold, Remco; Landgraf, Rainer; Neumann, Inga D; Veenema, Alexa H

    2011-07-01

    Early life stress poses a risk for the development of psychopathologies characterized by disturbed emotional, social, and cognitive performance. We used maternal separation (MS, 3h daily, postnatal days 1-14) to test whether early life stress impairs social recognition performance in juvenile (5-week-old) and adult (16-week-old) male Wistar rats. Social recognition was tested in the social discrimination test and defined by increased investigation by the experimental rat towards a novel rat compared with a previously encountered rat. Juvenile control and MS rats demonstrated successful social recognition at inter-exposure intervals of 30 and 60 min. However, unlike adult control rats, adult MS rats failed to discriminate between a previously encountered and a novel rat after 60 min. The social recognition impairment of adult MS rats was accompanied by a lack of a rise in arginine vasopressin (AVP) release within the lateral septum seen during social memory acquisition in adult control rats. This blunted response of septal AVP release was social stimulus-specific because forced swimming induced a rise in septal AVP release in both control and MS rats. Retrodialysis of AVP (1 μg/ml, 3.3 μl/min, 30 min) into the lateral septum during social memory acquisition restored social recognition in adult MS rats at the 60-min interval. These studies demonstrate that MS impairs social recognition performance in adult rats, which is likely caused by blunted septal AVP activation. Impaired social recognition may be linked to MS-induced changes in other social behaviors like aggression as shown previously. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Effect of Amphetamine on Adult Male and Female Rats Prenatally Exposed to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Romana Šlamberová

    2014-01-01

    Full Text Available The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA exposure to adult amphetamine (AMP treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed were administered with AMP (5 mg/kg or saline (1 ml/kg in adulthood. Behaviour in unknown environment was examined in open field test (Laboras, active drug-seeking behaviour in conditioned place preference test (CPP, spatial memory in the Morris water maze (MWM, and levels of corticosterone (CORT were analyzed by enzyme immunoassay (EIA. Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.

  11. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2014-02-01

    Full Text Available Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old and adult (8-week-old rats with social instability stress for five weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the adolescent group showed higher fear-potentiated startle responses, larger dendritic arborization, more proximal dendritic spine distribution and lower levels of truncated TrkB than the adult rats. Social instability stress exerted opposite effects on fear-potentiated startle responses in these two groups, i.e., the stress period appeared to hamper the performance in adolescents but improved it in adult rats. Furthermore, whilst the chronic social stress applied to adolescent rats reduced their dendritic field and spine density in basal and lateral amygdala neurons, the opposite stress effects on neuron morphology were observed in the adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB and SNAP-25, whereas, in the adult rats, chronic stress enhanced full-length and truncated TrkB expressions in the amygdala. In summary, chronic social instability stress hinders amygdala neuron development in the adolescent brain, while mature neurons in the amygdala are capable of adapting to the stress. The stress induced age-dependent effects on the fear-potentiated memory may occur by altering the BDNF-TrkB signaling and neuroplasticity in the amygdala.

  12. A brief period of sleep deprivation causes spine loss in the dentate gyrus of mice.

    Science.gov (United States)

    Raven, Frank; Meerlo, Peter; Van der Zee, Eddy A; Abel, Ted; Havekes, Robbert

    2018-03-24

    Sleep and sleep loss have a profound impact on hippocampal function, leading to memory impairments. Modifications in the strength of synaptic connections directly influences neuronal communication, which is vital for normal brain function, as well as the processing and storage of information. In a recently published study, we found that as little as five hours of sleep deprivation impaired hippocampus-dependent memory consolidation, which was accompanied by a reduction in dendritic spine numbers in hippocampal area CA1. Surprisingly, loss of sleep did not alter the spine density of CA3 neurons. Although sleep deprivation has been reported to affect the function of the dentate gyrus, it is unclear whether a brief period of sleep deprivation impacts spine density in this region. Here, we investigated the impact of a brief period of sleep deprivation on dendritic structure in the dentate gyrus of the dorsal hippocampus. We found that five hours of sleep loss reduces spine density in the dentate gyrus with a prominent effect on branched spines. Interestingly, the inferior blade of the dentate gyrus seems to be more vulnerable in terms of spine loss than the superior blade. This decrease in spine density predominantly in the inferior blade of the dentate gyrus may contribute to the memory deficits observed after sleep loss, as structural reorganization of synaptic networks in this subregion is fundamental for cognitive processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Diminished Dentate Gyrus Filtering of Cortical Input Leads to Enhanced Area Ca3 Excitability after Mild Traumatic Brain Injury.

    Science.gov (United States)

    Folweiler, Kaitlin A; Samuel, Sandy; Metheny, Hannah E; Cohen, Akiva S

    2018-04-06

    Mild traumatic brain injury (mTBI) disrupts hippocampal function and can lead to long-lasting episodic memory impairments. The encoding of episodic memories relies on spatial information processing within the hippocampus. As the primary entry point for spatial information into the hippocampus, the dentate gyrus is thought to function as a physiological gate, or filter, of afferent excitation before reaching downstream area Cornu Ammonis (CA3). Although injury has previously been shown to alter dentate gyrus network excitability, it is unknown whether mTBI affects dentate gyrus output to area CA3. In this study, we assessed hippocampal function, specifically the interaction between the dentate gyrus and CA3, using behavioral and electrophysiological techniques in ex vivo brain slices 1 week following mild lateral fluid percussion injury (LFPI). Behaviorally, LFPI mice were found to be impaired in an object-place recognition task, indicating that spatial information processing in the hippocampus is disrupted. Extracellular recordings and voltage-sensitive dye imaging demonstrated that perforant path activation leads to the aberrant spread of excitation from the dentate gyrus into area CA3 along the mossy fiber pathway. These results suggest that after mTBI, the dentate gyrus has a diminished capacity to regulate cortical input into the hippocampus, leading to increased CA3 network excitability. The loss of the dentate filtering efficacy reveals a potential mechanism by which hippocampal-dependent spatial information processing is disrupted, and may contribute to memory dysfunction after mTBI.

  14. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 1; Postnatal maturation of hippocampal cells

    Energy Technology Data Exchange (ETDEWEB)

    Represa, A; Dessi, F; Beaudoin, M; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    The axons of dentate granule cells, the mossy fibres, establish synaptic contacts with the thorny excrescences of the apical dendrite of CA3 pyramidal neurons. Dentate granule cells develop postnatally in rats, whereas the CA3 pyramidal cells are generated before birth. In the present studies, using unilateral neonatal {gamma}-ray irradiation to destroy the granule cells in one hemisphere, we have studied the effect of mossy fibre deprivation on the development of their targets. We show that such ''degranulation'' prevents the normal development of giant thorny excrescences, suggesting that the development of thorny excrescences in CA3 pyramidal neurons is under the control of mossy fibres. In contrast, irradiation of the hippocampus of the neonatal rat does not affect the development of the dendritic arborization of CA3 pyramidal cells and their non-mossy dendritic spines. (author).

  15. Role of hippocampal dentate gyrus neurons in the protective effects of heat shock factor 1 on working memory

    Institute of Scientific and Technical Information of China (English)

    Min Peng; Xiongzhao Zhu; Ming Cheng; Xiangyi Chen; Shuqiao Yao

    2011-01-01

    Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis.Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.

  16. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  17. Behavioral changes in preweaning and adult rats exposed prenatally to low ionizing radiation

    International Nuclear Information System (INIS)

    Norton, S.

    1986-01-01

    Seven behavioral tests were used to evaluate the postnatal behavior of rats after exposure on gestational Day 15 to 0, 25, 50, 75, or 125 r, whole body irradiation of the pregnant rat. Three tests were administered in the first 2 postnatal weeks (righting reflex, negative geotaxis, and reflex suspension); three tests were administered on postnatal Day 21 (modified open field, spatial maze, and continuous corridor). As adults, the rats were retested with the same tests as at 21 days and also in the running wheel. Dose-response decreases in body weight were greater in the younger rats. Some behavioral tests were not altered by irradiation, while others showed clear dose-response relationships, starting as low as 25 r. The early changes were characterized by light body weight, delays in behavioral development and hypoactivity, followed by recovery of some parameters with maturation. Eventually hyperactivity developed in adult rats after gestational irradiation. However, it cannot be concluded that either morphological or behavioral tests are more sensitive than neonatal body weight change for detection of damage from gestational irradiation

  18. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus

    DEFF Research Database (Denmark)

    Hosseini-Sharifabad, Mohammad; Nyengaard, Jens Randel

    2007-01-01

    Tools recently developed in stereology were employed for unbiased estimation of the neuronal number and volume in three major subdivisions of rat hippocampus (dentate granular, CA1 and CA3 pyramidal layers). The optical fractionator is used extensively in quantitative studies of the hippocampus; ...

  19. A practical approach to diseases affecting dentate nuclei

    International Nuclear Information System (INIS)

    Khadilkar, S.; Jaggi, S.; Patel, B.; Yadav, R.; Hanagandi, P.; Faria do Amaral, L.L.

    2016-01-01

    A wide variety of diseases affect the dentate nuclei. When faced with the radiological demonstration of signal changes in the dentate nuclei, radiologists and clinical neurologists have to sieve through the many possibilities, which they do not encounter on a regular basis. This task can be challenging, and therefore, developing a clinical, radiological, and laboratory approach is important. Information on the topic is scattered and the subject has not yet been reviewed. In this review, a combined clinicoradiological approach is presented. The signal changes in T1, T2, fluid-attenuated inversion recovery (FLAIR), diffusion, susceptibility weighted, and gadolinium-enhanced images can give specific or highly suggestive patterns, which are illustrated. The role of computed tomography (CT) in the diagnostic process is discussed. Specific radiological patterns do not exist in a significant proportion of patients where the clinical and laboratory analysis becomes important. In this review, we group the clinical constellations to narrow down the differential diagnosis and highlight the diagnostic clinical signs, such as tendon xanthomas and Kayser–Fleischer rings. As will be seen, a number of these conditions are potentially reversible, and hence, their early diagnosis is desirable. Finally, key diagnostic tests and available therapies are outlined. The practical approach thus begins with the radiologist and winds its way through the clinician, towards carefully selected diagnostic tests defining the therapy options. - Highlights: • Dentate nuclei are affected in leukodystrophies, metabolic, toxic, neurodegenerative, inflammatory and infectious diseases. • A number of these diseases are modifiable or reversible and hence it is important to diagnose them early. • Clinical or radiological tell-tale markers are present in a proportion of them. • In others, a practical approach beginning with radiology and taking help of clinical and laboratory features helps the

  20. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ concentration. A single injection of Aβ (25 pmol into the dentate gyrus affected dentate gyrus long-term potentiation (LTP 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  1. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Science.gov (United States)

    Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A; Bush, Ashley I; Tamano, Haruna

    2014-01-01

    We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  2. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    Science.gov (United States)

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  3. Effects of acute and chronic administration of fenproporex on DNA damage parameters in young and adult rats.

    Science.gov (United States)

    Gonçalves, Cinara L; Rezin, Gislaine T; Ferreira, Gabriela K; Jeremias, Isabela C; Cardoso, Mariane R; Valvassori, Samira S; Munhoz, Bruna J P; Borges, Gabriela D; Bristot, Bruno N; Leffa, Daniela D; Andrade, Vanessa M; Quevedo, João; Streck, Emilio L

    2013-08-01

    Obesity is a chronic and multifactorial disease, whose prevalence is increasing in many countries. Pharmaceutical strategies for the treatment of obesity include drugs that regulate food intake, thermogenesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine, which is associated with neurotoxicity. In this context, the present study evaluated DNA damage parameters in the peripheral blood of young and adult rats submitted to an acute administration and chronic administration of fenproporex. In the acute administration, both young and adult rats received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or vehicle. In the chronic administration, both young and adult rats received one daily injection of fenproporex (6.25, 12.5, or 25 mg/kg i.p.) or Tween for 14 days. 2 h after the last injection, the rats were killed by decapitation and their peripheral blood removed for evaluation of DNA damage parameters by alkaline comet assay. Our study showed that acute administration of fenproporex in young and adult rats presented higher levels of damage index and frequency in the DNA. However, chronic administration of fenproporex in young and adult rats did not alter the levels of DNA damage in both parameters of comet assay. The present findings showed that acute administration of fenproporex promoted damage in DNA, in both young and adult rats. Our results are consistent with other reports which showed that other amphetamine-derived drugs also caused DNA damage. We suggest that the activation of an efficient DNA repair mechanism may occur after chronic exposition to fenproporex. Our results are consistent with other reports that showed some amphetamine-derived drugs also caused DNA damage.

  4. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling.

    Science.gov (United States)

    Fournier, Neil M; Botterill, Justin J; Marks, Wendie N; Guskjolen, Axel J; Kalynchuk, Lisa E

    2013-06-01

    Epileptic seizures increase the birth of new neurons in the adult hippocampus. Although the consequences of aberrant neurogenesis on behavior are not fully understood, one hypothesis is that seizure-generated neurons might form faulty circuits that disrupt hippocampal functions, such as learning and memory. In the present study, we employed long-term amygdala kindling (i.e., rats receive 99-electrical stimulations) to examine the effect of repeated seizures on hippocampal neurogenesis and behavior. We labeled seizure-generated cells with the proliferation marker BrdU after 30-stimulations and continued kindling for an additional 4weeks to allow newborn neurons to mature under conditions of repeated seizures. After kindling was complete, rats were tested in a trace fear conditioning task and sacrificed 2h later to examine if 4-week old newborn cells were recruited into circuits involved in the retrieval of emotional memory. Compared to non-kindled controls, long-term kindled rats showed significant impairments in fear memory reflected in a decrease in conditioned freezing to both tone and contextual cues during testing. Moreover, long-term kindling also prevented the activation of 4-week old newborn cells in response to fear memory retrieval. These results indicate that the presence of seizure activity during cell maturation impedes the ability of new neurons to integrate properly into circuits important in memory formation. Together, our findings suggest that aberrant seizure-induced neurogenesis might contribute to the development of learning impairments in chronic epilepsy and raise the possibility that targeting the reduced activation of adult born neurons could represent a beneficial strategy to reverse cognitive deficits in some epileptic patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Copolymer-1 enhances cognitive performance in young adult rats

    Science.gov (United States)

    Meneses, Alfredo; Cruz-Martínez, Yolanda; Anaya-Jiménez, Rosa María; Liy-Salmerón, Gustavo; Carvajal, Horacio Guillermo; Ponce-López, Maria Teresa

    2018-01-01

    Cognitive impairment is a dysfunction observed as a sequel of various neurodegenerative diseases, as well as a concomitant element in the elderly stages of life. In clinical settings, this malfunction is identified as mild cognitive impairment. Previous studies have suggested that cognitive impairment could be the result of a reduction in the expression of brain-derived neurotrophic factor (BDNF) and/or immune dysfunction. Copolymer-1 (Cop-1) is an FDA-approved synthetic peptide capable of inducing the activation of Th2/3 cells, which are able to release BDNF, as well as to migrate and accumulate in the brain. In this study, we evaluated the effect of Cop-1 immunization on improvement of cognition in adult rats. For this purpose, we performed four experiments. We evaluated the effect of Cop-1 immunization on learning/memory using the Morris water maze for spatial memory and autoshaping for associative memory in 3- or 6-month-old rats. BDNF concentrations at the hippocampus were determined by ELISA. Cop-1 immunization induced a significant improvement of spatial memory and associative memory in 6-month-old rats. Likewise, Cop-1 improved spatial memory and associative memory when animals were immunized at 3 months and evaluated at 6 months old. Additionally, Cop-1 induced a significant increase in BDNF levels at the hippocampus. To our knowledge, the present investigation reports the first instance of Cop-1 treatment enhancing cognitive function in normal young adult rats, suggesting that Cop-1 may be a practical therapeutic strategy potentially useful for age- or disease-related cognitive impairment. PMID:29494605

  6. Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1.

    Science.gov (United States)

    Planche, Vincent; Koubiyr, Ismail; Romero, José E; Manjon, José V; Coupé, Pierrick; Deloire, Mathilde; Dousset, Vincent; Brochet, Bruno; Ruet, Aurélie; Tourdias, Thomas

    2018-04-01

    Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R 2  = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ß = 0.87, p < .05). The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance. © 2018 Wiley Periodicals, Inc.

  7. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Wang-shu Xu

    2016-01-01

    Full Text Available Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  8. Effects of rapamycin treatment after controlled cortical impact injury on neurogenesis and synaptic reorganization in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Corwin R Butler

    2015-11-01

    Full Text Available Post-traumatic epilepsy (PTE is one consequence of traumatic brain injury (TBI. A prominent cell signaling pathway activated in animal models of both TBI and epilepsy is the mammalian target of rapamycin (mTOR. Inhibition of mTOR with rapamycin has shown promise as a potential modulator of epileptogenesis in several animal models of epilepsy, but cellular mechanisms linking mTOR expression and epileptogenesis are unclear. In this study, the role of mTOR in modifying functional hippocampal circuit reorganization after focal TBI induced by controlled cortical impact was investigated. Rapamycin (3 or 10 mg/kg, an inhibitor of mTOR signaling, was administered by intraperitoneal injection beginning on the day of injury and continued daily until tissue collection. Relative to controls, rapamycin treatment reduced dentate granule cell area in the hemisphere ipsilateral to the injury two weeks post-injury. Brain injury resulted in a significant increase in doublecortin immunolabeling in the dentate gyrus ipsilateral to the injury, indicating increased neurogenesis shortly after TBI. Rapamycin treatment prevented the increase in doublecortin labeling, with no overall effect on Fluoro-Jade B staining in the ipsilateral hemisphere, suggesting that rapamycin treatment reduced posttraumatic neurogenesis but did not prevent cell loss after injury. At later times post-injury (8-13 weeks, evidence of mossy fiber sprouting and increased recurrent excitation of dentate granule cells was detected, which were attenuated by rapamycin treatment. Rapamycin treatment also diminished seizure prevalence relative to vehicle-treated controls after TBI. Collectively, these results support a role for adult neurogenesis in PTE development and suggest that suppression of epileptogenesis by mTOR inhibition includes effects on post-injury neurogenesis.

  9. A modified occlusal wafer for managing partially dentate orthognathic patients--a case series.

    Science.gov (United States)

    Soneji, Bhavin Kiritkumar; Esmail, Zaid; Sharma, Pratik

    2015-03-01

    A multidisciplinary approach is essential in orthognathic surgery to achieve stable and successful outcomes. The model surgery planning is an important aspect in achieving the desired aims. An occlusal wafer used at the time of surgery aids the surgeon during correct placement of the jaws. When dealing with partially dentate patients, the design of the occlusal wafer requires modification to appropriately position the jaw. Two cases with partially dentate jaws are presented in which the occlusal wafer has been modified to provide stability at the time of surgery.

  10. Development of the adult neurogenic niche in the hippocampus of mice

    Directory of Open Access Journals (Sweden)

    Zeina eNicola

    2015-05-01

    Full Text Available When does adult hippocampal neurogenesis begin? We describe the development of the neurogenic niche in the subgranular zone (SGZ of the hippocampal dentate gyrus. We did so from the perspective of the situation in the adult.Ontogeny of the dentate gyrus is complex and results in an ectopic neurogenic niche that lifelong generates new granule cells. Neurogenesis during the fetal and early postnatal periods builds the dentate gyrus and gives way to activity-dependent adult neurogenesis. We used markers most relevant to adult neurogenesis research to describe this transition: Nestin, Sox2, BLBP, GFAP, Tbr2, Doublecortin (DCX, NeuroD1 and Prox1. We found that massive changes and a local condensation of proliferating precursor cells occurs between postnatal day 7 (P7, near the peak in proliferation, and P14. Before and around P7, the spatial distribution of cells and the co-localization of markers were distinct from the situation in the adult. Unlike the adult SGZ, the marker pair Nestin/Sox2 and the radial glial marker BLBP were not overlapping during embryonic development, presumably indicating different types of radial glia-like cells. Before P7 GFAP-positive cells in the hilus lacked the radial orientation that is characteristic of the adult type-1 cells. DCX, which is concentrated in type-2b and type-3 progenitor cells and early postmitotic neurons in the adult, showed diffuse expression before P7. Intermediate progenitor cell marker Tbr2 became restricted to the SGZ but was found in the granule cell layer and hilus before. Lineage markers NeuroD1 and Prox1 confirmed this pattern.We conclude that the neurogenic niche of adult neurogenesis is in place well before true adulthood. This might indicate that consistent with the hypothesized function of adult neurogenesis in activity-dependent plasticity, the early transition from postnatal neurogenesis to adult neurogenesis coincides with the time, when the young mice start to become active themselves.

  11. Tooth movement characteristics in relation to root resorption in young and adult rats.

    NARCIS (Netherlands)

    Ren, Y.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2007-01-01

    The aim of this study was to investigate tooth movement characteristics in relation to root resorption in young and adult rats. Two groups of 30 rats each (aged 6 wk and 9-12 months, respectively) were used. Standardized orthodontic appliances were placed to move the maxillary molars mesially.

  12. Tooth movement characteristics in relation to root resorption in young and adult rats

    NARCIS (Netherlands)

    Ren, Yijin; Maltha, Jaap C.; Kuijpers-Jagtman, Anne Marie

    2007-01-01

    The aim of this study was to investigate tooth movement characteristics in relation to root resorption in young and adult rats. Two groups of 30 rats each (aged 6 wk and 9-12 months, respectively) were used. Standardized orthodontic appliances were placed to move the maxillary molars mesially.

  13. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring.

    Science.gov (United States)

    Khalil, Omari S; Pisar, Mazura; Forrest, Caroline M; Vincenten, Maria C J; Darlington, L Gail; Stone, Trevor W

    2014-05-01

    Glutamate receptors for N-methyl-d-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of tryptophan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that prenatal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of developmental proteins in the offspring at postnatal day 60. Golgi-Cox silver staining revealed decreased overall numbers and lengths of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic complexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-01-01

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  15. Treadmill exercise ameliorates social isolation-induced depression through neuronal generation in rat pups.

    Science.gov (United States)

    Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young

    2017-12-01

    Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.

  16. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    Science.gov (United States)

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  17. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice.

    Science.gov (United States)

    Xu, Min; Han, Xiaoning; Liu, Rui; Li, Yanjun; Qi, Cui; Yang, Zhongzhou; Zhao, Chunjie; Gao, Jun

    2018-02-06

    3-Phosphoinositide-dependent protein kinase-1 (PDK1) is crucial for the development of the dentate gyrus (DG), the first gateway receiving afferent inputs from the entorhinal cortex. However, the role of PDK1 in DG development is unclear. In the present study, by crossing Pdk1fl/fl mice with the Emx1-cre line, we identified that the ablation of PDK1 disrupted the development of DG via decreasing the proliferation, and increasing the differentiation of dentate neural progenitor cells, downregulating AKT activity and upregulating GSK3β signaling. Moreover, PDK1 deletion disrupted the distribution of Reelin+ cells and decreased the level of Reelin mRNA which may contribute to the defective migration of progenitor cells and the disrupted radial glial scaffolds. Furthermore, the inhibition of GSK3β activity partially restored the decreased proliferation of primary neural stem cells in vitro. Taken together, our data indicated that the ablation of PDK1 affected the proliferation and differentiation of dentate neural progenitor cells in mice. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  19. Can prenatal low-dose irradiation affect behavior of adult rats?

    International Nuclear Information System (INIS)

    Smajda, B.; Tomasova, L.; Kokocova, N.

    2011-01-01

    The aim of our study was to determine whether exposure of very low dose gamma-rays during the critical phase of brain development affects some selected behavioral parameters in adult rats. Pregnant female Wistar rats were irradiated with 1 Gy gamma-rays from a cobalt source at 17 th day of pregnancy. The progeniture of irradiated as well as non-irradiated females have undergone behavioral tests at the age of 3 months. Irradiated animals exhibited lower locomotor and exploratory activity in the open field test. (authors)

  20. Sociality and the telencephalic distribution of corticotrophin-releasing factor, urocortin 3, and binding sites for CRF type 1 and type 2 receptors: A comparative study of eusocial naked mole-rats and solitary Cape mole-rats.

    Science.gov (United States)

    Coen, Clive W; Kalamatianos, Theodosis; Oosthuizen, Maria K; Poorun, Ravi; Faulkes, Christopher G; Bennett, Nigel C

    2015-11-01

    Various aspects of social behavior are influenced by the highly conserved corticotrophin-releasing factor (CRF) family of peptides and receptors in the mammalian telencephalon. This study has mapped and compared the telencephalic distribution of the CRF receptors, CRF1 and CRF2 , and two of their ligands, CRF and urocortin 3, respectively, in African mole-rat species with diametrically opposed social behavior. Naked mole-rats live in large eusocial colonies that are characterized by exceptional levels of social cohesion, tolerance, and cooperation in burrowing, foraging, defense, and alloparental care for the offspring of the single reproductive female. Cape mole-rats are solitary; they tolerate conspecifics only fleetingly during the breeding season. The telencephalic sites at which the level of CRF1 binding in naked mole-rats exceeds that in Cape mole-rats include the basolateral amygdaloid nucleus, hippocampal CA3 subfield, and dentate gyrus; in contrast, the level is greater in Cape mole-rats in the shell of the nucleus accumbens and medial habenular nucleus. For CRF2 binding, the sites with a greater level in naked mole-rats include the basolateral amygdaloid nucleus and dentate gyrus, but the septohippocampal nucleus, lateral septal nuclei, amygdalostriatal transition area, bed nucleus of the stria terminalis, and medial habenular nucleus display a greater level in Cape mole-rats. The results are discussed with reference to neuroanatomical and behavioral studies of various species, including monogamous and promiscuous voles. By analogy with findings in those species, we speculate that the abundance of CRF1 binding in the nucleus accumbens of Cape mole-rats reflects their lack of affiliative behavior. © 2015 Wiley Periodicals, Inc.

  1. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity.

    Science.gov (United States)

    van de Heijning, Bert J M; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M

    2015-07-08

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%-75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  2. Estradiol does not influence strategy choice but place strategy choice is associated with increased cell proliferation in the hippocampus of female rats.

    Science.gov (United States)

    Rummel, Julia; Epp, Jonathan R; Galea, Liisa A M

    2010-09-01

    Adult neurogenesis occurs in the hippocampus of most mammals. While the function of adult hippocampal neurogenesis is not known, there is a relationship between neurogenesis and hippocampus-dependent learning and memory. Ovarian hormones can influence learning and memory and strategy choice. In competitive memory tasks, higher levels of estradiol shift female rats towards the use of the place strategy. Previous studies using a cue-competition paradigm find that 36% of male rats will use a hippocampus-dependent place strategy and place strategy users had lower levels of cell proliferation in the hippocampus. Here, we used the same paradigm to test whether endogenous or exogenous ovarian hormones influence strategy choice in the cue-competition paradigm and whether cell proliferation was related to strategy choice. We tested ovariectomized estradiol-treated (10 microg of estradiol benzoate) or sham-operated female rats on alternating blocks of hippocampus-dependent and hippocampus-independent versions of the Morris water task. Rats were then given a probe session with the platform visible and in a novel location. Preferred strategy was classified as place strategy (hippocampus-dependent) if they swam to the old platform location or cue strategy (hippocampus-independent) if they swam to the visible platform. All groups showed a preference for the cue strategy. However, proestrous rats were more likely to be place strategy users than rats not in proestrus. Female place strategy users had increased cell proliferation in the dentate gyrus compared to cue strategy users. Our study suggests that 78% of female rats chose the cue strategy instead of the place strategy. In summary the present results suggest that estradiol does not shift strategy use in this paradigm and that cell proliferation is related to strategy use with greater cell proliferation seen in place strategy users in female rats. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Blockade of NMDA receptor subtype NR2B prevents seizures but not apoptosis of dentate gyrus neurons in bacterial meningitis in infant rats

    Directory of Open Access Journals (Sweden)

    Täuber Martin G

    2003-09-01

    Full Text Available Abstract Background Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S-alpha-(4-hydroxyphenyl-beta-methyl-4-(phenylmethyl-1-piperid inepropanol (RO 25-6981. Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28 or 3.75 mg (150 mg/kg; n = 15 every 3 h or an equal volume of sterile saline (250 μl; n = 40 starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. Results Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P Conclusions Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.

  4. Competition among oxidizable substrates in brains of young and adult rats. Dissociated cells.

    OpenAIRE

    Roeder, L M; Tildon, J T; Holman, D C

    1984-01-01

    The rates of conversion of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine into 14CO2 were measured in the presence and absence of alternative oxidizable substrates in intact dissociated cells from the brains of young and adult rats. When unlabelled glutamine was added to [6-14C]glucose or unlabelled glucose was added to [U-14C]glutamine, the rate of 14CO2 production was decreased in both young and adult rats. The rate of oxidation of 3-hydroxy[3-14C]b...

  5. Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis.

    Science.gov (United States)

    Planche, Vincent; Panatier, Aude; Hiba, Bassem; Ducourneau, Eva-Gunnel; Raffard, Gerard; Dubourdieu, Nadège; Maitre, Marlène; Lesté-Lasserre, Thierry; Brochet, Bruno; Dousset, Vincent; Desmedt, Aline; Oliet, Stéphane H; Tourdias, Thomas

    2017-02-01

    Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Vagus nerve stimulation ameliorated deficits in one-way active avoidance learning and stimulated hippocampal neurogenesis in bulbectomized rats.

    Science.gov (United States)

    Gebhardt, Nils; Bär, Karl-Jürgen; Boettger, Michael K; Grecksch, Gisela; Keilhoff, Gerburg; Reichart, Rupert; Becker, Axel

    2013-01-01

    Vagus nerve stimulation (VNS) has been introduced as a therapeutic option for treatment-resistant depression. The neural and chemical mechanisms responsible for the effects of VNS are largely unclear. Bilateral removal of the olfactory bulbs (OBX) is a validated animal model in depression research. We studied the effects of vagus nerve stimulation (VNS) on disturbed one-way active avoidance learning and neurogenesis in the hippocampal dentate gyrus of rats. After a stimulation period of 3 weeks, OBX rats acquired the learning task as controls. In addition, the OBX-related decrease of neuronal differentiated BrdU positive cells in the dentate gyrus was prevented by VNS. This suggests that chronic VNS and changes in hippocampal neurogenesis induced by VNS may also account for the amelioration of behavioral deficits in OBX rats. To the best of our knowledge, this is the first report on the restorative effects of VNS on behavioral function in an animal model of depression that can be compared with the effects of antidepressants. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Long-term effects of 239Pu injection in adult, weanling, newborn and fetal rats

    International Nuclear Information System (INIS)

    Sikov, M.R.; Mahlum, D.D.; Hess, J.O.; Carr, D.B.

    1979-01-01

    We have completed biological evaluations comparing long-term effects in rats exposed to 239 Pu citrate as adults, weanlings, newborns, or late fetuses, and statistical analyses have been initiated. In rats exposed postnatally, statistically significant alterations in terminal body weight and in weights of several organs were found at higher doses. Survivorship decreased with increasing dose in the postnatal groups, but not in rats exposed prenatally

  8. Substance P differentially modulates firing rate of solitary complex (SC neurons from control and chronic hypoxia-adapted adult rats.

    Directory of Open Access Journals (Sweden)

    Nicole L Nichols

    Full Text Available NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS. Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus neurons from control and chronic hypoxia-adapted (CHx adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.

  9. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.

    Science.gov (United States)

    Isokawa, M

    1996-05-01

    1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to

  10. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  11. Differential effects of magnetic field exposure from domestic power supply on loco motor and exploratory behavior of an adult rat

    International Nuclear Information System (INIS)

    Anandavadivel, A.; Caleo, M.

    2011-01-01

    In the present study, we have examined the low intense magnetic field exposed on adult rats to understand effect of several behavioral parameters. The rats are tested in the open field and spontaneous alternation task after either a single or chronic exposure to the magnetic field. We found that magnetic field exposure had no effect on locomotor behavior in the adult. However, the exploratory behavior of adult rats in the open field was significantly affected. Indeed, we found a consistent increase in behavior performance viz. exploration time and number of exploration events in rats exposed to magnetic field. Our results demonstrate behavioral changes after magnetic field exposure in adult subjects. This also suggests possible deleterious effects of magnetic field exposure in the brain. (author)

  12. DEVELOPMENTAL LEAD (PB) EXPOSURE REDUCES THE ABILITY OF THE NNDA ANTAGONIST MK801 TO SUPPRESS LONG-TERM POTENTIATION (LTP) IN THE RAT DENTATE GYRUS, IN VIVO

    Science.gov (United States)

    Chronic developmental lead (Pb) exposure increases the threshold and enhances decay of long-term potentiation (LTP) in the dentate gyrus of the hippocampal formation. MK-801 and other antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype impair induction of LT...

  13. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory.

    Science.gov (United States)

    Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie

    2016-10-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition

  14. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAAR) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells; whereas, there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAAR δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAAR δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAAR δ subunit-mediated tonic inhibition in

  15. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    Science.gov (United States)

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  16. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury.

    OpenAIRE

    Sanes, J N; Suner, S; Lando, J F; Donoghue, J P

    1988-01-01

    The potential for peripheral nerve injury to reorganize motor cortical representations was investigated in adult rats. Maps reflecting functional connections between the motor cortex and somatic musculature were generated with intracortical electrical stimulation techniques. Comparison of cortical somatotopic maps obtained in normal rats with maps generated from rats with a facial nerve lesion indicated that the forelimb and eye/eyelid representations expanded into the normal vibrissa area. R...

  17. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction.

    Science.gov (United States)

    Thornton, S N; Padzys, G S; Trabalon, M

    2014-05-01

    The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J.; Caboclo, L; Sisodiya, S M.

    2009-01-01

    Background: Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Methods: Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21–96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Results: Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Conclusion: Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon. GLOSSARY AED = antiepileptic drug; CA1p = CA1-predominant hippocampal sclerosis; CHS = classical hippocampal sclerosis; EFG = end folium gliosis; EFS = end folium sclerosis; GCD = granule cell dispersion; GCL = granule cell layer; HS = hippocampal sclerosis; MFS = mossy fiber sprouting; MTLE = mesial temporal lobe epilepsy; NPY = neuropeptide Y; ROI = region of interest; SE = status epilepticus; TLE = temporal lobe epilepsy. PMID:19710404

  19. In vivo and in vitro dermal penetration of 2,4,5,2',4', 5'-hexachlorobiphenyl in young and adult rats

    International Nuclear Information System (INIS)

    Shah, P.V.; Sumler, M.R.; Fisher, H.L.; Hall, L.L.

    1989-01-01

    Penetration of 2,4,5,2',4',5'-[ 14 C]hexachlorobiphenyl (HCB) through skin of young (33 days) and adult (82 days) female Fischer 344 rats was determined in vivo and by two in vitro methods. In vivo dermal penetration at 120 hr was 45% in young and 43% in adults. At 72 hr in vivo dermal penetration was 35% in young and 26% in adults compared to 1.5% for young and 1.0% for adult as measured with a continuous flow in vitro system and 2.9% for young and 1.9% for adults as measured with a static in vitro system. Most of the dermally absorbed HCB remained in the body as only 4.9 and 2.6% of that absorbed was excreted by young and adult rats, respectively, at the end of 120 hr. Significant differences in dermal penetration and kinetics of HCB between young and adult female rats were observed. The elimination of ECB-derived material was approximately six times higher in feces than in urine. A physiological pharmacokinetic model was fitted to the organ and tissue radioactivity distribution data. Parameters in the model determined from dermal dosing of female Fischer 344 rats were in reasonable agreement with those reported in the literature for adult male Sprague-Dawley rats (iv dose). The rate constant for dermal penetration was 0.83 x 10 -4 min -1 for adults and 0.96 x 10 -4 min -1 for young. The delay or lag time parameter for dermal penetration was 4.4 hr in adults and 1.1 hr in young

  20. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    Science.gov (United States)

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  1. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  2. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats

    Directory of Open Access Journals (Sweden)

    T.C. Peixoto

    2018-04-01

    Full Text Available Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  3. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    Science.gov (United States)

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  4. Behavioral cross-sensitization between testosterone and fenproporex in adolescent and adult rats.

    Science.gov (United States)

    Conceição, C Q; Engi, S A; Cruz, F C; Planeta, C S

    2017-11-17

    The abuse of psychoactive drugs is considered a global health problem. During the last years, a relevant number of studies have investigated the relationship between anabolic-androgenic steroids (AAS) and other psychoactive drugs. AAS, such as testosterone, can cause a dependence syndrome that shares many features with the classical dependence to psychoactive substances. Pre-clinical evidence shows that there are interactions between testosterone and psychoactive drugs, such as cocaine. However, few studies have been performed to investigate the effect of repeated testosterone treatment on behavioral effects of amphetamine derivatives, such as fenproporex. The purpose of the present study was to investigate the effects of repeated testosterone administration on fenproporex-induced locomotor activity in adolescent and adult rats. Adolescent male Wistar rats were injected with testosterone (10 mg/kg sc for 10 days). After 3 days, animals received an acute injection of fenproporex (3.0 mg/kg ip) and the locomotor activity was recorded during 40 min. Thirty days later, the same animals received the same treatment with testosterone followed by a fenproporex challenge injection as described above. Our results demonstrated that repeated testosterone induced behavioral sensitization to fenproporex in adolescent but not in adult rats. These findings suggest that repeated AAS treatment might increase the dependence vulnerability to amphetamine and its derivatives in adolescent rats.

  5. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2018-04-01

    Full Text Available The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old and adult (90 days old rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective

  6. Protracted postnatal neurogenesis and radiosensitivity in the rabbit's dentate gyrus

    International Nuclear Information System (INIS)

    Gueneau, G.; Baille, V.; Dubos, M.; Court, L.

    1986-01-01

    In the hippocampal formation of a 3-month-old rabbit submitted to a 4.5 Gy gamma irradiation a cytologic study with light and electron microscopy allowed us to make clear the dentate gyrus particular radiosensitivity as soon as the first hours after irradiation. The pycnosis lesion observed in the subgranular zone has drawn our attention in particular. We apply ourselves to describe and precise the lesion and its evolution; thanks to an autoradiographic study, we have shown its link with late postnatal neurogenesis which goes on in this zone and at last we have used the subgranular cells 'radiosensitivity as a biological test allowing to compare the various rays' effects (gamma and neutron rays). In the brain of a one-month-old monkey submitted to a 4 Gy total irradiation the same pycnotic lesion is observed: 1) in the dentate gyrus's subgranular zone and 2) in the cerebellum's outer granular layer. These two postnatal proliferative zones remain particularly sensitive to ionizing radiations. (orig.)

  7. Regulation of activity-regulated cytoskeleton protein (Arc) mRNA after acute and chronic electroconvulsive stimulation in the rat

    DEFF Research Database (Denmark)

    Larsen, M H; Olesen, M; Woldbye, D P D

    2005-01-01

    The temporal profile of Arc gene expression after acute and chronic electroconvulsive stimulations (ECS) was studied using semi-quantitative in situ hybridisation in the rat cortex. A single ECS strongly and temporarily increased Arc mRNA levels in dentate granular cells with maximal induction seen...

  8. Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals.

    Science.gov (United States)

    Peterson, Bethany L; Park, Thomas J; Larson, John

    2012-01-11

    Adult naked mole-rats show a number of systemic adaptations to a crowded underground habitat that is low in oxygen and high in carbon dioxide. Remarkably, brain slice tissue from adult naked mole-rats also is extremely tolerant to oxygen deprivation as indicated by maintenance of synaptic transmission under hypoxic conditions as well as by a delayed neuronal depolarization during anoxia. These characteristics resemble hypoxia tolerance in brain slices from neonates in a variety of mammal species. An important component of neonatal tolerance to hypoxia involves the subunit composition of NMDA receptors. Neonates have a high proportion of NMDA receptors with GluN2D subunits which are protective because they retard calcium entry into neurons during hypoxic episodes. Therefore, we hypothesized that adult naked mole-rats retain a protective, neonatal-like, NMDA receptor subunit profile. We used immunoblotting to assess age-related changes in NMDA receptor subunits in naked mole-rats and mice. The results show that adult naked mole-rat brain retains a much greater proportion of the hypoxia-protective GluN2D subunit compared to adult mice. However, age-related changes in other subunits (GluN2A and GluN2B) from the neonatal period to adulthood were comparable in mice and naked mole-rats. Hence, adult naked mole-rat brain only retains the neonatal NMDA receptor subunit that is associated with hypoxia tolerance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Specific radiosensitivy and postnatal neurogenesis of the dentate gyrus of rabbits

    International Nuclear Information System (INIS)

    Gueneau, Gerard.

    1982-09-01

    Adult and young rabbits were delivered a gamma exposure of 4.5 Gy. A light and electron microscope cytological investigation of the hippocampal region in the early hours following the exposure showed the particular radiosensitivity of the dentate gyrus which was demonstrated by: 1) pycnotic cells to be found at the basis of the granular cell layer (subgranular zone) exclusively; 2) a more discrete injury of the granular layer where most nuclei showed a lighter chromatin appearing as ''light spots''. Both radioinduced injuries are described, especially their kinetics, importance, and the effects of dose and age of the animal. The presence of pycnotic cells in the subgranular zone was related to the late postnatal neurogenesis occurring in this zone. The pattern and chronology of this late postnatal neurogenesis was investigated by autoradiography following 3 H thymidine injection. Finally, two series of investigations combining autoradiography and irradiation brought further data on the radiosensitivity and radioresistance of the dental gyrus cells and demonstrated the recovery capacity of the subgranular zone [fr

  10. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    Science.gov (United States)

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  11. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo.

    Directory of Open Access Journals (Sweden)

    Jeremy T T Kennard

    Full Text Available The persistence and input specificity of long-term potentiation (LTP make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h.

  12. New neurons in the adult brain : The role of sleep and consequences of sleep loss

    NARCIS (Netherlands)

    Meerlo, Peter; Mistiberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis; Mistlberger, Ralph E.

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a

  13. Reorganization of auditory map and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    Directory of Open Access Journals (Sweden)

    Weimin eZheng

    2012-09-01

    Full Text Available Behavioral adaption to a changing environment is critical for an animal’s survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment.

  14. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis: a postmortem study.

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J; Caboclo, L; Sisodiya, S M

    2009-09-29

    Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21-96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon.

  15. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-01-01

    In this study, the effects of pentavalent dimethylarsinic acid ((CH 3 ) 2 AsO(OH); DMA V ) and trivalent dimethylarsinous acid ((CH 3 ) 2 As(OH); DMA III ) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 μmol/l. DMA V had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA III significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 μmol/l DMA III in adult and 10 μmol/l DMA III in young rats. Moreover, DMA III significantly affected the LTP-induction. Application of 10 μmol/l DMA III resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA III . In slices of young rats, the depressant effects of DMA III were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA V on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential

  16. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression.

    Science.gov (United States)

    Récamier-Carballo, Soledad; Estrada-Camarena, Erika; Reyes, Rebeca; Fernández-Guasti, Alonso

    2012-08-01

    The antidepressant effect of estrogens combined with antidepressants is controversial: some preclinical data showed that estrogens facilitate the effect of antidepressants in the forced swimming test (FST) in young adult rats, while others failed to find such effect in middle-aged rats in the chronic mild stress (CMS) model. In clinics similar differences were reported and may be due to the compounds, the depression model or type of depression, the experimental design, and the age of the subjects or the women's menopause stage. The objective of this study was to analyze the antidepressant-like effect of the combination of 17β-estradiol (E(2)) and fluoxetine (FLX) in young adults (2-4 months) and middle-aged (12-14 months) ovariectomized (OVX) rats in two experimental models: FST and CMS. E(2) (5 and 10 μg/rat) and FLX (2.5 and 10 mg/kg) per se dose-dependently reduced immobility in both age groups and, in young adults both compounds increased swimming, whereas in middle-aged rats they increased swimming and climbing. Analysis of the antidepressant-like effect of the combination of suboptimal doses of FLX (1.25 mg/kg) and E(2) (2.5 μg/rat) showed a decrease in immobility and an increase in swimming in both age groups. In the CMS, chronic E(2) (2.5 μg/rat) with FLX (1.25 mg/kg) augmented relative sucrose intake, but middle-aged rats responded 2 weeks earlier than young adults. These results show that the antidepressant-like effect of the combination of E(2) and FLX in young adult and middle-aged female rats is evidenced in the two animal models of depression: FST and CMS. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The expression of NFATc1 in adult rat skeletal muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  18. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Rearing rats in isolation after weaning is an environmental manipulation that leads to behavioural and neurochemical alterations that resemble what is seen in schizophrenia. The model is neurodevelopmental in origin and has been used as an animal model of schizophrenia. However, only a few studies...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  19. Dobutamine stress echocardiography in healthy adult male rats

    Directory of Open Access Journals (Sweden)

    Couet Jacques

    2005-10-01

    Full Text Available Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe. Results Dobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate. Conclusion DSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.

  20. Dental Care Utilization among North Carolina Rural Older Adults

    Science.gov (United States)

    Arcury, Thomas A.; Savoca, Margaret R.; Anderson, Andrea M.; Chen, Haiying; Gilbert, Gregg H.; Bell, Ronny A.; Leng, Xiaoyan; Reynolds, Teresa; Quandt, Sara A.

    2012-01-01

    Objectives This analysis delineates the predisposing, need, and enabling factors that are significantly associated with regular and recent dental care in a multi-ethnic sample of rural older adults. Methods A cross-sectional comprehensive oral health survey conducted with a random, multi-ethnic (African American, American Indian, white) sample of 635 community-dwelling adults aged 60 years and older was completed in two rural southern counties. Results Almost no edentulous rural older adults received dental care. Slightly more than one-quarter (27.1%) of dentate rural older adults received regular dental care and slightly more than one-third (36.7%) received recent dental care. Predisposing (education) and enabling (regular place for dental care) factors associated with receiving regular and recent dental care among dentate participants point to greater resources being the driving force in receiving dental care. Contrary to expectations of the Behavioral Model of Health Services, those with the least need (e.g., better self-rated oral health) received regular dental care; this has been referred to as the Paradox of Dental Need. Conclusions Regular and recent dental care are infrequent among rural older adults. Those not receiving dental care are those who most need care. Community access to dental care and the ability of older adults to pay for dental care must be addressed by public health policy to improve the health and quality of life of older adults in rural communities. PMID:22536828

  1. Use of the light/dark test for anxiety in adult and adolescent male rats.

    Science.gov (United States)

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  3. Abstinence environment contributes to age differences in reinstatement of cocaine seeking between adolescent and adult male rats.

    Science.gov (United States)

    Li, Chen; Frantz, Kyle J

    2017-07-01

    Extinction responding and cue-induced reinstatement of cocaine seeking after 60-days of forced abstinence are attenuated in male rats that self-administered cocaine during adolescence, compared with adults. Given that environmental enrichment during abstinence decreases reinstatement among adults, a possible explanation for attenuated reinstatement among adolescents is that standard pair-housing in prior studies creates a more stimulating environment for younger rats. Therefore, we tested whether standard pair-housing is necessary for the attenuated reinstatement among adolescents by determining whether an impoverished environment during abstinence would increase reinstatement among adolescents, up to adult levels. Conversely, we also tested whether environmental enrichment could further decrease reinstatement among adolescents, and whether we could replicate effects of environmental enrichment to decrease reinstatement among adults down to adolescent levels (positive controls). Adolescent and adult male Wistar rats self-administered cocaine intravenously for 12days (fixed ratio 1; 0.36mg/kg per infusion; 2h sessions). Rats were then moved into enriched (grouped, large cages, novel toys), standard (pair-housed, shoebox cages), or impoverished (isolated, hanging cages) housing conditions. After 60days, extinction and cue-induced reinstatement of cocaine seeking were tested, followed by drug-primed reinstatement (0, 5, 10mg/kg cocaine, i.p.). Consistent with previous results, extinction and cue-induced reinstatement were attenuated in adolescent-onset groups compared with adults; this age difference also extended to drug-primed reinstatement. In support of the present hypothesis, an impoverished environment during abstinence increased reinstatement among adolescents to levels that were not different from adult standard-housing levels. These data suggest that abstinence environment influences the enduring effects of cocaine among adolescents as well as adults

  4. Extended Interneuronal Network of the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Gergely G. Szabo

    2017-08-01

    Full Text Available Local interneurons control principal cells within individual brain areas, but anecdotal observations indicate that interneuronal axons sometimes extend beyond strict anatomical boundaries. Here, we use the case of the dentate gyrus (DG to show that boundary-crossing interneurons with cell bodies in CA3 and CA1 constitute a numerically significant and diverse population that relays patterns of activity generated within the CA regions back to granule cells. These results reveal the existence of a sophisticated retrograde GABAergic circuit that fundamentally extends the canonical interneuronal network.

  5. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-01-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Muβhoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Muβhoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Muβhoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA V ) and monomethylarsonous acid (MMA III ) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA V had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA III strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 μmol/l (adult rats) and 25 μmol/l (young rats) and LTP amplitudes at concentrations of 25 μmol/l (adult rats) and 10 μmol/l (young rats), respectively. In contrast, application of 1 μmol/l MMA III led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krueger, K., Gruner, J

  6. HISTOLOGICAL STUDIES OF THE EFFECTS OF RED PEPPER ON THE STOMACH OF ADULT WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Josiah O. Adjene

    2007-01-01

    Full Text Available Histological effects of red pepper commonly used as spice in food on the stomach of adult wistar rats were carefully investigated. The rats of both sexes (n=24, average weight of 200g were randomly assigned into two treatments (n=16 and control (n=6 groups. The rats in the treatments groups received 1g and 2g of red pepper thoroughly mixed with 20g of their feeds for 7 and 14 days, while the control rats received equal amounts of feeds without the red pepper added. The rats were fed with grower's mash purchased from Edo feeds and flour mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day eight and fifteen of the experiment respectively.The stomach was carefully dissected out and quickly fixed in 10% formol saline for routine histological procedure after H & E method.The histological findings after H&E methods indicated that the treated sections of the stomach showed some level of cellular hypertrophy, congestion of blood vessels degenerative changes disruption and distortion of the cytoarchitecture of the stomach.These findings indicate that red pepper may have some deleterious effects on the microanatomy of the stomach of adult wistar rat at higher doses. It is recommended that further studies aimed at corroborating these findings be carried out.

  7. Behavioral cross-sensitization between testosterone and fenproporex in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    C.Q. Conceição

    2017-11-01

    Full Text Available The abuse of psychoactive drugs is considered a global health problem. During the last years, a relevant number of studies have investigated the relationship between anabolic-androgenic steroids (AAS and other psychoactive drugs. AAS, such as testosterone, can cause a dependence syndrome that shares many features with the classical dependence to psychoactive substances. Pre-clinical evidence shows that there are interactions between testosterone and psychoactive drugs, such as cocaine. However, few studies have been performed to investigate the effect of repeated testosterone treatment on behavioral effects of amphetamine derivatives, such as fenproporex. The purpose of the present study was to investigate the effects of repeated testosterone administration on fenproporex-induced locomotor activity in adolescent and adult rats. Adolescent male Wistar rats were injected with testosterone (10 mg/kg sc for 10 days. After 3 days, animals received an acute injection of fenproporex (3.0 mg/kg ip and the locomotor activity was recorded during 40 min. Thirty days later, the same animals received the same treatment with testosterone followed by a fenproporex challenge injection as described above. Our results demonstrated that repeated testosterone induced behavioral sensitization to fenproporex in adolescent but not in adult rats. These findings suggest that repeated AAS treatment might increase the dependence vulnerability to amphetamine and its derivatives in adolescent rats.

  8. Preconception paternal bisphenol A exposure induces sex-specific anxiety and depression behaviors in adult rats.

    Directory of Open Access Journals (Sweden)

    Ying Fan

    Full Text Available Bisphenol A (BPA, an environmental endocrine-disrupting compound, has drawn a great attention for its adverse effect on behavioral development. Maternal exposure to this compound has been reported to induce anxiety and depression in offspring, but the effect of its paternal exposure is rarely discussed. This study investigated whether preconception paternal BPA exposure can affect the emotions of male rats and their offspring. Eighteen adult male rats (F0 received either a vehicle or 50 μg/kg/day BPA diet for 21 weeks and were then mated with non-exposed females to produce offspring (F1. The affective behaviors of F0 and F1 rats were evaluated in the open-field test, the elevated-plus maze and the forced swimming test, and their serum corticosterone were then examined. BPA exposure induced increased anxiety behaviors along with increased serum corticosterone in F0 rats. This paternal exposure also led to increased anxiety behaviors in F1 females and aggravated depression behaviors in both sexes of F1 rats. Furthermore, only F1 females exhibited increased serum corticosterone. Overall, these data indicate that preconception paternal exposure to a low dose of BPA may induce transgenerational sex-specific impairments in the affection of adult rats.

  9. Complex plastic changes in the neuropeptide Y system during ethanol intoxication and withdrawal in the rat brain

    DEFF Research Database (Denmark)

    Olling, J D; Ulrichsen, J; Christensen, D Z

    2009-01-01

    and NPY-stimulated [(35)S]GTPgammaS functional binding. Rats received intragastric ethanol repeatedly for 4 days, and the NPY system was studied in the hippocampal dentate gyrus (DG), CA3, CA1, and piriform cortex (PirCx) and neocortex (NeoCx) during intoxication, peak withdrawal (16 hr), late withdrawal...

  10. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  11. Effects of amphetamine administration on neurogenesis in adult rats

    Directory of Open Access Journals (Sweden)

    Tomasz Stępień

    2017-12-01

    Full Text Available In our study expression of phospho-(Ser-10-histone H3 (pH3S10, a marker for the early stage of neurogenesis, and cellular early response genes were investigated using c-Fos protein as an example of a transcription factor in the neurogenic process in rats. Neurogenesis in the adult brain is regulated by endo- and exogenous factors, which influence the proliferation potential of progenitor cells and accelerate the dendritic development of newborn neurons. D-amphetamine, a psychoactive substance, is one of the exogenous factors able to influence the process of neurogenesis. The rats were injected with D-amphetamine at a dose of 1.5 mg/kg/body weight (b.w. under one administration scheme. Analysis of the pH3S10 and c-Fos expression levels in the group of D-amphetamine administered rats provided evidence of enhanced expression of these proteins in the regions of neurogenesis occurrence in rats. However, conclusions concerning stimulant effects of amphetamine on neurogenesis should be formulated with great caution, taking into account amphetamine dosage and the administration scheme. It should also be remembered that doses of psychoactive substances used in animal models can be lethal to humans.

  12. α-Lipoic Acid Mitigates Arsenic-Induced Hematological Abnormalities in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Sonali Ghosh

    2017-05-01

    Full Text Available Background: Arsenic toxicity is a major global health problem and exposure via contaminated drinking water has been associated with hematological and other systemic disorders. The present investigation has been conducted in adult male rats to evaluate the protective ability of α-lipoic acid (ALA against such hematological disorders. Methods: Twenty-four adult male Wister rats (b.wt.130±10g were grouped and accordingly group I (control received the normal diet, group II (treated was given arsenic orally for 28 consecutive days as arsenic trioxide (3 mg/kgbw/rat/day whereas group III (supplemented received the same dose of arsenic along with ALA (25 mg/kgbw/rat/day as oral supplement. Hematological profile, plasma oxidant/antioxidant status, and erythrocyte morphology were assessed. Statistical analysis was done by one-way ANOVA using SPSS software (version 16.0. Results: Arsenic exposure caused reduction of erythrocyte (P=0.021, leucocyte (P<0.001, and hemoglobin (P=0.031 associated with echinocytic transformation as evidenced by light and scanning electron microscopic studies. The other significantly altered parameters include increased mean corpuscular volume (P=0.041 and lymphocytopenia (P<0.001 with insignificant neutropenia and eosinophilia. Altered serum oxidative balance as evidenced by decreased TAS (P<0.001 and increased TOS (P<0.001 with OSI (P<0.001 was also noted. The dietary supplementation of ALA has a beneficial effect against the observed (P<0.05 arsenic toxicities. It brings about the protection by restoring the hematological redox and inflammatory status near normal in treated rats. Arsenic-induced morphological alteration of erythrocytes was also partially attenuated by ALA supplementation. Conclusion: It is concluded that arsenicosis is associated with hematological alterations and ALA co-supplementation can partially alleviate these changes in an experimental male rat model.

  13. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation

    OpenAIRE

    Chaloner, A.; Rao, A.; Al-Chaer, E.D.; Meerveld, B. Greenwood-Van

    2009-01-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liqui...

  14. The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: revisiting swim-induced LTP reinforcement.

    Science.gov (United States)

    Tabassum, Heena; Frey, Julietta U

    2013-12-01

    Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively. Copyright © 2013 Wiley Periodicals, Inc.

  15. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Hofmann, Gabrielle; Balgooyen, Laura; Mattis, Joanna; Deisseroth, Karl; Buckmaster, Paul S

    2016-06-01

    In patients with temporal lobe epilepsy, seizures usually start in the hippocampus, and dentate granule cells are hyperexcitable. Somatostatin interneurons are a major subpopulation of inhibitory neurons in the dentate gyrus, and many are lost in patients and animal models. However, surviving somatostatin interneurons sprout axon collaterals and form new synapses, so the net effect on granule cell inhibition remains unclear. The present study uses optogenetics to activate hilar somatostatin interneurons and measure the inhibitory effect on dentate gyrus perforant path-evoked local field potential responses in a mouse model of temporal lobe epilepsy. In controls, light activation of hilar somatostatin interneurons inhibited evoked responses up to 40%. Epileptic pilocarpine-treated mice exhibited loss of hilar somatostatin interneurons and less light-induced inhibition of evoked responses. These findings suggest that severe epilepsy-related loss of hilar somatostatin interneurons can overwhelm the surviving interneurons' capacity to compensate by sprouting axon collaterals. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  16. Nutritional status in edentulous people as compared to age matched dentate individuals-a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Sukhabogi Jagadeeswara Rao

    2013-01-01

    Full Text Available Objectives: To assess the nutritional status in completely edentulous subjects and to compare with age matched dentate individuals. Materials and Method: The study was carried out in 60 individuals divided into two groups. Group one consisted of 30 edentulous subjects and 30 dentate individuals formed the second group Body Mass Index (BMI, serum albumin and hemoglobin values were analyzed in both the groups. Independent sample t- test was employed to check for the difference between the groups and Pearson′s correlation was done to ascertain the association between the variables within the groups. Results: There was a significant difference in all the biomarkers evaluated in between the groups. The values were negatively correlated with the period of edentulism within the groups. Conclusion: Edentulous people had lower nutritional values than their dentate counterparts and maintaining a healthy and normal dentition may have significant bearing on the overall health of an individual. body mass index, serum albumin, malnutrition, edentulous, dental status

  17. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    Science.gov (United States)

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  18. Morphologic Integration of Hilar Ectopic Granule Cells into Dentate Gyrus Circuitry in the Pilocarpine Model of Temporal Lobe Epilepsy

    Science.gov (United States)

    Cameron, Michael C.; Zhan, Ren-Zhi; Nadler, J. Victor

    2014-01-01

    After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit. PMID:21455997

  19. Aberrant Epigenetic Gene Regulation in GABAergic Interneuron Subpopulations in the Hippocampal Dentate Gyrus of Mouse Offspring Following Developmental Exposure to Hexachlorophene.

    Science.gov (United States)

    Watanabe, Yousuke; Abe, Hajime; Nakajima, Kota; Ideta-Otsuka, Maky; Igarashi, Katsuhide; Woo, Gye-Hyeong; Yoshida, Toshinori; Shibutani, Makoto

    2018-05-01

    Maternal hexachlorophene (HCP) exposure causes transient disruption of hippocampal neurogenesis in mouse offspring. We examined epigenetically hypermethylated and downregulated genes related to this HCP-induced disrupted neurogenesis. Mated female mice were dietary exposed to 0 or 100 ppm HCP from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring was subjected to methyl-capture sequencing and real-time reverse transcription-polymerase chain reaction analyses on PND 21. Validation analyses on methylation identified three genes, Dlx4, Dmrt1, and Plcb4, showing promoter-region hypermethylation. Immunohistochemically, DLX4+, DMRT1+, and PLCB4+ cells in the dentate hilus co-expressed GAD67, a γ-aminobutyric acid (GABA)ergic neuron marker. HCP decreased all of three subpopulations as well as GAD67+ cells on PND 21. PLCB4+ cells also co-expressed the metabotropic glutamate receptor, GRM1. HCP also decreased transcript level of synaptic plasticity-related genes in the dentate gyrus and immunoreactive granule cells for synaptic plasticity-related ARC. On PND 77, all immunohistochemical cellular density changes were reversed, whereas the transcript expression of the synaptic plasticity-related genes fluctuated. Thus, HCP-exposed offspring transiently reduced the number of GABAergic interneurons. Among them, subpopulations expressing DLX4, DMRT1, or PLCB4 were transiently reduced in number through an epigenetic mechanism. Considering the role of the Dlx gene family in GABAergic interneuron migration and differentiation, the decreased number of DLX4+ cells may be responsible for reducing those GABAergic interneurons regulating neurogenesis. The effect on granule cell synaptic plasticity was sustained until the adult stage, and reduced GABAergic interneurons active in GRM1-PLCB4 signaling may be responsible for the suppression on weaning.

  20. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hellstrand, K.; Engel, J.

    1980-01-01

    The binding of 3 H-WB 4101, an α 1 -adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3 H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3 H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  1. The satiating hormone amylin enhances neurogenesis in the area postrema of adult rats

    Directory of Open Access Journals (Sweden)

    Claudia G. Liberini

    2016-10-01

    Full Text Available Objective: Adult neurogenesis in the subgranular zone and subventricular zone is generally accepted, but its existence in other brain areas is still controversial. Circumventricular organs, such as the area postrema (AP have recently been described as potential neurogenic niches in the adult brain. The AP is the major site of action of the satiating hormone amylin. Amylin has been shown to promote the formation of neuronal projections originating from the AP in neonatal rodents but the role of amylin in adult neurogenesis remains unknown. Methods: To test this, we first performed an RNA-sequencing of the AP of adult rats acutely injected with either amylin (20 μg/kg, amylin plus the amylin receptor antagonist AC187 (500 μg/kg or vehicle. Second, animals were subcutaneously equipped with minipumps releasing either amylin (50 μg/kg/day or vehicle for 3 weeks to assess cell proliferation and differentiation with the 5′-bromo-2-deoxyuridine (BrdU technique. Results: Acute amylin injections affected genes involved in pathways and processes that control adult neurogenesis. Amylin consistently upregulated NeuroD1 transcript and protein in the adult AP, and this effect was blocked by the co-administration of AC187. Further, chronic amylin treatment increased the number of newly proliferated AP-cells and significantly promoted their differentiation into neurons rather than astrocytes. Conclusion: Our findings revealed a novel role of the satiating hormone amylin in promoting neurogenesis in the AP of adult rats. Keywords: Amylin, Adult neurogenesis, Area postrema, BrdU, Circumventricular organs

  2. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    Science.gov (United States)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  3. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus.

    Science.gov (United States)

    Chen, Bai Hui; Park, Joon Ha; Lee, Tae-Kyeong; Song, Minah; Kim, Hyunjung; Lee, Jae Chul; Kim, Young-Myeong; Lee, Choong-Hyun; Hwang, In Koo; Kang, Il Jun; Yan, Bing Chun; Won, Moo-Ho; Ahn, Ji Hyeon

    2018-04-01

    Animal models of scopolamine-induced amnesia are widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases such as Alzheimer's disease (AD). Previous studies have identified that melatonin improves cognitive dysfunction in animal models. In this study, using a mouse model of scopolamine-induced amnesia, we assessed spatial and short-term memory functions for 4 weeks, investigated the expression of myelin-basic protein (MBP) in the dentate gyrus, and examined whether melatonin and scopolamine cotreatment could keep cognitive function and MBP expression. In addition, to study functions of melatonin for keeping cognitive function and MBP expression, we examined expressions of brain-derived neurotrophic factor (BDNF) and tropomycin receptor kinase B (TrkB) in the mouse dentate gyrus. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally treated for 2 and 4 weeks. Two and 4 weeks after scopolamine treatment, mice showed significant cognitive impairment; however, melatonin and scopolamine cotreatment recovered cognitive impairment. Two and 4 weeks of scopolamine treatment, the density of MBP immunoreactive myelinated nerve fibers was significantly decreased in the dentate gyrus; however, scopolamine and melatonin cotreatment significantly increased the scopolamine-induced reduction of MBP expression in the dentate gyrus. Furthermore, the cotreatment of scopolamine and melatonin significantly increased the scopolamine-induced decrease of BDNF and TrKB immunoreactivity in the dentate gyrus. Taken together, our results indicate that melatonin treatment exerts anti-amnesic effect and restores the scopolamine-induced reduction of MBP expression through increasing BDNF and TrkB expressions in the mouse dentate gyrus. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  5. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake.

    Science.gov (United States)

    Perry, Jennifer L; Anderson, Marissa M; Nelson, Sarah E; Carroll, Marilyn E

    2007-05-16

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats selectively bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given non-contingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin phenotype scores were determined by comparing 24-h saccharin and water consumption in two-bottle tests to verify HiS/LoS status. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin phenotype scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, compared with adulthood, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse.

  6. Immature Dentate Gyrus: An Endophenotype of Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Hideo Hagihara

    2013-01-01

    Full Text Available Adequate maturation of neurons and their integration into the hippocampal circuit is crucial for normal cognitive function and emotional behavior, and disruption of this process could cause disturbances in mental health. Previous reports have shown that mice heterozygous for a null mutation in α-CaMKII, which encodes a key synaptic plasticity molecule, display abnormal behaviors related to schizophrenia and other psychiatric disorders. In these mutants, almost all neurons in the dentate gyrus are arrested at a pseudoimmature state at the molecular and electrophysiological levels, a phenomenon defined as “immature dentate gyrus (iDG.” To date, the iDG phenotype and shared behavioral abnormalities (including working memory deficit and hyperlocomotor activity have been discovered in Schnurri-2 knockout, mutant SNAP-25 knock-in, and forebrain-specific calcineurin knockout mice. In addition, both chronic fluoxetine treatment and pilocarpine-induced seizures reverse the neuronal maturation, resulting in the iDG phenotype in wild-type mice. Importantly, an iDG-like phenomenon was observed in post-mortem analysis of brains from patients with schizophrenia/bipolar disorder. Based on these observations, we proposed that the iDG is a potential endophenotype shared by certain types of neuropsychiatric disorders. This review summarizes recent data describing this phenotype and discusses the data’s potential implication in elucidating the pathophysiology of neuropsychiatric disorders.

  7. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Mulvihill, M.A.; Nemeth, T.J.

    1989-01-01

    Localized exposure of the neonatal rat brain to X-rays produces neuronal hypoplasia specific to the granule cell layer of the hippocampal dentate gyrus. This brain damage causes locomotor hyperactivity, slowed acquisition of passive avoidance tasks and long bouts of spontaneous turning (without reversals) in a bowl apparatus. Here we report how these behavioral deficits change as a function of subject aging and behavioral test replications. Portions of the neonatal rat cerebral hemispheres were X-irradiated in order to selectively damage the granule cells of the dentate gyrus. The brains of experimental animals received a fractionated dose of X rays (13 Gy total) over postnatal days 1 to 16 and control animals were sham-irradiated. Rats between the ages of 71-462 days were tested 3 separate times on each of the following 3 behavioral tests: (1) spontaneous locomotion, (2) passive avoidance acquisition, and (3) spontaneous circling in a large plastic hemisphere. Rats with radiation-induced damage to the fascia dentata exhibited long bouts of slow turns without reversals. Once they began, irradiated subjects perseverated in turning to an extent significantly greater than sham-irradiated control subjects. This irradiation effect was significant during all test series. Moreover, in time, spontaneous perseverative turning was significantly potentiated in rats with hippocampal damage but increased only slightly in controls. Early radiation exposure produced locomotor hyperactivity in young rats. While activity levels of controls remained fairly stable throughout the course of the experiment, the hyperactivity of the irradiated animals decreased significantly as they matured

  8. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    Directory of Open Access Journals (Sweden)

    Boyd R Rorabaugh

    Full Text Available We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury.Adult male and female rats received daily injections of methamphetamine (5 mg/kg or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining.Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine.Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  9. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    Science.gov (United States)

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  10. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking.

    Science.gov (United States)

    Schramm-Sapyta, Nicole L; DiFeliceantonio, Alexandra G; Foscue, Ethan; Glowacz, Susan; Haseeb, Naadeyah; Wang, Nancy; Zhou, Cathy; Kuhn, Cynthia M

    2010-12-01

    Many people experiment with alcohol and other drugs of abuse during their teenage years. Epidemiological evidence suggests that younger initiates into drug taking are more likely to develop problematic drug seeking behavior, including binge and other high-intake behaviors. The level of drug intake for any individual depends on the balance of rewarding and aversive effects of the drug in that individual. Multiple rodent studies have demonstrated that aversive effects of drugs of abuse are reduced in adolescent compared to adult animals. In this study, we addressed 2 key questions: First, do reduced aversive effects of ethanol in younger rats correlate with increased ethanol consumption? Second, are the reduced aversive effects in adolescents attributable to reduced sensitivity to ethanol's physiologic effects? Adolescent and adult rats were tested for ethanol conditioned taste aversion (CTA) followed by a voluntary drinking period, including postdeprivation consumption. Multivariate regression was used to assess correlations. In separate experiments, adolescent and adult rats were tested for their sensitivity to the hypothermic and sedative effects of ethanol, and for blood ethanol concentrations (BECs). We observed that in adolescent rats but not adults, taste aversion was inversely correlated with postdeprivation consumption. Adolescents also exhibited a greater increase in consumption after deprivation than adults. Furthermore, the age difference in ethanol CTA was not attributable to differences in hypothermia, sedation, or BECs. These results suggest that during adolescence, individuals that are insensitive to aversive effects are most likely to develop problem drinking behaviors. These results underscore the importance of the interaction between developmental stage and individual variation in sensitivity to alcohol. Copyright © 2010 by the Research Society on Alcoholism.

  11. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  12. Negative Effect of Zinc on Testes, Testosterone and Gonadotrophins Levels in Adult Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    D. Sohrabi

    2008-10-01

    Full Text Available Background and ObjectivesThe toxic effects of zinc leading to sebaceous gland closure, skin eczema and blister have been previously demonstrated in other studies. The aim of this study is to determine the chronic effects of zinc chloride (ZnCl2 on testicular tissues, testosterone and gonadotrophins in adult male Wistar rats.Methods Twenty four Adult male Wistar rats were divided in to two groups of study and control with each group consisting of 12 rats. Study group rats received 10 mg/kg interaperitoneal Zinc chloride in normal saline (N.S every other day for 30 days. Control group rats received N.S during this time. Blood sample for hormonal evaluation were collected from hearts of these rats. The rats were destroyed and their testes were removed and fixed in a 10% formaldehyde and glutaraldehyde solution.ResultsThe results of this study showed a significant decrease in the level of LH and testosterone hormone among the rats in the study group compared to the control group with p< 0.001 and p< 0.01 respectively. Study of fine structure of testicular cells and tissues in the study group rats revealed swelling of mitochondria, increase in smooth endoplasmic reticulum vacuolization and lysosomic granules (Autophagic vacuoles in cytosol of their germinal cells.ConclusionBased on the results of this study consumption of large amount of compounds which contain zinc should be controlled and limited among men. There is a need for further studies to evaluate and determine the reversibility of most hormonal and physiological changes due to usage of zinc containing compounds.Keywords: Zinc Chloride; Testis; Testosterone; Gonadotrophins

  13. Conditional reduction of adult born doublecortin-positive neurons reversibly impairs selective behaviours

    Directory of Open Access Journals (Sweden)

    Lillian eGarrett

    2015-11-01

    Full Text Available Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ along the walls of the lateral ventricles and the subgranular zone (SGZ of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB - and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreERT2 under doublecortin (DCX promoter control were crossed with mice where diphtheria toxin A (DTA was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM, results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months and middle (from 10 months aged mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the tamoxifen treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior.

  14. Prenatal alcohol exposure affects progenitor cell numbers in olfactory bulbs and dentate gyrus of vervet monkeys

    DEFF Research Database (Denmark)

    Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice

    2016-01-01

    vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years......). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group...

  15. Effects of physical exercise on object recognition memory in adult rats of postnatal isoflurane exposures

    Directory of Open Access Journals (Sweden)

    Xiao-yan FANG

    2017-08-01

    Full Text Available Objective To investigate effects of physical exercise (PE on object recognition memory in adult rats of postnatal isoflurane (Iso exposures. Methods One hundred and ten postnatal 7-day SD rats (P7 were randomly divided into four groups: normal control group (Naive, Naive+PE group (received physical exercise in P21: a treadmill exercise 30min each day, 5 times/week, for 6 weeks, Iso group (three times of 2-hour Iso exposure in P7, P9, and P11, and Iso+PE group (received PE in P21 after postnatal Iso exposures. In P67, behavioral testing was conducted including open field and object recognition task (ORT, recording the time (Discrimination Ratios, DR that rats spent on exploring each object, evaluating effects of PE on object recognition memory. Results There was no significant difference in influence of PE on open field testing in all of the groups (P>0.05. Compared with Naive, there was no group difference in DR (P>0.05 for all groups, but the DR of Iso male rats was significantly higher than that of Naive female rats in P67, with significant difference (P=0.034. Compared with non-PE groups, whether or not postnatal Iso exposures, the DR of PE male groups was significantly higher (compared with Naive and Iso group: P67, P=0.050, P=0.017; P95, P=0.037, P=0.019; in female rats, the DR for ISO+PE group was lower than that of Iso group in P67 (P=0.036, but the DR of Naive+PE group was higher than that of Naive group in P95 (P=0.004. Compared with male rats, the DR of non-PE female rats was significantly higher in P67 (vis. Naive and Iso group: P=0.022, P=0.011; but in P95, the DR of non- Iso female groups was significantly higher than that of male groups (vis. Naive and Naive+PE: P=0.008, P=0.017. Conclusions There is no obvious impact of postnatal Iso exposures on object recognition memory of adult rats. These results also indicate that postnatal PE could improve object recognition memory of non-spatial learning in adult rats. In addition, exercise

  16. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available We recently reported isolation of viable rat amniotic fluid-derived stem (AFS cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo. Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60-63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG [2] and the subventricular zone (SVZ of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.

  17. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  18. Interictal psychosis following temporal lobe surgery: dentate gyrus pathology.

    Science.gov (United States)

    Thom, M; Kensche, M; Maynard, J; Liu, J; Reeves, C; Goc, J; Marsdon, D; Fluegel, D; Foong, J

    2014-10-01

    De novo interictal psychosis, albeit uncommon, can develop in patients following temporal lobe surgery for epilepsy. Pathological alterations of the dentate gyrus, including cytoarchitectural changes, immaturity and axonal reorganization that occur in epilepsy, may also underpin co-morbid psychiatric disorders. Our aim was to study candidate pathways that may be associated with the development of interictal psychosis post-operatively in patients with hippocampal sclerosis (HS). A total of 11 patients with HS who developed interictal psychosis (HS-P) post-operatively were compared with a matched surgical HS group without psychosis (HS-NP). Resected tissues were investigated for the extent of granule cell dispersion, mossy fibre sprouting and calbindin expression in the granule cells. We quantified doublecortin, mini-chromosome maintenance protein 2 (MCM2) and reelin-expressing neuronal populations in the dentate gyrus as well as the distribution of cannabinoid type 1 receptor (CBR1). The patterns of neuronal loss and gliosis were similar in both groups. HS-P patients demonstrated less mossy fibre sprouting and granule cell dispersion (p gyrus pathology found in HS-P patients could indicate underlying differences in the cellular response to seizures. These mechanisms may predispose to the development of psychosis in epilepsy and warrant further investigation.

  19. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  20. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    Science.gov (United States)

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids

    Directory of Open Access Journals (Sweden)

    Yasushi Hojo

    2018-04-01

    Full Text Available The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice, a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1–CA3 and granule cells in dentate gyrus (DG] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2, testosterone (T, and dihydrotestosterone (DHT, which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP and long-term depression (LTD, and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running elevated

  2. Chronic intermittent hypoxia promotes expression of 3-mercaptopyruvate sulfurtransferase in adult rat medulla oblongata.

    Science.gov (United States)

    Li, Mingqiang; Nie, Lihong; Hu, Yajie; Yan, Xiang; Xue, Lian; Chen, Li; Zhou, Hua; Zheng, Yu

    2013-12-01

    The present experiments were carried out to investigate the expression of 3-mercaptopyruvate sulfurtransferase (3MST) in medulla oblongata of rats and effects of chronic intermittent hypoxia (CIH) on its expression. Sprague Dawley adult rats were randomly divided into two groups, including control (Con) group and CIH group. The endogenous production of hydrogen sulfide (H2S) in medulla oblongata tissue homogenates was measured using the methylene blue assay method, 3MST mRNA and protein expression were analyzed by RT-PCR and Western blotting, respectively, and the expression of 3MST in the neurons of respiratory-related nuclei in medulla oblongata of rats was investigated with immunohistochemical technique. CIH elevated the endogenous H2S production in rat medulla oblongata (Pmedulla oblongata of rats and CIH promoted their expression (P<0.01). Immunohistochemical staining indicated that 3MST existed in the neurons of pre-Bötzinger complex (pre-BötC), hypoglossal nucleus (12N), ambiguous nucleus (Amb), facial nucleus (FN) and nucleus tractus solitarius (NTS) in the animals and the mean optical densities of 3MST-positive neurons in the pre-BötC, 12N and Amb, but not in FN and NTS, were significantly increased in CIH group (P<0.05). In conclusion, 3MST exists in the neurons of medullary respiratory nuclei and its expression can be up-regulated by CIH in adult rat, suggesting that 3MST-H2S pathway may be involved in regulation of respiration and protection on medullary respiratory centers from injury induced by CIH. © 2013.

  3. Electroacupuncture Ameliorates Cognitive Deficit and Improves Hippocampal Synaptic Plasticity in Adult Rat with Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Lili Guo

    2018-01-01

    Full Text Available Exposure to adverse early-life events is thought to be the risk factors for the development of psychiatric and altered cognitive function in adulthood. The purpose of this study was to investigate whether electroacupuncture (EA treatment in young adult rat would improve impaired cognitive function and synaptic plasticity in adult rat with neonatal maternal separation (MS. Wistar rats were randomly divided into four groups: control group, MS group, MS with EA treatment (MS + EA group, and MS with Sham-EA treatment (MS + Sham-EA group. We evaluated the cognitive function by using Morris water maze and fear conditioning tests. Electrophysiology experiment used in vivo long-term potentiation (LTP at Schaffer Collateral-CA1 synapses was detected to assess extent of synaptic plasticity. Repeated EA stimulation at Baihui (GV 20 and Yintang (GV 29 during postnatal 9 to 11 weeks was identified to significantly ameliorate poor performance in behavior tests and improve the impaired LTP induction detected at Schaffer Collateral-CA1 synapse in hippocampus. Collectively, the findings suggested that early-life stress due to MS may induce adult cognitive deficit associated with hippocampus, and EA in young adult demonstrated that its therapeutic efficacy may be via ameliorating deficit of hippocampal synaptic plasticity.

  4. Glucagon-Like Peptide-1 as Predictor of Body Mass Index and Dentate Gyrus Neurogenesis: Neuroplasticity and the Metabolic Milieu

    Directory of Open Access Journals (Sweden)

    Jeremy D. Coplan

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 regulates carbohydrate metabolism and promotes neurogenesis. We reported an inverse correlation between adult body mass and neurogenesis in nonhuman primates. Here we examine relationships between physiological levels of the neurotrophic incretin, plasma GLP-1 (pGLP-1, and body mass index (BMI in adolescence to adult neurogenesis and associations with a diabesity diathesis and infant stress. Morphometry, fasting pGLP-1, insulin resistance, and lipid profiles were measured in early adolescence in 10 stressed and 4 unstressed male bonnet macaques. As adults, dentate gyrus neurogenesis was assessed by doublecortin staining. High pGLP-1, low body weight, and low central adiposity, yet peripheral insulin resistance and high plasma lipids, during adolescence were associated with relatively high adult neurogenesis rates. High pGLP-1 also predicted low body weight with, paradoxically, insulin resistance and high plasma lipids. No rearing effects for neurogenesis rates were observed. We replicated an inverse relationship between BMI and neurogenesis. Adolescent pGLP-1 directly predicted adult neurogenesis. Two divergent processes relevant to human diabesity emerge—high BMI, low pGLP-1, and low neurogenesis and low BMI, high pGLP-1, high neurogenesis, insulin resistance, and lipid elevations. Diabesity markers putatively reflect high nutrient levels necessary for neurogenesis at the expense of peripheral tissues.

  5. A comparative study of myosin and its subunits in adult and neonatal-rat hearts and in rat heart cells from young and old cultures.

    OpenAIRE

    Ghanbari, H A; McCarl, R L

    1980-01-01

    A possible explanation for the decrease in myosin Ca2+-dependent ATPase activity as rat heart cells age in culture is presented. The subunit structure and enzyme kinetics of myosin from adult and neonatal rat hearts and from rat heart cells of young and old cultures are compared. These studies indicate that the loss in Ca-ATPase activity of myosin from older cultures was an intrinsic property of the myosin itself. Myofibrillar fractions from the indicated four sources showed no qualitative or...

  6. Negative Effect of Zinc on Testes, Testosterone and Gonadotrophins Levels in Adult Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    D Sohrabi

    2012-05-01

    Full Text Available

    Background and Objectives

    The toxic effects of zinc leading to sebaceous gland closure, skin eczema and blister have been previously demonstrated in other studies. The aim of this study is to determine the chronic effects of zinc chloride (ZnCl2   on testicular tissues, testosterone and gonadotrophins in adult male Wistar rats.

     

    Methods

    Twenty four Adult male Wistar rats were divided in to two groups of study and control with each group consisting of 12 rats. Study group rats received 10 mg/kg interaperitoneal Zinc chloride in normal saline (N.S every other day for 30 days. Control group rats received N.S during this time. Blood sample for hormonal evaluation were collected from hearts of these rats. The rats were destroyed and their testes were removed and fixed in a 10% formaldehyde and glutaraldehyde solution.

     

    Results

    The results of this study showed a significant decrease in the level of LH and testosterone hormone among the rats in the study group compared to the control group with p< 0.001  and

    p< 0.01 respectively. Study of fine structure of testicular cells and tissues in the study group rats  revealed swelling of mitochondria, increase in smooth endoplasmic reticulum vacuolization and lysosomic granules (Autophagic vacuoles in cytosol of their germinal cells.

     

    Conclusion

    Based on the results of this study consumption of large amount of compounds which contain zinc should be controlled and limited among men. There is a need for further studies to evaluate and determine the reversibility of most hormonal and physiological changes due to usage of zinc containing compounds.

  7. Receptors for GRP/bombesin-like peptides in the rat forebrain

    International Nuclear Information System (INIS)

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( 125 I-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides

  8. [Dissertation 25 years after date 39. Oral self-care by dentate elderly

    NARCIS (Netherlands)

    Kluter, W.J.; Baat, C. de

    2015-01-01

    In 1989, the dissertation 'Oral self-care for dentate elderly' was published. Among other things, the effect of an information leaflet on oral self-care was investigated in a randomised, controlled trial. The outcome of the entire intervention was positive. Subsequent to this dissertation no

  9. Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes.

    Science.gov (United States)

    Headley, Drew B; Kanta, Vasiliki; Paré, Denis

    2017-02-01

    The hippocampus generates population events termed sharp-wave ripples (SWRs) and dentate spikes (DSs). While little is known about DSs, SWR-related hippocampal discharges during sleep are thought to replay prior waking activity, reactivating the cortical networks that encoded the initial experience. During slow-wave sleep, such reactivations likely occur during up-states, when most cortical neurons are depolarized. However, most studies have examined the relationship between SWRs and up-states measured in single neocortical regions. As a result, it is currently unclear whether SWRs are associated with particular patterns of widely distributed cortical activity. Additionally, no such investigation has been carried out for DSs. The present study addressed these questions by recording SWRs and DSs from the dorsal hippocampus simultaneously with prefrontal, sensory (visual and auditory), perirhinal, and entorhinal cortices in naturally sleeping rats. We found that SWRs and DSs were associated with up-states in all cortical regions. Up-states coinciding with DSs and SWRs exhibited increased unit activity, power in the gamma band, and intraregional gamma coherence. Unexpectedly, interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Whereas the increase in gamma coherence was time locked to DSs, that seen in relation to SWRs was not. These observations suggest that SWRs are related to the strength of up-state activation within individual regions throughout the neocortex but not so much to gamma coherence between different regions. Perhaps more importantly, DSs coincided with stronger periods of interregional gamma coherence, suggesting that they play a more important role than previously assumed. Off-line cortico-hippocampal interactions are thought to support memory consolidation. We surveyed the relationship between hippocampal sharp-wave ripples (SWRs) and dentate spikes (DSs) with up-states across multiple cortical regions. SWRs and

  10. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running.

    Science.gov (United States)

    Lee, Min Chul; Inoue, Koshiro; Okamoto, Masahiro; Liu, Yu Fan; Matsui, Takashi; Yook, Jang Soo; Soya, Hideaki

    2013-03-14

    Recently, we reported that voluntary resistance wheel running with a resistance of 30% of body weight (RWR), which produces shorter distances but higher work levels, enhances spatial memory associated with hippocampal brain-derived neurotrophic factor (BDNF) signaling compared to wheel running without a load (WR) [17]. We thus hypothesized that RWR promotes adult hippocampal neurogenesis (AHN) as a neuronal substrate underlying this memory improvement. Here we used 10-week-old male Wistar rats divided randomly into sedentary (Sed), WR, and RWR groups. All rats were injected intraperitoneally with the thymidine analogue 5-Bromo-2'-deoxuridine (BrdU) for 3 consecutive days before wheel running. We found that even when the average running distance decreased by about half, the average work levels significantly increased in the RWR group, which caused muscular adaptation (oxidative capacity) for fast-twitch plantaris muscle without causing any negative stress effects. Additionally, immunohistochemistry revealed that the total BrdU-positive cells and newborn mature cells (BrdU/NeuN double-positive) in the dentate gyrus increased in both the WR and RWR groups. These results provide new evidence that RWR has beneficial effects on AHN comparable to WR, even with short running distances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Deficits in synaptic function occur at medial perforant path-dentate granule cell synapses prior to Schaffer collateral-CA1 pyramidal cell synapses in the novel TgF344-Alzheimer's Disease Rat Model.

    Science.gov (United States)

    Smith, Lindsey A; McMahon, Lori L

    2018-02-01

    Alzheimer's disease (AD) pathology begins decades prior to onset of clinical symptoms, and the entorhinal cortex and hippocampus are among the first and most extensively impacted brain regions. The TgF344-AD rat model, which more fully recapitulates human AD pathology in an age-dependent manner, is a next generation preclinical rodent model for understanding pathophysiological processes underlying the earliest stages of AD (Cohen et al., 2013). Whether synaptic alterations occur in hippocampus prior to reported learning and memory deficit is not known. Furthermore, it is not known if specific hippocampal synapses are differentially affected by progressing AD pathology, or if synaptic deficits begin to appear at the same age in males and females in this preclinical model. Here, we investigated the time-course of synaptic changes in basal transmission, paired-pulse ratio, as an indirect measure of presynaptic release probability, long-term potentiation (LTP), and dendritic spine density at two hippocampal synapses in male and ovariectomized female TgF344-AD rats and wildtype littermates, prior to reported behavioral deficits. Decreased basal synaptic transmission begins at medial perforant path-dentate granule cell (MPP-DGC) synapses prior to Schaffer-collateral-CA1 (CA3-CA1) synapses, in the absence of a change in paired-pulse ratio (PPR) or dendritic spine density. N-methyl-d-aspartate receptor (NMDAR)-dependent LTP magnitude is unaffected at CA3-CA1 synapses at 6, 9, and 12months of age, but is significantly increased at MPP-DGC synapses in TgF344-AD rats at 6months only. Sex differences were only observed at CA3-CA1 synapses where the decrease in basal transmission occurs at a younger age in males versus females. These are the first studies to define presymptomatic alterations in hippocampal synaptic transmission in the TgF344-AD rat model. The time course of altered synaptic transmission mimics the spread of pathology through hippocampus in human AD and provides

  12. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness.

    Science.gov (United States)

    Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H

    2016-03-01

    Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Analgesia for early-life pain prevents deficits in adult anxiety and stress in rats.

    Science.gov (United States)

    Victoria, Nicole C; Karom, Mary C; Murphy, Anne Z

    2015-01-01

    Previous studies in rats have established that inflammatory pain experienced on the day of birth (P0) decreases sensitivity to acute noxious, anxiety- and stress-provoking stimuli. However, to date, the impact of early-life pain on adult responses to chronic stress is not known. Further, the ability of morphine, administered at the time of injury, to mitigate changes in adult behavioral and hormonal responses to acute or chronic stressors has not been examined. P0 male and female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan or handled in an identical manner in the presence or absence of morphine. As adults, rats that experienced early-life pain displayed decreased sensitivity to acute stressors, as indicated by increased time in the inner area of the Open Field, and increased latency to immobility and decreased time immobile in the Forced Swim Test (FST). An accelerated return of corticosterone to baseline was also observed. Morphine administration at the time of injury completely reversed this 'hyporesponsive' phenotype. By contrast, following 7 days of chronic variable stress, injured animals displayed a 'hyperresponsive' phenotype in that they initiated immobility and spent significantly more time immobile in the FST than controls. Responses to chronic stress were also rescued in animals that received morphine at the time of injury. These data suggest that analgesia for early-life pain prevents adult hyposensitivity to acute anxiety- and stress-provoking stimuli and increased vulnerability to chronic stress, and have important clinical implications for the management of pain in infants. © 2014 S. Karger AG, Basel.

  14. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-11-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO{sup +} oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO{sup +} oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression

  15. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO + oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO + oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ

  16. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  17. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    Science.gov (United States)

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  18. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    Science.gov (United States)

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  19. Structural layers of ex vivo rat hippocampus at 7T MRI.

    Directory of Open Access Journals (Sweden)

    Jeanine Manuella Kamsu

    Full Text Available Magnetic resonance imaging (MRI applied to the hippocampus is challenging in studies of the neurophysiology of memory and the physiopathology of numerous diseases such as epilepsy, Alzheimer's disease, ischemia, and depression. The hippocampus is a well-delineated cerebral structure with a multi-layered organization. Imaging of hippocampus layers is limited to a few studies and requires high magnetic field and gradient strength. We performed one conventional MRI sequence on a 7T MRI in order to visualize and to delineate the multi-layered hippocampal structure ex vivo in rat brains. We optimized a volumic three-dimensional T2 Rapid Acquisition Relaxation Enhancement (RARE sequence and quantified the volume of the hippocampus and one of its thinnest layers, the stratum granulare of the dentate gyrus. Additionally, we tested passive staining by gadolinium with the aim of decreasing the acquisition time and increasing image contrast. Using appropriated settings, six discrete layers were differentiated within the hippocampus in rats. In the hippocampus proper or Ammon's Horn (AH: the stratum oriens, the stratum pyramidale of, the stratum radiatum, and the stratum lacunosum moleculare of the CA1 were differentiated. In the dentate gyrus: the stratum moleculare and the stratum granulare layer were seen distinctly. Passive staining of one brain with gadolinium decreased the acquisition time by four and improved the differentiation between the layers. A conventional sequence optimized on a 7T MRI with a standard receiver surface coil will allow us to study structural layers (signal and volume of hippocampus in various rat models of neuropathology (anxiety, epilepsia, neurodegeneration.

  20. HISTOLOGICAL STUDIES OF THE EFFECTS OF MONOSODIUM GLUTAMATE ON THE INFERIOR COLLICULUS OF ADULT WISTAR RATS.

    Directory of Open Access Journals (Sweden)

    A.O. Eweka.

    2008-01-01

    Full Text Available Histological effects of Monosodium glutamate (MSG commonly used as food additive on the inferior colliculus (IC of adult Wistar rats were carefully studied. The rats of both sexes (n=24, average weight of 185g were randomly assigned into two treatments (n=16 and control (n=8 groups. The rats in the treatment groups received 3g and 6g of MSG thoroughly mixed with their feeds for fourteen days, while the control rats received equal amounts of feeds without MSG added. The rats were fed with growers' mash purchased from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day fifteen of the experiment. The inferior colliculus was carefully dissected out and quickly fixed in 10% formal saline for routine histological study after H&E method.The histological findings after H&E methods indicated that the treated sections of the inferior colliculus showed some cellular degenerative changes, cellular hypertrophy, and autophagic vacuoles with some intercellular vacuolations appearing in the stroma, and some degree of neuronal hypertrophy when compared to the control sections.These findings indicate that MSG consumption may have a deleterious effect on the neurons of the inferior colliculus (IC. MSG may probably have adverse effects on the auditory sensibilities by its deleterious effects on the nerve cells of the IC of adult Wistar rats. It is recommended that further studies aimed at corroborating these observations be carried out.

  1. HISTOLOGICAL EFFECTS OF CHRONIC CONSUMPTION OF NUTMEG ON THE LATERAL GENICULATE BODY OF ADULT WISTAR RATS.

    Directory of Open Access Journals (Sweden)

    J.O. Adjene

    2010-01-01

    Full Text Available The effects of chronic consumption of nutmeg commonly used as a spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the lateral geniculate body of adult wistar rats was studied.The rats of both sexes, with average weight of 200g were randomly assigned into treatment and control groups. The rats in the treatment group (n=8 received 2g of nutmeg thoroughly mixed with the feeds on a daily basis for thirty-two days. The control group (n=8 received equal amount of feeds daily without nutmeg added for thirty-two days. The growers mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo State, Nigeria and the rats were given water liberally. The rats were sacrificed on the thirty-three day of the experiment. The lateral geniculate body was carefully dissected out and quickly fixed in 10% formal saline for histological study.The findings indicate that rats in the treated group showed some cellular degenerative changes like sparse cellular population, pyknotic nuclei with some microcystic changes, edema and vacuolations in the stroma of the treated lateral geniculate body as compared to that of the control group.Chronic consumption of nutmeg may therefore have an adverse effect on the visual sensibilities by affecting the microanatomy of the lateral geniculate body of adult wistar rats. It is recommended for further studies aimed at corroborating these observations.

  2. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    Science.gov (United States)

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  3. Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding

    International Nuclear Information System (INIS)

    Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah

    2016-01-01

    Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.

  4. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  5. Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress.

    Science.gov (United States)

    Maggio, Nicola; Segal, Menahem

    2011-04-15

    The ventral hippocampus (VH) was recently shown to express lower magnitude long-term potentiation (LTP) compared with the dorsal hippocampus (DH). Exposure to acute stress reversed this difference, and VH slices from stressed rats expressed larger LTP than that produced in the DH, which was reduced by stress. Stressful experience in adolescence has been shown to produce long-lasting effects on animal behavior and on ability to express LTP/long-term depression (LTD) of reactivity to afferent stimulation in the adult. We are interested in possible interactions between juvenile and adult stress in their effects of adult plasticity. We studied the effects of a composite juvenile (28-30 days) stress, followed by a reminder stressful experience in the young adult (60 days) rat, on the ability to produce LTP and LTD in CA1 region of slices of the VH and DH. Juvenile or adult stress produced a transient decrease in ability to express LTP in DH and a parallel increase in LTP in VH. Stress in the young adult after juvenile stress produced a striking prolongation of the DH/VH disparity with respect to the ability to express both LTP and LTD into the adulthood of the rat. These results have important implications for the impact of juvenile stress on adult neuronal plasticity and on the understanding the functions of the different sectors of the hippocampus. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases

    Directory of Open Access Journals (Sweden)

    Krishna eVadodaria

    2013-08-01

    Full Text Available Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1 and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including several growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus circuitry.

  7. Mitogen response of B cells, but not T cells, is impaired in adult vitamin A-deficient rats

    NARCIS (Netherlands)

    van Bennekum, A. M.; Wong Yen Kong, L. R.; Gijbels, M. J.; Tielen, F. J.; Roholl, P. J.; Brouwer, A.; Hendriks, H. F.

    1991-01-01

    The effect of vitamin A deficiency on the mitogen response of splenic B and T lymphocytes was determined in adult vitamin A-deficient rats. Female weanling Brown Norway/Billingham-Rijswijk (BN/BiRij) and Sprague-Dawley rats were fed a semipurified, essentially vitamin A-free diet, which resulted in

  8. A combined phytohemagglutinin and a-ketoglutarate pharmacology study of gut morphology and growth in older adult rats

    DEFF Research Database (Denmark)

    Filip, R.; Harrison, Adrian Paul; Pierzynowski, S.G.

    2008-01-01

    This study has evaluated the effect of phytohaemagglutinin (PHA) in combination with alpha-ketoglutaric acid (AKG), on GI-tract morphology and N balance in adult rats. Rats, aged approx. 15 months, were assigned to one of four experimental groups, (1) Control group, (2) AKG group, (3) AKG+PHA 100...

  9. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  10. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... of newly formed neurons in the hippocampal subgranular zone. Also estimated were the total number of neurons and the volume of the granule cell layer in adult rats subjected to chronic restraint stress and electroconvulsive stimulation either alone or in combination. We found that chronic restraint stress...

  11. A Transient Upregulation of Glutamine Synthetase in the Dentate Gyrus Is Involved in Epileptogenesis Induced by Amygdala Kindling in the Rat.

    Directory of Open Access Journals (Sweden)

    Hong-Liu Sun

    Full Text Available Reduction of glutamine synthetase (GS function is closely related to established epilepsy, but little is known regarding its role in epileptogenesis. The present study aimed to elucidate the functional changes of GS in the brain and its involvement in epileptogenesis using the amygdala kindling model of epilepsy induced by daily electrical stimulation of basolateral amygdala in rats. Both expression and activity of GS in the ipsilateral dentate gyrus (DG were upregulated when kindled seizures progressed to stage 4. A single dose of L-methionine sulfoximine (MSO, in 2 µl, a selective GS inhibitor, was administered into the ipsilateral DG on the third day following the first stage 3 seizure (just before GS was upregulated. It was found that low doses of MSO (5 or 10 µg significantly and dose-dependently reduced the severity of and susceptibility to evoked seizures, whereas MSO at a high dose (20 µg aggravated kindled seizures. In animals that seizure acquisition had been successfully suppressed with 10 µg MSO, GS upregulation reoccurred when seizures re-progressed to stage 4 and re-administration of 10 µg MSO consistently reduced the seizures. GLN at a dose of 1.5 µg abolished the alleviative effect of 10 µg MSO and deleterious effect of 20 µg MSO on kindled seizures. Moreover, appropriate artificial microRNA interference (1 and 1.5×10(6 TU/2 µl of GS expression in the ipsilateral DG also inhibited seizure progression. In addition, a transient increase of GS expression and activity in the cortex was also observed during epileptogenesis evoked by pentylenetetrazole kindling. These results strongly suggest that a transient and region-specific upregulation of GS function occurs when epilepsy develops into a certain stage and eventually promotes the process of epileptogenesis. Inhibition of GS to an adequate degree and at an appropriate timing may be a potential therapeutic approach to interrupting epileptogenesis.

  12. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    Directory of Open Access Journals (Sweden)

    Sam Jun Lee

    2016-05-01

    Full Text Available Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF and tyrosine kinase B (TrkB levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats.

  13. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  14. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  15. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    Science.gov (United States)

    Oosthuizen, M K; Amrein, I

    2016-06-02

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Neonatal bee venom exposure induces sensory modality-specific enhancement of nociceptive response in adult rats.

    Science.gov (United States)

    Li, Mengmeng; Chen, Huisheng; Tang, Jiaguang; Chen, Jun

    2014-06-01

    Previous studies have shown that inflammatory pain at the neonatal stage can produce long-term structural and functional changes in nociceptive pathways, resulting in altered pain perception in adulthood. However, the exact pattern of altered nociceptive response and associated neurochemical changes in the spinal cord in this process is unclear. In this study, we used an experimental paradigm in which each rat first received intraplantar bee venom (BV) or saline injection on postnatal day 1, 4, 7, 14, 21, or 28. This was followed 2 months later by a second intraplantar bee venom injection in the same rats to examine the difference in nociceptive responses. We found that neonatal inflammatory pain induced by the first BV injection significantly reduced baseline paw withdrawal mechanical threshold, but not baseline paw withdrawal thermal latency, when rats were examined 2 months from the first BV injection. Neonatal inflammatory pain also exacerbated mechanical, but not thermal, hyperalgesia in response to the second BV injection in these same rats. Rats exposed to neonatal inflammation also showed up-regulation of spinal NGF, TrkA receptor, BDNF, TrkB receptor, IL-1β, and COX-2 expression following the second BV injection, especially with prior BV exposure on postnatal day 21 or 28. These results indicate that neonatal inflammation produces sensory modality-specific changes in nociceptive behavior and alters neurochemistry in the spinal cord of adult rats. These results also suggest that a prior history of inflammatory pain during the developmental period might have an impact on clinical pain in highly susceptible adult patients. Wiley Periodicals, Inc.

  17. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    Science.gov (United States)

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  18. Objective and subjective need for cosmetic dentistry in the Dutch adult population

    NARCIS (Netherlands)

    Burgersdijk, R.; Truin, G.J.; Kalsbeek, H.; Hof, M. van 't; Mulder, J.

    1991-01-01

    In order to assess the objective and subjective need for cosmetic dentistry in the Dutch adult population in 1986 a stratified sample of 2784 dentate persons, aged 15-74 yr, participated in the study. The aesthetics of anterior teeth and first premolars in the maxillary mandibular arch were

  19. Percutaneous absorption of triadimefon in the adult and young male and female rat

    International Nuclear Information System (INIS)

    Knaak, J.B.; Yee, K.; Ackerman, C.R.; Zweig, G.; Wilson, B.W.

    1984-01-01

    The percutaneous absorption of 14 C-phenoxy ring labeled triadimefon was studied in adult and young male and female Sprague-Dawley rats. Triadimefon was applied (41.1 to 46.4 micrograms/cm2) in 0.2 ml of acetone to areas comprising 3% of the body surface (7.0 to 14.5 cm2). Thirty-six animals were treated at the initiation of each study. Groups of three animals were subsequently killed at 1, 4, 8, 12, 24, 48, 72, 96, 120, 144, 168, and 192 hr after treatment. Skin from the treated area as well as blood, heart, liver, kidneys, remaining carcass, urine, and feces were analyzed for 14 C by scintillation counting techniques. Based on 14 C counts, triadimefon was lost more rapidly from the skin of young animals (t 1/2, 20 to 25 hr) than from the skin of adult animals (t 1/2, 29 to 53 hr). Recovery studies indicated that adult males, adult females, young males, and young females, respectively, absorbed 53, 82, 57, and 52% of the dose. The rest of the dose based on material balance was presumably lost by evaporation. Approximately 2.5 to 3.9% of the dose penetrated the skin in one hour and was available for absorption. The rate of entry triadimefon into blood was 2 to 2.5 times faster for young than that observed in adult animals. Elimination of it from blood was faster in the case of the young animals. Triadimefon was absorbed through the skins of the adult male, adult female, young male, and young female rats, respectively, at rates of 0.20, 0.50, 0.58, and 0.48 micrograms/hr/cm2 of skin

  20. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice

    Directory of Open Access Journals (Sweden)

    Klaus Fabel

    2009-11-01

    Full Text Available Voluntary physical exercise (wheel running, RUN and environmental enrichment (ENR both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can “prime” the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.

  1. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    Science.gov (United States)

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  2. Comparison of functionally orientated tooth replacement and removable partial dentures on the nutritional status of partially dentate older patients: a randomised controlled clinical trial.

    Science.gov (United States)

    McKenna, Gerald; Allen, P Finbarr; O'Mahony, Denis; Flynn, Albert; Cronin, Michael; DaMata, Cristiane; Woods, Noel

    2014-06-01

    The aims of this study were to conduct a randomised controlled clinical trial (RCT) of partially dentate older adults comparing functionally orientated treatment based on the SDA concept with conventional treatment using RPDs to replace missing natural teeth. The two treatment strategies were evaluated according to their impact on nutritional status measured using haematological biomarkers. A randomised controlled clinical trial (RCT) was conducted of partially dentate patients aged 65 years and older (Trial Registration no. ISRCTN26302774). Each patient provided haematological samples which were screened for biochemical markers of nutritional status. Each sample was tested in Cork University Hospital for serum Albumin, serum Cholesterol, Ferritin, Folate, Vitamin B12 and 25-hydroxycholecalciferol (Vitamin D). A mixed model analysis of covariance (ANCOVA) indicated that for Vitamin B12 (p=0.9392), serum Folate (p=0.5827), Ferritin (p=0.6964), Albumin (p=0.8179), Serum Total Cholesterol (p=0.3670) and Vitamin D (p=0.7666) there were no statistically significant differences recorded between the two treatment groups. According to the mixed model analysis of covariance (ANCOVA) for Vitamin D there was a significant difference between levels recorded at post-operative time points after treatment intervention (p=0.0470). There was an increase of 7% in 25-hydroxycholecalciferol levels recorded at 6 months compared to baseline (p=0.0172). There was no further change in recorded levels at 12 months (p=0.6482) and these increases were similar within the two treatment groups (p>0.05). The only measure which illustrated consistent significant improvements in nutritional status for either group were Vitamin D levels. However no significant difference was recorded between the two treatment groups. Functionally orientated prosthodontic rehabilitation for partially dentate older patients was no worse than conventional removable partial dentures in terms of impact on nutritional

  3. CHRONIC ALCOHOLISM ON THE SEMINAL VESICLE AND TESTIS WEIGHT OF ADULT RATS (Rattus norvegicus)

    OpenAIRE

    Martinez, F. E.; Martinez, M.; Cagnon, V. H. A.; Mello Junior, W.; Padovani, C. R.; Garcia, P. J.

    1997-01-01

    Effects of experimental chronic alcoholism on the accessory sexual glands weight and testes weight were studied. Male adult albino rats received only sugar cane brandy at 30 Gay Lussac (v/v), while the controls received tap water. After periods of 60, 120, 180 and 240 days, rats from each group were anesthetized, weighed and sacrificed. Alterations in mean daily solid food intake and liquid, mean daily weight gain, mean prostate weight, mean seminal vesicle and coagulating gland weights and t...

  4. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  5. A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo.

    Directory of Open Access Journals (Sweden)

    Peter Jedlicka

    2015-11-01

    Full Text Available Long-term potentiation (LTP and long-term depression (LTD are widely accepted to be synaptic mechanisms involved in learning and memory. It remains uncertain, however, which particular activity rules are utilized by hippocampal neurons to induce LTP and LTD in behaving animals. Recent experiments in the dentate gyrus of freely moving rats revealed an unexpected pattern of LTP and LTD from high-frequency perforant path stimulation. While 400 Hz theta-burst stimulation (400-TBS and 400 Hz delta-burst stimulation (400-DBS elicited substantial LTP of the tetanized medial path input and, concurrently, LTD of the non-tetanized lateral path input, 100 Hz theta-burst stimulation (100-TBS, a normally efficient LTP protocol for in vitro preparations produced only weak LTP and concurrent LTD. Here we show in a biophysically realistic compartmental granule cell model that this pattern of results can be accounted for by a voltage-based spike-timing-dependent plasticity (STDP rule combined with a relatively fast Bienenstock-Cooper-Munro (BCM-like homeostatic metaplasticity rule, all on a background of ongoing spontaneous activity in the input fibers. Our results suggest that, at least for dentate granule cells, the interplay of STDP-BCM plasticity rules and ongoing pre- and postsynaptic background activity determines not only the degree of input-specific LTP elicited by various plasticity-inducing protocols, but also the degree of associated LTD in neighboring non-tetanized inputs, as generated by the ongoing constitutive activity at these synapses.

  6. Acquisition of a non-matching to place task by rats with neonatal hippocampal lesion induced by ionizing radiation / Aquisição de uma tarefa espacial por ratos submetidos a lesão hipocampal neonatal induzida por radiação ionizante

    Directory of Open Access Journals (Sweden)

    Valéria Catelli Infantozzi Costa

    2007-01-01

    Full Text Available Costa, Bueno e Xavier (2005 showed that rats with hippocampus dentate gyrus lesions produced by colchicine have post-surgical tests deficits in spatial tasks involving conditional discrimination (non-matching-to-place, NMTP, although repetitive training does promote the recovery of the lamed subject's performance. The purpose of this experiment was to assess the performance of rats with selective lesions of dentate gyrus induced by neonatal ionizing radiation in the NMTP task. The irradiated group showed deficits in the first training sessions when compared to the control group. Nevertheless, the performance of lesion and control groups was similar at the end of the sessions, as previously reported. The results are discussed in light of the cognitive map theory.

  7. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  8. Lamotrigine increases the number of BrdU-labeled cellsinthe rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2010-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6±3.5 cells/slice) compared with valproate (31.6±2.8) and controls (32.2±3.1; P...

  9. Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex.

    Science.gov (United States)

    Rezin, Gislaine T; Scaini, Giselli; Ferreira, Gabriela K; Cardoso, Mariane R; Gonçalves, Cinara L; Constantino, Larissa S; Deroza, Pedro F; Ghedim, Fernando V; Valvassori, Samira S; Resende, Wilson R; Quevedo, João; Zugno, Alexandra I; Streck, Emilio L

    2012-12-01

    Fenproporex is an amphetamine-based anorectic and it is rapidly converted in vivo into amphetamine. It elevates the levels of extracellular dopamine in the brain. Acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine. Thus, we investigated whether the effects of chronic administration of fenproporex in adult rats alters acquisition and retention of avoidance memory and acetylcholinesterase activity. Adult male Wistar rats received repeated (14 days) intraperitoneal injection of vehicle or fenproporex (6.25, 12.5 or 25 mg/kg i.p.). For behavioral assessment, animals were submitted to inhibitory avoidance (IA) tasks and continuous multiple trials step-down inhibitory avoidance (CMIA). Acetylcholinesterase activity was measured in the prefrontal cortex, hippocampus, hypothalamus and striatum. The administration of fenproporex (6.25, 12.5 and 25 mg/kg) did not induce impairment in short and long-term IA or CMIA retention memory in rats. In addition, longer periods of exposure to fenproporex administration decreased acetylcholinesterase activity in prefrontal cortex and striatum of rats, but no alteration was verified in the hippocampus and hypothalamus. In conclusion, the present study showed that chronic fenproporex administration decreased acetylcholinesterase activity in the rat brain. However, longer periods of exposure to fenproporex did not produce impairment in short and long-term IA or CMIA retention memory in rats.

  10. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia.

    Science.gov (United States)

    Kesby, James P; Burne, Thomas H J; McGrath, John J; Eyles, Darryl W

    2006-09-15

    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. The behavioral phenotype of adult rats subjected to transient low prenatal vitamin D is characterized by spontaneous hyperlocomotion but normal prepulse inhibition of acoustic startle (PPI). The aim of this study was to examine the impact of selected psychotropic agents and one well-known antipsychotic agent on the behavioral phenotype of DVD deplete rats. Control versus DVD deplete adult rats were assessed on holeboard, open field and PPI. In the open field, animals were given MK-801 and/or haloperidol. For PPI, the animals were given apomorphine or MK-801. DVD deplete rats had increased baseline locomotion on the holeboard task and increased locomotion in response to MK-801 compared to control rats. At low doses, haloperidol antagonized the MK-801 hyperactivity of DVD deplete rats preferentially and, at a high dose, resulted in a more pronounced reduction in spontaneous locomotion in DVD deplete rats. DVD depletion did not affect either baseline or drug-mediated PPI response. These results suggest that DVD deficiency is associated with a persistent alteration in neuronal systems associated with motor function but not those associated with sensory motor gating. In light of the putative association between low prenatal vitamin D and schizophrenia, the discrete behavioral differences associated with the DVD model may help elucidate the neurobiological correlates of schizophrenia.

  11. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    Science.gov (United States)

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  12. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats

    International Nuclear Information System (INIS)

    Young, R.A.; Meyers, B.; Alex, S.; Fang, S.L.; Braverman, L.E.

    1988-01-01

    The amount of tracer [125I]T4 bound to serum thyronine-binding globulin (TBG) was measured by polyacrylamide gel electrophoresis in adult thyroidectomized (TX) rats and normal 1-day to 4-week-old rat puts. Thyroidectomy was associated with the appearance of significant amounts of [125I]T4 binding to serum TBG in lean rats, but not in obese Zucker rats. Treatment of the TX rats in vivo with replacement doses of T4 prevented this increase in TBG binding, but enrichment of serum from TX rats with T4 did not. Significant amounts of tracer [125I]T4 binding to TBG was present in serum from 1- to 3-week-old normal rat pups, but not in 1-day- or 4-week-old pups. There were significantly higher levels of TBG binding of [125I]T4 in serum from 2-week-old rat pups raised in litters of 16 pups compared to those raised in litters of 4 pups. All manipulations that result in the appearance of TBG in rat serum also result in either weight loss or a slowing in the rate of growth, suggesting that the appearance of TBG in rat serum has a nutritional component. This possibility is further supported by the observations that increases in TBG binding of [125I]T4 are not found in obese Zucker rats fed a low protein-high carbohydrate diet for 14 days or fasted for 7 days, or after thyroidectomy, perhaps owing to the large stores of fuel in the obese rat

  13. Low maternal care exacerbates adult stress susceptibility in the chronic mild stress rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Johannesen, Mads Dyrvig; Bouzinova, Elena

    2012-01-01

    In the present study we report the finding that the quality of maternal care, in early life, increased the susceptibility to stress exposure in adulthood, when rats were exposed to the chronic mild stress paradigm. Our results indicate that high, as opposed to low maternal care, predisposed rats...... to a differential stress-coping ability. Thus rats fostered by low maternal care dams became more prone to adopt a stress-susceptible phenotype developing an anhedonic-like condition. Moreover, low maternal care offspring had lower weight gain and lower locomotion, with no additive effect of stress. Subchronic...... exposure to chronic mild stress induced an increase in faecal corticosterone metabolites, which was only significant in rats from low maternal care dams. Examination of glucocorticoid receptor exon 17 promoter methylation in unchallenged adult, maternally characterized rats, showed an insignificant...

  14. Protein-Energy Malnutrition Causes Deficits in Motor Function in Adult Male Rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Li, Xue; Paterson, Phyllis G

    2015-11-01

    Adult protein-energy malnutrition (PEM) often occurs in combination with neurological disorders affecting hand use and walking ability. The independent effects of PEM on motor function are not well characterized and may be obscured by these comorbidities. Our goal was to undertake a comprehensive evaluation of sensorimotor function with the onset and progression of PEM in an adult male rat model. In Expt. 1 and Expt. 2, male Sprague-Dawley rats (14-15 wk old) were assigned ad libitum access for 4 wk to normal-protein (NP) or low-protein (LP) diets containing 12.5% and 0.5% protein, respectively. Expt. 1 assessed muscle strength, balance, and skilled walking ability on days 2, 8, and 27 by bar-holding, cylinder, and horizontal ladder walking tasks, respectively. In addition to food intake and body weight, nutritional status was determined on days 3, 9, and 28 by serum acute-phase reactant and corticosterone concentrations and liver lipids. Expt. 2 addressed the effect of an LP diet on hindlimb muscle size. PEM evolved over time in rats consuming the LP diet. Total food intake decreased by 24% compared with the NP group. On day 28, body weight and serum albumin decreased by 31% and 26%, respectively, and serum α2-macroglobulin increased by 445% (P malnutrition. This model can be used in combination with disease models of sensorimotor deficits to examine the interactions between nutritional status, other treatments, and disease progression. © 2015 American Society for Nutrition.

  15. In vitro autoradiographic localization of vasoactive intestinal peptide (VIP) binding sites in the rat central nervous system

    International Nuclear Information System (INIS)

    Besson, J.; Dussaillant, M.; Marie, J.C.; Rostene, W.; Rosselin, G.

    1984-01-01

    This paper describes the autoradiographic distribution of VIP binding sites in the rat central nervous system using monoiodinated 125I-labeled VIP. High densities of VIP binding sites are observed in the granular layer of the dorsal dentate gyrus of the hippocampus, the basolateral amygdaloid nucleus, the dorsolateral and median geniculate nuclei of the thalamus as well as in the ventral part of the hypothalamic dorsomedial nucleus

  16. Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats.

    Science.gov (United States)

    Rushaidhi, M; Zhang, H; Liu, P

    2013-03-27

    Increasing evidence suggests that altered arginine metabolism contributes to cognitive decline during ageing. Agmatine, decarboxylated arginine, has a variety of pharmacological effects, including the modulation of behavioural function. A recent study demonstrated the beneficial effects of short-term agmatine treatment in aged rats. The present study investigated how intraperitoneal administration of agmatine (40mg/kg, once daily) over 4-6weeks affected behavioural function and neurochemistry in aged Sprague-Dawley rats. Aged rats treated with saline displayed significantly reduced exploratory activity in the open field, impaired spatial learning and memory in the water maze and object recognition memory relative to young rats. Prolonged agmatine treatment improved animals' performance in the reversal test of the water maze and object recognition memory test, and significantly suppressed age-related elevation in nitric oxide synthase activity in the dentate gyrus of the hippocampus and prefrontal cortex. However, this prolonged supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings further demonstrate that exogenous agmatine selectively improves behavioural function in aged rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    Science.gov (United States)

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  18. The selective antagonism of P2X7 and P2Y1 receptors prevents synaptic failure and affects cell proliferation induced by oxygen and glucose deprivation in rat dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Giovanna Maraula

    Full Text Available Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS, including dentate gyrus (DG. The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD. Application of MRS2179 (selective antagonist of P2Y1 receptor and BBG (selective antagonist of P2X7 receptor, before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ of slices prepared from rats treated with 5-Bromo-2'-deoxyuridine (BrdU were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX. The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG.

  19. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats.

    Directory of Open Access Journals (Sweden)

    Anna Rita Zuena

    Full Text Available Prenatal Restraint Stress (PRS in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats" showed increased anxiety-like behavior in the elevated plus maze (EPM, a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.

  20. Anthropometrics of mental foramen in dry dentate and edentulous mandibles in Coastal Andhra population of Andhra Pradesh State

    Directory of Open Access Journals (Sweden)

    Srinivas Moogala

    2014-01-01

    Full Text Available Aim: The aim of this study is to determine the morphological features and morphometrics of mental foramen with reference to surrounding anatomical landmarks in Coastal Andhra population of Andhra Pradesh State. Materials and Methods: Two-hundred and nineteen dry dentate and edentulous mandibles are examined in this study. Out of these 127 were dentate and 92 were edentulous. Various morphological and morphometrical parameters were measured by using digital Vernier caliper, metallic wire and metallic scale on both the right and left sides. Results: In the present study, the distance between most anterior margin of mental foramen and posterior border of ramus of the mandible is [MF-PR], MF-PR is 69.61 ± 6.03 mm on the right side and is 69.17 ± 6. 0 mm on left side in dentate mandible. In edentulous type, MF-PR is 68.39 ±6.4 mm on right side and 68.81 ± 6.55 mm on left side. In the present study, the distance between symphysis menti and most anterior margin of mental foramen [MF-SM] in dentate mandible is 28.24 ± 5.09 mm on right side and is 27.45 ± 3.7 mm on left side. In edentulous mandible (MF-SM is 28.51 ± 4.5 mm on right side and on left side is 27.99 ± 4.50 mm. Conclusion: Acquiring the knowledge and importance of anatomy of mental foramen is helpful in avoiding neurovascular complications, during regional anesthesia, peri apical surgeries, nerve repositioning and dental implant placement.

  1. When Are New Hippocampal Neurons, Born in the Adult Brain, Integrated into the Network That Processes Spatial Information?

    Science.gov (United States)

    Sandoval, C. Jimena; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-01-01

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012

  2. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  3. Effects of thiamine deficiency on food intake and body weight increment in adult female and growing rats.

    Science.gov (United States)

    Bâ, Abdoulaye

    2012-09-01

    The present study compared the effects of thiamine (vitamin B1) deficiency (TD) on the patterns of food intake and body weight in adult female and neonatal Wistar rats. The adults weighed 250-270 g at the start and were fed for 60 days either with a synthetic TD diet (211 B1) or with the same synthetic diet+thiamine (210 B1). TD led to a marked reduction in food intake and the body weight set point, both recovering rapidly to their initial level in only 3 days after dietetic reversion. The effects of TD in developing rats were evaluated by subjecting pregnant rats to thiamine restriction during different time windows: prenatal (3 days before mating to parturition); perinatal (7 days after mating to the 10th postnatal day); and postnatal (from parturition to weaning). The effect of TD on the occurrence of low birth weight and ponderal growth retardation was examined from postnatal days 1 to 45. Only perinatal TD significantly decreased birth weight relative to untreated or pair-fed controls. Moreover, compared with the control treatments, ponderal growth retardation was not induced by prenatal TD, whereas induction of TD from perinatal into postnatal periods did cause ponderal growth retardation, with long-lasting effects persisting in adulthood. The results suggest a major physiological role of thiamine in the homeostasis of body weight programming, increment, and set point regulation in both offspring and adult female rats.

  4. Peripubertal castration of male rats, adult open field ambulation and partner preference behavior.

    Science.gov (United States)

    Brand, T; Slob, A K

    1988-09-15

    The validity of the hypothesis put forward earlier, that testicular secretions during puberty have an organizing effect on open field ambulation was examined. Male rats were castrated or sham-operated at days 21, 43 or 70. At the age of 17 weeks the males were tested in an automated, octagonal open field (3 consecutive days, 3 min/day) for locomotor activity. Male rats castrated at day 21 or day 43 ambulated more than sham-castrated controls. Males castrated at day 70 did not differ from sham-castrated controls. It thus appears that pubertal testicular secretion(s) organize adult open field locomotor activity in male rats. From 18 weeks of age partner preference behavior was tested in the same open field apparatus with one adjacent cage containing an ovariectomized female and an opposite one containing an ovariectomized female brought into heat. The females in the adjacent cages were separated from the experimental males in the octagonal cage by wire mesh. Peripubertally castrated males did not show a clear-cut partner preference, whereas the intact males preferred the vicinity of the estrous female. There were no differences among the males castrated either before, during or after puberty. Testosterone treatment (crystalline T in silastic capsules) caused peripubertally castrated males to prefer the estrous female. Thus, adult partner preference behavior does not seem to be organized by peripubertal testicular androgens.

  5. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats.

    Science.gov (United States)

    Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón

    2018-07-02

    Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Hisatsune, Marie; Murakami, Taku; Nakada, Hiroyuki; Fujii, Hiroaki

    2018-02-01

    The idea that maintained LTP and memory are lost by either increase in intracellular Zn 2+ in dentate granule cells or increase in intracellular Ca 2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K + into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K + -induced increase in intracellular Zn 2+ but not high K + -induced increase in intracellular Ca 2+ . High K + -induced disturbances of LTP and intracellular Zn 2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn 2+ , but not increase in intracellular Ca 2+ . NMDA and glucocorticoid, which induced Zn 2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn 2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn 2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca 2+ influx.

  7. Study of the effects of a prenatal or postnatal irradiation of 150 rads in adult rats

    International Nuclear Information System (INIS)

    Coffigny, H.; Pasquier, C.

    Pregnant females and newborn rats were exposed to a gamma irradiation of 150 rads. The stage of gestation at the time of irradiation varied from 14 to 21 days. The newborn rats were irradiated at 0, 1 and 2 days of age. The effect of irradiation of foetus and newborn rats depends on the age of the animal at the time of irradiation. This effect was specially important at the beginning of the foetal life. Neonatal mortality, growth of body weight and adult brain development were investigated. A modification of germ cell radiosensitivity during the period studied, was emphasized [fr

  8. Adult and newborn rat inner retinal oxygenation during carbogen and 100% oxygen breathing. Comparison using magnetic resonance imaging delta Po2 mapping.

    Science.gov (United States)

    Berkowitz, B A

    1996-09-01

    To test the hypothesis that breathing carbogen (95% O2-5% CO2) oxygenates the inner retina better than breathing 100% oxygen using an magnetic resonance imaging (MRI) method that noninvasively measures inner retinal oxygenation in normal adult and newborn rats. Urethane-anesthetized adult and newborn (day 18) rats were studied. Sequential images were acquired in room air combined with either 100% oxygen or carbogen breathing. Normalized vitreous signal intensity changes were converted to oxygen tension changes (delta PO2) either on a pixel-by-pixel basis or in specific regions of interest. Systemic levels of hyperoxia during carbogen or 100% oxygen breathing were not significantly different (P > 0.05). In the adult rat, a significant difference (P = 0.017) was found in the preretinal vitreous delta PO2 during the breathing of either carbogen (130 +/- 9 mm Hg, mean +/- SEM; n = 5) or 100% oxygen (88 +/- 16 mm Hg; n = 5). Agreement was found between the MRI-determined delta PO2 values and literature oxygen microelectrodes data. In the newborn rat, significant differences (P delta PO2 were found during carbogen (164 +/- 23 mm Hg; n = 3) and oxygen breathing (91 +/- 8 mm Hg; n = 3). MRI delta PO2 mapping demonstrated for the first time that in the normal adult and newborn rat eye, carbogen breathing oxygenates the inner retina better than 100% oxygen breathing.

  9. Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy.

    Science.gov (United States)

    Pallud, Johan; Häussler, Ute; Langlois, Mélanie; Hamelin, Sophie; Devaux, Bertrand; Deransart, Colin; Depaulis, Antoine

    2011-03-01

    Epilepsy-associated changes of the anatomical organization of the dentate gyrus and hilus may play a critical role in the initiation and propagation of seizures in mesial temporal lobe epilepsy (MTLE). This study evaluated the role of longitudinal projections in the propagation of hippocampal paroxysmal discharges (HPD) in dorsal hippocampus by performing a selective transection in a mouse model for MTLE obtained by a single unilateral intrahippocampal injection of kainic acid (KA). Full transections of the dentate gyrus and hilus were performed in the transverse axis at 22 days after KA injection when spontaneous HPD were fully developed. They: (i) significantly reduced the occurrence of HPD; (ii) increased their duration at the KA injection site; (iii) abolished their spread along the longitudinal axis of the hippocampal formation and; (iv) limited granule cell dispersion (GCD) of the dentate gyrus posterior to the transection. These data suggest that: (i) longitudinal projections through the dentate gyrus and hilus are involved in HPD spread; (ii) distant hippocampal circuits participate in the generation and cessation of HPD and; (iii) GCD requires continuous HPD to develop, even when seizures are established. Our data reveal a critical role for longitudinal projections in the generation and spread of hippocampal seizures. Copyright © 2010 Wiley-Liss, Inc.

  10. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil. Electrophysiological...

  11. Effects of chronic isoproterenol administration of β1-adrenoceptors and growth of pancreas of young and adult rats

    International Nuclear Information System (INIS)

    Schneyer, C.A.; Humphreys-Beher, M.

    1988-01-01

    [ 3 H]Dihydroalprenolol (DHA) binding of membranes of adult pancreas differed from that of pancreas of young rats, and the DHA binding in the presence of atenolol or butoxamine also was different in the two age groups. The adult pancreas had 93% β 2 - and 7% β 1 -adrenoceptors and did not exhibit an increased incorporation of [ 3 H]thymidine into deoxyribonucleic acid (DNA) following 2 days of DL-isoproterenol (ISO) administration; in contrast, pancreas of the 20-day-old rat had 71% β 2 -adrenoceptors and 27% β 1 -adrenoceptors and exhibited a 34-fold increase over that of adult, and a 6-fold increase over that of the control 20-day-old pancreas. Acinar cell differentiation was also accelerated by a 7-day regimen of ISO administration from 13 to 20 days of age. These growth responses to ISO appear to be β 1 mediated. The lack of β 1 -adrenoceptors in the adult may account for the failure of the adult pancreas to exhibit a growth response to ISO

  12. Reduction of the immunostainable length of the hippocampal dentate granule cells’ primary cilia in 3xAD-transgenic mice producing human Aβ1-42 and tau

    International Nuclear Information System (INIS)

    Chakravarthy, Balu; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Atkinson, Trevor; LaFerla, Frank M.; Ito, Shingo; Armato, Ubaldo; Dal Prà, Ilaria; Whitfield, James

    2012-01-01

    Highlights: ► Aβ and tau-induced neurofibrillary tangles play a key role in Alzheimer’s disease. ► Aβ 1-42 and mutant tau protein together reduce the primary cilium length. ► This shortening likely reduces cilium-dependent neurogenesis and memory function. ► This provides a model of an Aβ/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatin receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75 NTR ). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6–24-months-old triple transgenic Alzheimer’s disease model mice (3xTg-AD) producing both Aβ 1-42 and the mutant human tau protein tau P301L, the dentate granule cells still had immunostainable SSTR3- and p75 NTR -bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of Aβ 1-42 or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of Aβ 1-42 and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.

  13. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  14. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  15. SREB2/GPR85, a schizophrenia risk factor, negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent learning and memory.

    Science.gov (United States)

    Chen, Qian; Kogan, Jeffrey H; Gross, Adam K; Zhou, Yuan; Walton, Noah M; Shin, Rick; Heusner, Carrie L; Miyake, Shinichi; Tajinda, Katsunori; Tamura, Kouichi; Matsumoto, Mitsuyuki

    2012-09-01

    SREB2/GPR85, a member of the super-conserved receptor expressed in brain (SREB) family, is the most conserved G-protein-coupled receptor in vertebrate evolution. Previous human and mouse genetic studies have indicated a possible link between SREB2 and schizophrenia. SREB2 is robustly expressed in the hippocampal formation, especially in the dentate gyrus, a structure with an established involvement in psychiatric disorders and cognition. However, the function of SREB2 in the hippocampus remains elusive. Here we show that SREB2 regulates hippocampal adult neurogenesis, which impacts on cognitive function. Bromodeoxyuridine incorporation and immunohistochemistry were conducted in SREB2 transgenic (Tg, over-expression) and knockout (KO, null-mutant) mice to quantitatively assay adult neurogenesis and newborn neuron dendritic morphology. Cognitive responses associated with adult neurogenesis alteration were evaluated in SREB2 mutant mice. In SREB2 Tg mice, both new cell proliferation and new neuron survival were decreased in the dentate gyrus, whereas an enhancement of new neuron survival occurred in SREB2 KO mouse dentate gyrus. Doublecortin staining revealed dendritic morphology deficits of newly generated neurons in SREB2 Tg mice. In a spatial pattern separation task, SREB2 Tg mice displayed a decreased ability to discriminate spatial relationships, whereas SREB2 KO mice had enhanced abilities in this task. Additionally, SREB2 Tg and KO mice had reciprocal phenotypes in a Y-maze working memory task. Our results indicate that SREB2 is a negative regulator of adult neurogenesis and consequential cognitive functions. Inhibition of SREB2 function may be a novel approach to enhance hippocampal adult neurogenesis and cognitive abilities to ameliorate core symptoms of psychiatric patients. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    Science.gov (United States)

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    Science.gov (United States)

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. © The Author(s) 2014.

  18. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    Directory of Open Access Journals (Sweden)

    Jacqueline H Byrne

    Full Text Available BACKGROUND: Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. METHODS: Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT and the 5 choice continuous performance task (5C-CPT and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. RESULTS: AVD-deficient rats were deficient in vitamin D3 (<10 nM and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. CONCLUSIONS: AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  19. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia

    Directory of Open Access Journals (Sweden)

    Laura H. Tetri

    2018-03-01

    Full Text Available Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

  20. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer's type.

    Science.gov (United States)

    Bassani, Taysa B; Turnes, Joelle M; Moura, Eric L R; Bonato, Jéssica M; Cóppola-Segovia, Valentín; Zanata, Silvio M; Oliveira, Rúbia M M W; Vital, Maria A B F

    2017-09-29

    Curcumin is a natural polyphenol with evidence of antioxidant, anti-inflammatory and neuroprotective properties. Recent evidence also suggests that curcumin increases cognitive performance in animal models of dementia, and this effect would be related to its capacity to enhance adult neurogenesis. The aim of this study was to test the hypothesis that curcumin treatment would be able to preserve cognition by increasing neurogenesis and decreasing neuroinflammation in the model of dementia of Alzheimer's type induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) in Wistar rats. The animals were injected with ICV-STZ or vehicle and curcumin treatments (25, 50 and 100mg/kg, gavage) were performed for 30days. Four weeks after surgery, STZ-lesioned animals exhibited impairments in short-term spatial memory (Object Location Test (OLT) and Y maze) and short-term recognition memory (Object Recognition Test - ORT), decreased cell proliferation and immature neurons (Ki-67- and doublecortin-positive cells, respectively) in the subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus, and increased immunoreactivity for the glial markers GFAP and Iba-1 (neuroinflammation). Curcumin treatment in the doses of 50 and 100mg/kg prevented the deficits in recognition memory in the ORT, but not in spatial memory in the OLT and Y maze. Curcumin treatment exerted only slight improvements in neuroinflammation, resulting in no improvements in hippocampal and subventricular neurogenesis. These results suggest a positive effect of curcumin in object recognition memory which was not related to hippocampal neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of sex on ethanol consumption and conditioned taste aversion in adolescent and adult rats.

    Science.gov (United States)

    Schramm-Sapyta, Nicole L; Francis, Reynold; MacDonald, Andrea; Keistler, Colby; O'Neill, Lauren; Kuhn, Cynthia M

    2014-04-01

    Vulnerability to alcoholism is determined by many factors, including the balance of pleasurable vs. aversive alcohol-induced sensations: pleasurable sensations increase intake, while aversive sensations decrease it. Female sex and adolescent age are associated with lower sensitivity to intake-reducing effects and more rapid development of alcohol abuse. This study assessed voluntary drinking and the aversive effects of alcohol to determine whether these measures are inversely related across the sexes and development. Voluntary drinking of 20 % ethanol in an every-other-day (EOD) availability pattern and the dose-response relationship of ethanol conditioned taste aversion (CTA) were assessed in male and female adolescent and adult rats. CTA was sex specific in adult but not adolescent rats, with adult females exhibiting less aversion. Voluntary ethanol consumption varied according to age and individual differences but was not sex specific. Adolescents initially drank more than adults, exhibited greater day-to-day variation in consumption, were more susceptible to the alcohol deprivation effect, and took longer to establish individual differences in consumption patterns. These results show that the emergence of intake patterns differs between adolescents and adults. Adolescents as a group initiate drinking at high levels but decrease intake as they mature. A subset of adolescents maintained high drinking levels into adulthood. In contrast, most adults consumed at steady, low levels, but a small subset quickly established and maintained high-consumption patterns. Adolescents also showed marked deprivation-induced increases. Sex differences were not observed in EOD drinking during either adolescence or adulthood.

  2. Effect of 8 weeks Resistance Training on BDNF and TrkB in the Hippocampus of Adult Male Rats

    Directory of Open Access Journals (Sweden)

    S Mojtahedi

    2014-08-01

    Full Text Available Background & aim: Exercise enhances the synaptic plasticity and neuroprotective effects in the adult brain. However, it remains unknown that how plasticity molecules change following types of training. The purpose of this study was to determine the effect of eight weeks resistance training on protein levels of Brain Derived Neurotrophic Factor(BDNF and receptor of TrkB, in the hippocampus of adult male rats. Methods: In this experimental study, twelve adult male rats, 8 weeks of age, with an average weight of 200 to 225 grams were randomly divided into two groups, control and exercise respectively. The exercise was to increase the weight on the ladder. 24 hours after their last training session. The animals were killed and the hippocampus was removed for further testing. ELISA determined changes in protein levels. Data were analyzed by independent t test. Results: There was a significant difference between train and control groups In protein level of variables statically (p≤0.05. In addition, protein levels of BDNF and TrkB in the hippocampus of rats increased. Conclusion: Resistance training is beneficial for promoting hippocampal plasticity associated with BDNF signaling and consequently functional and cognitive benefits.

  3. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    Science.gov (United States)

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  4. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Mark W. Burke

    2016-10-01

    Full Text Available Fetal alcohol exposure (FAE alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus to (1 investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2 determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years. Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.

  5. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2011-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P...

  6. The effects of gonadectomy and binge-like ethanol exposure during adolescence on open field behaviour in adult male rats.

    Science.gov (United States)

    Yan, Wensheng; Kang, Jie; Zhang, Guoliang; Li, Shuangcheng; Kang, Yunxiao; Wang, Lei; Shi, Geming

    2015-09-14

    Binge drinking ethanol exposure during adolescence can lead to long-term neurobehavioural damage. It is not known whether the pubertal surge in testosterone that occurs during adolescence might impact the neurobehavioural effects of early ethanol exposure in adult animals. We examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats around postnatal day (P) 23. From P28-65,the rats were administered 3.0g/kg ethanol using a binge-like model of exposure. Dependent measurements included tests of open field behaviour, blood ethanol concentrations, and testosterone levels. As adults, significant decreases in open field activity were observed in the GX rats. The open field behaviour of the GX rats was restored after testosterone administration. Binge-like ethanol exposure altered most of the parameters of the open field behaviour, suggestive of alcohol-induced anxiety, but rats treated with alcohol in combination with gonadectomy showed less motor behaviour and grooming behaviour and an increase in immobility, suggesting ethanol-induced depression. These results indicated that testosterone is required for ethanol-induced behavioural changes and that testicular hormones are potent stimulators of ethanol-induced behaviours. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Autoradiographic studies of the protein metabolism and histochemical demonstration of the zinc content of the brain in diabetic rats. 1

    International Nuclear Information System (INIS)

    Gatzke, H.D.; Wildmeister, W.

    1979-01-01

    Diabetes mellitus was induced in rats by application of streptozotocin: 40 mg/kg body weight streptozotocin produced a fairly serious diabetes with minimal ketosis, 125 mg/kg body weight streptozotocin caused a severe diabetic keto-acidosis. After 72 hours these animals and also a group of control animals received 308 MBq/animal 3 H-leucine intraperitoneally. By means of stripping film autoradiograms the rates of uptake of 3 H-leucine in different areas of the rat brain were measured. The values of the control animals were compared with those of a fairly serious diabetes and those of a severe diabetic keto-acidosis. In the regions of the neocortex parietalis and of the thalamus the 3 H-leucine values of the diabetic animals were considerably lower in comparison with the controls, and that irrespective of the degree of severity of the diabetic disease. Compared with the control animals the 3 H-leucine values as well as the zinc content of diabetic animals decreased according to the degree of severity of the disease within the Ammon's horn and the dentate fascia. The particular significance of the Ammon's horn and the dentate fascia concerning diabetic metabolic conditions was discussed. (author)

  8. Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights from In Vivo Recordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts.

    Science.gov (United States)

    Jedlicka, Peter; Muellerleile, Julia; Schwarzacher, Stephan W

    2018-01-01

    The hippocampal dentate gyrus plays a role in spatial learning and memory and is thought to encode differences between similar environments. The integrity of excitatory and inhibitory transmission and a fine balance between them is essential for efficient processing of information. Therefore, identification and functional characterization of crucial molecular players at excitatory and inhibitory inputs is critical for understanding the dentate gyrus function. In this minireview, we discuss recent studies unraveling molecular mechanisms of excitatory/inhibitory synaptic transmission, long-term synaptic plasticity, and dentate granule cell excitability in the hippocampus of live animals. We focus on the role of three major postsynaptic proteins localized at excitatory (neuroligin-1) and inhibitory synapses (neuroligin-2 and collybistin). In vivo recordings of field potentials have the advantage of characterizing the effects of the loss of these proteins on the input-output function of granule cells embedded in a network with intact connectivity. The lack of neuroligin-1 leads to deficient synaptic plasticity and reduced excitation but normal granule cell output, suggesting unaltered excitation-inhibition ratio. In contrast, the lack of neuroligin-2 and collybistin reduces inhibition resulting in a shift towards excitation of the dentate circuitry.

  9. Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights from In Vivo Recordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts

    Directory of Open Access Journals (Sweden)

    Peter Jedlicka

    2018-01-01

    Full Text Available The hippocampal dentate gyrus plays a role in spatial learning and memory and is thought to encode differences between similar environments. The integrity of excitatory and inhibitory transmission and a fine balance between them is essential for efficient processing of information. Therefore, identification and functional characterization of crucial molecular players at excitatory and inhibitory inputs is critical for understanding the dentate gyrus function. In this minireview, we discuss recent studies unraveling molecular mechanisms of excitatory/inhibitory synaptic transmission, long-term synaptic plasticity, and dentate granule cell excitability in the hippocampus of live animals. We focus on the role of three major postsynaptic proteins localized at excitatory (neuroligin-1 and inhibitory synapses (neuroligin-2 and collybistin. In vivo recordings of field potentials have the advantage of characterizing the effects of the loss of these proteins on the input-output function of granule cells embedded in a network with intact connectivity. The lack of neuroligin-1 leads to deficient synaptic plasticity and reduced excitation but normal granule cell output, suggesting unaltered excitation-inhibition ratio. In contrast, the lack of neuroligin-2 and collybistin reduces inhibition resulting in a shift towards excitation of the dentate circuitry.

  10. High pressure and [Ca2+] produce an inverse modulation of synaptic input strength, network excitability and frequency response in the rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Thomas I Talpalar

    2016-09-01

    Full Text Available Hyperbaric environments induce the high pressure neurological syndrome (HPNS characterized by hyperexcitability of the central nervous system and memory impairment. Human divers and other animals experience the HPNS at pressures beyond 1.1 MPa. High pressure depresses synaptic transmission and alters its dynamics in various animal models. Medial perforant path (MPP synapses connecting the medial entorhinal cortex with the hippocampal formation are suppressed by 50% at 10.1MPa. Reduction of synaptic inputs is paradoxically associated with enhanced ability of dentate gyrus’ granule cells to generate spikes at high pressure. This mechanism allows MPP inputs to elicit standard granule cell outputs at 0.1 -25 Hz frequencies under hyperbaric conditions. An increased postsynaptic gain of MPP inputs probably allows diving animals to perform in hyperbaric environments, but makes them vulnerable to high intensity/frequency stimuli producing hyperexcitability. Increasing extracellular Ca2+ (Ca2+o partially reverted pressure-mediated depression of MPP inputs and increased MPP’s low-pass filter properties. We postulated that raising Ca2+o in addition to increase synaptic inputs may reduce network excitability in the dentate gyrus potentially improving its function and reducing sensitivity to high intensity and pathologic stimuli. For this matter, we activated the MPP with single and 50 Hz frequency stimuli that simulated physiologic and deleterious conditions, while assessing the granule cell’s output under various conditions of pressure and Ca2+o. Our results reveal that pressure and Ca2+o produce an inverse modulation on synaptic input strength and network excitability. These coincident phenomena suggest a potential general mechanism of networks that adjusts gain as an inverse function of synaptic inputs’ strength. Such mechanism may serve for adaptation to variable pressure and other physiological and pathological conditions and may explain the

  11. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    Science.gov (United States)

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood. Published by Elsevier Ltd.

  12. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted MR Images: Comparison between Gadobutrol and Linear Gadolinium-Based Contrast Agents.

    Science.gov (United States)

    Moser, F G; Watterson, C T; Weiss, S; Austin, M; Mirocha, J; Prasad, R; Wang, J

    2018-02-01

    In view of the recent observations that gadolinium deposits in brain tissue after intravenous injection, our aim of this study was to compare signal changes in the globus pallidus and dentate nucleus on unenhanced T1-weighted MR images in patients receiving serial doses of gadobutrol, a macrocyclic gadolinium-based contrast agent, with those seen in patients receiving linear gadolinium-based contrast agents. This was a retrospective analysis of on-site patients with brain tumors. Fifty-nine patients received only gadobutrol, and 60 patients received only linear gadolinium-based contrast agents. Linear gadolinium-based contrast agents included gadoversetamide, gadobenate dimeglumine, and gadodiamide. T1 signal intensity in the globus pallidus, dentate nucleus, and pons was measured on the precontrast portions of patients' first and seventh brain MRIs. Ratios of signal intensity comparing the globus pallidus with the pons (globus pallidus/pons) and dentate nucleus with the pons (dentate nucleus/pons) were calculated. Changes in the above signal intensity ratios were compared within the gadobutrol and linear agent groups, as well as between groups. The dentate nucleus/pons signal ratio increased in the linear gadolinium-based contrast agent group ( t = 4.215, P linear gadolinium-based contrast agent group ( t = 2.931, P linear gadolinium-based contrast agents. © 2018 by American Journal of Neuroradiology.

  13. Blockade of NMDA receptor subtype NR2B prevents seizures but not apoptosis of dentate gyrus neurons in bacterial meningitis in infant rats

    Science.gov (United States)

    Kolarova, Anna; Ringer, Ralph; Täuber, Martin G; Leib, Stephen L

    2003-01-01

    Background Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 μl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. Results Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16–25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60–31.8]; (P = NS) and 9.8 [1.7–27.3] (controls: 10.5 [2.4–21.75]) in animals treated with high dose RO 25-6981 (P = NS). Conclusions Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures. PMID:13129439

  14. Protein synthesis in the rat brain: a comparative in vivo and in vitro study in immature and adult animals

    International Nuclear Information System (INIS)

    Shahbazian, F.M.

    1985-01-01

    Rates of protein synthesis of CNS and other organs were compared in immature and adult rats by in vivo and slice techniques with administration of flooding doses of labeled precursor. The relationship between synthesis and brain region, cell type, subcellular fraction, or MW was examined. Incorporation of [ 14 C]valine into protein of CNS regions in vivo was about 1.2% per hour for immature rats and 0.6% for adults. For slices, the rates decreased significantly more in adults. In adult organs, the highest synthesis rate in vivo was found in liver (2.2% per hour) followed by kidney, spleen, lung, heart, brain, and muscle (0.5% per hour). In immature animals synthesis was highest in liver and spleen (2.5% per hour) and lowest in muscle (0.9% per hour). Slices all showed lower rates than in vivo, especially in adults. In vivo, protein synthesis rates of immature neurons and astrocytes and adult neurons exceeded those of whole brain, while that in adult astrocytes was the same. These results demonstrate a developmental difference of protein synthesis (about double in immature animals) in all brain cells, cell fractions and most brain protein. Similarly the decreased synthesis in brain slices - especially in adults, affects most proteins and structural elements

  15. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus.

    Science.gov (United States)

    Wang, Shi; Pan, De-Xi; Wang, Dan; Wan, Peng; Qiu, De-Lai; Jin, Qing-Hua

    2014-09-01

    The hippocampus is a key structure for learning and memory in mammals, and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. Despite a number of studies indicating that nitric oxide (NO) is involved in the formation and maintenance of LTP as a retrograde messenger, few studies have used neurotransmitter release as a visual indicator in awake animals to explore the role of NO in learning-dependent long-term enhancement of synaptic efficiency. Therefore, in the present study, the effects of l-NMMA (a NO synthase inhibitor) and SNP (a NO donor) on extracellular glutamate (Glu) concentrations and amplitudes of field excitatory postsynaptic potential (fEPSP) were measured in the hippocampal dentate gyrus (DG) region during the acquisition and extinction of active-avoidance behavior in freely-moving conscious rats. In the control group, the extracellular concentration of Glu in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to baseline levels following extinction training. In the experimental group, the change in Glu concentration was significantly reduced by local microinjection of l-NMMA, as was the acquisition of the active-avoidance behavior. In contrast, the change in Glu concentration was significantly enhanced by SNP, and the acquisition of the active-avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in extracellular Glu were accompanied by corresponding changes in fEPSP amplitude and active-avoidance behavior. Our results suggest that NO in the hippocampal DG facilitates active avoidance learning via enhancements of glutamate levels and synaptic efficiency in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Selective alteration of adult hippocampal neurogenesis and impaired spatial pattern separation performance in the RSK2-deficient mouse model of Coffin-Lowry syndrome.

    Science.gov (United States)

    Castillon, Charlotte; Lunion, Steeve; Desvignes, Nathalie; Hanauer, André; Laroche, Serge; Poirier, Roseline

    2018-07-01

    Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Genetic study of Pea (Pisum sativum L.) mutants with changed shape and/or dentation of leaves

    International Nuclear Information System (INIS)

    Naidenova, N.

    2001-01-01

    The purpose of this study is to describe the morphological differences between normal plants and mutants (due to irradiation) with different shape and/or dentation of leaflets and to evaluate their productivity and genetic potential. Dry seeds have been submitted to gamma irradiation with doses 100 Gy, 150 Gy and 200 Gy.The mutants studies in this research introduce an important source for further investigation of genetics of the mutant traits - dentation of leaflets, shape and especially flowering time that is controlled by genetically determined responses to photo period and temperature. Due to the clear phenotypic expression of the shape and leaves in some plants it is considered that the development of the leaves mutants is and important finding for pea genetics making tham valuable morphological markers for genetic investigations

  18. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats.

    Science.gov (United States)

    Hassan, Wafaa A; Aly, Mona S; Rahman, Taghride Abdel; Shahat, Asmaa S

    2013-06-01

    The levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats were measured following experimentally induced hypothyroidism. Hypothyroidism induced by daily oral administration of propylthiouracil (PTU, 5mg/kg body wt) caused a significant reduction in DA levels in most of the tissues examined of both young and adult rats after 21 and 28 days, in NE levels after all the time intervals studied in young rats, and after 21 and 28 days in adult rats. 5-HT exhibited a significant reduction in the selected brain regions and blood plasma after 21 and 28 days and in cardiac muscle after all the time intervals in the two age groups of animals. It may be suggested that the changes in monoamine levels induced by hypothyroidism may be due to disturbance in the synthesis and release of these amines through the neurons impairment or may be due to an alteration pattern of their synthesizing and/or degradative enzymes. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake

    OpenAIRE

    Perry, Jennifer L.; Anderson, Marissa M.; Nelson, Sarah E.; Carroll, Marilyn E.

    2007-01-01

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consis...

  20. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with