WorldWideScience

Sample records for adult rat bones

  1. Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons

    OpenAIRE

    SASAKI, MASANORI; HONMOU, OSAMU; Akiyama, Yukinori; Uede,Teiji; Hashi,Kazuo; Kocsis, Jeffery D.

    2001-01-01

    The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remov...

  2. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    Science.gov (United States)

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  3. Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats.

    Science.gov (United States)

    Mavropoulos, Anestis; Odman, Anna; Ammann, Patrick; Kiliaridis, Stavros

    2010-09-01

    Masticatory functional changes have been shown to influence the quantity and quality of the alveolar bone during growth. This study was designed to investigate the effect of masticatory function rehabilitation on the morphology and the trabecular architecture of the mandibular alveolar bone after cessation of growth. Forty-four Sprague-Dawley male rats received soft diet in order to develop masticatory muscle hypofunction. After 21 weeks, after cessation of growth, the animals were divided into two groups: the first group continued receiving soft diet for six more weeks (hypofunction group), while the second group changed to ordinary (hard) diet with the aim to restore a normal masticatory function (rehabilitation group). A third group of 16 male rats (normal group) received ordinary (hard) diet during the whole experimental period and served as control. Micro-tomographic histomorphometry was used to evaluate the architecture of the mandibular alveolar bone (e.g. bone volume fraction, trabecular thickness, trabecular separation, etc.) at the end of the experiment (27 weeks). The height and width of the alveolar process were measured as well. The alveolar process trabecular bone volume fraction (BV/TV) was lower for the animals of the hypofunctional group as compared to those of the normal (pTV was lower in comparison to the normal group (pnegative effects of hypofunction were not totally reversed during the period under study. PMID:20601301

  4. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    OpenAIRE

    Jodi A. Carlson Scholz; Agnès Vignery; James Gilligan; Nozer Mehta; Xiaoqing Xu; Christopher Miller; Jesse Bible; Jiliang Li; Qing Zhang,

    2012-01-01

    Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH). Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH o...

  5. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue s

  6. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    Science.gov (United States)

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. PMID:25857689

  7. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    Directory of Open Access Journals (Sweden)

    Jodi A. Carlson Scholz

    2012-12-01

    Full Text Available Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH. Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.

  8. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.

    Science.gov (United States)

    Shirazi-Fard, Yasaman; Anthony, Rachel A; Kwaczala, Andrea T; Judex, Stefan; Bloomfield, Susan A; Hogan, Harry A

    2013-10-01

    Extended periods of inactivity cause severe bone loss and concomitant deterioration of the musculoskeletal system. Considerable research has been aimed at better understanding the mechanisms and consequences of bone loss due to unloading and the associated effects on strength and fracture risk. One factor that has not been studied extensively but is of great interest, particularly for human spaceflight, is how multiple or repeated exposures to unloading and reloading affect the skeleton. Space agencies worldwide anticipate increased usage of repeat-flier crewmembers, and major thrust of research has focused on better understanding of microgravity effects on loss of bone density at weightbearing skeletal sites; however there is limited data available on repeat microgravity exposure. The adult hindlimb unloaded (HU) rat model was used to determine how an initial unloading cycle will affect a subsequent exposure to disuse and recovery thereafter. Animals underwent 28 days of HU starting at 6 months of age followed by 56 days of recovery, and then another 28 days of HU with 56 days of recovery. In vivo longitudinal pQCT was used to quantify bone morphological changes, and ex vivo μCT was used to quantify trabecular microarchitecture and cortical shell geometry at the proximal tibia metaphysis (PTM). The mechanical properties of trabecular bone were examined by the reduced platen compression mechanical test. The hypothesis that the initial HU exposure will mitigate decrements in bone mass and density for the second HU exposure was supported as pre- to post-HU declines in total BMC, total vBMD, and cortical area by in vivo pQCT at the proximal tibia metaphysis were milder for the second HU (and not significant) compared to an age-matched single HU (3% vs. 6%, 2% vs. 6%, and 2% vs. 6%, respectively). In contrast, the hypothesis was not supported at the microarchitectural level as losses in BV/TV and Tb.Th. were similar during 2nd HU exposure and age-matched single HU

  9. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells

    LENUS (Irish Health Repository)

    Farrell, Eric

    2011-01-31

    Abstract Background Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients\\' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic stem cells can form bone via the endochondral pathway, thereby turning in-vitro created cartilage into bone in-vivo. In this study we investigated the potential of human adult mesenchymal stem cells to form bone via the endochondral pathway. Methods MSCs were cultured for 28 days in chondrogenic, osteogenic or control medium prior to implantation. To further optimise this process we induced mineralisation in the chondrogenic constructs before implantation by changing to osteogenic medium during the last 7 days of culture. Results After 8 weeks of subcutaneous implantation in mice, bone and bone marrow formation was observed in 8 of 9 constructs cultured in chondrogenic medium. No bone was observed in any samples cultured in osteogenic medium. Switch to osteogenic medium for 7 days prevented formation of bone in-vivo. Addition of β-glycerophosphate to chondrogenic medium during the last 7 days in culture induced mineralisation of the matrix and still enabled formation of bone and marrow in both human and rat MSC cultures. To determine whether bone was formed by the host or by the implanted tissue we used an immunocompetent transgenic rat model. Thereby we found that osteoblasts in the bone were almost entirely of host origin but the osteocytes are of both host and donor origin. Conclusions The preliminary data presented in this manuscript demonstrates that chondrogenic priming of MSCs leads to bone formation in vivo using both human and rat cells. Furthermore, addition of

  10. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits.

    Science.gov (United States)

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-04-26

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  11. The Cotransplantation of Olfactory Ensheathing Cells with Bone Marrow Mesenchymal Stem Cells Exerts Antiapoptotic Effects in Adult Rats after Spinal Cord Injury

    OpenAIRE

    Shifeng Wu; Guanqun Cui; Hua Shao; Zhongjun Du; Ng, Jack C.; Cheng Peng

    2015-01-01

    The mechanisms behind the repairing effects of the cotransplantation of olfactory ensheathing cells (OECs) with bone marrow mesenchymal stromal cells (BMSCs) have not been fully understood. Therefore, we investigated the effects of the cotransplantation of OECs with BMSCs on antiapoptotic effects in adult rats for which the models of SCI are induced. We examined the changes in body weight, histopathological changes, apoptosis, and the expressions of apoptosis-related proteins after 14 days an...

  12. Migration and differentiation of bone marrow-derived multipotent adult progenitor cells through tail vein injection in a rat model of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Lei; Ruixiang Zhou

    2009-01-01

    BACKGROUND: Multipotent adult progenitor cells (MAPCs) from the bone marrow have been shown to differentiate into neurons.OBJECTIVE: To observe migration, survival, and neuronal-like differentiation of MAPCs by tail vein injection.DESIGN, TIME AND SETTING: Randomized, controlled experiment of neural tissue engineering was performed at the Laboratory for Cardio-Cerebrovascular Disease, Hospital of Integrated Traditional and Western Medicine, Tongji Medical College of Huazhong University of Science and Technology between September 2006 and August 2007.MATERIALS: Eighty Sprague Dawley rats, 3-6 months old, underwent cerebral ischemia/reperfusion by thread technique, and were randomly divided into model and MAPCs groups (n = 40).METHODS: Mononuclear cells were harvested from bone marrow using the Ficoll-Paque density gradient centrifugation method. After removing CD45 and glycophorin A-positive cells (GLYA+) with immunomagnetic beads, CD45 GLYA adult progenitor cells were labeled with bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU). A total of 1 mL cell suspension, containing 5 ×106 MAPCs, was injected into the MAPCs group through the tail vein. A total of 1 mL normal saline was injected into the model rats.MAIN OUTCOME MEASURES: After 60 days, BrdU and neuron-specific enolase double-positive cells were observed using immunofluorescence. Cell morphology was observed under electron microscopy, and nerve growth factor mRNA was measured through RT-PCR. In addition, rat neurological functions were measured with behavioral tests.RESULTS: Immunofluorescence revealed that MAPCs positive for BrdU and neuron specific enolase were found surrounding the ischemic focus in the MAPCs group. Microscopic observation suggested that MAPCs-derived neuronal-like cells connected with other nerve cells to form synapses, Compared with the model animals, the level of nerve growth factor mRNA was significantly upregulated in rats injected with MAPCs (P < 0.05). In addition, rats in the MAPCs

  13. The Effect of Vitamin E on the In Vitro Differentiation of Adult Rat Bone Marrow Mesenchymal Stem Cells to Osteoblast During Sodium Arsenite Exposure

    Directory of Open Access Journals (Sweden)

    M. Soleimani Mehranjani

    2016-01-01

    Full Text Available Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium containing 15% Fetal Bovine Serum and divided into: control, sodium arsenite (20 nM, vitamin E (50 µM and sodium arsenite + vitamin E for 21 days in the osteogenic media containing 10% of fetal bovine serum. Cell viability, bone matrix mineralization, intercellular and extracellular calcium, alkaline phosphatase activity, DNA damage and cell morphological changes were evaluated. Data were analyzed using one-way ANOVA and Tukey's test and means were considered significantly different at P<0.05. Results: Cell viability, bone matrix mineralization, calcium deposition, alkaline phosphatase activity and nuclei diameter decreased significantly in the sodium arsenite group. The mentioned parameters increased significantly in cells treated with sodium arsenite + vitamin E to the control level (P<0.05. Cytoplasmic extensions were also observed in the vitamin E group. Conclusions: Vitamin E reduces sodium arsenite toxicity, increasing osteogenic differentiation in rMSCs. Sci J Hamadan Univ Med Sci . 2016; 22 (4 :276-285

  14. Moderate exercise during pregnancy in Wistar rats alters bone and body composition of the adult offspring in a sex-dependent manner.

    Directory of Open Access Journals (Sweden)

    Brielle V Rosa

    Full Text Available Exercise during pregnancy may have long-lasting effects on offspring health. Musculoskeletal growth and development, metabolism, and later-life disease risk can all be impacted by the maternal environment during pregnancy. The skeleton influences glucose handling through the actions of the bone-derived hormone osteocalcin. The purpose of this study was to test the effects of moderate maternal exercise during pregnancy on the bone and body composition of the offspring in adult life, and to investigate the role of osteocalcin in these effects. Groups of pregnant Wistar rats either performed bipedal standing exercise to obtain food/water throughout gestation but not lactation, or were fed conventionally. Litters were reduced to 8/dam and pups were raised to maturity under control conditions. Whole body dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative computed tomography scans of the right tibia were performed. At study termination blood and tissue samples were collected. Serum concentrations of fully and undercarboxylated osteocalcin were measured, and the relative expression levels of osteocalcin, insulin receptor, Forkhead box transcription factor O1, and osteotesticular protein tyrosine phosphatase mRNA were quantified. Body mass did not differ between the offspring of exercised and control dams, but the male offspring of exercised dams had a greater % fat and lower % lean than controls (p=0.001 and p=0.0008, respectively. At the mid-tibial diaphysis, offspring of exercised dams had a lower volumetric bone mineral density than controls (p=0.01 and in the male offspring of exercised dams the bone: muscle relationship was fundamentally altered. Serum concentrations of undercarboxylated osteocalcin were significantly greater in the male offspring of exercised dams than in controls (p=0.02; however, the relative expression of the measured genes did not differ between groups. These results suggest that moderate exercise during

  15. In Vitro Study of the Effect of Vitamin E on Viability, Morphological Changes and Induction of Osteogenic Differentiation in Adult Rat Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    M Soleimani Mehranjani

    2014-10-01

    Full Text Available Introduction: Vitamin E as a strong antioxidant plays an important role in inhibiting free radicals. Therefore, this study aimed to investigate the effect of vitamin E on the viability, morphology and osteogenic differentiation in bone marrow mesenchymal stem cells of an adult rat. Methods: The bone marrow mesenchymal stem cells were extracted using the flashing-out method. At the end of the third passage, cells were divided into groups of control and experimental. Experimental cells were treated withVitamin E (5,10,15,25,50,100,150μM for a period of 21 days in the osteogenic media containing 10% of fetal bovine serum. The cell viability, bone matrix mineralization, intercellular and extracellular calcium deposition, alkaline phosphatase activity, expression of genes and synthesis of proteins of osteopontin and osteocalcin as well as morphological changes of the cells were investigated. The study data was analyzed using one-way ANOVA and T-Test setting the significant P value at P<0.05. Results: Within vitamin- E treated cells, the mean viability, mean bone matrix mineralization, calcium deposition, alkaline phosphatase activity, expression and synthesis of osteopontin and osteocalcin of the mesenchymal stem cells treated with vitamin E significantly increased in a dose dependent manner. Also cytoplasm extensions were observed in the cells treated with vitamin E. Conclusion: Since vitamin E caused a significant increase in cell viability and osteogenic differentiation in the mesenchymal stem cells, therefore it can be utilized in order to increase cell differentiation and cell survival.

  16. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Cristina [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden); Raimondo, Stefania [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Haneef, Maryam S. [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Geuna, Stefano [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Terenghi, Giorgio [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Shawcross, Susan G., E-mail: sue.shawcross@manchester.ac.uk [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Wiberg, Mikael [Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden)

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.

  17. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    International Nuclear Information System (INIS)

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker® staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: ► Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. ► p53 expression does not appreciably influence the biology of Schwann or stem cells. ► Notch 2 expression was similar in cells derived from animals of different ages. ► Proliferation rates of dMSC varied little over time or with animal age.

  18. Effect of magnesium deficiency on bone metabolism in female rats

    Directory of Open Access Journals (Sweden)

    E. M. Al-Khshab

    2009-01-01

    Full Text Available The present study undertakes the deficiency effect of dietary magnesium on bone metabolism and some biochemical parameters in female rats. Experimental diets included control diet (65 mg magnesium / 100 g and the deficient magnesium (3 mg/100g diet. Deionized water was supplied for drinking. Forty six albino female rats were divided into two main groups, the first group included 18 adult female rats, divided into 9 control and 9 animals given magnesium deficient diet. The second group included young female rats divided into two groups, the first group was treated from dams،and included 14 young female rats. They were divided into 7 control and 7 magnesium deficient group. The other one was treated at 28 days old and included 14 young female rats, which were divided into 7 control and 7 magnesium deficient group. Blood samples were obtained at specific times from each group for biochemical parameters: magnesium, alkaline phosphatase activity (ALP, albumin, calcium and phosphorus were estimated. At the end of the experimental period, rats were anesthetized and killed. The right femurs were obtained for mineral analysis in bone ash (Ca, Mg. The results of adult female (Mg deficient group showed a significant decrease in magnesium, ALP activity, albumin, calcium (within normal range. Both young female rat groups showed a significant decrease in magnesium, ALP and albumin compared with control group. The mineral analysis in bone ash showed no significant differences in calcium level where a significant decrease in magnesium level was observed compared with the control groups. It was concluded from this study, that magnesium deficiency could be used for detection of osteoporosis and defect of bone formation in adult and young female rats, respectively.

  19. 自体骨髓基质干细胞移植对大鼠脊髓损伤的疗效%EFFECTS OF TRANSPLANTATION OF AUTOLOGOUS BONE MARROW STROMAL CELLS ON REPAIR OF SPINAL CORD INJURY IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    沈肖方; 王延伟; 刘晓阳; 刘洪涛

    2011-01-01

    [目的]观察自体骨髓基质干细胞(bone marrow stromal cells,BMSCs)移植对大鼠脊髓损伤(SCI)的治疗效果.[方法]体外分离纯化大鼠骨髓基质干细胞,取46例Wistar大鼠采用改良的Allen's装置在TIl水平制成大鼠脊髓损伤模型,随机分成基质干细胞(MSCs)移植组(n=23)和对照组(n=23),分别于术后1、4周通过BBB评分观察大鼠SCI后功能的恢复情况.[结果]术前所有大鼠BBB评分均为21分,脊髓损伤后为0分,所有大鼠神经功能缺损症状随着时间的推移都有不同程度的减轻.两组术后4周时BBB评分均较术后1周时高,差异有统计学意义(P<0.05).移植组术后1、4周时BBB评分均高于对照组,差异有统计学意义(P<0.05).[结论]BMSCs移植有助予大鼠脊髓损伤后的修复重建和功能恢复.%[Objective] To observe the effects of transplantation of autologous bone marrow stromal cells (BMSCs) on repair of spinal cord injury (SCI) in adult rats. [Methods] Autologous bone marrow stromal cells were isolated and purified. 46 Wistar rats with spinal cord injury were randomly divided into two groups (n = 23, each). The BMSCs group was received transplantation of autologous bone marrow stromal cells, and the control group was only given spinal cord injury. At one and four weeks after surgery, the functional recovery of the hind limbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score. [Results] The spinal cord function BBB scores at 4 weeks after bone marrow stromal cell transplantation were significantly higher than those at one week after bone marrow stromal cell transplantation in the two groups. At one and four weeks after bone marrow stromal cell transplantation, the BBB scores in the BMSCs group were significantly higher than those in the control group (P < 0.05). [Conclusion] Autologous bone marrow stem cell transplantation is effective for treatment of spinal cord injury of adult rats.

  20. A Novel Cyclic PTH(1-17) analog with bone anabolic activity and efficacy sufficient to treat established osteopenia in adult ovariectomized rats

    DEFF Research Database (Denmark)

    Morko, Jukka; Peng, ZhiQi; Vääräniemi, Jukka; Rissanen, Jukka; Suominen, Mari; Fagerlund, Katja; Suutari, Tiina A.; Boonen, Harrie C.M.; Neerup, Trine S.R.; Bak, Hanne H.; Halleen, Jussi

    Recombinant human parathyroid hormone (PTH) analogs [PTH(1-34) and PTH(1-84)] are used as bone anabolic agents in clinical practice. Hitherto, bone anabolic activity has not been observed with PTH analogs shorter than 28 amino acids in vivo. The purpose of this study was to characterize effects of...... trabecular bone exacerbated in OVX rats treated with vehicle. Treatment with ZP2307 reversed the development of osteopenia in tibial metaphysis and lumbar vertebra at all doses in a dose-dependent manner, and enhanced bone formation on their trabecular bone surface at the dose of 200.0 µg/kg/d. Treatment...... with ZP2307 also reversed OVX-induced reduction in lumbar vertebral strength at the doses of 6.0-200.0 µg/kg/d and increased cortical thickness in tibial diaphysis at the doses of 60.0-200.0 µg/kg/d. Treatment with PTH(1-34) induced similar dose-dependent effects although stronger than treatment with...

  1. Kangaroo rat bone compared to white rat bone after short-term disuse and exercise

    Science.gov (United States)

    Muths, E.; Reichman, O. J.

    1996-01-01

    Kangaroo rats (Dipodomys ordii) were used to study the effects of confinement on mechanical properties of bone with a long range objective of proposing an alternative to the white rat model for the study of disuse osteoporosis. Kangaroo rats exhibit bipedal locomotion, which subjects their limbs to substantial accelerative forces in addition to the normal stress of weight bearing. We subjected groups of kangaroo rats and white rats (Rattus norvegicus) to one of two confinement treatments or to an exercise regime; animals were exercised at a rate calculated to replicate their (respective) daily exercise patterns. White laboratory rats were used as the comparison because they are currently the accepted model used in the study of disuse osteoporosis. After 6 weeks of treatment, rats were killed and the long bones of their hind limbs were tested mechanically and examined for histomorphometric changes. We found that kangaroo rats held in confinement had less ash content in their hind limbs than exercised kangaroo rats. In general, treated kangaroo rats showed morphometric and mechanical bone deterioration compared to controls and exercised kangaroo rats appeared to have slightly “stronger” bones than confined animals. White rats exhibited no significant differences between treatments. These preliminary results suggest that kangaroo rats may be an effective model in the study of disuse osteoporosis.

  2. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: tkasai@den.hokudai.ac.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  3. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells.

    OpenAIRE

    de Jong Robert; O'Brien Fergal J; Kops Nicole; Koevoet Wendy; Odörfer Kathrin I; Both Sanne K; Farrell Eric; Verhaar Jan A; Cuijpers Vincent; Jansen John; Erben Reinhold G; van Osch Gerjo JVM

    2011-01-01

    Abstract Background Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic ...

  4. BMP3 expression in the adult rat CNS.

    Science.gov (United States)

    Yamashita, Kanna; Mikawa, Sumiko; Sato, Kohji

    2016-07-15

    Bone morphogenetic protein-3 (BMP3) is a very unique member of the TGF-β superfamily, because it functions as an antagonist to both the canonical BMP and activin pathways and plays important roles in multiple biological events. Although BMP3 expression has been described in the early development of the kidney, intestine and bone, little information is available for BMP3 expression in the central nervous system (CNS). We, thus, investigated BMP3 expression in the adult rat CNS using immunohistochemistry. BMP3 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP3 protein. These data indicate that BMP3 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that BMP3 plays important roles in the adult brain. PMID:27130896

  5. Osteogenic Potential of Multipotent Adult Progenitor Cells for Calvaria Bone Regeneration

    Science.gov (United States)

    Lee, Dong Joon; Park, Yonsil; Hu, Wei-Shou; Ko, Ching-Chang

    2016-01-01

    Osteogenic cells derived from rat multipotent adult progenitor cells (rMAPCs) were investigated for their potential use in bone regeneration. rMAPCs are adult stem cells derived from bone marrow that have a high proliferation capacity and the differentiation potential to multiple lineages. They may also offer immunomodulatory properties favorable for applications for regenerative medicine. rMAPCs were cultivated as single cells or as 3D aggregates in osteogenic media for up to 38 days, and their differentiation to bone lineage was then assessed by immunostaining of osteocalcin and collagen type I and by mineralization assays. The capability of rMAPCs in facilitating bone regeneration was evaluated in vivo by the direct implantation of multipotent adult progenitor cell (MAPC) aggregates in rat calvarial defects. Bone regeneration was examined radiographically, histologically, and histomorphometrically. Results showed that rMAPCs successfully differentiated into osteogenic lineage by demonstrating mineralized extracellular matrix formation in vitro and induced new bone formation by the effect of rMAPC aggregates in vivo. These outcomes confirm that rMAPCs have a good osteogenic potential and provide insights into rMAPCs as a novel adult stem cell source for bone regeneration. PMID:27239552

  6. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  7. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  8. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats

    International Nuclear Information System (INIS)

    Patients sustaining bony fractures frequently require the application of bone graft substitutes to fill the bone defects. In the meantime, anti-osteoporosis drugs may be added in bone fillers to treat osteoporosis, especially in postmenopausal women and the elderly. The effects of zoledronate-impregnated calcium phosphate cement (ZLN/CPC) on ovariectomized (OVX) rats were evaluated. OVX rats were implanted with ZLN/CPC, containing 0.025 mg ZLN in the greater omentum. Afterward the clinical sign of toxicity was recorded for eight weeks. The rats were sacrificed and blood samples were collected for hematology and serum bone turnover markers analyses. The four limbs of the rats were harvested and micro-computer tomography (micro-CT) scanning and bone ash analyses were performed. No clinical toxicity was observed in the treated rats. Compared to the OVX rats, levels of bone resorption markers (fragments of C-telopeptides of type I collagen) and bone formation markers (alkaline phosphatase and osteocalcin) decreased significantly in the treated rats. Osteopontin, which mediates the anchoring of osteoclasts to the mineral matrix of bones, also decreased significantly. Micro-CT scanning and histologic examinations of the distal femoral metaphyses showed that the cancellous bone architectures were restored, with a concomitant decrease in bone porosity. The bone mineral content in the bone ashes also increased significantly. This study indicates that ZLN-impregnated CPC reduces bone turnover rate and restores bone architecture in OVX rats. CPC may be an appropriate carrier to deliver drugs to treat osteoporosis, and this approach may also reduce rates of post-dosing symptoms for intravenous ZLN delivery. (paper)

  9. Alveolar bone of BBMl rats: a morphometric and histochemical study

    OpenAIRE

    Johnson, R B; Carlson, E. C.

    1989-01-01

    The present study reported histochemical changes in alveolar bone glycosaminoglycans (GAG) (using Safranin 0 ) and in interdental bone height in three groups of BB/W rats: diabetic, diabetes prone, and diabetes resistant. Safranin O staining intensity suggested that total GAG levels were highest in diabetic bone (p

  10. Influence of Gastrectomy on Cortical and Cancellous Bones in Rats

    Directory of Open Access Journals (Sweden)

    Jun Iwamoto

    2013-01-01

    Full Text Available The aim of the present study was to examine the influence of gastrectomy (GX on cortical and cancellous bones in rats. Twenty male Sprague-Dawley rats were randomized into the two groups of 10 animals each: a sham operation (control group and a GX group. Seven weeks after surgery, the bone mineral content and density (BMC and BMD, resp. and the mechanical strength of the femur were determined, and bone histomorphometric analyses were performed on the tibia. GX induced decreases in the BMC, BMD, ultimate force, work to failure, and stiffness of the femoral distal metaphysis and the BMC, BMD, and ultimate force of the femoral diaphysis. GX induced a decrease in cancellous bone mass, characterized by an increased osteoid thickness, osteoid surface, osteoid volume, and bone formation. GX also induced a decrease in cortical bone mass, characterized by increased endocortical bone resorption. The GX induced reductions in the bone mass and strength parameters were greater in cancellous bone than in cortical bone. The present study showed that the response of bone formation, resorption, and osteoid parameters to GX and the degree of GX-induced osteopenia and the deterioration of bone strength appeared to differ between cortical and cancellous bones in rats.

  11. The Effect of Estrogen on the Restoration of Bone Mass and Bone Quality in Ovariectomized Rats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To evaluate the effect of estrogen on its ability to restore the bone mass and bone quality in ovariectomized rats by examining the changes of bone morphology and histomorphometry, 3month-old rats were divided randomly into 4 groups: normal control, ovariectomized (OVX), shamoperated (Sham-O) and OVX plus estrogen (OVX+E2). Treatment initiated from the day 8 weeks after operation and continued for 12 weeks. Bone morphology and histomorphometry were examined afterwards. Results showed that comparing to control group, the trabecular bone in OVX appeared thinner and reduced in the amount. The connectivity between trabecula was decreased and the structure disordered. The free-end of trabecula was increased. The cavity of bone marrow enlarged. After treatment with estrogen, above changes improved remarkably by different degree, although did not reach the normal face. The bone histomorphometry results damonstrated that estrogen treatment increased bone mass and the amount of trabecula by 129% and 132% respectively (P<0. 05). The activity of bone resorption decreased significantly and the rate of bone formation increased to 203 %. These results suggest that treatment of ovariectomized rats with estrogen can not only increase bone mass, also improve the bone structure and enhance the property of bone mechanics.

  12. Radiation nephropathy in young and adult rats

    International Nuclear Information System (INIS)

    The effects of bilateral kidney irradiation were compared in young and adult rats. During a 1 year period after a single dose of 0, 7.5, 10, 12.5, or 15 Gy on both kidneys, renal function (glomerular filtration rate and effective renal plasma flow), urine composition, and systolic blood pressure were measured periodically. The first changes after irradiation were observed in the glomerular filtration rate and urine osmolality. One month after 10, 12.5, and 15 Gy, glomerular filtration rate (GFR) and urine osmolality had declined below control values in the young rats. After this initial decline, renal function increased at control rate or even more during the third and fourth month after irradiation but decreased progressively thereafter. In the adult rats, GFR and urine osmolality started to decrease 3 months after 10, 12.5, and 15 Gy. A rise in systolic blood pressure and proteinuria started 2-3 months after 12.5 and 15 Gy in both age groups. Early changes in the glomerular filtration rate with a drop in urine osmolality in young rats, occurring during a period of rapid renal development indicated an irradiation-induced inhibition of glomerular and tubular development. Although renal function deteriorated at a later time in adult rats, dose-response relationships obtained in young and adult rats did not show significant differences

  13. Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro

    Institute of Scientific and Technical Information of China (English)

    Yonghai Liu; Yucheng Song; Zunsheng Zhang; Xia Shen

    2006-01-01

    BACKGROUND; Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs.OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group.DESIGN: Randomized controlled animal study.SETTING : Department of Neurology, Affiliated Hospital of Xuzhou Medical College.MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou MedicalCollege from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old,weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF,RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company.METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3rd and the 7th days after induction, BMSCs were stained immunocytochemically with

  14. Reducing the Risk of Bone Fracture: A Review of the Research for Adults with Low Bone Density

    Science.gov (United States)

    ... of the Research for Adults With Low Bone Density Formats View PDF (PDF) 1.0 MB Download ... cfm . Understanding Your Condition What is low bone density? Low bone density is a condition where the ...

  15. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    International Nuclear Information System (INIS)

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered) ). Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research highlights: → 3-Day imatinib treatment. → Causes growth plate anomalies in young rats. → Causes biomechanical changes and significant bone loss at distal trabecular bone. → Results in loss of osteoclasts at osteochondral junction.

  16. Effect of 910-MHz Electromagnetic Field on Rat Bone Marrow

    OpenAIRE

    George Demsia; Dimitris Vlastos; Demetrios P. Matthopoulos

    2004-01-01

    Aiming to investigate the possibility of electromagnetic fields (EMF) developed by nonionizing radiation to be a noxious agent capable of inducing genotoxicity to humans, in the current study we have investigated the effect of 910-MHz EMF in rat bone marrow. Rats were exposed daily for 2 h over a period of 30 consecutive days. Studying bone marrow smears from EMF-exposed and sham-exposed animals, we observed an almost threefold increase of micronuclei (MN) in polychromatic erythrocytes (PCEs)...

  17. Bone scanning in the child and young adult. Pt. 2

    International Nuclear Information System (INIS)

    The sensitivity of the radionuclide bone scan in identifying osteoblastic reaction in bone and in detecting local alterations in blood flow is valuable in many benign diseases involving bone, particularly those which are more common in children and young adults, and in which early detection may be critical to future health. Bone scanning offers a simple yet reliable means for establishing an early diagnosis, evaluating the extent of the disease, and assessing the therapeutic response in disorders resulting from infection, trauma, or vascular insult. Useful information may also be obtained in disturbances of growth and development, and in congenital lesions. (orig.)

  18. Bone scanning in the child and young adult. Pt. 2

    International Nuclear Information System (INIS)

    The sensitivity of the radionuclide bone scan in identifying osteoblastic reaction in bone and in detecting local alterations in blood flow is valuable in many benign diseases involving bone, particularly those which are more common in children and young adults, and in which early detection may be critical to future health. Bone scanning offers a simple, yet reliable means for establishing an early diagnosis, evaluating the extent of the disease, and assessing the therapeutic response in disorders resulting from infection, trauma or vascular insult. Useful information may also be obtained in disturbances of growth and development, and in congenital lesions. (orig.)

  19. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  20. Involvement of sensory neurons in bone defect repair in rats

    International Nuclear Information System (INIS)

    We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair. (author)

  1. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats

    OpenAIRE

    Kumar, Saravana Kumar Sampath; Perumal, Saraswathi; Rajagopalan, Vijayaraghavan

    2014-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mesenchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by flow cytometry for pos...

  2. Bone status of adult female butyrylcholinesterase gene-deficient mice.

    Science.gov (United States)

    Haupt, Malte; Kauschke, Vivien; Sender, Jonas; Kampschulte, Marian; Kovtun, Anna; Dürselen, Lutz; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Butyrylcholinesterase (BChE) degrades acetylcholine in addition to acetylcholinesterase (AChE) which is involved in embryonic development of limbs. Since BChE is expressed by osteoblast-like cells we asked whether it is functional in adult bone remodeling. We addressed this issue by analyzing BChE gene-deficient mice (BChE-KO). Bones were extracted from 16-week old female BChE-KO and corresponding wild type mice (WT). Femoral bones were used for biomechanical testing and μCT evaluation of cancellous and cortical bone. Also vertebrae Th12 and L1 were investigated with μCT while L3 was used for tartrate-resistant acidic phosphatase (TRAP) histomorphometry and Th10 for gene expression analysis by means of real-time RT-PCR. BChE-KO did not reveal significant differences in biomechanical bone strength and bone mineral density determined by μCT. Microarchitecture of cancellous and cortical bone showed an increase in μCT parameters like trabecular thickness, trabecular separation, and relative cortical bone area of femoral BChE-KO bone compared to WT. In vertebrae no changes of microstructure and mRNA expression were detected. However, osteoclast histomorphometry with TRAP stained sections demonstrated a significant increase in relative osteoclast number. In conclusion, in adult murine bone the role of BChE is limited to bone specific changes in microarchitecture and to an increase in relative number of bone resorbing osteoclasts whereas the main collagen resorbing enzyme Cathepsin-K (CtsK) was stably expressed. Besides, AChE might be able to compensate the lack of BChE. Thus, further analyses using bone tissue specific AChE BChE cre-lox double knockout mice would be helpful. PMID:26138460

  3. The influence of lead on the biomechanical properties of bone tissue in rats

    Directory of Open Access Journals (Sweden)

    Grazyna Olchowik

    2014-06-01

    Full Text Available introduction and objective. Environmental lead (Pb is a serious public health problem. At high levels, Pb is devastating to almost all organs. On the other hand, it is difficult to determine a safe level of exposure to Pb. More than 90% of the Pb in the adult human body and 70% in a child’s body is stored in the bones. In the presented study, the effects of lead exposure on bones were studied for rats treated orally with Pb acetate in drinking water for 14 days. The hypothesis was tested that lead exposure negatively affects bone structure. materials and methods. Femur strength was measured in a three-point bending test, whereas infrared spectroscopy (FTIR was used to measure molecular structural changes. results. Lead significantly decreased the ratio of area of two types of vibrational transitions, which are highly specific to mineral to matrix ratio. The results of the biomechanical study show that femurs of rats treated by Pb-acetate appeared to be weaker than bones of the control group, and may produce a condition for the development of higher risk of fractures. Additionally, a great difference in body mass was observed between control and the Pb acetate-treated groups. conclusions. The lower bone mineral content and the weaker mechanical properties of bones from Pb-treated rats are associated with the pathologic state dependent of the exposure of lead.

  4. Comparison and modification of Pu-239 kinetics in young and adult rats

    International Nuclear Information System (INIS)

    It is obvious that the biokinetics of bone-seeking radionuclides are influenced by skeletal growth and remodelling, the rate of which in general decreases with increasing age. For plutonium, Mahlum and Sikov (1974) observed that rats injected with Pu-239 as weanlings retained a lower percentage in the liver and more in the bones than the animals injected as adults. However, skeletal Pu-239 was diluted more rapidly in the young rats because of intensive new bone formation and this led to a more pronounced reduction in the accumulation of radiation dose than was the case in adult animals. The aim of the present experiments was to study: a) The age effect on Pu-239 biokinetics in adult rates as influenced by the sex of the animals. b) Early retention and distribution of Pu-239 in the bones of young and adult rats injected with an optimal osteosarcomogenic dose. c) The effectiveness of a delayed prolonged administration of Zn-DTPA in drinking water for the mobilization of injected Pu-239 in rats of various age. 3 refs.; 5 figs.; 1 table

  5. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  6. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinholt, E.M.; Solheim, E. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by {sup 85}Sr uptake. The composite implant was technically easier to use than DBM alone. (author).

  7. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS

    Science.gov (United States)

    Shirane, Henrique Yassuhiro; Oda, Diogo Yochizumi; Pinheiro, Thiago Cerizza; Cunha, Marcelo Rodrigues da

    2015-01-01

    To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: The biomaterials used demonstrated biocompatibility and osteoconductive capacity that was capable of stimulating osteogenesis, even in bones with secondary mechanical and morphological functions such as the fibula of rats. PMID:27047813

  8. Bone regeneration in surgically created defects filled with autogenous bone: an epifluorescence microscopy analysis in rats

    OpenAIRE

    Marcos Heidy Guskuma; Eduardo Hochuli-Vieira; Flávia Priscila Pereira; Idelmo Rangel-Garcia Junior; Roberta Okamoto; Tetuo Okamoto; Osvaldo Magro Filho

    2010-01-01

    Although the search for the ideal bone substitute has been the focus of a large number of studies, autogenous bone is still the gold standard for the filling of defects caused by pathologies and traumas, and mainly, for alveolar ridge reconstruction, allowing the titanium implants installation. OBJECTIVES: The aim of this study was to evaluate the dynamics of autogenous bone graft incorporation process to surgically created defects in rat calvaria, using epifluorescence microscopy. MATERIAL A...

  9. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

    Science.gov (United States)

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Li, Feijiang; Xu, Qiaoling; Xie, Kangning; Tang, Chi; Liu, Juan; Guo, Wei; Wu, Xiaoming; Jiang, Maogang; Luo, Erping

    2014-10-01

    A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb-unloaded (HU) rats. Thirty young mature (3-month-old), male Sprague-Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2-hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro-computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three-point bending test showed that PEMF mitigated HU-induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N-terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C-terminal crosslinked telopeptides of type I collagen (CTX-I) and tartrate-resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real-time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β-catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse-induced osteopenia were further confirmed in 8-month-old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse-induced bone loss by promoting skeletal anabolic activities

  10. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    Science.gov (United States)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  11. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  12. Transplantation of bone marrow multipotent adult progenitor cells for treating Parkinson disease in rats%骨髓基质多能成体祖细胞移植治疗大鼠帕金森病

    Institute of Scientific and Technical Information of China (English)

    周瑞祥; 孙圣刚

    2007-01-01

    various characteristics of bone marrow derived-multipotent adult progenitor cells (MAPCs) enable them to become one the ideal sources of cells for cell transplantation.OBJECTIVE: To explore the hypothesis that MAPCs were able to enter the brain and reduce the neurological functional deficits in rats by injecting intravenously.DESTGN: A randomized controlled experiment.ETTING: Department of Neurology, Wuhan First Hospital.MATERIALS: The experiments were performed in the laboratory of Department of Neurology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from October 2003 to March 2005. Eighty healthy Sprague-Dawley (SD) rats of 180-200 g were provided by the experimental animal center of Tongji Medical College,Huazhong University of Science and Technology.METHODS: The rats were made into models of Parkinson disease, the bone marrow-derived MAPCs, which were in vitro purified, proliferated and treated with 5-bromo-2-deoxyuridine (BrdU), were injected via caudal vein. After three months,the immunohistochemical technique, reverse transcription-polymerase chain reaction (RT-PCR), electron microscopy and behavioral tests were used to identify the MAPCs or neuron-like cells derived from MAPCs in brain and their functions.MAIN OUTCOME MEASURES: ① Results of behavioral observation; ② Results of immunihistochemical staining.RESULTS: After implantation, MAPCs could survive and differentiate into neuron-like cells in substantia nigra and striatum. MAPCs-derived dopaminergic neurons caused gradual and sustained behavioral restoration of 6-hydroxydopamine (6-OHDA)-mediated motor asymmetry. The levels of dopamine beta-hydroxylase (DBH), nerve growth factor (NGF) or dopamine transporter (DAT) mRNA were up-regulated significantly. It was observed under electron microscope that immature synapse implicated MAPCs- derived neuron should play an important role in the reconstruction of neural circuitry.CONCLUSION: Transplanted bone marrow derived

  13. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander; Flyvbjerg, Allan; Nowak, Jette; Petersen, Michael M; ØLgaard, Klaus; Feldt-Rasmussen, Ulla

    2004-01-01

    microfibrils in GHD rats as compared to their controls (P < 0.009). In conclusion, we report for the first time that collagen morphology in bone is markedly altered in rats with isolated GHD. Whether similar conditions are present in GHD patients need further investigations. The changes described, however, may...

  14. The influence of lead on the biomechanical properties of bone tissue in rats

    OpenAIRE

    Grazyna Olchowik; Justyna Widomska; Marek Tomaszewski; Małgorzata Gospodarek; Monika Tomaszewska; Ewa Jagiełło - Wójtowicz

    2014-01-01

    introduction and objective. Environmental lead (Pb) is a serious public health problem. At high levels, Pb is devastating to almost all organs. On the other hand, it is difficult to determine a safe level of exposure to Pb. More than 90% of the Pb in the adult human body and 70% in a child’s body is stored in the bones. In the presented study, the effects of lead exposure on bones were studied for rats treated orally with Pb acetate in drinking water for 14 days. The hypothesis was tested tha...

  15. The action of demineralized bovine bone matrix on bone neoformation in rats submitted to experimental alcoholism

    Directory of Open Access Journals (Sweden)

    R.L. Buchaim

    2013-06-01

    Full Text Available The objective of this study was to evaluate whether demineralized bovine bone (Gen-ox® alters bone neoformation in rats submitted to alcoholism. Forty male rats were separated into two groups of 20 rats and distributed as follows: Group E1, which received 25% ethanol and a surgical cavity filled only by a blood clot, and Group E2, which received 25% ethanol and a surgical cavity filled with Gen-ox®. The animals were euthanized at 10, 20, 40 and 60 days after surgery and necropsy was performed. The histomorphological and histometric analyses of the area of connective tissue and bone neoformation showed that the reorganization of the bone marrow and full repair of the surgical cavity in Group E1 occurred more quickly than in Group E2. It was also noted that in the final period the animals in Group E2 showed areas of connective tissue and thick bone trabeculae around the particles of the implant. It can be concluded that the use of Gen-ox® delayed the process of bone repair in alcoholic rats, although it can be used as filling material because it shows osteoconductive activity, as evidenced by bone tissue formation around the graft particles.

  16. Recent advances in bone regeneration using adult stemcells

    Institute of Scientific and Technical Information of China (English)

    Hadar Zigdon-Giladi; Utai Rudich; Gal Michaeli Geller; Ayelet Evron

    2015-01-01

    Bone is a highly vascularized tissue reliant on theclose spatial and temporal association between bloodvessels and bone cells. Therefore, cells that participatein vasculogenesis and osteogenesis play a pivotalrole in bone formation during prenatal and postnatalperiods. Nevertheless, spontaneous healing of bonefracture is occasionally impaired due to insufficientblood and cellular supply to the site of injury. In thesecases, bone regeneration process is interrupted, whichmight result in delayed union or even nonunion ofthe fracture. Nonunion fracture is difficult to treatand have a high financial impact. In the last decade,numerous technological advancements in bone tissueengineering and cell-therapy opened new horizon inthe field of bone regeneration. This review starts withpresentation of the biological processes involved inbone development, bone remodeling, fracture healingprocess and the microenvironment at bone healingsites. Then, we discuss the rationale for using adultstem cells and listed the characteristics of the availablecells for bone regeneration. The mechanism of actionand epigenetic regulations for osteogenic differentiationare also described. Finally, we review the literature fortranslational and clinical trials that investigated the useof adult stem cells (mesenchymal stem cells, endothelialprogenitor cells and CD34+ blood progenitors) for boneregeneration.

  17. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  18. Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats.

    Science.gov (United States)

    Gasser, Jürg A; Hulter, Henry N; Imboden, Peter; Krapf, Reto

    2014-03-01

    Chronic metabolic acidosis (CMA) might result in a decrease in vivo in bone mass based on its reported in vitro inhibition of bone mineralization, bone formation, or stimulation of bone resorption, but such data, in the absence of other disorders, have not been reported. CMA also results in negative nitrogen balance, which might decrease skeletal muscle mass. This study analyzed the net in vivo effects of CMA's cellular and physicochemical processes on bone turnover, trabecular and cortical bone density, and bone microarchitecture using both peripheral quantitative computed tomography and μCT. CMA induced by NH4Cl administration (15 mEq/kg body wt/day) in intact and ovariectomized (OVX) rats resulted in stable CMA (mean Δ[HCO3(-)]p = 10 mmol/l). CMA decreased plasma osteocalcin and increased TRAP5b in intact and OVX animals. CMA decreased total volumetric bone mineral density (vBMD) after 6 and 10 wk (week 10: intact normal +2.1 ± 0.9% vs. intact acidosis -3.6 ± 1.2%, P effect attributable to a decrease in cortical thickness and, thus, cortical bone mass (no significant effect on cancellous vBMD, week 10) attributed to an increase in endosteal bone resorption (nominally increased endosteal circumference). Trabecular bone volume (BV/TV) decreased significantly in both CMA groups at 6 and 10 wk, associated with a decrease in trabecular number. CMA significantly decreased muscle cross-sectional area in the proximal hindlimb at 6 and 10 wk. In conclusion, chronic metabolic acidosis induces a large decrease in cortical bone mass (a prime determinant of bone fragility) in intact and OVX rats and impairs bone microarchitecture characterized by a decrease in trabecular number. PMID:24352505

  19. Effect of spaceflight on periosteal bone formation in rats

    Science.gov (United States)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Male Wistar rats were placed in orbit for 18.5 days aboard the Soviet COSMOS 1129 biological satellite. Tetracycline was administered before and after spaceflight to label areas of bone formation. An inhibition of periosteal bone formation occurred during spaceflight in the tibial and humeral diaphyses, but this defect was corrected during the postflight period. The increased extent of arrest lines at these skeletal sites suggested that periosteal bone formation may have even ceased during spaceflight. The rib exhibited a small but nonsignificant decrease in periosteal bone formation. Endosteal bone resorption was not affected markedly by spaceflight conditions. The observed inhibition of periosteal bone formation may be a result of mechanical unloading, but endocrine factors cannot be ruled out.

  20. Quantification of osteolytic bone lesions in a preclinical rat trial

    Science.gov (United States)

    Fränzle, Andrea; Bretschi, Maren; Bäuerle, Tobias; Giske, Kristina; Hillengass, Jens; Bendl, Rolf

    2013-10-01

    In breast cancer, most of the patients who died, have developed bone metastasis as disease progression. Bone metastases in case of breast cancer are mainly bone destructive (osteolytic). To understand pathogenesis and to analyse response to different treatments, animal models, in our case rats, are examined. For assessment of treatment response to bone remodelling therapies exact segmentations of osteolytic lesions are needed. Manual segmentations are not only time-consuming but lack in reproducibility. Computerized segmentation tools are essential. In this paper we present an approach for the computerized quantification of osteolytic lesion volumes using a comparison to a healthy reference model. The presented qualitative and quantitative evaluation of the reconstructed bone volumes show, that the automatically segmented lesion volumes complete missing bone in a reasonable way.

  1. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone.

    Science.gov (United States)

    Wu, Yuchin; Adeeb, Samer; Doschak, Michael R

    2015-01-01

    Micro-computed tomography (Micro-CT) images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone microarchitectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA) can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of Micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived grayscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two- and three-dimensional bone microarchitecture from sham and ovariectomized (OVX) rats (n = 10/group). A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA, because Micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three-dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation, and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading. PMID:26042089

  2. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  3. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    Saravana Kumar Sampath Kumar; Saraswathi Perumal; Vijayaraghavan Rajagopalan

    2014-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mes-enchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by lfow cytometry for positive expression of CD44 and CD90 and negative expression of CD45. Once CD44 and CD90 positive expression was achieved, the cells were cultured again to 90% conlfuence for later experiments. Twenty-four rats aged 8 weeks old were randomly and evenly divided into normal control, cold water swim stress (cold stress), cold stress + PBS (intra-venous infusion), and cold stress + bone marrow mesenchymal stem cells (1 × 106; intravenous infusion) groups. The total period of study was 60 days which included 1 month stress period followed by 1 month treatment. Behavioral functional test was performed during the entire study period. After treatment, rats were sacriifced for histological studies. Treatment with bone marrow mesenchymal stem cells signiifcantly increased the number of neuronal cells in hippocampal CA1 region. Adult bone marrow mesenchymal stem cells injected by intravenous administration show potential therapeutic effects in cognitive decline associated with stress-related lesions.

  4. The influence of sterilization on the osteoinductive properties of bone in rat bone marrow cell culture

    International Nuclear Information System (INIS)

    Bone allografting is useful in the reconstruction of defects or supplementation of bone required during the treatment of bone tumors or comminuted fractures. Gamma-irradiation or heat-treatment at 60degC for 10 h or 80degC for 10 min are recognized procedures for the sterilization of bone before grafting. We investigated the ability of sterilized bone to induce proliferation in rat bone marrow cell cultures, and to induce alkaline phosphatase (ALP) activity in the cells. Addition of irradiated bone resulted in increased numbers of bone marrow cells and ALP activity in such cultures. However, larger doses of radiation to the bones suppressed this cell proliferation-inducing activity, whereas induction of ALP activity was not depressed by higher radiation doses. When the inducing activity was compared after the various sterilization processes, processed bones increased the cell number in culture by 45 percent and 35 percent compared with controls on days 7 and 14, respectively, despite sterilization. ALP activity was also increased by the processed bones (37 percent and 9 percent compared with controls on days 7 and 14, respectively), and this was again independent of the sterilization method employed. These results indicate that osteoinductive activity is retained after sterilization by either of the common methods employed. (author)

  5. The novel bisphosphonate disodium dihydrogen-4-[(methylthio) phenylthio] methanebisphosphonate increases bone mass in post-ovariectomy rats.

    Science.gov (United States)

    Takizawa, Aiko; Chiba, Mirei; Ota, Takeru; Yasuda, Mayumi; Suzuki, Keiko; Kanemitsu, Takuya; Itoh, Takashi; Shinoda, Hisashi; Igarashi, Kaoru

    2016-05-01

    The novel bisphosphonate (BP) disodium dihydrogen-4-[(methylthio) phenylthio] methanebisphosphonate (MPMBP) is a non-nitrogen-containing BP with an antioxidant side chain that possesses anti-inflammatory properties. We investigated the systemic effects of this compound on bone loss induced by ovariectomy (OVX) in adult rats. Micro-computed tomography revealed that MPMBP increased bone mass and density in both the metaphysis and diaphysis, and improved the structural properties important for mechanical strength of osteoporotic bone. Sequential bone labeling with tetracycline and calcein indicated that MPMBP decreased longitudinal growth of the primary spongiosa (PS), but stimulated cortical bone formation in the diaphysis. MPMBP increased type I collagen accumulation in the PS, and decreased the number and size of adipocytes in the bone marrow, suggesting inhibition of increased bone marrow adipogenesis induced by OVX. Furthermore, MPMBP reduced the number of bone resorbing cathepsin K-positive osteoclasts induced by OVX. These results suggest that MPMBP could improve bone loss induced by estrogen deficiency. Both stimulation of bone formation and inhibition of bone resorption might play a role in the increase in bone mass and bone density after MPMBP treatment. PMID:27245552

  6. Effect of 910-MHz Electromagnetic Field on Rat Bone Marrow

    Directory of Open Access Journals (Sweden)

    George Demsia

    2004-01-01

    Full Text Available Aiming to investigate the possibility of electromagnetic fields (EMF developed by nonionizing radiation to be a noxious agent capable of inducing genotoxicity to humans, in the current study we have investigated the effect of 910-MHz EMF in rat bone marrow. Rats were exposed daily for 2 h over a period of 30 consecutive days. Studying bone marrow smears from EMF-exposed and sham-exposed animals, we observed an almost threefold increase of micronuclei (MN in polychromatic erythrocytes (PCEs after EMF exposure. An induction of MN was also observed in polymorphonuclear cells. The induction of MN in female rats was less than that in male rats. The results indicate that 910-MHz EMF could be considered as a noxious agent capable of producing genotoxic effects.

  7. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann;

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connecte...

  8. Bone and mineral metabolism in adult celiac disease

    Energy Technology Data Exchange (ETDEWEB)

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.

  9. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja;

    2016-01-01

    . Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone......The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of...... debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts...

  10. Bone and mineral metabolism in adult celiac disease

    International Nuclear Information System (INIS)

    Bone mineral density (125I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups

  11. Ischemic Stroke in Rats Enhances Bone Resorption in Vitro

    OpenAIRE

    Chung, Myung Eun; Lee, Jong In; Im, Sun; Park, Joo Hyun

    2011-01-01

    We hypothesized that the formation and differentialtion of osteoclasts are accelerated and the potential of bone resorption is increased in the hemiplegic bone marrow in the early stage of stroke. We randomly divided white female Sprague-Dawley (SD) rats (n = 30) into two groups, stroke (n = 15) and sham group (n = 15). On the 7th day after stroke, after cutting away the epiphyses of the femurs and tibias, diaphyseal channels were flushed using α-minimum essential medium (α-MEM) and bone marr...

  12. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    Science.gov (United States)

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  13. Effects of young-coconut juice on increasing mandibular cancellous bone in orchidectomized rats: Preliminary novel findings

    Directory of Open Access Journals (Sweden)

    Pranee Suwanpal

    2011-12-01

    Full Text Available Androgens play a very important role in building the skeleton in young adults and help to prevent bone loss andosteoporosis in aging men. In addition, in hypogonadism or elderly men, bone mass has been related to estrogen levels ratherthan to testosterone. Estrogen replacement therapy has therefore been proposed to prevent bone loss in males as well as infemales. Estrogen, however, has been considered to be one of the hormonal risk factors for benign prostatic hyperplasia andprostate cancer and also has other side effects. Young coconut juice (YCJ presumably containing phytoestrogen was investigatedin the present study for its possible beneficial effects on delaying osteoporosis using a male rat model, and by this totest the possibility that it might be able to replace estrogen replacement therapy without side effects. In this study, mandibularcancellous bone was used as the osteoporotic model. Using the same model, we have previously found that total cartilagethickness particularly the hypertrophic zone of mandibular condylar cartilage was thicker in the sham-operated rats receivingYCJ orally fed for a 14 day period, compared with sham, orchidectomized animal, orchidectomized rats receiving estradiolbenzoate, and orchidectomized rats receiving YCJ. The present study confirmed our former study that mandibular cancellousbone in the sham-operated rats and in the orchidectomized rats receiving YCJ orally fed for a 14–day period were thicker thanthose of the sham and orchidectomized rat groups. This study results are novel and they indicate that YCJ may have beneficialeffects in the treatment of osteoporosis in andropause men.

  14. Vitamin K2 improves femoral bone strength without altering bone mineral density in gastrectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo

    2014-01-01

    Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality. PMID:24975215

  15. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  16. Bone mineral density and bone scintigraphy in adult Saudi female patients with Osteomalacia

    International Nuclear Information System (INIS)

    This prospective study was conducted to demonstrate the role of bone mineral density (BMD) and bone scan in the management of adult Saudi female patients with established diagnosis of osteomalacia. Bone scan using Tc99m methylene diphosphate (MDP) and BMD of the lumbar spine and femoral neck using dual x-ray absorptiometry (DXA) were performed at the time of diagnosis 6 months and one year after therapy in 96 Saudi female patients attending the metabolic bone disease clinic at King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, between January 1997 through to June 1999, aged between 20 and 73 years (mean 42 years). Alkaline phosphates, calcium and inorganic phosphorus were measured for all patients before and after treatment. 25 Hydroxy vitamin D was only measured with the first BMD measurements. A bone profile showed typical biochemical abnormalities of osteomalacia.The bone scan showed features of superscan in all patients and pseudofractures in 43 patients. BMD measures were compared with that of normal Saudi subjects matched for age and sex. The BMD was low at diagnosis and showed significant improvement after therapy. The improvement of bone density in response to therapy was more evident in lumbar spine than in femoral neck bone.Our results showed that BMD in adult Saudi female patients with osteomalacia was markedly affected probably due to specific constitutional and environmental factors ( inadeqate exercise, lack of sun exposure and lack of intake of milk and dairy products). In addition, lumbar BMD and serum calcium appeared to be better markers to monitor therapy.Bone scan helped in demonstrating disease activity, the presence of pseudofractures. (author)

  17. Effect of Epimedium-derived Phytoestrogen on Bone Turnover and Bone Microarchitecture in OVX-induced Osteoporotic Rats

    Institute of Scientific and Technical Information of China (English)

    Songlin PENG; Renyun XIA; Huang FANG; Feng LI; Anmin CHEN; Ge ZHANG; Ling QIN

    2008-01-01

    To investigate the preventive effect of epimedium-defivod phytoestrogen (PE) on osteoporosis induced by ovariectomy (OVX) in rats, 11-month-old female Wistar rats were randomly di- vided into Sham, OVX and PE groups. One week after OVX, daily oral administration of PE (0.4 g·kg-1·day·-1) started in PE group, and rats in Sham and OVX groups were given vehicle accordingly. The administrations lasted for 12 weeks. The biological markers including serum osteocalcin (OC) and urinary deoxypyridinoline (DPD) for bone turnover were evaluated at the end of the 12th week. On the 13th week, all the rats were sacrificed. The right proximal tibiae were removed, subjected to micro CT for determination of trabeonlar bone structure and then bone histomorphometry was per- formed to assess bone remodeling. The OVX rats were in a high bone turnover status as evidenced by increased bone formation markers and bone resorption markers. Treatment with PE could suppress the high bone turnover rate in OVX rats. Micro CT data revealed that PE treatment could ameliorate the deterioration of the micro-architecture of proximal tibiae induced by OVX, as demonstrated by greater bone volume, increased trabecular thickness and less trahecular separation in PE group in comparison with OVX group. The static and dynamic parameters of bone histomorphometry indi- cated that there were significant increases in bone formation variables and significant decreases in bone resorption variables between PE and OVX groups. The findings suggest that PE has a beneficial effect on trabecular bone in OVX rat model and this effect is possibly associated with stimulation of bone formation as well as inhibition of bone resorption.

  18. Toxicity of group B Streptococcus agalactiae in adult rats.

    OpenAIRE

    Warejcka, D. J.; Goodrum, K J; Spitznagel, J K

    1985-01-01

    Several strains of group B Streptococcus agalactiae were found to be lethal for young adult rats. When bacteria were heat killed and then injected intraperitoneally into rats, rapid death (14 to 18 h) of the rats occurred, characterized by labored breathing, hemolyzed serum, hemoglobinuria, and subungual hemorrhages. Sections of tissues from these rats failed to reveal the cause of death. Rats injected with toxic or nontoxic strains of group B S. agalactiae had reduced numbers of circulating ...

  19. The effect of pentosan polysulphate on bone healing of rat cranial defects.

    Science.gov (United States)

    Dupoirieux, L; Pourquier, D; Picot, M C; Neves, M

    1999-10-01

    The purpose of the study was to determine the efficacy of pentosan polysulphate, used in combination with guided bone regeneration on rat skull defects. The study was conducted on 45 adult Wistar rats. On each animal two symmetrical 6 mm wide, full-thickness, skull defects were created in the parietal regions. The right defect was chosen as the experimental site and the left one was left empty to provide a control. Each experimental site was covered by an inner and outer polytetrafluoroethylene membrane. The 45 rats were divided into 3 groups: in group I (n = 15), carboxymethyl cellulose, used as a delivery vehicle, was injected between the two membranes; in group II (n = 15), 1 mg of pentosan polysulfate was added to the carboxymethyl cellulose vehicle; in group III (n = 15), purified micronized eggshell powder was added to the mixture of pentosan polysulfate and carboxymethyl cellulose between the two membranes. In each group, the animals were sacrificed at 42 days. The harvested specimens were processed for contact radiography and standard histological examination. The results were assessed by a Fisher's exact test. All animals, except one, healed uneventfully. In group I, partial bone healing was observed in 14 out of 15 animals. In group II, partial bone healing was observed in 13 out of 15 animals, and complete bone healing in 1 out of 15 cases. In group III, partial resorption of the eggshell implant was observed with a partial bone healing in only 2 cases (P polysulphate did not result in additional bone gain. The use of particulate material as a space maintainer is also questionable. PMID:10717835

  20. Cilengitide inhibits metastatic bone colonization in a nude rat model.

    Science.gov (United States)

    Bretschi, Maren; Merz, Maximilian; Komljenovic, Dorde; Berger, Martin R; Semmler, Wolfhard; Bäuerle, Tobias

    2011-10-01

    Integrins αvβ3 and αvβ5 are considered to play an important role in the pathogenesis of breast cancer bone metastases. This study investigates the effects of the αvβ3/αvβ5 integrin-specific inhibitor cilengitide during early metastatic bone colonization. The impact of cilengitide on the migration, invasion and proliferation of MDA-MB-231 human breast carcinoma cells as well as on bone resorption by osteoclasts was investigated in vitro. For in vivo experiments, nude rats were treated with cilengitide for 30 days starting one day after site-specific tumor cell inoculation in the hind leg, and the course of metastatic changes in bone was followed using flat-panel volumetric computed tomography (VCT) and magnetic resonance imaging (MRI). Vascular changes in bone metastases were investigated using dynamic contrast-enhanced (DCE-) MRI-derived parameters amplitude A and exchange rate coefficient kep. In vitro, cilengitide treatment resulted in a decrease in proliferation, migration and invasion of MDA-MB-231 cells, as well as of osteoclast activity. In vivo, the development of bone metastasis in the hind leg of rats was not prevented by adjuvant cilengitide treatment, but cilengitide reduced the volumes of osteolytic lesions and respective soft tissue tumors of developing bone metastases as assessed with VCT and MRI, respectively. DCE-MRI revealed significant changes in the A and kep parameters including decreased relative blood volume and increased vessel permeability after cilengitide treatment indicating vessel remodeling. In conclusion, during early pathogenic processes of bone colonization, cilengitide treatment exerted effects on tumor cells, osteoclasts and vasculature reducing the skeletal lesion size of experimental skeletal metastases. PMID:21725616

  1. Optimal therapy for adults with Langerhans cell histiocytosis bone lesions.

    Directory of Open Access Journals (Sweden)

    Maria A Cantu

    Full Text Available BACKGROUND: There is little data on treatment of Langerhans cell histiocytosis (LCH in adults. Available data is on small numbers of patients with short follow-up times and no comparison of results from different treatment regimens. We analyzed the responses of adult LCH patients with bone lesions to three primary chemotherapy treatments to define the optimal one. METHODS AND FINDINGS: Fifty-eight adult patients with bone lesions, either as a solitary site or as a component of multisystem disease, were analyzed for disease location and response to surgery, curettage, steroids, radiation, vinblastine/prednisone, 2-Chlorodeoxyadenosine (2-CdA, or cytosine arabinoside (ARA-C. The mean age of patients was 32 years, with equal gender distribution. Twenty-nine patients had 1 lesion; 16, 2 lesions; 5, 3 lesions; and 8 had 4 or more. Most bone lesions were in the skull, spine, or jaw. Chemotherapy, surgery, curettage, or radiation, but not steroids alone, achieved improvement or resolution of lesions in a majority of patients. Comparison of the three chemotherapy regimens revealed 84% of patients treated with vinblastine/prednisone either did not respond or relapsed within a year, whereas 59% of patients treated with 2-CdA and 21% treated with ARA-C failed. Toxicity was worse with the vinblastine/prednisone group as 75% had grade 3-4 neuropathy. Grade 3-4 cytopenias occurred in 37% of the 2-CdA -treated patients and 20% of the ARA-C-treated patients. The major limitation of this study is it is retrospective and not a clinical trial. CONCLUSIONS: ARA-C is an effective and minimally toxic treatment for LCH bone lesions in adults. In contrast, vinblastine/prednisone results in poor overall responses and excessive toxicity.

  2. Reduction of instability-induced bone resorption using bisphosphonates: high doses are needed in rats.

    OpenAIRE

    Åstrand, Jörgen; Aspenberg, Per

    2002-01-01

    Bone resorption associated with prosthetic loosening can be reduced by giving bisphosphonates since they bind to bone surfaces and inactivate osteoclasts when bisphosphonate-containing bone is resorbed. During loosening, an increase in osteoclastic activity can be triggered by mechanical instability, fluid pressure or wear particles. We used a rat model in which a titanium surface can be made to slide over a bone surface and cause instability-induced bone resorption. 111 rats were operated on...

  3. Bone blood flow measured by 85 Sr microspheres and bone seeker clearances in the rat

    International Nuclear Information System (INIS)

    This paper investigates further the relationship between the initial bone clearance of a bone-seeking radioisotope or labeled substance and the bone blood flow. The bone blood flow of rats was modified over the widest possible range of physiological values by heating and cooling their hindlimbs. Osseous blood flow was measured by the arteriolar trapping of labeled microspheres of 15 micrometer diameter injected into the left ventricle. The plasma clearances of 45Ca and 99m Tc by bone were measured 10 min after the intravenous injection of radiocalcium and of 99m technetium pyrophosphate. The extraction ratio for 45Ca over the 10-min interval (45Ca clearance/bone plasma flow) was 0.60 for low blood flows, 0.40 for blood flows at rest, and 0.25 for high values of flow. The data for 99m Tc were, respectively, 0.68, 0.34, and 0.22. Initial bone clearances of either substance should not be used to measure the increases in bone blood flow over the values at rest

  4. Interactions between respiratory oscillators in adult rats.

    Science.gov (United States)

    Huckstepp, Robert Tr; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. PMID:27300271

  5. Estrogen-mimicking isoflavone genistein prevents bone loss in a rat model of obstructive sleep apnea-hypopnea syndrome

    OpenAIRE

    Song, Lige; Liang, Xiao; Zhou, Yun

    2014-01-01

    Objective: Intermittent hypoxia was introduced to mimic obstructive sleep apnea-hypopnea syndrome (OSAHS) in rats. Then, bone mass, bone strength and bone turnover were evaluated, and the influence of genistein on bone mass reduction was investigated in these rats. Methods: OSAHS animal model was established via chronic intermittent hypoxia, and genistein (2.5 mg/kg/day) was used to treat OSAHS rats. The bone mineral density (BMD), bone Histomorphometric indicators, bone biomechanics and expr...

  6. Opiates inhibit neurogenesis in the adult rat hippocampus

    OpenAIRE

    Eisch, Amelia J.; Barrot, Michel; Schad, Christina A.; Self, David W; Nestler, Eric J.

    2000-01-01

    Recent work implicates regulation of neurogenesis as a form of plasticity in the adult rat hippocampus. Given the known effects of opiates such as morphine and heroin on hippocampal function, we examined opiate regulation of neurogenesis in this brain region. Chronic administration of morphine decreased neurogenesis by 42% in the adult rat hippocampal granule cell layer. A similar effect was seen in rats after chronic self-administration of heroin. Opiate regulation of neurogenesis was not me...

  7. Pycnogenol® treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats

    OpenAIRE

    Huang, Gangyong; Wu, Jianguo; Wang, Siqun; Wei, Yibing; Chen, FeiYan; Chen, Jie; Shi, JingSheng; Xia, Jun

    2015-01-01

    Context: Pycnogenol® extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. Objective: To investigate the effects of Pycnogenol® on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. Materials and methods: Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg...

  8. Green tea polyphenols supplementation improves bone microstructure in orchidectomized middle-Aged rats

    Science.gov (United States)

    Our recent study shows that green tea polyphenols (GTP) attenuate trabecular bone loss in ovariectomized middle-aged female rats. To investigate whether GTP prevents bone loss in male rats, 40 rats with and without oriectomy (ORX) were assigned to 4 groups in a 2 (sham vs. ORX)× 2 (no GTP and 0.5% G...

  9. Histomorphometry of Trabecular Bone of Caudal Vertebrae During Rat Pregnancy

    Directory of Open Access Journals (Sweden)

    S.M. Shahtaheri

    2003-04-01

    Full Text Available Pregnancy make demands upon maternal calcium hemeostasis and the extent to which the maternal bone mass is effected remains uncertain. Recently changes in the bone mass during human pregnancy have been associated also with the transformation of the cancellous architecture and the bone surface available for exchange. These jistomorphometrical structural changes were examined further in an animal model. Using uniparous laboratory rats fed at libitum, the histomorphometry of cancellous bone was compared in undecalcified of caudal vertebrae. Between 3 and 6 sections (8 m were analysed by an automated trabecular analysis system (TAS which measures a comprehensive range of structural variables including the trabecular separation, number, connectivity and width. There was an early stimulation of bone formation that was indicated by generation of thicker and interconnected trabeculae. However in caudal vertebrae, there were architectural changes in cancellous bone commencing with a significant increase in the trabecular separation. ‌‌ It was concluded that strengthens the cancellous component of the maternal skeleton possibly to counter increased load and to facilitate mineral mobilisation in maternal/neonate exchange during the subsequent lactation period.

  10. Genetic Risk Scores Implicated in Adult Bone Fragility Associate With Pediatric Bone Density.

    Science.gov (United States)

    Mitchell, Jonathan A; Chesi, Alessandra; Elci, Okan; McCormack, Shana E; Roy, Sani M; Kalkwarf, Heidi J; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon E; Shepherd, John A; Kelly, Andrea; Grant, Struan Fa; Zemel, Babette S

    2016-04-01

    Using adult identified bone mineral density (BMD) loci, we calculated genetic risk scores (GRS) to determine if they were associated with changes in BMD during childhood. Longitudinal data from the Bone Mineral Density in Childhood Study were analyzed (N = 798, 54% female, all European ancestry). Participants had up to 6 annual dual energy X-ray scans, from which areal BMD (aBMD) Z-scores for the spine, total hip, and femoral neck were estimated, as well as total body less head bone mineral content (TBLH-BMC) Z-scores. Sixty-three single-nucleotide polymorphisms (SNPs) were genotyped, and the percentage of BMD-lowering alleles carried was calculated (overall adult GRS). Subtype GRS that include SNPs associated with fracture risk, pediatric BMD, WNT signaling, RANK-RANKL-OPG, and mesenchymal stem cell differentiation were also calculated. Linear mixed effects models were used to test associations between each GRS and bone Z-scores, and if any association differed by sex and/or chronological age. The overall adult, fracture, and WNT signaling GRS were associated with lower Z-scores (eg, spine aBMD Z-score: βadult  = -0.04, p = 3.4 × 10(-7) ; βfracture = -0.02, p = 8.9 × 10(-6) ; βWNT  = -0.01, p = 3.9 × 10(-4) ). The overall adult GRS was more strongly associated with lower Z-scores in females (p-interaction ≤ 0.05 for all sites). The fracture GRS was more strongly associated with lower Z-scores with increasing age (p-interaction ≤ 0.05 for all sites). The WNT GRS associations remained consistent for both sexes and all ages (p-interaction > 0.05 for all sites). The RANK-RANKL-OPG GRS was more strongly associated in females with increasing age (p-interaction < 0.05 for all sites). The mesenchymal stem cell GRS was associated with lower total hip and femoral neck Z-scores, in both boys and girls, across all ages. No associations were observed between the pediatric GRS and bone Z-scores. In conclusion, adult identified BMD loci associated with BMD and

  11. Radioactivation Analysis of Strontium in Rat-Bone Ash

    International Nuclear Information System (INIS)

    The concentration of strontium normally present in most biological materials is so low as to be beyond the reach of conventional chemical analytical methods. Since 1958 the Japanese Research Reactor 1 (JRR-1) has been available for use in general scientific studies, which has made possible neutron activation analysis of biological trace elements in Japan. The author has investigated the application of neutron activation analysis to quantitation of stable strontium in rat-bone ash, taking advantage of the production of short-lived radioisotopes. Strontium has four stable nuclides. Activation by thermal neutrons will produce several kinds ol radioactive nuclides. These might also be produced from rubidium and yttrium, which are hardly present in living materials. The strontium content of rat-bone ash, from animals which had been fed for three weeks with high fat, high protein, and control diets, was determined. The gamma-ray spectrogram of a radiochemically-purified specimen, which had been irradiated for two hours in the reactor, showed three distinct peaks at 0.150, 0.369 and 0.513 MeV. Most of the activities were due to the production of Sr87m. To a lesser extent, Sr85m and Sr85 were also produced. From the area of main peak, the content of strontium in rat-bone ash was calculated. It is found to be within the range of 100-180 μg/g. (author)

  12. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    OpenAIRE

    Marcol, Wiesław; Slusarczyk, Wojciech; SIEROŃ, ALEKSANDER L.; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cor...

  13. Bone tissue engineering for spine fusion : An experimental study on ectopic and orthotopic implants in rats

    NARCIS (Netherlands)

    van Gaalen, SM; Dhert, WJA; van den Muysenberg, A; Oner, FC; van Blitterswijk, C; Verbout, AJ; de Bruijn, J.D.

    2004-01-01

    Alternatives to the use of autologous bone as a bone graft in spine surgery are needed. The purpose of this study was to examine tissue-engineered bone constructs in comparison with control scaffolds without cells in a posterior spinal implantation model in rats. Syngeneic bone marrow cells were cul

  14. Bone defect regeneration and cortical bone parameters of type 2 diabetic rats are improved by insulin therapy.

    Science.gov (United States)

    Picke, A-K; Gordaliza Alaguero, I; Campbell, G M; Glüer, C-C; Salbach-Hirsch, J; Rauner, M; Hofbauer, L C; Hofbauer, C

    2016-01-01

    Zucker Diabetic Fatty (ZDF) rats represent an established model of type 2 diabetes mellitus (T2DM) and display several features of human diabetic bone disease, including impaired osteoblast function, decreased bone strength, and delayed bone healing. Here, we determined whether glycemic control by insulin treatment prevents skeletal complications associated with diabetes. Subcritical femur defects were created in diabetic (fa/fa) and non-diabetic (+/+) ZDF rats. Diabetic rats were treated once daily with long-lasting insulin glargin for 12weeks for glycemic control. Insulin treatment successfully maintained serum levels of glycated hemoglobin, while untreated diabetic rats showed a 2-fold increase. Trabecular and cortical bone mass measured by μCT were decreased in diabetic rats. Insulin treatment increased bone mass of the cortical, but not of the trabecular bone compartment. Dynamic histomorphometry revealed a lower bone formation rate at the trabecular and periosteal cortical bone in diabetic animals and decreased serum procollagen type 1 N-terminal propeptide (P1NP, -49%) levels. Insulin treatment partially improved these parameters. In T2DM, serum levels of tartrate-resistant acid phosphatase (TRAP, +32%) and C-terminal telopeptide (CTX, +49%) were increased. Insulin treatment further elevated TRAP levels, but did not affect CTX levels. While diabetes impaired bone defect healing, glycemic control with insulin fully reversed these negative effects. In conclusion, insulin treatment reversed the adverse effects of T2DM on bone defect regeneration in rats mainly by improving osteoblast function and bone formation. This article is part of a Special Issue entitled Bone and diabetes. PMID:26055107

  15. Effect of 17beta-estradiol or alendronate on the bone densitometry, bone histomorphometry and bone metabolism of ovariectomized rats.

    Science.gov (United States)

    da Paz, L H; de Falco, V; Teng, N C; dos Reis, L M; Pereira, R M; Jorgetti, V

    2001-08-01

    The objective of the present study was to evaluate the effect of 17beta-estradiol or alendronate in preventing bone loss in 3-month-old ovariectomized Wistar rats. One group underwent sham ovariectomy (control, N = 10), and the remaining three underwent double ovariectomy. One ovariectomized group did not receive any treatment (OVX, N = 12). A second received subcutaneous 17beta-estradiol at a dose of 30 microg/kg for 6 weeks (OVX-E, N = 11) and a third, subcutaneous alendronate at a dose of 0.1 mg/kg for 6 weeks (OVX-A, N = 8). Histomorphometry, densitometry, osteocalcin and deoxypyridinoline measurements were applied to all groups. After 6 weeks there was a significant decrease in bone mineral density (BMD) at the trabecular site (distal femur) in OVX rats. Both alendronate and 17beta-estradiol increased the BMD of ovariectomized rats, with the BMD of the OVX-A group being higher than that of the OVX-E group. Histomorphometry of the distal femur showed a decrease in trabecular volume in the untreated group (OVX), and an increase in the two treated groups, principally in the alendronate group. In OVX-A there was a greater increase in trabecular number. An increase in trabecular thickness, however, was seen only in the OVX-E group. There was also a decrease in bone turnover in both OVX-E and OVX-A. The osteocalcin and deoxypyridinoline levels were decreased in both treated groups, mainly in OVX-A. Although both drugs were effective in inhibiting bone loss, alendronate proved to be more effective than estradiol at the doses used in increasing bone mass. PMID:11471040

  16. Celecoxib does not significantly delay bone healing in a rat femoral osteotomy model: a bone histomorphometry study

    Directory of Open Access Journals (Sweden)

    Iwamoto J

    2011-12-01

    Full Text Available Jun Iwamoto1, Azusa Seki2, Yoshihiro Sato3, Hideo Matsumoto11Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan; 2Hamri Co, Ltd, Tokyo, Japan; 3Department of Neurology, Mitate Hospital, Fukuoka, JapanBackground and objective: The objective of the present study was to determine whether celecoxib, a cyclo-oxygenase-2 inhibitor, would delay bone healing in a rat femoral osteotomy model by examining bone histomorphometry parameters.Methods: Twenty-one 6-week-old female Sprague-Dawley rats underwent a unilateral osteotomy of the femoral diaphysis followed by intramedullary wire fixation; the rats were then divided into three groups: the vehicle administration group (control, n = 8, the vitamin K2 administration (menatetrenone 30 mg/kg orally, five times a week group (positive control, n = 5, and the celecoxib administration (4 mg/kg orally, five times a week group (n = 8. After 6 weeks of treatment, the wires were removed, and a bone histomorphometric analysis was performed on the bone tissue inside the callus. The lamellar area relative to the bone area was significantly higher and the total area and woven area relative to the bone area were significantly lower in the vitamin K2 group than in the vehicle group. However, none of the structural parameters, such as the callus and bone area relative to the total area, lamellar and woven areas relative to the bone area, or the formative and resorptive parameters such as osteoclast surface, number of osteoclasts, osteoblast surface, osteoid surface, eroded surface, and bone formation rate per bone surface differed significantly between the vehicle and celecoxib groups.Conclusion: The present study implies that celecoxib may not significantly delay bone healing in a rat femoral osteotomy model based on the results of a bone histomorphometric analysis.Keywords: femoral osteotomy, bone healing, callus, rat, celecoxib

  17. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Directory of Open Access Journals (Sweden)

    Alice M. C. Lee

    2014-12-01

    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  18. Irradiation-sterilization of rat bone matrix gelatin

    International Nuclear Information System (INIS)

    Bone matrix gelatin induces bone formation in muscle, and when implanted orthotopically it improves bone repair. Co-60 sterilization of bone gelatin impairs the protein-bound induction mechanisms. Gelatin samples nonirradiated or irradiated by 25 or 50 kGy were implanted into a pouch in the abdominal wall of Sprague-Dawley rats, as well as into a 7-mm calvarial defect. Evaluation was done by histologic studies, histomorphometry of orthotopic implants, and determination of alkaline phosphatase in ectopic implants. Gelatin irradiated with 50 kGy was absorbed in the muscle bed without evidence of any specific host reaction Irradiation of 25 kGy led to histologically confirmed ectopic bone formation, but the wet weight of the explants was only half that of the nonirradiated control samples. Alkaline phosphatase activity was equal in both of these groups. With orthotopic implantation, neither a histologic nor a morphometric effect was seen with 25 kGy. Loss of osteoinduction with 25-kGy irradiation is apparently masked by osteoconductive mechanisms with orthotopic implantation. (author)

  19. Trabecular bone response to mechanical loading in ovariectomized Sprague-Dawley rats depends on baseline bone quantity.

    Science.gov (United States)

    Ko, Chang-Yong; Jung, Young Jin; Park, Ji Hyung; Seo, Donghyun; Han, Paul; Bae, Kiho; Schreiber, Jürgen; Kim, Han Sung

    2012-07-26

    Mechanical loading is one of the determining factors for bone modulation, and is therefore frequently used to treat or prevent bone loss; however, there appears to be no data on the effects of baseline bone quantity on this response. This study aimed to verify whether baseline bone quantity affects osteoporotic trabecular bone adaptive response to mechanical stimulation. Twenty-four female Sprague-Dawley (SD) rats were ovariectomized (OVX). After 3 weeks of OVX, rats were divided into a high bone quantity and a low bone quantity group, and rats in each group were then subdivided into 4 groups that were exposed to different loading strategies. In the loading groups, tibiae were stimulated through axial loading at 2000με of strain, for 1500 cycles each of 75s, 150s, or 250s. The sham treatment groups received no loading. Changes in BV/TV for trabecular bone in the tibia were measured at the baseline (before loading), and at 3 weeks and 6 weeks after loading. BV/TVs in loading groups of the low baseline bone quantity group were significantly increased at 6 weeks, compared with those in the no-loading groups (p0.05). A significant negative correlation was observed between baseline BV/TV and its relative variations at 3 weeks or 6 weeks (p<0.05). These results indicate that adaptive responses of osteoporotic trabecular bone to mechanical loading depend on baseline bone quantity. PMID:22663762

  20. Kinetics of gene expression of alkaline phosphatase during healing of alveolar bone in rats.

    Science.gov (United States)

    Rodrigues, Willian Caetano; Fabris, André Luís da Silva; Hassumi, Jaqueline Suemi; Gonçalves, Alaíde; Sonoda, Celso Koogi; Okamoto, Roberta

    2016-06-01

    Immunohistochemical studies and molecular biology have enabled us to identify numerous proteins that are involved in the metabolism of bone, and their encoding genes. Among these is alkaline phosphatase (ALP), an enzyme that is responsible for the initiation of mineralisation of the extracellular matrix during alveolar bone repair. To evaluate the gene expression of ALP during this process, we studied nine healthy adult male rats, which had their maxillary central incisors extracted from the right side and were randomly divided into three groups. During three experimental periods, 7 days, 14 days, and 28 days, the alveoli were curetted, the rats killed, and samples analysed by real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNAm that encodes the gene for the synthesis of ALP was expressed during the three periods analysed, but its concentration was significantly increased at 14 and 28 days compared with at 7 days. There was no significant difference between 14 and 28 days (p=0.0005). We conclude that genes related to ALP are expressed throughout the healing process and more intensively during the later periods (14 and 28 days), which coincides with the increased formation of mineralised bone. PMID:26935214

  1. Bone marrow transplantation in the rat

    International Nuclear Information System (INIS)

    We have isolated inflammatory leukocytes from various lymphoid and parenchymal organs after total body irradiation and bone marrow transplantation from either an allogeneic or syngeneic strain and tested their ability to perform lytic functions in vitro. No direct lytic activity (i.e. cytotoxic T lymphocytes, CTL) to relevant strain-derived target cells in the lymphoid or parenchymal target organs was seen preceding or during acute graft-versus-host disease (aGVHD). Instead, the leukocytes of the spleen and blood and the inflammatory cells of liver and lungs were efficient effector cells against recipient-derived target cells in the presence of relevant antibody (antibody dependent cellular cytotoxicity, ADCC). The NK activity against YAC-1 (natural killer, NK) target cells was first high in the spleen, but when the aGHVD appeared in the allograft marrow recipients the NK activity decreased in the spleen with a concomitant increase in the liver, but not in the other parenchymal target organs. At the same time no NK acitivity was seen in the syngeneic marrow graft recipients' parenchymal organs. These observations suggest functional differences in the structure of inflammation in the different target organs of aGVHD. (author)

  2. Chlorthalidone Improves Vertebral Bone Quality in Genetic Hypercalciuric Stone-Forming Rats

    OpenAIRE

    Bushinsky, David A.; Willett, Thomas; Asplin, John R.; Culbertson, Christopher; Che, Sara P. Y.; Grynpas, Marc

    2011-01-01

    We have bred a strain of rats to maximize urine (U) calcium (Ca) excretion and model hypercalciuric nephrolithiasis. These genetic hypercalciuric stone-forming (GHS) rats excrete more UCa than control Sprague-Dawley rats, uniformly form kidney stones and, similar to patients, demonstrate lower bone mineral density. Clinically thiazide diuretics reduce UCa and prevent stone formation; however, whether they benefit bone is not clear. We used GHS rats to test the hypothesis that the thiazide diu...

  3. Bone turnover markers in medicamentous and physiological hyperprolactinemia in female rats

    OpenAIRE

    Radojković Danijela; Pešić Milica; Ristić Tatjana

    2014-01-01

    Background/Aim. There is a lack of data on the effects of prolactin on calcium metabolism and bone turnover in hyperprolactinemia of various origins. The aim of this study was to compare the influence of medicamentous and physiological hyperprolactinemia on bone turnover in female rats. Methods. Experimental animals (18 weeks old, Wistar female rats) were divided as follows: the group P - 9 rats, 3 weeks pregnant; the group M3-10 rats that were intramuscula...

  4. Differences in vertebral, tibial, and iliac cancellous bone metabolism in ovariectomized rats.

    Science.gov (United States)

    Takakura, Aya; Takao-Kawabata, Ryoko; Isogai, Yukihiro; Kajiwara, Makoto; Murayama, Hisashi; Ejiri, Sadakazu; Ishizuya, Toshinori

    2016-05-01

    Bone histomorphometry is usually performed on the iliac bone in humans and the tibia or vertebrae in rats. Bone metabolism differences among skeletal sites may be problematic when translating experimental results from rats to humans, but data on such differences in rats are lacking. Therefore, we examined the differences in bone structure and metabolism among skeletal sites using the lumbar vertebra (LV), tibia, and iliac bone obtained from ovariectomized or sham-operated rats preoperatively and at various times from 3 days to 26 weeks postoperatively. The trabeculae were thicker in the LV, where bone metabolism was less active than at other sites, and numerous fine trabeculae were observed in the tibia, where bone metabolism was more active. The iliac bone structure and metabolism were intermediate between those of the tibia and LV. Ovariectomy induced lower bone volume and higher bone metabolism in all skeletal sites, but the changes were greatest and occurred earliest in the tibia, followed by the iliac bone and then LV. Ovariectomy caused changes in bone metabolic markers, which occurred earlier than those in bone tissue. Activation frequency (Ac.f) increased after ovariectomy. At week 26 in ovariectomized rats, Ac.f was highest in the tibia (3.13 N/year) but similar between iliac bone (0.87 N/year) and LV (1.39 N/year). Ac.f is reportedly 0.3-0.4 N/year in the iliac bone of postmenopausal women, suggesting that bone turnover in rats is several times higher than in humans. The reference values reported here are useful for translating experimental results from rats to humans. PMID:26082076

  5. Late renal dysfunction in adult survivors of bone marrow transplantation

    International Nuclear Information System (INIS)

    Until recently long-term renal toxicity has not been considered a major late complication of bone marrow transplantation (BMT). Late renal dysfunction has been described in a pediatric population status post-BMT which was attributable to the radiation in the preparatory regimen. A thorough review of adults with this type of late renal dysfunction has not previously been described. Fourteen of 103 evaluable adult patients undergoing allogeneic (96) or autologous (7) bone marrow transplantation, predominantly for leukemia and lymphomas, at the Medical College of Wisconsin (Milwaukee, WI) have had a syndrome of renal insufficiency characterized by increased serum creatinine, decreased glomerular filtration rate, anemia, and hypertension. This syndrome developed at a median of 9 months (range, 4.5 to 26 months) posttransplantation in the absence of specific identifiable causes. The cumulative probability of having this renal dysfunction is 20% at 1 year. Renal biopsies performed on seven of these cases showed the endothelium widely separated from the basement membrane, extreme thickening of the glomerular basement membrane, and microthrombi. Previous chemotherapy, antibiotics, and antifungals as well as cyclosporin may add to and possibly potentiate a primary chemoradiation marrow transplant renal injury, but this clinical syndrome is most analogous to clinical and experimental models of radiation nephritis. This late marrow transplant-associated nephritis should be recognized as a potentially limiting factor in the use of some intensive chemoradiation conditioning regimens used for BMT. Some selective attenuation of the radiation to the kidneys may decrease the incidence of this renal dysfunction

  6. Prevention of bone loss by injection of insulin-like growth factor-1 after sciatic neurectomy in rats

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-biao; CHEN Jun-chang

    2013-01-01

    Injection of insulin-like growth factor-1 (IGF-1) can prevent bone loss in sciatic nerve transaction rats.We try to investigate the action mechanism of IGF-1 on bone formation.Methods:A total of 40 adult male Spragne-Dawley rats were divided into two groups (experimental group and control group) with 20 animals in each.Sciatic neurectomy was performed to model disuse osteoporosis in all rats.IGF-1was administered in experimental group with the dose of 100 μg/kg per day for 3 days.Meanwhile,the rats in control group were treated with saline.Bone mineral density was measured by dual-energy X-ray absorptiometry 4 and 6 weeks after neurectomy respectively.Expression of Osterix and Runx2 was determined by reverse transcription-polymerase chain reaction (RT-PCR) assay.Results:There was a significant increase in the bone mineral density of experimental group compared with control group.There was a significant decrease in the level of receptor activator of nuclear factor-κ B-ligand but an increase in the level of osteoprotegerin 4 and 6 weeks after neurectomy in the experimental group compared with control one.The expression of Osterix and Runx2 was up-regulated in the bone marrow of experimental group compared with control group.Conclusion:IGF-1 can increase bone formation by stimulation of osteoblast number and activity,and reduce bone resorption by restriction of differentiation of osteoclast,suggesting that IGF-1 may improve the therapeutic efficacy for disuse osteoporosis.

  7. Long-term effects of alendronate on fracture healing and bone remodeling of femoral shaft in ovariectomized rats

    OpenAIRE

    Fu, Ling-jie; Tang, Ting-ting; Hao, Yong-qiang; Dai, Ke-Rong

    2013-01-01

    Aim: To investigate the long-term effects of alendronate (Aln), a widely used oral bisphosphonate, on fracture healing and bone remodeling in ovariectomized rats. Methods: Adult female SD rats underwent ovariectomy, and then bilateral femoral osteotomy at 12 weeks post-ovariectomy. From d 2 post-ovariectomy, the animals were divided into 3 groups, and treated with Aln (3 mg·kg−1·d−1, po) for 28 weeks (Aln/Aln), Aln for 12 weeks and saline for 16 weeks (Aln/Saline) or saline for 28 weeks (Sali...

  8. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    1978-01-01

    Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants...

  9. Local treatment of a bone graft by soaking in zoledronic acid inhibits bone resorption and bone formation. A bone chamber study in rats

    Directory of Open Access Journals (Sweden)

    Belfrage Ola

    2012-12-01

    Full Text Available Abstract Background Bone grafts are frequently used in orthopaedic surgery. Graft remodelling is advantageous but can occur too quickly, and premature bone resorption might lead to decreased mechanical integrity of the graft. Bisphosphonates delay osteoclastic bone resorption but may also impair formation of new bone. We hypothesize that these effects are dose dependent. In the present study we evaluate different ways of applying bisphosphonates locally to the graft in a bone chamber model, and compare that with systemic treatment. Methods Cancellous bone grafts were placed in titanium chambers and implanted in the tibia of 50 male rats, randomly divided into five groups. The first group served as negative control and the grafts were rinsed in saline before implantation. In the second and third groups, the grafts were soaked in a zoledronic acid solution (0.5 mg/ml for 5 seconds and 10 minutes respectively before being rinsed in saline. In the fourth group, 8 μL of zoledronic acid solution (0.5 mg/ml was pipetted onto the freeze-dried grafts without rinsing. The fifth group served as positive control and the rats were given zoledronic acid (0.1 mg/kg systemically as a single injection two weeks after surgery. The grafts were harvested at 6 weeks and analysed with histomorphometry, evaluating the ingrowth distance of new bone into the graft as an equivalent to the anabolic osteoblast effect and the amount (bone volume/total volume; BV/TV of remaining bone in the remodelled graft as equivalent to the catabolic osteoclast effect. Results In all chambers, almost the entire graft had been revascularized but only partly remodelled at harvest. The ingrowth distance of new bone into the graft was lower in grafts soaked in zoledronic acid for 10 minutes compared to control (p = 0.007. In all groups receiving zoledronic acid, the BV/TV was higher compared to control. Conclusions This study found a strong inhibitory effect on bone resorption by

  10. Prolonged propagation of rat neural stem cells relies on inhibiting autocrine/paracrine bone morphogenetic protein and platelet derived growth factor signals

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Liangfu Zhou; Xing Wu; Hua Liu; Qiang Yuan; Ying Mao; Jin Hu

    2011-01-01

    Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.

  11. Effects of a buried magnetic field on cranial bone reconstruction in rats

    Science.gov (United States)

    de ABREU, Maíra Cavallet; PONZONI, Deise; LANGIE, Renan; ARTUZI, Felipe Ernesto; PURICELLI, Edela

    2016-01-01

    ABSTRACT The understanding of bone repair phenomena is a fundamental part of dentistry and maxillofacial surgery. Objective The present study aimed to evaluate the influence of buried magnetic field stimulation on bone repair in rat calvaria after reconstruction with autogenous bone grafts, synthetic powdered hydroxyapatite, or allogeneic cartilage grafts, with or without exposure to magnetic stimulation. Material and Methods Ninety male Wistar rats were divided into 18 groups of five animals each. Critical bone defects were created in the rats’ calvaria and immediately reconstructed with autogenous bone, powdered synthetic hydroxyapatite or allogeneic cartilage. Magnetic implants were also placed in half the animals. Rats were euthanized for analysis at 15, 30, and 60 postoperative days. Histomorphometric analyses of the quantity of bone repair were performed at all times. Results These analyses showed significant group by postoperative time interactions (p=0.008). Among the rats subjected to autogenous bone reconstruction, those exposed to magnetic stimulation had higher bone fill percentages than those without magnetic implants. Results also showed that the quality of bone repair remained higher in the former group as compared to the latter at 60 postoperative days. Conclusions After 60 postoperative days, bone repair was greater in the group treated with autogenous bone grafts and exposed to a magnetic field, and bone repair was most pronounced in animals treated with autogenous bone grafts, followed by those treated with powdered synthetic hydroxyapatite and allogeneic cartilage grafts. PMID:27119765

  12. Short-term aluminum administration in the rat: reductions in bone formation without osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, W.G.

    1984-05-01

    Aluminum may be a pathogenic factor in dialysis-associated osteomalacia. To study the early effects of Al on bone, cortical bone growth was measured in pair-fed rats given Al and control rats over two consecutive intervals of 28 (period I) and 16 (period II) days, respectively, using tetracycline labeling of bone. Al (2 mg elemental Al per rat) was administered intraperitoneally for 5 days each week, except for the first week of study, when an incremental dose of Al was given. Control rats received saline vehicle only. For the entire 44-day study, bone and matrix formation were reduced from control values in rats given Al. Although bone and matrix formation remained at control levels during period I in rats given Al, both measurements decreased from control values during period II. During Al exposure, bone and matrix apposition at the periosteum were reduced from control levels in period II, but not in period I. Neither osteoid width nor mineralization front width increased from control values in rats given Al. These findings indicate that Al reduces bone and matrix formation early in the course of Al exposure and prior to the development of histologic osteomalacia. Rather than acting as an inhibitor of mineralization, the early effect of Al on bone is the suppression of matrix synthesis. Our results suggest that the state of low bone formation seen in dialysis-associated osteomalacia may be the consequence of a direct toxic effect of Al on the cellular activity of osteoblasts. 29 references, 3 tables.

  13. Effect of storage on osteoinductive properties of demineralized bone in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1994-01-01

    A requirement for the clinical use of demineralized bone is the possibility of storing the material without loss of its osteoinductive properties. Seventy-five 8-week-old male Wistar rats were randomly assigned to one of five groups of 15 rats each. Lyophilized demineralized allogeneic bone...

  14. Effects of Aluminum Exposure on the Bone Stimulatory Growth Factors in Rats.

    Science.gov (United States)

    Li, Peng; Luo, Weiwei; Zhang, Hui; Zheng, Xue; Liu, Chao; Ouyang, Hongsheng

    2016-07-01

    Aluminum (Al) is considered to be a potentially toxic metal and inhibits bone formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) play an important role in regulating the bone formation. Therefore, this study aimed to investigate the effects of Al on the TGF-β1 and BMP-2 in rats. In this study, Wistar rats were randomly divided into Al-treated group and control group. The Al-treated rats were provided with drinking water containing 100 mg/L AlCl3, and the control rats were given distilled water for 30, 60, and 90 days, respectively. Ten rats were sacrificed in each group every 30 days. The Al-treated rats showed lower body weight and higher serum and bone levels of Al compared with the control rats. The expression levels of TGF-β1 and BMP-2 were also significantly decreased in the Al-treated rats. Serum levels of bone gamma-carboxyglutamic acid protein (BGP), carboxy-terminal propeptide of type I procollagen (PICP), and bone alkaline phosphatase (B-ALP) were markedly lower in the Al-treated groups than in the control group. These results indicate that Al inhibits the expression of TGF-β1 and BMP-2 in bone, which inhibits the activity of osteoblasts and reduces the synthesis of BGP, B-ALP, and type I collagen, thereby inhibiting bone formation. PMID:26594034

  15. Hemopoietic precursor-cells in radiation chimeras restored by bone marrow of adult thymectomized mice

    International Nuclear Information System (INIS)

    Radioprotective capacity of bone marrow CFUs of adult thymectomized mice was studied. Lethaly irradiated mice were inoculated with bone marrow of mice thymectomized 8-11 months before. The colony forming capacity and proliferative rate of CFUs were studied 1-7.5 months after obtaining the radiation chimeras. It has been shown that proliferative capacity of bone marrow of adult thymectomized mice was reduced in comparison with that of normal animals. We also found that the content of CFUs in bone of those chimeras was reduced later - after 7.5 months. In this period (1-7.5 months) the cellularity of bone marrow did not change

  16. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    Science.gov (United States)

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  17. Lactogenic and Cytogenetic Effects of Ochratoxin A in Adult Male Rats and Pups

    Directory of Open Access Journals (Sweden)

    Duraid A. Abbas

    2013-06-01

    Full Text Available Lactogenic and cytogenic effects were studied for Ochratoxin (OTA dosed daily orally throughout lactation period to four groups each consist of newly parturated female rats at doses (0, 60, 120, 180 µg/Kg. BW representing control, T1, T2, T3 group. Micronucleus test results indicated significant increase in number of fragmented and budding nuclei of T1, T2, T3 adult rat bone marrow in dose dependent manner in comparison with control group. The lactating results show no significant change in weekly pup group’s weight gain or length throughout lactating period. Alough there were no changes recorded in viability index of all pups groups, lactating index recorded considerable decline in T1, T2, T3 pups groups according with their adult OTA doses with maximum pups death at the third lactating week. Different histopathological lesions observed in pups liver, kidney and spleen that increase in severity proportionally with their OTA mother doses.

  18. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    OpenAIRE

    Sabine Wislet-Gendebien; Emerence Laudet; Virginie Neirinckx; Bernard Rogister

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In th...

  19. Influence of moderate energy restriction and seafood consumption on bone turnover in overweight young adults

    OpenAIRE

    Lucey, A.J. (Alice J.); Paschos, G.K. (George K.); Cashman, K. D.; J. A. Martinez; Thorsdottir, I; Kiely, M

    2008-01-01

    BACKGROUND: Overweight and obesity are increasing in young adults. However, moderate energy restriction aimed at lowering body weight may promote bone turnover and bone loss. Inclusion of fish or fish oils in a weight-loss diet may attenuate these adverse skeletal effects. OBJECTIVE: We examined the effects of incorporating fish or fish oil into an energy-restricted diet on bone turnover markers in young overweight adults. DESIGN: While following a strict hypoenergetic (-30%...

  20. Adolescent social isolation influences cognitive function in adult rats

    Institute of Scientific and Technical Information of China (English)

    Feng Shao; Xiao Han; Shuang Shao; Weiwen Wang

    2013-01-01

    Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate the effects of adolescent social isolation on latent inhibition and brain-derived neurotrophic factor levels in the forebrain of adult rats. Male Wistar rats were randomly divided into adolescent isolation (isolated housing, 38–51 days of age) and social groups. Latent inhibition was tested at adulthood. Brain-derived neurotrophic factor levels were measured in the medial prefrontal cortex and nucleus accumbens by an enzyme-linked immunosorbent assay. Adolescent social isolation impaired latent inhibition and increased brain-derived neurotrophic factor levels in the medial prefrontal cortex of young adult rats. These data suggest that adolescent social isolation has a profound effect on cognitive function and neurotrophin levels in adult rats and may be used as an animal model of neurodevelopmental disorders.

  1. The diurnal rhythm of bone resorption in the rat. Effect of feeding habits and pharmacological inhibitors.

    OpenAIRE

    Mühlbauer, R C; Fleisch, H

    1995-01-01

    Prevention of low bone mass is important to reducing the incidence of osteoporotic fractures. This paper shows that, in rats, bone mass can be increased by feeding habits per se. Using six-hourly urinary excretion of [3H]tetracycline from prelabeled rats to monitor bone resorption, we previously found a peak of bone resorption following food administration. We now demonstrate that dividing the solid and liquid intake into portions blunts this peak and leads to a decrease in 24-h bone resorpti...

  2. A novel in vivo platform for studying alveolar bone regeneration in rat

    OpenAIRE

    Kim, Joong-Hyun; Moon, Ho-Jin; Kim, Tae-Hyun; Jo, Jong-Min; Yang, Sung Hee; Naskar, Deboki; Kundu, Subhas C.; Chrzanowski, Wojciech; Kim, Hae-Won

    2013-01-01

    Alveolar bone regeneration is a significant challenge in dental implantation. Novel biomaterials and tissue-engineered constructs are under extensive development and awaiting in vivo animal tests to find clinical endpoint. Here, we establish a novel in vivo model, modifying gingivoperiosteoplasty in rat for the alveolar bone regeneration. Rat premaxillary bone defects were filled with silk scaffold or remained empty during the implantation period (up to 6 weeks), and harvested samples were an...

  3. Divalent cation ionophores stimulate resorption and inhibit DNA synthesis in cultured fetal rat bone

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, J.A.; Raisz, L.G.

    1981-06-01

    Two divalent cation ionophores, A23187 and Ionomycin, which are selective for calcium, stimulated the resorption of fetal rat long bones in organ culture at 0.1 to 1 micromolar but not at higher concentrations. Both agents inhibited DNA synthesis at concentrations that stimulated resorption. These results might explain the differences in ionophore effects on bone previously reported, and they imply that cell replication is not required for osteoclast formation in fetal rat long bone cultures.

  4. [Stereological analysis of rat bone tissue after a flight on the Kosmos-1129 biosatellite].

    Science.gov (United States)

    Prokhonchukov, A A; Peschanskiĭ, V S

    1982-01-01

    Stereological measurements of volume fractions of 53 samples of compact and spongy structures of bones of 15 rats were carried out. The measurements were performed on cortical lamellae, trabecules and lacunae, channels of osteons and matrices of femoral, tibial and fibular bones of rats. Postflight no significant changes were seen in the above parameters as compared to the vivarium controls. During readaptation to I g a slight increase in the volume fraction of spongy bones was noted. PMID:6750237

  5. Early bone changes after incorporation of low quantities of alpha emitters in male rats

    International Nuclear Information System (INIS)

    This work shows the early effects of cancergenic doses of alpha emitters in long bones of rats. The investigations were based on radiographic, morphologic, angiographic, histologic and electronmicroscopic methods. A special method for bone angiography in the rat was elaborated and a new method was developed for measurement of the femur neck-head angle. Numerous disturbances in bone growth and bone structure, in the blood supply of bone and also of the bone building cells were observed. There was a correlation between the severity of the damage and the radiation dose, the spacial distribution of the nuclide and partially the age of the rats. The bone injury due to plutonium was markedly reduced by administration of the chelating agent Zn-DTPA. (orig.)

  6. Bone mineral density in adults with Down's syndrome

    International Nuclear Information System (INIS)

    The objective of the study was to elucidate if individuals with Down's syndrome (DS) are likely to experience an increased risk of osteoporosis with advancing age, in addition to precocious aging and their skeletal anomalies. Bone mineral density (BMD) was measured in 22 home-reared adults (9 males and 13 females; age 26.22 ± 4.45 and 23.65 ± 3.23 years, respectively) by dual energy X-ray absorptiometry (DXA). The BMD of the second to fourth lumbar vertebrae was measured in posteroanterior projection and the mean density expressed as grams per square centimetre. The BMD of DS individuals was compared with 27 control subjects (12 males and 15 females) of the same age (age 24.16 ± 3.46 and 23.86 ± 2.92 years, respectively). The results showed that the BMD of the lumbar spine in the males as well as in the females with DS was significantly lower than that in their control counterparts (p < 0.001). Comparing the DS males with the females, the BMD was lower in the males at a level of 9 %. Factors that contribute to this disorder may be mainly the muscular hypotonia, the sedentary lifestyle and the accompanying diseases which frequently observed in the syndrome. Future studies must be focused on the biochemistry of bone metabolism, the evaluation of gonadal, thyroid and parathyroid function, and the genes of the extra chromosome 21. (orig.)

  7. Bone mineral density in adults with Down`s syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Angelopoulou, N.; Souftas, V.; Mandroukas, K. [Ergophysiology Lab., Aristotle Univ. of Thessaloniki, Thessaloniki (Greece); Sakadamis, A. [Medical School, Aristotle Univ. of Thessaloniki (Greece)

    1999-05-01

    The objective of the study was to elucidate if individuals with Down`s syndrome (DS) are likely to experience an increased risk of osteoporosis with advancing age, in addition to precocious aging and their skeletal anomalies. Bone mineral density (BMD) was measured in 22 home-reared adults (9 males and 13 females; age 26.22 {+-} 4.45 and 23.65 {+-} 3.23 years, respectively) by dual energy X-ray absorptiometry (DXA). The BMD of the second to fourth lumbar vertebrae was measured in posteroanterior projection and the mean density expressed as grams per square centimetre. The BMD of DS individuals was compared with 27 control subjects (12 males and 15 females) of the same age (age 24.16 {+-} 3.46 and 23.86 {+-} 2.92 years, respectively). The results showed that the BMD of the lumbar spine in the males as well as in the females with DS was significantly lower than that in their control counterparts (p < 0.001). Comparing the DS males with the females, the BMD was lower in the males at a level of 9 %. Factors that contribute to this disorder may be mainly the muscular hypotonia, the sedentary lifestyle and the accompanying diseases which frequently observed in the syndrome. Future studies must be focused on the biochemistry of bone metabolism, the evaluation of gonadal, thyroid and parathyroid function, and the genes of the extra chromosome 21. (orig.) With 1 tab., 21 refs.

  8. Yacon flour and Bifidobacterium longum modulate bone health in rats.

    Science.gov (United States)

    Rodrigues, Fabiana Carvalho; Castro, Adriano Simões Barbosa; Rodrigues, Vívian Carolina; Fernandes, Sérgio Antônio; Fontes, Edimar Aparecida Filomeno; de Oliveira, Tânia Toledo; Martino, Hércia Stampini Duarte; de Luces Fortes Ferreira, Célia Lúcia

    2012-07-01

    Yacon flour has been considered a food with prebiotic potential because of the high levels of fructooligosaccharides, which allows for its use in formulating synbiotic foods. The purpose of this study was to evaluate the effect of yacon flour and probiotic (Bifidobacterium longum) on the modulation of variables related to bone health. Thirty-two Wistar rats were divided into 4 groups: control, yacon flour, diet+B. longum, and yacon flour+B. longum. After euthanasia, the bones were removed for analysis of biomechanical properties (thickness, length, and strength of fracture) and mineral content (Ca, Mg, and P); the cecum was removed for analysis of the microbiota and short-chain fatty acids. Tibia Ca, P, and Mg content was significantly (Pyacon flour+B. longum than in the control group. An increase in fracture strength was observed in the yacon flour (8.1%), diet+B. longum (8.6%), and yacon flour+B. longum (14.6%) in comparison to the control group. Total anaerobe and weight of the cecum were higher (Pyacon flour diet compared with the other groups. Cecal concentration of propionate was higher in all experimental groups compared with the control (PYacon flour in combination with B. longum helped increase the concentration of minerals in bones, an important factor in the prevention of diseases such as osteoporosis. PMID:22510044

  9. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2012-01-01

    Full Text Available The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months were tested in Morris water maze (MWM and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500×103/ and PBS (phosphate buffer saline. In the second experiment, Ibotenic acid (Ibo was injected bilaterally into the nucleus basalis magnocellularis (NBM of young rats (3 months and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500×103/ and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  10. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    Science.gov (United States)

    Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo

    2015-10-01

    The annual incidence of new cancer patients in China is about 2 million, 30-40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague-Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl2 solution (containing 1.4 mg Ca and 5nCi 41Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  11. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  12. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  13. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  14. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    De-Gang Yu

    2015-01-01

    Full Text Available Background: The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA. However, the characteristics of subchondral bone alterations remain unresolved. The present study aimed to observe the dynamic alterations in the microarchitecture, mineralization, and mechanical properties of subchondral bone during the progression of OA. Methods: A medial meniscal tear (MMT operation was performed in 128 adult Sprague Dawley rats to induce OA. At 2, 4, 8, and 12 weeks following the MMT operation, cartilage degeneration was evaluated using toluidine blue O staining, whereas changes in the microarchitecture indices and tissue mineral density (TMD, mineral-to-collagen ratio, and intrinsic mechanical properties of subchondral bone plates (BPs and trabecular bones (Tbs were measured using micro-computed tomography scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction. Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV, trabecular number, connectivity density and trabecular thickness [Tb.Th], and increased trabecular spacing (Tb.Sp at 2 and 4 weeks to bone accretion late (increased BV/TV, Tb.Th and thickness of subchondral bone plate, and reduced Tb.Sp at 8 and 12 weeks. The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks. The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction. Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction. The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks. Conclusion: The microarchitecture, mineralization and mechanical

  15. Effects of whole body exposure to electromagnetic field on normal and osteoporotic bone metabolism in rats

    International Nuclear Information System (INIS)

    The biological effects of the exposure to the electromagnetic field particularly on bone metabolism in growing rats that were ovariectomized (OVX) and fed different calcium diets were determined. Female Wistar rats, 8 weeks old, were divided into four groups; OVX fed standardized (1.2%) calcium diet (StCa), OVX fed low (0.02%) Ca diet (LCa), no-OVX+StCa and no-OVX+LCa groups. Half of rats in each group were exposed to electromagnetic field (100 mG, 50 Hz). Rats (n=5) in each group were sacrificed 1, 2, and 3 month after the exposure. Analyses of bone and serum were performed. Compared to the corresponding control groups, the body weights in the exposure groups, decreased at each measured point. The bone mineral density in the total and trabecular bone in the tibia and femur decreased 2 month after the exposure. In the histomorphometric measurement using the tibial proximal metaphysis at 3 months later, the decreases in bone volume, bone formation rate, eroded surface and depth, and the increases in trabecular separation were observed in the exposure groups. The bone fragility (femur) also was observed. Simultaneously the decreases in the weights of adrenal gland and skeletal muscles, and value in serum rat-PTH and BGP were observed. The results indicate that the bone growth and metabolism in the growth process are inhibited and enlarged with low Ca intakes by the long-term exposure in an electromagnetic field in rats. (author)

  16. Evaluation of laser photobiomodulation on healing of bone defects grafted with bovine bone in diabetic rats

    Science.gov (United States)

    Paraguassú, Gardênia Matos; da Costa Lino, Maíra Doria Martinez; de Carvalho, Fabíola Bastos; Cangussu, Maria Cristina; Pinheiro, Antônio Luiz Barbosa; Ramalho, Luciana Maria Pedreira

    2012-09-01

    Previous studies have shown positive effects of Low Level Laser Therapy (LLLT) on the repair of bone defects, but there is a few that associates bone healing in the presence of a metabolic disorder such as Diabetes Mellitus, a systemic disorder associated to impair of the repair of different tissues. The aim of this study was to assess, histologically, the repair of surgical defects created in the femur of diabetic and non-diabetic rats treated or not with LLLT (λ780nm, 70mW, CW, o/˜0.4mm, 16J/cm2 per session) associated or not to the use of a biomaterial. Surgical tibial bone defects were created in 60 animals that were divided into 4 groups: Group B (non-diabetic + biomaterial); Group BL (non-diabetic + biomaterial + LLLT); Group BD (diabetic + biomaterial); Group BDL (diabetic + biomaterial + LLLT). The irradiated group received 16 J/cm2 per session divided into 4 points around the defect, being the first irradiation carried out immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The specimens underwent a semi-quantitative analysis. The results showed inflammation more intense in the BD and BDL groups than in the B and BL groups in the period of 15 days (p = 0.02), however the cortical repair in the BDL group was below 25% in more than half of the specimens, while in the BD group, the repair was more than to 25% in all specimens. At 30 days, both osteoblastic activity and collagen deposition were significantly higher in the B group when compared to the BD group (p=0.04). Bone deposition was significantly higher in the BL group (p=0.023) than in BDL group. It is concluded that LLLT has a positive biomodulative effect in the early stages of the healing process of bone defects grafted with biomaterial in diabetic and non-diabetic rats.

  17. Effects of heavy ion particle irradiation on bone metabolism of rats at different ages

    International Nuclear Information System (INIS)

    Age changes in the effects of heavy ion particle irradiation on bone metabolism were determined in rats. Female rats, aged 3-30 months of intervals of 3 months, were divided into four groups at each age. Heavy ion particle (Carbon beam 290 MeV, LET; 40 keV/μm) was irradiated to the whole body with doses of 0, 1.25, 2.5 and 5.0 Gy under no anesthesia. All rats received injection of tetracycline for a histomorphometric bone-dynamic analysis and dissected to collect bones and serum three months after irradiation. The results indicate that the bone mineral density in the cancellous bone in the tibial proximal metaphysis by pQCT and the bone strength of femur by a three point bending method had the tendency to decrease in the age of less than 9 months, and then rather to be higher than the control. In the detailed histomorphometric analysis using undecalcified specimens of the tibial proximal metaphysis at 9 months of age, the decrease in bone volume/bone tissue was observed as well as that in the bone mineral density accompanied with the increases in radiation doses. Also, the eroded depth and surface area decreased compare to the osteoid volume. The results indicate that heavy ion irradiation occurred the decreases in bone mineral loss and bone volume response to the increase in radiation doses, probably due to the changes in bone turnover with aging. (author)

  18. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    Science.gov (United States)

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  19. The p38α MAPK function in osteoprecursors is required for bone formation and bone homeostasis in adult mice.

    Directory of Open Access Journals (Sweden)

    Edgardo Rodríguez-Carballo

    Full Text Available p38 MAPK activity plays an important role in several steps of the osteoblast lineage progression through activation of osteoblast-specific transcription factors and it is also essential for the acquisition of the osteoblast phenotype in early development. Although reports indicate p38 signalling plays a role in early skeletal development, its specific contributions to adult bone remodelling are still to be clarified.We evaluated osteoblast-specific deletion of p38α to determine its significance in early skeletogenesis, as well as for bone homeostasis in adult skeleton. Early p38α deletion resulted in defective intramembranous and endochondral ossification in both calvaria and long bones. Mutant mice showed reduction of trabecular bone volume in distal femurs, associated with low trabecular thickness. In addition, knockout mice also displayed decreased femoral cortical bone volume and thickness. Deletion of p38α did not affect osteoclast function. Yet it impaired osteoblastogenesis and osteoblast maturation and activity through decreased expression of osteoblast-specific transcription factors and their targets. Furthermore, the inducible Cre system allowed us to control the onset of p38α disruption after birth by removal of doxycycline. Deletion of p38α at three or eight weeks postnatally led to significantly lower trabecular and cortical bone volume after 6 or 12 months.Our data demonstrates that, in addition to early skeletogenesis, p38α is essential for osteoblasts to maintain their function in mineralized adult bone, as bone anabolism should be sustained throughout life. Moreover, our data also emphasizes that clinical development of p38 inhibitors should take into account their potential bone effects.

  20. Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis

    Science.gov (United States)

    Ramalho-Ferreira, Gabriel; Faverani, Leonardo Perez; Grossi-Oliveira, Gustavo Augusto; Okamoto, Tetuo; Okamoto, Roberta

    2015-03-01

    In this study, the characteristics of the alveolar bone of rats with induced osteoporosis were examined. Thirty-two rats were divided into four groups according to the induction of osteoporosis and drugs administered: OG, osteoporotic rats without treatment (negative control); SG, rats which underwent sham surgery ovariectomy (SHAM); alendronate (AG), osteoporotic rats treated with alendronate; and RG, osteoporotic rats treated with raloxifene (RG). On the 8th day after ovariectomy and SHAM surgeries, drug therapy was started with AG or RG. On the 52nd day, 20 mg/kg calcein was administered to all of the rats, and on the 80th day, 20 mg/kg alizarin red was administered. Euthanasia was performed on the 98th day. The bone area marked by fluorochromes was calculated and data were subjected to two-way ANOVA test and Tukey's post-hoc test (p<0.05). The comparison of the induced osteoporosis groups showed no statistically significant differences in bone turnover only between RG and SG (p=0.074) and AG and OG (p=0.138). All other comparisons showed significant differences (p<0.001). The largest bone turnover was observed in RG and SG groups. RG was the medication that improved the dynamics of the alveolar bone of rats with induced osteoporosis, resembling that of healthy rats.

  1. Self-Repair of Rat Cortical Bone Microdamage after Fatigue Loading In Vivo

    OpenAIRE

    Bo Wu; Chan Zhang; Bo Chen; Ling Zhang; Ruchun Dai; Xianping Wu; Yebin Jiang; Eryuan Liao

    2013-01-01

    Bone microdamage can be repaired through bone remodeling induced by loading. In this study, a loading device was developed for improved efficiency and the self-repair process of bone microdamage was studied in ovariectomized rats. First, four-point bending fixtures capable of holding two live rats simultaneously were designed. Rats were loaded and subjected to a sinusoidal wave for 10,000 cycles. They were then divided into four groups to evaluate time points from 1 to 4 weeks in the microdam...

  2. Protective effect of polysaccharides from morinda officinalis on bone loss in ovariectomized rats.

    Science.gov (United States)

    MengYong, Zhu; CaiJiao, Wang; HuSheng, Zhang; XianWu, Pei; JianMin, Fen

    2008-10-01

    In order to examine the effect of polysaccharides from morinda officinalis (MOP) on bone quality of osteoporosis rats. The osteoporosis in rats was induced by ovariectomy, and MOP (100 or 300 mg/kg) was orally administrated once daily. The animals were assessed 30 days after the operation for bone mineral density, serum cytokines level and mineral element concentration. MOP administration in rats resulted in an increase in bone mineral density and mineral element concentration, a decrease in serum cytokines level, which indicated that MOP administration may play an important role in the development of osteoporosis. PMID:18638500

  3. Effect of alendronate on bone remodeling around implant in the rat

    OpenAIRE

    Park, Ran; Kim, Jee-Hwan; Choi, Hyunmin; Park, Young-Bum; Jung, Han-Sung; Moon, Hong-Seok

    2013-01-01

    PURPOSE The purpose of this study was to evaluate the effect of alendronates on bone remodeling around titanium implant in the maxilla of rats. MATERIALS AND METHODS The maxillary first molars were extracted and customized-titanium implants were placed immediately in thirty male Sprague-Dawley rats. The rats were divided into experimental (bisphosphonate) group and control group. At 4 weeks after implantation, the rats in the bisphosphonate group were subcutaneously injected with alendronate ...

  4. Effects of taurine supplementation on bone mineral density in ovariectomized rats fed calcium deficient diet

    OpenAIRE

    Choi, Mi-Ja

    2009-01-01

    Taurine supplementation has been shown to have a beneficial effect on femur bone mineral content in ovariectomized rats. It therefore seemed desirable to find out whether the beneficial effect of taurine on ovariectomized rats fed calcium deficient diet could also be reproduced. Forty female Sprague-Dawley rats were divided into two groups. One group was OVX and the other group received sham operation (SHAM), and received either control diet or a taurine supplemented diet for 6 weeks. All rat...

  5. Infant milk feeding influences adult bone health: a prospective study from birth to 32 years.

    Directory of Open Access Journals (Sweden)

    Satu Pirilä

    Full Text Available BACKGROUND: Peak bone mass, attained by early adulthood, is influenced by genetic and life-style factors. Early infant feeding and duration of breastfeeding in particular, associate with several health-related parameters in childhood. The aim of this study was to examine whether the effects of early infant feeding extend to peak bone mass and other bone health characteristics at adult age. METHODS AND FINDINGS: A cohort of 158 adults (76 males born in Helsinki, Finland, 1975, prospectively followed up from birth, underwent physical examination and bone densitometry to study bone area, bone mineral content (BMC, and bone mineral density (BMD at 32 years of age. Life-style factors relevant for bone health were recorded. For data analysis the cohort was divided into three equal-size groups according to the total duration of breastfeeding (BF: Short (≤3 months, Intermediate and Prolonged (≥7 months BF groups. In males short BF is associated with higher bone area, BMC, and BMD compared to longer BF. Males in the Short BF group had on average 4.7% higher whole body BMD than males in the Prolonged BF group. In multivariate analysis, after controlling for multiple confounding factors, the influence of BF duration on adult bone characteristics persisted in males. Differences between the three feeding groups were observed in lumbar spine bone area and BMC, and whole body BMD (MANCOVA; p = 0.025, p = 0.013, and p = 0.048, respectively, favoring the Short BF group. In women no differences were observed. CONCLUSIONS: In men, early infant milk feeding may have a significant impact on adult bone health. A potential explanation is that the calcium and phosphate contents were strikingly higher in formula milk and commercial cow milk/cow milk dilutions as opposed to human milk. Our novel finding merits further studies to determine means to ensure optimal bone mass development in infants with prolonged breastfeeding.

  6. Biomechanical Evaluation of Rat Skull Defects, 1, 3, and 6 Months after Implantation with Osteopromotive Substances

    DEFF Research Database (Denmark)

    Jones, Leigh Robert; Thomsen, Jesper Skovhus; Mosekilde, Lis; Bosch, Carles; Melsen, Birte

    2007-01-01

    Purpose: To compare the mechanical strength of surgically created and healed rat calvarial defects having been filled with three different osteopromotive substances: hydroxyapatite, intramembraneous demineralised bone matrix (DBM), and autogenous bone chips. Material: Sixty adult male Wistar rats...

  7. RT-PCR standardization and bone mineralization after low-level laser therapy on adult osteoblast cells

    Science.gov (United States)

    do Bomfim, Fernando R. C.; Sella, Valéria R. G.; Zanaga, Jéssica Q.; Pereira, Nayara S.; Nouailhetas, Viviane L. A.; Plapler, Hélio

    2014-03-01

    Purpose: Osteoblasts are capable to produce different compounds directly connected to bone mineralization process. This study aims to standardize the reverse transcriptase polymerase chain reaction (RT-PCR) for adult osteoblasts to observe the effect of low level laser therapy on bone mineralization. Methods: Five-millimeter long fragments obtained from the mead femoral region of male Wistar rats were assigned into group A (n=10, laser) and group B (n=10, no laser), submitted to mechanic and enzymatic digestion. After 7 days, cultures of group A were irradiated daily on a single spot with a GaInAs laser, λ=808nm, 200mW/cm2, 2J/cm2, bean diameter of 0,02mm, 5 seconds for 6 days. Group B was manipulated but received no laser irradiation. After 13 days the cells were trypsinized for 15 minute and stabilized with RNA later® for RNA extraction with Trizol®. cDNA synthesis used 10μg of RNA and M-MLV® enzyme. PCR was accomplished using the β-actin gene as a control. Another aliquot was fixed for Hematoxylin-Eosin and Von Kossa staining to visualize bone mineralization areas. Results: Under UV light we observed clearly the amplification of β-actin gene around 400bp. HE and Von Kossa staining showed osteoblast clusters, a higher number of bone cells and well defined mineralization areas in group A. Conclusion: The cell culture, RNA extraction and RT-PCR method for adult osteoblasts was effective, allowing to use these methods for bone mineralization studies. Laser improved bone mineralization and further studies are needed involving osteogenesis, calcium release mechanisms and calcium related channels.

  8. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  9. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  10. Modifications of histamine receptor signaling affect bone mechanical properties in rats.

    Science.gov (United States)

    Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Śliwiński, Leszek; Wiercigroch, Marek; Brzęczek, Anna

    2014-02-01

    Histamine receptors are expressed on bone cells and histamine may be involved in regulation of bone metabolism. The aim of the present study was to investigate the effects of loratadine (an H(1) receptor antagonist), ranitidine (an H(2) receptor antagonist) and betahistine (an H(3) receptor antagonist and H(1) receptor agonist) on bone mechanical properties in rats. Loratadine (5 mg/kg/day, po), ranitidine (50 mg/kg/day, po), or betahistine dihydrochloride (5 mg/kg/day, po), were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized (estrogen-deficient) 3-month-old rats, and their effects were compared with appropriate controls. Serum levels of bone turnover markers, bone mineralization and mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck were studied. In rats with normal estrogen level, administration of loratadine slightly favorably affected mechanical properties of compact bone, significantly increasing the strength of the femoral neck (p < 0.05), and tending to increase the strength of the femoral diaphysis. Ranitidine did not significantly affect the investigated parameters, and betahistine decreased the strength of the tibial metaphysis (cancellous bone, p < 0.01). There were no significant effects of the drugs on serum bone turnover markers. In estrogen-deficient rats, the drugs did not significantly affect the investigated skeletal parameters. In conclusion, the effects of histamine H(1), H(2) and H(3) receptor antagonists on the skeletal system in rats were differential and dependent on estrogen status. PMID:24905313

  11. Bone marrow-derived pancreatic stellate cells in rats.

    Science.gov (United States)

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  12. Effect of aging on bone mass in adult women

    International Nuclear Information System (INIS)

    Total-body calcium was measured in 40 adult women by total-body neutron activation analysis (TBNAA). Procedures for normalizing the absolute calcium measurements for the parameters of size and age were developed in order to effect a direct comparison of women of age 30 to 78 yr. The normal total-body calcium (TB/sub Ca/) for an individual can be predicted by a formula developed in the present study to within +- 11 percent (1.62 SD) at the 90 percent confidence level. The TB/sub Ca/ loss can be characterized by two components: one with a slower rate, 0.37 percent/yr, and the other with a faster rate, 1.08 percent/yr. The latter, a more rapid postmenopausal loss, started at 50 to 60 yr and was superimposed on the slower rate of loss that started in the fourth decade and continued throughout life. The bone mineral content (BMC) of the radius, measured by the absorptiometric technique, correlated well with the total-body skeletal calcium in this population (r = 0.813, P less than .001). However, for intercomparisons of the BMC values of individuals, normalization of the BMC values for size and age is required, as it is for the TB/sub Ca/ data. Normalization provided by the ratio of BMC to radius width is not adequate for comparative studies

  13. Effects of Kalsis, A Dietary Supplement, on Bone Metabolism in the Ovariectomized Rats

    OpenAIRE

    Mercedes Montero.; Manuel Díaz-Curiel; David Guede; Jose Ramón Caeiro; Marta Martín-Fernández; Mercedes Rubert; Daisy Navarro; Concepción de la Piedra

    2012-01-01

    We studied the ability of Kalsis, a food supplement that contains selenium, citric acid, and vitamin E, to prevent the effects of ovariectomy on bone loss. Six-month-old, Wistar female rats were studied. Groups (n = 12): SHAM: sham-operated rats; OVX: ovariectomized rats, treated with vehicle; OVX + Kalsis: ovariectomized rats treated with Kalsis (25 mg/kg/day) for 3 months. Bone mineral density (BMD) was determined by DXA in lumbar spine and femur. Computerized microtomography (μCT) in femur...

  14. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats.

    Science.gov (United States)

    Lee, Heekyung; Kang, Eunchai; GoodSmith, Douglas; Yoon, Do Yeon; Song, Hongjun; Knierim, James J; Ming, Guo-Li; Christian, Kimberly M

    2015-01-01

    Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function. PMID:26161071

  15. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats

    Directory of Open Access Journals (Sweden)

    Heekyung Lee

    2015-06-01

    Full Text Available Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1, the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, somatic hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function.

  16. Protective effect of Pycnogenol® on ovariectomy-induced bone loss in rats.

    Science.gov (United States)

    Mei, Lin; Mochizuki, Miyako; Hasegawa, Noboru

    2012-01-01

    Pycnogenol® (PYC) is a natural plant extract from the bark of Pinus pinaster and has potent antioxidant activities. The protective effect of PYC on bone loss was studied in multiparous ovariectomized (OVX) female rats. Pycnogenol® (30 or 15 mg/kg body weight/day) was administered orally to 8-month-old OVX rats for 3 months. At the end of the experiment, bone strength was measured by a three-point bending test and bone mineral density was estimated by peripheral quantitative computed tomography. Ovariectomy significantly decreased femur bone strength and bone density. Supplementation with PYC suppressed the bone loss induced by OVX. The OVX treatment significantly increased serum osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTx). Supplementation with PYC reduced the serum OC and CTx in OVX rats to a level similar to that of the sham-operated group. The results indicated that orally administered PYC can decrease the bone turnover rate in OVX rats, resulting in positive effects on the biomechanical strength of bone and bone mineral density. PMID:21710590

  17. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    Science.gov (United States)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  18. S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats

    Science.gov (United States)

    Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.

    1993-01-01

    The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S

  19. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    OpenAIRE

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of t...

  20. Effects of the hexahydroxyhexane myoinositol on bone uptake of radiocalcium in rats: Effect of inositol and vitamin D2 on bone uptake of 45Ca in rats

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effects of inositol and vitamin D2 on bone uptake of 45Ca in rats. The radioactive calcium was administered to young rats by orogastric intubation (2 μci/100 g body weight (b.wt.)) with inositol (20 mg/100 g b.wt) and/or vitamin D2 (500 IU/100g b.wt) to normal rats. Bone uptake of 45Ca was measured after 24 hours by standard technique. Inositol alone produced a 48% increase in calcium uptake. It is concluded that inositol significantly increases bone uptake to radioactive calcium (P>0.005). Simultaneous administration of vitamin D2 decreases the effect of inositol considerably, while vitamin D2 has no significant effect. (author)

  1. Differentiation of rat bone marrow stem cells in liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Yu-Tao Zhan; Yu Wang; Lai Wei; Bin Liu; Hong-Song Chen; Xu Cong; Ran Fei

    2006-01-01

    AIM: To investigate the differentiation of rat bone marrow stem cells in liver after partial hepatectomy.METHODS: Bone marrow cells were collected from the tibia of rat with partial hepatectomy, the medial and left hepatic lobes were excised. The bone marrow stem cells (Thy+CD3-CD45RA- cells) were enriched from the bone marrow cells by depleting red cells and fluorescence-activated cell sorting. The sorted bone marrow stem cells were labeled by PKH26-GL in vitro and autotransplanted by portal vein injection. After 2wk, the transplanted bone marrow stem cells in liver were examined by the immunohistochemistry of albumin (hepatocyte-specific marker).RESULTS: The bone marrow stem cells (Thy+CD3-CD45RA- cells) accounted for 2.8% of bone marrow cells without red cells. The labeling rate of 10μM PKH26-GL on sorted bone marrow stem cells was about 95%.There were sporadic PKH26-GL-labeled cells among hepatocytes in liver tissue section, and some of the cells expressed albumin.CONCLUSION: Rat bone marrow stem cells can differentiate into hepatocytes in regenerative environment and may participate in liver regeneration after partial hepatectomy.

  2. ACUTE TOXICITY OF PESTICIDES IN ADULT AND WEANLING RATS

    Science.gov (United States)

    LD sub 50 values were determined for 57 pesticides administered by the oral or dermal route to adult male and female Sherman rats. Nine pesticides tested by the oral route (bufencarb, cacodylic acid, dialifor, deltamethrin, dicamba, diquat, quintozene, phoxim, pyrazon) and 4 test...

  3. Osteogenic potential of bone-lining cells in the adult skeleton

    International Nuclear Information System (INIS)

    Radiation-induced osteogenic sarcomas are believed to arise from proliferating osteogenic precursor cells. The identity and location of these cells in the adult skeleton is not well understood. In order to determine reliable cell dose estimates, it is important to determine the osteogenic pathway in the adult skeleton. Bone-lining cells (BLCs) cover inactive endosteal surfaces in the adult skeleton of long-lived animals. BLCs are flat elongated cells which are directly apposed to the bone surface. They have cell processes extending into canaliculi and have gap junctions at some contacts with other bone-lining cells. The morphology of the bone-lining cell and its proximity to the bone surface can only be resolved at the ultrastructural level. These cells are a distinct morphologic phenotype but have been referred to by a variety of names including resting osteoblasts, surface osteocytes, and flattened mesenchymal cells. The BLC, as a distinct phenotype, should not be confused with the more descriptive term cells lining the bone surface of bone lining cells, sometimes used to include any cell near the bone. The purpose of the study was to determine what role, if any, the bone-lining cells have in the osteogenic process. Do these cells proliferate and contribute to the population of osteoblasts?

  4. Histomorphometry of regenerated tibial bone tissue in rats of different age under violation of saltwater balance

    OpenAIRE

    Pogorelov M.V.

    2010-01-01

    Formation of regenerated bone tissue in rats of different age at normal conditions and at hyperhydration has beenstudied. It was revealed the features in composition of regenerated tissue at a different stages of bone repair process that dependson rat's age. The hypoosmolar hyperhydration cause disorders of regenerated tissue development and inhibit lamellarbone tissue formation. With the help of statistical methods it was shown the dependence of the age and hyperhydration degreeon regenerate...

  5. Histomorphometry of regenerated tibial bone tissue in rats of different age under violation of saltwater balance

    Directory of Open Access Journals (Sweden)

    Pogorelov M.V.

    2010-01-01

    Full Text Available Formation of regenerated bone tissue in rats of different age at normal conditions and at hyperhydration has beenstudied. It was revealed the features in composition of regenerated tissue at a different stages of bone repair process that dependson rat's age. The hypoosmolar hyperhydration cause disorders of regenerated tissue development and inhibit lamellarbone tissue formation. With the help of statistical methods it was shown the dependence of the age and hyperhydration degreeon regenerated tissue composition.

  6. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  7. Preventive Effects of Flaxseed and Sesame Oil on Bone Loss in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    S. Boulbaroud

    2008-01-01

    Full Text Available A study was designed to examine the effects of dietary flaxseed oil (FO and sesame oil (SO which are rich successively in n-3 and (n-9 and n-6 on biochemical parameters and histological status of bone. Sixty-four 90-day-old female wistar rats were randomly assigned to 6 groups: sham-operated rat (sham+ control diets, ovariectomized rat (OVX+ control diets, OVX+ 7% FO, OVX+ 7% SO, OVX+ 10% FO, OVX+ 10% SO. After 4 weeks of treatments, rats were euthanized; blood and tissues were collected for analyses. Markers of bone formation which is alkaline phosphatase activity and markers of bone resorption which is tartrate resistant acid phosphatase activity were measured. Present results showed that OVX increased significantly ALP and TRAP activity and the examination of bone tissue showed disruptive and lytic bone trabeculae. Animals fed 10% FO and 10% SO of fat reduced these parameters and improved bone microarchitecture. Whereas, there was no improvement in biochemical and histological states in OVX rats that received 7% of PUFAs successively provided from FO and SO diets. In conclusion, our results are encouraging because they suggest that PUFAs intake may help to prevent osteoporosis associated with estrogens deficiency. However, further studies are needed to determine the mechanism by which a diet rich in n-3 or lignans modulate bone tissue.

  8. Inhibitory effects of morinda officinalis extract on bone loss in ovariectomized rats.

    Science.gov (United States)

    Li, Nan; Qin, Lu-Ping; Han, Ting; Wu, Yan-Bin; Zhang, Qiao-Yan; Zhang, Hong

    2009-01-01

    The present study was undertaken to investigate the protective effects of ethanol extract from the root of Morinda Officinalis (RMO) on ovariectomy-induced bone loss. Administration of RMO extract increased trabecular bone mineral content and bone mineral density of tibia, improved the levels of phosphorus (P), calcium (Ca) and OPG, decreased the levels of DPD/Cr, TRAP, ACTH and corticosterone, but did not reverse the levels of ALP, TNF-alpha and IL-6 in serum of ovariectomized rats. These findings demonstrated that RMO extract reduced bone loss in ovariectomized rats, probably via the inhibition of bone resorption, but was not involved with bone formation. Anthraquinones and polysaccharides from Morinda officinals could be responsible for their antiosteoporotic activity, and the action mechanism of these constituents needs to be further studied. Therefore, RMO has the potential to develop a clinically useful antiosteoporotic agent. PMID:19513005

  9. Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Qiao-Yan Zhang

    2009-06-01

    Full Text Available The present study was undertaken to investigate the protective effects of ethanol extract from the root of Morinda Officinalis (RMO on ovariectomy-induced bone loss. Administration of RMO extract increased trabecular bone mineral content and bone mineral density of tibia, improved the levels of phosphorus (P, calcium (Ca and OPG, decreased the levels of DPD/Cr, TRAP, ACTH and corticosterone, but did not reverse the levels of ALP, TNF-α and IL-6 in serum of ovariectomized rats. These findings demonstrated that RMO extract reduced bone loss in ovariectomized rats, probably via the inhibition of bone resorption, but was not involved with bone formation. Anthraquinones and polysaccharides from Morinda officinals could be responsible for their antiosteoporotic activity, and the action mechanism of these constituents needs to be further studied. Therefore, RMO has the potential to develop a clinically useful antiosteoporotic agent.

  10. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld;

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...... studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.......The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and...... in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing...

  11. Risk factors for low bone mass in healthy young adults from North India: studies on BMD and bone turnover markers

    Directory of Open Access Journals (Sweden)

    Anita Fotedar Verma

    2015-04-01

    Full Text Available Background: Despite availability of adequate sunshine, Indian population has the highest prevalence of low bone mass and Bone Mineral Content (BMC. Risk factors for osteoporosis have been extensively studied in the west but poorly investigated in India. We studied BMD and Bone Turnover Markers (BTMs among healthy young adults. Methods: Fifty one healthy young adults (28 Males, 23 Females in the age group of 20-35 years were studied. Morphometric, biochemical parameters and BMD (whole body, spine, hip and wrist were recorded. Anthropometric measurements included height, weight, BMI and Waist/Hip Ratio (WHR. BTMs studied included - serum Bone-Specific Alkaline Phosphatase (sBAP, serum Collagen cross-linked C-Terminal telopeptide (sCTx, serum Osteocalcin (OC and human intact parathyroid hormone (hPTH using standard ELISA kits. Results: Of 51 healthy volunteers 21.57% had normal BMD, 13.73% were frankly osteoporotic and 64.70% were osteopenic. Age, weight and BMI were the best predictors of total BMD and BMC at all sites. sCTX positively correlated with Total Bone Area (TBA, BMD at Hip and Forearm. Using multiple regressions - age, weight, and BMI were significant predictors of BMD in young adults. Percentage body fat had inverse correlation with BMC, BMD and TBA. Weight and height positively correlated with BMD at femoral neck, inter-trochanter and Ward's triangle. Body weight was best predictor of BMD at femoral neck, Ward's triangle, forearm UD, forearm MID and forearm1/3. Conclusion: Majority of healthy young Indians have poor bone health as evidenced by bone markers. [Int J Res Med Sci 2015; 3(4.000: 933-939

  12. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  13. Histopathological and Histomorphometrical Effects of Atorvastatin on Experimental Femoral Cortical Bone Defect Healing in Rats

    Directory of Open Access Journals (Sweden)

    M Valilu

    2012-05-01

    Full Text Available Background: Bone remodeling has always been the goal of surgeons for a long time. Recently, it was shown that statins that are commonly prescribed for lowering cholesterol also have beneficial effects on bone healing. Therefore, the present study was undertaken to evaluate the probable effects of atorvastatin on osteogenesis in the rat femur. Methods: This experimental study was conducted on 30 male Sprague-Dawley (SD rats. The animals were divided randomly into one control and two experiment groups. After induction of anesthesia, a hole of 2 mm in diameter was made in femur width. The control group received physiological serum but the experiment groups one and two, respectively, received 10 and 20 mg/kg/PO of atorvastatin on daily basis. After euthanizing the rats, histopathological and histomorphometrical evaluations of the bones were performed 45 days after the intervention. Results: In the control group, the defects seemed to be filled with woven bone and bone marrow, depictive of a poor osteogenic activity. In the experiment groups, many osteoblast groupings and young bone trabeculae had been formed and bone trabeculae were more organized. Histomorphometric results, showed that atorvastatin had significantly promoted bone healing in the experiment groups compared with the controls (P<0.001. Moreover, the analysis showed that atorvastatin had more significant effects in group three receiving high doses of the medication in comparison with group two (P<0.001. Conclusion: The findings of this study showed that atorvastatin is capable of stimulating osteogenesis in rats.

  14. Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats

    OpenAIRE

    Qiao-Yan Zhang; Hong Zhang; Yan-Bin Wu; Ting Han; Lu-Ping Qin; Nan Li

    2009-01-01

    The present study was undertaken to investigate the protective effects of ethanol extract from the root of Morinda Officinalis (RMO) on ovariectomy-induced bone loss. Administration of RMO extract increased trabecular bone mineral content and bone mineral density of tibia, improved the levels of phosphorus (P), calcium (Ca) and OPG, decreased the levels of DPD/Cr, TRAP, ACTH and corticosterone, but did not reverse the levels of ALP, TNF-α and IL-6 in serum of ovariectomized rats. These findin...

  15. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats.

    Science.gov (United States)

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of (25)Mg, (28)Si, (39)K, (47)Ti, (56)Fe, (59)Co, (77)Se, (88)Sr, (137)Ba, and (208)Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of (28)Si, (77)Se, (208)Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  16. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    Directory of Open Access Journals (Sweden)

    Pingping Han

    2016-06-01

    Full Text Available Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  17. Calcaneal Quantitative Ultrasound Indicates Reduced Bone Status Among Physically Active Adult Forager-Horticulturalists.

    Science.gov (United States)

    Stieglitz, Jonathan; Madimenos, Felicia; Kaplan, Hillard; Gurven, Michael

    2016-03-01

    Sedentary lifestyle contributes to osteoporosis and fragility fracture risks among modern humans, but whether such risks are prevalent in physically active preindustrial societies with lower life expectancies is unclear. Osteoporosis should be readily observable in preindustrial societies if it was regularly experienced over human history. In this study of 142 older adult Tsimane forager-horticulturalists (mean age ± SD, 62.1 ± 8.6 years; range, 50 to 85 years; 51% female) we used calcaneal quantitative ultrasonography (qUS) to assess bone status, document prevalence of adults with reduced bone status, and identify factors (demographic, anthropometric, immunological, kinesthetic) associated with reduced bone status. Men (23%) are as likely as women (25%) to have reduced bone status, although age-related decline in qUS parameters is attenuated for men. Adiposity and fat-free mass positively co-vary with qUS parameters for women but not men. Leukocyte count is inversely associated with qUS parameters controlling for potential confounders; leukocyte count is positively correlated within adults over time, and adults with persistently low counts have higher adjusted qUS parameters (6% to 8%) than adults with a high count. Reduced bone status characteristic of osteoporosis is common among active Tsimane with minimal exposure to osteoporosis risk factors found in industrialized societies, but with energetic constraints and high pathogen burden. © 2015 American Society for Bone and Mineral Research. PMID:26460548

  18. Selective Determinants of Low Bone Mineral Mass in Adult Women with Anorexia Nervosa

    OpenAIRE

    Andrea Trombetti; Laura Richert; François R. Herrmann; Thierry Chevalley; Jean-Daniel Graf; René Rizzoli

    2013-01-01

    We investigated the relative effect of amenorrhea and insulin-like growth factor-I (sIGF-I) levels on cancellous and cortical bone density and size. We investigated 66 adult women with anorexia nervosa. Lumbar spine and proximal femur bone mineral density was measured by DXA. We calculated bone mineral apparent density. Structural geometry of the spine and the hip was determined from DXA images. Weight and BMI, but not height, as well as bone mineral content and density, but not area and geom...

  19. Unicameral bone cyst of the lunate in an adult: case report

    Directory of Open Access Journals (Sweden)

    Alici Tugrul

    2010-10-01

    Full Text Available Abstract We report a case of a symptomatic unicameral (simple bone cyst of the lunate in a 42-year- old woman. The lesion was treated with curettage and cancellous autogenous iliac bone grafting. At five years of follow-up the wrist was pain free, there were no limitations of motion, and the radiographs showed complete obliteration of the cavity. To the best of our knowledge, no other unicameral bone cyst of the lunate has been reported in an adult. Cysts with significant cavities at the carpal bones in an adult should be approached cautiously, as they may require early curettage and bone grafting for healing, before collapse and degenerative changes occur.

  20. Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    Science.gov (United States)

    Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher

  1. Effect of vitamin D on bone metabolism in diabetic rats and its related mechanism

    Institute of Scientific and Technical Information of China (English)

    王芳

    2014-01-01

    Objective To study the effect of 1,25-dihydroxyvitamin D3on bone metabolism in diabetic rats and the related molecular mechanism.Methods A total of 45healthy 6-8 weeks old male Sprague Dawley(SD)rats were treated with streptozotocin.The streptozotocin-induced diabetic rats were randomly assigned to diabetic group(DM),low dose vitamin D treated group(LD),and high dose vitamin D treated group(HD).Another 12healthy SD rats were used as normol control group(NC).The rats in NC group and DM group were fed with 0.05

  2. [Characteristics of bone tissue of rats after flight aboard biosputnik Kosmos-1129].

    Science.gov (United States)

    Rogacheva, I V; Stupakov, G P; Volozhin, A I; Pavlova, M N; Poliakov, A N

    1984-01-01

    Bones of rats flown for 19 days onboard Cosmos-1129 were examined. The examination included bone mass, density, mineral composition, reconstruction parameters, and elemental composition at R + 1, R + 6, and R + 29. After flight the rats developed osteoporosis in the spongy structures of tubular bones and a smaller thickness of the cortical layer of the diaphysis; they showed no mineralization of the microstructures, a slight decrease of the Ca concentration, and a normal content of P. At R + 6 these changes progressively developed and at R + 29 they returned to normal. PMID:6513471

  3. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available Current clinical therapies for critical-sized bone defects (CSBDs remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2 gene-modified MSCs and endothelial progenitor cells (EPCs could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.

  4. BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects

    Science.gov (United States)

    He, Xiaoning; Dziak, Rosemary; Yuan, Xue; Mao, Keya; Genco, Robert; Swihart, Mark; Sarkar, Debanjan; Li, Chunyi; Wang, Changdong; Lu, Li; Andreadis, Stelios; Yang, Shuying

    2013-01-01

    Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2) gene-modified MSCs and endothelial progenitor cells (EPCs) could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone) and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm) caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs. PMID:23565253

  5. Incorporation of copper into chitosan scaffolds promotes bone regeneration in rat calvarial defects

    OpenAIRE

    D'Mello, Sheetal; Elangovan, Satheesh; Hong, Liu; Ross, Ryan D.; Sumner, D. Rick; Salem, Aliasger K.

    2014-01-01

    The objective of this study was to investigate the effects of a copper loaded chitosan scaffold on bone regeneration in critical-sized calvarial defects in rats. Chitosan scaffolds and copper-chitosan scaffolds were fabricated and characterized by scanning electron microscopy (SEM). Chitosan and copper-chitosan scaffolds were implanted into 5 mm diameter critical-sized calvarial defects in Fisher 344 male rats. Empty defects (no scaffolds) were included as a control. After 4 weeks, the rats w...

  6. Comparative study of the differentiation potential of rat bone marrow mesenchymal stem cells and rat muscle-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ivan Alexandra

    2013-01-01

    Full Text Available We present a comparative study of the plasticity of rat bone marrow mesenchymal stem cells (MSCs and rat muscle-derived stem cells (MDSCs. The study was performed on two cell populations that were isolated by aspiration from the femur bone marrow and gastrocnemius muscle biopsy of 6-week-old albino rats. Both cell populations were exposed to identical stimulation conditions. The cells were capable of undergoing osteogenic, chondrogenic, adipogenic and epithelial differentiation, as shown by histochemistry and immunostaining techniques. The MDSC population showed behavior and characteristics similar to the bone marrow MSC population; however, the osteogenic and adipogenic potential was more reduced compared to MSCs. Our results indicate a positive expression of E cadherin and Cytokeratin 10 after 28 days under epithelial stimulation, suggesting a potential use for gastrocnemius muscle MDSCs as a promising source for regenerative therapies, including re-epithelialization and skin regeneration.

  7. Platelet-rich plasma in bone repair of irradiated tibiae of Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Gumieiro, Emne Hammoud; Abrahao, Marcio; Jahn, Ricardo Schmitutz, E-mail: gumieiro@uol.com.b [Universidade Federal de Sao Paulo (UNIFESP-EPM), SP (Brazil). Dept. of Otorhinolaringology and Head and Neck Surgery; Segretto, Helena [Universidade Federal de Sao Paulo (UNIFESP-EPM), SP (Brazil). Dept. of Oncology; Alves, Maria Tereza de Seixas [Universidade Federal de Sao Paulo (UNIFESP-EPM), SP (Brazil). Dept. of Patology; Nannmark, Ulf [The Sahlgrenska Academy of Goeteborg Univ. (Sweden). Inst. for Clinical Sciences. Dept. of Anatomy and Cell Biology; Granstroem, Goesta [Goeteborg Univ. (Sweden). Dept. of Otolaryngology, Head and Neck Surgery; Dib, Luciano Lauria [Universidade Paulista (UNIP), Sao Paulo, SP (Brazil). Faculty of Dentistry. Dept. of Stomatology

    2010-05-15

    Purpose: to evaluate the influence of PRP addition on bone repair of circular defects created in irradiated tibiae of rats by histometric analysis. Methods: sixty male Wistar rats had the right tibiae irradiated with 30 Gy. After 30 days monocortical defects were created and platelet-rich plasma as applied in 30 rats. In the control group defects were created but not filled. The animals were sacrificed after 4, 7, 14, 21, 56 and 84 days and the tibiae removed for histological processing. Results: there was a tendency in the PRP group to increased bone neoformation from 14-days to 84-days; in the control group increased bone neoformation was not seen after 21 days or later. Conclusion: the addition of platelet-rich plasma had a beneficial effect in the initial cellular regeneration period and enhanced bone formation in later periods when compared to control. (author)

  8. Effects of rabeprazole on bone metabolic disorders in a gastrectomized rat model

    Science.gov (United States)

    YAMASAKI, YUKI; FUJIMURA, TAKASHI; OYAMA, KATSUNOBU; HIGASHI, YUKI; HIROSE, ATSUSHI; TSUKADA, TOMOYA; OKAMOTO, KOICHI; KINOSHITA, JUN; NAKAMURA, KEISHI; MIYASHITA, TOMOHARU; TAJIMA, HIDEHIRO; TAKAMURA, HIROYUKI; NINOMIYA, ITASU; FUSHIDA, SACHIO; OHTA, TETSUO

    2016-01-01

    Proton pump inhibitors (PPIs) are frequently prescribed to patients with gastroesophageal reflux disease; however, the number of bone fractures reportedly increased in these patients. Although PPIs have been shown to inhibit the bone resorption by osteoclasts, the effect of PPIs on skeletal metabolism remains controversial. The aim of the present study was to determine the effect of the PPI rabeprazole on skeletal metabolism using gastrectomized rats. Male Wistar rats were divided into four groups: i) Sham-surgery (n=15); ii) total gastrectomy (TG) control (n=20); iii) TG plus rabeprazole (n=20); and iv) TG plus the bisphosphonate minodronic acid (n=20). Twenty-two weeks after TG, the rats were sacrificed, and bone mineral density (BMD), bone strength and markers for bone metabolism were measured. Compared with the control group (50.0±8.1%), the TG-induced decrease in BMD was significantly ameliorated in the rabeprazole group (56.5±7.5%) and the minodronic acid group (59.0±6.0%). However, rabeprazole did not improve bone strength. In conclusion, rabeprazole does not appear to exacerbate bone metabolic disorders in gastrectomized rats, but rather ameliorates the TG-induced BMD decrease. PMID:27330752

  9. Effects of 15 Gy 137Cs γ-rays radiation of rat kidneys on bone metabolism

    International Nuclear Information System (INIS)

    The work was to observe the effects of γ-rays radiation of rat kidneys on rat bone metabolism. Ten male SD rats aged 6 months were irradiated at their kidneys with 15 Gy 137Cs γ-rays (0.91 Gy/min) and were raised for 3 months after the radiation. On collecting 24h urine of rats they were sacrificed for serum, kidney, spine, femur and tibia exams. Results show that the γ-ray irradiation could induce the pathological injuries of renal glomeruli, tubules and mesenchyme. Comparing to the control group, significant changes were found in the irradiated group in terms of their blood urea, nitrogen creatinine, urinal β-2 microglobulin, serum Ca and P, urine Ca and P, activity of serum alkaline phosphatase, 1,25 (OH)2 D3, serum PTH, urine PYD/creatinine, bone mineral density (BMD) of lumbar vertebras, mineral mass of No.4 lumbar vertebra, BMD, dehydrated weight and ash weight of right femur. Marked changes were also found in bone trabecula volume, average bone trabecula thick and the ratio of nodes/points, and rate of mineralization deposition. It was concluded that renal dysfunction and metabolic bone disease might occur with the character of accelerated bone turnover and decreased bone mass

  10. Hypersensitivity of LEC strain rats in radiation-induced acute bone-marrow death

    International Nuclear Information System (INIS)

    LEC strain rats, which have been known to develop hereditarily spontaneous fulminant hepatitis 4 to 5 months after birth, were highly sensitive to whole-body X ray-irradiation as compared to WKAH strain rats. Radiation-induced acute bone-marrow death occurred at doses higher than 2.0 Gy in LEC rats, and at doses higher than 7.4 Gy in WKAH rats. By probit analysis of survival data, it was shown that the LD50/30 value for LEC rats was 3.0 Gy which was significantly lower than that (7.8 Gy) of WKAH rats. Histopathological examinations of the bone marrows from both strains after irradiation at a dose of 4.0 Gy revealed that a number of hemopoietic cells were recovered in WKAH rats on day 8 after irradiation, but not in LEC rats. These results suggested the hypersensitivity of LEC rats to ionizing radiation in connection with acute bone-marrow death. (author)

  11. Hypersensitivity of LEC strain rats in radiation-induced acute bone-marrow death

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masanobu; Endoh, Daiji; Kon, Yasuhiro; Yamashita, Tadashi; Sato, Fumiaki; Kasai, Noriyuki; Namioka, Shigeo (Hokkaido Univ., Sapporo (Japan). Faculty of Veterinary Medicine)

    1993-02-01

    LEC strain rats, which have been known to develop hereditarily spontaneous fulminant hepatitis 4 to 5 months after birth, were highly sensitive to whole-body X ray-irradiation as compared to WKAH strain rats. Radiation-induced acute bone-marrow death occurred at doses higher than 2.0 Gy in LEC rats, and at doses higher than 7.4 Gy in WKAH rats. By probit analysis of survival data, it was shown that the LD[sub 50/30] value for LEC rats was 3.0 Gy which was significantly lower than that (7.8 Gy) of WKAH rats. Histopathological examinations of the bone marrows from both strains after irradiation at a dose of 4.0 Gy revealed that a number of hemopoietic cells were recovered in WKAH rats on day 8 after irradiation, but not in LEC rats. These results suggested the hypersensitivity of LEC rats to ionizing radiation in connection with acute bone-marrow death. (author).

  12. Hypersensitivity of LEC strain rats in radiation-induced acute bone-marrow death

    International Nuclear Information System (INIS)

    LEC strain rats, which have been known to develop hereditarily spontaneous fulminant hepatitis 4 to 5 months after birth, were highly sensitive to whole-body X ray-irradiation as compared to WKAH strain rats. Radiation-induced acute bone-marrow death occurred at doses higher than 2.0 Gy in LEC rats, and at doses higher than 7.4 Gy in WKAH rats, respectively. By probit analysis of survival data, it was shown that the LD50/30 value for LEC rats was 3.0 Gy which was significantly lower than that (7.8 Gy) of WKAH rats. Histopathological examinations of the bone marrows from both strains after irradiation at a dose of 4.0 Gy revealed that a number of hemopoietic cells were recovered in WKAH rats on day 8 after irradiation, but not in LEC rats. These results suggested the hypersensitivity of LEC rats to ionizing radiation in connection with acute bone-marrow death

  13. [Histomorphometric analysis of the bones of rats on board the Kosmos 1667 biosatellite].

    Science.gov (United States)

    Kaplanskiĭ, A S; Durnova, G N; Sakharova, Z F; Il'ina-Kakueva, E I

    1987-01-01

    Bones of the rats flown on Cosmos-1667 were examined histologically and histomorphometrically. It was found that 7-day exposure to weightlessness led to osteoporosis in the spongy matter of proximal metaphyses of tibia and, although to a lesser extent, in the spongiosa of lumbar vertebrae whereas no signs of osteoporosis were seen in the spongy matter of iliac bones. Osteoporosis in the spongy matter of the above bones developed largely due to the inhibition of bone neoformation, which was indicated by a decrease in the number and activity of osteoblasts. Increased bone resorption (as shown by a greater number and activity of osteoclasts) was observed only in the spongy matter of tibial metaphyses. It is emphasized that a reduction of the number of highly active osteoblasts in spongy bones is one of the early signs of inhibition of bone neoformation and development of osteoporosis. PMID:3695333

  14. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss....

  15. TEI-3313, a novel prostaglandin A1 derivative, prevents bone loss and enhances bone formation in immobilized male rats.

    Science.gov (United States)

    Ohta, T; Azuma, Y; Kanatani, H; Kiyoki, M; Koshihara, Y

    1995-10-01

    The effect of a novel prostaglandin A1 derivative, TEI-3313, with the chemical structure 5-[(Z,2E)-4,7-dihydroxy-2-heptenyridene]-4-hydroxy- 2-methylthio-4-(4-phenoxybutyl)-2-cyclopentenone, on bone mineral content was investigated. Seven-week-old Sprague-Dawley rats in which the right hindlimbs were immobilized by sciatic nerve dissection received 1, 10, 100 or 500 micrograms of TEI-3313/kg/day, i.p., for 6 weeks. Control animals were operated on but received vehicle only. Bone mineral content of the femur was measured by single-photon absorptiometry, and biochemical parameters were analyzed. Histomorphometric observations were performed on the proximal metaphysial sections of the tibiae. The administration of up to 500 micrograms/kg of TEI-3313 to rats had no effect on body weight or on serum calcium, inorganic phosphorus and 1 alpha,25 dihydroxy vitamin D3 levels. Immobilization decreased the ash content, calcium content and total bone mineral content of the femur compared with nonimmobilization (unoperated femur). With TEI-3313 administration, changes in these parameters in the immobilized femur were prevented almost to the levels of the nonimmobilized femur, in a dose-dependent manner. The enhancement of bone mineral content was remarkable in the midshaft of the femur. TEI-3313 enhanced ash and calcium content and total bone mineral content in nonimmobilized femurs. Microradiograms showed that TEI-3313, unlike pamidronate and 17 beta-estradiol, had little inhibitory effect on trabecular bone resorption in the proximal portion of the tibia. TEI-3313 not only prevented the bone loss induced by immobilization but also increased bone mass in the nonimmobilized femurs without affecting the levels of 1 alpha,25 dihydroxy vitamin D3.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7562584

  16. Effects of remifemin treatment on bone integrity and remodeling in rats with ovariectomy-induced osteoporosis.

    Science.gov (United States)

    Cui, Guangxia; Leng, Huijie; Wang, Ke; Wang, Jianwei; Zhu, Sainan; Jia, Jing; Chen, Xing; Zhang, Weiguang; Qin, Lihua; Bai, Wenpei

    2013-01-01

    This study aims to evaluate the effects of Remifemin (isopropanolic extract of Cimicifuga Racemosa) on postmenopausal osteoporosis. 120 female Sprague-Dawley rats were randomly assigned to four groups: sham surgery with vehicle, ovariectomy with vehicle, ovariectomy with estradiol valerate, or ovariectomy with Remifemin. Daily oral administrations of the vehicle, estradiol valerate, or Remifemin began 2 weeks after surgery and lasted to 4, 8, or 12 weeks. Ten rats in each group were sacrificed at each timestep with assessment of bone mineral density, trabecular bone structure, and biomechanical parameters of the femur and lumbar vertebra. Bone turnover markers were evaluated 12 weeks after surgery. Both drugs prevented bone density loss in the distal end of the femur and preserved the trabecular bone structure in both the lumbar vertebra and distal end of the femur following ovariectomy. Both drugs protected bone stiffness at the tested regions and reduced bone reabsorption in ovariectomized rats. The preventive effects of Remifemin against bone-loss can rival those of estradiol valerate if treatment duration is adequately extended. In conclusion, Remifemin may demonstrate equivalent effects to estradiol valerate in terms of preventing postmenopausal osteoporosis. PMID:24349369

  17. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  18. Effects of Obesity on Bone Mass and Quality in Ovariectomized Female Zucker Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2014-01-01

    Full Text Available Obesity and osteoporosis are two chronic conditions that have been increasing in prevalence. Despite prior data supporting the positive relationship between body weight and bone mineral density (BMD, recent findings show excess body weight to be detrimental to bone mass, strength, and quality. To evaluate whether obesity would further exacerbate the effects of ovariectomy on bone, we examined the tibiae and fourth lumbar (L4 vertebrae from leptin receptor-deficient female (Leprfa/fa Zucker rats and their heterozygous lean controls (Leprfa/+ that were either sham-operated or ovariectomized (Ovx. BMD of L4 vertebra was measured using dual-energy X-ray absorptiometry, and microcomputed tomography was used to assess the microstructural properties of the tibiae. Ovariectomy significantly (P<0.001 decreased the BMD of L4 vertebrae in lean and obese Zucker rats. Lower trabecular number and greater trabecular separation (P<0.001 were also observed in the tibiae of lean- and obese-Ovx rats when compared to sham rats. However, only the obese-Ovx rats had lower trabecular thickness (Tb.Th (P<0.005 than the other groups. These findings demonstrated that ovarian hormone deficiency adversely affected bone mass and quality in lean and obese rats while obesity only affected Tb.Th in Ovx-female Zucker rats.

  19. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (PIGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (PIGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  20. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and...... characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution of...... epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  1. EFFECT OF GLABRIDIN AND GLYCYRRHIZIC ACID ON HISTOMORPHOMETRIC PARAMETERS OF BONES IN OVARIECTOMIZED RATS.

    Science.gov (United States)

    Klasik-Ciszewska, Sylwia; Kaczmarczyk-Sedlak, Ilona; Wojnar, Weronika

    2016-01-01

    Licorice is a medicinal plant showing many therapeutic activities. Its roots contain numerous pharmacologically active compounds such as a triterpenoid saponin--glycyrrhizic acid and an isoflavan--glabridin. There are reports indicating that glabridin exhibits estrogen-like activity, therefore it can be classified into phytoestrogens, which may soothe menopause symptoms including postmenopausal osteoporosis. Due to this fact, the aim of the presented study was to evaluate the effect of glabridin and glycyrrhizic acid on histomorphometric parameters of bones in rats with ovariectomy-induced osteoporosis. The animals were divided into 6 group: (C)--control rats, (OVX)--ovariectomized rats, (OVX + E)--ovariectomized rats receiving estradiol at a dose of 0.1 mg/kg p.o., (OVX + G)--ovariectomized rats receiving genistein at a dose of 5 mg/kg p.o., (OVX + GL --ovariectomized rats treated with glabridin at a dose of 5 mg/kg p.o. and (OVX + GA)--ovariectomized rat administered with glycyrrhizic acid at a dose of 15 mg/kg p.o. Estradiol and genistein served as the positive controls in the study. Several macrometric and histomorphometric parameters were analyzed in the bones of tested rats. Obtained results indicate that glabridin shows slightly positive effect on osteoporotically changed bone tissue, and glycyrrhizic acid reveals meager influence on skeletal system with no preventive significance. PMID:27180445

  2. Bone growth during rapamycin therapy in young rats

    Directory of Open Access Journals (Sweden)

    He Yu-Zhu

    2009-01-01

    Full Text Available Abstract Background Rapamycin is an effective immunosuppressant widely used to maintain the renal allograft in pediatric patients. Linear growth may be adversely affected in young children since rapamycin has potent anti-proliferative and anti-angiogenic properties. Methods Weanling three week old rats were given rapamycin at 2.5 mg/kg daily by gavage for 2 or 4 weeks and compared to a Control group given equivalent amount of saline. Morphometric measurements and biochemical determinations for serum calcium, phosphate, iPTH, urea nitrogen, creatinine and insulin-growth factor I (IGF-I were obtained. Histomorphometric analysis of the growth plate cartilage, in-situ hybridization experiments and immunohistochemical studies for various proteins were performed to evaluate for chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption. Results At the end of the 2 weeks, body and tibia length measurements were shorter after rapamycin therapy associated with an enlargement of the hypertrophic zone in the growth plate cartilage. There was a decrease in chondrocyte proliferation assessed by histone-4 and mammalian target of rapamycin (mTOR expression. A reduction in parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP and an increase in Indian hedgehog (Ihh expression may explain in part, the increase number of hypertrophic chondrocytes. The number of TRAP positive multinucleated chondro/osteoclasts declined in the chondro-osseous junction with a decrease in the receptor activator of nuclear factor kappa β ligand (RANKL and vascular endothelial growth factor (VEGF expression. Although body and tibial length remained short after 4 weeks of rapamycin, changes in the expression of chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption which were significant after 2 weeks of rapamycin improved at the end of 4 weeks. Conclusion When given to young rats, 2 weeks of rapamycin

  3. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  4. Effects of Eucommia ulmoides extract on longitudinal bone growth rate in adolescent female rats.

    Science.gov (United States)

    Kim, Ji Young; Lee, Jeong-Il; Song, MiKyung; Lee, Donghun; Song, Jungbin; Kim, Soo Young; Park, Juyeon; Choi, Ho-Young; Kim, Hocheol

    2015-01-01

    Eucommia ulmoides is one of the popular tonic herbs for the treatment of low back pain and bone fracture and is used in Korean medicine to reinforce muscles and bones. This study was performed to investigate the effects of E. ulmoides extract on longitudinal bone growth rate, growth plate height, and the expressions of bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) in adolescent female rats. In two groups, we administered a twice-daily dosage of E. ulmoides extract (at 30 and 100 mg/kg, respectively) per os over 4 days, and in a control group, we administered vehicle only under the same conditions. Longitudinal bone growth rate in newly synthesized bone was observed using tetracycline labeling. Chondrocyte proliferation in the growth plate was observed using cresyl violet dye. In addition, we analyzed the expressions of BMP-2 and IGF-1 using immunohistochemistry. Eucommia ulmoides extract significantly increased longitudinal bone growth rate and growth plate height in adolescent female rats. In the immunohistochemical study, E. ulmoides markedly increased BMP-2 and IGF-1 expressions in the proliferative and hypertrophic zones. In conclusion, E. ulmoides increased longitudinal bone growth rate by promoting chondrogenesis in the growth plate and the levels of BMP-2 and IGF-1. Eucommia ulmoides could be helpful for increasing bone growth in children who have growth retardation. PMID:25087723

  5. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    Science.gov (United States)

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function. PMID:27131598

  6. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats

    International Nuclear Information System (INIS)

    This study evaluated protection by selenium (Se) in the bone repair process in ovariectomized rats after irradiation. For such purpose, 80 ovariectomized female Wistar rats were randomly divided into 4 experimental groups: ovariectomized (Ov), Ov/Se, Ov/irradiated (Irr) and Ov/ Se/Irr. A bone defect was created on the tibia of all animals 40 days after ovariectomy. Two days after surgery, only the Ov/Se and Ov/Se/Irr rats received 0.8 mg Se/kg. Three days after surgery, only the Ov/Irr and Ov/Se/Irr rats received 10 Gy of x-rays on the lower limb region. The animals were euthanized at 7, 14, 21 and 28 days after surgery to assess the repair process, which was evaluated by analysis of trabecular bone number (Masson Trichrome) and birefringence analysis (Picrosirius). It was possible to observe a delay in the bone repair process in the ovariectomized/irradiated group and similarity between the ovariectomized, Ov/Se and Ov/Se/Irr groups. In conclusion, sodium selenite exerted a radioprotective effect in the bone repair of tibia of ovariectomized rats without toxicity. (author)

  7. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Deborah Queiroz de; Neves, Ellen Gaby; Boscolo, Frab Norberto; Almeida, Solange Maria de [University of Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Department of Oral Diagnosis. Oral Radiology Area; Ramos-Perez, Flavia Maria de Moraes [Federal University of Pernambuco, Recife, PE (Brazil). Department of Clinical and Preventive Dentistry; Marques, Marcelo Rocha [University of Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Division of Histology. Department of Morphology

    2012-07-01

    This study evaluated protection by selenium (Se) in the bone repair process in ovariectomized rats after irradiation. For such purpose, 80 ovariectomized female Wistar rats were randomly divided into 4 experimental groups: ovariectomized (Ov), Ov/Se, Ov/irradiated (Irr) and Ov/ Se/Irr. A bone defect was created on the tibia of all animals 40 days after ovariectomy. Two days after surgery, only the Ov/Se and Ov/Se/Irr rats received 0.8 mg Se/kg. Three days after surgery, only the Ov/Irr and Ov/Se/Irr rats received 10 Gy of x-rays on the lower limb region. The animals were euthanized at 7, 14, 21 and 28 days after surgery to assess the repair process, which was evaluated by analysis of trabecular bone number (Masson Trichrome) and birefringence analysis (Picrosirius). It was possible to observe a delay in the bone repair process in the ovariectomized/irradiated group and similarity between the ovariectomized, Ov/Se and Ov/Se/Irr groups. In conclusion, sodium selenite exerted a radioprotective effect in the bone repair of tibia of ovariectomized rats without toxicity. (author)

  8. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  10. Black Lucques olives prevented bone loss caused by ovariectomy and talc granulomatosis in rats.

    Science.gov (United States)

    Puel, Caroline; Mardon, Julie; Kati-Coulibaly, Séraphin; Davicco, Marie-Jeanne; Lebecque, Patrice; Obled, Christiane; Rock, Edmond; Horcajada, Marie-Noelle; Agalias, Apostolos; Skaltsounis, Leandros A; Coxam, Véronique

    2007-05-01

    This study was conducted to determine whether olive fruits, rich in micronutrients, might improve bone loss in ovariectomized (OVX) rats (an experimental model of postmenopausal osteoporosis) and in OVX rats with granulomatosis inflammation (a model of senile osteoporosis). Six-month-old Wistar female rats underwent ovariectomy and were then immediately treated orally by substituting oil in the diet by 10 g/d green Lucques olives or 6 g/d black Lucques olives for each rat for 84 days. OVX rats and sham-operated controls received the same diet with oil. Three weeks before the end of the experiment, subcutaneous inflammation was provoked by injections of sterile magnesium silicate in half the animals in each group. In OVX rats, granulomatosis inflammation, characterized by a rise in inflammatory parameters such as fibrinogen, alpha1-acid glycoprotein, spleen weight and granulocyte level, and an impairment of oxidative status (as shown by a decrease in plasma antioxidant capacity, a higher rate of isoprostane excretion) elicited a bone loss in the whole femur and in the metaphyseal areas considered on their own. Whereas green olives had no effect on osteopenia, consumption of the black variety prevented bone loss in the whole femur and at cortical sites in those oestrogen-deficient animals with talc inflammation (diaphyseal bone mineral density: black olives and inflammation 0-2323 (SE 0.0026) v. ovariectomy and inflammation 0.2117 (SE 0.0030); P=0.027). This bone-sparing effect seemed to result from an improvement in the inflammatory and oxidative status. The present data show that black olives are able to prevent bone loss in an experimental model of senile osteoporosis (oestrogen-deficient rats in which a low-grade inflammation was induced by talc injection). PMID:17408530

  11. Preventive Effects of Flaxseed and Sesame Oil on Bone Loss in Ovariectomized Rats

    OpenAIRE

    S. Boulbaroud; Mesfioui, A.; A. Arfaoui; A. Ouichou; A. El Hessni

    2008-01-01

    A study was designed to examine the effects of dietary flaxseed oil (FO) and sesame oil (SO) which are rich successively in n-3 and (n-9 and n-6) on biochemical parameters and histological status of bone. Sixty-four 90-day-old female wistar rats were randomly assigned to 6 groups: sham-operated rat (sham)+ control diets, ovariectomized rat (OVX))+ control diets, OVX+ 7% FO, OVX+ 7% SO, OVX+ 10% FO, OVX+ 10% SO. After 4 weeks of treatments, rats were euthanized; blood and tissues were c...

  12. Low level laser therapy accelerates bone healing in spinal cord injured rats.

    Science.gov (United States)

    Medalha, Carla Christina; Santos, Ana Lúcia Yaeko Silva; Veronez, Suellen de Oliveira; Fernandes, Kelly Rossetti; Magri, Angela Maria Paiva; Renno, Ana Claudia Muniz

    2016-06-01

    Bone loss occurs rapidly and consistently after the occurrence of a spinal cord injury (SCI), leading to a decrease in bone mineral density (BMD) and a higher risk of fractures. In this context, the stimulatory effects of low level laser therapy (LLLT) also known as photobiomodulation (PBM) have been highlighted, mainly due to its osteogenic potential. The aim of the present study was to evaluate the effects of LLLT on bone healing using an experimental model of tibial bone defect in SCI rats. Twenty-four female Wistar rats were randomly divided into 3 groups: Sham group (SG), SCI control group (SC) and SCI laser treated group (SL). Two weeks after the induction of the SCI, animals were submitted to surgery to induce a tibial bone defect. Treatment was performed 3days a week, for 2weeks, at a single point over the area of the injury, using an 808nm laser (30mW, 100J/cm(2); 0.028cm(2), 1.7W/cm², 2.8J). The results of the histological and morphometric evaluation demonstrated that the SL group showed a larger amount of newly formed bone compared to the SC group. Moreover, a significant immunoexpression of runt-related transcription factor 2 (RUNX2) was observed in the SL group. There was no statistical difference in the biomechanical evaluation. In conclusion, the results suggest that LLLT accelerated the process of bone repair in rats with complete SCI. PMID:27077555

  13. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  14. Uranium deposition in bones of Wistar rats associated with skeleton development

    International Nuclear Information System (INIS)

    Sixty female Wistar rats were submitted to a daily intake of ration doped with uranium from weaning to adulthood. Uranium in bone was quantified by the SSNTD (solid state nuclear track detection) technique, and bone mineral density (BMD) analysis performed. Uranium concentration as a function of age exhibited a sharp rise during the first week of the experiment and a drastic drop of 70% in the following weeks. Data interpretation indicates that uranium mimics calcium. Results from BMD suggest that radiation emitted by the incorporated Uranium could induce death of bone cells. - Highlights: • Uranium deposited in bones increases faster in younger animals saturating in older. • U data were fitted by a sigmoid curve, suggesting that it mimics calcium metabolism. • Bone mineral density indicates that even minute U could induce death of bone cells

  15. Mean active bone marrow dose to the adult population of the United States from diagnostic radiology

    International Nuclear Information System (INIS)

    Estimates, based on an empirical model and computer program (Ellis, Healy, Shleien and Tucker, HEW publication (FDA)76-8015), have been calculated and are presented on the mean active bone marrow dose to adults from diagnostic radiography, fluoroscopy, and dental radiography as practiced in the United States in 1970. The annual per capita mean active bone marrow dose in 1970 to adults from the above practices is estimated to have been 103 mrad; 77 percent, 20 percent, and 3 percent from radiographic, fluoroscopic and dental examinations, respectively. Examinations of the upper and lower abdomen contribute approximately 39 percent each to the total mean active bone marrow dose for adults; those of the pelvis, 4 percent; the thorax, 12 percent; and head and neck examinations (including dental) contribute about 6 percent. The per capita mean active bone marrow dose for various age groups is discussed. Contributions to the dose within a given age group from different examinations indicate that in the 15 to 34 year age group lumbar and lumbosacral spine examinations contribute most to the mean active bone marrow dose. Thereafter upper Gi series and barium enemas are the highest contributors. Mean active bone marrow doses for children are not estimated in this presentation due to insufficient data. However, the lower rate of use of diagnostic x rays (except dental) in children would reduce the annual per capita mean active bone marrow dose for the entire population to approximately a maximum of 77 mrads. The results may be viewed relative to several surveys of radiation doses from diagnostic radiology performed in other countries which reported annual per capita mean active bone marrow doses varying from 30 to 189 mrads for their entire populations, and with natural background for which the annual per capita whole body and bone marrow dose in the United States is approximately 130 and 86 mrads, respectively

  16. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis.

    Science.gov (United States)

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas

    2015-07-01

    [Purpose] The purpose of this study was to assess the possible role of physical activities, calcium consumption and lifestyle factors in both bone mineral density and bone metabolism indices in 350 young adult volunteers. [Subjects and Methods] All volunteers were recruited for the assessment of lifestyle behaviors and physical activity traits using validated questioners, and bone mineral density (BMD), serum osteocalcin (s-OC), bone-specific alkaline phosphatase (BAP), and calcium were estimated using dual-energy X-ray absorptiometry analysis, and immunoassay techniques. [Results] Male participants showed a significant increase in BMD along with an increase in bone metabolism markers compared with females in all groups. However, younger subjects showed a significant increase in BMD, OC, BAP, and calcium compared with older subjects. Osteoporosis was more common in older subjects linked with abnormal body mass index and waist circumference. Bone metabolism markers correlated positively with BMD, physically activity and negatively with osteoporosis in all stages. Also, moderate to higher calcium and milk intake correlated positively with higher BMD. However, low calcium and milk intake along with higher caffeine, and carbonated beverage consumption, and heavy cigarette smoking showed a negative effect on the status of bone mineral density. Stepwise regression analysis showed that life style factors including physical activity and demographic parameters explained around 58-69.8% of the bone mineral density variation in young adults especially females. [Conclusion] body mass index, physical activity, low calcium consumption, and abnormal lifestyle have role in bone mineral density and prognosis of osteoporosis in young adults. PMID:26311965

  17. Microarchitecture of trabecular bone in type 2 diabetic rats. Three-dimensional analysis using microcomputed tomography

    International Nuclear Information System (INIS)

    Unlike type 1 diabetes mellitus, type 2 diabetes shows a low frequency of low bone mass, and it has been questioned as a cause of osteoporosis. However, it has recently been reported that type 2 diabetes is related to the increase in a fracture risk, and the existence of the factor except for low bone mass is suggested as the mechanism. In this study, the change of microarchitecture of trabecular bone in diabetes mellitus was studied using type 2 diabetic rats, and its significance in the pathophysiology of the diabetic osteoporosis was examined. Type 2 diabetic rats (Otsuka long-evans Tokushima fatty (OLETF), n=7-11 for each group) of 14, 28, 42 and 56 weeks old and control rats (long-evans Tokushima Otsuka (LETO), n=8-11 for each group) of the same week old were used for the study. After the sacrifice, the fifth lumbar vertebral body (LV), proximal tibial metaphysis (PT), and distal tibial metaphysis (DT) were scanned by microcomputed tomography (micro-CT) with the slice thickness of 14.1-18.6 μm and the pixel size of 17.6-23.2 μm. Three-dimensional image data were analyzed by the image analysis system to evaluate trabecular bone volume fraction, trabecular thickness, number, separation and connectivity, trabecular bone pattern factor, structure model index, and degree of anisotropy. The third lumbar vertebral body was compressed to obtain the breaking force. In all week groups, body weight and blood glucose levels were higher in OLETF rats. OLETF rats showed higher values of bone volume fraction in LV at 14 weeks old and in DT at all week groups. On the other hand, at 42 and 56 weeks old OLETF rats showed lower bone volume fraction in PT. The trabecular structure of LV in OLETF rats was rod-like and less connected at 28, 42 and 56 weeks old, whereas DT in OLETF rats showed plate-like and more connected structure at all week groups. The breaking force of LV was significantly lower in OLETF at 42 and 56 weeks old. These results indicate that the bone change in

  18. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats.

    Science.gov (United States)

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-12-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  19. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway

    Institute of Scientific and Technical Information of China (English)

    Jian-ming HOU; Ying XUE; Qing-ming LIN

    2012-01-01

    Aim:Lactoferrin (LF),an 80-kDa iron-binding glycoprotein,is a pleiotropic factor found in colostrum,milk,saliva and epithelial cells of the exocrine glands.The aim of this study was to evaluate the effects of LF on the bones in ovariectomized (Ovx) rats and to identify the pathways that mediate the anabolic action of LF on the bones.Methods:Female Sprague-Dawley rats (6-month-old) underwent ovariectomy,and were treated with different doses of LF (10,100,1000,and 2000 mg·kg-1·d-1,po) or with 7β-estradiol (0.1 mg·kg-1,im,each week) as the positive control.By the end of 6 month-treatments,the bone mass and microstructure in the rats were scanned by micro-computed tomography (micro-CT),and the bone metabolism was evaluated with specific markers,and the mRNA levels of osteoprotegerin (OPG) and the receptor-activator of nuclear factor kB ligand (RANKL) in femur were measured using qRT-PCR.Results:LF treatment dose-dependently elevated the bone volume (BV/TV),trabecular thickness (TbTh) and trabecular number (TbN),and reduced the trabecular separation (TbSp) in Ovx rats.Furthermore,higher doses of LF (1000 and 2000 mg·kg-1·d-1) significantly increased the bone mineral density (BMD) compared with the untreated Ovx rats.The higher doses of LF also significantly increased the serum levels of OC and BALP,and decreased the serum levels of β-CTx and NTX.LF treatment significantly increased the OPG mRNA levels,and suppressed the RANKL mRNA levels,and the RANKL/OPG mRNA ratio in Ovx rats.Conclusion:Oral administration of LF preserves the bone mass and improves the bone microarchitecture.LF enhances bone formation,reduces bone resorption,and decreases bone mass loss,possibly through the regulation of OPG/RANKL/RANK pathway.

  20. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  1. Birth weight and adult bone metabolism are unrelated

    DEFF Research Database (Denmark)

    Frost, Morten; Petersen, Inge Lund; Andersen, Thomas Levin;

    2013-01-01

    recruited from the Danish Twin Registry. Serum vitamin D (25OHD) and bone turnover markers (BTM) P1NP, 1CTP, and CTX were quantified. Femoral neck, total hip, lumbar spine, and whole body bone mineral density (FN-BMD, TH-BMD, LS-BMD, and WB-BMD) were measured using DXA. Twins were studied as single...... individuals using regression analyses with or without adjustment for height, weight, age, sex, and intra-pair correlation. Within-pair differences were assessed using Student's T-test and fixed-regression models. RESULTS: BW was not associated with BTMs, LS-, TH-, FN- or WB-BMD, but BW was associated with WB...

  2. Bone formation in cranial, mandibular, tibial and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O;

    1995-01-01

    Several studies have suggested that grafts from membranous derived bone (e.g., calvarial grafts) retain their volume better than those from endochondral derived bone (e.g., iliac bone grafts). Increased osteogenesis in grafts of the former type has been offered as the explanation. However, simple...

  3. Validation of K-XRF bone lead measurement in young adults.

    OpenAIRE

    Hoppin, J.A.; Aro, A C; Williams, P L; Hu, H; Ryan, P B

    1995-01-01

    K-X-ray fluorescence (K-XRF) is a useful tool for assessing environmental exposure to lead in occupationally exposed individuals and older adults. This study explores the possibility of using this technique on young adults with low environmental lead exposure. Twenty-three college students, aged 18-21 years, were recruited for 2 hr of bone lead measurement. Bone lead measurements were taken from the mid-shaft tibia for periods of 30 or 60 min. In the analysis, 30-min measurements were combine...

  4. Effects of low doses of hydrochloride tetracycline on bone metabolism and uterus in ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    LIQing-Nan; HUBin; HUANGLian-Fang; CHENYan; WENGLin-Ling; ZhengHu; CHENHuai-Qing

    2003-01-01

    AIM:To study the effects of low doses of hydrochloride tetracycline (Tc) on bone metabolism and uterus in the ovariectomized (Ova) rats. METHODS:Forty 3-month-old rats were randomly divided into 5 groups: sham group, Ova group, Tc1 group (1.2mg·kg-1·d-1), Tc2 group (4.8mg·kg-1·d-1), and estrone group (1.48 mg·kg-1·d-1),oral fed for 3 months. The proximal tibia metaphyses were processed undecalcified for quantitative bone histomorphometry and the soft tissues were processed in paraffin for pathological observation. RESULTS: Placebo-treated (lactose) Ova rats were characterized by trabecular area (TA) decreasing and their architecture worsening compared with sham controls, and bone resorption was over formation with high bone turnover. The uteri were atrophy. (2)In estrone-treated group, TA and trabecular numbers were significantly increased and the trabecular separation decreased vs Ova group. Estrone slowed down Ova-inducing bone high turnover. But the size, weight, and the endometrium of the uteri in this group were increased vs Ova group. (3) TA was increased in both Tc1 and Tc2 groups compared with Ova rats. Tc maintained bone formation indices almost at Ova level, and only decreased mineral apposition rate (MAR) in Tc1 group, and declined bone resorption perimeter. The uteri and the cell of liver and kidney almost maintained at Ova level; Tc2 decreased labeling perimeter and increased MAR in comparison with Tc1 group. The uteri were atrophy, whose size maintained at Ova level; yellow labeling was not found in bone with these doses of Tc, while yellow labeling could be seen with the doses of 30mg·kg-1·d-1 of Tc for bone marker. CONCLUSION:The two doses of Tc have similar effects on preventing bone loss in Ova rats while the bone formation and uterus are not affected. However, Tc2 does not have more effects on increasing bone mass, Tc2 causes less mild damages to the liver and kidneys.

  5. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model.

    Science.gov (United States)

    Yingling, Vanessa R; Mitchell, Kathryn A; Lunny, Megan

    2016-01-01

    Background. Osteoporosis is "a pediatric disease with geriatric consequences." Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity. Methods. Female rats (25 days old) were assigned to a control (C) group (n = 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n = 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n = 15) and (G-R) (n = 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n = 15) and (G-OVX) (n = 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed. Results. GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  6. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Science.gov (United States)

    Mitchell, Kathryn A.; Lunny, Megan

    2016-01-01

    Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity. Methods. Female rats (25 days old) were assigned to a control (C) group (n = 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n = 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n = 15) and (G-R) (n = 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n = 15) and (G-OVX) (n = 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed. Results. GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  7. A fase estrogênica altera a resposta do osso e do metabolismo mineral de ratas com hipertireoidismo? Does the estrogenic phase modify the bone and mineral metabolism response in rats under hyperthyroidism?

    OpenAIRE

    N.M. Ocarino; R. Serakides; V.A. Nunes

    2003-01-01

    The effect of the estrogenic phase in the bone and in the mineral metabolism was studied in Wistar adult female rats kept under euthyroidism or hyperthyroidism for 60 days. The rats were divided, according to the stage of the estrous cycle, into four groups: 1) euthyroid (proestrus-estrus), 2) euthyroid (metaestrus-diestrus), 3) hyperthyroid (proestrus-estrus), and 4) hyperthyroid (metaestrus-diestrus). After 60 days the blood plasma was collected and the concentrations of free T4, estradiol,...

  8. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P growth.

  9. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.;

    2003-01-01

    differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P < 0.01). There was no hyperchloraemic metabolic acidosis or gross impairment of renal function. Hypomagnesaemia, hypocalcaemia and decreased......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment...... significant loss of bone mass when combined with resection of the ileocaecal segment. Rarefaction of the trabecular network is confined to the metabolically highly active cancellous compartment, most likely as a consequence of intestinal malabsorption....

  10. /sup 99m/Tc-diphosphonate bone imaging and uptake in healing rat extraction sockets

    International Nuclear Information System (INIS)

    Clinically positive bone scans of the jaws may result from a variety of benign dental conditions. An experimental system for studying radionuclide imaging and uptake in the jaws of rats was developed. Sequential /sup 99m/Tc-diphosphonate bone scans and radionuclide uptake determinations were performed on rats after standardized extractions of their mandibular left first molars. Positive bone scans were seen 4 to 16 days after molar extraction, and increased radionuclide uptake was found in the healing extraction wounds 4 to 42 days after the extraction. Conventional radiography and histology fail to show unusual bony architecture in extraction sockets at such times. These results correlate with clinical findings in patients and suggest that human beings may have positive bone scans for several months after dental extraction

  11. Bone Mass in Young Adults with down Syndrome

    Science.gov (United States)

    Guijarro, M.; Valero, C.; Paule, B.; Gonzalez-Macias, J.; Riancho, J. A.

    2008-01-01

    Background: Down syndrome (DS) is a frequent cause of intellectual disability. With the increasing life expectancy of these patients, concerns have been raised about the risk of osteoporosis. In fact, several investigators have reported a reduced bone mass in DS. However, the results may be confounded by comorbid diseases, and differences in…

  12. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. PMID:26338454

  13. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats

    Directory of Open Access Journals (Sweden)

    Ponzoni Deise

    2009-01-01

    Full Text Available Abstract Background Bone grafts are widely used in oral and maxillofacial reconstruction. The influence of electromagnetic fields and magnets on the endogenous stimulation of target tissues has been investigated. This work aimed to assess the quality of bone healing in surgical cavities filled with autogenous bone grafts, under the influence of a permanent magnetic field produced by in vivo buried devices. Methods Metal devices consisting of commercially pure martensitic stainless steel washers and titanium screws were employed. Thirty male Wistar rats were divided into 3 experimental and 3 control groups. A surgical bone cavity was produced on the right femur, and a bone graft was collected and placed in each hole. Two metallic washers, magnetized in the experimental group but not in the control group, were attached on the borders of the cavity. Results The animals were sacrificed on postoperative days 15, 45 and 60. The histological analysis of control and experimental samples showed adequate integration of the bone grafts, with intense bone neoformation. On days 45 and 60, a continued influence of the magnetic field on the surgical cavity and on the bone graft was observed in samples from the experimental group. Conclusion The results showed intense bone neoformation in the experimental group as compared to control animals. The intense extra-cortical bone neoformation observed suggests that the osteoconductor condition of the graft may be more susceptible to stimulation, when submitted to a magnetic field.

  14. Bone Plasticity in Response to Exercise Is Sex-Dependent in Rats

    OpenAIRE

    Vicente, Wagner S.; Dos Reis, Luciene M.; Graciolli, Rafael G.; Graciolli, Fabiana G.; Dominguez, Wagner V; Wang, Charles C.; Fonseca, Tatiana L.; Velosa, Ana P.; Roschel, Hamilton; Teodoro, Walcy R; Gualano, Bruno; Jorgetti, Vanda

    2013-01-01

    Purpose To characterize the potential sexual dimorphism of bone in response to exercise. Methods Young male and female Wistar rats were either submitted to 12 weeks of exercise or remained sedentary. The training load was adjusted at the mid-trial (week 6) by the maximal speed test. A mechanical test was performed to measure the maximal force, resilience, stiffness, and fracture load. The bone structure, formation, and resorption were obtained by histomorphometric analyses. Type I collagen (C...

  15. Effect of Dexrazoxane and Amifostine on the Vertebral Bone Quality of Doxorubicin Treated Male Rats

    OpenAIRE

    F Mwale; Marguier, G.; Ouellet, J.A; Petit, A.; Epure, L.M; Antoniou, J; Chalifour, L E

    2008-01-01

    Doxorubicin (DOX) is widely used in combination cocktails for treatment of childhood hematological cancers and solid tumors. A major factor limiting DOX usage is DOX-induced cardiotoxicity. However, it is not known whether protectants like dexrazoxane (DXR) and amifostine (AMF) can prevent DOX-mediated bone damage. The present study investigated whether administration of AMF alone or in combination with DXR would prevent any DOX-mediated bone damage. Male rat pups were treated with DOX, DXR, ...

  16. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    OpenAIRE

    ZHANG, CHUNHUI; Wang, Jin-Zhi; Sun, Hong-Mei; Hu, Li; Li, Xia; Wu, Xiao-Wei

    2016-01-01

    Background: The Maillard reaction products of chicken bone hydrolysate (MRPB) containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study.Methods: Sprague–Dawley rats (SD, 5/sex/group) were administered diets containing 9, 3,...

  17. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    OpenAIRE

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bo...

  18. Nonspecific collagenolytic activity of the femoral bone in immobilized rat extremities.

    Science.gov (United States)

    Prokopová, D; Tesárek, B; Susta, A

    1975-01-01

    Nonspecific collagenolytic activity was studied in rat bones after immobilization. The left hind limb was immobilized by sectioning the sciatic nerve. Enzyme activity was determined by using synthetic pentapeptide substrate (Pz-Pro-Leu-Gly-Pro-D-Arg). After immobilization the activity of nonspecific collagenase increased and reached its maximum on the third day after the operation. The activity was decreased after one week and attained levels of control bones three weeks after sciatic nerve section. PMID:167392

  19. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... HW, Dunn WL, Calvo MS, et al. Updated data on proximal femur bone mineral levels of U.S. adults. Osteoporos Int 8:468–89. 1998. Kelly TJ. Bone mineral density reference databases for American men and women. J Bone Miner Res 5 (Suppl1):S249. 1990. Centers for Disease ...

  20. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887

    Science.gov (United States)

    Simmons, D. J.; Grynpas, M. D.; Rosenberg, G. D.

    1990-01-01

    We have studied the chemistry, hydroxyapatite crystal size, and maturational changes in bone and dentin from rats exposed to microgravity for 12 days in a Soviet biosatellite (Cosmos 1887). Bone ash was reduced in vertebrae (L5) but not in the non-weight-bearing calvaria or mandibles. All tissues had a relatively normal percentage composition of Ca, P, and Mg. Nevertheless, flight rat calvaria and vertebral tissues tended to exhibit lower Ca/P and higher Ca/Mg ratios that any of their weight-matched controls groups, and gradient density analysis (calvaria) indicated a strong shift to the fractions lower specific gravity that was commensurate with impaired rates of matrix-mineral maturation. X-ray diffraction data were confirmatory. Bone hydroxyapatite crystal growth in the mandibles of flight rats was preferentially altered in such a way as to reduce their size (C-axis dimension). But in the mandibular diastemal region devoid of muscle attachments, flight rat bone and dentin were normal with respect to the Ca, P, Mg, and Zn concentrations and Ca/P and Ca/Mg ratios of age-matched controls. These observations affirm the concept that while microgravity most adversely affects the maturation of newly formed matrix and mineral moieties in weight-bearing bone, such effects occur throughout the skeleton.

  1. Self-repair of rat cortical bone microdamage after fatigue loading in vivo.

    Science.gov (United States)

    Wu, Bo; Zhang, Chan; Chen, Bo; Zhang, Ling; Dai, Ruchun; Wu, Xianping; Jiang, Yebin; Liao, Eryuan

    2013-01-01

    Bone microdamage can be repaired through bone remodeling induced by loading. In this study, a loading device was developed for improved efficiency and the self-repair process of bone microdamage was studied in ovariectomized rats. First, four-point bending fixtures capable of holding two live rats simultaneously were designed. Rats were loaded and subjected to a sinusoidal wave for 10,000 cycles. They were then divided into four groups to evaluate time points from 1 to 4 weeks in the microdamage repair process. The loaded right ulna was used for microdamage parameter analysis, and the loaded right radius was tested for mechanical properties. In all groups, microdamage consisted primarily of microcracks, which were observed in bone surrounding the force-bearing point. The values of the microdamage parameters were significantly lower at 3 weeks than at 2 weeks. However, none of the differences in mechanical properties between any four groups were statistically significant. This study shows that the improved application of loading in the form of bending for double-rat simultaneous administration was practical and efficient. These results suggest that microdamage was repaired between 2 weeks to 3 weeks after fatigue damage and microdamage is a more sensitive index of bone quality than mechanical properties. PMID:23662102

  2. Bone mineral density and the relationship between lipid profile and bone mineral density in the rats administered juniperus communis linn

    International Nuclear Information System (INIS)

    The aim of the study is to investigate the relationship of Juniperus Communis Lynn. with the bone mineral density in the rats fed with a high cholesterol (1%) diet. Thirty five Wistar albino rats weighed approximately 250-300 were used in this study. The rats are divided in five groups of seven each. Groups I and II were administered 0.5 ml of 0.5% Sodium Carboxy Methyl Cellulose (SCMC), while Groups II, IV and V administered 0.5 ml of juniperus communis linn dissolved in 25, 50, 100 mg/kg. Group I and Group II were fed with normal pellets while the other four groups were fed with pellets containing 1% cholesterol. Levels of lipid profile and High Density Lipoprotein Cholesterol (HDL-C) were defined in all the groups. Furthermore, bone mineral density (B M D) of the animals were obtained with DEXA scanner. BMD values of the rats did not show a different among the groups. Significant negative correlations were determined between BMD measurements and LDL-C levels in all groups connected with dose of Juniperus Communis oil. However, this relationship was not linear. (author)

  3. Allogenic inhibition of the stem hemopoietic cells in the bone marrow and embryonic liver in adult mice

    International Nuclear Information System (INIS)

    The maternal effect was shown to influence the degree of allogenic inhibition of stem hemopoietic cells of the embryonic liver and adult bone marrow in CBA and C57Bl/6 mice. The display of allogenic inhibition of stem cells of the embryonic liver and adult bone marrow proved to be similar in C57Bl/6 mice and dissimilar in CBA

  4. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats

    DEFF Research Database (Denmark)

    Mortensen, B T; Jensen, P O; Helledie, N;

    1998-01-01

    bromodeoxyuridine (BrdUrd) to identify DNA replicating cells. The leukaemia progressed slowly until day 27 after which a rapid deterioration could be observed leading to severe changes over the following 5 d. In whole blood there was evidence of progressing metabolic acidosis. In bone marrow the fraction of......The Brown Norwegian rat transplanted with promyelocytic leukaemic cells (BNML) has been used as a model for human acute myeloid leukaemia. We have previously shown that both the blood supply to the bone marrow and the metabolic rate decrease in relation to the leukaemic development in these rats...

  5. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect.

    Science.gov (United States)

    Olejnik, Cécile; Falgayrac, Guillaume; During, Alexandrine; Cortet, Bernard; Penel, Guillaume

    2016-08-01

    Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, Porganization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing. PMID:27168397

  6. Long-term effects of alendronate on fracture healing and bone remodeling of femoral shaft in ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    Ling-jie FU; Ting-ting TANG; Yong-qiang HAO; Ke-rong DAI

    2013-01-01

    Aim:To investigate the long-term effects of alendronate (Aln),a widely used oral bisphosphonate,on fracture healing and bone remodeling in ovariectomized rats.Methods:Adult female SD rats underwent ovariectomy,and then bilateral femoral osteotomy at 12 weeks post-ovariectomy.From d 2 post-ovariectomy,the animals were divided into 3 groups,and treated with Aln (3 mg·kg-1d-1,po) for 28 weeks (Aln/Aln),Aln for 12 weeks and saline for 16 weeks (Aln/Saline) or saline for 28 weeks (Saline/Saline).At 6 and 16 weeks post-fracture,the fracture calluses were examined with X-ray radiography,and biomechanical testing and histological analysis were performed.The calluses were labeled with tetracycline and calcein to evaluate the mineral apposition rate (MAR).Results:The fracture line was less distinct in the 2 Aln-treated groups at 6 weeks post-fracture,and disappeared in all the 3 groups at 16 weeks post-fracture.The size of the callus and radiographic density of the femora in the Aln/Aln group were the highest among the 3 groups at 6 and 16 weeks post-fracture.Similar results were observed in the ultimate load at failure and energy absorption.However,the treatment with Aln delayed endochondral ossification of the callus,and significantly increased the total sagittal-sectional area,percentage callus area and callus thickness,and decreased the MAR at 6 and 16 weeks post-fracture.Conclusion:In the ovariectomized rat model,Aln is beneficial for the mechanical properties of the callus,but delays callus remodeling by suppressing the remodeling of woven bone into lamellar bone.

  7. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency

    DEFF Research Database (Denmark)

    Hyldstrup, L; Conway, G S; Racz, K;

    2012-01-01

    . INTRODUCTION: In young adults with childhood-onset growth hormone deficiency (CO GHD), GH treatment after final height is reached has been shown to have beneficial effects on spine and hip bone mineral density. The objective of the study was to evaluate the influence of GH on cortical bone dimensions. METHODS......Growth hormone (GH) treatment in young adults with childhood-onset GH deficiency has beneficial effects on bone mass. The present study shows that cortical bone dimensions also benefit from GH treatment, with endosteal expansion and increased cortical thickness leading to improved bone strength...

  8. Bone health and vitamin D status in children with motor disability and adults with intellectual disability

    OpenAIRE

    Kilpinen-Loisa, PÀivi

    2010-01-01

    Osteoporosis is not only a disease of the elderly, but is increasingly diagnosed in chronically ill children. Children with severe motor disabilities, such as cerebral palsy (CP), have many risk factors for osteoporosis. Adults with intellectual disability (ID) are also prone to low bone mineral density (BMD) and increased fractures. This study was carried out to identify risk factors for low BMD and osteoporosis in children with severe motor disability and in adults with ID. In this stu...

  9. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars

    Science.gov (United States)

    Kose, Oguz; Arabaci, Taner; Yemenoglu, Hatice; Kara, Adem; Ozkanlar, Seckin; Kayis, Sevki; Duymus, Zeynep Yesil

    2016-01-01

    The aim of this study was to evaluate the effects of systemic fucoxanthin treatment on alveolar bone resorption in rats with periodontitis. Thirty rats were divided into control, experimental periodontitis (EP), and experimental periodontitis-fucoxanthin (EP-FUCO) groups. Periodontitis was induced by ligature for four weeks. After removal of the ligature, the rats in the EP-FUCO group were treated with a single dose of fucoxanthin (200 mg/kg bw) per day for 28 consecutive days. At the end of the study, all of the rats were euthanized and intracardiac blood and mandible tissue samples were obtained for biochemical, immunohistochemical, and histometric analyses. Fucoxanthin treatment resulted in a slight decrease in tumor necrosis factor-α, interleukin-1β, and interleukin-6 levels and a significant decrease in oxidative stress index. It was observed that fucoxanthin caused a significant reduction in receptor activator of nuclear factor kappa-β ligand (RANKL) levels and a statistically non-significant elevation in osteoprotegerin and bone-alkaline phosphatase levels. There were no significant differences in alveolar bone loss levels between the EP and EP-FUCO groups. This experimental study revealed that fucoxanthin provides a limited reduction in alveolar bone resorption in rats with periodontitis. One of the mechanisms underlying the mentioned limited effect might be related to the ability of fucoxanthin to inhibit oxidative stress-related RANKL-mediated osteoclastogenesis. PMID:27043583

  10. Stanozolol Decreases Bone Turnover Markers, Increases Mineralization, and Alters Femoral Geometry in Male Rats.

    Science.gov (United States)

    Nebot, E; Aparicio, V A; Camiletti-Moirón, D; Martinez, R; Erben, R G; Kapravelou, G; Sánchez-González, C; De Teresa, C; Porres, J M; López-Jurado, M; Aranda, P; Pietschmann, P

    2016-06-01

    Stanozonol (ST) is a synthetic derivative of testosterone; it has anabolic/androgenic activity, increasing both the turnover of trabecular bone and the endocortical apposition of bone. The present study aimed to examine the effects of ST on bone status in rats by bone mineral content, markers of formation and resorption, bone density, and structural and microarchitectural parameters. Twenty male Wistar rats were randomly distributed into two experimental groups corresponding to placebo or ST administration, which consisted of weekly intramuscular injections of 10 mg/kg body weight of ST. Plasma parameters were analyzed by immunoassay. Bone mineral content was determined by spectrophotometry. Bone mineral density (BMD) and structural parameters were measured by peripheral quantitative computed tomography, and trabecular and cortical microarchitecture by micro-computed tomography. Plasma Ca, Mg, and alkaline phosphatase were higher, and urinary Ca excretion, corticosterone, and testosterone concentrations lower in the ST group. Femur Ca content was higher and P content was lower in the ST, whereas osteocalcin, aminoterminal propeptides of type I procollagen, and C-terminal telopeptides of type I collagen were lower. Total cross-sectional, trabecular, and cortical/subcortical areas were lower in the ST. No differences were observed on BMD and area parameters of the diaphysis as well as on trabecular and cortical microarchitecture. The use of ST increases bone mineralization, ash percentage, and Ca and Mg content in femur. In spite of an absence of changes in BMD, geometric metaphyseal changes were observed. We conclude that ST alters bone geometry, leads to low bone turnover, and thus may impair bone quality. PMID:26801156

  11. Randall Selitto pressure algometry for assessment of bone-related pain in rats

    DEFF Research Database (Denmark)

    Falk, S.; Ipsen, D. H.; Appel, C. K.;

    2015-01-01

    Background: Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and patholog...... a way to measure bone-related pain in animal models and could provide a supplement to the traditional behavioural tests and a means to study deep pain. © 2014 European Pain Federation - EFIC®.......Background: Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and...... pathological bone pain and compared the outcome with more traditional pain-related behaviour measures. Methods: Randall Selitto pressure algometry was performed over the anteromedial part of the tibia in naïve rats, sham-operated rats, and rats inoculated with MRMT-1 carcinoma cells in the left tibia, and the...

  12. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    Science.gov (United States)

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  13. Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model

    OpenAIRE

    Chen, Dayong; Zeng, Wei; Fu, Yunfeng; Gao, Meng; Lv, Guohua

    2015-01-01

    The aims of this study were to assess that the effects of bone marrow mesenchymal stem cells (BMSCs) combination with minocycline improve spinal cord injury (SCI) in rat model. In the present study, the Wistar rats were randomly divided into five groups: control group, SCI group, BMSCs group, Minocycline group and BMSCs + minocycline group. Basso, Beattie and Bresnahan (BBB) test and MPO activity were used to assess the effect of combination therapy on locomotion and neutrophil infiltration. ...

  14. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation

    OpenAIRE

    Chen, Yu-Bing; Jia, Quan-Zhang; Li, Dong-Jun; Sun, Jing-Hai; Xi, Shuang; Liu, Li-ping; Gao, De-Xuan; Jiang, Da-Wei

    2015-01-01

    The aim of this study was to observe the effects of bone marrow mesenchymal stem-cell transplantation (BMSCs) in repairing acute spinal cord damage in rats and to examine the potential beneficial effects. 192 Wistar rats were randomized into 8 groups. Spinal cord injury was created. Behavior and limb functions were scored. Repairing effects of BMSCs transplantation was evaluated and compared. In vitro 4’,6-diamidino-2-phenylindole (DAPI)-tagged BMSCs were observed, and whether they migrated t...

  15. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone

    International Nuclear Information System (INIS)

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors)

  16. Mineralizing process and morphological structure of the femoral bone in rats under influence of aminophosphonates

    OpenAIRE

    Semen O. Mostovoy; Viktor F. Shul'gin; Elena M. Maksimova; Igor A. Nauhatsky; Elena T. Melucova; Kristina A. Plehanova

    2014-01-01

    Objective: The degree of crystallinity and peculiarities of morphological structure changes in external and internal surface of femoral bone proximal epiphyses in rats under influence of the aminobiphosphonate drug and ldquo;pamidronate and rdquo; or the non-opioid branded equivalent and ldquo;tweak and rdquo; (aminophosphonate substance) was evaluated. Methods: Thirty Wistar rats were used in the research and 3 groups of animals (1 control and 2 experimental, n = 10 in each group) were ...

  17. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats

    OpenAIRE

    Norazlina Mohamed; Sharon Gwee Sian Khee; Ahmad Nazrun Shuid; Norliza Muhammad; Farihah Suhaimi; Faizah Othman; Abdul Salam Babji; Ima-Nirwana Soelaiman

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water b...

  18. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    OpenAIRE

    Xu, Yi; Du, Shiwei; Yu, Xinguang; HAN, XIAO; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human ...

  19. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm;

    2016-01-01

    Modeling and remodeling induce significant changes of bone structure and mechanical properties with age. Therefore, it is important to gain knowledge of the processes taking place in bone over time. The rat is a widely used animal model, where much data has been accumulated on age-related changes...... orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...

  20. Histological evaluation of bone response to bioactive ceramics as graft material in rats

    Directory of Open Access Journals (Sweden)

    Kršljak Elena

    2005-01-01

    Full Text Available This experimental study was carried out on 35 Albino Wister rats Artificially created bone defects were grafted with bioactive ceramic materials or control material. Histological analysis was preformed 8 weeks and 6 months after the implantation. The results revealed that bone regeneration occurred in defects treated with bioactive ceramic materials while in the defects treated with the control material signs of tissue rejection were present. As stated before, it could be concluded that bioactive ceramics can be recommended as bone substitutes in orthopedic surgery and dentistry.

  1. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    International Nuclear Information System (INIS)

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of 3H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of 3H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls. (auth.)

  2. Pycnogenol® treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats

    Science.gov (United States)

    Huang, Gangyong; Wu, Jianguo; Wang, Siqun; Wei, Yibing; Chen, Feiyan; Chen, Jie; Shi, Jingsheng; Xia, Jun

    2015-01-01

    Context: Pycnogenol® extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. Objective: To investigate the effects of Pycnogenol® on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. Materials and methods: Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg/kg Pycnogenol® by oral gavage). Serum levels of procollagen type I N-terminal propeptide (PINP), alkaline phosphatase (ALP) and minerals were detected at the end of 9 weeks of gavage. Deoxypyridinoline/creatinine (DPYD/Cr) and N-telopeptide of type I collagen/creatinine (NTX/Cr) rate in urine were also calculated. Left femora were collected for BMD determination, and the right distal femora were made into undecalcified specimens for histomorphometry analysis. Results: At the end of study, PINP level, DPYD/Cr and NTX/Cr rate were significantly increased, and femoral BMD were dramatically decreased in OVX group compared with SHAM group (P Pycnogenol® (40 mg/kg) can inhibit aggravated bone resorption, prevent BMD loss, and restore the impaired trabecular microarchitecture in OVX rats after 9-week-intervention. PMID:26379883

  3. Topical Treatment with Xiaozheng Zhitong Paste (XZP Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    Directory of Open Access Journals (Sweden)

    Yanju Bao

    2015-01-01

    Full Text Available To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05. Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all. Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats.

  4. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion

  5. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China); Wang, Zhenming; Lu, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan (China); Yimin [Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Oda, Kimimitsu [Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata (Japan); Amizuka, Norio [Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Li, Minqi, E-mail: liminqi@sdu.edu.cn [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China)

    2015-04-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion.

  6. Effect of piperine on the epididymis of adult male rats

    Institute of Scientific and Technical Information of China (English)

    S. C. D'cruz; P. P. Mathur

    2005-01-01

    Aim: To study the effect of piperine on the epididymal antioxidant system of adult male rats. Methods: Adult male rats were orally administered piperine at doses of 1 mg/kg, 10 mg/kg and 100 mg/kg body weight each day for 30consecutive days. Twenty-four hours after the last treatment, the rats were weighed and killed with ether and the epididymis was dissected from the bodies. Sperm collected from the cauda region of the epididymis was used for the assessment of its count, motility and viability. Caput, corpus and cauda regions of the epididymis were separated and homogenized separately to obtain 10 % homogenates. The supernatants were used for the assays of sialic acid,superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, lipid peroxidation and hydrogen peroxide generation. Results: Body weight of the piperine-treated rats remained unchanged. The weights of the caput,corpus and cauda regions of the epididymis significantly decreased at dose of 100 mg/kg. Epididymal sperm count and motility decreased at 10 mg/kg and 100 mg/kg, and sperm viability decreased significantly at 100 mg/kg. Sialic acid levels in the epididymis decreased significantly at 100 mg/kg while significant decrease in the cauda region alone was observed at 10 mg/kg. A significant decline in the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, along with an increase in hydrogen peroxide generation and lipid peroxidation were observed at 10 mg/kg and 100 mg/kg. Conclusion: Piperine caused a decrease in the activity of antioxidant enzymes and sialic acid levels in the epididymis and thereby increased reactive oxygen species levels that could damage the epididymal environment and sperm function.

  7. Intermittently Administered Parathyroid Hormone [1–34] Promotes Tendon-Bone Healing in a Rat Model

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    2014-09-01

    Full Text Available The objective of this study was to investigate whether intermittent administration of parathyroid hormone [1–34] (PTH[1–34] promotes tendon-bone healing after anterior cruciate ligament (ACL reconstruction in vivo. A rat model of ACL reconstruction with autograft was established at the left hind leg. Every day, injections of 60 μg PTH[1–34]/kg subcutaneously were given to the PTH group rats (n = 10 for four weeks, and the controls (n = 10 received saline. The tendon-bone healing process was evaluated by micro-CT, biomechanical test, histological and immunohistochemical analyses. The effects of PTH[1–34] on serum chemistry, bone microarchitecture and expression of the PTH receptor (PTH1R and osteocalcin were determined. Administration of PTH[1–34] significantly increased serum levels of calcium, alkaline phosphatase (AP, osteocalcin and tartrate-resistant acid phosphatase (TRAP. The expression of PTH1R on both osteocytes and chondrocyte-like cells at the tendon-bone interface was increased in the PTH group. PTH[1–34] also enhanced the thickness and microarchitecture of trabecular bone according to the micro-CT analysis. The results imply that systematically intermittent administration of PTH[1–34] promotes tendon-bone healing at an early stage via up-regulated PTH1R. This method may enable a new strategy for the promotion of tendon-bone healing after ACL reconstruction.

  8. Effect of spaceflight on the non-weight-bearing bones of rat skeleton

    Science.gov (United States)

    Simmons, D. J.; Russell, J. E.; Winter, F.; Tran Van, P.; Vignery, A.; Baron, R.; Rosenberg, G. D.; Walker, W. V.

    1983-01-01

    The effects of weightlessness on the integrated growth and remodeling of nonweight-bearing bones (the mandibles, teeth, and ribs) were studied. Rats prelabeled with tetracycline to mark the surfaces of bone and tooth formation were subjected to spaceflight conditions for 18.5 days, followed by further injections of tetracycline on days 6 and 29 postflight.Results show that spaceflight conditions did not alter the rate of periosteal bone formation in the ribs and regions of the mandibles covered by masticatory muscles, although bone formation-calcification rates were found to be impaired at those sites in the jaw that had no contiguous muscle (molar region). The remodeling activity on the alveolar bone around the buccal roots of the molar teeth was found to be significantly reduced. While total Ca, P, and hydroxyproline concentrations in the jaws, incisors, and ribs were normal after spaceflight, it was determined that weightless conditions caused a delay in the maturation of bone mineral and matrix in the jaws. These anomalies were found to be corrected by 29 days postflight. These results indicate that most of the nonweight-bearing bones of the rat skeleton are at risk to the effects of weightlessness.

  9. On the reliability of archaeological rat bone for radiocarbon dating in New Zealand

    International Nuclear Information System (INIS)

    Holdaway and Beavan (1999) discussed the radiocarbon dating of bone of various species from the site of Hukanui Pool, Hawkes Bay. We question their conclusion that two apparently reliable rat bone gelatin determinations from the Hukanui Pool site provide support for the entire suite of rat determinations from previously dated 'natural' sites. We present evidence that contradicts their conclusion that bone material from the broad range of archaeological midden sites is generally less well-preserved than bone from 'natural' caves in New Zealand such as Hukanui Pool. We show that when dates from archaeological bone from Pleasant River and Shag River Mouth are evaluated, the state of preservation is comparable with material from the 'natural' site of Hukanui Pool, and should provide accurate and reproducible radiocarbon determinations. Our conclusion has serious implications for the acceptance of the model proposed by Holdaway (1999), because if archaeological bone is well-preserved but yields unreliable and unreproducible results, it is likely that well-preserved 'natural' bone is similarly affected. (author)

  10. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking.

    Science.gov (United States)

    Ratajczak, M Z

    2015-04-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  11. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    International Nuclear Information System (INIS)

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP

  12. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    Energy Technology Data Exchange (ETDEWEB)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2013-04-15

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP.

  13. Parenteral magnesium load testing with 28Mg in weanling and young adult rats

    International Nuclear Information System (INIS)

    A sound diagnostic test for Mg deficiency is needed. This is a report of the parenteral Mg load test conducted in weanling and young adult rats fed a purified basal diet containing 3 mg magnesium/100 g with 150 mg of added magnesium/100 g (control) or 0 added magnesium (deficient). Weanlings were studied at about 1 week of dietary treatment and young adults at 2 weeks. The protocol included: a) a 6-hour preload urinary collection; b) an intraperitoneal load of 15 mg of magnesium/kg (weanlings) or 12 mg/kg (young adults) with 2 microCi 28Mg given simultaneously with each load; c) a 6-hour postload urinary collection; d) chemical analysis of selected tissues and urine for Mg; and e) 28Mg counting 6 and 24 hours postload. Controls all excreted large amounts of Mg pre- and postload, retaining less than 26% of nonradioactive loads. They had high urinary 28Mg counts. In Mg-deficient animals, the concentration of Mg in bone more than halved. These animals avidly conserved Mg and retained over 85% of nonradioactive Mg loads. Their 28Mg activity in vital organs was 3--6 times greater than in controls. We concluded that the parenteral Mg load test reliably identifies severe Mg deficiency

  14. Experimental study on healing process of rat mandibular bone fracture examined by radiological procedures

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Yukio; Furumoto, Keiichi (Nippon Dental Univ., Tokyo (Japan))

    1994-06-01

    The healing process of rat mandibular fractures was stereoscopically observed daily, using plain roentgenography in the lateral-oblique and tooth axis directions and bone scintigraphy using 99m-Tc-methylene diphosphoric acid (Tc-99m-MDP). The findings were compared with microradiograms of regional polished specimens. X-ray findings included the following. Up to 3 days after bone fracture, the fracture mesiodistally showed distinct radiolucency, with sharp and irregular fracture stump. Radiopacity of the fracture site gradually increased 7 days or later, and bone trabecular formation by callus and stump bridging started to occur at 14 days. Findings similar to those in the control group were observed 49 days or later. The inside was difficult to differentiate, irrespective of the observation time. Bone scans in the mesiodistal and buccolingual planes revealed tracer uptake in the areas of mandibular and soft tissue damage one day after bone fracture. Tracer uptake began to be seen in the fracture site 3 days later, and became marked at 14 days. Then Tc-99m DMP began to be localized and returned to the findings similar to those at 49 days. Bone scanning tended to show wider areas earlier than roentgenography. Microradiographic mesiodistal examination revealed distinct radiopacy of the fracture line for 3 days after bone fracture. Seven days later, bone resorption cavity occurred in the cortical bone around the fracture stump, along with neogenesis of callus. Neogenesis and calcification began to occur gradually, and 14 days later, the fracture osteoremodeling of the internal bone trabeculae was observed. Bone trabecular formation within the bone, however, occurred later. (N.K.).

  15. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...

  16. Fractal dimension analysis of weight-bearing bones of rats during skeletal unloading

    Science.gov (United States)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Sanhueza, A. I.; Yamauchi, M.

    2001-01-01

    Fractal analysis was used to quantify changes in trabecular bone induced through the use of a rat tail-suspension model to simulate microgravity-induced osteopenia. Fractal dimensions were estimated from digitized radiographs obtained from tail-suspended and ambulatory rats. Fifty 4-month-old male Sprague-Dawley rats were divided into groups of 24 ambulatory (control) and 26 suspended (test) animals. Rats of both groups were killed after periods of 1, 4, and 8 weeks. Femurs and tibiae were removed and radiographed with standard intraoral films and digitized using a flatbed scanner. Square regions of interest were cropped at proximal, middle, and distal areas of each bone. Fractal dimensions were estimated from slopes of regression lines fitted to circularly averaged plots of log power vs. log spatial frequency. The results showed that the computed fractal dimensions were significantly greater for images of trabecular bones from tail-suspended groups than for ambulatory groups (p dimensions than other regions (p < 0.05), which suggests they were more susceptible to unloading. The data are consistent with other studies demonstrating osteopenia in microgravity environments and the regional response to skeletal unloading. Thus, fractal analysis could be a useful technique to evaluate the structural changes of bone.

  17. Cytogenetic effects in the bone marrow of rats with long-term domestic revenue 131I

    International Nuclear Information System (INIS)

    Cytogenetic effects in the rats bone marrow after long-term ingestion of 131I were studied. Significant increase of chromosomal aberrations by dicentric aberrations with and without fragments, acentric fragments, atypical chromosomes and polyploidies was found. Chromatid-type aberrations in exposed animals were present at the same level as in the control

  18. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  19. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  20. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Anna Silvia Setti da [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR, (Brazil). Dept. of Physics; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Oral Diagnosis], e-mail: flaviamaria@fop.unicamp.br; Manzi, Flavio Ricardo [Pontifical Catholic University of Minas Gerais (PUC-MG), Belo Horizonte, MG (Brazil). Dept. of Stomatology; Chicareli, Mariliani [State Univ. of Maringa, PR (Brazil). Dept. of Oral Diagnosis

    2009-07-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  1. Simvastatin prevents alveolar bone loss in an experimental rat model of periodontitis after ovariectomy

    OpenAIRE

    XU, XIN-CHEN; Chen, Hui; Zhang, Xi; ZHAI, ZAN-JING; Liu, Xu-qiang; Qin, An; Lu, Er-yi

    2014-01-01

    Background Periodontitis is an inflammatory disease characterized by the loss of connective tissue and alveolar bone. There is an increasing evidence that periodontitis is associated with a number of chronic disease, including osteoporosis. Periodontitis and osteoporosis are both bone destructive diseases and of high prevalence in adult population. Osteoporosis could increase some inflammatory factors that also participate in the progression of periodontitis, so as to facilitate the alveolar ...

  2. Estimated number of prevalent cases of metastatic bone disease in the US adult population

    Directory of Open Access Journals (Sweden)

    Pinzone JJ

    2012-04-01

    Full Text Available Shuling Li1, Yi Peng1, Eric D Weinhandl1, Anne H Blaes2, Karynsa Cetin3, Victoria M Chia3, Scott Stryker3, Joseph J Pinzone4, John F Acquavella3, Thomas J Arneson11Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA; 2Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA; 3Center for Observational Research, 4Global Development, Amgen, Thousand Oaks, CA, USABackground: The prevalence of metastatic bone disease in the US population is not well understood. We sought to estimate the current number of US adults with metastatic bone disease using two large administrative data sets.Methods: Prevalence was estimated from a commercially insured cohort (ages 18–64 years, MarketScan database and from a fee-for-service Medicare cohort (ages ≥65 years, Medicare 5% database with coverage on December 31, 2008, representing approximately two-thirds of the US population in each age group. We searched for claims-based evidence of metastatic bone disease from January 1, 2004, using a combination of relevant diagnosis and treatment codes. The number of cases in the US adult population was extrapolated from age- and sex-specific prevalence estimated in these cohorts. Results are presented for all cancers combined and separately for primary breast, prostate, and lung cancer.Results: In the commercially insured cohort (mean age = 42.3 years [SD = 13.1], we identified 9505 patients (0.052% with metastatic bone disease. Breast cancer was the most common primary tumor type (n = 4041. In the Medicare cohort (mean age = 75.6 years [SD = 7.8], we identified 6427 (0.495% patients with metastatic bone disease. Breast (n = 1798 and prostate (n = 1862 cancers were the most common primary tumor types. We estimate that 279,679 (95% confidence interval: 274,579–284,780 US adults alive on December 31, 2008, had evidence of metastatic bone disease in the previous 5 years. Breast, prostate

  3. TIN DISTRIBUTION IN ADULT RAT TISSUES AFTER EXPOSURE TO TRIMETHYLTIN AND TRIETHYLTIN

    Science.gov (United States)

    The time course of distribution of tin in the adult rat was determined in brain, liver kidney, heart, and blood following single ip administrations of trimethyltin hydroxide (TMT) and triethyltin bromide (TET). Adult Long-Evans rats were killed 1 hr, 4 hr, 12 hr, 24 hr, 5 days, 1...

  4. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  5. Bone turnover markers in medicamentous and physiological hyperprolactinemia in female rats

    Directory of Open Access Journals (Sweden)

    Radojković Danijela

    2014-01-01

    Full Text Available Background/Aim. There is a lack of data on the effects of prolactin on calcium metabolism and bone turnover in hyperprolactinemia of various origins. The aim of this study was to compare the influence of medicamentous and physiological hyperprolactinemia on bone turnover in female rats. Methods. Experimental animals (18 weeks old, Wistar female rats were divided as follows: the group P - 9 rats, 3 weeks pregnant; the group M3-10 rats that were intramuscularly administrated sulpirid (10 mg/kg twice daily for 3 weeks, the group M6 - 10 rats that were intramuscularly administrated with sulpirid (10 mg/kg twice daily for 6 weeks, and age matched nulliparous rats as the control group: 10 rats, 18-week-old (C1 and 7 rats, 24 weeks old (C2. Laboratory investigations included serum ionized calcium and phosphorus, urinary calcium and phosphorous excretion, osteocalcin and serum procollagen type 1 N-terminal propeptide (P1NP. Results. Experimental animals in the group P compared to the control group, displayed lower mean serum ionized calcium (0.5 ± 0.2 vs 1.12 ± 0.04 mmol/L; p < 0.001; higher mean serum phosphorus (2.42 ± 0.46 vs 2.05 ± 0.2 mmol/L; p < 0.05; increased urinary calcium (3.90 ± 0.46 vs 3.05 ± 0.58; p < 0.01 and significantly increased P1NP (489,22 ± 46,77 vs 361.9 ± 53,01 pg/mL; p < 0.001. Experimental animals in the group M3 had significantly decreased P1NP, compared to the control group. Prolongated medicamentous hyperprolactinemia (the group M6 induced increased serum ionized calcium (1.21 ± 0.03 vs 1.15 ± 0.02 mmol/L; p < 0.001; decreased serum phosphorus (1.70 ± 0.13 vs 1.89 ± 0.32 mmol/L; p < 0.001; decreased osteocalcin and P1NP. Conclusions. Physiological hyperprolactinemia does not have such harmful effect on bone metabolism as medicamentous hyperprolactinemia. Chronic medicamentous hyperprolactinemia produces lower serum levels of bone formation markers. Assessment of bone turnover markers in prolongated medicamentous

  6. Dose evaluation in paediatric radiology and adult bone densitometry examinations

    International Nuclear Information System (INIS)

    Dose measurements are acknowledged to be a vital part of the quality assurance process in diagnostic radiology, and the use of thermoluminescence dosemeters (TLDs) is a recommended method of entrance dose evaluation. Measurement of doses in radiographic examinations is widely adopted in clinical practice for adults as well as for children. Phantoms can be used to simulate different parts of the body, depending on the materials used to build them. In this work two different sets of phantoms have been prepared with acrylic blocks. The first set was used to simulate children of different ages. The second set was used to simulate the adult spine. The dosimetric measurements have been carried out using TLD and an ionising chamber. Measurements were performed in three X-ray equipments in Aracaju, Brazil. The entrance, half thickness and exit surface doses were analysed. (authors)

  7. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  8. Effect of MDMA (ecstasy) on activity and cocaine conditioned place preference in adult and adolescent rats

    OpenAIRE

    Åberg, Maria; Wade, Dean; Wall, Erin; Izenwasser, Sari

    2006-01-01

    MDMA (ecstasy) is a drug commonly used in adolescence, and many users of MDMA also use other illicit drugs. It is not known whether MDMA during adolescence alters subsequent responses to cocaine differently than in adults. This study examined the effects of MDMA in adolescent and adult rats on cocaine conditioned reward. At the start of these experiments, adolescent rats were at postnatal day (PND) 33 and adult rats at PND 60. Each rat was treated for seven days with MDMA (2 or 5 mg/kg/day or...

  9. Local treatment of a bone graft by soaking in zoledronic acid inhibits bone resorption and bone formation. A bone chamber study in rats.

    OpenAIRE

    Belfrage Ola; Isaksson Hanna; Tägil Magnus

    2012-01-01

    ABSTRACT: BACKGROUND: Bone grafts are frequently used in orthopaedic surgery. Graft remodelling is advantageous but can occur too quickly, and premature bone resorption might lead to decreased mechanical integrity of the graft. Bisphosphonates delay osteoclastic bone resorption but may also impair formation of new bone. We hypothesize that these effects are dose dependent. In the present study we evaluate different ways of applying bisphosphonates locally to the graft in a bone...

  10. Effect of HT042, herbal formula, on longitudinal bone growth in spontaneous dwarf rats.

    Science.gov (United States)

    Kim, Ji Young; Song, MiKyung; Lee, Donghun; Song, Jungbin; Park, Sang Woug; Park, Juyeon; Park, Seungjoon; Choi, Ho-Young; Kim, Hocheol

    2013-01-01

    HT042 is a new herbal prescription consisting of Astragalus membranaceus, Phlomis umbrosa and Eleutherococcus senticosus, which are used in Korean medicine to stimulate growth in children. We investigated the effects of HT042 on the body weight, longitudinal bone growth, and bone length in spontaneous dwarf rats (SDR). Male and female SDRs were divided into three groups: the control group (DW, 10 mL/kg/day), the recombinant human GH group (rhGH; 500 µg/kg/day), and the HT042 (100 mg/kg/day) group. Each group received the respective treatments for 10 days. Body weight was measured on day 10 of treatment. On day 8, tetracycline (20 mg/kg) was injected intraperitoneally into all individuals to form a fluorescent band on the newly synthesized bone. On day 10, femur and tibia lengths were measured using PIXImus. Body weight, longitudinal bone growth, and bone length were not affected in the HT042 group. In contrast, the rhGH group showed significantly increased body weight, longitudinal bone growth, and bone length. In conclusion, HT042 does not act through a GH-like effect to promote longitudinal bone growth. PMID:24169467

  11. Dobutamine stress echocardiography in healthy adult male rats

    Directory of Open Access Journals (Sweden)

    Couet Jacques

    2005-10-01

    Full Text Available Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe. Results Dobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate. Conclusion DSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.

  12. Effect of exposure to diazinon on adult rat's brain.

    Science.gov (United States)

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain. PMID:24217015

  13. Methanol Extract of the Fruits of Morinda citrifolia Linn., Restores Bone Loss in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    V. Parmar

    2011-01-01

    Full Text Available The objective of this study was to evaluate the effect of methanol extract of the fruits of Morinda citrifolia Linn., on osteoporosis induced by ovariectomy in female albino rats at two different dose levels of 500 and 750 mg/kg/day. Healthy female albino rats in the age group of 90 days were selected and randomized into five groups of six animals each. Group 1 was sham operated and served as control while all the remaining groups were ovariectomized. Group 2 was fed with an equivolume of saline and served as ovariectomized control. Group 3 was orally treated with standard Raloxifene (5.4 mg kg-1 whereas the methanol extract of Morinda citrifolia (500 and 750 mg kg-1 was administered to the groups 4 and 5. The findings assessed on the basis of biomechanical, biochemical and histopathological parameters, showed that the methanol extract significantly reduced bone loss, as evidenced by a reduction in Tartrate Resistant Acid Phosphatase (TRAP and urine Hydroxyproline (Hp levels while simultaneously increasing bone formation [high serum Alkaline Phosphatase (ALP levels], thereby restoring bone mineralization. The restoration of bone strength was confirmed by biomechanical parameters viz., the three point bending of tibia, load testing of femoral head and compression of IV lumbar vertebra and it was further endorsed by histopathological findings i.e., bone microarchitecture. The extract significantly increased the osteoblastic activity on one hand while on the other it retarded the osteoclastic function thereby contributing to a positive bone balance and hence enhanced mineralization.

  14. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts

    Institute of Scientific and Technical Information of China (English)

    Youxin Song; Zhujun Wang; Zhixue Wang; Hong Zhang; Xiaohui Li; Bin Chen

    2012-01-01

    Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.

  15. Autoradiography of lyophilized animal sections. Bone density measurement in osteoporosis model rats

    International Nuclear Information System (INIS)

    To gain a better understanding on the β-ray radiography of lyophilized animal sections, the bone densities of the osteoporosis rats were measured using a 147Pm planar radiation source. An imaging plate as a radiation sensor was overlaid on the animal section together with a density calibrator. After exposure, radioactivity recorded on the sensor was quantified using a bio-imaging analyzer. The density calibration curve showed linearity in the wide range with a good correlation coefficient (R2≥0.999). The inter- and intra-plate variability showed CV values less than 3.7%. On the measurement of bone density, bone density differences between the sham group and ovariectomized (OVX) group were statistically significant in the femoral cortical (p=0.001) and trabecular bone (p=0.07), and vertebral trabecular bone (p=0.043). Based on these results, we developed a new and valuable method, which made it possible to measure bone density of axial skeleton of a rat, as an alternative to commonly used methods. (author)

  16. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.; Simske, S.J. [BioServe Space Technologies University of Colorado Boulder, Colorado80309-0429 (United States); Zimmerman, R.J. [Chiron Corporation 4560 Horton Street Emeryville, California94608-2916 (United States)

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}

  17. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    Science.gov (United States)

    Bateman, Ted A.; Ayers, Reed A.; Spetzler, Michael L.; Simske, Steven J.; Zimmerman, Robert J.

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton et al., 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid et al., 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19-29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes.

  18. Occurrence of bone cancer among young adult Beagles given 239Pu

    International Nuclear Information System (INIS)

    Two hundred thirty-five young adult Beagles of both sexes were each given a single intravenous injection of 239Pu-citrate at graded dose-levels averaging about 0.026 to 106 kBq/kg when they were about 1 1/2 years of age and were maintained for lifespan observation. An additional 133 young adult Beagles of both sexes were entered into the experiment as control animals. All of these animals have now died or have been removed from the colony, and the occurrence of skeletal malignancies has been determined from histological examination. There were a total of 85 radiographically apparent malignant bone tumors in 77 dogs given 239Pu, and there was one control animal that developed a skeletal malignancy. Most of these were osteosarcomas, but there were seven chondrosarcomas of bone, one liposarcoma of bone, and in addition, there was one plasma cell myeloma and one ameloblastoma (admantinoma). Only those dogs that survived to at least the minimum latent period for death with radiation-induced bone sarcoma are included in the tabulation. There appeared to be a linear relationship between the percent of dogs with bone tumor and the average skeletal dose up to a dose of about 1 Gy. All dose-levels with skeletal doses of about 2 Gy and greater exhibited close to 100% occurrence

  19. Possible Role of Garlic Oil and Parsley Extract in Ameliorating Radiation-Induced Bone Loss in Female Rats

    International Nuclear Information System (INIS)

    To Investigate the possible protective effect of garlic oil and parsley extract against bone loss resulted in female virgin rats exposed to fractionated doses of gamma-radiation (1 Gy 3 times weekly for 5 weeks). Urinary calcium (U Ca), calcium to creatinine ratio (Ca/Cr), hydroxyproline and serum phosphorus were measured as bone resorption bio markers, while serum osteocalcine (OST) and serum alkaline phosphatase (ALP) were measured as bone formation bio markers. Furthermore, nitric oxide (NO) which represents the balance in bone remodeling was measured. Malondiadehyde level (MDA) as well as superoxide dismutase activity (SOD) was measured as oxidative stress bio markers. Female irradiated rats in the present study had significant increases in both bone resorption and bone formation bio markers after 6 weeks from the last exposure to gamma-radiation. Irradiated rats also had significant decreases in plasma NO indicating imbalance in bone remodeling as well as significant increase in oxidative stress bio markers. Daily treatment with garlic oil extracted in olive oil improved all measured parameters except OST level, while the vehicle used for garlic oil (extra virgin olive oil) significantly decreased bone resorption bio markers. Parsley extract induced normalization to all bone resorption and formation parameters measured in irradiated rats. Daily administration of garlic oil and parsley extract protected the bone from degeneration induced by exposure to fractionated doses of gamma radiation.

  20. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  1. Effects of neonatal peripheral tissue injury on pain-related behaviors in adult rats

    Directory of Open Access Journals (Sweden)

    Meng-meng LI

    2013-09-01

    Full Text Available Objective To observe the effects of peripheraltissueinjury in the developmental stage of newborn rats on pain-related behaviors in adult rats. Methods SD rats 1,4,7,14,21 and 28days after birth were selected in thepresent study(4litters at each time point and 10 rats per litter.Each litter of rats was randomly divided intoinjury group(receiving subcutaneous injection of 20μl bee venomand control group(receiving subcutaneous injection of 20μl normal saline, with20 in each group, and then raised for 2 months to adulthood. The baseline pain threshold was observed by measuring spontaneous paw flinching reflex,paw withdrawal thermal latency(PWTLand paw withdrawal mechanical threshold(PWMT, then 50μl 0.4% bee venom was subcutaneously injected to each rat, and the changesinpa in reaction and pain threshold were determined. Results The baseline thermal pain threshold in adult rats receiving bee venom or normal saline at different time points after birth was similar,but baseline mechanical pain threshold in adult rats receiving bee venom at1,4,7and14 days after birth was decreased significantly compared with the adult rats receiving normal saline at corresponding time points(P0.05.Mechanical hyperalgesia was not induced in rats injected with bee venom but induced in adult ratsinjected with normal saline4-21days after birth.Injection of bee venom 21 and 28 days after birth could obviously enhance the bee venom-induced hyperalgesiain adult rats compared with control group(P<0.01. Conclusions Bee venom stimuli at different time points after birth could affect the baseline PWMT and mechanical pain hypersensitivityin adult rats but not the baseline PWTL and thermal pain hypersensitivity. The 21st day maybe a key time point of nervous system development in rats.

  2. Plastic Fibula Bone Deformity with Ipsilateral Fracture of Tibiain Adults: A Case Report

    OpenAIRE

    Abbas Abdoli Tafti; Sanazsadat Sajadi; Maryam Shahmoradi

    2015-01-01

    Plastic bowing is a constant deformation of long bones occurring after a long standing force to bone. This type of fracture is seen in children and is uncommon in the adults. In this paper we report a case of fibular plastic deformity with ipsilateral tibia fracture in a 20 years old man that occurred after a direct hit. At the initial examination vital signs were stable and radiography of tibia and fibula fracture with plastic deformation were clear. In order to treat him we performed fib...

  3. Plastic Fibula Bone Deformity with Ipsilateral Fracture of Tibiain Adults: A Case Report

    Directory of Open Access Journals (Sweden)

    Abbas Abdoli Tafti

    2015-10-01

    Full Text Available Plastic bowing is a constant deformation of long bones occurring after a long standing force to bone. This type of fracture is seen in children and is uncommon in the adults. In this paper we report a case of fibular plastic deformity with ipsilateral tibia fracture in a 20 years old man that occurred after a direct hit. At the initial examination vital signs were stable and radiography of tibia and fibula fracture with plastic deformation were clear. In order to treat him we performed fibular close reduction and tibia internal fixation with intramedullary nailing.

  4. Roles of Zinc and Iron on Bone Health in a Rat Model of Osteoporosis

    Science.gov (United States)

    Yan, Danhua

    Bone is one of the most vital organs in animals, serving as both structural and protective functions. Remodeling of bone is an important indicator of bone health, and disorders in bone remodeling may lead to bone diseases such as osteoporosis. Osteoporosis increases risk of bone fracture and even death, and much more preferable to be happened in postmenopausal women due to great changes in hormones. Micronutrients, such as Zinc (Zn) and Iron (Fe), would as well influence bone health in different manners. That Zn would promote bone health is widely accepted, for the reasons Zn increases osteoblast cell proliferation and differentiation, inhibits osteoclast cell activities, and forms alkaline phosphatase that does help to maintain bone metabolism. Diseases caused by Fe overload is usually related to osteoporosis. Ferric ion could facilitate osteoclast differentiation, inhibit osteoblast and alkaline phosphatase activities, and interfere with hydroxyapatite crystal growth and depositions. However, changes of concentrations and distributions for Zn and Fe in osteoporotic bones are seldom studied. In this thesis, ovariectomized rat femur bones are used as a model of postmenopausal osteoporosis. Rats from different ages and health conditions are categorized as 6 AM (6-month age matched control), 6 OVX (6-month ovariectomized control), 12 AM (12-month age matched control), 12 OVX (12-month ovariectomized control). The trace elements Zn and Fe is studied through Synchrotron Radiation X-Ray Fluorescence (SRXRF). Elemental maps are used to observe changes in distribution, and further quantitative analysis is used to discover changes in concentration among different animal groups. Both the decrease of Zn and the increase of Fe are significant from healthy to osteoporotic bones (p0.1) is also observed over age in healthy groups. Both elements show changes in distribution, that healthy animals present a more even distribution while in OVX groups the tendency of aggregation is

  5. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation

  6. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ui-Won [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Song, Kun-Young [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Kim, Chang-Sung [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of); Cho, Kyoo-Sung [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Kim, Chong-Kwan [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of)

    2007-09-15

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation.

  7. A stimulator of proliferation of spleen colony-forming cells (CFU-S) in the bone marrow of irradiated rats

    International Nuclear Information System (INIS)

    The presence and activity of a spleen colony - forming cell (CFU-S) proliferation stimulator was investigated in rat bone marrow after irradiation. The dose dependent increase in cytosine arabinoside induced cell dealth of normal mouse bone marrow. The results demonstrate the existence of a CFU-S proliferation stimulator in rat bone marrow similar to that originally found as a macrophage product in regenarating mouse bone marrow. The CFU-S proliferation stimulator activity was not associated with the presence of interleukin - 1,2, or 6 like activities in the material tested

  8. Parietal Bone Thickness and Vascular Diameters in Adult Modern Humans: A Survey on Cranial Remains.

    Science.gov (United States)

    Eisová, Stanislava; Rangel de Lázaro, Gizéh; Píšová, Hana; Pereira-Pedro, Sofia; Bruner, Emiliano

    2016-07-01

    Cranial bone thickness varies among modern humans, and many factors influencing this variability remain unclear. Growth hormones and physical activity are thought to influence the vault thickness. Considering that both systemic factors and energy supply influence the vascular system, and taking into account the structural and biomechanical interaction between endocranial vessels and vault bones, in this study we evaluate the correlation between vascular and bone diameters. In particular, we tested the relationship between the thickness of the parietal bone (which is characterized, in modern humans, by a complex vascular network) and the lumen size of the middle meningeal and diploic vessels, in adult modern humans. Our results show no patent correlation between the thickness of parietal bone and the size of the main vascular channels. Values and distributions of the branching patterns, as well as anatomical relationships between vessels and bones, are also described in order to provide information concerning the arrangement of the endocranial vascular morphology. This information is relevant in both evolutionary and medical contexts. Anat Rec, 299:888-896, 2016. © 2016 Wiley Periodicals, Inc. PMID:27072555

  9. Effects of different durations of treadmill training exercise on bone mineral density in growing rats

    Directory of Open Access Journals (Sweden)

    K Ertem

    2008-06-01

    Full Text Available In this study, we aimed to investigate the effects of different durations of treadmill training exercise (daily for 30 min and 60 min on bone mineral density (BMD in young growing rats. Training consisted of treadmill running at 5 days per week during a period of 13 weeks. The rats in 30 min and 60 min exercise groups began to training on day 63 of life and had maintained for at least a week, with a minimal progression as a guide to the rats’ training and adaptation to the treadmill. Running time was gradually increased from 15 min to 30 and 60 min per session for two exercise groups respectively. Control rats were kept in the cages at the same environmental conditions and daily inspected to control their health. At the end of 13 weeks, bone mineral densities of the bilateral tibia of all rats were measured .with dual-energy X-ray absorptiometry (DEXA (QDR 4500/W, Hologic Inc., Bedford, MA, USA and results were evaluated. There were significantly increases in BMD of right and left tibia of rats in 30 min exercise group at post-exercise period (p<0.01 for both sides when compared to the control group. BMD of right and left tibia of rats were also correlated with each other (r=0.556 and p=0.003. Otherwise, there is a positive correlation between pre- and post-exercise body weights of rats (r=0.588 and p=0.002. From our results, we concluded that subjects should perform moderate running exercise for development of bone mass and its protection during the lifelong. However, intensity and duration of performing exercise are required to put in order for every ages or actual physical conditions.

  10. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP Synthesized from Porous Foraminifera Carbonate Macrospheres

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    2013-12-01

    Full Text Available Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair.

  11. Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat.

    Science.gov (United States)

    Creecy, Amy; Uppuganti, Sasidhar; Merkel, Alyssa R; O'Neal, Dianne; Makowski, Alexander J; Granke, Mathilde; Voziyan, Paul; Nyman, Jeffry S

    2016-09-01

    Individuals with type 2 diabetes (T2D) have a higher fracture risk compared to non-diabetics, even though their areal bone mineral density is normal to high. Identifying the mechanisms whereby diabetes lowers fracture resistance requires well-characterized rodent models of diabetic bone disease. Toward that end, we hypothesized that bone toughness, more so than bone strength, decreases with the duration of diabetes in ZDSD rats. Bones were harvested from male CD(SD) control rats and male ZDSD rats at 16 weeks (before the onset of hyperglycemia), at 22 weeks (5-6 weeks of hyperglycemia), and at 29 weeks (12-13 weeks of hyperglycemia). There were at least 12 rats per strain per age group. At 16 weeks, there was no difference in either body weight or glucose levels between the two rat groups. Within 2 weeks of switching all rats to a diet with 48 % of kcal from fat, only the ZDSD rats developed hyperglycemia (>250 mg/dL). They also began to lose body weight at 21 weeks. CD(SD) rats remained normoglycemic (600 g). From micro-computed tomography (μCT) analysis of a lumbar vertebra and distal femur, trabecular bone volume did not vary with age among the non-diabetic rats but was lower at 29 weeks than at 16 weeks or at 22 weeks for the diabetic rats. Consistent with that finding, μCT-derived intra-cortical porosity (femur diaphysis) was higher for ZDSD following ~12 weeks of hyperglycemia than for age-matched CD(SD) rats. Despite an age-related increase in mineralization in both rat strains (μCT and Raman spectroscopy), material strength of cortical bone (from three-point bending tests) increased with age only in the non-diabetic CD(SD) rats. Moreover, two other material properties, toughness (radius) and fracture toughness (femur), significantly decreased with the duration of T2D in ZDSD rats. This was accompanied by the increase in the levels of the pentosidine (femur). However, pentosidine was not significantly higher in diabetic than in non-diabetic bone at

  12. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    Science.gov (United States)

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage. PMID:21672645

  13. Revascularisation of fresh compared with demineralised bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O;

    2001-01-01

    Revascularisation of bone grafts is influenced by both the anatomical origin and the pre-implantation processing of the graft. We investigated the revascularisation by entrapment of 141Ce (cerium)-labelled microspheres in large, fresh and demineralised syngeneic grafts of predominantly cancellous...

  14. Identification of free nitric oxide radicals in rat bone marrow

    DEFF Research Database (Denmark)

    Aleksinskaya, Marina A; van Faassen, Ernst E H; Nelissen, Jelly;

    2013-01-01

    Nitric oxide (NO) has been implicated in matrix metallopeptidase 9 (MMP9)-dependent mobilization of hematopoietic stem and progenitor cells from bone marrow (BM). However, direct measurement of NO in the BM remained elusive due to its low in situ concentration and short lifetime. Using NO spin...

  15. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  16. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  17. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    Directory of Open Access Journals (Sweden)

    Xu W

    2011-08-01

    Full Text Available Weiguo Xu1, Cornelia Ganz2, Ulf Weber2, Martin Adam2, Gerd Holzhüter2, Daniel Wolter3, Bernhard Frerich3, Brigitte Vollmar1, Thomas Gerber21Institute for Experimental Surgery, 2Institute of Physics, 3Department of Oral, Maxillofacial and Plastic Surgery, University of Rostock, Rostock, GermanyAbstract: In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.Keywords: bone remodelling, electron microscopy, histomorphometry, nanotechnology, tissue engineering

  18. Effect of nicotine on bone healing in rats - A histological study

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Rayapati

    2014-04-01

    Full Text Available Background & Objectives: Nicotine is the major alkaloid in tobacco products (Nicotiona tabacum and a psychoactive ingredient responsible for the Central Nervous System (CNS effects and tobacco addiction. It’s been reported to have effects directly on the small blood vessels in producing vasoconstriction and increased vascular resistance that exerts on the microvasculature inhibiting the angioblastic response during re-vascularization and limits the recruitment of cytokines, Bone Morphogenic Proteins (BMPs, Transforming Growth Factor – β (TGF – β, Platelet Derived Growth Factor (PDGF and the basic Fibroblast Growth Factor (FGF. This leads to inhibition of re-epithelialization, osteogenesis and cellular healing. This study intends to demonstrate histologically the effect of nicotine on bone healing and the healing of bone defects incorporated with autogenous bone graft in an animal model. Methods: 60 female Wistar rats were used in the study. Nicotine hemisulfate at a dose of 3mg/kg body weight of the animal given twice daily for 4 weeks prior to creation of a bone defect. The defect on the ramus of the mandible and the healing in the defect was evaluated at weekly intervals for four weeks for both the quality and quantity of new bone formation by histological and histomorphometric analysis. Results: Significant impairment of healing of bone both in the early and late stages due to the influence of Nicotine was seen. Conclusion: In our study, incorporation of autogenous bone did significantly improve the bone healing process in the end stages of healing while nicotine significantly impaired the healing of bone in early stages.

  19. Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†

    Science.gov (United States)

    Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal

    The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.

  20. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  1. Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling

    Directory of Open Access Journals (Sweden)

    Yasunori Ayukawa

    2015-01-01

    Full Text Available Carbonate apatite (CO3Ap, the form of apatite found in bone, has recently attracted attention. The purpose of the present study was to histologically evaluate the tissue/cellular response toward the low-crystalline CO3Ap fabricated using a dissolution-precipitation reaction with set gypsum as a precursor. When set gypsum was immersed in a 100°C 1 mol/L Na3PO4 aqueous solution for 24 h, the set gypsum transformed into CO3Ap. Both CO3Ap and sintered hydroxyapatite (s-HAp, which was used as a control, were implanted into surgically created tibial bone defects of rats for histological evaluation. Two and 4 weeks after the implantation, histological sections were created and observed using light microscopy. The CO3Ap granules revealed both direct apposition of the bone matrix by osteoblasts and osteoclastic resorption. In contrast, the s-HAp granules maintained their contour even after 4 weeks following implantation which implied that there was a lack of replacement into the bone. The s-HAp granules were sometimes encapsulated with fibrous tissue, and macrophage polykaryon was occasionally observed directly apposed to the implanted granules. From the viewpoint of bone remodeling, the CO3Ap granules mimicked the bone matrix, suggesting that CO3Ap may be an appropriate bone substitute.

  2. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats.

    Science.gov (United States)

    Gowen, M; Stroup, G B; Dodds, R A; James, I E; Votta, B J; Smith, B R; Bhatnagar, P K; Lago, A M; Callahan, J F; DelMar, E G; Miller, M A; Nemeth, E F; Fox, J

    2000-06-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a "calcilytic") of the parathyroid cell Ca(2+) receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17beta-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca(2+) receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  3. Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells

    International Nuclear Information System (INIS)

    The effect of Ep on radioactive glucose and methyl-alpha-D-glucoside transport by rat erythrocytes and bone marrow cells were studied. There is initial linearity followed by saturation kinetics of [14C]glucose transport by the erythrocytes of starved and starved plus Ep-treated rats at different concentrations of glucose. Starvation caused slight inhibition of glucose transport which increased markedly on Ep administration to starved rats. Normal animals failed to show any significant change in glucose transport after Ep treatment. Methyl-alpha-D-glucoside inhibited the Ep-stimulated glucose transport significantly. Ep also stimulated the transport of radioactive methyl-alpha-D-glucoside which was competitively inhibited in presence of D-glucose. Glucose transport in erythrocytes was found to be sensitive to metabolic inhibitors like azide and DNP. A sulfhydryl reagent and ouabain also inhibited the transport process. Ep stimulated glucose and methyl-alpha-D-glucoside transport in the bone marrow cells of starved rats. The sugar analog competitively inhibited the glucose transport in bone marrow cells and vice versa

  4. Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats

    Directory of Open Access Journals (Sweden)

    Carolina Barrera de Azambuja

    2012-12-01

    Full Text Available The aim was to correlate alveolar bone loss in the buccal/palatal and the mesial/distal surfaces of upper molars in rats. Thirty-three, 60-day-old, male Wistar rats were divided in two groups, one treated with alcohol and the other not treated with alcohol. All rats received silk ligatures on the right upper second molars for 4 weeks. The rats were then euthanized and their maxillae were split and defleshed with sodium hypochlorite (9%. The cemento-enamel junction (CEJ was stained with 1% methylene blue and the alveolar bone loss in the buccal/palatal surfaces was measured linearly in 5 points on standardized digital photographs. Measurement of the proximal sites was performed by sectioning the hemimaxillae, restaining the CEJ and measuring the alveolar bone loss linearly in 3 points. A calibrated and blinded examiner performed all the measurements. Intraclass Correlation Coefficient revealed values of 0.96 and 0.89 for buccal/lingual and proximal surfaces, respectively. The Pearson Correlation Coefficient (r between measurements in buccal/palatal and proximal surfaces was 0.35 and 0.05 for the group treated with alcohol, with and without ligatures, respectively. The best correlations between buccal/palatal and proximal surfaces were observed in animals not treated with alcohol, in sites both with and without ligatures (r = 0.59 and 0.65, respectively. A positive correlation was found between alveolar bone loss in buccal/palatal and proximal surfaces. The correlation is stronger in animals that were not treated with alcohol, in sites without ligatures. Areas with and without ligature-induced periodontal destruction allow detection of alveolar bone loss in buccal/palatal and proximal surfaces.

  5. X-ray manifestations of tumors of gnathic bones in adults

    International Nuclear Information System (INIS)

    Roentgenologic manifestations of the neoplasms of qnathic bones in adults are considered in details. Odontogenous tumors and neodontogeneous tumors are among the cases under analysis. It is shown that the roentgenologic features of manifestation of every neoplasm are determined by the character of variations in the form of bone affection section and in the architectonics of it's pattern, by the outlines sharphness, by the total delimitation from unaffected bone sections, by the presence of internal inclusions or calcifications, by the cartical plates safety by the presence and character of pathologic osteogenesis and ossification periostitis. Necessity of the histological studies of punctates or bioptates in certain cases is outlined because of the nonabsolutely reliability of radiological data

  6. Aerobic Exercise and Whole-Body Vibration in Offsetting Bone Loss in Older Adults

    Directory of Open Access Journals (Sweden)

    Pei-Yang Liu

    2011-01-01

    Full Text Available Osteoporosis and its associated fractures are common complications of aging and most strategies to prevent and/or treat bone loss focused on antiresorptive medications. However, aerobic exercise (AEX and/or whole-body vibration (WBV might have beneficial effect on bone mass and provide an alternative approach to increase or maintain bone mineral density (BMD and reduce the risk of fractures. The purpose of this paper was to investigate the potential benefits of AEX and WBV on BMD in older population and discuss the possible mechanisms of action. Several online databases were utilized and based on the available literature the consensus is that both AEX and WBV may increase spine and femoral BMD in older adults. Therefore, AEX and WBV could serve as nonpharmacological and complementary approaches to increasing/maintaining BMD. However, it is uncertain if noted effects could be permanent and further studies are needed to investigate sustainability of either type of the exercise.

  7. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Li-ye; ZHENG Jia-kun; WANG Chao-yang; LI Wen-yu

    2005-01-01

    Objective: To investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells. Methods: Bone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry. Conclusions: Bone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.

  8. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats.

    Science.gov (United States)

    Lee, Donghun; Kim, Young-Sik; Song, Jungbin; Kim, Hyun Soo; Lee, Hyun Jung; Guo, Hailing; Kim, Hocheol

    2016-01-01

    This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway. PMID:27070559

  9. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  10. Association between Sleep Duration, Insomnia Symptoms and Bone Mineral Density in Older Boston Puerto Rican Adults

    OpenAIRE

    Jinya Niu; Shivani Sahni; Susu Liao; Tucker, Katherine L.; Bess Dawson-Hughes; Xiang Gao

    2015-01-01

    Objective: To examine the association between sleep patterns (sleep duration and insomnia symptoms) and total and regional bone mineral density (BMD) among older Boston Puerto Rican adults. Materials/Methods We conducted a cross-sectional study including 750 Puerto Rican adults, aged 47–79 y living in Massachusetts. BMD at 3 hip sites and the lumbar spine were measured using dual-energy X-ray absorptiometry. Sleep duration (≤5 h, 6 h, 7 h, 8 h, or ≥9 h/d) and insomnia symptoms (difficulty ini...

  11. Healing patterns of critical size bony defects in rats after grafting with bone substitutes soaked in recombinant human bone morphogenetic protein-2: histological and histometric evaluation.

    Science.gov (United States)

    Mokbel, N; Naaman, N; Nohra, J; Badawi, N

    2013-09-01

    The aim of the study was to evaluate the effect of different bone substitutes soaked in recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of critical size defects in calvarial bone. Defects were created in 24 Sprague Dawley rats. The rhBMP-2 was diluted to obtain a final concentration of 0.2mg/ml. Rats were divided into four groups and treated as follows: in the first group the defect was filled with anorganic bovine bone mineral (ABBM) and rhBMP-2, the second group was treated with freeze-dried bone allograft (FDBA) and rhBMP-2, and the third group was treated with autogenous bone (AUTO). In the control group the defects were left untreated. Animals were killed after 8weeks and calcified histological sections prepared. Histometric measurements showed that mean (SD) bone formation was 4.00 (1.69)mm(2) in the ABBM group, 2.56 (1.06)mm(2) in the FDBA group, and 2.30 (0.34)mm(2) in the AUTO group. The difference between the ABBM group and the other 3 groups was significant (p<0.0001) with a mean bone formation of 0.82 (0.25)mm(2) in the control group. There was no significant difference between the FDBA and the AUTO groups (p=0.96). Within the limits of this study we concluded that the addition of rhBMP-2 to bone substitutes was efficacious in regenerating bone in critical size bone defects in calveria in rats. PMID:22939894

  12. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert;

    2003-01-01

    The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain...

  13. Contribution of Bone Marrow Hematopoietic Stem Cells to Adult Mouse Inner Ear: Mesenchymal Cells and Fibrocytes

    OpenAIRE

    Lang, Hainan; Ebihara, Yasuhiro; Schmiedt, Richard A.; Minamiguchi, Hitoshi; Zhou, Daohong; Smythe, Nancy; LIU, LIYA; Ogawa, Makio; Schulte, Bradley A.

    2006-01-01

    Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP+ BM cells also were transplanted into conditioned newborn mice deriv...

  14. Pulmonary Langerhans Cell Histiocytosis with Lytic Bone Involvement in an Adult Smoker: Regression following Smoking Cessation

    Directory of Open Access Journals (Sweden)

    B. Routy

    2015-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a rare myeloid neoplasm characterized by the proliferation and dissemination of histiocytes. These in turn may cause symptoms ranging from isolated, infiltrative lesions to severe multisystem disease. Pulmonary Langerhans cell histiocytosis (PLCH presents as a localized polyclonal proliferation of Langerhans cells in the lungs causing bilateral cysts and fibrosis. In adults, this rare condition is considered a reactive process associated with cigarette smoking. Recently, clonal proliferation has been reported with the presence of BRAF V600E oncogenic mutation in a subset of PLCH patients. Spontaneous resolution was described; however, based on case series, smoking cessation remains the most effective way to achieve complete remission and prevent long term complications related to tobacco. Herein, we report the case of an adult woman with biopsy-proven PLCH presenting with thoracic (T8 vertebral bone destruction. Both the lung and the bone diseases regressed following smoking cessation, representing a rare case of synchronous disseminated PCLH with bone localization. This observation underscores the contribution of cigarette smoking as a systemic trigger of both pulmonary and extrapulmonary bone lesions. A review of similar cases in the literature is also presented.

  15. Pulmonary Langerhans Cell Histiocytosis with Lytic Bone Involvement in an Adult Smoker: Regression following Smoking Cessation.

    Science.gov (United States)

    Routy, B; Hoang, J; Gruber, J

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm characterized by the proliferation and dissemination of histiocytes. These in turn may cause symptoms ranging from isolated, infiltrative lesions to severe multisystem disease. Pulmonary Langerhans cell histiocytosis (PLCH) presents as a localized polyclonal proliferation of Langerhans cells in the lungs causing bilateral cysts and fibrosis. In adults, this rare condition is considered a reactive process associated with cigarette smoking. Recently, clonal proliferation has been reported with the presence of BRAF V600E oncogenic mutation in a subset of PLCH patients. Spontaneous resolution was described; however, based on case series, smoking cessation remains the most effective way to achieve complete remission and prevent long term complications related to tobacco. Herein, we report the case of an adult woman with biopsy-proven PLCH presenting with thoracic (T8) vertebral bone destruction. Both the lung and the bone diseases regressed following smoking cessation, representing a rare case of synchronous disseminated PCLH with bone localization. This observation underscores the contribution of cigarette smoking as a systemic trigger of both pulmonary and extrapulmonary bone lesions. A review of similar cases in the literature is also presented. PMID:25789184

  16. X-radiation induced double-strand DNA breaks in rat bone marrow cells

    International Nuclear Information System (INIS)

    The method of sedimentation in a neutral sucrose gradient was used to study y doublestranded dna in a total population of rat bone marrow cells. As a resul of cell lysis in neutral conditions the fragments of double-stranded dna were fo ormed having the molecular mass of (3+-0.3)x109D. A study was made of the dynamics of accumulation of dna double-strand breaks after irradiation of a cell l suspension. It was shown that the yield of double-strand breaks and ratio between single- and double-strand breaks in bone marrow cells were similar to th hose of cultured L5178Y cells

  17. Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium

    International Nuclear Information System (INIS)

    The toxic effects and changes in biochemical markers related to kidney and bone in depleted uranium (DU)-injected rats were examined in order to clarify the relation between clinical biochemical markers and the degree of damage in these organs. Male Wistar rats received a single injection in the femoral muscles of 0.2, 1.0 or 2.0 mg kg-1 of DU which was dissolved in nitric acid solution adjusted to pH 3.2, for comparison with the group injected with nitric acid solution, and the control group. Urine and faeces were collected periodically over a 24 h period. Thereafter, the rats were killed at 28 d after DU injection. The body weights of the DU-injected groups decreased dose-dependently for the first 3-7 d, and then began to increase. The DU concentrations in the urine and faeces decreased rapidly within 3-7 d after DU injection. Urinary N-acetyl-β-D-glucosaminidase (NAG)/ creatinine peaked at the third day after DU injection, with a high correlation to the injected DU doses. There were high correlations among the injected DU doses, DU concentrations in the kidney and urinary NAG/ creatinine values that were obtained at 28 d, respectively. The blood urea nitrogen (BUN) and creatinine in the serum also showed a high correlation with the DU-injected doses. The results indicated that urinary NAG/creatinine, BUN and creatinine in serum were useful indicators to diagnose the renal damage by DU, as well as to estimate the DU intake and concentration in the kidney when the intake is >2 mg kg-1 DU. The total bone mineral density of the proximal metaphysis of the tibia decreased in the 2 mg kg-1 DU group. In addition, alterations of the trabecular bone structure by inhibiting bone formation and promoting bone resorption were observed by bone histo-morphometry. The bone biochemical markers osteo-calcin, tartrate-resistance acid phosphatase, pyridinoline and rat-parathyroid hormone increased in all the DU injected groups, indicating that these markers were useful as sensitive

  18. Radioprotective role of imidazole on radiation-induced chromosomal damage in rat bone marrow cells

    International Nuclear Information System (INIS)

    Whole body gamma irradiation (4 Gy) of male laboratory rats, Rattus norvegicus, induced chromosomal damage and decrease of mitotic index in bone marrow cells which were investigated 0-1/2, 6, 24 and 48 hr. After treatment. Chromosomal aberrations observed consisted of chromatid breaks, centromeric attenuation, chromosomal translocations and rings. The intraperitoneal administration of imidazole at 0.35 mg/g body weight prior to irradiation exerted a definite protective character against radiation induced chromosomal aberration and affected the mitotic index of bone marrow cells

  19. Experiment K-314: Fetal and neonatal rat bone and joint development following in Utero spaceflight

    Science.gov (United States)

    Sabelman, E. E.; Holton, E. M.; Arnaud, C. D.

    1981-01-01

    Infant rat limb specimens from Soviet and U.S. ground-based studies were examined by radiography, macrophotography, histologic sectioning and staining and scanning electron microscopy. A comparison was conducted between vivarium and flight-type diets suggesting that nutritional obesity may adversely affect pregnancy. Data were obtained on maturation of ossification centers, orientation of collagen fibers in bone, tendon and ligaments, joint surface texture and spatial relationships of bones of the hind limb. Computer reconstructions of the knee and hip show promise as a means of investigating the etiology of congenital hip dislocation.

  20. Effects of resistance training and protein supplementation on bone turnover in young adult women

    Directory of Open Access Journals (Sweden)

    Sinning Wayne E

    2005-08-01

    enhance bone formation or inhibit bone resorption in young adult women, as assessed by biochemical markers of bone metabolism. (2 Subsequent maintenance of a high protein intake for 10 days in these regularly-training, calcium-replete women also showed no effects on bone metabolism.

  1. Hyparrhenia hirta: A potential protective agent against hematotoxicity and genotoxicity of sodium nitrate in adult rats.

    Science.gov (United States)

    Bouaziz-Ketata, Hanen; Salah, Ghada Ben; Mahjoubi, Amira; Aidi, Zied; Kallel, Choumous; Kammoun, Hassen; Fakhfakh, Faiza; Zeghal, Najiba

    2015-11-01

    The present study was carried out to examine the adverse hematotoxic and genotoxic effects of water nitrate pollution on male adult rats and the use of hyparrhenia hirta methanolic extract in alleviating these effects. Sodium nitrate (NaNO3 ) was administered to adult rats by oral gavage at a dose of 400 mg kg(-1) bw daily for 50 days, while hyparrhenia hirta methanolic extract was given by drinking water at a dose of 1.5 mg mL(-1) (200 mg kg(-1) bw). The NaNO3 -treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Meanwhile, the results showed a marked reduction in the antioxidant enzyme activities, such as superoxide dismutase, catalase, and glutathione peroxidase, along with an elevation in the level of lipid peroxidation and a reduction in the total glutathione content, indicating the induction of oxidative stress in the erythrocytes of NaNO3 -treated group. Interestingly, NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. The oxidative stress induced by nitrate treatment might be the major cause for chromosomal rearrangements as free radicals leading to DNA damage. Hyparrhenia hirta methanolic extract appeared to be effective against hematotoxic and genotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above. PMID:24740966

  2. Potential Effects of Phytoestrogen Genistein in Modulating Acute Methotrexate Chemotherapy-Induced Osteoclastogenesis and Bone Damage in Rats

    Directory of Open Access Journals (Sweden)

    Tristan J. King

    2015-08-01

    Full Text Available Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX and other cytotoxic drugs has led to the need for a mechanistic understanding of chemotherapy-induced bone loss and for the development of protective treatments. Using a young rat MTX-induced bone loss model, we investigated potential bone protective effects of phytoestrogen genistein. Oral gavages of genistein (20 mg/kg were administered daily, for seven days before, five days during, and three days after five once-daily injections (sc of MTX (0.75 mg/kg. MTX treatment reduced body weight gain and tibial metaphyseal trabecular bone volume (p < 0.001, increased osteoclast density on the trabecular bone surface (p < 0.05, and increased the bone marrow adipocyte number in lower metaphyseal bone (p < 0.001. Genistein supplementation preserved body weight gain (p < 0.05 and inhibited ex vivo osteoclast formation of bone marrow cells from MTX-treated rats (p < 0.001. However, MTX-induced changes in bone volume, trabecular architecture, metaphyseal mRNA expression of pro-osteoclastogenic cytokines, and marrow adiposity were not significantly affected by the co-administration of genistein. This study suggests that genistein may suppress MTX-induced osteoclastogenesis; however, further studies are required to examine its potential in protecting against MTX chemotherapy-induced bone damage.

  3. Behavioral and neurochemical analysis of ongoing bone cancer pain in rats.

    Science.gov (United States)

    Remeniuk, Bethany; Sukhtankar, Devki; Okun, Alec; Navratilova, Edita; Xie, Jennifer Y; King, Tamara; Porreca, Frank

    2015-10-01

    Cancer-induced bone pain is described as dull, aching ongoing pain. Ongoing bone cancer pain was characterized after intratibial injection of breast cancer cells in rats. Cancer produced time-dependent bone remodeling and tactile hypersensitivity but no spontaneous flinching. Conditioned place preference (CPP) and enhanced dopamine (DA) release in the nucleus accumbens (NAc) shell was observed after peripheral nerve block (PNB) selectively in tumor-bearing rats revealing nociceptive-driven ongoing pain. Oral diclofenac reversed tumor-induced tactile hypersensitivity but did not block PNB-induced CPP or NAc DA release. Tumor-induced tactile hypersensitivity, and PNB-induced CPP and NAc DA release, was blocked by prior subcutaneous implantation of a morphine pellet. In sham rats, morphine produced a modest but sustained increase in NAc DA release. In contrast, morphine produced a transient 5-fold higher NAc DA release in tumor bearing rats compared with sham morphine rats. The possibility that this increased NAc DA release reflected the reward of pain relief was tested by irreversible blockade of rostral anterior cingulate cortex (rACC) μ-opioid receptors (MORs). The rACC MOR blockade prevented the morphine-induced transient increased NAc DA release in tumor bearing rats but did not affect morphine-induced effects in sham-operated animals. Consistent with clinical experience, ongoing cancer pain was controlled by morphine but not by a dose of diclofenac that reversed evoked hypersensitivity. Additionally, the intrinsic reward of morphine can be dissociated from the reward of relief of cancer pain by blockade of rACC MOR. This approach allows mechanistic and therapeutic assessment of ongoing cancer pain with likely translation relevance. PMID:25955964

  4. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.

    Directory of Open Access Journals (Sweden)

    Andrew N Luu

    Full Text Available BACKGROUND: High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods. METHODS: Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose ((18FDG and sodium fluoride (Na(18F PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing. RESULTS: Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant increase in (18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone, yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone; yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups. CONCLUSION: PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone

  5. Fertility of male adult rats submitted to forced swimming stress

    Directory of Open Access Journals (Sweden)

    G.Z. Mingoti

    2003-05-01

    Full Text Available We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004. No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001. These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.

  6. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells

    Science.gov (United States)

    Ichiki, A. T.; Gibson, L. A.; Jago, T. L.; Strickland, K. M.; Johnson, D. L.; Lange, R. D.; Allebban, Z.

    1996-01-01

    The white blood cell (WBC) elements and the bone marrow myeloid progenitor cell populations were analyzed to ascertain adaptation to micro-gravity and subsequent readaptation to 1 G in rats flown on the 14-day Spacelab Life Sciences-2 (SLS-2) mission. Bone marrow cells were harvested from one group of rats killed inflight (FD13) and blood was drawn from three other groups at various times. The WBC level was normal on FD14 with the exception of neutrophilia. On FD13, numbers of colony-forming units-granulocyte (CFU-G), CFU-GM, and CFU-M from flight animals were decreased compared with ground controls when incubated with recombinant rat interleukin-3 (rrIL-3) alone or in combination with recombinant human erythropoietin (rhEpo). On recovery (R + 0), flight rats had decreased numbers of total leukocytes and absolute numbers of lymphocytes and monocytes with elevated neutrophils compared with control rats. They had lower numbers of CD4, CD8, CD2, CD3, and B cells in the peripheral blood but no differences in spleen lymphocytes.

  7. Effect of a growth hormone treatment on bone orthotropic elasticity in dwarf rats

    Science.gov (United States)

    Kohles, S. S.; Martinez, D. A.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A refinement of the current ultrasonic elasticity technique was used to measure the orthotropic elastic properties of rat cortical bone as well as to quantify changes in elastic properties, density, and porosity of the dwarf rat cortex after a treatment with recombinant human growth hormone (rhGH). The ultrasonic elasticity technique was refined via optimized signal management of high-frequency wave propagation through cubic cortical specimens. Twenty dwarf rats (37 days old) were randomly assigned to two groups (10 rats each). The dwarf rat model (5-10% of normal GH) was given subcutaneous injections of either rhGH or saline over a 14-day treatment period. Density was measured using Archimedes technique. Porosity and other microstructural characteristics were also explored via scanning electron microscopy and image analysis. Statistical tests verified significant decreases in cortical orthotropic Young's (-26.7%) and shear (-16.7%) moduli and density (-2.42%) concomitant with an increase in porosity (+125%) after rhGH treatments to the dwarf model (p GH treatments was also noted. These results demonstrate some alteration in bone properties at this time interval. Structural implications of these changes throughout physiological loading regimens should be explored.

  8. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation

    Science.gov (United States)

    Keil, L. C.; Evans, J. W.

    1982-01-01

    The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.

  9. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    OpenAIRE

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, gluta...

  10. The effects of different exercise modes for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats

    OpenAIRE

    Park, Jonghoon; Omi, Naomi

    2014-01-01

    [Purpose] Several epidemiological studies have demonstrated that there are positive correlations between vascular disorders and bone loss in postmenopausal women. The aim of the present study was to examine the effect of different types of exercise (e.g., climbing and swimming) for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. [Methods] Twenty Sprague-Dawley female rats were randomly divided into three groups: ovariectomy (OVX) plus treatment with vitami...

  11. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  12. Bone marrow accumulation in gallium scintigraphy in patients with adult still's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanegae, Futoshi; Tada, Yoshifumi; Ohta, Akihide; Ushiyama, Osamu; Suzuki; Noriaki; Koarada, Syuichi; Haruta, Yoshio; Yoshikai, Tomonori; Nagasawa, Kohei [Saga Medical School (Japan)

    2002-12-01

    We investigated the features and the usefulness of gallium scintigraphy in the diagnosis and the assessment of Adult Still's disease (ASD) by retrospective case review. Gallium scintigraphy have been done for 11 cases of ASD (3 males and 8 females) and 4 females were positive. Among these, 67 Ga-citrate was accumulated to the bone marrow in all 4 cases and to the major joints in 2 cases. Positive cases were rather serious and administered more immunosuppressants than negative cases. In order to characterize gallium scintigraphy findings of ASD, i.e. bone marrow accumulation, we analyzed 130 cases of collagen vascular disease. Although 101 cases (77.7%) were positive, only 7 cases (5.4%) showed the accumulation of {sup 67}Ga-citrate to the bone marrow. These include 3 cases with ASD, and 1 case with systemic lupus erythematosus, polyarteritis nodosa, Wegener's granulomatosis and Sjogren's syndrome. We also accumulated 18 patients who exhibited bone marrow accumulation of {sup 69}Ga-citrate, and found that 7 patients had collagen vascular and their related diseases. In conclusion, bone marrow accumulation in gallium scintigraphy is a specific feature of collagen vascular diseases, especially ASD, and it is suggested that cases with positive gallium scintigraphy in ASD can be serious and resistant to treatment. (author)

  13. Selective Determinants of Low Bone Mineral Mass in Adult Women with Anorexia Nervosa

    Science.gov (United States)

    Trombetti, Andrea; Richert, Laura; Herrmann, François R.; Chevalley, Thierry; Graf, Jean-Daniel; Rizzoli, René

    2013-01-01

    We investigated the relative effect of amenorrhea and insulin-like growth factor-I (sIGF-I) levels on cancellous and cortical bone density and size. We investigated 66 adult women with anorexia nervosa. Lumbar spine and proximal femur bone mineral density was measured by DXA. We calculated bone mineral apparent density. Structural geometry of the spine and the hip was determined from DXA images. Weight and BMI, but not height, as well as bone mineral content and density, but not area and geometry parameters, were lower in patients with anorexia nervosa as compared with the control group. Amenorrhea, disease duration, and sIGF-I were significantly associated with lumbar spine and proximal femur BMD. In a multiple regression model, we found that sIGF-I was the only significant independent predictor of proximal femur BMD, while duration of amenorrhea was the only factor associated with lumbar spine BMD. Finally, femoral neck bone mineral apparent density, but not hip geometry variables, was correlated with sIGF-I. In anorexia nervosa, spine BMD was related to hypogonadism, whereas sIGF-I predicted proximal femur BMD. The site-specific effect of sIGF-I could be related to reduced volumetric BMD rather than to modified hip geometry. PMID:23634145

  14. Selective determinants of low bone mineral mass in adult women with anorexia nervosa.

    Science.gov (United States)

    Trombetti, Andrea; Richert, Laura; Herrmann, François R; Chevalley, Thierry; Graf, Jean-Daniel; Rizzoli, René

    2013-01-01

    We investigated the relative effect of amenorrhea and insulin-like growth factor-I (sIGF-I) levels on cancellous and cortical bone density and size. We investigated 66 adult women with anorexia nervosa. Lumbar spine and proximal femur bone mineral density was measured by DXA. We calculated bone mineral apparent density. Structural geometry of the spine and the hip was determined from DXA images. Weight and BMI, but not height, as well as bone mineral content and density, but not area and geometry parameters, were lower in patients with anorexia nervosa as compared with the control group. Amenorrhea, disease duration, and sIGF-I were significantly associated with lumbar spine and proximal femur BMD. In a multiple regression model, we found that sIGF-I was the only significant independent predictor of proximal femur BMD, while duration of amenorrhea was the only factor associated with lumbar spine BMD. Finally, femoral neck bone mineral apparent density, but not hip geometry variables, was correlated with sIGF-I. In anorexia nervosa, spine BMD was related to hypogonadism, whereas sIGF-I predicted proximal femur BMD. The site-specific effect of sIGF-I could be related to reduced volumetric BMD rather than to modified hip geometry. PMID:23634145

  15. Quercetin-induced changes in femoral bone microstructure of adult male rabbits

    Directory of Open Access Journals (Sweden)

    Ramona Babosová

    2016-06-01

    Full Text Available Flavonoids are a group of plant metabolites with antioxidant effects. One of the most abundant flavonoids in the human diet is quercetin. It is found widely in fruits, vegetables and has a lot of beneficial effects on human health. Quercetin has a positive pharmacological effect on bone metabolism and it prevents the organism against bone loss. However, its impact on the size of basic structural units of the compact bone is still unknown. Therefore, the aim of present study was to investigate the impact of the quercetin on femoral bone microstructure in 5-month-old male rabbits. Five rabbits of Californian broiler line were randomly divided into two groups. In the experimental group (E group; n=3, animals were intramuscularly injected with quercetin at dose 1000 μg.kg-1 body weight (bw for 90 days, 3 times per week. Two rabbits without quercetin administration served as a control group (C group. According to our results, intramuscular application of quercetin had an insignificant effect on cortical bone thickness in male rabbits. In these rabbits, changes in qualitative histological characteristics were present in the middle part of the compacta, where primary vascular longitudinal bone tissue was present and expanded there from the periosteum. Also, a lower number of secondary osteons was found in these animals. From the histomorphometrical point of view, significantly decreased sizes of primary osteons' vascular canals and secondary osteons (p <0.05 were found in rabbits administered by quercetin. Our findings indicate that subchronic administration of quercetin at the dose used in our study had considerable impact on both qualitative and quantitative histological characteristics of the compact bone in adult male rabbits.

  16. Effects of intravenous administration of bone marrow stromal stem cells on cognitive impairment of the whole-brain irradiated rat models

    International Nuclear Information System (INIS)

    Objective: To explore the effect of intravenous infusion of bone marrow stromal stem cells(MSCs) on cognitive function of rats after whole brain irradiation. Methods: MSCs were isolated and cultured from adult rats. After Sprague-Dawly female rats were anaesthetized with chloral hydrate, their whole cerebrum was irradiated with a single dose of 20 Gy by 6 MV X-ray. Seven days after irradiation, 4 x 106 Hoechst33342-1abelled MSCs were intravenously injected into the tail vein of these rats. Four and 8 weeks after transplantation, the learning and memorizing ability was measured with the Y maze test. Immunohistochemical method was used to identify MSCs or ceils derived from MSCs in the brain. Results: The learning and memorizing ability of irradiation groups were significantly different from that of normal control group (P < 0.01). Significant improvement of cognitive impairment was observed in rats treated with MSCs at 4 and 8 weeks after transplantation as compared with the controll groups (P<0.05). This showed that the MSCs survived and were localized to the brain tissue. The number of Hoechst33342 immunohistofluorescence positive cells and double-immunostaining cells significantly decreased in 8 weeks group as compared with the 4 weeks group. Conclusion: Marrow stromal stem cells delivered to the irradiation brain tissue through intravenous route improve the cognitive impairment after whole brain irradiation. These cells may survive and differentiate in the brain tissue of irradiated rats. (authors)

  17. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    Koppen, A. van; Papazova, D.A.; Oosterhuis, N.R.; Gremmels, H.; Giles, R.H.; Fledderus, J.O.; Joles, J.A.; Verhaar, M.C.

    2015-01-01

    Introduction: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  18. Effects of Sangu Decoction on Osteoclast Activity in a Rat Model of Breast Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Bo Deng

    2012-01-01

    Full Text Available Bone metastasis (BM is a major clinical problem for which current treatments lack full efficacy. The Traditional Chinese Medicine (TCM Sangu Decoction (SGD has been widely used to treat BM in China. However, no in vivo experiments to date have investigated the effects of TCM on osteoclast activity in BM. In this study, the protective effect and probable mechanism of SGD were evaluated. The model was established using the breast cancer MRMT-1 cells injected into the tibia of rat. SGD was administrated, compared with Zoledronic acid as a positive control. The development of the bone tumor and osteoclast activity was monitored by radiological analysis. TRAP stain was used to identify osteoclasts quantity and activity. TRAP-5b in serum or bone tumor and TRAP mRNA were also quantified. Radiological examination showed that SGD inhibited tumor proliferation and preserved the cortical and trabecular bone structure. In addition, a dramatic reduction of TRAP positive osteoclasts was observed and TRAP-5b levels in serum and bone tumor decreased significantly. It also reduced the mRNA expression of TRAP. The results indicated that SGD exerted potent antiosteoclast property that could be directly related to its TRAP inhibited activity. In addition it prevented bone tumor proliferation in BM model.

  19. Comparison of histomorphometry and 85Sr uptake in induced heterotopic bone in rats

    International Nuclear Information System (INIS)

    Heterotopic bone formation in the abdominal muscle of 45 male 8-week-old Wistar rats induced by implantation of 5, 10, or 15 mg demineralized bone (DBM) powder was evaluated at 4 weeks by 85Sr uptake of the implants and area histomorphometry of the induced bone. Two indices of 85Sr uptake were calculated: the osteogenic index [(counts/min/mg implant)/(counts/min/mg os ilium)] and an index that we have called the osteoquantum index in which the weight of the implant is disregarded [(counts/min implant)/counts/min/mg os ilium)]. The osteoquantum index showed a linear relationship to the area of the induced bone with a correlation coefficient (r) of 0.90. Only weak linear relationships were found between the osteogenic index and the area of the bone (r = 0.32) and between the osteogenic index and the osteoquantum index (r = 0.33). The osteoquantum index and the area of the induced bone both increased with increasing mass of implanted DBM, whereas the osteogenic index did not change. (au)

  20. Comparison of histomorphometry and [sup 85]Sr uptake in induced heterotopic bone in rats

    Energy Technology Data Exchange (ETDEWEB)

    Solheim, E.; Pinholt, E.M. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1992-01-01

    Heterotopic bone formation in the abdominal muscle of 45 male 8-week-old Wistar rats induced by implantation of 5, 10, or 15 mg demineralized bone (DBM) powder was evaluated at 4 weeks by [sup 85]Sr uptake of the implants and area histomorphometry of the induced bone. Two indices of [sup 85]Sr uptake were calculated: the osteogenic index [(counts/min/mg implant)/(counts/min/mg os ilium)] and an index that we have called the osteoquantum index in which the weight of the implant is disregarded [(counts/min implant)/(counts/min/mg os ilium)]. The osteoquantum index showed a linear relationship to the area of the induced bone with a correlation coefficient (r) of 0.90. Only weak linear relationships were found between the osteogenic index and the area of the bone (r = 0.32) and between the osteogenic index and the osteoquantum index (r = 0.33). The osteoquantum index and the area of the induced bone both increased with increasing mass of implanted DBM, whereas the osteogenic index did not change. (au).

  1. Dose-dependent stimulation of bone induction by basic fibroblast growth factor in rats

    International Nuclear Information System (INIS)

    Implantation of demineralized bone matrix in rodents elicits a series of cellular events leading to the formation of new bone inside and adjacent to the implant. This process is believed to be initiated by an inductive protein present in bone matrix, and local growth factors may further regulate the process. We have previously shown that local application of recombinant human basic fibroblast growth factor (bFGF) in a carboxymethyl cellulose gel to demineralized bone matrix implants increases the bone yield as measured by calcium content 3 weeks after implantation in rats. We now report that this increase was seen at 3 and 4 weeks, but not earlier or later. Further, the stimulatory effect was seen with doses from 3 to 75 ng per implant. A dose of 0.6 or 380 ng did not increase the bone yield, and 1,900 ng had a marked inhibitory effect. This narrow dosage optimum may reflect the complex actions of the growth factor. (author)

  2. The effects of photobiomodulation on healing of bone defects in streptozotocin induced diabetic rats

    Science.gov (United States)

    Martinez Costa Lino, Maíra D.; Bastos de Carvalho, Fabíola; Ferreira Moraes, Michel; Augusto Cardoso, José; Pinheiro, Antônio L. B.; Maria Pedreira Ramalho, Luciana

    2011-03-01

    Previous studies have shown positive effects of Low level laser therapy (LLLT) on the repair of bone defects, but there are only a few that associates bone healing in the presence of a metabolic disorder as Diabetes Melitus and LLLT. The aim of this study was to assess histologically the effect of LLLT (AsGaAl), 780nm, 70mW, CW, Ø~0.4mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of diabetic and non-diabetic Wistar Albinus rats. Surgical bone defects were created in 60 animals divided into four groups of 15 animals each: Group C (non-diabetic - control); Group CL (non-diabetic + LLLT); Group CD (diabetic); Group CDL (diabetic + LLLT). The animals on the irradiated group received 16 J/cm2 per session divided into four points around the defect, being the first irradiation immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals, (diabetic and non-diabetic) compared to non irradiated ones. It is concluded that LLLT has a positive biomodulative effect on the healing process of bone defects, even when diabetes mellitus was present.

  3. Non-Bone Marrow Origin of Neointimal Smooth Muscle Cells in Experimental In-Stent Restenosis in Rats

    NARCIS (Netherlands)

    Groenewegen, Hendrik C.; Onuta, Geanina; Goris, Maaike; Zandvoort, Andre; Zijlstra, Felix; van Gilst, Wiek H.; Rozing, Jan; de Smet, Bart J. G. L.; Roks, Anton J. M.; Hillebrands, Jan-Luuk

    2008-01-01

    Objective: To determine the contribution of bone marrow (BM)-derived cells in in-stent restenosis (ISR) and transplant arteriosclerosis (TA). Methods: Non-transgenic rats WT F344(TG) (n = 3) received stent implantation 6 weeks after lethal total body irradiation and suppletion with bone marrow from

  4. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  5. Comparative study and histomorphometric analysis of bone allografts lyophilized and sterilized by autoclaving, gamma irradiation and ethylene oxide in rats

    OpenAIRE

    Otavio Machado de Almeida; Wanda Jorgetti; Denis Oksman; Camilo Jorgetti; Diógenes Laércio Rocha; Rolf Gemperli

    2013-01-01

    PURPOSE: To compare three sterilization methods (autoclave, gamma irradiation and ethylene oxide) over non demineralized lyophilized bone allografts. METHODS: Bone allografts were implanted on paravertebral muscles of 21 rats. After 30 days animals were sacrificed and grafts underwent comparative analysis regarding histomorphometric and macroscopic parameters. RESULTS: Allografts that underwent the three sterilization methods presents similar weight gain, cortical thickness similar to control...

  6. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185. ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  7. Constrained tibial vibration does not produce an anabolic bone response in adult mice.

    Science.gov (United States)

    Christiansen, Blaine A; Kotiya, Akhilesh A; Silva, Matthew J

    2009-10-01

    and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic. PMID:19576309

  8. Teriparatide Increases Bone Formation and Bone Mineral Density in Adult Women With Anorexia Nervosa

    Science.gov (United States)

    Wang, Irene S.; Miller, Karen K.; Herzog, David B.; Misra, Madhusmita; Lee, Hang; Finkelstein, Joel S.; Bouxsein, Mary L.; Klibanski, Anne

    2014-01-01

    Context: Anorexia nervosa (AN), a prevalent psychiatric disorder predominantly affecting women, is characterized by self-induced starvation and low body weight. Increased clinical fractures are common, and most women have low bone mineral density (BMD). Previously investigated treatments have led to no or modest increases in BMD in AN. Objective: Our objective was to investigate the effect of teriparatide (TPT; human PTH[1–34]), an anabolic agent, on low bone mass in women with AN. Design, Setting, and Patients: This randomized, placebo-controlled trial at a clinical research center included 21 women with AN: 10 (mean age ± SEM, 47 ± 2.7 years) treated with TPT and 11 (47.1 ± 2.3 years) treated with placebo. Interventions: TPT (20 μg SC) or placebo was administered for 6 months. Main Outcome Measures: Our primary outcome measure was change in BMD of the spine and hip by dual-energy x-ray absorptiometry. Secondary outcome measures included changes in serum N-terminal propeptide of type 1 procollagen (P1NP), C-terminal collagen cross-links, sclerostin, and IGF-1 levels. Results: At 6 months, spine BMD increased significantly more with TPT (posteroanterior spine, 6.0% ± 1.4%; lateral spine, 10.5% ± 2.5%) compared with placebo (posteroanterior spine, 0.2% ± 0.7%, P < .01; lateral spine, −0.6% ± 1.0%; P < .01). The results remained significant after controlling for baseline body mass index, P1NP, and IGF-1. Changes in femoral neck (P = .4) and total hip (P = 0.8) BMD were comparable in both groups, as were changes in weight. Serum P1NP levels increased after 3 months of TPT treatment and remained at this higher level at 6 months, whereas P1NP levels were unchanged in the placebo group (P = .02). TPT was well-tolerated by all subjects. Conclusions: This study demonstrates that TPT administration increases spine BMD substantially after only 6 months of therapy in women with AN. PMID:24456286

  9. A fase estrogênica altera a resposta do osso e do metabolismo mineral de ratas com hipertireoidismo? Does the estrogenic phase modify the bone and mineral metabolism response in rats under hyperthyroidism?

    Directory of Open Access Journals (Sweden)

    N.M. Ocarino

    2003-08-01

    Full Text Available The effect of the estrogenic phase in the bone and in the mineral metabolism was studied in Wistar adult female rats kept under euthyroidism or hyperthyroidism for 60 days. The rats were divided, according to the stage of the estrous cycle, into four groups: 1 euthyroid (proestrus-estrus, 2 euthyroid (metaestrus-diestrus, 3 hyperthyroid (proestrus-estrus, and 4 hyperthyroid (metaestrus-diestrus. After 60 days the blood plasma was collected and the concentrations of free T4, estradiol, progesterone, calcium, phosphorus, and of alkaline phosphatase were determined. The bones (femur and tibia were analysed microscopically. Despite of the functional state of the thyroid, the levels of estrogen were significantly higher in the proestrus-estrus. The estrogenic phase increased the plasmatic concentration of calcium significantly in the euthyroid rats but it did not alter the levels of phosphorus and alkaline phosphatase. In the hyperthyroid state no significant differences in the plasmatic concentrations of calcium, phosphorus and alkaline phosphatase throughout the cycle were found. The phases of the cycle did not also influence the bone morphology in the euthyroid and hyperthyroid states. It was concluded that the estrogenic phase increases the plasmatic concentration of calcium, even without altering the bone morphology of the euthyroid rats. In addition the estrogenic phase does not increase the plasmatic calcium and it does not modify the response of the bone as well as of the mineral metabolism under effect of the hyperthyroidism.

  10. Bone plasticity in response to exercise is sex-dependent in rats.

    Directory of Open Access Journals (Sweden)

    Wagner S Vicente

    Full Text Available PURPOSE: To characterize the potential sexual dimorphism of bone in response to exercise. METHODS: Young male and female Wistar rats were either submitted to 12 weeks of exercise or remained sedentary. The training load was adjusted at the mid-trial (week 6 by the maximal speed test. A mechanical test was performed to measure the maximal force, resilience, stiffness, and fracture load. The bone structure, formation, and resorption were obtained by histomorphometric analyses. Type I collagen (COL I mRNA expression and tartrate-resistant acid phosphatase (TRAP mRNA expression were evaluated by quantitative real-time PCR (qPCR. RESULTS: The male and female trained rats significantly improved their maximum speed during the maximal exercise test (main effect of training; p<0.0001. The male rats were significantly heavier than the females, irrespective of training (main effect of sex; p<0.0001. Similarly, both the weight and length of the femur were greater for the male rats when compared with the females (main effect of sex; p<0.0001 and p<0.0001, respectively. The trabecular volume was positively affected by exercise in male and female rats (main effect of training; p = 0.001, whereas the trabecular thickness, resilience, mineral apposition rate, and bone formation rate increased only in the trained males (within-sex comparison; p<0.05 for all parameters, demonstrating the sexual dimorphism in response to exercise. Accordingly, the number of osteocytes increased significantly only in the trained males (within-sex comparison; p<0.05. Pearson's correlation analyses revealed that the COL I mRNA expression and TRAP mRNA expression were positively and negatively, respectively, related to the parameters of bone remodeling obtained from the histomorphometric analysis (r = 0.59 to 0.85; p<0.05. CONCLUSION: Exercise yielded differential adaptations with respect to bone structure, biomechanical proprieties, and molecular signaling in male and female

  11. Acceptability of bone antiresorptive therapy among HIV-infected adults at different stages of antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Taras J

    2014-09-01

    Full Text Available Jillian Taras,1 Gordon Arbess,1,2 James Owen,1,2 Charlie B Guiang,1,2 Darrell H S Tan1,3 1Faculty of Medicine, University of Toronto, Toronto, ON, Canada; 2Department of Family Medicine, St Michael’s Hospital, Toronto, ON, Canada; 3Division of Infectious Diseases, St Michael’s Hospital, Toronto, ON, Canada Purpose: Both HIV infection and antiretroviral therapy (ART are associated with ­significant decreases in bone mineral density (BMD and increased fracture rates. To prepare for a randomized controlled trial of prophylactic bone antiresorptive therapy during ART initiation, we assessed the acceptability of this strategy, bone health knowledge, and fracture risk among HIV-infected adults.Methods: HIV-infected adults with no history of osteoporosis were recruited from one tertiary and one primary care HIV clinic. Participants completed a questionnaire and underwent chart review. The primary outcome was the proportion of respondents expressing interest in taking prophylactic bone antiresorptive therapy in conjunction with ART.Results: Of 112 respondents, 25.0% were ART naïve, 23.2% had been taking ART for ≤1 year, and 51.8% had been taking ART for >1 year. Half (51.9% indicated interest in taking short-course prophylactic bone antiresorptive therapy; this did not differ by ART status (53.6% among ART-naïve, 51.3% among ART-treated; P=0.84, chi-square test. In exploratory multivariable analysis adjusted for ART status, a greater number of pills taken per day was positively associated with this outcome (adjusted odds ratio [OR] =1.12 per pill, 95% confidence limit [CL] =1.01, 1.25, while male sex was inversely associated (adjusted OR =0.05, 95% CL =0.01, 0.24. Among those willing to take therapy, most (80.4% were willing to do so for “as long as needed” and preferred weekly dosing (70.9% to daily dosing (12.7%.Conclusions: Half of this sample would be willing to take bone antiresorptive therapy together with ART, with preferences

  12. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats

    Institute of Scientific and Technical Information of China (English)

    Li YOU; Zheng-yan SHENG; Chuan-ling TANG; Lin CHEN; Ling PAN; Jin-yu CHEN

    2011-01-01

    To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats.Methods:Female Sprague-Dawley rats were randomly separated into 3 groups:(1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food,3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet.Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry.Serum levels of oestradiol (E2),osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA.Gene expression profile was determined with microarray.Mouse osteoblast cells (MC3T3-E1) were used for in vitro study.Proliferation,differentiation and oxidative stress of the osteoblasts were investigated using MTT,qRT-PCR and biochemical methods.Results:In high cholesterol fed rats,the femur BMD and serum BGP level were significantly reduced,while the CTX level was significantly increased.DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats.Of these genes,1626 were also down-regulated and 1466 were up-regulated in OVX rats.In total,370 genes were up-regulated in both groups,and 976 genes were down-regulated.Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways.The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions.Treatment of MC3T3-E1 cells with cholesterol (12.5-50μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner.The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1,and increased the oxidative injury in MC3T3-E1 cells.Conclusion:The results suggest a close

  13. No demonstrable accumulation of 14C-vitamin D3 in developing rat teeth and bones

    International Nuclear Information System (INIS)

    The distribution of 14C-vitamin Da administered subcutaneously in arachidic oil 6-day-old suckling rats has been examined autoradiographically. The animals were sacrificed 1,2,4 and 8 days after injection. The autoradiographic exposure time was 4 months. The sectioning and exposure was performed in a freeze-room. Radioactivity was found mainly in the liver, kidney, intestines and fat depots. Np uptake was found in developing teeth or bones. (Auth.)

  14. Fermented soybeans by Rhizopus oligosporus reduce femoral bone loss in ovariectomized rats

    OpenAIRE

    Yoo, Hyun-Wook; Chang, Moon-Jeong; Kim, Sun-Hee

    2014-01-01

    BACKGROUND/OBJECTIVES Soy isoflavones are structurally similar to estrogen and bind to estrogen receptors, suggesting that they exhibit estrogenic activities; therefore, they are referred to as phytoestrogens. Fermentation may affect the bioavailability of isoflavones altering soy isoflavone glycosides in the form of aglycones. Thus, this study investigated the effects of fermented soybeans by Rhizopus oligosporus on bone metabolism in both young rats as a pilot test and in ovariectomized (ov...

  15. Benefits of omega-3 fatty acid against bone changes in salt-loaded rats: possible role of kidney

    OpenAIRE

    Ahmed, Mona A.; Abd EL Samad, Abeer A

    2013-01-01

    There is evidence that dietary fats are important components contributing in bone health and that bone mineral density is inversely related to sodium intake. Salt loading is also known to impose negative effects on renal function. The present study aimed to determine the effect of the polyunsaturated fatty acid omega-3 on bone changes imposed by salt loading, highlighting the role of kidney as a potential mechanism involved in this effect. Male Wistar rats were divided into three groups: cont...

  16. Short-term aluminum administration in the rat. Effects on bone formation and relationship to renal osteomalacia.

    OpenAIRE

    Goodman, W G; Gilligan, J; Horst, R.

    1984-01-01

    Aluminum may be pathogenic in the osteomalacia observed in some patients receiving hemodialysis. To study the early effects of Al on bone growth, bone formation, mineralization, and resorption were measured during short-term Al exposure in the tibial cortex of pair-fed control (C, n = 10), aluminum-treated (AL, n = 9), subtotally nephrectomized control (NX-C, n = 7), and subtotally nephrectomized aluminum-treated (NX-AL, n = 8) rats using double tetracycline labeling of bone. Animals received...

  17. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    Directory of Open Access Journals (Sweden)

    Nina Kølln Wittig

    2016-06-01

    Full Text Available Modeling and remodeling induce significant changes of bone structure and mechanical properties with age. Therefore, it is important to gain knowledge of the processes taking place in bone over time. The rat is a widely used animal model, where much data has been accumulated on age-related changes of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte lacunar properties in rat cortical bone. Femora of 14 to 42-week-old female Wistar rats were investigated using multiple complementary techniques including X-ray micro-computed tomography and biomechanical testing. The body weight, femoral length, aBMD, load to fracture, tissue volume, bone volume, and tissue density were found to increase rapidly with age at 14–30 weeks. At the age of 30–42 weeks, the growth rate appeared to decrease. However, no accompanying changes were found in osteocyte lacunar properties such as lacunar volume, ellipsoidal radii, lacunar stretch, lacunar oblateness, or lacunar orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties of the osteocyte lacunar network are main determinants of the properties of the bone on larger length scales.

  18. In vivo imaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography

    Science.gov (United States)

    Pratt, I. V.; Belev, G.; Zhu, N.; Chapman, L. D.; Cooper, D. M. L.

    2015-01-01

    Cortical bone is a dynamic tissue which undergoes adaptive and pathological changes throughout life. Direct longitudinal tracking of this remodeling process holds great promise for improving our understanding of bone development, maintenance and senescence. The application of in vivo micro-computed tomography (micro-CT) has enabled longitudinal tracking of trabecular bone microarchitecture with commercially available scanners generally operating in the 10-20 µm voxel range with absorbed doses reported between 0.5 and 1 Gy. Imaging of cortical bone microarchitecture (porosity) requires higher resolution and thus in vivo imaging of these structures has not been achieved due to excessive radiation dose. In this study we tested the hypothesis that synchrotron propagation phase contrast micro-CT can enable in vivo imaging of cortical porosity in rats at doses comparable to those currently employed for trabecular bone imaging. Synchrotron imaging experiments were conducted at the Canadian Light Source using the bending magnet beamline of the BioMedical Imaging and Therapy (BMIT) facility. Protocol optimization (propagation distance, projection number) was conducted ex vivo on rat (Sprague-Dawley) forelimbs with dose determined by ion chamber and lithium fluoride crystal thermoluminescent dosimeters. Comparative ex vivo imaging was performed using laboratory in vivo scanning systems, identifying a range of doses between 1.2-3.6 Gy for common protocols. A final in vivo synchrotron protocol involving a 2.5 Gy dose was implemented with live rats. The resulting images demonstrated improved delineation of cortical porosity through the improved edge enhancement effect of phase contrast, opening the door to novel experimental studies involving the longitudinal tracking of remodeling.

  19. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  20. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina;

    2004-01-01

    Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone form...

  1. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

    Science.gov (United States)

    Hu, Ming-Hsien; Lee, Pei-Yuan; Chen, Wen-Cheng; Hu, Jin-Jia

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion. PMID

  2. Delayed SCE frequency of rat bone marrow cells after radon inhalation

    International Nuclear Information System (INIS)

    Cytogenetic tests can reflect in vivo cellular modifications during development of induced neoplasic lesions. These last years, a new experimental in vivo cytogenetic test has been widely developed: Sister chromatid exchanges (SCE) especially on bone marrow cells. This study establishes the relationships between SCE in the bone marrow of rat and post exposure time following whole body neutron irradiation and radon inhalation. From the observed data a two stages response is pointed out. The first stage is thought to correspond to direct DNA damage and is characterized by a short term increase of bone marrow SCE followed by a rapid decrease up to the control values. The second one is marked by a delayed increase of SCE followed by a plateau significantly higher than the control values. From neutron radon exposure and from previously observed data this second stage strongly suggests a modification of the whole organism induced by 'mutagen/carcinogen' modified target organs

  3. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    OpenAIRE

    Gao Shu-guang; Cheng Ling; Li Kang-hua; Liu Wen-He; Xu Mai; Jiang Wei; Wei Li-Cheng; Zhang Fang-jie; Xiao Wen-feng; Xiong Yi-lin; Tian Jian; Zeng Chao; Sun Jin-peng; Xie Qiang; Lei Guang-hua

    2012-01-01

    Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smo...

  4. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  5. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate.

    Science.gov (United States)

    Wohl, Gregory R; Chettle, David R; Pejović-Milić, Ana; Druchok, Cheryl; Webber, Colin E; Adachi, Jonathan D; Beattie, Karen A

    2013-01-01

    Strontium ranelate is an approved pharmacotherapy for osteoporosis in Europe and Australia, but not in Canada or the United States. Strontium citrate, an alternative strontium salt, however, is available for purchase over-the-counter as a nutritional supplement. The effects of strontium citrate on bone are largely unknown. The study's objectives were 1) to quantify bone strontium accumulation in female Sprague Dawley rats administered strontium citrate (N=7) and compare these levels to rats administered strontium ranelate (N=6) and vehicle (N=6) over 8 weeks, and 2) to verify an in vivo X-ray fluorescence spectroscopy (XRF) system for measurement of bone strontium in the rat. Daily doses of strontium citrate and strontium ranelate were determined with the intention to achieve equivalent amounts of elemental strontium. However, post-hoc analyses of each strontium compound conducted using energy dispersive spectrometry microanalysis revealed a higher elemental strontium concentration in strontium citrate than strontium ranelate. Bone strontium levels were measured at baseline and 8 weeks follow-up using a unique in vivo XRF technique previously used in humans. XRF measurements were validated against ex vivo measurements of bone strontium using inductively coupled plasma mass spectrometry. Weight gain in rats in all three groups was equivalent over the study duration. A two-way ANOVA was conducted to compare bone strontium levels amongst the three groups. Bone strontium levels in rats administered strontium citrate were significantly greater (p<0.05) than rats administered strontium ranelate and vehicle. ANCOVA analyses were performed with Sr dose as a covariate to account for differences in strontium dosing. The ANCOVA revealed differences in bone strontium levels between the strontium groups were not significant, but that bone strontium levels were still very significantly greater than vehicle. PMID:22995463

  6. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  7. Bone Geometry, Volumetric Density, Microarchitecture, and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients With Type 1 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Frost, Morten;

    2015-01-01

    The primary goal of this cross-sectional in vivo study was to assess peripheral bone microarchitecture, bone strength, and bone remodeling in adult type 1 diabetes (T1D) patients with and without diabetic microvascular disease (MVD+ and MVD-, respectively) and to compare them with age-, gender......-, and height-matched healthy control subjects (CoMVD+ and CoMVD-, respectively). The secondary goal was to assess differences in MVD- and MVD+ patients. Fifty-five patients with T1DM (MVD+ group: n = 29) were recruited from the Funen Diabetes Database. Dual-energy X-ray absorptiometry (DXA), high...

  8. Multi-generational drinking of bottled low mineral water impairs bone quality in female rats.

    Directory of Open Access Journals (Sweden)

    Zhiqun Qiu

    Full Text Available Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse.To elucidate the skeletal effects of multi-generational bottled water drinking in female rats.Rats continuously drank tap water (TW, bottled natural water (bNW, bottled mineralized water (bMW, or bottled purified water (bPW for three generations.The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group.Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model.

  9. Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats.

    Science.gov (United States)

    Cui, Zhuang; Xu, Changpeng; Li, Xue; Song, Jinqi; Yu, Bin

    2015-05-01

    Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular

  10. Beneficial effects of autologous bone marrow mononuclear cell transplantation against ischemic bile duct in rats

    Institute of Scientific and Technical Information of China (English)

    LI Li-xin; CHEN DA-zhi; HE Qiang

    2011-01-01

    Background Bone marrow cell transplantation has been shown to induce angiogenesis and thus improve ischemic disease.This study evaluated the effect of bone marrow mononuclear cell (BM-MNCs) implantation on neovascularization in rats with ischemic bile duct.Methods We established an animal model for ischemic biliary stenosis by clamping manipulation.There were 10 rats in each group:BM-MNCs implantation group,control group and normal group.Rat femur BM-MNCs were isolated using density gradient centrifugation.BM-MNCs or phosphate buffered saline were injected into three points around bile duct tissue in the three groups (25 μl/point).Control rats received injections of saline under similar conditions.At the 21 days after operation,cholangiography was performed.Differentiation of the engrafted cells and capillary density in the bile duct were analyzed by immunohistochemical staining.Results Engrafted cells could differentiate into endothelial cells.The stricture rate in the implantation group was 40%,significantly lower than that in the control group (100%).The capillary density in the implantation group was significantly higher than in the control group or the normal group.Conclusions The implantation of BM-MNCs induced neovascularization in the ischemic bile duct.It improved the blood supply of the ischemic bile duct to prevent or decrease biliary ischemic stricture.

  11. Comparison of the Effect of Vitamin K2 and Risedronate on Trabecular Bone in Glucocorticoid-Treated Rats: A Bone Histomorphometry Study

    OpenAIRE

    Iwamoto, Jun; Matsumoto, Hideo; Tadeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K.

    2009-01-01

    Purpose To compare the effect of vitamin K2 and risedronate on trabecular bone in glucocorticoid (GC)-treated rats. Materials and Methods Forty-eight Sprague-Dawley female rats, 3 months of age, were randomized by the stratified weight method into 5 groups according to the following treatment schedule: age-matched control, GC administration, and GC administration with concomitant administration of vitamin K2, risedronate, or vitamin K2 + risedronate. GC (methylprednisolone sodium succinate, 5...

  12. Modulation of Radiation Injury in Pregnant Rats by Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    This Work aims to point out the influence of bone marrow transplantation (BMT) in protection of irradiated pregnant rats and suppression of oxidative stress. BMT was administered to rats, 1 h post gamma irradiation at the dose level of 2 Gy given at the 7th or 14th day of gestation. Rats were examined after 20 days from gestation to detect the physiological parameters of the mother and number of implantation sites and resorption as well as length of foetuses and tails. Pregnant rats irradiated at the 7th and 14th day of gestation showed reduction in live foetuses and length of foetuses and their tails and significant decrease in erythrocytes (RBCs), leucocytes (WBCs), haemoglobin content (Hb), and hematocrit percentage (Ht). Irradiation-induced an elevation in aldosterone and a drop in calcium (Ca). Glutathione levels showed significant decreases in blood while the content of serum thiobarbituric acid reactive substance (TBARS) showed significant increases. Lipid profile exhibited an increase in the concentrations of total cholesterol (TC), triglycerides (TG) and low lipoproteins cholesterol (LDL-C) with a significant decrease in high lipoproteins cholesterol (HDL-C) in both groups. BMT to irradiated pregnant rats induced significant amelioration in radiation- induced changes. BMT was shown to be effective in reducing physiological disorders and oxidative stress in pregnant rats reflected on minimizing embryonic injuries

  13. Bone marrow stromal cells inhibits HMGB1-mediated inflammation after stroke in type 2 diabetic rats.

    Science.gov (United States)

    Hu, J; Liu, B; Zhao, Q; Jin, P; Hua, F; Zhang, Z; Liu, Y; Zan, K; Cui, G; Ye, X

    2016-06-01

    High-mobility group box 1 (HMGB1), a ligand of receptor for advanced glycation endproducts (RAGE), functions as a proinflammatory factor. It is mainly involved in inflammatory activation and contributes to the initiation and progression of stroke. By using a model of transient middle cerebral artery occlusion (MCAo) in type 2 diabetic rats, we investigated the changes of pro-inflammation mediators, blood-brain barrier (BBB) leakage and functional outcome after stroke. Type 2 diabetic rats did not show an increased lesion volume, but exhibited significantly increased expression of HMGB1 and RAGE, BBB leakage, as well as decreased functional outcome after stroke compared with control rats. Injection of bone marrow stromal cells (BMSCs) into type 2 diabetic rats significantly reduced the expression of HMGB1 and RAGE, attenuated BBB leakage, and improved functional outcome after stroke. BMSCs-treated type 2 diabetic rats inhibited inflammation and improved functional outcome after stroke. Furthermore, in vitro data support the hypothesis that BMSCs-induced reduction of HMGB1 and RAGE in T2DM-MCAo rats contributed to attenuated inflammatory response in the ischemic brain, which may lead to the beneficial effects of BMSCs treatment. Further investigation of BMSCs treatment in type 2 diabetic stroke is warranted. PMID:26946264

  14. Validation of adult height prediction based on automated bone age determination in the Paris Longitudinal Study of healthy children

    International Nuclear Information System (INIS)

    An adult height prediction model based on automated determination of bone age was developed and validated in two studies from Zurich, Switzerland. Varied living conditions and genetic backgrounds might make the model less accurate. To validate the adult height prediction model on children from another geographical location. We included 51 boys and 58 girls from the Paris Longitudinal Study of children born 1953 to 1958. Radiographs were obtained once or twice a year in these children from birth to age 18. Bone age was determined using the BoneXpert method. Radiographs in children with bone age greater than 6 years were considered, in total 1,124 images. The root mean square deviation between the predicted and the observed adult height was 2.8 cm for boys in the bone age range 6-15 years and 3.1 cm for girls in the bone age range 6-13 years. The bias (the average signed difference) was zero, except for girls below bone age 12, where the predictions were 0.8 cm too low. The accuracy of the BoneXpert method in terms of root mean square error was as predicted by the model, i.e. in line with what was observed in the Zurich studies. (orig.)

  15. Validation of adult height prediction based on automated bone age determination in the Paris Longitudinal Study of healthy children

    Energy Technology Data Exchange (ETDEWEB)

    Martin, David D. [Tuebingen University Children' s Hospital, Tuebingen (Germany); Filderklinik, Filderstadt (Germany); Schittenhelm, Jan [Tuebingen University Children' s Hospital, Tuebingen (Germany); Thodberg, Hans Henrik [Visiana, Holte (Denmark)

    2016-02-15

    An adult height prediction model based on automated determination of bone age was developed and validated in two studies from Zurich, Switzerland. Varied living conditions and genetic backgrounds might make the model less accurate. To validate the adult height prediction model on children from another geographical location. We included 51 boys and 58 girls from the Paris Longitudinal Study of children born 1953 to 1958. Radiographs were obtained once or twice a year in these children from birth to age 18. Bone age was determined using the BoneXpert method. Radiographs in children with bone age greater than 6 years were considered, in total 1,124 images. The root mean square deviation between the predicted and the observed adult height was 2.8 cm for boys in the bone age range 6-15 years and 3.1 cm for girls in the bone age range 6-13 years. The bias (the average signed difference) was zero, except for girls below bone age 12, where the predictions were 0.8 cm too low. The accuracy of the BoneXpert method in terms of root mean square error was as predicted by the model, i.e. in line with what was observed in the Zurich studies. (orig.)

  16. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    Directory of Open Access Journals (Sweden)

    Hu Y

    2013-10-01

    Full Text Available Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC transplantation in preventing loss of visual function in aged rats with glaucoma caused by laser-induced ocular hypertension. We found that BMSCs promoted survival of retinal ganglion cells in the transplanted eye as compared with the control eye. Further, in swimming tests guided by visual cues, the rats with a BMSC transplant performed significantly better. We believe that BMSC transplantation therapy is effective in treating aged rats with glaucoma. Keywords: glaucoma, stem cell, transplantation, cell therapy, aging

  17. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Lee, Kang Kyoo [Dept. of Radiation Oncology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-03-15

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  18. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    International Nuclear Information System (INIS)

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  19. Adolescent male rats exposed to social defeat exhibit altered anxiety behavior and limbic monoamines as adults

    OpenAIRE

    Watt, Michael J.; Burke, Andrew R.; Renner, Kenneth J.; Forster, Gina L.

    2009-01-01

    Social stress in adolescence is correlated with emergence of psychopathologies during early adulthood. In this study, we investigated the impact of social defeat stress during mid-adolescence on adult male brain and behavior. Adolescent male Sprague-Dawley rats were exposed to repeated social defeat for five days while controls were placed into a novel empty cage. When exposed to defeat-associated cues as adults, previously defeated rats showed increased risk assessment and behavioral inhibit...

  20. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  1. TAHU MENGHAMBAT KEHILANGAN TULANG LUMBAR TIKUS BETINA OVARIEKTOMI [Tofu Attenuates Lumbar Bone Loss of Ovariectomized Female Rats

    Directory of Open Access Journals (Sweden)

    Suyanto Pawiroharsono 4

    2002-12-01

    Full Text Available The objectives of this research were to examine the efeects of feed containing soybean tofu and tempeh on lumbar bone density and mass of ovariectomized female rats. Twenty four 17 weeks-old Sprague-Dawley rats were randomly assigned to four group, i.e.: (1 non-ovariectomized rats fed casein based diet (NonOvx, (2 ovariectomized rats fed casein based diet (OvxC, (3 ovariectomized rats fed diet containing soybean tofu (OvxH, and (4 ovariectomized rats fed diet containing soybean tempeh (OvxT; in three block based on their body weight. The result show that body weight gram of ovariectomized rats was greater than nonovariectomized. Ovariectomy caused atrophy of the uterus, and resulted in higher serum calcium level. The lower lumbar vertebrae density of ovariectomized rats was observed and the decrease was prevented by tofu.

  2. Topical Treatment with Xiaozheng Zhitong Paste (XZP) Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    OpenAIRE

    Yanju Bao; Yebo Gao; Maobo Du; Wei Hou; Liping Yang; Xiangying Kong; Honggang Zheng; Weidong Li; Baojin Hua

    2015-01-01

    To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo gr...

  3. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain

    Directory of Open Access Journals (Sweden)

    Zheng Qin

    2012-04-01

    Full Text Available Abstract Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1 depolarized resting membrane potential (RMP; 2 decreased input resistance (Rin; 3 a marked reduction in current threshold (CT and voltage threshold (TP of action potential (AP; 4 a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP; and 5 a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone

  4. Mechanical and structural properties of bone in non-critical and critical healing in rat.

    Science.gov (United States)

    Hoerth, Rebecca M; Seidt, Britta M; Shah, Miheer; Schwarz, Carolin; Willie, Bettina M; Duda, Georg N; Fratzl, Peter; Wagermaier, Wolfgang

    2014-09-01

    A fracture in bone results in a dramatic change of mechanical loading conditions at the site of injury. Usually, bone injuries heal normally but with increasing fracture gaps, healing is retarded, eventually leading to non-unions. The clinical situation of these two processes with different outcomes is well described. However, the exact relation between the mechanical environment and characteristics of the tissues at all levels of structural hierarchy remains unclear. Here we studied the differences in material formation of non-critical (1mm) and critical (5mm gap) healing. We employed a rat osteotomy model to explore bone material structure depending upon the different mechanical conditions. In both cases, primary bone formation was followed by secondary bone deposition with mineral particle sizes changing from on average short and thick to long and thin particles. Bony bridging occurred at first in the endosteal callus and the nanostructure and microstructure developed towards cortical ordered material organization. In contrast, in critical healing, instead of bridging, a marrow cavity closure was formed endosteal, exhibiting tissue structure oriented along the curvature and a periosteal callus with less mature material structure. The two healing processes separated between 4 and 6 weeks post-osteotomy. The outcome of healing was determined by the varied geometrical conditions in critical and non-critical healing, inducing completely different mechanical situations. PMID:24929204

  5. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments. PMID:24170339

  6. Effect of x-irradiation upon the fate of cancellous bone allografts in inbred rats

    International Nuclear Information System (INIS)

    The effect of two doses of x-irradiation upon the osteogenesis in isografts or allografts of cancellous bone has been studied. Exposure of rats of 500 rads of x-irradiation caused a transient depression in osteogenesis in the skeleton. This depression was more marked, however, after 600 rads of x-ray. Five hundred rads of x-ray had no effect upon the level of osteogenesis in isografts 2 weeks after grafting, but did depress new bone formation in 3-week-old grafts. The higher dose of x-rays caused a more profound depression in new bone formation at both 2 and 3 weeks. Both 500 rads and 600 rads of x-ray had little effect upon the degree of first phase osteogenesis in H-1 disparate allografts. However, there was some improvement in late phase new bone formation in recipients treated with 600 rads. Both doses of x-rays markedly improved the amount of first phase osteogenesis in H-1 identical allografts. There was also a significant improvement in the new bone formation in grafts in the second phase. The significance of these findings is discussed

  7. Evaluation of injectable constructs for bone repair with a subperiosteal cranial model in the rat.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available While testing regenerative medicine strategies, the use of animal models that match the research questions and that are related to clinical translation is crucial. During the initial stage of evaluating new strategies for bone repair, the main goal is to state whether the strategies efficiently induce the formation of new bone tissue at an orthotopic site. Here, we present a subperiosteal model in rat calvaria that allow the evaluation of a broad range of approaches including bone augmentation, replacement and regeneration. The model is a fast to perform, minimally invasive, and has clearly defined control groups. The procedure enables to evaluate the outcomes quantitatively using micro-computed tomography and qualitatively by histology and immunohistochemistry. We established this new model, using bone morphogenetic protein-2 as an osteoinductive factor and hyaluronic acid hydrogel as injectable biomaterial. We showed that this subperiosteal cranial model offers a minimally invasive and promising solution for a rapid initial evaluation of injectables for bone repair. We believe that this approach could be a powerful platform for orthopedic research and regenerative medicine.

  8. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    Science.gov (United States)

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc. PMID:8148671

  9. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M.-C.; Thomsen, J. S.; Nyengaard, J. R.;

    2014-01-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind......BMD, -13%, P<0.001), trabecular bone volume (BV/TV, -26%, P<0.05), and mid-femoral bone strength (-12%, P<0.05). In addition, BTX reduced rectus femoris muscle mass (-69%, P<0.001) and muscle cell cross sectional area (CSA) (-73%, P<0.001) compared with controls. GH counteracted disuse-induced losses of...... periosteal BFR/BS (2-fold increase vs. BTX, P<0.001), whereas no effect on aBMD, trabecular BV/TV, or bone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse...

  10. Encapsulated Whole Bone Marrow Cells Improve Survival in Wistar Rats after 90% Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Carolina Uribe-Cruz

    2016-01-01

    Full Text Available Background and Aims. The use of bone marrow cells has been suggested as an alternative treatment for acute liver failure. In this study, we investigate the effect of encapsulated whole bone marrow cells in a liver failure model. Methods. Encapsulated cells or empty capsules were implanted in rats submitted to 90% partial hepatectomy. The survival rate was assessed. Another group was euthanized at 6, 12, 24, 48, and 72 hours after hepatectomy to study expression of cytokines and growth factors. Results. Whole bone marrow group showed a higher than 10 days survival rate compared to empty capsules group. Gene expression related to early phase of liver regeneration at 6 hours after hepatectomy was decreased in encapsulated cells group, whereas genes related to regeneration were increased at 12, 24, and 48 hours. Whole bone marrow group showed lower regeneration rate at 72 hours and higher expression and activity of caspase 3. In contrast, lysosomal-β-glucuronidase activity was elevated in empty capsules group. Conclusions. The results show that encapsulated whole bone marrow cells reduce the expression of genes involved in liver regeneration and increase those responsible for ending hepatocyte division. In addition, these cells favor apoptotic cell death and decrease necrosis, thus increasing survival.

  11. Hematopoiesis Stimulating Role of IL-12 Enabling Bone Marrow Transplantation in Irradiated Rats

    International Nuclear Information System (INIS)

    Severe myelosuppression is a common side effect of radiotherapy or chemotherapy. As a mean to stimulate the full-lineage blood cell recovery from severe myelosuppression, sublethally irradiated animals were used to evaluate immunological effect of interleukin IL-12 in bone marrow transplanted animals. Isologous bone marrow (BM), from the same inbred strain, were given to male rats, 1 hour post whole body gamma irradiation at a single dose level of 5 Gy and subcutaneous injection of 100 ng/ml IL-12. Irradiation induced a significant drop in haematological values, blood glutathione(GSH) as well as bone marrow viability associated with a significant elevation of serum malondialdehyde (MDA). Related to immunological data, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) also recorded a significant depression. Irradiated animals receiving BM and IL-12 showed significantly elevated body and spleen weights, erythrocytes count (RBCs), hemoglobin content (Hb) and hemotocrit value (Hct %) besides, white blood cells (WBCs)and its differential count, as well as GSH, while MDA was significantly depressed as compared to the irradiated group. Bone marrow viability was significantly increased while IL-6 and TNF-α were normalized. The curative action of IL-12 enforcing significant innate response could trigger and augment adaptive immune response by bone marrow transplantation, hence improving oxidative stress. IL-12 administration is proposed as a complementary strategy to treat radiation-induced path-physiology and trapping free radicals accumulations after irradiation.

  12. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yue, E-mail: 373073766@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Ren, Ling, E-mail: lren@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Liu, Chang, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yuan, Yajiang, E-mail: yuan925@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Lin, Xiao, E-mail: linx@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Chen, Shurui, E-mail: 272146792@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Mei, Xifan, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China)

    2013-10-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis.

  13. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  14. Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland

    DEFF Research Database (Denmark)

    Shatos, Marie A; Haugaard-Kedstrom, Linda; Hodges, Robin R;

    2012-01-01

    PURPOSE: The purpose of this study was to investigate the presence of progenitor cells in the uninjured, adult rat lacrimal gland (LG). METHODS: The presence of progenitor cells was examined in LG sections from male rats using antibodies against selected stem cell markers and α-smooth muscle actin...

  15. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    OpenAIRE

    Bond, S. M.; Cervero, F; McQueen, D S

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaest...

  16. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats

    OpenAIRE

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J. Michael

    2010-01-01

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). I...

  17. Pediatric and adult MRI atlas of bone marrow. Normal appearances, variants and diffuse disease states

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, Hakan; Sundaram, Murali [Cleveland Clinic Lerner College of Medicine, OH (United States); Cleveland Clinic Department of Radiology, OH (United States)

    2016-08-01

    This comprehensive atlas is unique in being devoted to the MRI appearances of bone marrow in the axial and appendicular skeleton of adults and children. Normal MRI findings, including common variants and degenerative changes, are first documented. MRI appearances in the entire spectrum of neoplastic and non-neoplastic infiltrative marrow disorders are then presented, with accompanying explanatory text. Among the conditions considered are multiple myeloma, the acute and chronic leukemias, diffuse metastases, diffuse lymphomas, the anemias, polycythemia vera, myelofibrosis, storage disorders, and infections. Characteristic changes to bone marrow following various forms of treatment are also displayed and discussed. The selected images reflect the use of a variety of sequences and techniques, such as fat suppression, and contrast-enhanced imaging.

  18. Pediatric and adult MRI atlas of bone marrow. Normal appearances, variants and diffuse disease states

    International Nuclear Information System (INIS)

    This comprehensive atlas is unique in being devoted to the MRI appearances of bone marrow in the axial and appendicular skeleton of adults and children. Normal MRI findings, including common variants and degenerative changes, are first documented. MRI appearances in the entire spectrum of neoplastic and non-neoplastic infiltrative marrow disorders are then presented, with accompanying explanatory text. Among the conditions considered are multiple myeloma, the acute and chronic leukemias, diffuse metastases, diffuse lymphomas, the anemias, polycythemia vera, myelofibrosis, storage disorders, and infections. Characteristic changes to bone marrow following various forms of treatment are also displayed and discussed. The selected images reflect the use of a variety of sequences and techniques, such as fat suppression, and contrast-enhanced imaging.

  19. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Science.gov (United States)

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  20. EFFECTS OF XW630 ON BONE FORMATION IN OVARIECTOMIZED RATS AND IN HUMAN OSTEOBLAST-LIKE CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To study the effects of XW630 on bone formation in overiectomized(OVX) rats and in human osteoblast-like cell line TE85.Method. Bone histomorphometric analysis was performed with undecalcified bone sections and tetracycline intraperitoneally labeling.Results. Compared with that of OVX rats, the static data of trabecular bone volume(TBV)/ total tissue volume(TTV), TBV/sponge bone volume(SBV) and mean trabecular plate density (MTPD) were enhanced while mean trabecular plate spacing(MTPS) decreased after treated with XW630 for 13w. The dynamic data of single-labeled surface [Sfract(s)], double-labeled surface[Sfract(d)],Sfract(d+1/2s),trabecular osteoid surface(TOS), and bone formation rate in tissue level (Svf) were increased and osteoid maturation period (OMP) shortened in XW630 group. In osteoblast-like cells, both 3H-thymidine incorporation and cell count increased after treated with XW630 for 48. Treated with XW630 for 12~18h,inducible nitric oxide synthase(iNOS) activity and cGMP content increased in time-dependent manners.Conclusions. XW630 enhanced bone activation frequency and increased trabecular connectivity, stability, and strength. The cellular mechanism related to effects of XW630 on bone formation in ovariectomized rats.

  1. The bisphosphonate zoledronate prevents vertebral bone loss in mature estrogen-deficient rats as assessed by micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Glatt M.

    2001-01-01

    Full Text Available The effect of long-term treatment with the bisphosphonate zoledronate on vertebral bone architecture was investigated in estrogen-deficient mature rats. 4-month-old rats were ovariectomized and development of cancellous osteopenia was assessed after 1 year. The change of bone architectural parameters was determined with a microtomographic instrument of high resolution. After 1 year of estrogen-deficiency, animals lost 55% of vertebral trabecular bone in comparison to sham operated control animals. Trabecular number (Tb.N and trabecular thickness (Tb.Th were significantly reduced in ovariectomized animals, whereas trabecular separation (Tb.Sp, bone surface to volume fraction (BS/BV and trabecular bone pattern factor (TBPf were significantly increased, indicating a loss of architectural integrity throughout the vertebral body. 3 groups of animals were treated subcutaneously with zoledronate for 1 year with 0.3, 1.5 and 7.5 microgram/kg/week to inhibit osteoclastic bone degradation. Administration started immediately after ovariectomy and treatment dose-dependently prevented the architectural bone deterioration and completely suppressed the effects of estrogen deficiency at the higher doses. The results show that microtomographic determination of static morphometric parameters can be used to quantitate the effects of drugs on vertebral bone architecture in small laboratory animals and that zoledronate is highly effective in this rat model.

  2. The effect of dietary administration of 2-oxoglutaric acid on the cartilage and bone of growing rats.

    Science.gov (United States)

    Dobrowolski, Piotr; Tomaszewska, Ewa; Bienko, Marek; Radzki, Radoslaw P; Pierzynowski, Stefan G

    2013-08-01

    2-Oxoglutaric acid (2-Ox), a precursor to hydroxyproline - the most abundant amino acid in bone collagen, exerts protective effects on bone development during different stages of organism development; however, little is known about the action of 2-Ox on cartilage. The aim of the present study was to elucidate the influence of dietary 2-Ox supplementation on the growth plate, articular cartilage and bone of growing rats. A total of twelve male Sprague-Dawley rats were used in the study. Half of the rats received 2-oxoglutarate at a dose of 0·75 g/kg body weight per d in their drinking-water. Body and organ weights were measured. Histomorphometric analyses of the cartilage and bone tissue of the femora and tibiae were conducted, as well as bone densitometry and peripheral quantitative computed tomography (pQCT). Rats receiving 2-Ox had an increased body mass (P<0·001) and absolute liver weight (P=0·031). Femoral length (P=0·045) and bone mineral density (P=0·014), overall thickness of growth plate (femur P=0·036 and tibia P=0·026) and the thickness of femoral articular cartilage (P<0·001) were also increased. 2-Ox administration had no effect on the mechanical properties or on any of the measured pQCT parameters for both bones analysed. There were also no significant differences in histomorphometric parameters of tibial articular cartilage and autofluorescence of femoral and tibial growth plate cartilage. Dietary supplementation with 2-Ox to growing rats exerts its effects mainly on cartilage tissue, having only a slight influence on bone. The effect of 2-Ox administration was selective, depending on the particular bone and type of cartilage analysed. PMID:23308390

  3. An allogenic site-specific rat model of bone metastases for nuclear medicine and experimental oncology

    International Nuclear Information System (INIS)

    Bone metastases are a major problem in several tumor entities affecting the therapeutic decision and the patient's prognosis. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are promising techniques for identifying bone tumors using gamma- or positron-emitting labeled radiotracers, but the same tracers if labeled with beta-emitters may also be used to apply therapeutic radionuclides for localized irradiation. For the tracer development specifically accumulating in osseous lesions, animal models of bone metastasis are needed. A technique was developed for tumor cell injection into the circulation of the hind limb of rats. For tumor implantation, the arteria epigastrica caudalis superficialis (a branch of the femoral artery) was cannulated, and 2×105 cells were injected. By using the allogenic Walker 256 mammary carcinoma cell line, isolated bone metastases were induced. For visualizing of the tumor growth, PET with 18F-fluoride was performed weekly on a μ-PET system. After 2–3 weeks, tumor invasion was confirmed by histology. Three weeks after tumor cell inoculation, PET images showed signs of bone metastases in 9 out of 11 animals. The tumors were located either in the proximal tibia/fibula or in the distal femur. At this time, the animals showed no restrictions in mobility. The tumors grew constantly over time. The final histological analysis showed tumors growing invasively into the bone matrix. With this model, new SPECT or PET tracers can be evaluated for their potency of accumulating in bone metastases in vivo and to determine which are therefore suitable for diagnosis and/or therapy.

  4. Elucidation of thrifty features in adult rats exposed to protein restriction during gestation and lactation.

    Science.gov (United States)

    Qasem, Rani J; Yablonski, Elizabeth; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2012-03-20

    Since the introduction of the thrifty phenotype hypothesis, the potential traits of thrift have been described in increasingly broad terms but biochemical and behavioral evidence of thrift has not been well demonstrated. The objective of our studies was to use a rodent model to identify features of thrift programmed by early life protein restriction. Robust programming of thrifty features requires a thrifty nutritional environment during the entire window of developmental plasticity. Therefore, pregnant rats were exposed to a low protein diet throughout the window of developmental plasticity spanning the period of gestation and lactation and its effects on energy acquisition, storage and expenditure in the adult offspring were examined. Maternal protein restriction reduced birth weight and produced long term reductions in body and organ weights in the offspring. Low protein offspring demonstrated an increased drive to seek food as evidenced by hyperphagia that was mediated by changes in plasma leptin and ghrelin levels. Hyperphagia was accompanied by increased efficiency in converting caloric intake into body mass. The higher feed efficiency was mediated by greater insulin sensitivity. Energy expenditure of low protein offspring in locomotion was not affected either in the light or dark phase. However, low protein offspring exhibited higher resting and basal metabolic rates as evidenced by higher core body temperature in the fed and fasted states. The increased thermogenesis was not mediated by thyroid hormones but by an increased sympathetic nervous system drive as reflected by a lower areal bone mineral density and bone mineral content and lower plasma adiponectin and triglyceride levels. Elevated thermogenesis in the low protein offspring possibly offsets the effects of hyperphagia, minimizes their chances of weight gain, and improves survivability. This constellation of metabolic features in the low protein offspring will maximize survival potential in a post

  5. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells

    International Nuclear Information System (INIS)

    Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8. Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed. Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain. These

  6. Application of retrograde dissection method for isolation of bone marrow cells from rat femurs and tibiae.

    Science.gov (United States)

    Li, C M; Fu, B M; Zhang, L C; Tang, B; Zhu, L; Zhao, Y; Zhang, J

    2016-01-01

    Currently, there is no practical and efficient method for the isolation of bone marrow cells (BMCs) from rat femurs and tibiae. Here, we attempted to develop a rapid, simple, effective, and non-contaminating method for the isolation of BMCs from rat femurs and tibiae. Rat femurs and tibiae were dissected from the ankle to the hip joint; subsequently, a three-step "locate-slide-twist" procedure was performed using scissors and forceps to remove the femurs and tibiae completely, from the surrounding musculature. The bones were flushed with phosphate-buffered saline to harvest BMCs. The femurs and tibiae were dissected in 1.8 ± 0.6 min, and the BMC suspension preparation time was 13.1 ± 2.3 min. The bone marrow cavities did not incur any fractures or injuries during the isolation. Culture of harvested BMCs for 72 h led to a significant increase in cell number from 4.4 ± 0.3 x 106 to 6.9 ± 0.7 x 10(6) (P 0.05). Microscopic examination of the isolated BMCs after the 72-h incubation period revealed the no-microbial or muscle cell contamination. Furthermore, flow cytometry revealed that cultured BMCs (72-h culture) grew well. Here, we have reported a rapid, simple, effective, and non-contaminating method for the isolation of BMCs from rat femurs and tibiae by using retrograde dissection. This method can be used to harvest a large number of viable BMCs without the risk of contamination from muscle and connective tissues. PMID:27323101

  7. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    International Nuclear Information System (INIS)

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  8. ZP2307, a novel cyclic PTH(1-17) analog, reversed established osteopenia in adult ovariectomized rats

    DEFF Research Database (Denmark)

    Vääräniemi, Jukka; Morko, Jukka; Peng, ZhiQi;

    -17) analog, ZP2307, with a high efficacy and potency on the human PTH receptor in vitro. This study characterized the effects of intermittent treatment with ZP2307 on established osteopenia in adult ovariectomized (OVX) rats. Female Sprague-Dawley rats were ovariectomized at 6 months of age. After 6 weeks...... treated with vehicle. Treatment with ZP2307 reversed the OVX-induced reduction in Tb.BMD and bone volume (BV/TV) in tibial metaphysis and lumbar vertebra at all doses in a dose-dependent manner. ZP2307 enhanced an OVX-induced increase in bone formation rate (BFR/BS) at 200 µg/kg/d and reversed an OVX......-induced increase in the number of osteoclasts (N.Oc/B.Pm) at 2-200 µg/kg/d. As a functional consequence in lumbar vertebra, ZP2307 reversed an OVX-induced reduction in maximal load at 6-200 µg/kg/d and increased modulus at 20-200 µg/kg/d. Furthermore, ZP2307 increased cortical thickness and enhanced endocortical...

  9. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    Directory of Open Access Journals (Sweden)

    Sunil Kota

    2013-01-01

    Full Text Available Background: Bone mineral densiy (BMD is known to be affected by serum 25-hydroxyvitamin D (25(OH D levels, intact parathyroid hormone (iPTH levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH D levels, intact parathyroid hormone (iPTH levels and bone mineral density (BMD in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry. Multivariate regression models were used to investigate the relationships between serum 25(OH D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64 with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH D levels were below 30 ng/ml (Normal = 30-74 ng/ml, confirming vitamin D deficiency. There was no association between 25(OH D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively. Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH D was negatively associated with iPTH (P = 0.041. Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH D at serum 25(OH D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  10. Robert Feulgen Prize Lecture. Grenzgänger: adult bone marrow cells populate the brain.

    Science.gov (United States)

    Priller, Josef

    2003-08-01

    While the brain has traditionally been considered a rather secluded site, recent studies suggest that adult bone marrow (BM)-derived stem cells can generate glia and neurons in rodents and humans. Macrophages and microglia are the first to appear in the murine brain after transplantation of genetically marked BM cells. Within weeks after transplantation, some authors have found astrocytes and cells expressing neuronal antigens. We detected cerebellar Purkinje neurons and interneurons, such as basket cells, expressing the green fluorescent protein (GFP) 10-15 months after transplantation of GFP-labeled BM cells. The results push the boundaries of our classic view of lineage restriction. PMID:12898276

  11. The mean active bone marrow dose to the adult population of the United States from diagnostic radiology

    International Nuclear Information System (INIS)

    Based on an empirical dosimetry model, estimates have been calculated and are presented on the mean active bone marrow dose to adults from diagnostic radiography, fluoroscopy, and dental radiography, as practiced in the United States in 1970. The annual per capita mean active bone marrow dose to adults in 1970 from the above practices is estimated to have been 103 mrad: 77, 20 and 3% form radiographic, fluoroscopic and dental examinations respectively. The per capita mean active bone marrow dose for various age groups is discussed. Contributions to the dose within a given age group from different examinations indicate that in the 15-34-yr age group, lumbar and lumbosacral spine examinations contribute most to the mean active bone marrow dose; thereafter, upper GI series and barium enemas are the highest contributors. Mean active bone marrow doses for children have not been estimated because of insufficient data. However, the lower rate of use of diagnostic X-rays (except dental) in children would reduce the annual per capita mean active bone marrow dose for the entire population to a maximum of approximately 77 mrad. In 1964 the annual per capita mean active bone marrow dose to adults is estimated to have been 83 mrad. A comparison of the results with surveys of radiation doses from diagnostic radiology performed in other countries and with natural radiation background is described. (author)

  12. Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model.

    Directory of Open Access Journals (Sweden)

    Gregory V Goldmacher

    Full Text Available In this study, rat bone marrow stromal stem cells (BMSCs were tracked after IV administration to rats with experimental stroke caused by middle cerebral artery occlusion (MCAO. In addition, the effects of BMSC treatment on blood cell composition, brain glia and sensorimotor behavior was studied and compared to that which occurred spontaneously during the normal recovery process after stroke. We found that the vast majority of radiolabeled or fluorescently labeled BMSCs traveled to and remained in peripheral organs (lungs, spleen, liver 3 days after IV injection in the MCAO rat. Once in the circulation, BMSCs also produced rapid alterations in host blood cell composition, increasing both neutrophil and total white blood cell count by 6 hours post-injection. In contrast, few injected BMSCs traveled to the brain and almost none endured there long term. Nonetheless, BMSC treatment produced dramatic changes in the number and activation of brain astroglia and microglia, particularly in the region of the infarct. These cellular changes were correlated with a marked improvement in performance on tests of sensory and motor function as compared to the partial recovery of function seen in PBS-injected control rats. We conclude that the notable recovery in function observed after systemic administration of BMSCs to MCAO rats is likely due to the cellular changes in blood and/or brain cell number, activation state and their cytokine/growth factor products.

  13. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  14. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    International Nuclear Information System (INIS)

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  15. Effects of daidzein and kiwifruit on bone mineral density and equol production in ovariectomised rats.

    Science.gov (United States)

    Tousen, Yuko; Wolber, Frances M; Chua, Wei-Hang; Tadaishi, Miki; Ishimi, Yoshiko; Kruger, Marlena C

    2014-05-01

    In this study, we investigated the synergistic effects of daidzein (Dz) and kiwifruit on bone and equol production in ovariectomised (OVX) rats. Female Sprague-Dawley rats were randomly assigned to one of five groups: sham operated, OVX control, OVX fed 0.1% Dz-supplemented diet (OVX + Dz), OVX fed 0.1% Dz and green kiwifruit (GRK)-supplemented diet (OVX + Dz + GRK) and OVX fed 0.1% Dz and gold kiwifruit (GOK)-supplemented diet (OVX + Dz + GOK). There were no significant differences in whole body and femur bone mineral density (BMD) among groups at week 8. BMD in the OVX group significantly decreased at week 8; however, BMD in the OVX + Dz + GRK was not significantly different from baseline in the end of the study. However, supplementation with kiwifruit did not affect urinary equol concentrations, urinary ratios of equol to Dz and the composition of caecal microbiota. These results suggest that the combination of Dz and GRK may slightly reduce bone loss caused by oestrogen deficiency but does not affect equol production. PMID:24251973

  16. Interactive effects of nutrition, environment, and rat-strain on cortical and vertebral bone geometry and biomechanics

    Science.gov (United States)

    Zernicke, R. F.; Li, K.-C.; Salem, G. J.; Vailas, A. C.; Grindeland, R. E.

    1990-01-01

    An investigation was conducted to generate comparative data on the sensitivity of cortical- and vertebral-bone adaptations in two different rat strains maintained at conditions typical for spaceborne experiments conducted by U.S.A. and USSR. The effects of cage environment, diet, and rat-strain on the cortical (humerus) and vertebral (T7) bones of male Taconic-Sprague-Dawley and Czechoslovakian-Wistar rats were investigated using different flight-simulation cages (one rat/cage for U.S.A.; ten rats/cage for USSR conditions) and fed either U.S.A. or USSR diet. The results showed significant effects of these factors on the humeral and vertebral geometry and mechanical properties, as well as significant interactive effects on the mechanical properties of the humerus.

  17. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  18. Interrelationships between densitometric, geometric, and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling.

    Science.gov (United States)

    Ferretti, J L; Capozza, R F; Mondelo, N; Zanchetta, J R

    1993-11-01

    A compensation for differences in bone material quality by bone geometric properties in femora from two different strains of rats was previously shown by us. A feedback mechanism controlling the mechanical properties of the integrated bones was then proposed, in accordance with Frost's mechanostat theory. Evidence of such a system is now offered by the finding of a negative correlation between the modeling-dependent cross-sectional architecture (moment of inertia) and the mineral-dependent stiffness (elastic modulus) of bone material in the femoral diaphyses of 45 normal Wistar rats of different sexes, ages, and sizes. The strength and stiffness of the integrated diaphyses were found to depend on both cross-sectional inertia and body weight, not on bone mineral density. These findings are interpreted as supporting the hypothesis that the architectural efficiency of diaphyseal cross-sectional design resulting from the spatial orientation of bone modeling during growth is optimized as a function of the body weight-dependent bone strain history, within the constraints imposed by bone stiffness. Results suggest a modulating role of biomass, related to the system set point determination, and explain the usually observed lack of a direct correlation between mineral density and strength or stiffness of long bones in studies of geometrically inhomogeneous populations. PMID:8266830

  19. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    Science.gov (United States)

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone. PMID:24460696

  20. Bone Geometry, Volumetric Density, Microarchitecture and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients with Hypophosphatemic Rickets

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Folkestad, Lars; Brixen, Kim; Beck-Nielsen, Signe Sparre

    2015-01-01

    Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. While densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross-sectional in-vivo study was to assess...... bone geometry, volumetric BMD (vBMD), microarchitecture and estimated bone strength in adult patients with HR using high-resolution peripheral quantitative computed tomography (HR-pQCT). Twenty-nine patients (aged 19 to 79 years; 21 female, 8 male patients), 26 of whom had genetically proven X......-linked HR, were matched with respect to age and sex with 29 healthy subjects. Eleven patients were currently receiving therapy with calcitriol and phosphate for a median duration of 29.1 years (12.0 to 43.0 years). Due to the disproportionate short-stature in HR, the region of interest in HR-pQCT images at...

  1. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats

    Science.gov (United States)

    Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.

    2002-01-01

    BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no

  2. Mineralizing process and morphological structure of the femoral bone in rats under influence of aminophosphonates

    Directory of Open Access Journals (Sweden)

    Semen O. Mostovoy

    2014-06-01

    Methods: Thirty Wistar rats were used in the research and 3 groups of animals (1 control and 2 experimental, n = 10 in each group were formed. The control group of animals received 1 ml of deionized water intragastrically (i.g. and 1 ml of normal saline intraperitoneally (i.p. once a day for 3 months. The experimental rats received administration of pamidronate i.p. or tweak i.g. (63 mg/kg for both for 3 months. The external and internal surfaces of femoral bone proximal epiphyses were studied with scanning electron microscopy. The degree of crystallinity of the mineral parts of samples was estimated with X-ray crystal structure analysis. Results: Animals that received pamidronate presented high mineralization of collagen matrix; the growth plate became narrower, the size of foramina nutricia and the branches of Volkmann's canals became smaller. X-ray diffraction (XRD patterns showed increased interplanar distance compared to XRD patterns of the control group. Animals that received tweak had the highest degree of mineralization and visual breaking of the growth plate; the size of foramina nutricia and the number of branches of Volkmann's canals decreased. Dispersity of mineral component took place on XRD patterns as flattening of peaks in regions of small angles. Conclusion: Administration of pamidronate or tweak for 3 months caused bone hypermineralization and changed the parameters of elementary lattice cell that lead to structural disorders of femoral proximal epiphyses in rats. [J Exp Integr Med 2014; 4(2.000: 81-84

  3. Bone structure and quality preserved by active versus passive muscle exercise in 21 days tail-suspended rats

    Science.gov (United States)

    Luan, Huiqin; Sun, Lian-wen; Fan, Yu-bo

    2012-07-01

    Humans in Space suffer from microgravity-induced attenuated bone strength that needs to be addressed by on-orbit exercise countermeasures. However, exercise prescriptions so far did not adequately counteract the bone loss of astronauts in spaceflight because even active muscle contractions were converted to passive mode during voluntary bouts. We tested our hypothesis in unloaded rat hind limb following twenty-one days of tail-suspension (TS) combined with exercise using a hind limb stepper device designed by our group. Female Sprague Dawley rats (250g b.wt.) were divided into four groups (n=5, each): TS-only (hind limb unloading), TS plus passive mode exercise (TSP) induced by mechanically-forced passive hind limb lifting, TS plus active mode exercise (TSA) entrained by plantar electrostimulation, and control (CON) group. Standard measures of bone (e.g., mineral density, trabecular microstructure, biomechanics and ash weight) were monitored. Results provided that the attenuated properties of unloaded hind limb bone in TS-rats were more effectively supported by active mode than by passive mode motions. We here propose a modified exercise regimen combined with spontaneous muscle contractions thereby considering the biodynamic demands of both muscle and bone during resistive-load exercise in microgravity. Keywords: rat, BMD, DXA, passive exercise, active exercise, bone loss, tail suspension, spaceflight analogue, exercise countermeasure.

  4. Bone mineral density in young adult women with congenital adrenal hyperplasia

    Directory of Open Access Journals (Sweden)

    Nishant Raizada

    2016-01-01

    Full Text Available Background: There is equipoise regarding the status of bone mineral density (BMD in patients with congenital adrenal hyperplasia (CAH, where patients need to be on long-term low-dose steroids. Objective: We aimed to evaluate BMD at the hip, spine and forearm in women with CAH and compare it to healthy young adult women of the same age range. Subjects and Methods: Fifteen adult women with CAH with age ranging from 18 to 40 years (mean ± standard deviation = 27.5 ± 6.2 years underwent dual-energy X-ray absorptiometry along with laboratory evaluation. BMD at lumbar spine, hip, forearm along with T-scores were measured. Serum total calcium, phosphate, alkaline phosphatase, 25 hydroxy Vitamin D, intact parathyroid hormone, total testosterone, and dehydroepiandrosterone were assayed. History of any fractures in the past was taken. Fifteen healthy women in the same age range were taken as controls for comparison. Results: The BMD at hip (0.85 ± 0.02 g/cm2 in CAH was significantly lower as compared with controls (0.92 ± 0.03 g/cm2, P = 0.029. BMD at lumbar spine was also reduced (0.96 ± 0.02 vs. 1.03 ± 0.03, P = 0.057. The BMD at forearm was not significantly different between CAH and controls. The mean Vitamin D was 9.8 ng/ml (deficient range. There was no history of fractures in CAH. Conclusion: Young adult CAH women had lower BMD at spine and hip than healthy young adult women of the same age range. The forearm BMD was not different from controls. No change in fracture frequency was present. Patients with CAH being treated with steroids are at increased risk of osteopenia, and their bone health needs to be monitored.

  5. Mechanistic investigations on the etiology of Risperdal® Consta®-induced bone changes in female Wistar Hannover rats

    International Nuclear Information System (INIS)

    RISPERDAL® CONSTA® is a long-acting, intramuscular formulation of risperidone microspheres for the biweekly treatment of schizophrenia and other psychiatric disorders. In a 24-month carcinogenicity study male and female Wistar Hannover rats received RISPERDAL® CONSTA® by intramuscular injection at dosages of 5 or 40 mg/kg once every 2 weeks. Bone changes described as “osteodystrophy” were observed by routine microscopic examination at 40 mg/kg in the sternum of female rats after 12 months, and in the sternum and stifle joint of both male and female rats after 24 months of treatment, respectively. To investigate the etiology of these bone changes, a 12-month mechanistic study was conducted in female Wistar Hannover rats at dosages of 5, 20 and 40 mg/kg once every 2 weeks. In addition to routine parameters, this study included bone markers, hormone measurements, and peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) bone density measurements. It revealed a treatment-related reduction in metaphyseal trabecular bone density of the femur and tibia at 20 and 40 mg/kg, which was evident in the tibia from Week 13 of treatment onwards. There was no convincing evidence for any of the modes of action known to underlie trabecular bone loss in rats including renal, nutritional, or hepatic osteodystrophy, estrogen deficiency, hyperthyroidism or glucocorticoid excess. It is hypothetized that prolonged hyperprolactinemia accompanied by an increase in parathyroid hormone-related protein (PTHrP) levels and a slight hypoestrogenic state could have caused the reduced trabecular bone density in RISPERDAL® CONSTA®-treated rats. The relevance of this finding in terms of human risk is unknown.

  6. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2015-01-01

    Full Text Available Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype.

  7. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  8. Adolescent social defeat alters neural, endocrine and behavioral responses to amphetamine in adult male rats

    OpenAIRE

    Burke, Andrew R.; Renner, Kenneth J.; Forster, Gina L.; Watt, Michael J.

    2010-01-01

    The mesocorticolimbic dopamine system, which governs components of reward and goal-directed behaviors, undergoes final maturation during adolescence. Adolescent social stress contributes to adult behavioral dysfunction, and is linked to adult psychiatric and addiction disorders. Here, behavioral, corticosterone, and limbic dopamine responses to amphetamine were examined in adult male rats previously exposed to repeated social defeat stress during mid-adolescence. Amphetamine (2.5 mg/kg, ip) w...

  9. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shaoqiang Chen; Bilian Wu; Jianhua Lin

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated,purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method.Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein.Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks).Expressions of choline acetyltransferase,glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation,determined by immunofluorescence staining and laser confocal scanning microscopy.Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase,glutamic acid decarboxylase and synapsins,3 weeks after transplantation.The Basso-Beattie-Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins.Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats,promote expression of choline acetyltransferase,glutamic acid decarboxylase and synapsins,and improve nerve function in rats with spinal cord injury.

  10. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats.

    Science.gov (United States)

    Fan, Chiaming; Georgiou, Kristen R; McKinnon, Ross A; Keefe, Dorothy M K; Howe, Peter R C; Xian, Cory J

    2016-05-01

    The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation. PMID:26056019

  11. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  12. Immunological Enhancement of Interferon Alpha Treatment to Allogeneic Bone Marrow Transplantation in Irradiated Rats

    International Nuclear Information System (INIS)

    The Influence of the biological response modifiers: interferon alpha (IFN-α) and bone marrow transplantation (BMT) on stimulation of blood cell recovery and boosting the immunological response were investigated in this work. Male rats received BMT 3 h post total body ?-irradiation of 5 Gy and were injected with 10 units of IFN-α weekly for 5 weeks. Irradiation induced a significant decrease in blood parameters, reduced glutathione (GSH) as well as bone marrow lymphocyte count and viability. Immunological data revealed that tumour necrosis factor alpha (TNF-α) and interleukin-2 (IL-2) recorded a significant depression while lipid peroxidation (MDA) was conversely elevated. White blood cells (WBC), erythrocytes (RBC), haemoglobin (Hb), haematocrit (Hct), lymphocytes and GSH in irradiated animals receiving BMT and IFN-α, were significantly elevated, while MDA was significantly depressed as compared to the irradiated group. Bone marrow lymphocytic count and viability percentage were significantly increased while IL-2 and TNF-α were normalized. The curative action of IFN-α enforcing significant innate response could trigger and augment adaptive immune response by bone marrow transplantation. Such therapies boosting both components of immunity would be considered a potential strategy for irradiation treatment

  13. Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation.

    Science.gov (United States)

    Yoshikawa, T; Peel, S A; Gladstone, J R; Davies, J E

    1997-01-01

    Bone marrow cells obtained from rat femora were subjected to primary culture with 15% fetal bovine serum in the presence of 10(-8) M dexamethasone, and following trypsin treatment 5 days later were seeded on Petriperm dishes which have a flexible bottom. After a 2-day subculture, a cyclic stress consisting of a 1 s stretch (0.3% strain. 0.5 Hz) and a 1 s relaxation for 30 min every day was started. Culture tissue was removed on day 2 of the subculture (immediately prior to start of stimulation), and then on days 5 and 8 (3 and 6 days after the start of stimulation, respectively), at which times dry weight, DNA, alkaline phosphatase (ALP) activity, and bone Gla protein (BGP, osteocalcin) were measured. Both the dry weight and DNA showed a significant increase in the stimulated group by day 8, while the ALP activity showed a significant increase by day 5. The BGP began to increase in the stimulated group on day 5 in contrast to the control group in which it only increased on day 8. These results support the contention that mechanical stimulation promotes the differentiation of osteogenic cells and enhances bone formation. Since in this experimental model the acceleration of bone formation by mechanical stimulation can be reproduced in vitro, it is extremely useful for investigating the mechanisms underlying mechanical stimulation. PMID:9622104

  14. Bone marrow transplantation for treatment of some radiation induced biochemical disorders in albino rat

    International Nuclear Information System (INIS)

    The present investigation has been conducted aiming to study the role played by transplantation of bone marrow cells as a biological treatment for radiation injury to carbohydrate metabolism as shown by changes in: serum glucose level and liver glycogen content as well as protein metabolism as presented by: serum total protein and protein and protein fractions. gamma irradiation caused detectable hyperglycemia parallel by depletion in liver glycogen content. On the other hand, radiation caused decrease in serum albumin, increase in serum protein content, increase in total globulin and consequently a decrease in the albumin/globulin ratio. Transplantation of bone marrow cells to irradiated rats caused restoration of glucose level in serum and glycogen content in liver after one week from transplantation; only partial restoration could be detected for total protein, total globulin, content as well as A/G ratio. 6 fig

  15. Binding of iodinated erythropoietin to rat bone marrow cells under normal and anemic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Tojo, A.; Fukamachi, H.; Kitamura, T.; Saito, T.; Urabe, A.; Takaku, F.

    1989-02-01

    Specific binding sites for erythropoietin (Epo) were shown in normal and anemic rat bone marrow cells using (125I)labeled human recombinant Epo. When rats were treated once or several times with phenylhydrazine or malotilate, or by phlebotomy, the serum Epo level determined by RIA began to increase rapidly. Thereafter, both the number of erythroid colony-forming unit (CFU-E)-derived colonies and the Epo binding capacity of bone marrow cells increased almost simultaneously in response to induced anemic states, suggesting that the amount of Epo binding in bone marrow cells may reflect in vivo erythropoiesis. Scatchard analysis of the binding data from normal rats revealed the presence of a single class of binding sites (Kd = 0.18 +/- 0.04 nM, 38 +/- 5 sites/cell). In anemic states, the apparent average receptor number per cell increased (52-62 sites/cell) without changing in binding affinity toward Epo. Furthermore, (125I)Epo was cross-linked to the cell surface molecule of approximately 165 kd in nonreducing conditions and 75 kd in reducing conditions. Autoradiographic analysis indicated that Epo receptors were distributed on immature erythroid cells. Proerythroblasts were the most heavily labeled, whereas orthochromatic erythroblasts and cells of myeloid and lymphoid lineages were not labeled. Calculations based on Scatchard and autoradiographic analysis showed that proerythroblasts have 390 receptor sites per cell, twice as many as basophilic or polychromatophilic erythroblasts have. These results are consistent with the stage-specific action of Epo in physiological differentiation of erythroid cells.

  16. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow

    OpenAIRE

    Sabine Wislet-Gendebien; Christophe Poulet; Virginie Neirinckx; Benoit Hennuy; Swingland, James T.; Emerence Laudet; Lukas Sommer; Olga Shakova; Vincent Bours; Bernard Rogister

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the ...

  17. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: ► Strontium ranelate (SrR) inhibits proliferation of BMMSCs. ► SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. ► SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. ► SrR decreases expression of PPARγ, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr2+) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPARγ2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPARγ in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.

  18. Nicotine effect on bone remodeling during orthodontic tooth movement: Histological study in rats

    Directory of Open Access Journals (Sweden)

    Ricardo Lima Shintcovsk

    2014-04-01

    Full Text Available Introduction: Nicotine is harmful to angiogenesis, osteogenesis and synthesis of collagen. Objective: The aim of this study was to investigate the effect of nicotine on bone remodeling during orthodontic movement in rats. Methods: Eighty male Wistar rats were randomly divided into three groups: Group C (control, group CM (with orthodontic movement and group NM (nicotine with orthodontic movement groups. The animals comprising groups C and CM received 0.9% saline solution while group NM received nicotine solution (2 mg/kg. A nickel-titanium closed-coil spring was used to induce tooth movement. The animals were euthanized and tissue specimens were processed histologically. We quantified blood vessels, Howship's lacunae and osteoclast-like cells present in the tension and compression areas of periodontal ligaments. The extent of bone formation was evaluated under polarized light to determine the percentage of immature/mature collagen. Results: We observed lower blood vessel densities in the NM group in comparison to the CM group, three (p < 0.001 and seven (p < 0.05 days after force application. Osteoclast-like cells and Howship's lacunae in the NM group presented lower levels of expression in comparison to the CM group, with significant differences on day 7 (p < 0.05 for both variables and day 14 (p < 0.05 for osteoclast-like cells and p < 0.01 for Howship's lacunae. The percentage of immature collagen increased in the NM group in comparison to the CM group with a statistically significant difference on day 3 (p < 0.05, day 7 (p < 0.001, day 14 (p < 0.001 and day 21 (p < 0.001. Conclusions: Nicotine affects bone remodeling during orthodontic movement, reducing angiogenesis, osteoclast-like cells and Howship's lacunae, thereby delaying the collagen maturation process in developed bone matrix.

  19. Persistent chromosome anomalies in rat bone-marrow cells from strontium 89

    International Nuclear Information System (INIS)

    Cytogenetic analysis of rat bone marrow cells was carried out 6 months following intraperitoneal administration of 1.5 μCi/g b.w. of strontium 89 (LD50/180). The percentage of aberrant cells was found to be increased in relation to controls (19,3% vs. 3,7%) and was accounted for by cells with acentric fragments and symmetric exchanges. Exposed animals showed either solitary aberrants cells or aberrant cell clones, with some animals revealing no cytogenetic anomalies. (author)

  20. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  1. Homozygosity at the major histocompatibility complex is required for optimal immunogenicity of bone marrow cell allografts in irradiated rats

    International Nuclear Information System (INIS)

    Hemopoietic histocompatibility (Hh) genes associated with the H-2 region control the antigenicity of hemopoietic cell grafts in the mouse. We have tested for similar genes in rats. Wistar Furth (WF,RTl sup(u)) or Lewis (LEW RTl1) bone marrow cell grafts did not profilerate in spleens of lethally irradiated (WFxLEW) Fl hybrid rats as assessed by measuring the incorporation of 5-iodo-2' deoxyuridine-125I(IUdR) into recipient spleens 5 days after transplantation. In contrast, (WFxLEW)Fl hybrid marrow cells grew well in both WF and LEW parental strain hosts. (WFxDA)Fl or (WFxLEW)Fl hybrid rats were backcrossed to WF parental strain rats to produce progeny, either homozygous, or heterozygous for the MHC. The RTl type of 46 individual backcross progeny was determined using a 5 day mixed-lymphocyte reaction (MLR). Correlation between RTl type and growth of marrow grafts of individual backcross rats was determined bt using each rat as bone marrow donor for irrdiated LEW hosts. Marrow grafts from rats heterozygous for RTl were accepted in all 25 cases, whereas, grafts from 19 of 21 homozygous donors were rejected by the LEW hosts. Thus, homozygosity, for Hh determinants in or near the RTl region appears to be necessary for optimal immunogenicity of bone marrow allografts. (author)

  2. The application of radiosterilised bovine bone xenograft as a dental haemostatic agent in adult merino sheep

    International Nuclear Information System (INIS)

    The aim of this study is to look at the efficacy of radiosterilised demineralised freeze dried bovine bone xenograft as a dental haemostatic agent in tooth socket wound following tooth extraction. Six adult Merino sheep underwent extraction of two central incisor teeth under general anaesthesia. In one tooth extraction socket (socket side A) a standard gelatin dental haemostatic agent was inserted while a radiosterilised cancellous bovine bone cube was inserted into the second tooth extraction socket (socket side B). The time taken for the bleeding from the both socket to stop was noted and the sheep were kept asleep under general anesthesia till complete hemostasis was achieved. The feeding habits and wound healing were observed till the tenth postoperative day. Results showed that in socket A, complete hemostasis was achieved in a mean time of 135 seconds (range 110 seconds to 145 seconds) and in socket B, complete hemostasis was achieved in a mean time of 97 seconds (range 8 8 seconds to 112 seconds). Observation regarding feeding habits demonstrate that all the sheep showed preference to chew food on the side of socket 'side B' till the fifth postoperative day and by the seventh day, all sheep chew on both sides of the jaw. The standard gelatin dental hemostatic agent was found to be dislodged from all socket side B on the first postoperative day while the bovine bone cube remained in socked side A till the seventh postoperative day. In conclusion, radiosterilised cancellous bovine bone cube may be applied as an effective dental hemostatic agent following tooth extraction

  3. Distribution of Proliferating Bone Marrow in Adult Cancer Patients Determined Using FLT-PET Imaging

    International Nuclear Information System (INIS)

    Purpose: Given that proliferating hematopoietic stem cells are especially radiosensitive, the bone marrow is a potential organ at risk, particularly with the use of concurrent chemotherapy and radiotherapy. Existing data on bone marrow distribution have been determined from the weight and visual appearance of the marrow in cadavers. 18F-fluoro-L-deoxythymidine concentrates in bone marrow, and we used its intensity on positron emission tomography imaging to quantify the location of the proliferating bone marrow. Methods and Materials: The 18F-fluoro-L-deoxythymidine positron emission/computed tomography scans performed at the Peter MacCallum Cancer Centre between 2006 and 2009 on adult cancer patients were analyzed. At a minimum, the scans included the mid-skull through the proximal femurs. A software program developed at our institution was used to calculate the percentage of administered activity in 11 separately defined bony regions. Results: The study population consisted of 13 patients, 6 of whom were men. Their median age was 61 years. Of the 13 patients, 9 had lung cancer, 2 had colon cancer, and 1 each had melanoma and leiomyosarcoma; 6 had received previous, but not recent, chemotherapy. The mean percentage of proliferating bone marrow by anatomic site was 2.9% ± 2.1% at the skull, 1.9% ± 1.2% at the proximal humeri, 2.9% ± 1.3% at the sternum, 8.8% ± 4.7% at the ribs and clavicles, 3.8% ± 0.9% at the scapulas, 4.3% ± 1.6% at the cervical spine, 19.9% ± 2.6% at the thoracic spine, 16.6% ± 2.2% at the lumbar spine, 9.2% ± 2.3% at the sacrum, 25.3% ± 4.9% at the pelvis, and 4.5% ± 2.5% at the proximal femurs. Conclusion: Our modern estimates of bone marrow distribution in actual cancer patients using molecular imaging of the proliferating marrow provide updated data for optimizing normal tissue sparing during external beam radiotherapy planning.

  4. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats

    NARCIS (Netherlands)

    Zecha, P. J.; Schortinghuis, J.; van der Wal, J. E.; Nagursky, H.; van den Broek, K. C.; Sauerbier, S.; Vissink, A.; Raghoebar, G. M.

    2011-01-01

    This study assessed the mechanical characteristics, biocompatibility and osteoconductive properties of an equine hydroxyapatite collagen (eHAC) bone block when applied as a bone substitute for lateral augmentation of rat mandible. 96 rats underwent lateral augmentation of the mandible, using two sub

  5. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    Science.gov (United States)

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  6. AB114. Myogenic differentiation of rat bone mesenchymal stem cells in vitro

    Science.gov (United States)

    Xiao, Heng-Jun; Yan, Wei-Xin; Chen, Jun; Gao, Xin; Zhuan, Li; Zang, Guang-Hui; Yang, Jun; Zhang, Yan; Liu, Ji-Hong

    2016-01-01

    Objective To culture and myogenic differentiation of rat bone mesenchymal stem cells (BMSCs) in vitro, and provide the available seed cells for erectile dysfunction (ED) therapy. Methods Rat BMSCs were isolated and cultured from the femur and tibia of Sprague Dawley (SD) rat. Mesenchymal stem cell positive cellular markers CD49d, CD73, CD90, CD105, CD106 and negative cellular markers CD31, CD34 and CD45 were arrayed by flow cytometry analysis. Furthermore, the fourth passage cells were induced and identified by their capacities in the myogenic differentiation. Results The cultured cells expressed mesenchymal stem cell positive cellular markers CD49d, CD73, CD90, CD105 and CD106, and lacked negative cellular markers CD31, CD34 and CD45. Myogenic differentiation cells can be stained with alpha-smooth muscle actin (α-SMA) and desmin, respectively. Conclusions Rat BMSCs have been successfully isolated, cultured and myogenic differentiation in vitro. They could be used as autogenous BMSCs and gene modified BMSCs for ED therapy.

  7. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Jiyeon Roh

    2016-02-01

    Full Text Available The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA; silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP in the ratios 100:0 (S100T0, 70:30 (S70T30, 60:40 (S60T40, and 50:50 (S50T50. The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm. The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05. In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05. In conclusion, Si-HA/TCP showed potential as a bone graft material.

  8. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Dong-Chang Zhao; Jun-Xia Lei; Rui Chen; Wei-Hua Yu; Xiu-Ming Zhang; Shu-Nong Li; Peng Xiang

    2005-01-01

    AIM: Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to investigate the effect of infusion of bone marrow (BM)-derived MSCs on the experimental liver fibrosis in rats.METHODS: MSCs isolated from BM in male Fischer 344 rats were infused to female Wistar rats induced with carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN).There were two random groups on the 42nd d of CCl4:CCl4/MSCs, to infuse a dose of MSCs alone; CCl4/saline,to infuse the same volume of saline as control. There were another three random groups after exposure to DMN: DMN10/MSCs, to infuse the same dose of MSCs on d 10; DMN10/saline, to infuse the same volume of saline on d 10; DMN20/MSCs, to infuse the same dose of MSCson d 20. The morphological and behavioral changes ofrats were monitored everyday. After 4-6 wk of MSCs administration, all rats were killed and fibrosis index were assessed by histopathology and radioimmunoassay. Smooth muscle alpha-actin (alpha-SMA) of liver were tested by immunohistochemistry and quantified by IBAS 2.5 software. Male rats sex determination region on the Y chromosome (sry) gene were explored by PCR.RESULTS: Compared to controls, infusion of MSCsreduced the mortality rates of incidence in CCl4-induced model (10% vs 20%) and in DMN-induced model (2040% vs 90%).The amount of collagen deposition and alpha-SMA staining was about 40-50% lower in liver of rats with MSCs than that of rats without MSCs. The similar results were observed in fibrosis index. And the effect of the inhibition of fibrogenesis was greater in DMN10/MSCs than in DMN20/MSCs. The sry gene was positive in the liver of rats with MSCs treatment by PCR.CONCLUSION: MSCs treatment can protect against

  9. The effects of strength training and raloxifene on bone health in aging ovariectomized rats.

    Science.gov (United States)

    Stringhetta-Garcia, Camila Tami; Singulani, Monique Patrício; Santos, Leandro Figueiredo; Louzada, Mário Jefferson Quirino; Nakamune, Ana Cláudia Stevanato; Chaves-Neto, Antonio Hernandes; Rossi, Ana Cláudia; Ervolino, Edilson; Dornelles, Rita Cássia Menegati

    2016-04-01

    The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days. Areal bone mineral density (aBMD), strength, microarchitecture, and biomarkers (osteocalcin, OCN; osteoprotegerin, OPG; and tartrate-resistant acid phosphatase, TRAP) were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), OCN, OPG, TRAP, and receptor activator of nuclear factor kappa-B ligand (RANKL). The rats that performed ST (ST-Veh) or were treated with Ral (NT-Ral) showed significant improvements in aBMD (p=0.001 and 0.004), bone strength (p=0.001), and bone microarchitecture, such as BV/TV (%) (p=0.001), BS/TV (mm(2)/mm(3)) (p=0.023 and 0.002), Conn.Dn (1/mm(3)) (p=0.001), Tb.N (1/mm) (p=0.012 and 0.011), Tb.Th (1/mm) (p=0.001), SMI (p=0.001 and 0.002), Tb.Sp (p=0.001), and DA (p=0.002 and 0.007); there was also a significant decrease in plasma levels of OCN (p=0.001 and 0.002) and OPG (p=0.003 and 0.014), compared with animals in the NT-Veh group. Ral, with or without ST, promoted an increased immunolabeling pattern for RUNX2 (p=0.0105 and p=0.0006) and OSX (p=0.0105), but a reduced immunolabeling pattern for TRAP (p=0.0056) and RANKL (p=0.033 and 0.004). ST increased the immunolabeling pattern for RUNX2 (p=0.0105), and association with Ral resulted in an increased immunolabeling pattern for OPG (p=0.0034) and OCN (p=0.0024). In summary, ST and Ral administration in aged, estrogen

  10. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    The binding of 3H-WB 4101, an α1-adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  11. Prevention of bone growth defects, increased bone resorption and marrow adiposity with folinic acid in rats receiving long-term methotrexate.

    Directory of Open Access Journals (Sweden)

    Chia-Ming Fan

    Full Text Available The underlying pathophysiology for bone growth defects in paediatric cancer patients receiving high dose methotrexate chemotherapy remains unclear and currently there are no standardized preventative treatments for patients and survivors. Using a model in young rats, we investigated damaging effects of long-term treatment with methotrexate on growth plate and metaphyseal bone, and the potential protective effects of antidote folinic acid. This study demonstrated that chronic folinic acid supplementation can prevent methotrexate-induced chondrocyte apoptosis and preserve chondrocyte columnar arrangement and number in the growth plate. In the metaphysis, folinic acid supplementation can preserve primary spongiosa heights and secondary spongiosa trabecular volume by preventing osteoblasts from undergoing apoptosis and suppressing methotrexate-induced marrow adiposity and osteoclast formation. Systemically, plasma of folinic acid supplemented rats, in comparison to plasma from rats treated with MTX alone, contained a significantly lower level of IL-1β and suppressed osteoclast formation in vitro in normal bone marrow cells. The importance of IL-1β in supporting plasma-induced osteoclast formation was confirmed as the presence of an anti-IL-1β neutralizing antibody attenuated the ability of the plasma (from MTX-treated rats in inducing osteoclast formation. Findings from this study suggest that folinic acid supplementation during chronic methotrexate treatment can alleviate growth plate and metaphyseal damages and therefore may be potentially useful in paediatric patients who are at risk of skeletal growth suppression due to chronic methotrexate chemotherapy.

  12. CXCL13 Promotes the Effect of Bone Marrow Mesenchymal Stem Cells (MSCs on Tendon-Bone Healing in Rats and in C3HIOT1/2 Cells

    Directory of Open Access Journals (Sweden)

    Feng Tian

    2015-01-01

    Full Text Available Objectives: Mesenchymal stem cells (MSCs are potential effective therapy for tissue repair and bone regeneration. In present study, the effects of CXC chemokine ligand-13 (CXCL13 were evaluated on tendon-bone healing of rats. Methods: Tendon bone healing of the rat model was established and biomechanical testing was performed at 2, 4, 8 weeks after surgery. Murine mesenchymal cell line (C3HIOT1/2 cells was cultured. The expression of miRNA-23a was detected by real-time PCR. The protein expression of ERK1/2, JNK and p38 was detected by western blotting. MiR-23a mimic and inhibitor were used to overexpress or silence the expression of miR-23a. Results: MSCs significantly elevated the levels of ultimate load to failure, stiffness and stress in specimens of rats, the effects of which were enhanced by CXCL13. The expression of miR-23a was down-regulated and the protein of ERK1/2 level was up-regulated by CXCL13 treatment in both in vivo and in vitro experiments. ERK1/2 expression was elevated by overexpression of miR-23a and reduced by miR-23a inhibitor. Conclusions: These findings revealed that CXCL13 promoted the tendon-bone healing in rats with MSCs treatment, and implied that the activation of ERK1/2 via miR-23a was involved in the process of MSCs treated bone regeneration.

  13. The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

    OpenAIRE

    Javad Baharara; Elaheh Amini; Mohammad Amin Kerachian; Mozhgan Soltani

    2014-01-01

    Objective(s): Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concentration of extract. After 21 days, Alizarin red staining, alkaline phosphatase assay and RT-PCR were ...

  14. Time and dose-dependent effects of Labisia pumila on the bone strength of postmenopausal osteoporosis rat model

    OpenAIRE

    Mohd Effendy, Nadia; Abdullah, Shahrum; Yunoh, Mohd Faridz Mod; Shuid, Ahmad Nazrun

    2015-01-01

    Background Post-menopausal osteoporosis has long been treated and prevented by estrogen replacement therapy (ERT). Despite its effectiveness, ERT is associated with serious adverse effects. Labisia pumila var. alata (LP) is a herb with potential as an alternative agent to ERT due to its phytoestrogenic, antioxidative and anti-inflammatory effects on bone. This study aimed to determine the effects of LP supplementation on bone biomechanical strength of postmenopausal osteoporosis rat model. Me...

  15. Effects of short-term swimming exercise on bone mineral density, geometry, and microstructural properties in sham and ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Foong Kiew Ooi

    2014-12-01

    Full Text Available Little information exists about the effects of swimming exercise on bone health in ovariectomized animals with estrogen deficiency, which resembles the postmenopausal state and age-related bone loss in humans. This study investigated the effects of swimming exercise on tibia and femur bone mineral density (BMD, geometry, and microstructure in sham and ovariectomized rats. Forty 3-month-old female rats were divided into four groups: sham operated-sedentary control (Sham-control, sham operated with swimming exercise group (Sham-Swim, ovariectomy-sedentary control (OVx-control, and ovariectomy and swimming exercise (OVx-Swim groups. Swimming sessions were performed by the rats 90 minutes/day for 5 days/week for a total of 8 weeks. At the end of the study, tibial and femoral proximal volumetric total BMD, midshaft cortical volumetric BMD, cross-sectional area, and cross-sectional moment of inertia (MOI, and bone microstructural properties were measured for comparison. Data were analyzed using one-way analysis of variance (ANOVA. The Sham-Swim group exhibited significantly (p < 0.05; one-way ANOVA greater values in bone geometry parameters, that is, tibial midshaft cortical area and MOI compared to the Sham-control group. However, no significant differences were observed in these parameters between the Ovx-Swim and Ovx-control groups. There were no significant differences in femoral BMD between the Sham-Swim and Sham-control groups. Nevertheless, the Ovx-Swim group elicited significantly (p < 0.05; one-way ANOVA higher femoral proximal total BMD and improved bone microstructure compared to the Ovx-Sham group. In conclusion, the positive effects of swimming on bone properties in the ovariectomized rats in the present study may suggest that swimming as a non- or low-weight-bearing exercise may be beneficial for enhancing bone health in the postmenopausal population.

  16. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    OpenAIRE

    Guo-yong Yu; Gui-zhou Zheng; Bo Chang; Qin-xiao Hu; Fei-xiang Lin; De-zhong Liu; Chu-cheng Wu; Shi-xin Du; Xue-dong Li

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic ...

  17. A Root-Based Combination Supplement Containing Pueraria lobata and Rehmannia glutinosa and Exercise Preserve Bone Mass in Ovariectomized Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Ok, Hyang Mok; Gebreamanuel, Meron Regu; Oh, Sang A; Jeon, Hyejin; Lee, Won Jun; Kwon, Oran

    2015-12-01

    The aim of this study was to evaluate the effects of a supplement containing Pueraria lobata/Rehmannia glutinosa (PR) root extracts on bone turnover in ovariectomized (OVX) rats (a model for postmenopausal osteoporosis). Female Sprague-Dawley rats (8 weeks old) were randomized into eight groups: sham-operated rats with low-fat control diet + vehicle, OVX rats with low-fat control diet + vehicle, OVX rats with high-fat diet (HFD) + vehicle, OVX rats with HFD + vehicle + exercise, OVX rats with HFD + PR (400 mg/kg body weight/day p.o.), OVX rats with HFD + PR + exercise, OVX rats with HFD + 17β-estradiol (0.5 mg/kg body weight/day p.o.), OVX rats with HFD + 17β-estradiol + exercise. Bone microarchitecture, bone turnover markers (e.g., plasma alkaline phosphatase and osteocalcin), expressions of osteogenic and resorptive gene markers in the bone were measured. Eight weeks of PR and/or aerobic exercise improved cortical microarchitecture of the femur and decreased markers of bone turnover and expression of skeletal osteoclastogenic genes in the femur. PR supplementation combined with exercise preserved bone loss induced by estrogen deficiency and should be investigated further as an alternative to hormone replacement therapy for preventing osteoporosis in postmenopausal women. PMID:26319677

  18. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    Science.gov (United States)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone

  19. Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats.

    Science.gov (United States)

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2016-07-01

    Many adolescents engage in heavy alcohol use. Limited research in humans indicates that adolescent alcohol use predicts adult tobacco use. The present study investigated whether adolescent intermittent ethanol (AIE) exposure alters nicotine sensitivity in adulthood. Adolescent male Wistar rats (postnatal day 28-53) were exposed to AIE exposure that consisted of 5 g/kg of 25 percent ethanol three times per day in a 2 days on/2 days off regimen. Control rats received water with the same exposure regimen. In adulthood, separate groups of rats were tested for nicotine intravenous self-administration (IVSA), drug discrimination and conditioned taste aversion (CTA). The dose-response function for nicotine IVSA under a fixed-ratio schedule of reinforcement was similar in AIE-exposed and control rats. However, AIE-exposed rats self-administered less nicotine at the lowest dose, suggesting that low-dose nicotine was less reinforcing in AIE-exposed, compared with control rats. AIE-exposed rats self-administered less nicotine under a progressive-ratio schedule, suggesting decreased motivation for nicotine after AIE exposure. The discriminative stimulus effects of nicotine were diminished in AIE-exposed rats compared with control rats. No group differences in nicotine CTA were observed, suggesting that AIE exposure had no effect on the aversive properties of nicotine. Altogether, these results demonstrate that AIE exposure decreases sensitivity to the reinforcing, motivational and discriminative properties of nicotine while leaving the aversive properties of nicotine unaltered in adult rats. These findings suggest that drinking during adolescence may result in decreased sensitivity to nicotine in adult humans, which may in turn contribute to the higher rates of tobacco smoking. PMID:25950618

  20. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com; Jiang, Shengdan, E-mail: jiangsd@126.com; Jiang, Leisheng, E-mail: leisheng_jiang@126.com

    2014-08-15

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative str