WorldWideScience

Sample records for adult offspring mice

  1. The effects of breeding protocol in C57BL/6J mice on adult offspring behaviour.

    Directory of Open Access Journals (Sweden)

    Claire J Foldi

    Full Text Available Animal experiments have demonstrated that a wide range of prenatal exposures can impact on the behaviour of the offspring. However, there is a lack of evidence as to whether the duration of sire exposure could affect such outcomes. We compared two widely used methods for breeding offspring for behavioural studies. The first involved housing male and female C57Bl/6J mice together for a period of time (usually 10-12 days and checking for pregnancy by the presence of a distended abdomen (Pair-housed; PH. The second involved daily introduction of female breeders to the male homecage followed by daily checks for pregnancy by the presence of vaginal plugs (Time-mated; TM. Male and female offspring were tested at 10 weeks of age on a behavioural test battery including the elevated plus-maze, hole board, light/dark emergence, forced swim test, novelty-suppressed feeding, active avoidance and extinction, tests for nociception and for prepulse inhibition (PPI of the acoustic startle response. We found that length of sire exposure (LSE had no significant effects on offspring behaviour, suggesting that the two breeding protocols do not differentially affect the behavioural outcomes of interest. The absence of LSE effects on the selected variables examined does not detract from the relevance of this study. Information regarding the potential influences of breeding protocol is not only absent from the literature, but also likely to be of particular interest to researchers studying the influence of prenatal manipulations on adult behaviour.

  2. Maternal preconceptional nutrition leads to variable fat deposition and gut dimensions of adult offspring mice (C57BL/6JBom)

    DEFF Research Database (Denmark)

    Mortensen, Elna Louise Krogh; Wang, Tobias; Malte, H.;

    2010-01-01

    Background:   Maternal nutrition during pregnancy or lactation may affect the chance of offspring becoming obese as adults, but little is known regarding the possible role of maternal nutrition before conception. In this study, we investigate how variable protein and carbohydrate content...... of the diet consumed before pregnancy affects fat deposition and gut dimensions of offspring mice. Methods:   Eight-week-old female mice (C57BL/6JBom) were fed isocaloric low protein (8.4% protein; LP), standard protein (21.5% protein; ST) or high protein (44.2% protein; HP) diets. After 8 weeks of feeding...... taken. Results:   Fat deposition of the offspring was significantly affected by preconceptional maternal nutrition and the effects differed between sexes. Male offspring deposited most fat when mothers were fed the LP diet, whereas female offspring deposited most fat when mothers were fed the ST diet...

  3. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R; Newman, John W; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  4. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  5. Embryonic exposure to dimethoate and/or deltamethrin impairs sexual development and programs reproductive success in adult male offspring mice.

    Science.gov (United States)

    Ben Slima, A; Ben Abdallah, F; Keskes-Ammar, L; Mallek, Z; El Feki, A; Gdoura, R

    2012-05-01

    Pesticides can be toxic to desirable plants and animals, including humans. The aim of this study was to investigate the reproductive effects of low doses of pesticides on male offspring of exposed pregnant mice. Three groups of five female mice were treated daily by oral gavage with dimethoate (5 mg kg(-1) per day), deltamethrin (5 mg kg(-1) per day) and their mixture at 5 mg kg(-1) per day from day 3 to day 21 of pregnancy. Fertility, sexual behaviour and a number of reproductive endpoints, such as organ weights, sperm evaluations and testicular histology, were examined on four adult male offspring of exposed pregnant mice. When compared with control, a dose of deltamethrin 5 mg kg j(-1) causes a decrease in the absolute and relative weight of the testes of exposed mice and it affects their fertility by reducing the density, mobility and vitality of sperm and increasing the number of abnormal forms of these cells (P ≤ 0.01). The same results were obtained in mice exposed to a dose of 5 mg kg j(-1) combination of dimethoate and deltamethrin. This study demonstrated that deltamethrin and combination of dimethoate and deltamethrin caused a decrease in the absolute and relative weight of the testes, which affected the sperm parameters of male offspring of exposed mice to a low dose of these pesticides during pregnancy.

  6. Behavioural disturbances in adult CD-1 mice and absence of effects on their offspring upon SO{sub 2} exposure

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzi, S. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Dell`Omo, G. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Fiore, M. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Chiarotti, F. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Bignami, G. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Alleva, E. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy)

    1996-09-01

    Adult male and female CD-1 mice were exposed to different SO{sub 2} concentrations (0, 5, 12, or 30 ppm) for 24 days, from 9 days before the formation of breeding pairs to pregnancy day 12-14. This exposure was near-continuous, covering about 80% of the total time. The offspring of exposed dams were cross-fostered shortly after birth to dams not previously exposed. Videorecordings of the adult subjects` activities during the first hour after the start of exposure showed marked, acute transient behavioural effects such as increase of rearing and social interactions, which were more pronounced in males than in females. Subsequent activity tests on exposure days 3, 6, and 9 showed subacute effects including a dose-dependent decrease of grooming and an increase of digging as well as changes in chamber crossing and wall-rearing which were not dose-dependent; most of these effects were more pronounced in females than in males. Food and water consumption and body weight declined in a dose-dependent fashion only after the formation of breeding pairs, when consummatory responses were enhanced in the controls. Reproductive performance as well as postnatal somatic and neurobehavioural development of the offspring (the latter assessed by an observational test battery including eight reflexes and responses) were not affected by SO{sub 2}. Passive avoidance acquisition and retention at the young adult stage (60 days) and response changes produced by repeated apparatus exposure in non-reinforced animals (habituation) were similarly unaffected. The data indicate that SO{sub 2} produces transient, acute behavioural disturbances and more subtle subacute response changes in adult mice which may be due, at least partly, to a functional interference with olfactory modulation of mouse behaviour. The absence of effects on reproductive performance and neurobehavioural development of the offspring suggests that the risk to the developing organism from gestational SO{sub 2} exposure is low.

  7. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    Directory of Open Access Journals (Sweden)

    Juan Andrés Orellana

    2014-12-01

    Full Text Available Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins (hemichannels and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of Cx43 and Panx1 unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 hemichannels in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of iNOS, COX2 and EP1, P2X7 and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced ATP and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke

  8. The scent of stress: environmental challenge in the peripartum environment of mice affects emotional behaviours of the adult offspring in a sex-specific manner.

    Science.gov (United States)

    Lerch, S; Dormann, C; Brandwein, C; Gass, P; Chourbaji, S

    2016-06-01

    Early adverse experiences are known to influence the risk of developing psychiatric disorders later. To shed further light on the development of laboratory mice, we systematically examined the influence of a prenatal or postnatal olfactory stressor, namely unfamiliar male mouse faeces, presented to pregnant or nursing mouse dams. Maternal and offspring behaviours were then examined. Maternal behaviours relative to controls revealed changes in nest building by the pregnant dams exposed to the unfamiliar faeces. There were no differences among groups on pup retrieval or exploration by the dams. Behavioural phenotyping of male and female offspring as adults included measures of exploration, anxiety, social and depressive-like behaviours. Additionally, serum corticosterone was assessed as a marker of physiological stress response. Group differences were dependent on the sex of the adult offspring. Males raised by dams that were stressed during pregnancy presented elevated emotionality as indicated by increased numbers of faecal boluses in the open field paradigm. Consistent with the effects of prenatal stress on the males only the prenatally stressed females had higher body weights than their respective controls. Indeed, males in both experimental groups had higher circulating corticosterone levels. By contrast, female offspring of dams exposed to the olfactory stressor after parturition were more anxious in the O-maze as indicated by increased latencies in entering the exposed areas of the maze. These findings emphasize the necessity for researchers to consider the pre- and postnatal environments, even of mice with almost identical genetic backgrounds, in designing experiments and interpreting their data.

  9. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet.

    Science.gov (United States)

    Orellana, Juan A; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  10. Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice

    Science.gov (United States)

    Hokke, Stacey; Puelles, Victor G.; Armitage, James A.; Fong, Karen; Bertram, John F.; Cullen-McEwen, Luise A.

    2016-01-01

    Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation. HFD dams were overweight and glucose intolerant prior to mating but not in late gestation. Offspring of NFD and HFD dams had similar body weights at embryonic day (E)15.5, E18.5 and at postnatal day (PN)21. HFD offspring had normal ureteric tree development and nephron number at E15.5. However, using unbiased stereology, kidneys of HFD offspring were found to have 20–25% more nephrons than offspring of NFD dams at E18.5 and PN21. Offspring of HFD dams with body weight and glucose profiles similar to NFD dams prior to pregnancy also had an elevated nephron endowment. At 9 months of age, adult offspring of HFD dams displayed mild fasting hyperglycaemia but similar body weights to NFD offspring. Renal function and morphology, measured by transcutaneous clearance of FITC-sinistrin and stereology respectively, were normal. This study demonstrates that maternal fat feeding augments offspring nephron endowment with no long-term consequences for offspring renal health. Future studies assessing the effects of a chronic stressor on adult mice with augmented nephron number are warranted, as are studies investigating the molecular mechanisms that result in high nephron endowment. PMID:27547968

  11. Perinatal exercise improves glucose homeostasis in adult offspring.

    Science.gov (United States)

    Carter, Lindsay G; Lewis, Kaitlyn N; Wilkerson, Donald C; Tobia, Christine M; Ngo Tenlep, Sara Y; Shridas, Preetha; Garcia-Cazarin, Mary L; Wolff, Gretchen; Andrade, Francisco H; Charnigo, Richard J; Esser, Karyn A; Egan, Josephine M; de Cabo, Rafael; Pearson, Kevin J

    2012-10-15

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P wheels (P nursing can enhance long-term glucose homeostasis in offspring.

  12. Variations in the postnatal maternal environment in mice: effects on maternal behaviour and behavioural and endocrine responses in the adult offspring.

    Science.gov (United States)

    Coutellier, Laurence; Friedrich, Anne-Christin; Failing, Klaus; Würbel, Hanno

    2008-01-28

    According to the maternal mediation hypothesis, brain and behavioural development in rodents is affected by environment-dependent variations in maternal care. Thus, it has been shown that early handling results in reduced behavioural and neuroendocrine responses to stressors and that these effects are associated with increased maternal care received during infancy. To investigate this further in mice, we chose a less artificial paradigm that is not confounded by human manipulation and reflects a more natural form of early environmental variation. We housed lactating C57BL/6 dams and their litters in cage systems composed of a nest cage (NC) and a foraging cage (FC) connected by a tunnel, and varied the dams' access to food by providing food either in the NC (NC dams) or FC (FC dams) until postnatal day 14. FC dams were more frequently observed in the FC than NC dams, and although the frequency of the dams being in physical contact with the pups did not differ between the two treatments, FC dams showed lower levels of active nursing than NC dams during the first week of lactation. These environment-dependent variations in maternal behaviour had sex-specific effects on the adult offspring's behavioural and HPA responses to stressors and altered their social behaviour in the home cage, with NC offspring showing higher levels of socio-positive behaviours than FC offspring. These results provide further independent evidence for the maternal mediation hypothesis and demonstrate that even subtle variations of the maternal environment can affect maternal care and induce persistent changes in offspring phenotype.

  13. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring.

    Science.gov (United States)

    Ornellas, Fernanda; Souza-Mello, Vanessa; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2016-01-01

    We aimed to evaluate the effects of maternal and/or paternal obesity on offspring body mass, leptin signaling, appetite-regulating neurotransmitters and local inflammatory markers. C57BL/6 mice received standard chow (SC, lean groups) or high-fat diet (HF, obese groups) starting from one month of age. At three months, HF mice became obese relative to SC mice. They were then mated as follows: lean mother and lean father, lean mother and obese father, obese mother and lean father, and obese mother and obese father. The offspring received the SC diet from weaning until three months of age, when they were sacrificed. In the offspring, paternal obesity did not lead to changes in the Janus kinase (JAK)/signal transducer and activation of the transcription (STAT) pathway or feeding behavior but did induce hypothalamic inflammation. On the other hand, maternal obesity resulted in increased weight gain, hyperleptinemia, decreased leptin OBRb receptor expression, JAK/STAT pathway impairment, and increased SOCS3 signaling in the offspring. In addition, maternal obesity elevated inflammatory markers and altered NPY and POMC expression in the hypothalamus. Interestingly, combined parental obesity exacerbated the deleterious outcomes compared to single-parent obesity. In conclusion, while maternal obesity is known to program metabolic changes and obesity in offspring, the current study demonstrated that obese fathers induce hypothalamus inflammation in offspring, which may contribute to the development of metabolic syndromes in adulthood.

  14. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring

    Science.gov (United States)

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which

  15. Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice

    DEFF Research Database (Denmark)

    Kagawa, Norika; Kuwayama, Masashige; Nakata, Kumiko

    2007-01-01

    transplanted beneath the kidney capsule of severe combined immunodeficient (SCID) mice. Within 10 days of in-vivo culture, 138 full size oocytes developed from the 456 transplanted pre-antral follicles. In-vivo growth of follicles was followed by in-vitro oocyte maturation, in-vitro fertilization...

  16. Dietary early-life exposure to contaminated eels does not impair spatial cognitive performances in adult offspring mice as assessed in the Y-maze and the Morris water maze.

    Science.gov (United States)

    Dridi, Imen; Leroy, Delphine; Guignard, Cédric; Scholl, Georges; Bohn, Torsten; Landoulsi, Ahmed; Thomé, Jean-Pierre; Eppe, Gauthier; Soulimani, Rachid; Bouayed, Jaouad

    2014-12-01

    Many environmental contaminants are introduced via the diet and may act as neurotoxins and endocrine disrupters, especially influencing growing organisms in early life. The purpose of this study was to examine whether dietary exposure of dams to fish naturally contaminated with xenobiotics, especially with polychlorinated biphenyls (PCBs) and heavy metals (e.g., mercury and lead), resulted in cognitive function deficits in adult offspring mice. Daily, four groups of dams (n = 10/group) ingested standard diet plus paste with/without eels, during gestation and lactation, from gestational day (GD) six until post natal day (PND) 21 (weaning). Dams orally ingested a standardized amount of eel (0.8 mg kg(-1) d(-1)) containing the six non-dioxin-like (NDL) PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153, and 180) at 0, 85, 216, and 400 ng kg(-1) d(-1). Results showed that early-life exposure to contaminated eels did not (compared to non-exposed controls) impair immediate working memory in the Y-maze in the offspring assessed at PND 38. Furthermore, it did not significantly impact spatial learning and retention memory as measured in the Morris water maze in adult offspring mice (PND 120-123). Our results suggest that perinatal exposure to contaminated eels does not affect spatial cognitive performances, as assessed by the Y-maze and Morris water maze at adult age. Adverse effects of xenobiotics reported earlier might be camouflaged by beneficial eel constituents, such as n-3 fatty acids. However, additional studies are needed to differentiate between potential positive and negative effects following consumption of food items both rich in nutrients and contaminants.

  17. Viable offspring obtained from Prm1-deficient sperm in mice.

    Science.gov (United States)

    Takeda, Naoki; Yoshinaga, Kazuya; Furushima, Kenryo; Takamune, Kazufumi; Li, Zhenghua; Abe, Shin-Ichi; Aizawa, Shin-Ichi; Yamamura, Ken-Ichi

    2016-06-02

    Protamines are expressed in the spermatid nucleus and allow denser packaging of DNA compared with histones. Disruption of the coding sequence of one allele of either protamine 1 (Prm1) or Prm2 results in failure to produce offspring, although sperm with disrupted Prm1 or Prm2 alleles are produced. Here, we produced Prm1-deficient female chimeric mice carrying Prm1-deficient oocytes. These mice successfully produced Prm1(+/-) male mice. Healthy Prm1(+/-) offspring were then produced by transferring blastocysts obtained via in vitro fertilization using zona-free oocytes and sperm from Prm1(+/-) mice. This result suggests that sperm lacking Prm1 can generate offspring despite being abnormally shaped and having destabilised DNA, decondensed chromatin and a reduction in mitochondrial membrane potential. Nevertheless, these mice showed little derangement of expression profiles.

  18. Viable offspring obtained from Prm1-deficient sperm in mice

    OpenAIRE

    Naoki Takeda; Kazuya Yoshinaga; Kenryo Furushima; Kazufumi Takamune; Zhenghua Li; Shin-ichi Abe; Shin-ichi Aizawa; Ken-ichi Yamamura

    2016-01-01

    Protamines are expressed in the spermatid nucleus and allow denser packaging of DNA compared with histones. Disruption of the coding sequence of one allele of either protamine 1 (Prm1) or Prm2 results in failure to produce offspring, although sperm with disrupted Prm1 or Prm2 alleles are produced. Here, we produced Prm1-deficient female chimeric mice carrying Prm1-deficient oocytes. These mice successfully produced Prm1 +/− male mice. Healthy Prm1 +/− offspring were then produced by transferr...

  19. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring.

    Science.gov (United States)

    Akitake, Yoshiharu; Katsuragi, Shinji; Hosokawa, Masato; Mishima, Kenichi; Ikeda, Tomoaki; Miyazato, Mikiya; Hosoda, Hiroshi

    2015-01-01

    Intrauterine growth retardation (IUGR) occurs in 3% to 7% of all pregnancies. Recent human studies have indicated that neurodevelopmental disabilities, learning disorders, memory impairment, and mood disturbance are common in IUGR offspring. However, the interactions between IUGR and neurodevelopmental disorders are unclear because of the wide range of causes of IUGR, such as maternal malnutrition, placental insufficiency, pregnancy toxemia, and fetal malformations. Meanwhile, many studies have shown that moderate food restriction enhances spatial learning and improves mood disturbance in adult humans and animals. To date, the effects of maternal moderate food restriction on fetal brain remain largely unknown. In this study, we hypothesized that IUGR would be caused by even moderate food restriction in pregnant females and that the offspring would have neurodevelopmental disabilities. Mid-pregnant mice received moderate food restriction through the early lactation period. The offspring were tested for aspects of physical development, behavior, and neurodevelopment. The results showed that moderate maternal food restriction induced IUGR. Offspring had low birth weight and delayed development of physical and coordinated movement. Moreover, IUGR offspring exhibited mental disabilities such as anxiety and poor cognitive function. In particular, male offspring exhibited significantly impaired cognitive function at 3 weeks of age. These results suggested that a restricted maternal diet could be a risk factor for developmental disability in IUGR offspring and that male offspring might be especially susceptible.

  20. Cognitive function in adult offspring of women with Type 1 diabetes

    DEFF Research Database (Denmark)

    Clausen, Tine Dalsgaard; Mortensen, E L; Schmidt, L;

    2011-01-01

    Maternal diabetes may affect offspring cognitive function. The objective of the study was to evaluate cognitive function and potential predictors hereof in adult offspring of women with Type 1 diabetes.......Maternal diabetes may affect offspring cognitive function. The objective of the study was to evaluate cognitive function and potential predictors hereof in adult offspring of women with Type 1 diabetes....

  1. Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice.

    Science.gov (United States)

    Ashbrook, David George; Gini, Beatrice; Hager, Reinmar

    2015-12-23

    Conflict over parental investment between parent and offspring is predicted to lead to selection on genes expressed in offspring for traits influencing maternal investment, and on parentally expressed genes affecting offspring behaviour. However, the specific genetic variants that indirectly modify maternal or offspring behaviour remain largely unknown. Using a cross-fostered population of mice, we map maternal behaviour in genetically uniform mothers as a function of genetic variation in offspring and identify loci on offspring chromosomes 5 and 7 that modify maternal behaviour. Conversely, we found that genetic variation among mothers influences offspring development, independent of offspring genotype. Offspring solicitation and maternal behaviour show signs of coadaptation as they are negatively correlated between mothers and their biological offspring, which may be linked to costs of increased solicitation on growth found in our study. Overall, our results show levels of parental provisioning and offspring solicitation are unique to specific genotypes.

  2. Bone loss in adult offspring induced by low-dose exposure to teratogens.

    Science.gov (United States)

    Torchinsky, Arkady; Mizrahi, Limor; Savion, Shoshana; Shahar, Ron; Toder, Vladimir; Kobyliansky, Eugene

    2012-05-01

    Maternal malnutrition during pregnancy was shown by numerous studies to result in the birth of offspring exhibiting altered bone characteristics, which are indicative of bone loss. We hypothesized that not only maternal malnutrition but also some developmental toxicants (teratogens) given at a dose inducing neither structural anomalies nor growth retardation can detrimentally affect skeletal health in adult offspring. To check this hypothesis, pregnant mice were exposed to a single injection of 5-aza-2-deoxycytidine (5-AZA) (a teratogen capable of inducing phocomelia of the hind limbs) at a sub-threshold teratogenic dose. Micro-computed tomography scanning revealed that femora of 5-month-old male offspring exposed in uterus to 5-AZA had trabecular microarchitecture indicative of bone loss. Furthermore, exposure to 5-AZA increased the susceptibility of offspring to postnatal chronic mild stress, which has been shown to induce bone loss in mice. While exploring possible mechanisms underlying this phenomenon, we observed that the expression of some microRNAs, which have been demonstrated as regulators of key osteoblastogenic genes, was altered in hind limb buds of embryos exposed to 5-AZA. Furthermore, the expression of receptor activator of nuclear factor kappa B ligand (RANKL) in femoral stromal/osteoblastic cells of 5-month-old offspring of 5-AZA-treated females was found to be increased. Collectively, this study implies for the first time that single low-dose exposure to a teratogen can induce bone loss in adult offspring, possibly via alteration of embryonic microRNAs and RANKL expression.

  3. Mother's exercise during pregnancy programmes vasomotor function in adult offspring.

    Science.gov (United States)

    Bahls, Martin; Sheldon, Ryan D; Taheripour, Pardis; Clifford, Kerry A; Foust, Kallie B; Breslin, Emily D; Marchant-Forde, Jeremy N; Cabot, Ryan A; Harold Laughlin, M; Bidwell, Christopher A; Newcomer, Sean C

    2014-01-01

    The intrauterine environment is influenced by maternal behaviour and programmes atherosclerotic disease susceptibility in offspring. The aim of this investigation was to test the hypothesis that mothers' exercise during pregnancy improves endothelial function in 3-, 5- and 9-month-old porcine offspring. The pregnant sows in the exercise group ran for an average of 39.35 ± 0.75 min at 4.81 ± 0.35 km h(-1) each day for 5 days per week for all but the last week of gestation. This induced a significant reduction in resting heart rate (exercised group, 89.3 ± 3.5 beats min(-1); sedentary group, 102.1 ± 3.1 beats min(-1); P < 0.05) but no significant differences in gestational weight gain (65.8 ± 2.1 versus 63.3 ± 1.9%). No significant effect on bradykinin-induced vasorelaxation with and without l-NAME was observed. A significant main effect was identified on sodium nitroprusside-induced vasorelaxation (P = 0.01), manifested by a reduced response in femoral arteries of all age groups from exercised-trained swine. Nitric oxide signalling was not affected by maternal exercise. Protein expression of MYPT1 was reduced in femoral arteries from 3-month-old offspring of exercised animals. A significant interaction was observed for PPP1R14A (P < 0.05) transcript abundance and its protein product CPI-17. In conclusion, pregnant swine are able to complete an exercise-training protocol that matches the current recommendations for pregnant women. Gestational exercise is a potent stimulus for programming vascular smooth muscle relaxation in adult offspring. Specifically, exercise training for the finite duration of pregnancy decreases vascular smooth muscle responsiveness in adult offspring to an exogenous nitric oxide donor.

  4. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR γ methylation in offspring, grand-offspring mice.

    Directory of Open Access Journals (Sweden)

    Zhonghai Yan

    Full Text Available RATIONALE: Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. OBJECTIVES: We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. MATERIALS AND METHODS: Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR γ, CCAAT/enhancer-binding proteins (C/EBP α, cyclooxygenase (Cox-2, fatty acid synthase (FAS and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. FINDINGS: Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. CONCLUSIONS: Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny.

  5. Prenatal exposure to bisphenol A disrupts adrenal steroidogenesis in adult mouse offspring.

    Science.gov (United States)

    Medwid, Samantha; Guan, Haiyan; Yang, Kaiping

    2016-04-01

    The present study sought to determine if prenatal exposure to bisphenol A (BPA) alters adrenal steroidogenesis in adult offspring. Pregnant mice were exposed to BPA (25mg BPA/kg food pellet) via diet from day 7 to the end of pregnancy. At eight weeks of age, offsprings were sacrificed, blood samples and adrenal glands were collected for hormone assays and western blot analysis, respectively. We found that: (1) BPA increased adrenal gland weight in both males and females; (2) although BPA elevated plasma corticosterone levels in both sexes, it stimulated the expression of StAR and cyp11A1, the two rate-limiting factors in the steroidogenic pathway, only in female adrenal glands; and interestingly (3) BPA did not alter plasma ACTH levels or adrenal expression of the key steroidogenic transcription factor SF-1 in either sex. Taken together, the present study provides novel insights into the long-term consequences of developmental BPA exposure on adrenal steroidogenesis.

  6. Protective effects of maternal methyl donor supplementation on adult offspring of high fat diet-fed dams.

    Science.gov (United States)

    Jiao, Fei; Yan, Xiaoshuang; Yu, Yuan; Zhu, Xiao; Ma, Ying; Yue, Zhen; Ou, Hailong; Yan, Zhonghai

    2016-08-01

    Obesity has become a global public health problem associated with metabolic dysfunction and chronic disorders. It has been shown that the risk of obesity and the DNA methylation profiles of the offspring can be affected by maternal nutrition, such as high-fat diet (HFD) consumption. The aim of this study was to investigate whether metabolic dysregulation and physiological abnormalities in offspring caused by maternal HFD can be alleviated by the treatment of methyl donors during pregnancy and lactation of dams. Female C57BL/6 mice were assigned to specific groups and given different nutrients (control diet, Control+Met, HFD and HFD+Met) throughout gestation and lactation. Offspring of each group were weaned onto a control diet at 3 weeks of age. Physiological (weight gain and adipose composition) and metabolic (plasma biochemical analyses) outcomes were assessed in male and female adult offspring. Expression and DNA methylation profiles of obesogenic-related genes including PPAR γ, fatty acid synthase, leptin and adiponectin were also detected in visceral fat of offspring. The results showed that dietary supplementation with methyl donors can prevent the adverse effects of maternal HFD on offspring. Changes in the expression and DNA methylation of obesogenic-related genes indicated that epigenetic regulation may contribute to the effects of maternal dietary factors on offspring outcomes.

  7. Vasoactive intestinal peptide antagonist treatment during mouse embryogenesis impairs social behavior and cognitive function of adult male offspring.

    Science.gov (United States)

    Hill, Joanna M; Cuasay, Katrina; Abebe, Daniel T

    2007-07-01

    Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.

  8. Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring.

    Directory of Open Access Journals (Sweden)

    Matthew V Cannon

    Full Text Available AIMS: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we characterize the phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic changes induced by maternal diet in adult offspring. METHODS: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart. We then measured DNA methylation patterns in liver at selected loci and throughout the genome. RESULTS: Maternal diet had a significant effect on the body weight of the offspring when they were fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. We did not detect any effect of the maternal diet on DNA methylation in the liver. CONCLUSIONS: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver.

  9. Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism in adult offspring.

    Directory of Open Access Journals (Sweden)

    Hin T Wan

    Full Text Available Perfluoroalkyl acids (PFAAs are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0 were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21. To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders.

  10. Japanese macaque (Macaca fuscata) mothers huddle with their young offspring instead of adult females for thermoregulation.

    Science.gov (United States)

    Ueno, Masataka; Nakamichi, Masayuki

    2016-08-01

    It is unclear whom animals select to huddle with for thermoregulation. In this study, we investigated whom Japanese macaque (Macaca fuscata) mothers huddled with-their young offspring or other adult group members-when there is need for thermoregulation. We used a focal-animal sampling method, targeting 17 females at Katsuyama, Okayama Prefecture, Japan. A majority of huddling among adult females was recorded during winter season (December, January, and February). Females who had young (0- or 1-year-old) offspring huddled less frequently with other adult females compared to females who did not have young offspring in winter. However, including young offspring, the frequency of huddling with any other individuals did not differ by whether females had young offspring. Moreover, the females who did not have young offspring huddled with other adult females more often in cloudy than in sunny weather during winter season. In contrast, females who had young offspring increased huddling with their young offspring in cloudy than in sunny weather, but did not do so with other adult females. This study indicates that Japanese macaque mothers huddle with their young offspring instead of other adult females when there is need for thermoregulation.

  11. Trypanosoma cruzi infection in offspring born to chagasic C3H/He mice

    Directory of Open Access Journals (Sweden)

    Silvana Marques de Araújo

    1996-04-01

    Full Text Available This study reports the effects of Trypanosoma cruzi infection induced in C3H/He male and female mice born to chagasic mice. An experimental model was established infecting female C3H/He mice with a low virulent T. cruzi clone. In this model, mating, fertilization, pregnancy evolution and delivery was carried out successfully. The offspring was infected at four, six and eigth weeks of age. The results showed that the offspring born to chagasic mothers present decreased resistance to acquired T. cruzi infection. This decreased resistance was expressed by higher levels of parasitaemia and higher mortality rates in offspring born to chagasic mothers than in controls. Age and sex were shown to be important factors of this phenomenon. The results suggest that maternal immune system products can modulate the immune response of the offspring.

  12. Autobiographical memory in adult offspring of traumatized parents with and without posttraumatic stress symptoms.

    Science.gov (United States)

    Wittekind, Charlotte E; Jelinek, Lena; Moritz, Steffen; Muhtz, Christoph; Berna, Fabrice

    2016-08-30

    The present study examined potential transgenerational effects of trauma on autobiographical memory in adult offspring of elderly participants with and without PTSD symptoms who were exposed to an early trauma during childhood. As traumatization is associated with reduced memory specificity for past events, we hypothesized that offspring of traumatized parents might be exposed to a less elaborative narrative style, which, in turn, might result in less specific autobiographical memories in the offspring. Results show that autobiographical memory specificity did not differ significantly between adult offspring of traumatized elderly participants with PTSD symptoms, without PTSD symptoms, and non-traumatized elderly participants.

  13. Comprehensive Survey of Intestinal Microbiota Changes in Offspring of Human Microbiota-Associated Mice

    Science.gov (United States)

    von Klitzing, Eliane; Öz, Fulya; Ekmekciu, Ira; Escher, Ulrike; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species. PMID:28386472

  14. Maternal high fat feeding and gestational dietary restriction: effects on offspring body weight, food intake and hypothalamic gene expression over three generations in mice.

    Science.gov (United States)

    Giraudo, Silvia Q; Della-Fera, Mary Anne; Proctor, Lindsey; Wickwire, Kathie; Ambati, Suresh; Baile, Clifton A

    2010-11-01

    Excessive gestational weight gain and maternal obesity have both been associated with increased incidence of obesity and metabolic disorder in offspring in both humans and animal models. The objectives of this study were to determine (1) whether mild gestational food restriction during the third trimester (GFR) would alter food intake and growth parameters of offspring, (2) whether effects of GFR depended on diet (high fat [HF] vs chow), (3) whether effects of excessive gestational weight gain (WG) would become magnified across generations, and (4) whether diet and GFR would alter hypothalamic gene expression in adult offspring. Three generations of female C57BL/6 mice were fed chow or HF diet, mated at 11 weeks of age and assigned to ad libitum feeding or 25% GFR. Offspring were fed the same diet as their mothers. Results showed (1) maternal gestational WG was positively correlated with offspring WG. (2) HF offspring weighed less (p<0.01) at weaning (WWT) but gained more during the 8 weeks after weaning than chow-fed offspring (p<0.05), resulting in higher final body weights (BW) (p<0.01). (3) HF males from GFR mothers had higher WWT (p<0.05), but subsequent WG and final BW were less (p<0.05) compared to males from ad lib mothers. (4) In the HF group, GFR also resulted in decreased FI (p<0.05) and FE (p<0.07) in offspring, compared to offspring from ad lib mothers. (5) In generation 3, hypothalamic expression of tyrosine hydroxylase was lower in HF males from GFR mothers compared to HF males from ad lib mothers (p<0.05). In conclusion, gender and maternal GFR had independent effects on growth and FI, and hypothalamic gene expression was dependent on both gender and maternal GFR in HF offspring. Even mild food restriction of obese mothers during pregnancy may have beneficial effects in reducing the risk or degree of obesity in offspring.

  15. Interaction between maternal and offspring diet to impair vascular function and oxidative balance in high fat fed male mice.

    Directory of Open Access Journals (Sweden)

    Christopher Torrens

    Full Text Available AIMS: To determine the impact of maternal and post-weaning consumption of a high fat diet on endothelium-dependent vasorelaxation and redox regulation in adult male mouse offspring. METHODS: Female C57BL6J mice were fed an obesogenic high fat diet (HF, 45% kcal fat or standard chow (C, 21% kcal fat pre-conception and throughout pregnancy and lactation. Post-weaning, male offspring were continued on the same diet as their mothers or placed on the alternative diet to give 4 dietary groups (C/C, HF/C, C/HF and HF/HF which were studied at 15 or 30 weeks of age. RESULTS: There were significant effects of maternal diet on offspring body weight (p<0.004, systolic blood pressure (p = 0.026 and endothelium-dependent relaxation to ACh (p = 0.004 and NO production (p = 0.005 measured in the femoral artery. With control for maternal diet there was also an effect of offspring post-weaning dietary fat to increase systolic blood pressure (p<0.0001 and reduce endothelium-dependent relaxation (p = 0.022 and ACh-mediated NO production (p = 0.007. There was also a significant impact of age (p<0.005. Redox balance was perturbed, with altered regulation of vascular enzymes involved in ROS/NO signalling. CONCLUSIONS: Maternal consumption of a HF diet is associated with changes in vascular function and oxidative balance in the offspring of similar magnitude to those seen with consumption of a high fat diet post-weaning. Further, this disadvantageous vascular phenotype is exacerbated by age to influence the risk of developing obesity, raised blood pressure and endothelial dysfunction in adult life.

  16. Maternal Nutrient Restriction Predisposes Ventricular Remodeling in Adult Sheep Offspring

    OpenAIRE

    Ge, Wei; Hu, Nan; George, Lindsey A; Ford, Stephen P.; Peter W Nathanielsz; Wang, Xiaoming; Ren, Jun

    2013-01-01

    Maternal nutrient restriction during pregnancy is associated with the development of a “thrifty phenotype” in offspring, conferring increased prevalence of metabolic diseases in adulthood. To explore the possible mechanisms behind heart diseases in adulthood following maternal nutrient restriction, dams were fed a nutrient restricted (NR: 50%) or control (100%) diet from 28 to 78 d of gestation. Both groups were then fed 100% of requirements to lambing. At 6 yrs of age, female offspring of NR...

  17. Maternal Fructose Exposure Programs Metabolic Syndrome-Associated Bladder Overactivity in Young Adult Offspring

    Science.gov (United States)

    Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.

    2016-01-01

    Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194

  18. The Effects of Parental Health Shocks on Adult Offspring Smoking Behavior and Self-Assessed Health.

    Science.gov (United States)

    Darden, Michael; Gilleskie, Donna

    2016-08-01

    An important avenue for smoking deterrence may be through familial ties if adult smokers respond to parental health shocks. In this paper, we merge the Original Cohort and the Offspring Cohort of the Framingham Heart Study to study how adult offspring smoking behavior and subjective health assessments vary with elder parent smoking behavior and health outcomes. These data allow us to model the smoking behavior of adult offspring over a 30-year period contemporaneously with parental behaviors and outcomes. We find strong 'like father, like son' and 'like mother, like daughter' correlations in smoking behavior. We find that adult offspring significantly curtail their own smoking following an own health shock; however, we find limited evidence that offspring smoking behavior is sensitive to parent health, with the notable exception that women significantly reduce both their smoking participation and intensity following a smoking-related cardiovascular event of a parent. We also model the subjective health assessment of adult offspring as a function of parent health, and we find that women report significantly worse health following the smoking-related death of a parent. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    Science.gov (United States)

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.

  20. Increased Levels of C1q in the Prefrontal Cortex of Adult Offspring after Maternal Immune Activation: Prevention by 7,8-Dihydroxyflavone

    Science.gov (United States)

    Han, Mei; Zhang, Ji-chun; Hashimoto, Kenji

    2017-01-01

    Objective Prenatal infection is implicated in the etiology of schizophrenia. The objective of this paper is to study the role of complement protein C1q in the psychosis of adult offspring after maternal immune activation (MIA). In addition, effect of 7,8-dihydroxyflavone (7,8-DHF: a tropomyosin receptor kinase B [TrkB] agonist) was also examined. Methods Western blot analysis of C1q in the brain regions from adult offspring after prenatal poly(I:C) (5.0 mg/kg/day from E12 to E17) exposure was performed. 7,8-DHF or vehicle was given from 4 to 8-weeks old. Results Expression of C1q in the prefrontal cortex (PFC) of adult offspring from poly(I:C)-treated pregnant mice was significantly higher than that of control group. Early treatment with 7,8-DHF during juvenile and adolescent stages could prevent an increase of C1q in the PFC of adult offspring after MIA. Conclusion Therefore, it is likely that increased C1q expression in the frontal cortex may play a role in the behavioral abnormalities of adult offspring after MIA. Furthermore, supplementation with a TrkB agonist such as 7,8-DHF during the prodromal stage may have prophylactic effects on the behavioral abnormalities after MIA. PMID:28138113

  1. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning

    OpenAIRE

    2015-01-01

    Background Alpha linolenic acid (ALA, 18:3) in maternal diets has been shown to attenuate obesity associated insulin resistance (IR) in adult offspring in mice. The objective in the present study was to detect the early effects of maternal dietary saturated fatty acids (SFA) and their partial substitution with ω-3 ALA, docosa hexenoic acid (DHA,22:6) and eicosapentenoic acid 20:5 (EPA,20:5) on the HOMA index, liver lipids and fatty acid desaturases in the offspring at weaning. Methods 3 month...

  2. Parental divorce, parental depression, and gender differences in adult offspring suicide attempt.

    Science.gov (United States)

    Lizardi, Dana; Thompson, Ronald G; Keyes, Katherine; Hasin, Deborah

    2009-12-01

    Research suggests parental divorce during childhood increases risk of suicide attempt for male but not female offspring. The negative impact on offspring associated with parental divorce may be better explained by parental psychopathology, such as depression. We examined whether adult offspring of parental divorce experience elevated risk of suicide attempt, controlling for parental history of depression, and whether the risk varies by the gender of the offspring. Using the 2001 to 2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the sample consists of respondents who experienced parental divorce (N = 4895). Multivariable regressions controlled for age, race/ethnicity, income, marital status, and parental history of depression. Females living with their fathers were significantly more likely to report lifetime suicide attempts than females living with their mothers, even after controlling for parental depression. Findings suggest that childhood/adolescent parental divorce may have a stronger impact on suicide attempt risk in female offspring than previously recognized.

  3. Advancing maternal age is associated with lower bone mineral density in young adult male offspring

    OpenAIRE

    Rudäng, R.; Mellström, D.; Clark, E.; Ohlsson, C; Lorentzon, M.

    2011-01-01

    Summary Advancing maternal age has been related to increased risk of fetal death and morbidity, as well as higher fracture risk during childhood, in the offspring. In the present study, we demonstrate that advancing maternal age is independently associated with reduced bone mass in the young adult male offspring. Introduction In Sweden the maternal age in both primi- and multipara mothers has steadily increased during the last three decades. It has been previously reported that advancing mate...

  4. Physiological and behavioral responses in offspring mice following maternal exposure to sulfamonomethoxine during pregnancy.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Dan; Ye, Kui; Liu, Kaiyong; Sheng, Jie; Liu, Yehao; Hu, Chunqiu; Ruan, Liang; Li, Li; Tao, Fangbiao

    2016-06-15

    Sulfamonomethoxine (SMM), a veterinary antibiotic, is widely used in China. However, the impacts of maternal SMM exposure on neurobehavioral development in early life remain little known. In this study, we investigated the effects of maternal SMM exposure during pregnancy on behavioral and physiological responses in offspring mice. Pregnant mice were randomly divided into three SMM-treated groups, namely low-(10mg/kg/day), medium-(50mg/kg/day), and high-dose (200mg/kg/day), and a control group. The pregnant mice in the SMM-treated groups received SMM by gavage daily from gestational day 1-18, whereas those in the control received normal saline. On postnatal day (PND) 50, spatial memory was assessed using the Morris water maze test, and anxiety was measured using the elevated plus-maze and open field tests. The results showed significantly increased blood glucose in pups whose mothers received a high SMM dose. In addition, maternal SMM exposure increased anxiety-related activities among the offspring; spatial learning and memory were impaired more severely in the male offspring. The contents of tetrahydrobiopterin (BH4) and brain-derived neurotrophic factors (BDNF) on PND 22 were significantly reduced in the male offspring of the high-dose group compared with the controls. These findings indicate that SMM may be identified as a risk factor for cognitive and behavioral development on the basis of gender and that it may be associated with diminished BH4 and BDNF levels early in life.

  5. Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice.

    Science.gov (United States)

    Akatsu, Shigemi; Ishikawa, Chihiro; Takemura, Kaori; Ohtani, Akiko; Shiga, Takashi

    2015-12-01

    Environmental factors during perinatal period have various effects on behavior. The present study examined the effects of prenatal stress and neonatal handling on anxiety and spatial learning of offspring. Prenatal stress increased anxiety-related behavior of adult offspring, whereas neonatal handling had no effect. In contrast, spatial learning was not affected by prenatal stress, but improved by neonatal handling in both prenatally stressed and non-stressed mice. Next, to elucidate possible brain mechanisms mediating effects of environmental factors on behavior, we focused on serotonin (5-HT) system in the frontal cortex and hippocampus which is involved in anxiety and learning. We examined effects of environmental factors on the mRNA expression of 5-HT1A, 5-HT2A and 5-HT2C receptors in the frontal cortex and hippocampus during postnatal period and adulthood. Both prenatal stress and neonatal handling altered the mRNA expression of 5-HT receptors. These effects were dependent on environmental factors, brain regions and developmental stages. In summary, the present study revealed that prenatal stress and neonatal handling had differential effects on anxiety and spatial learning of offspring, and concomitantly the expression of 5-HT receptors. It was also shown that the effects of prenatal stress on 5-HT system were recovered partially by neonatal handling.

  6. Effects of ethanol on offspring of C57BL/6J mice alcoholized during gestation

    Directory of Open Access Journals (Sweden)

    Grinfeld Hermann

    1999-01-01

    Full Text Available The effects of chronic alcohol consumption during pregnancy were analysed in the gestation and offspring of alcoholized mice. Female C57BL/6J mice were placed overnight with stud males and the presence of a sperm plug in the next morning indicated the onset of gestation. Pregnant mice were distributed in two weight-matched groups. In the alcoholized group, the mice received a high protein liquid diet ad libitum containing 27.5% of ethanol-derived calories (5.28% v/v from gestation day 5 to 19. The control group received the same volume of diet containing isocaloric amounts of maltose-dextrin substituted for ethanol. After postnatal day zero, the dams received food pellets and tap water ad libitum. On postnatal day 6 the pups were counted and weighed at variable intervals up to the 60th day of life. The majority of the pregnant dams that have received ethanol completed the gestational period, and the chronic consumption of alcohol did not interfere with the number of dams that gave birth. The alcoholized and control dams gained an equivalent weight and consumed an equivalent volume of diet throughout the gestation. The number of pups from alcohol diet dams was 46,26% smaller compared with the control group. There were less male than female pups in the offspring of alcoholized mice. Teratogeny like gastroschisis and limb malformation were present in the offspring of alcoholized dams. The body weight of the offspring of alcoholized mice increased from the 18th to the 36th postnatal day.

  7. Prenatal exposure to selective serotonin reuptake inhibitors (SSRI) increases aggression and modulates maternal behavior in offspring mice.

    Science.gov (United States)

    Svirsky, Natali; Levy, Sigal; Avitsur, Ronit

    2016-01-01

    Selective serotonin reuptake inhibitors (SSRI) are commonly prescribed antidepressant drugs in pregnant women. SSRIs cross the placental barrier and affect serotonergic neurotransmission in the fetus. Although no gross SSRI-related teratogenic effects were reported, infants born following prenatal exposure to SSRIs are at higher risk for various developmental abnormalities. The aim of this study was to examine the effects of prenatal SSRI on social and maternal behavior in mice. To this end, pregnant female dams were exposed to saline or fluoxetine (FLX) throughout pregnancy, and the behavior of the offspring was examined. The results indicate that in utero FLX increased aggression in adult males and delayed emergence of maternal behavior in adult females. Social exploration and recognition memory were not affected by prenatal FLX exposure. These findings support the notion that alterations in the development of serotonergic pathways following prenatal exposure to SSRIs are associated with changes in social and maternal behavior throughout life.

  8. Neuropsychological functioning in posttraumatic stress disorder following forced displacement in older adults and their offspring.

    Science.gov (United States)

    Jelinek, Lena; Wittekind, Charlotte E; Moritz, Steffen; Kellner, Michael; Muhtz, Christoph

    2013-12-15

    The aim of the present study was to investigate neuropsychological performance in an untried trauma sample of older adults displaced during childhood at the end of World War II (WWII) with and without posttraumatic stress disorder (PTSD) as well as transgenerational effects of trauma and PTSD on their offspring. Displaced older adults with (n=20) and without PTSD (n=24) and nondisplaced healthy individuals (n=11) as well as one of their respective offspring were assessed with a large battery of cognitive tests (primarily targeting memory functioning). No evidence for deficits in neuropsychological performance was found in the aging group of displaced people with PTSD. Moreover, no group difference emerged in the offspring groups. Findings may be interpreted as first evidence for a rather resilient PTSD group of older adults that is available for assessment 60 years after displacement.

  9. Prenatal stress enhances severity of atherosclerosis in the adult apolipoprotein E-deficient mouse offspring via inflammatory pathways.

    Science.gov (United States)

    Ho, H; Lhotak, S; Solano, M E; Karimi, K; Pincus, M K; Austin, R C; Arck, P

    2013-02-01

    Atherosclerosis is the underlying cause of cardiovascular disease and stroke. Endothelial cell dysfunctions are early events in atherosclerosis, resulting in the recruitment of circulating monocytes. The immune system can elicit an inflammatory response toward the atherosclerotic lesion, thereby accelerating lesion growth. Risk factors for atherosclerosis include hypertension, smoking, stress perception or low birth weight. As prenatal stress challenge decreases the birth weight and affects the offspring's postnatal immune response, we aimed to investigate whether prenatal stress contributes to the development of atherosclerosis in mice. Syngenic pregnant apolipoprotein E-deficient (apoE-/-) dams were exposed to sound stress on gestation days 12.5 and 14.5. The presence and size of atherosclerotic plaques in the offspring at the age of 15 weeks was evaluated by histomorphology, accompanied by flow cytometric analysis of the frequency and phenotype of monocytes/macrophages and regulatory T (Treg) cells in the blood. Further, cytokine secretion of peripheral blood lymphocytes was analyzed. In response to prenatal stress challenge, an increased frequency of large atherosclerotic plaques was detectable in apoE-/- offspring, which was particularly profound in females. Prenatal stress also resulted in alterations of the offspring's immune response, such as a decreased frequency of Treg cells in blood, alterations of macrophage populations in blood and an increased secretion of inflammatory cytokines. We provide novel evidence that prenatally stressed adult offspring show an increased severity of atherosclerosis. As Treg cells are key players in dampening inflammation, the observed increase in atherosclerosis may be due to the lack of Treg cell frequency. Future interdisciplinary research is urgently required to understand the developmental origin of prenatal stress-induced atherosclerosis. The availability of our model may facilitate and foster such research endeavors.

  10. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    Science.gov (United States)

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  11. Altered engagement of autobiographical memory networks in adult offspring of postnatally depressed mothers.

    Science.gov (United States)

    Macdonald, Birthe; Murray, Lynne; Moutsiana, Christina; Fearon, Pasco; Cooper, Peter J; Halligan, Sarah L; Johnstone, Tom

    2016-07-01

    Maternal depression is associated with increased risk for offspring mood and anxiety disorders. One possible impact of maternal depression during offspring development is on the emotional autobiographical memory system. We investigated the neural mechanisms of emotional autobiographical memory in adult offspring of mothers with postnatal depression (N=16) compared to controls (N=21). During fMRI, recordings of participants describing one pleasant and one unpleasant situation with their mother and with a companion, were used as prompts to re-live the situations. Compared to controls we predicted the PND offspring would show: greater activation in medial and posterior brain regions implicated in autobiographical memory and rumination; and decreased activation in lateral prefrontal cortex and decreased connectivity between lateral prefrontal and posterior regions, reflecting reduced control of autobiographical recall. For negative situations, we found no group differences. For positive situations with their mothers, PND offspring showed higher activation than controls in left lateral prefrontal cortex, right frontal pole, cingulate cortex and precuneus, and lower connectivity of right middle frontal gyrus, left middle temporal gyrus, thalamus and lingual gyrus with the posterior cingulate. Our results are consistent with adult offspring of PND mothers having less efficient prefrontal regulation of personally relevant pleasant autobiographical memories.

  12. Incretin and glucagon levels in adult offspring exposed to maternal diabetes in pregnancy

    DEFF Research Database (Denmark)

    Kelstrup, Louise; Clausen, Tine D; Mathiesen, Elisabeth R

    2015-01-01

    CONTEXT: Fetal exposure to maternal diabetes is associated with increased risk of type 2 diabetes mellitus (T2DM) later in life. The pathogenesis of T2DM involves dysfunction of the incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well...... as hyperglucagonemia. OBJECTIVE: Our aim was to investigate circulating plasma levels of GLP-1, GIP, and glucagon during the oral glucose tolerance test (OGTT) in adult offspring of women with diabetes in pregnancy. DESIGN AND PARTICIPANTS: We conducted a follow-up study of 567 offspring, aged 18-27 years. We included...... two groups exposed to maternal diabetes in utero: offspring of women with diet-treated gestational diabetes mellitus (O-GDM; n = 163) or type 1 diabetes (O-T1DM; n = 146). Two reference groups were included: offspring of women with risk factors for GDM, but normoglycemia during pregnancy (O-NoGDM; n...

  13. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    Science.gov (United States)

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-02

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  14. Prenatal Paraquat exposure induces neurobehavioral and cognitive changes in mice offspring.

    Science.gov (United States)

    Ait-Bali, Yassine; Ba-M'hamed, Saadia; Bennis, Mohammed

    2016-12-01

    In the present work, we investigated developmental toxicity of Paraquat (PQ), from the 1st or 6th day of mating and throughout the gestation period. We have examined several parameters, including toxicity indices, reproductive performance, sensorimotor development, as well as anxiety and cognitive performance of the offspring. Our results showed that exposure to 20mg/kg of Paraquat during the first days of pregnancy completely prevents pregnancy in treated mice, but from the 6th day of pregnancy, an alteration in fertility and reproductive parameters was observed. In offspring, the PQ was responsible for an overall delay of innate reflexes and a deficit in motor development. All exposed animals showed a decrease in the level of locomotor activity, increased levels of anxiety-like behavior and pronounced cognitive impairment in adulthood. These results demonstrated that Paraquat led to the onset of many behavioral changes that stem from the impairment of neuronal developmental processes in prenatally exposed mice.

  15. Cognitive function in adult offspring of women with gestational diabetes-the role of glucose and other factors

    DEFF Research Database (Denmark)

    Clausen, Tine D; Mortensen, Erik Lykke; Schmidt, Lone;

    2013-01-01

    We aimed to evaluate cognitive function in adult offspring of women with diet-treated gestational diabetes and to study potential associations with maternal glucose values.......We aimed to evaluate cognitive function in adult offspring of women with diet-treated gestational diabetes and to study potential associations with maternal glucose values....

  16. Inheritance of steroid-independent male sexual behavior in male offspring of B6D2F1 mice.

    Science.gov (United States)

    McInnis, Christine M; Bonthuis, Paul J; Rissman, Emilie F; Park, Jin Ho

    2016-04-01

    The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrates steroid-independent male sexual behavior (identified as "maters"), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or "non-maters". A significant proportion of the BXB1 maters was sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior.

  17. Perinatal Resveratrol Supplementation to Spontaneously Hypertensive Rat Dams Mitigates the Development of Hypertension in Adult Offspring.

    Science.gov (United States)

    Care, Alison S; Sung, Miranda M; Panahi, Sareh; Gragasin, Ferrante S; Dyck, Jason R B; Davidge, Sandra T; Bourque, Stephane L

    2016-05-01

    This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; Phypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.

  18. Parents' Education and their Adult Offspring's Other-Regarding Behavior

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Haagen

    among adults. This result is robust across age groups and genders. I provide two explanations for this. First, sociodemographic characteristics in general appear to be poor predictors of adults' other-regarding behavior. Second, by using Danish survey data, I find that Danish parents' educational...

  19. Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine.

    Science.gov (United States)

    Laureano-Melo, Roberto; da Silveira, Anderson Luiz Bezerra; de Azevedo Cruz Seara, Fernando; da Conceição, Rodrigo Rodrigues; da Silva-Almeida, Cláudio; Marinho, Bruno Guimarães; da Rocha, Fábio Fagundes; Reis, Luís Carlos; Côrtes, Wellington da Silva

    2016-10-01

    The association between caffeine consumption and various psychiatric manifestations has long been observed. The objective was to assess the behavioral profile in offspring of Swiss mice treated during pregnancy and lactation with caffeine. For this purpose, two groups (n = 6 each and BW ~ 35 g) of female mice were treated during pregnancy and lactation by: tap water and caffeine solution at a concentration of 0.3 mg/mL through oral route. The offspring obtained, by completing 70 days of life, was underwent a behavioral battery test. Statistical analysis was performed by student t test and the different significance adopted was p tests. In anxiety related responses however, the mice of caffeine group had greater number of fecal pellets (178 %, p = 0.001) in the open field test, higher number of attempts (51 %, p = 0.03) in light-dark box and decreased percentage of entries in open arms (41 %, p = 0.01) in elevated plus maze test. Moreover, in the marble burying test, there was a significant decrease in the number of buried marbles compared with controls (110 %, p = 0,002). In the meantime, in the von Frey test, it was observed an exacerbation of mechanical allodynia both in basal conditions and after the carrageenan administration (p < 0.001). Furthermore, caffeine treatment during pregnancy and lactation causes long-term behavioral changes in the mice offspring that manifest later in life.

  20. Cognitive Function in Adult Offspring of Women with Gestational Diabetes–The Role of Glucose and Other Factors

    OpenAIRE

    Clausen, Tine D.; Mortensen, Erik L.; Lone Schmidt; Mathiesen, Elisabeth R.; Torben Hansen; Jensen, Dorte M.; Peter Damm

    2013-01-01

    OBJECTIVE: We aimed to evaluate cognitive function in adult offspring of women with diet-treated gestational diabetes and to study potential associations with maternal glucose values. MATERIALS AND METHODS: In 2003-2005 cognitive function was assessed in a cohort of 18-27 year old offspring of women with diet-treated gestational diabetes mellitus (n = 153) and offspring from the background population (n = 118). The main outcome measure was global cognitive score derived from Raven's Progressi...

  1. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice

    Science.gov (United States)

    Liang, Xingwei; Yang, Qiyuan; Zhang, Lupei; Maricelli, Joseph W; Rodgers, Buel D.; Zhu, Mei-Jun; Du, Min

    2016-01-01

    Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring. PMID:27686741

  2. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    Science.gov (United States)

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  3. A search for transmission ratio distortions in offspring from crosses between inbred mice

    Indian Academy of Sciences (India)

    D. Purushothaman; R. W. Elliott; A. Ruvinsky

    2008-08-01

    Equal transmission of the two alleles at a locus from a heterozygote parent to the offspring is rarely violated. Beside the differential embryonic mortality, nondisjunction and gene conversion that are rather irregular forms of transmission–ratio distortion (TRD), there are two major forms of departure from Mendelian segregation. The first, found in females, based on the asymmetric nature of female meiosis, is usually referred to as meiotic drive, and has been well documented in a few cases. The second is segregation distortion found in males. There are several known male-related segregation distortion systems that are caused by different fertilizing capacity of sperm cells carrying alternative alleles at a particular locus. Observation of TRD effects requires a sufficient number of offspring produced by a parental pair. As individuals in a population most likely have different genotypes in TRD affecting loci, the total transmission ratio is close to the expected Mendelian ratio and masks potential TRD effects. Highly inbred strains of laboratory mice provide a very good model for studying this phenomenon, because comparing two mice strains is effectively similar as comparison of two individuals in a population. This study tests both forms of TRD in progeny of F1 hybrids from reciprocal crosses of inbred mice. Three previously unknown instances of TRD in females were observed. Therefore, this study concludes that some genes in females may carry alleles that can cause segregation distortion.

  4. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies

    DEFF Research Database (Denmark)

    Neuheimer, Anna; Hartvig, Martin; Heuschele, Jan;

    2015-01-01

    Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies...

  5. Gestational Exposure to a Viral Mimetic Poly(I:C Results in Long-Lasting Changes in Mitochondrial Function by Leucocytes in the Adult Offspring

    Directory of Open Access Journals (Sweden)

    Cecilia Giulivi

    2013-01-01

    Full Text Available Maternal immune activation (MIA is a potential risk factor for autism spectrum disorder (ASD and schizophrenia (SZ. In rodents, MIA results in changes in cytokine profiles and abnormal behaviors in the offspring that model these neuropsychiatric conditions. Given the central role that mitochondria have in immunity and other metabolic pathways, we hypothesized that MIA will result in a fetal imprinting that leads to postnatal deficits in the bioenergetics of immune cells. To this end, splenocytes from adult offspring exposed gestationally to the viral mimic poly(I:C were evaluated for mitochondrial outcomes. A significant decrease in mitochondrial ATP production was observed in poly(I:C-treated mice (45% of controls mainly attributed to a lower complex I activity. No differences were observed between the two groups in the coupling of electron transport to ATP synthesis, or the oxygen uptake under uncoupling conditions. Concanavalin A- (ConA- stimulated splenocytes from poly(I:C animals showed no statistically significant changes in cytokine levels compared to controls. The present study reports for the first time that MIA activation by poly(I:C at early gestation, which can lead to behavioral impairments in the offspring similar to SZ and ASD, leads to long-lasting effects in the bioenergetics of splenocytes of adult offspring.

  6. Associations between substance use disorders and major depression in parents and late adolescent-emerging adult offspring: an adoption study

    DEFF Research Database (Denmark)

    Marmorstein, N. R.; Iacono, W. G.; McGue, M.

    2012-01-01

    Aims To examine whether major depressive disorder (MDD) and substance use disorders [SUDs: specifically, nicotine dependence (ND), alcohol use disorders (AUDs), and cannabis use disorders (CUDs)] in parents predicted increased risk for these disorders in late adolescentemerging adult offspring and...

  7. Examining the potential benefits of (--epicatechin, (+-catechin, and rutin on maternal and offspring cardiovascular outcomes in LDLr-/-mice exposed to an atherogenic environment during early development

    Directory of Open Access Journals (Sweden)

    Mary N. R. Lesser

    2016-04-01

    Full Text Available Background: Maternal nutritional status can impact numerous early developmental processes. In certain cases, these effects can influence the risk their off spring can have for select chronic diseases later in life. Consequently, in this article were port on the effects of maternal consumption of high levels of certain flavonoids on the development of coronary artery disease (CAD in an atherosclerosis-prone mutant mouse model.Methods:LDLr -/-mutant mice were fed a control fat (CF, high fat (HF, or the HFdiet supplemented with epicatechin and catechin (HFEC or rutin (HFRU, prior to pregnancy and during lactation, in order to explore whether the flavonoids influenced markers of vascular health in the lactating dams (lactation day (LD 21. Post-weaning (postnatal day(PND22, offspring were challenged with an atherogenic environment (HF diet in the absence of flavonoids and vascular health markers were assessed in the adult offspring (PND 60. Results:Dams fed the HF diet had elevated markers of atherosclerosisonLD 21whencompared to the dams fed with the control diet. Flavonoid consumption prior to pregnancy and during lactation had inconsistent effects on maternal markers of atherosclerosis (plasma cholesterol, aortic lipid accumulation, and oxidative stress biomarkers at LD21 compared to dams fed the HF diet without flavonoids.At PND 60, there were no differences in vascular health markers among the groups of LDLr -/-offspring whose mothers consumed the CF or the HF diet with or without flavonoids during lactation. Conclusions: Maternal consumption of the flavonoid-supplemented HF diets had modest effects on maternal markers of atherosclerosis. The exposure of offspring to the flavonoid-supplemented HF diets during early lactation had little effect on the cardiovascular parameters assessed in the adult offspring.

  8. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring.

    Science.gov (United States)

    Petropoulos, Sophie; Matthews, Stephen G; Szyf, Moshe

    2014-02-01

    Synthetic glucocorticoids (sGCs) are commonly prescribed for the management of inflammatory and endocrine disorders. However, nothing is known regarding the effects of sGC on adult germline methylome and whether these effects can be transmitted to the next generation. We hypothesized that administration of sGC to adult male mice alters DNA methylation in mature sperm and modifies the transcription and methylation of steroid receptors in male F1 offspring. Adult C57BL/6 males (n = 10/group) were injected on five consecutive days with 1 mg/kg sGC (i.e., dexamethasone) or vehicle and euthanized 35 or 60 days after initial treatment or bred with control females (60 days postinitial treatment; n = 5/group). A significant increase in global non-CpG methylation was observed in F0 sperm 60 days following sGC treatment. In the hippocampus and kidney of Postnatal Day 50 (PND50) and PND240 male offspring derived from fathers exposed to sGC, significant differences in mineralocorticoid receptor (Nr3c2; Mr), estrogen alpha receptor (Nr3a1; Ers1), and glucocorticoid receptor (Nr3c1; Gr) expression were observed. Furthermore, significant demethylation in regulatory regions of Mr, Gr, and Esr1 was observed in the PND50 kidney derived from fathers exposed to sGC. This is the first demonstration that paternal pharmacological exposure to sGC can alter the expression and DNA methylation of nuclear steroid receptors in brain and somatic tissues of offspring. These findings provide proof of principle that adult male exposure to sGC can affect DNA methylation and gene expression in offspring, indicating the possibility that adult experiences that evoke increases in endogenous glucocorticoid (i.e., stress) might have similar effects.

  9. The Effect of Saffron Decoction Consumption on Pregnant Mice and Their Offspring

    Directory of Open Access Journals (Sweden)

    Oveisi

    2012-02-01

    Full Text Available Introduction: In traditional medicine, saffron is used as a drug for treating many diseases. However there are many documents and evidences concerning its abortive and teratogenic effect especially in high doses. Aim: This study was conducted to evaluate the effect of saffron decoction consumption on pregnant mice and their offspring. Methods: In this study, 20 female mice after breeding and observation of vaginal plaque, randomly and equally divided into two groups. During pregnancy, animals were housed under the same environmental and nutritional condition while the test group received 0.5% saffron decoction as their drinks instead of tape water for control group. The pregnant mice were weighted during pregnancy and after delivery. Following the parturition, the number of live kids, their weight and sex and any pretended obvious abnormality were assigned. Results: The duration of pregnancy period and the number of live kids in test group were significantly less than control group while the mean infant’s weight in test group was more than control group. There was obvious one-eye blindness in 4 kids from saffron consumed group. In the case of mother's weight and sex ratio of live kids there was no significant difference between the two groups. Conclusion: This study indicated that saffron has a specific teratogenic effect on visual system and causes preterm labor and reduces the number of live infants which may be due to its abortive effect. Keywords: Saffron, Pregnancy, Infant, Teratogen, Mice

  10. Chronic prenatal stress exacerbates learning and memory impairments in adult male APPswe/PS1 dE9 offspring mice who also suffer chronic stress%产前应激加剧慢性子代应激诱导的子鼠学习记忆能力损伤

    Institute of Scientific and Technical Information of China (English)

    唐伟; 王正玉; 程娟; 韩振敏; 姚余有

    2015-01-01

    Objective To determine whether chronic prenatal stress could exacerbate learning and memory impair-ments in 6-month-old male APPswe/PS1dE9 offspring mice who also suffer chronic stress, and if so, what the un-derlying mechanism is. Methods There were four groups: the prenatal control-offspring control group ( CC group), the prenatal control-chronic offspring stress group (CT group), the chronic prenatal stress-offspring control group ( TC group) , and the chronic prenatal stress-chronic offspring stress group ( TT group) . Morris water maze was used to investigate learning and memory impairments in mice, and the histopathologic changes in CA3 field of the hippocampus ( HE stain and Congo red stain) in hippocampus were examined under a light microscope. Fur-thermore, western blot was used to observe the expression levels of amyloid precursor protein ( APP) ,β-site APP-cleaving enzyme 1 (BACE1) and amyloid-βprotein (Aβ42) in hippocampus. Additionally, we also used ELISA to examine the serum levels of corticosterone in the offspring mice. Results Compared with the CC group, the results showed that CT group mice had more escape latency and swimming distance ( P  和游泳距离延长(P<0.05),平台象限游泳时间和穿越平台次数减少(P<0.05);海马CA3区损伤的神经元数目明显增加(P<0.05),排列疏松紊乱,脱失现象明显,核固缩、浓染;脑组织淀粉样斑块数目增多;海马组织APP、BACE1和Aβ42的表达量升高( P <0.05);血清皮质酮浓度升高(P<0.05)。与CT组相比, TT组小鼠的逃避潜伏期和游泳距离进一步延长(P<0.05),平台象限游泳时间和穿越平台次数进一步减少( P <0.05);脑组织淀粉样斑块和海马CA3区损伤的神经元数目进一步增加(P<0.05);海马组织APP、BACE1和Aβ42的表达量和血清皮质酮浓度进一步升高(P<0.05)。结论产前应激进一步加剧慢性应激所致的子鼠学习记忆损伤,其机制可能

  11. High Dietary Fat Intake during Lactation Promotes the Development of Social Stress-Induced Obesity in the Offspring of Mice

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Tsuduki

    2015-07-01

    Full Text Available This study examined how a maternal high-fat diet (HD during lactation and exposure of offspring to isolation stress influence the susceptibility of offspring to the development of obesity. C57BL/6J mice were fed a commercial diet (CD during pregnancy and a CD or HD during lactation. Male offspring were weaned at three weeks of age, fed a CD until seven weeks of age, and fed a CD or HD until 11 weeks of age. Offspring were housed alone (isolation stress or at six per cage (ordinary circumstances. Thus, offspring were assigned to one of eight groups: dams fed a CD or HD during lactation and offspring fed a CD or HD and housed under ordinary circumstances or isolation stress. Serum corticosterone level was significantly elevated by isolation stress. High-fat feeding of offspring reduced their serum corticosterone level, which was significantly elevated by a maternal HD. A maternal HD and isolation stress had combined effects in elevating the serum corticosterone level. These findings suggest that a maternal HD during lactation enhances the stress sensitivity of offspring. White adipose tissue weights were significantly increased by a maternal HD and isolation stress and by their combination. In addition, significant adipocyte hypertrophy was induced by a maternal HD and isolation stress and exacerbated by their combination. Thus, a maternal HD and isolation stress promote visceral fat accumulation and adipocyte hypertrophy, accelerating the progression of obesity through their combined effects. The mechanism may involve enhanced fatty acid synthesis and lipid influx from blood into adipose tissue. These findings demonstrate that a maternal HD during lactation may increase the susceptibility of offspring to the development of stress-induced obesity.

  12. Insulin Resistance and Impaired Pancreatic β-Cell Function in Adult Offspring of Women With Diabetes in Pregnancy

    DEFF Research Database (Denmark)

    Kelstrup, Louise; Damm, Peter; Mathiesen, Elisabeth R

    2013-01-01

    Context:Offspring of women with diabetes during pregnancy have increased risk of glucose intolerance in adulthood, but the underlying mechanisms are unknown.Objective:We aimed to investigate effects of intrauterine hyperglycemia on insulin secretion and - action in adult offspring of mothers...... reference groups were included: offspring of women with risk factors for GDM, but normo-glycemia during pregnancy (N=139) and offspring from the background population (N=128).Main outcome measures:Indices of insulin sensitivity and insulin release were calculated using insulin and glucose values from...... a standard oral glucose tolerance test (120 minutes, 75 gram glucose). Pancreatic beta-cell function taking the prevailing insulin sensitivity into account was estimated by disposition indices.Results:Both groups of offspring exposed during pregnancy to either maternal gestational diabetes or type 1 diabetes...

  13. Maternal Grand Multiparity and the Risk of Severe Mental Disorders in Adult Offspring.

    Directory of Open Access Journals (Sweden)

    Marius Lahti

    Full Text Available Previous studies have shown that maternal grand multiparity may predict an increased risk of mental disorders in young adult offspring, but whether such effects persist throughout adulthood remains unknown. The current study examined if maternal grand multiparity predicts the risks of severe mental disorders, suicides, suicide attempts and dementias throughout adult life.Our study sample comprised 13243 Helsinki Birth Cohort Study 1934-1944 participants (6905 men and 6338 women. According to hospital birth records, 341 offspring were born to grand multiparous mothers. From Finnish national hospital discharge and causes of death registers, we identified 1682 participants diagnosed with mental disorders during 1969-2010.Maternal grand multiparity predicted significantly increased risks of mood disorders (Hazard Ratio = 1.64, p = 0.03, non-psychotic mood disorders (Hazard Ratio = 2.02, p = 0.002, and suicide attempts (Hazard Ratio = 3.94, p = 0.01 in adult offspring. Furthermore, women born to grand multiparous mothers had significantly increased risks of any severe mental disorder (Hazard Ratio = 1.79, p = 0.01, non-psychotic substance use disorders (Hazard Ratio = 2.77, p = 0.02 schizophrenia, schizotypal and delusional disorders (Hazard Ratio = 2.40, p = 0.02, mood disorders (Hazard Ratio = 2.40, p = 0.002, non-psychotic mood disorders (Hazard Ratio = 2.91, p<0.001, and suicide attempts (Hazard Ratio = 5.05, p = 0.01 in adulthood. The effects of maternal grand multiparity on offspring psychopathology risk were independent of maternal age and body mass index at childbirth, and of year of birth, sex, childhood socioeconomic position, and birth weight of the offspring. In contrast, no significant effects were found among men.Women born to grand multiparous mothers are at an increased risk of severe mental disorders and suicide attempts across adulthood. Our findings may inform the

  14. Cognitive function in adult offspring of women with gestational diabetes--the role of glucose and other factors.

    Directory of Open Access Journals (Sweden)

    Tine D Clausen

    Full Text Available OBJECTIVE: We aimed to evaluate cognitive function in adult offspring of women with diet-treated gestational diabetes and to study potential associations with maternal glucose values. MATERIALS AND METHODS: In 2003-2005 cognitive function was assessed in a cohort of 18-27 year old offspring of women with diet-treated gestational diabetes mellitus (n = 153 and offspring from the background population (n = 118. The main outcome measure was global cognitive score derived from Raven's Progressive Matrices and three verbal subtests from the Weschler Adult Intelligence Scale. Maternal fasting- and 2-hour blood glucose values from the diagnostic oral glucose tolerance test were used as exposure variables. RESULTS: Offspring of women with gestational diabetes mellitus had a lower global cognitive score, than offspring from the background population (93.1 vs. 100.0, P<0.001. However, when adjusted for maternal age at delivery, parity, smoking during pregnancy, pre-pregnancy overweight, family social class, parental educational level, gender, birth weight, gestational age, perinatal complications and offspring age at follow-up, the difference was no longer statistically significant. Offspring global cognitive score decreased significantly with increasing maternal fasting glucose (β = -4.5, 95% CI -8.0 to -0.9, P = 0.01 and 2-hour glucose (β = -1.5, -2.9 to -0.2, P = 0.03 in univariate general linear models, but not when adjusted for family social class and parental educational level. CONCLUSIONS: Lower cognitive test scores in adult offspring of women with diet-treated gestational diabetes were explained by well known predictors of cognitive function, but not by maternal hyperglycaemia during pregnancy. We find it reassuring that mild intrauterine hyperglycaemia does not seem to have adverse effect on offspring cognitive function.

  15. Subclinical inflammation during third trimester of pregnancy was not associated with markers of the metabolic syndrome in young adult offspring

    DEFF Research Database (Denmark)

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte

    2013-01-01

    OBJECTIVE: Growing evidence indicates that the metabolic syndrome (MS) is rooted in adverse exposures during fetal life. The aim of this study was to assess the possible associations between biomarkers of inflammation during third trimester of pregnancy and markers of MS in adult offspring. METHODS...... for maternal smoking during pregnancy, height, prepregnancy body mass index (BMI), education, and offspring's sex. Offspring MS markers included waist circumference, BMI, blood pressure, HOMA insulin resistance, and plasma levels of fasting glucose, triglycerides, cholesterol fractions, insulin, and leptin...

  16. Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte-endothelial interactions in the cerebral microcirculation from the male offspring in adult life.

    Science.gov (United States)

    Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças

    2015-08-01

    We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood.

  17. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice.

    Science.gov (United States)

    Murashov, Alexander K; Pak, Elena S; Koury, Michael; Ajmera, Ajay; Jeyakumar, Maneesh; Parker, Matthew; Williams, Oksana; Ding, Jian; Walters, Dianne; Neufer, P Darrell

    2016-02-01

    Obesity has more than doubled in children and tripled in adolescents in the past 30 yr. The association between metabolic disorders in offspring of obese mothers with diabetes has long been known; however, a growing body of research indicates that fathers play a significant role through presently unknown mechanisms. Recent observations have shown that changes in paternal diet may result in transgenerational inheritance of the insulin-resistant phenotype. Although diet-induced epigenetic reprogramming via paternal lineage has recently received much attention in the literature, the effect of paternal physical activity on offspring metabolism has not been adequately addressed. In the current study, we investigated the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring's predisposition to insulin resistance. Our observations revealed that fathers subjected to wheel-running for 12 wk produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. Finally, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings suggest that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm.

  18. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring.

    Science.gov (United States)

    Kruse, Michael; Keyhani-Nejad, Farnaz; Isken, Frank; Nitz, Barbara; Kretschmer, Anja; Reischl, Eva; de las Heras Gala, Tonia; Osterhoff, Martin A; Grallert, Harald; Pfeiffer, Andreas F H

    2016-03-01

    Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming.

  19. Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice.

    Directory of Open Access Journals (Sweden)

    Kathleen A Pennington

    Full Text Available Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies.

  20. Investigation of possible teratogenic effects in the offspring of mice exposed to methylphenidate during pregnancy.

    Science.gov (United States)

    Costa, Gabriel de Araújo; Galvão, Talita Cristina; Bacchi, André Demambre; Moreira, Estefânia Gastaldello; Salles, Maria José Sparça

    2016-02-01

    Methylphenidate (MPH) is a central nervous system stimulant drug that increases concentration and energy level. The safety of MPH use during pregnancy is not well established. Considering the high rate of unplanned pregnancy among young women, potential for accidental exposure to MPH in early pregnancy is high. This study aimed to investigate if MPH administered during pregnancy would induce maternotoxicity, teratogenicity in mice, or both. Pregnant Swiss mice were treated with MPH (5 mg/kg, subcutaneously) or 0.9% saline (control group) from the 5th to the 17th day of pregnancy. In the MPH-treated group, a significant increase in the total number of resorptions with a consequent increase in post-implantation loss and a decrease in fetal viability were detected (all P < 0.05). A total of 91.43% of resorptions were classified as early resorptions. The group treated with MPH presented significant external (polydactyly P < 0.01), skeletal (incomplete ossification of the skull P < 0.01) and visceral (dilated ventricles P < 0.05) malformations. Behavioural effects (motor activity, memory of habituation and anxiety) were not observed in both male and female offspring evaluated at postnatal days 22, 35 and 75. The results suggest that MPH is an embryotoxic and teratogenic drug.

  1. Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring.

    Science.gov (United States)

    Powers, Brian E; Kelley, Christy M; Velazquez, Ramon; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2017-01-06

    The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.

  2. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring.

    Science.gov (United States)

    Pinheiro, D F; Pacheco, P D G; Alvarenga, P V; Buratini, J; Castilho, A C S; Lima, P F; Sartori, D R S; Vicentini-Paulino, M L M

    2013-03-01

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  3. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  4. Effects of the use of assisted reproductive technologies and an obesogenic environment on resistance artery function and diabetes biomarkers in mice offspring.

    Directory of Open Access Journals (Sweden)

    Francisco I Ramirez-Perez

    Full Text Available Maternal obesity affects the incidence of cardiovascular disease and diabetes in offspring. Also the use of assisted reproductive technologies (ART has been associated with cardiovascular deficiencies in offspring. Obese women often suffer from infertility and use ART to achieve a pregnancy, but the combined effects of maternal obesity and ART on cardiovascular health and incidence of diabetes in the offspring is not known. Here, we report the effects of the use of ART within an obesogenic environment, consisting of feeding a western diet (WD to dams and offspring, on resistance artery function and presence of diabetes biomarkers in juvenile mice offspring. Our results indicate that WD and ART interacted to induce endothelial dysfunction in mesenteric resistance arteries isolated from 7-week-old mice offspring. This was determined by presence of a reduced acetylcholine-induced dilation compared to controls. The arteries from these WD-ART mice also had greater wall cross-sectional areas and wall to lumen ratios indicative of vascular hypertrophic remodeling. Of the diabetes biomarkers measured, only resistin was affected by a WD×ART interaction. Serum resistin was significantly greater in WD-ART offspring compared to controls. Diet and sex effects were observed in other diabetes biomarkers. Our conclusion is that in mice the use of ART within an obesogenic environment interacts to favor the development of endothelial dysfunction in the resistance arteries of juvenile offspring, while having marginal effects on diabetes biomarkers.

  5. Effect of maternal obesity on diabetes development in adult rat offspring.

    Science.gov (United States)

    de Campos, Kleber Eduardo; Sinzato, Yuri Karen; Pimenta, Walkyria de Paula; Rudge, Marilza Vieira Cunha; Damasceno, Débora Cristina

    2007-10-27

    This study aimed to evaluate whether maternal obesity leads to the onset of diabetes in adult Wistar rats offspring. MSG solution neonatally administration induced obesity in rats (F(1)MSG group, n=30); and saline solution was also administrated to control rats (F(1)CON group, n=13). In 3rd month of age, both control and MSG groups were mated for offspring (generation F(2)), named as F(2)CON, n=28 and F(2)MSG groups, n=15; and so both generations were studied until 7th month of life. Lee Index was measured for experimental obesity validation from 5th to 7th month. Glycemia was weekly determined during pregnancy and monthly from 3rd to 7th month. In the end of experimental period all rats were submitted to oral glucose tolerance test (OGTT), with estimation of total area under the curve (AUC); and insulin tolerance test (ITT). Rats were then anesthetized and killed. Data were statistically analyzed with significance level of pgenerations showed significant maternal interference in control and MSG groups. OGTT analysis showed higher glycemia in obese rats (F(1)MSG) and their offspring (F(2)MSG) as compared to their respective controls; and MSG groups increased AUC from OGTT. As regards ITT, F(2)MSG showed higher glycemia at 30 and 120 min, suggesting a delay of insulin action decreasing. Although glucose intolerance and insulin resistance clinical conditions represent as a factors for type 2 Diabetes mellitus development, this experimental model proposal was not efficient to induce type 2 Diabetes mellitus, but for obesity developing, glucose intolerance and insulin resistance in successive generations of rats.

  6. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring.

    Science.gov (United States)

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Zhang, Lubo

    2013-06-01

    Perinatal nicotine exposure caused a sex-dependent heightened vascular response to angiotensin II (Ang II) and increased blood pressure in adult male but not in female rat offspring. The present study tested the hypothesis that estrogen normalizes perinatal nicotine-induced hypertensive response to Ang II in female offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. Ovariectomy and 17β-estradiol replacement were performed on 8-week-old female offspring. At 5 months of age, Ang II-induced blood pressure responses were not changed by nicotine treatment in the sham groups. In contrast, nicotine significantly enhanced Ang II-induced blood pressure responses as compared with saline control in the ovariectomy groups, which was associated with increased Ang II-induced vascular contractions. These heightened responses were abrogated by 17β-estradiol replacement. In addition, nicotine enhanced Ang II receptor type I, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase type 2 protein expressions, and reactive oxygen species production of aortas as compared with saline control in the ovariectomy groups. Antioxidative agents, both apocynin and tempol, inhibited Ang II-induced vascular contraction and eliminated the differences of contractions between nicotine-treated and control ovariectomy rats. These findings support a key role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood.

  7. Prenatal metformin exposure in mice programs the metabolic phenotype of the offspring during a high fat diet at adulthood.

    Directory of Open Access Journals (Sweden)

    Henriikka Salomäki

    Full Text Available AIMS: The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. METHODS: Metformin (300 mg/kg or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase and high fat diet (HFD-phase. At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. RESULTS: Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. CONCLUSIONS: The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a

  8. Dietary sodium manipulation during critical periods in development sensitize adult offspring to amphetamines.

    Science.gov (United States)

    McBride, Shawna M; Culver, Bruce; Flynn, Francis W

    2008-09-01

    This study examined critical periods in development to determine when offspring were most susceptible to dietary sodium manipulation leading to amphetamine sensitization. Wistar dams (n = 6-8/group) were fed chow containing low (0.12% NaCl; LN), normal (1% NaCl; NN), or high sodium (4% NaCl; HN) during the prenatal or early postnatal period (birth to 5 wk). Offspring were fed normal chow thereafter until testing at 6 mo. Body weight (BW), blood pressure (BP), fluid intake, salt preference, response to amphetamine, open field behavior, plasma adrenocorticotropin hormone (ACTH), plasma corticosterone (Cort), and adrenal gland weight were measured. BW was similar for all offspring. Offspring from the prenatal and postnatal HN group had increased BP, NaCl intake, and salt preference and decreased water intake relative to NN offspring. Prenatal HN offspring had greater BP than postnatal HN offspring. In response to amphetamine, both prenatal and postnatal LN and HN offspring had increased locomotor behavior compared with NN offspring. In a novel open field environment, locomotion was also increased in prenatal and postnatal LN and HN offspring compared with NN offspring. ACTH and Cort levels 30 min after restraint stress and adrenal gland weight measurement were greater in LN and HN offspring compared with NN offspring. These results indicate that early life experience with low- and high-sodium diets, during the prenatal or early postnatal period, is a stress that produces long-term changes in responsiveness to amphetamines and to subsequent stressors.

  9. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1 TAg mice offspring

    Directory of Open Access Journals (Sweden)

    Hardman W Elaine

    2010-03-01

    Full Text Available Abstract Background Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring. Methods Female SV 129 mice were divided into two groups and placed on diets containing either 10% w/w corn oil (which is 50% n-6 PUFA, control diet or 10% w/w canola oil (which is 20% n-6 PUFA, 10% n-3 PUFA, test diet. After two weeks on the diets the females were bred with homozygous C3(1 TAg transgenic mice. Mother mice consumed the assigned diet throughout gestation and nursing of the offspring. After weaning, all female offspring were maintained on the control diet. Results Compared to offspring of mothers fed the corn oil diet (CO/CO group, offspring of mothers fed the canola oil diet (CA/CO group had significantly fewer mammary glands with tumors throughout the experiment. At 130 days of age, the CA/CO group had significantly fewer tumors per mouse (multiplicity; the tumor incidence (fraction of mice with any tumor and the total tumor weight (per mouse that developed tumor was less than one half that of the CO/CO group. At 170 days of age, the total tumor weight per mouse was significantly less in the CA/CO group and if a tumor developed the rate of tumor growth rate was half that of CO/CO group. These results indicate that maternal consumption of canola oil was associated with delayed appearance of mammary gland tumors and slowed growth of the tumors that developed. Conclusions Substituting canola oil for corn oil is an easy dietary change for people to make; such a change to the maternal diet may decrease risk for breast cancer in the daughter.

  10. Prenatal glucocorticoid exposure in rats: programming effects on stress reactivity and cognition in adult offspring.

    Science.gov (United States)

    Zeng, Yan; Brydges, Nichola M; Wood, Emma R; Drake, Amanda J; Hall, Jeremy

    2015-01-01

    Human epidemiological studies have provided compelling evidence that prenatal exposure to stress is associated with significantly increased risks of developing psychiatric disorders in adulthood. Exposure to excessive maternal glucocorticoids may underlie this fetal programming effect. In the current study, we assessed how prenatal dexamethasone administration during the last week of gestation affects stress reactivity and cognition in adult offspring. Stress reactivity was assessed by evaluating anxiety-like behavior on an elevated plus maze and in an open field. In addition, to characterize the long-term cognitive outcomes of prenatal exposure to glucocorticoids, animals were assessed on two cognitive tasks, a spatial reference memory task with reversal learning and a delayed matching to position (DMTP) task. Our results suggest that prenatal exposure to dexamethasone had no observable effect on anxiety-like behavior, but affected cognition in the adult offspring. Prenatally dexamethasone-exposed animals showed a transient deficit in the spatial reference memory task and a trend to faster acquisition during the reversal-learning phase. Furthermore, prenatally dexamethasone-treated animals also showed faster learning of new platform positions in the DMTP task. These results suggest that fetal overexposure to glucocorticoids programs a phenotype characterized by cognitive flexibility and adaptability to frequent changes in environmental circumstances. This can be viewed as an attempt to increase the fitness of survival in a potentially hazardous postnatal environment, as predicted by intrauterine adversity. Collectively, our data suggest that prenatal exposure to dexamethasone in rats could be used as an animal model for studying some cognitive components of related psychiatric disorders.

  11. Pathogenesis and epidemiology of Brucellosis in Yellowstone bison: serologic and culture results from adult females and their offspring

    Science.gov (United States)

    The objective of this prospective study was to follow the natural course of Brucella abortus infection in cohorts of seropositive and seronegative female bison and their offspring in Yellowstone National Park over a 5 year period. Specimens were collected from 53 adult, female bison at least once a...

  12. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies

    DEFF Research Database (Denmark)

    Neuheimer, Anna; Hartvig, Martin; Heuschele, Jan;

    2015-01-01

    is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia...

  13. Preweaning GH Treatment Normalizes Body Growth Trajectory and Reverses Metabolic Dysregulation in Adult Offspring After Maternal Undernutrition.

    Science.gov (United States)

    Li, Minglan; Reynolds, Clare M; Gray, Clint; Vickers, Mark H

    2015-09-01

    Maternal undernutrition (UN) results in growth disorders and metabolic dysfunction in offspring. Although dysregulation of the GH-IGF axis in offspring is a known consequence of maternal UN, little is known about the efficacy of GH treatment during the period of developmental plasticity on later growth and metabolic outcomes. The present study investigated the effect of preweaning GH treatment on growth, glucose metabolism, and the GH-IGF axis in adult male and female offspring after maternal UN. Female Sprague Dawley rats were fed either a chow diet ad libitum (control [CON]) or 50% of ad libitum (UN) throughout pregnancy. From postnatal day 3, CON and UN pups received either saline (CON-S and UN-S) or GH (2.5 μg/g·d CON-GH and UN-GH) daily throughout lactation. At weaning, male and female offspring were randomly selected from each litter and fed a standard chow diet for the remainder of the study. Preweaning GH treatment normalized maternal UN-induced alterations in postweaning growth trajectory and concomitant adiposity in offspring. Plasma leptin concentrations were increased in UN-S offspring and normalized in the UN-GH group. Hepatic GH receptor expression was significantly elevated in UN-S offspring and normalized with GH treatment. Hepatic IGF binding protein-2 gene expression and plasma IGF-1 to IGF binding protein-3 ratio was reduced in UN-S offspring and elevated with GH treatment. GH treatment during a critical developmental window prevented maternal UN-induced changes in postnatal growth patterns and related adiposity, suggesting that manipulation of the GH-IGF-1 axis in early development may represent a promising avenue to prevent adverse developmental programming effects in adulthood.

  14. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring?

    DEFF Research Database (Denmark)

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte;

    2013-01-01

    It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring.......It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring....

  15. Maternal Age at Holocaust Exposure and Maternal PTSD Independently Influence Urinary Cortisol Levels in Adult Offspring

    OpenAIRE

    2014-01-01

    Background: Parental traumatization has been associated with increased risk for the expression of psychopathology in offspring, and maternal posttraumatic stress disorder (PTSD) appears to increase the risk for the development of offspring PTSD. In this study, Holocaust-related maternal age of exposure and PTSD were evaluated for their association with offspring ambient cortisol and PTSD-associated symptom expression. Method: Ninety-five Holocaust offspring and Jewish comparison subjects r...

  16. Maternal age at Holocaust exposure and maternal PTSD independently influence urinary cortisol levels in adult offspring

    OpenAIRE

    2014-01-01

    Background: Parental traumatization has been associated with increased risk for the expression of psychopathology in offspring, and maternal PTSD appears to increase the risk for the development of offspring PTSD. In this study, Holocaust-related maternal age of exposure and PTSD were evaluated for their association with offspring ambient cortisol and PTSD-associated symptom expression. Method: 95 Holocaust offspring and Jewish comparison subjects received diagnostic and psychological evaluat...

  17. Maternal age at Holocaust exposure and maternal PTSD independently influence urinary cortisol levels in adult offspring

    Directory of Open Access Journals (Sweden)

    Heather N Bader

    2014-07-01

    Full Text Available Background: Parental traumatization has been associated with increased risk for the expression of psychopathology in offspring, and maternal PTSD appears to increase the risk for the development of offspring PTSD. In this study, Holocaust-related maternal age of exposure and PTSD were evaluated for their association with offspring ambient cortisol and PTSD-associated symptom expression. Method: 95 Holocaust offspring and Jewish comparison subjects received diagnostic and psychological evaluations, and 24 hour urinary cortisol was assayed by RIA. Offspring completed the Parental PTSD Questionnaire to assess maternal PTSD status. Maternal Holocaust exposure was identified as having occurred in childhood, adolescence or adulthood and examined in relation to offspring psychobiology. Results: Urinary cortisol levels did not differ for Holocaust offspring and comparison subjects but differed significantly in offspring based on maternal age of exposure and maternal PTSD status. Increased maternal age of exposure and maternal PTSD were each associated with lower urinary cortisol in offspring, but did not exhibit a significant interaction. In addition, offspring PTSD-associated symptom severity increased with maternal age at exposure and PTSD diagnosis. A regression analysis of correlates of offspring cortisol indicated that both maternal age of exposure and maternal PTSD were significant predictors of lower offspring urinary cortisol, whereas childhood adversity and offspring PTSD symptoms were not. Conclusions: Offspring low cortisol and PTSD-associated symptom expression are related to maternal age of exposure, with the greatest effects associated with increased age at exposure. These effects are relatively independent of the negative consequences of being raised by a trauma survivor. These observations highlight the importance of maternal age of exposure in determining a psychobiology in offspring that is consistent with increased risk for stress

  18. Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms.

    Science.gov (United States)

    Tie, Kai; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2016-04-01

    Prenatal nicotine exposure (PNE) induces skeletal growth retardation and dyslipidemia in offspring displaying intrauterine growth retardation (IUGR). Cholesterol accumulation resulting from cholesterol efflux dysfunction may reduce the quality of articular cartilage through fetal programming. This study evaluated the quality of articular cartilage of female adult offspring fed a high-fat diet and explored the mechanisms using a rat IUGR model established by the administration of 2.0mg/kg/d of subcutaneous nicotine from gestational days 11-20. The results demonstrated an increased OARSI (Osteoarthritis Research Society International) score and total cholesterol content, decreased serum corticosterone, and increased IGF1 and dyslipidemia with catch-up growth in PNE adult offspring. Cartilage matrix, IGF1 and cholesterol efflux pathway expression were reduced in PNE fetuses and adult offspring. Therefore, PNE induced poor articular cartilage quality in female adult offspring fed a high-fat diet via a dual programming mechanism.

  19. The influence of parental divorce and alcohol abuse on adult offspring risk of lifetime suicide attempt in the United States.

    Science.gov (United States)

    Alonzo, Dana; Thompson, Ronald G; Stohl, Mahlki; Hasin, Deborah

    2014-05-01

    The influences of parental divorce and alcohol abuse on adult offspring lifetime suicide attempt have not been examined in national data. This study analyzed data from the 2001-2002 NESARC to estimate main and interaction effects of parental divorce and alcohol abuse on lifetime suicide attempt. Adjusted for controls, parental divorce and parental alcohol abuse independently increased odds of lifetime suicide attempt. The effect of parental divorce was not significantly moderated by parental alcohol abuse. Further research is needed to examine whether additional parental and offspring psychiatric and substance use covariates attenuate the association between parental divorce and lifetime suicide attempt.

  20. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  1. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Argel Aguilar-Valles

    Full Text Available Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  2. Maternal resveratrol intake during lactation attenuates hepatic triglyceride and fatty acid synthesis in adult male rat offspring

    Directory of Open Access Journals (Sweden)

    Masato Tanaka

    2017-03-01

    Full Text Available Resveratrol (3,5,4-trihydroxystilbene is a natural polyphenolic compound found in grapes and red wine and has been shown to exert protective effects on the liver preventing lipid accumulation induced by a high-fat diet. However, no studies have shown that the nutritional resveratrol intake by the parental generation has modified lipogenesis in an adult offspring. The aim of this study was to investigate whether maternal resveratrol intake during lactation affects lipogenesis in adult male rat offspring, and if it does, what is the molecular mechanistic basis. Six male pups born from mothers given a control diets during lactation (CC group and six male pups born from mothers given a control diet as well as resveratrol during lactation (CR group were fed a standard diet until sacrifice at 36 weeks. Adult male offspring from mothers given resveratrol during lactation (CR group had lower body weight from the fourth week of lactation until adulthood, but no significant change was observed in the relative food intake. Low levels of plasma triacylglycerol were found in the CR group compared to the CC group. Histopathological analysis of the livers of adult male rat offspring revealed lipid accumulation in hepatocytes in the CC group, whereas lipid droplets were rare in the CR group. Hepatic protein levels of AMPK-phosphorylated at ser403, Sirt1, and Nampt in the CR group were upregulated significantly compared to the CC group. These results indicated the maternal resveratrol intake during lactation-induced activation of AMPK through Sirt1 upregulation. In this study, significant upregulation of the levels of precursor of sterol regulatory element binding protein-1c (SREBP-1c and downregulation of the ratio of active-SREBP-1c/precusor-SREBP-1c were observed in the CR group compared to the CC group. These results suggested that proteolytic processing of SREBP-1c was suppressed by AMPK in the livers of the CR group. It is well known that SREBP-1c

  3. Malnutrition during lactation as a metabolic imprinting factor inducing the feeding pattern of offspring rats when adults: The role of insulin and leptin

    OpenAIRE

    MOURA,A.S.; Franco de Sá,C.C.N.; Cruz,H.G.; C. L. Costa

    2002-01-01

    The aim of the present study was to determine the impact of malnutrition during early postnatal life and the feeding pattern of rat offspring when adults (2 months and 1 year old). In comparison with rats normally fed during lactation, we observed that adult offspring displayed a faster process of feeding reduction when a protein-free diet was offered. In addition, we studied the concentration of insulin and leptin in the lactating pups (10 days) and when these offspring became adult after th...

  4. Mortality in Adult Offspring of Immigrants: A Swedish National Cohort Study

    OpenAIRE

    Hélio Manhica; Susanna Toivanen; Anders Hjern; Mikael Rostila

    2015-01-01

    Background Higher risks of psychiatric disorders and lower-than-average subjective health in adulthood have been demonstrated in offspring of immigrants in Sweden compared with offspring of native Swedes, and linked to relative socioeconomic disadvantage. The present study investigated mortality rates in relation to this inequity from a gender perspective. Methods We used data from national registers covering the entire Swedish population aged 18-65 years. Offspring of foreign-born parents wh...

  5. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingxing; Cai, Ruowei [Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China); Lv, Guorong, E-mail: lxingwan502@gmail.com [Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China); Huang, Ziyang; Wang, Zhenhua [Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China)

    2010-05-28

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  6. Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition.

    Science.gov (United States)

    Reynolds, C M; Li, M; Gray, C; Vickers, M H

    2013-08-01

    It is well established that early-life nutritional alterations lead to increased risk of obesity and metabolic disorders in adult life. Although it is clear that obesity gives rise to chronic low-grade inflammation, there is little evidence regarding the role of inflammation in the adipose tissue of undernourished (UN) offspring. GH reduces fat mass and has antiinflammatory properties. The present study examined the effect of maternal UN on adipose inflammation in adult offspring and whether GH treatment during a critical period of developmental plasticity could ameliorate metabolic dysfunction associated with a poor start to life. Sprague Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (control saline [CS]/UN) or GH (2.5 μg/g/d; control growth hormone [CGH]/undernourished growth hormone [UNGH]) from days 3-21. Postweaning males were further randomized and fed either chow or high-fat diet until day 160. An ex vivo glucose uptake assay demonstrated adipose tissue from UN offspring displayed attenuated insulin-stimulated glucose uptake compared with CS, CGH, and UNGH. This was associated with increased insulin receptor, glucose transporter 4, and insulin receptor substrate 1 gene expression. Furthermore, UN demonstrated enhanced TNFα and IL-1β secretion from adipose explants and stromal vascular fraction cultures accompanied by increased adipose tissue gene expression of several key proinflammatory genes and markers of macrophage infiltration. Overall, UN offspring displayed a more potent immunophenotype, which correlated with decreased insulin sensitivity. Preweaning GH treatment negates these detrimental effects, indicating the potential for reversing metabolic dysfunction in UN adult offspring.

  7. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia

    DEFF Research Database (Denmark)

    Clausen, Tine D; Mathiesen, Elisabeth R; Hansen, Torben;

    2008-01-01

    OBJECTIVE: The role of intrauterine hyperglycemia and future risk of type 2 diabetes in human offspring is debated. We studied glucose tolerance in adult offspring of women with either gestational diabetes mellitus (GDM) or type 1 diabetes, taking the impact of both intrauterine hyperglycemia...

  8. Induction of antibodies reactive to cardiac myosin and development of heart alterations in cruzipain-immunized mice and their offspring.

    Science.gov (United States)

    Giordanengo, L; Maldonado, C; Rivarola, H W; Iosa, D; Girones, N; Fresno, M; Gea, S

    2000-11-01

    Human and murine infection with Trypanosoma cruzi parasite is usually accompanied by strong humoral and cellular immune response to cruzipain, a parasite immunodominant antigen. In the present study we report that the immunization of mice with cruzipain devoid of enzymatic activity, was able to induce antibodies which bind to a 223-kDa antigen from a mouse heart extract. We identified this protein as the mouse cardiac myosin heavy chain by sequencing analysis. The study of IgG isotype profile revealed the occurrence of all IgG isotypes against cruzipain and myosin. IgG1 showed the strongest reactivity against cruzipain, whereas IgG2a was the main isotype against myosin. Anti-cruzipain antibodies purified by immunoabsorption recognized the cardiac myosin heavy chain, suggesting cross-reactive epitopes between cruzipain and myosin. Autoimmune response in mice immunized with cruzipain was associated to heart conduction disturbances. In addition, ultrastructural findings revealed severe alterations of cardiomyocytes and IgG deposit on heart tissue of immunized mice. We investigated whether antibodies induced by cruzipain transferred from immunized mothers to their offsprings could alter the heart function in the pups. All IgG isotypes against cruzipain derived from transplacental crossing were detected in pups' sera. Electrocardiographic studies performed in the offsprings born to immunized mothers revealed conduction abnormalities. These results provide strong evidence for a pathogenic role of autoimmune response induced by a purified T. cruzi antigen in the development of experimental Chagas' disease.

  9. Mortality in adult offspring of immigrants: a Swedish national cohort study.

    Directory of Open Access Journals (Sweden)

    Hélio Manhica

    Full Text Available Higher risks of psychiatric disorders and lower-than-average subjective health in adulthood have been demonstrated in offspring of immigrants in Sweden compared with offspring of native Swedes, and linked to relative socioeconomic disadvantage. The present study investigated mortality rates in relation to this inequity from a gender perspective.We used data from national registers covering the entire Swedish population aged 18-65 years. Offspring of foreign-born parents who were either Swedish born or had received residency in Sweden before school age (<7 years were defined as "offspring of immigrants." We used Cox regression models to examine the association between parental country of birth and mortality between 1990 and 2008, with adjustment for education, income, age and family type.Male offspring of immigrants from the Middle East (HR:2.00, CI:1.66-2.26, other non-European countries (HR:1.80, CI:1.36-2.36 and Finland (HR:1.56, CI:1.48-1.65 showed an age-adjusted excess mortality risk from all causes of death when compared to offspring with Swedish-born parents. Income, but not education, greatly attenuated these increased mortality risks. No excess mortality rates were found among female offspring of immigrants, with the exception of external cause of death among offspring of Finnish immigrants.The study demonstrates high mortality rates in male offspring of immigrants from Finland and non-European countries that are associated with economic, but not educational, disadvantage. No increased mortality rates were found among female offspring of immigrants. Future studies are needed to explain this gender differential and why income, but not education, predicts mortality in male offspring of immigrants.

  10. Prenatal high-salt diet in the Sprague-Dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring.

    Science.gov (United States)

    Porter, James P; King, Summer H; Honeycutt, April D

    2007-07-01

    Several animal models have been developed to study fetal programming of hypertension. One model involves feeding high-salt (HS) diet to rats before and during pregnancy, during lactation, and after weaning for 10 days. In the present investigation, we limited HS diet to the prenatal period in an attempt to find a narrower critical window for fetal programming. The HS diet did not result in low-birth weight offspring. In the adult offspring, radiotelemetry was used to assess blood pressure and heart rate in the conscious unstressed state. As adults, the HS offspring were not hypertensive compared with normal-salt (NS) control animals. However, the pressor and tachycardic responses to 1-h of restraint were significantly enhanced in HS female offspring, and recovery after restraint was delayed. This was accompanied by an increase in relative expression of corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus during basal and stressed conditions. There was no augmented stress response or relative increase in CRH mRNA in adult HS male offspring. When challenged with 1 wk of 8% NaCl diet as adults, neither HS male nor female offspring exhibited salt sensitivity compared with NS groups. These data show that a high-salt diet limited to the prenatal period is not sufficient to program hypertension in adult offspring. However, this narrower critical period is sufficient to imprint a lasting hyperresponsiveness to stress, at least in adult female offspring. These data indicate that excessive maternal salt intake during pregnancy can adversely affect the cardiovascular health of adult offspring.

  11. Epigenetics: Behavioral Influences on Gene Function, Part I: Maternal Behavior Permanently Affects Adult Behavior in Offspring

    Science.gov (United States)

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    The article highlights the field of epigenetics and its relevance in determining the effects of maternal nurturing on behavioral patterns in offsprings. Results concluded that maternal behavior influences the offspring's behavior to stress in adulthood and the effects are transgenerational through epigenetic mechanisms.

  12. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats.

    Science.gov (United States)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE+ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE+HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE+HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a "two-programming" hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is "the first programming", and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as "the second programming".

  13. Adult exposure to the synthetic hormone 17α-ethynylestradiol affects offspring of the gastropods Nassarius burchardi and Nassarius jonasii.

    Science.gov (United States)

    Borysko, Larissa; Ross, Pauline M

    2014-05-01

    The aim of this study was to determine whether adult exposure to endocrine disrupting compounds affects offspring using trans-generational testing. Adult estuarine dwelling gastropods Nassarius burchardi and Nassarius jonasii were exposed to the synthetic estrogen 17α-ethynylestradiol (EE2) to determine the effects on the development and survival of their offspring. Adults were maintained in synthetic seawater controls and EE2 treatments (0.005, 0.05, 0.5, 50µg/L) over a sixteen week period. Egg capsules were collected from the adults following four, ten and sixteen weeks of adult exposure and transferred to different EE2 exposure scenarios. Treatment concentrations were selected to represent changes in EE2 exposure that could occur over different periods in an organism's lifecycle. Egg capsules laid by adults were therefore transferred to control or EE2 treatments (0.005, 0.05, 0.5, 5, 50, 500µg/L) to develop until hatching. The percentage of egg capsules with unviable eggs and abnormalities, number of days for hatching to occur and hatching success were measured. The veliger larvae that hatched from egg capsules following two, eight and fourteen weeks of adult exposure to EE2 and controls were used in 96h acute toxicity tests with controls and EE2 treatments at concentrations of 0.5, 5, 50, 500, 1250, 2500, 4000µg/L. Exposure of adult N. burchardi and N. jonasii to EE2 affected the percentage of egg capsules with unviable eggs, the development and hatching success of embryos and survival of veligers. These toxicity tests produced a complex set of results with different responses in developing eggs and veliger larvae to the adult EE2 treatments and length of adult exposure. This study demonstrates the importance of trans-generational testing and adult exposure scenarios in toxicity investigations.

  14. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    Science.gov (United States)

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations.

  15. Pre-weaning growth hormone treatment reverses hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy.

    Directory of Open Access Journals (Sweden)

    Clint Gray

    Full Text Available Maternal undernutrition results in elevated blood pressure (BP and endothelial dysfunction in adult offspring. However, few studies have investigated interventions during early life to ameliorate the programming of hypertension and vascular disorders. We have utilised a model of maternal undernutrition to examine the effects of pre-weaning growth hormone (GH treatment on BP and vascular function in adulthood. Female Sprague-Dawley rats were fed either a standard control diet (CON or 50% of CON intake throughout pregnancy (UN. From neonatal day 3 until weaning (day 21, CON and UN pups received either saline (CON-S, UN-S or GH (2.5 ug/g/day(CON-GH, UN-GH. All dams were fed ad libitum throughout lactation. Male offspring were fed a standard diet until the end of the study. Systolic blood pressure (SBP was measured at day 150 by tail cuff plethysmography. At day 160, intact mesenteric vessels mounted on a pressure myograph. Responses to pressure, agonist-induced constriction and endothelium-dependent vasodilators were investigated to determine vascular function. SBP was increased in UN-S groups and normalised in UN-GH groups (CON-S 121±2 mmHg, CON-GH 115±3, UN-S 146±3, UN-GH 127±2. Pressure mediated dilation was reduced in UN-S offspring and normalised in UN-GH groups. Vessels from UN-S offspring demonstrated a reduced constrictor response to phenylephrine and reduced vasodilator response to acetylcholine (ACh. Furthermore, UN-S offspring vessels displayed a reduced vasodilator response in the presence of L-NG-Nitroarginine Methyl Ester (L-NAME, carbenoxolone (CBX, L-NAME and CBX, Tram-34 and Apamin. UN-GH vessels showed little difference in responses when compared to CON and significantly increased vasodilator responses when compared to UN-S offspring. Pre-weaning GH treatment reverses the negative effects of maternal UN on SBP and vasomotor function in adult offspring. These data suggest that developmental cardiovascular programming is

  16. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight.

    Science.gov (United States)

    Blackmore, Heather L; Niu, Youguo; Fernandez-Twinn, Denise S; Tarry-Adkins, Jane L; Giussani, Dino A; Ozanne, Susan E

    2014-10-01

    Obese pregnancies are not only associated with adverse consequences for the mother but also the long-term health of her child. Human studies have shown that individuals from obese mothers are at increased risk of premature death from cardiovascular disease (CVD), but are unable to define causality. This study aimed to determine causality using a mouse model of maternal diet-induced obesity. Obesity was induced in female C57BL/6 mice by feeding a diet rich in simple sugars and saturated fat 6 weeks prior to pregnancy and throughout pregnancy and lactation. Control females were fed laboratory chow. Male offspring from both groups were weaned onto chow and studied at 3, 5, 8, and 12 weeks of age for gross cardiac morphometry using stereology, cardiomyocyte cell area by histology, and cardiac fetal gene expression using qRT-PCR. Cardiac function was assessed by isolated Langendorff technology at 12 weeks of age and hearts were analyzed at the protein level for the expression of the β1 adrenergic receptor, muscarinic type-2 acetylcholine receptor, and proteins involved in cardiac contraction. Offspring from obese mothers develop pathologic cardiac hypertrophy associated with re-expression of cardiac fetal genes. By young adulthood these offspring developed severe systolic and diastolic dysfunction and cardiac sympathetic dominance. Importantly, cardiac dysfunction occurred in the absence of any change in corresponding body weight and despite the offspring eating a healthy low-fat diet. These findings provide a causal link to explain human observations relating maternal obesity with premature death from CVD in her offspring.

  17. Thermoregulatory deficits in adult long evans rat offspring exposed perinatally to the antithyroidal drug, propylthiouracil

    Science.gov (United States)

    Developmental exposure to endocrine disrupting toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (Tc) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic-pituitary-thyroid...

  18. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure.

    Science.gov (United States)

    Nobre, J L; Lisboa, P C; Santos-Silva, A P; Lima, N S; Manhães, A C; Nogueira-Neto, J F; Cabanelas, A; Pazos-Moura, C C; Moura, E G; de Oliveira, E

    2011-09-01

    Obesity is a worldwide epidemic. Calcium influences energy metabolism regulation, causing body weight loss. Because maternal nicotine exposure during lactation programs for obesity, hyperleptinemia, insulin resistance (IR), and hypothyroidism, we decided to evaluate the possible effect of dietary calcium supplementation on these endocrine dysfunctions in this experimental model. Osmotic minipumps containing nicotine solution (N: 6 mg/kg per day for 14 days) or saline (C) were s.c. implanted in lactating rats 2 days after giving birth (P2). At P120, N and C offspring were subdivided into four groups: 1) C - standard diet; 2) C with calcium supplementation (CCa, 10 g calcium carbonate/kg rat chow); 3) N - standard diet; and 4) N with calcium supplementation (NCa). Rats were killed at P180. As expected, N offspring showed higher visceral and total body fat, hyperleptinemia, lower hypothalamus leptin receptor (OB-R) content, hyperinsulinemia, and higher IR index. Also, higher tyrosine hydroxylase (TH) expression (+51%), catecholamine content (+37%), and serum 25-hydroxyvitamin D(3) (+76%) were observed in N offspring. Dietary calcium supplementation reversed adiposity, hyperleptinemia, OB-R underexpression, IR, TH overexpression, and vitamin D. However, this supplementation did not reverse hypothyroidism. In NCa offspring, Sirt1 mRNA was lower in visceral fat (-37%) and higher in liver (+42%). In conclusion, dietary calcium supplementation seems to revert most of the metabolic syndrome parameters observed in adult offspring programed by maternal nicotine exposure during lactation. It is conceivable that the reduction in fat mass per se, induced by calcium therapy, is the main mechanism that leads to the increment of insulin action.

  19. Fish oil supplementation during late pregnancy does not influence plasma lipids or lipoprotein levels in young adult offspring.

    Science.gov (United States)

    Rytter, Dorte; Schmidt, Erik B; Bech, Bodil H; Christensen, Jeppe H; Henriksen, Tine B; Olsen, Sjurdur F

    2011-12-01

    Nutritional influences on cardiovascular disease operate throughout life. Studies in both experimental animals and humans have suggested that changes in the peri- and early post-natal nutrition can affect the development of the various components of the metabolic syndrome in adult life. This has lead to the hypothesis that n-3 fatty acid supplementation in pregnancy may have a beneficial effect on lipid profile in the offspring. The aim of the present study was to investigate the effect of supplementation with n-3 fatty acids during the third trimester of pregnancy on lipids and lipoproteins in the 19-year-old offspring. The study was based on the follow-up of a randomized controlled trial from 1990 where 533 pregnant women were randomized to fish oil (n = 266), olive oil (n = 136) or no oil (n = 131). In 2009, the offspring were invited to a physical examination including blood sampling. A total of 243 of the offspring participated. Lipid values did not differ between the fish oil and olive oil groups. The relative adjusted difference (95% confidence intervals) in lipid concentrations was -3% (-11; 7) for LDL cholesterol, 3% (-3; 10) for HDL cholesterol, -1% (-6; 5) for total cholesterol,-4% (-16; 10) for TAG concentrations, 2%(-2; 7) for apolipoprotein A1, -1% (-9; 7) for apolipoprotein B and 3% (-7; 15) in relative abundance of small dense LDL. In conclusion, there was no effect of fish oil supplementation during the third trimester of pregnancy on offspring plasma lipids and lipoproteins in adolescence.

  20. Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring.

    Science.gov (United States)

    Tormo-Badia, N; Håkansson, Å; Vasudevan, K; Molin, G; Ahrné, S; Cilio, C M

    2014-10-01

    The intestinal microbiota is important for tolerance induction through mucosal immunological responses. The composition of the gut microbiota of an infant is affected by environmental factors such as diet, disease and antibiotic treatment. However, already in utero, these environmental factors can affect the immunological development of the foetus and influence the future gut microbiota of the infant. To investigate the effects of antibiotic treatment of pregnant mothers on the offspring's gut microbiome and diabetes development, we treated non-obese diabetic (NOD) mice with a cocktail of antibiotics during gestation and the composition of the gut microbiota, diabetes incidence and major gut-related T lymphocyte populations were investigated in the offspring. We observed a persistent reduction in the general diversity of the gut microbiota in the offspring from NOD mothers treated with antibiotics during gestation compared with offspring from control mothers. In addition, by clustering the present bacterial taxa with principal component analysis, we found a differential clustering of gut microbiota in the offspring from NOD mothers treated with antibiotics during gestation compared with offspring from control mothers. Offspring from NOD mothers treated with antibiotics during gestation also showed some immunological alterations in the gut immune system, which could be related to the diversity of the gut microbiome and influence modulation of diabetes development at 20 weeks. Our data point out maternal derangement of the intestinal microbiota as a potential environmental risk factor for T1D development.

  1. Targeting arachidonic acid pathway to prevent programmed hypertension in maternal fructose-fed male adult rat offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2016-12-01

    Hypertension can be programmed in response to nutritional insults in early life. Maternal high-fructose (HF) intake induced programmed hypertension in adult male offspring, which is associated with renal programming and arachidonic acid metabolism pathway. We examined whether early treatment with a soluble epoxide hydrolase (SEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) or 15-Deoxy-Δ(12,14)-prostagandin J2 (15dPGJ2) can prevent HF-induced programmed hypertension. Pregnant Sprague Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) during the whole period of pregnancy and lactation. Four groups of male offspring were studied: control, HF, HF+AUDA and HF+15dPGJ2. In HF+AUDA group, mother rats received AUDA 25 mg/L in drinking water during lactation. In the HF+15dPGJ2 group, male offspring received 15dPGJ2 1.5 mg/kg body weight by subcutaneous injection once daily for 1 week after birth. Rats were sacrificed at 12 weeks of age. Maternal HF-induced programmed hypertension is associated with increased renal protein level of SEH and oxidative stress, which early AUDA therapy prevents. Comparison of AUDA and 15dPGJ2 treatments demonstrated that AUDA was more effective in preventing HF-induced programmed hypertension. AUDA therapy increases angiotensin converting enzyme-2 (ACE2) protein levels and PGE2 levels in adult offspring kidney exposed to maternal HF. 15dPGJ2 therapy increases plasma asymmetric dimethylarginine (ADMA) levels and decreases L-arginine-to-ADMA ratio. Better understanding of the impact of arachidonic acid pathway, especially inhibition of SEH, on renal programming may aid in developing reprogramming strategy to prevent programmed hypertension in children exposed to antenatal HF intake.

  2. Gestational and lactational exposure to low-dose bisphenol A increases Th17 cells in mice offspring.

    Science.gov (United States)

    Luo, Shimeng; Li, Yun; Li, Yingpei; Zhu, Qixing; Jiang, Jianhua; Wu, Changhao; Shen, Tong

    2016-10-01

    Increasing evidence demonstrates that perinatal exposure to Bisphenol A (BPA) can cause immune disorders throughout the life span. However, the biological basis for these immune disorders is poorly understood and the effects of exposure to BPA on Th17 development are unknown. The present study sought to characterize alterations of Th17 cells in childhood and adulthood following gestational and lactational exposure to environmentally relevant low-dose of BPA and the underlying mechanisms. Pregnant dams were exposed to BPA (10, 100 or 1000nM) via drinking water from gestational day (GD) 0 to postnatal day (PND) 21. At PNDs 21 and 42, offspring mice were anesthetized, blood was obtained for cytokine assay and spleens were collected for Th17 cell frequency and RORγt mRNA expression analysis. Perinatal exposure to low-dose BPA resulted in a dose-dependent and gender-specific persistent rise in Th17 cells accompanied by an increase of RORγt mRNA expression in the offsprings. The contents of major Th17 cell-derived cytokines (IL-17 and IL-21) and those essential for Th17 cell differentiation (IL-6 and IL-23) were also increased compared to those in controls. These changes were more pronounced in female than in male offsprings. However, perinatal exposure to low-dose BPA had little effect on serum TGF-β, another key regulator for Th17 cell development. Our results suggest that gestational and lactational exposure to a low-dose of BPA can affect Th17 cell development via an action on its transcription factor and the regulatory cytokines. These findings provide novel insight into sustained immune disorders by BPA exposure during development.

  3. Low functional programming of renal AT{sub 2}R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Ying [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071 (China); Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Li, Bin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Yang, Shuailong; Xia, Liping; Wu, Yong [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); He, Zheng [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071 (China)

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT{sub 2}R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT{sub 1a}R)/AT{sub 2}R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT{sub 2}R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT{sub 2}R might mediate the developmental origin of adult glomerulosclerosis. - Highlights: • Prenatal caffeine exposure induces glomerulosclerosis in adult offspring. • Prenatal caffeine

  4. Maternal dietary restriction alters offspring's sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Shimizu

    Full Text Available Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD or 50% dietary restriction (DR groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks, we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG slow wave activity (SWA during non-rapid eye movement (NREM sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα and brain-specific carnitine palmitoyltransferase 1 (Cpt1c mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  5. Maternal melatonin programs the daily pattern of energy metabolism in adult offspring.

    Directory of Open Access Journals (Sweden)

    Danilo S Ferreira

    Full Text Available BACKGROUND: Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. METHODOLOGY/PRINCIPAL FINDINGS: Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX. The PINX rats were divided into two groups and received either melatonin (PM or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT, a pyruvate tolerance test (PTT and an insulin tolerance test (ITT. Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. CONCLUSIONS/SIGNIFICANCE: The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.

  6. To have and to hold: codependency as a mediator or moderator of the relationship between substance abuse in the family of origin and adult-offspring medical problems.

    Science.gov (United States)

    Harkness, Daniel

    2003-01-01

    This pilot study explored the putative role of codependency as a mediator or moderator of the relationship between substance abuse in the family of origin (SAFO) and offspring medical problems in a counterbalanced multiple-treatment experiment with a heterogenous sample of adult males and females. Codependent attitude and behavior were moderators that attenuated the relationship between SAFO and two measures of acute offspring medical problems, but codependent behavior amplified the relationship between SAFO and chronic medical problems. Challenging replications are called for.

  7. Prenatal cocaine alters later responses to morphine in adult male mice.

    Science.gov (United States)

    Estelles, Josefina; Rodríguez-Arias, Marta; Maldonado, Concepción; Manzanedo, Carmen; Aguilar, María A; Miñarro, José

    2006-08-30

    Mice prenatally exposed to cocaine (25 mg/kg), physiological saline or non-treated during the last 6 days of pregnancy were evaluated as adults for the rewarding properties of 2 mg/kg of morphine, using the conditioned place preference (CPP) procedure. Likewise, isolated animals underwent a social interaction test with conspecifics after receiving the same morphine dose. Unlike control or animals pre-treated with saline, subjects prenatally treated with cocaine did not develop CPP with this dose of morphine. Only cocaine-exposed animals showed increased threat, avoidance and fleeing during the social encounter. No differences in motor effects of morphine were observed. Analysis of monoamines revealed effects of housing conditions, isolated animals having fewer DOPAC but higher levels of HVA than those grouped, but in both groups there was a decrease in DOPAC in cocaine- and saline-treated mice. Prenatal cocaine exposure decreases the response to the rewarding properties of drugs in mature offspring. They also implicate cocaine consumption during pregnancy could affect the response of offspring to take other drugs of abuse.

  8. Effects of Maternal Isocaloric Diet Containing Different Amounts of Soy Oil and Extra Virgin Olive Oil on Weight, Serum Glucose, and Lipid Profile of Female Mice Offspring

    Science.gov (United States)

    Mousavi, Seyedeh Neda; Koohdani, Fariba; Shidfar, Farzad; Eslaminejad, Mohamadreza Baghaban; Izadi, Pantea; Eshraghian, Mohammadreza; Shafieineek, Leila; Tohidinik, Hamidreza

    2017-01-01

    Background: Health status of offspring is programmed by maternal diet throughout gestation and lactation. The present study investigates the lasting effects of maternal supplementation with different amounts of soy oil or extra virgin olive oil (EVOO) on weight and biochemical parameters during gestation and lactation of female mice offspring. Methods: Eight weeks old female C57BL/6 mice (n=40) were assigned through simple randomization into four isocaloric dietary groups (16% of calories as soy oil (LSO) or EVOO (LOO) and 45% of calories as soy oil (HSO) or EVOO (HOO)) during three weeks of gestation and lactation. After weaning (at 3 weeks), all offspring received a diet containing 16% of calories as soy oil and were sacrificed at 6 weeks. Two-way ANOVA was used to adjust for confounding variables and repeated measures test for weight gain trend. Statistical analyses were performed with the IBM SPSS package. Results: At birth and adolescence, the weight of offspring was significantly higher in the soy oil than the olive oil groups (P<0.001 and P<0.001, respectively). Adolescence weight was significantly higher in the offspring born to mothers fed with 16% oil than those with 45% oil (P=0.001). Serum glucose, triglyceride and total cholesterol were significantly higher in the LSO than LOO (P<0.001, P<0.001 and P<0.001), LSO than HSO (P<0.001, P=0.03 and P<0.001), and LOO than HOO (P<0.001, P<0.001 and P<0.001) dietary groups, respectively. Serum triglyceride and total cholesterol were significantly higher in the offspring of HSO than HOO fed mothers (P<0.001 and P<0.001, respectively). Conclusion: A maternal diet containing EVOO has better effects on birth weight, as well as weight and serum biochemical parameters in offspring at adolescence. PMID:28360442

  9. Increased blood pressure in adult offspring of families with Balkan Endemic Nephropathy: a prospective study

    Directory of Open Access Journals (Sweden)

    Georgieva Rossitza B

    2006-08-01

    Full Text Available Abstract Background Previous studies have linked smaller kidney dimensions to increased blood pressure. However, patients with Balkan Endemic Nephropathy (BEN, whose kidneys shrink during the course of the disease, do not manifest increased blood pressure. The authors evaluated the relationship between kidney cortex width, kidney length, and blood pressure in the offspring of BEN patients and controls. Methods 102 offspring of BEN patients and 99 control offspring of non-BEN hospital patients in the Vratza District, Bulgaria, were enrolled in a prospective study and examined twice (2003/04 and 2004/05. Kidney dimensions were determined using ultrasound, blood pressure was measured, and medical information was collected. The parental disease of BEN was categorized into three groups: mother, father, or both parents. Repeated measurements were analyzed with mixed regression models. Results In all participants, a decrease in minimal kidney cortex width of 1 mm was related to an increase in systolic blood pressure of 1.4 mm Hg (p = 0.005. There was no association between kidney length and blood pressure. A maternal history of BEN was associated with an increase in systolic blood pressure of 6.7 mm Hg (p = 0.03; paternal BEN, +3.2 mm Hg (p = 0.35; or both parents affected, +9.9 mm Hg (p = 0.002. There was a similar relation of kidney cortex width and parental history of BEN with pulse pressure; however, no association with diastolic blood pressure was found. Conclusion In BEN and control offspring, a smaller kidney cortex width predisposed to higher blood pressure. Unexpectedly, a maternal history of BEN was associated with average increased systolic blood pressure in offspring.

  10. Birth outcomes among offspring of adult cancer survivors: a population-based study.

    Science.gov (United States)

    Stensheim, Hanne; Klungsøyr, Kari; Skjaerven, Rolv; Grotmol, Tom; Fosså, Sophie D

    2013-12-01

    Do cancer and cancer treatment influence patients' subsequent pregnancies and outcomes for the offspring? In this study, we compared birth outcomes in 3,915 female and male survivors and 144,653 controls from the general population with similar parity, by merging data from the Cancer Registry and the Medical Birth Registry of Norway. The cancer survivors were diagnosed at age 16-45 in the period 1967-2004. Subgroups of nulliparous survivors (childless before cancer) and primiparous (one pregnancy before and one after cancer) were analyzed, using logistic regression to compare birth outcomes with controls, focusing perinatal death, congenital anomalies, preterm birth (offspring had increased risk of preterm birth (OR = 1.30 [95% CI 1.05-1.61]) but similar risks of LBW and perinatal death as their controls. Primiparous female survivors differed from their controls, with higher frequency of preterm birth (OR = 1.89 [95% CI 1.40-2.56]) and LBW at term (OR = 2.02 [95% CI 1.15-3.55]). A borderline significant increase of perinatal death was seen among offspring of primiparous female survivors, with OR = 1.92 (95% CI 0.98-3.76). Offspring of male survivors did not differ from their controls. For all cancer types combined, no increased risk of congenital anomalies was seen among either female or male survivors' offspring. Pregnant female cancer survivors should be offered close follow-up, as there is an increased risk of adverse birth outcomes, in particular among those with higher parities.

  11. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Sérgio Gomes da Silva

    Full Text Available Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task. Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation and associative (spatial learning mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  12. Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure.

    Science.gov (United States)

    Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT2R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT2R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT2R might mediate the developmental origin of adult glomerulosclerosis.

  13. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  14. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring

    DEFF Research Database (Denmark)

    Jackson, Petra; Hougaard, Karin Sørig; Boisen, Anne Mette Zenner

    2011-01-01

    Effects of maternal pulmonary exposure to carbon black (Printex 90) on gestation, lactation and DNA strand breaks were evaluated. Time-mated C57BL/6BomTac mice were exposed by inhalation to 42 mg/m3 Printex 90 for 1 h/day on gestation days (GD) 8–18, or by four intratracheal instillations on GD 7...... cells and liver, and in offspring liver. Persistent lung inflammation was observed in exposed mothers. Inhalation exposure induced more DNA strand breaks in the liver of mothers and their offspring, whereas intratracheal instillation did not. Neither inhalation nor instillation affected gestation...... and lactation. Maternal inhalation exposure to Printex 90-induced liver DNA damage in the mothers and the in utero exposed offspring....

  15. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    Science.gov (United States)

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  16. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    Science.gov (United States)

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  17. Maternal in utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring

    Energy Technology Data Exchange (ETDEWEB)

    Martinez–Arguelles, D.B. [The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4 (Canada); Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4 (Canada); McIntosh, M.; Rohlicek, C.V. [The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4 (Canada); Department of Pediatrics, McGill University, Montreal, Quebec, Canada H3G 1A4 (Canada); Culty, M. [The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4 (Canada); Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4 (Canada); Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada H3G 1A4 (Canada); Zirkin, B.R. [Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Papadopoulos, V., E-mail: vassilios.papadopoulos@mcgill.ca [The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4 (Canada); Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4 (Canada); Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada H3G 1A4 (Canada); Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 (United States)

    2013-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used industrially to add flexibility to polyvinyl chloride (PVC) polymers and is ubiquitously found in the environment, with evidence of prenatal, perinatal and early infant exposure in humans. In utero exposure to DEHP decreases circulating testosterone levels in the adult rat. In addition, DEHP reduces the expression of the angiotensin II receptors in the adrenal gland, resulting in decreased circulating aldosterone levels. The latter may have important effects on water and electrolyte balance as well as systemic arterial blood pressure. Therefore, we determined the effects of in utero exposure to DEHP on systemic arterial blood pressure in the young (2 month-old) and older (6.5 month-old) adult rats. Sprague-Dawley pregnant dams were exposed from gestational day 14 until birth to 300 mg DEHP/kg/day. Blood pressure, heart rate, and activity data were collected using an intra-aortal transmitter in the male offspring at postnatal day (PND) 60 and PND200. A low (0.01%) and high-salt (8%) diet was used to challenge the animals at PND200. In utero exposure to DEHP resulted in reduced activity at PND60. At PND200, systolic and diastolic systemic arterial pressures as well as activity were reduced in response to DEHP exposure. This is the first evidence showing that in utero exposure to DEHP has cardiovascular and behavioral effects in the adult male offspring. Highlights: ► In utero exposure to 300 mg DEHP/kg/day decreases activity at postnatal day 60. ► In utero exposure to DEHP decreases aldosterone levels at postnatal day 200. ► In utero exposure to DEHP decreases systolic blood pressure at postnatal day 200. ► An 8% salt diet recovers the decreased blood pressure at postnatal day 200.

  18. Transgenerational effects of adolescent nicotine exposure in rats: Evidence for cognitive deficits in adult female offspring.

    Science.gov (United States)

    Renaud, Samantha M; Fountain, Stephen B

    2016-01-01

    This study investigated whether adolescent nicotine exposure in one generation of rats would impair the cognitive capacity of a subsequent generation. Male and female rats in the parental F0 generation were given twice-daily i.p. injections of either 1.0mg/kg nicotine or an equivalent volume of saline for 35days during adolescence on postnatal days 25-59 (P25-59). After reaching adulthood, male and female nicotine-exposed rats were paired for breeding as were male and female saline control rats. Only female offspring were used in this experiment. Half of the offspring of F0 nicotine-exposed breeders and half of the offspring of F0 saline control rats received twice-daily i.p. injections of 1.0mg/kg nicotine during adolescence on P25-59. The remainder of the rats received twice-daily saline injections for the same period. To evaluate transgenerational effects of nicotine exposure on complex cognitive learning abilities, F1 generation rats were trained to perform a highly structured serial pattern in a serial multiple choice (SMC) task. Beginning on P95, rats in the F1 generation were given either 4days of massed training (20patterns/day) followed by spaced training (10 patterns/day) or only spaced training. Transgenerational effects of adolescent nicotine exposure were observed as greater difficulty in learning a "violation element" of the pattern, which indicated that rats were impaired in the ability to encode and remember multiple sequential elements as compound or configural cues. The results indicated that for rats that received massed training, F1 generation rats with adolescent nicotine exposure whose F0 generation parents also experienced adolescent nicotine exposure showed poorer learning of the violation element than rats that experienced adolescent nicotine exposure only in the F1 generation. Thus, adolescent nicotine exposure in one generation of rats produced a cognitive impairment in the next generation.

  19. Maternal undernutrition and the offspring kidney: from fetal to adult life

    Directory of Open Access Journals (Sweden)

    F.F. Mesquita

    2010-11-01

    Full Text Available Maternal dietary protein restriction during pregnancy is associated with low fetal birth weight and leads to renal morphological and physiological changes. Different mechanisms can contribute to this phenotype: exposure to fetal glucocorticoid, alterations in the components of the renin-angiotensin system, apoptosis, and DNA methylation. A low-protein diet during gestation decreases the activity of placental 11ß-hydroxysteroid dehydrogenase, exposing the fetus to glucocorticoids and resetting the hypothalamic-pituitary-adrenal axis in the offspring. The abnormal function/expression of type 1 (AT1R or type 2 (AT2R AngII receptors during any period of life may be the consequence or cause of renal adaptation. AT1R is up-regulated, compared with control, on the first day after birth of offspring born to low-protein diet mothers, but this protein appears to be down-regulated by 12 days of age and thereafter. In these offspring, AT2R expression differs from control at 1 day of age, but is also down-regulated thereafter, with low nephron numbers at all ages: from the fetal period, at the end of nephron formation, and during adulthood. However, during adulthood, the glomerular filtration rate is not altered, due to glomerulus and podocyte hypertrophy. Kidney tubule transporters are regulated by physiological mechanisms; Na+/K+-ATPase is inhibited by AngII and, in this model, the down-regulated AngII receptors fail to inhibit Na+/K+-ATPase, leading to increased Na+ reabsorption, contributing to the hypertensive status. We also considered the modulation of pro-apoptotic and anti-apoptotic factors during nephrogenesis, since organogenesis depends upon a tight balance between proliferation, differentiation and cell death.

  20. Effect of breastfeeding piperine on the learning of offspring mice: interaction with caffeine and diazepam

    OpenAIRE

    Moghadamnia, Ali Akbar; Zangoori, Vahid; Zargar-Nattaj ,Seyed Sadegh; Tayebi, Pooya; Moghadamnia, Yasaman; Jorsaraei, Seyed Gholam Ali

    2010-01-01

    Piperine, the main alkaloid of black pepper (Piper nigrum), has been suggested to display several pharmacological properties, including pain relief, anticonvulsant, antidepressant-like, antianxiety, sedative, and anti-inflammatory effects. This study was designed to investigate the effect of piperine on learning in mice and the interaction of the effect with caffeine and diazepam. Piperine (100 mg/kg intraperitoneally) was injected into the mouse mothers or nursing dams during breastfeeding f...

  1. Induction of external abnormalities in offspring of male mice irradiated with [sup 252]Cf neutron

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, Akihiro; Ono, Tetsuya; Mori, Yuriko (Tohoku University School of Medicine, Sendai (Japan). Department of Radiation Research); Okada, Shigefumi (Kyoto University (Japan). Radiation Biology Center); Sawada, Syozo (Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology)

    1992-08-01

    To assess the genetic effects of fission neutron, the induction of external malformations was studied in F[sub 1] fetuses after F[sub 0] male mice were irradiated. Male mice of the ICR:MCH strain were irradiated with [sup 252]Cf neutron at doses of 0.238, 0.475, 0.95 and 1.9 Gy. They were mated with non-irradiated female mice at 71-120 days after irradiation. Pregnant females were autopsied on day 18 of gestation and their fetuses were examined for deaths and external abnormalities. No increases of pre- and post-implantation losses were noted at any dose. External abnormalities were observed at rates of 1.40% in the 0.238 Gy, 2.23% in the 0.475 Gy, 3.36% in the 0.95 and 3.26% in the 1.9 Gy groups; the rate in the control group was 1.65%. The dose-response curve was linear up to 0.95 Gy, and then flattened out; the induction rate of external abnormalities was 2.7x10[sup -4]/gamete/cGy based on the linear regression. These results indicated that fission neutron effectively induces external abnormalities in F[sub 1] fetuses after spermatogonial irradiation. (author). 29 refs.; 1 fig.; 2 tabs.

  2. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes

    DEFF Research Database (Denmark)

    Clausen, Tine D; Mathiesen, Elisabeth R; Hansen, Torben;

    2009-01-01

    Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes Context: In animal studies exposure to intrauterine hyperglycemia increases the risk of cardiovascular disease through only partly understood epigenetic mechanisms....... Human long-term follow-up studies on the same topic are few. Objective: To study the risk of overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus (GDM) or type 1 diabetes, and additionally to study associations between estimates of maternal...... of women with type 1 diabetes (n=160) and offspring from the background population representing an un-exposed reference group (n=128). Follow-up rate was 56% (597/1,066). Main outcome measures: Overweight: body mass index (BMI) >/= 25kg/m(2). The metabolic syndrome: the International Diabetes Federation...

  3. Maternal exposure to diets containing high fructose and saturated fats, low B vitamins, or their combination programs growth, adiposity, and insulin sensitivity in adult offspring

    Science.gov (United States)

    Early exposure to unfavorable nutrition programs increases risk of adult-onset diseases. In this rat study, we investigate morphological, metabolic and endocrinal phenotypes of offspring born to dams consuming isocaloric diets containing 30% fructose, 9.9% coconut fat and 0.5% cholesterol (F+SFA), m...

  4. Moderate exercise during pregnancy in Wistar rats alters bone and body composition of the adult offspring in a sex-dependent manner.

    Directory of Open Access Journals (Sweden)

    Brielle V Rosa

    Full Text Available Exercise during pregnancy may have long-lasting effects on offspring health. Musculoskeletal growth and development, metabolism, and later-life disease risk can all be impacted by the maternal environment during pregnancy. The skeleton influences glucose handling through the actions of the bone-derived hormone osteocalcin. The purpose of this study was to test the effects of moderate maternal exercise during pregnancy on the bone and body composition of the offspring in adult life, and to investigate the role of osteocalcin in these effects. Groups of pregnant Wistar rats either performed bipedal standing exercise to obtain food/water throughout gestation but not lactation, or were fed conventionally. Litters were reduced to 8/dam and pups were raised to maturity under control conditions. Whole body dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative computed tomography scans of the right tibia were performed. At study termination blood and tissue samples were collected. Serum concentrations of fully and undercarboxylated osteocalcin were measured, and the relative expression levels of osteocalcin, insulin receptor, Forkhead box transcription factor O1, and osteotesticular protein tyrosine phosphatase mRNA were quantified. Body mass did not differ between the offspring of exercised and control dams, but the male offspring of exercised dams had a greater % fat and lower % lean than controls (p=0.001 and p=0.0008, respectively. At the mid-tibial diaphysis, offspring of exercised dams had a lower volumetric bone mineral density than controls (p=0.01 and in the male offspring of exercised dams the bone: muscle relationship was fundamentally altered. Serum concentrations of undercarboxylated osteocalcin were significantly greater in the male offspring of exercised dams than in controls (p=0.02; however, the relative expression of the measured genes did not differ between groups. These results suggest that moderate exercise during

  5. Moderate exercise during pregnancy in Wistar rats alters bone and body composition of the adult offspring in a sex-dependent manner.

    Science.gov (United States)

    Rosa, Brielle V; Blair, Hugh T; Vickers, Mark H; Dittmer, Keren E; Morel, Patrick C H; Knight, Cameron G; Firth, Elwyn C

    2013-01-01

    Exercise during pregnancy may have long-lasting effects on offspring health. Musculoskeletal growth and development, metabolism, and later-life disease risk can all be impacted by the maternal environment during pregnancy. The skeleton influences glucose handling through the actions of the bone-derived hormone osteocalcin. The purpose of this study was to test the effects of moderate maternal exercise during pregnancy on the bone and body composition of the offspring in adult life, and to investigate the role of osteocalcin in these effects. Groups of pregnant Wistar rats either performed bipedal standing exercise to obtain food/water throughout gestation but not lactation, or were fed conventionally. Litters were reduced to 8/dam and pups were raised to maturity under control conditions. Whole body dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative computed tomography scans of the right tibia were performed. At study termination blood and tissue samples were collected. Serum concentrations of fully and undercarboxylated osteocalcin were measured, and the relative expression levels of osteocalcin, insulin receptor, Forkhead box transcription factor O1, and osteotesticular protein tyrosine phosphatase mRNA were quantified. Body mass did not differ between the offspring of exercised and control dams, but the male offspring of exercised dams had a greater % fat and lower % lean than controls (p=0.001 and p=0.0008, respectively). At the mid-tibial diaphysis, offspring of exercised dams had a lower volumetric bone mineral density than controls (p=0.01) and in the male offspring of exercised dams the bone: muscle relationship was fundamentally altered. Serum concentrations of undercarboxylated osteocalcin were significantly greater in the male offspring of exercised dams than in controls (p=0.02); however, the relative expression of the measured genes did not differ between groups. These results suggest that moderate exercise during pregnancy can

  6. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mariangela eMartini

    2014-06-01

    Full Text Available During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC, with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8 to pregnant-lactating females, at an environmentally relevant dose (20µg/kg (body weight/day, would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.

  7. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring

    DEFF Research Database (Denmark)

    Hansen, Susanne; Strøm, Marin; Maslova, Ekaterina

    2017-01-01

    randomly assigned to receive fish oil during the third trimester of pregnancy, olive oil, or no oil in the ratio 2:1:1. The offspring were followed in a mandatory national prescription register, with complete follow-up for prescriptions related to the treatment of asthma and allergic rhinitis as primary...... in the fish oil group compared with the olive oil group (hazard ratio, 0.54, 95% CI, 0.32-0.90; P = .02). The probability of having had allergic rhinitis medication prescribed was also reduced in the fish oil group compared with the olive oil group (hazard ratio, 0.70, 95% CI, 0.47-1.05; P = .09...

  8. Maternal nicotine exposure and fetal programming of vascular oxidative stress in adult offspring.

    Science.gov (United States)

    Lim, Rebecca; Sobey, Christopher G

    2011-11-01

    Despite the well-known harmful effects, many women continue to smoke throughout pregnancy. Consequently, nicotine replacement therapy (NRT) - which has been developed as a pharmacotherapy for smoking cessation - has been used as an alternative to smoking during pregnancy. However, like cigarette smoking, NRT results in biologically significant levels of nicotine crossing the placenta, leading to both fetal and neonatal exposure to nicotine, and yet, NRT safety during pregnancy has not been extensively evaluated. There is now evidence from studies in rats that maternal nicotine exposure throughout gestation results in fetal programming of vascular oxidative stress in the offspring during adulthood. This phenomenon involves vascular dysfunction mediated by reactive oxygen species in association with decreased superoxide dismutase activity and increased Nox2-NADPH oxidase expression in the vascular wall. If this phenomenon also occurs in humans, either smoking or NRT use during pregnancy may represent a novel risk factor for the unborn that results in accelerated cardiovascular disease in their adulthood.

  9. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring

    Science.gov (United States)

    Mahadevan, Sangeetha K.; Fiorotto, Marta L.; Van den Veyver, Ignatia B.

    2017-01-01

    Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8–12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces

  10. Lactobacillus rhamnosus GG supplementation during critical windows of gestation influences immune phenotype in Swiss albino mice offspring.

    Science.gov (United States)

    Himaja, N; Hemalatha, R; Narendra Babu, K; Shujauddin, M

    2016-01-01

    Probiotic supplementation during critical windows of gestation might have a significant influence on the infant's immune phenotype. Swiss albino mice (F0 generation) aged 31 days were supplemented orally with probiotic Lactobacillus rhamnosus GG (LGG); and the supplementation was continued throughout mating, gestation and lactation. The pups (F1 generation) born to them were separated post weaning and received either the same probiotic supplementation as their mothers or were denied supplementation postnatally. Neutrophil phagocytic ability, splenocyte proliferation, immunoglobulins and cytokines were determined in both F0 and F1 pups. In addition, antibody response against hepatitis-B surface antigen (HBsAg) was determined in F1 pups. Probiotic supplementation had no effect on the neutrophil phagocytic ability and splenocyte proliferation index. The serum immunoglobulin G (IgG) and secretory IgA (s-IgA) among the probiotic supplemented group of F0 generation were significantly (P<0.05) higher compared to the controls. Similarly, the mean concentration of interleukin (IL)-10, IL-17 and interferon gamma (IFN-γ) among F0 probiotic group were significantly higher (P<0.05) compared to the control. Prenatal and postnatal probiotic supplementation in F1 pups led to similar results as F0 dams. Prenatal probiotic supplementation in F1 pups led to significantly (P<0.05) higher serum IgG (55.15 ± 1.35 ng/ml) and intestinal s-IgA (77.9 ± 2.86 ng/mg protein) concentration when compared to the control. Similarly, IFN-γ concentration increased (P<0.05) with prenatal probiotic supplementation compared to the control. However, IL-10 and IL-17 concentrations of prenatal probiotic supplemented F1 pups were comparable to the control. As for the antibody response to HBsAg, prenatal probiotic supplementation led to enhanced HBsAg antibody response (471.4 ± 3.97 U/ml) compared to the control. LGG affected the immune regulation and immune responses favourably in mothers and

  11. Effect of breastfeeding piperine on the learning of offspring mice: interaction with caffeine and diazepam.

    Science.gov (United States)

    Moghadamnia, Ali Akbar; Zangoori, Vahid; Zargar-Nattaj, Seyed Sadegh; Tayebi, Pooya; Moghadamnia, Yasaman; Jorsaraei, Seyed Gholam Ali

    2010-01-01

    Piperine, the main alkaloid of black pepper (Piper nigrum), has been suggested to display several pharmacological properties, including pain relief, anticonvulsant, antidepressant-like, antianxiety, sedative, and anti-inflammatory effects. This study was designed to investigate the effect of piperine on learning in mice and the interaction of the effect with caffeine and diazepam. Piperine (100 mg/kg intraperitoneally) was injected into the mouse mothers or nursing dams during breastfeeding for 25 days at five-day intervals. After feeding the newborn mice, their learning was evaluated using a step-through passive avoidance task. Mouse learning was assessed 1 hr and 24 hr and 1 week after a training session. Piperine increased learning in the first (1 hr: 243.33 s vs 55.17 s, P = 0.002) and third assessments (1 week: 226 s vs 97 s, P effect of a low dose of caffeine (25 mg/kg intraperitoneally after a shock of 2 s duration) in a first assessment (295.17 s vs 149.17 s, P = 0.026) compared to a higher dose of caffeine. Piperine reversed diazepam (1 mg/kg intraperitoneally) suppression of learning 24 hours after training by a 4 s shock (298 s vs 135.67 s, P = 0.03). According to the results, piperine alone significantly increased learning 1 hour and 1 week after training assessments, and learning can be improved in the short term when followed by piperine administration. It was also shown that piperine can potentiate the effect of a low dose of caffeine and can reverse the effect of diazepam.

  12. Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet

    OpenAIRE

    Zheng He; Jing Li; Hanwen Luo; Li Zhang; Lu Ma; Liaobin Chen; Hui Wang

    2015-01-01

    Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after we...

  13. Female White-Footed Mice (Peromyscus leucopus) Trade Off Offspring Skeletal Quality for Self-Maintenance When Dietary Calcium Intake is Low.

    Science.gov (United States)

    Schmidt, Christina M; Hood, Wendy R

    2016-11-01

    During gestation and lactation in mammals, calcium and other minerals are transferred from female to offspring to support skeletal ossification. To meet mineral requirements, females commonly mobilize mineral from their own skeleton to augment dietary intake. Because the fitness costs of bone loss are expected to limit the amount of endogenous mineral that females transfer to their young, the amount of mineral allocated to offspring is predicted to be influenced by the availability of mineral in the female's diet. Calcium is the most abundant element in bone, and exogenous calcium appears to be limiting for many species. Thus, we expected that females would adjust mineral allocation to offspring relative to calcium abundance in the diet. We provided breeding female white-footed mice (Peromyscus leucopus) with a low-calcium (0.1% Ca) or a standard diet (0.85% Ca) for approximately 1 year. Body mass and skeletal size of pups did not differ between diets. Relative to pups from females on the standard diet, pups from females on the low-calcium diet had less calcium and phosphorus in their femurs and humeri, less body calcium content, reduced mass of their femurs and humeri, and had femurs with a reduced width. Reproducing white-footed mice mobilize more bone when calcium intake is low; however, our results suggest that this does not completely compensate for a reduction in calcium intake. Thus, it appears that when calcium availability is low, female white-footed mice reduce the quantity of mineral allocated per offspring as a means of maintaining their own skeletal condition.

  14. Increased cardiovascular reactivity to acute stress and salt-loading in adult male offspring of fat fed non-obese rats.

    Science.gov (United States)

    Rudyk, Olena; Makra, Péter; Jansen, Eugene; Shattock, Michael J; Poston, Lucilla; Taylor, Paul D

    2011-01-01

    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (pprolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (pobesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli.

  15. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring.

    Science.gov (United States)

    Wang, Yongan; Liu, Wei; Yang, Qing; Yu, Mingxi; Zhang, Zhou

    2015-10-02

    Animal researches and clinical studies have supported the relevance between phthalates exposure and testicular dysgenesis syndrome (TDS). These disorders may comprise common origin in fetal life, especially during sex determination and differentiation, where the mechanism remains unclear. The present study evaluated the disturbances in gene regulatory networks of sex determination in fetal mouse by in utero Di (2-ethylhexyl) phthalate (DEHP) exposure. Temporal expression of key sex determination genes were examined during the critical narrow time window, using whole-mount in situ hybridization and quantitative-PCR. DEHP exposure resulted in significant reduction in mRNA of Sry during sex determination from gestation day (GD) 11.0 to 11.5 in male fetal mice, and the increasing of Sry expression to threshold level on GD 11.5 was delayed. Meanwhile, Gadd45g and Gata4, the upstream genes of Sry, and downstream gene Sox9 were also significantly downregulated in expression. In fetal females, the expression of Wnt4 and beta-catenin were up-regulated by DEHP exposure. Taken together, the results suggest that the potential mechanism of gonadal development disorder by DEHP may origin from repression of important male sex determination signaling pathway, involving Gadd45g → Gata4 → Sry → Sox9. The results would promote a better understanding of the association between phthalate esters (PAEs) exposure and the reductive disorder.

  16. Heart regeneration in adult MRL mice

    Science.gov (United States)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  17. Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats

    Science.gov (United States)

    Reygner, Julie; Lichtenberger, Lydia; Elmhiri, Ghada; Dou, Samir; Bahi-Jaber, Narges; Rhazi, Larbi; Depeint, Flore; Bach, Veronique

    2016-01-01

    Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring’s birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure. PMID:27760213

  18. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring.

    Science.gov (United States)

    Thamotharan, Manikkavasagar; Garg, Meena; Oak, Shilpa; Rogers, Lisa M; Pan, Gerald; Sangiorgi, Frank; Lee, Paul W N; Devaskar, Sherin U

    2007-05-01

    To determine mechanisms underlying the transgenerational presence of metabolic perturbations in the intrauterine growth-restricted second-generation adult females (F2 IUGR) despite normalizing the in utero metabolic environment, we examined in vivo glucose kinetics and in vitro skeletal muscle postinsulin receptor signaling after embryo transfer of first generation (F1 IUGR) to control maternal environment. Female F2 rats, procreated by F1 pre- and postnatally nutrient- and growth-restricted (IUGR) mothers but embryo transferred to gestate in control mothers, were compared with similarly gestating age- and sex-matched control (CON) F2 progeny. Although there were no differences in birth weight or postnatal growth patterns, the F2 IUGR had increased hepatic weight, fasting hyperglycemia, hyperinsulinemia, and unsuppressed hepatic glucose production, with no change in glucose futile cycling or clearance, compared with F2 CON. These hormonal and metabolic aberrations were associated with increased skeletal muscle total GLUT4 and pAkt concentrations but decreased plasma membrane-associated GLUT4, total pPKCzeta, and PKCzeta enzyme activity, with no change in total SHP2 and PTP1B concentrations in IUGR F2 compared with F2 CON. We conclude that transgenerational presence of aberrant glucose/insulin metabolism and skeletal muscle insulin signaling of the adult F2 IUGR female offspring is independent of the immediate intrauterine environment, supporting nutritionally induced heritable mechanisms contributing to the epidemic of type 2 diabetes mellitus.

  19. Young Adult Exposure to Cardiovascular Risk Factors and Risk of Events Later in Life: The Framingham Offspring Study.

    Directory of Open Access Journals (Sweden)

    Mark J Pletcher

    Full Text Available It is unclear whether coronary heart disease (CHD risk factor exposure during early adulthood contributes to CHD risk later in life. Our objective was to analyze whether extent of early adult exposures to systolic and diastolic blood pressure (SBP, DBP and low-and high-density lipoprotein cholesterol (LDL, HDL are independent predictors of CHD events later in life.We used all available measurements of SBP, DBP, LDL, and HDL collected over 40 years in the Framingham Offspring Study to estimate risk factor trajectories, starting at age 20 years, for all participants. Average early adult (age 20-39 exposure to each risk factor was then estimated, and used to predict CHD events (myocardial infarction or CHD death after age 40, with adjustment for risk factor exposures later in life (age 40+. 4860 participants contributed an average of 6.3 risk factor measurements from in-person examinations and 24.5 years of follow-up after age 40, and 510 had a first CHD event. Early adult exposures to high SBP, DBP, LDL or low HDL were associated with 8- to 30-fold increases in later life CHD event rates, but were also strongly correlated with risk factor levels later in life. After adjustment for later life levels and other risk factors, early adult DBP and LDL remained strongly associated with later life risk. Compared with DBP≤70 mmHg, adjusted hazard ratios (HRs were 2.1 (95% confidence interval: 0.8-5.7 for DBP = 71-80, 2.6 (0.9-7.2 for DBP = 81-90, and 3.6 (1.2-11 for DBP>90 (p-trend = 0.019. Compared with LDL≤100 mg/dl, adjusted HRs were 1.5 (0.9-2.6 for LDL = 101-130, 2.2 (1.2-4.0 for LDL = 131-160, and 2.4 (1.2-4.7 for LDL>160 (p-trend = 0.009. While current levels of SBP and HDL were also associated with CHD events, we did not detect an independent association with early adult exposure to either of these risk factors.Using a mixed modeling approach to estimation of young adult exposures with trajectory analysis, we detected independent associations

  20. Transmission of Cultural Values among Mexican American Parents and their Adolescent and Emerging Adult Offspring

    Science.gov (United States)

    Perez-Brena, Norma J.; Updegraff, Kimberly A.; Umaña-Taylor, Adriana J.

    2015-01-01

    The integration of the U.S. and Mexican culture is an important process associated with Mexican-origin youths’ adjustment and family dynamics. The current study examined the reciprocal associations in parents’ and two offspring’s cultural values (i.e., familism and respect) in 246 Mexican-origin families. Overall, mothers’ values were associated with increases in youths’ values five years later. In contrast, youths’ familism values were associated with increases in fathers’ familism values five years later. In addition, developmental differences emerged where parent-to-offspring effects were more consistent for youth transitioning from early to late adolescence than for youth transitioning from middle adolescence to emerging adulthood. Finally, moderation by immigrant-status revealed a youth-to-parent effect for mother-youth immigrant dyads, but not for dyads where youth were U.S.-raised. Our findings highlight the reciprocal nature of parent-youth value socialization and provide a nuanced understanding of these processes through the consideration of familism and respect values. As Mexican-origin youth represent a large and rapidly growing segment of the U.S. population, research that advances our understanding of how these youth develop values that foster family cohesion and support are crucial. PMID:25470657

  1. Maternal smoking promotes chronic obstructive lung disease in the offspring as adults

    Directory of Open Access Journals (Sweden)

    Beyer D

    2009-12-01

    Full Text Available Abstract Introduction In utero and/or childhood environmental tobacco smoke exposure is well known to adversely affect lung function and to depreciate child's health in many ways. Fewer studies have assessed the long-term effects on COPD development and disease severity in later adulthood. Methods COPD patients were interviewed using a structured questionnaire regarding their personal as well as the smoking habits of their parents. Data were compared with the disease history, e.g. COPD exacerbation rate, and their lung function data. Results Between 2003 and 2004 COPD patients were recruited a in a private practice specialized in pulmonary medicine (n = 133 and b in a hospital (n = 158. 75% of their fathers and only 15.4 of all mothers smoked regularly. COPD patients from smoking mothers had lower FEV1 predicted than those raised in household without maternal smoking exposure: 39.4 ± 9.5% vs. 51.9 ± 6.0% (P = 0.037. Fathers had no effect on FEV1 regardless if they are smokers or non-smokers. Rate of severe exacerbations requiring hospitalization remained unaffected by parental second hand smoke exposure. Conclusion Maternal smoking negatively affects lung function of their offspring even in late adulthood when they develop COPD. It even aggravates the cumulative effect of active cigarette consumption. Clinical course of the COPD remained unaffected.

  2. Exposure to Low Dose of Cinnabar (a Naturally Occurring Mercuric Sulfide (HgS Caused Neurotoxicological Effects in Offspring Mice

    Directory of Open Access Journals (Sweden)

    Chun-Fa Huang

    2012-01-01

    Full Text Available Cinnabar, a naturally occurring mercuric sulfide (HgS, has long been used in Chinese mineral medicine for more than 2000 years. Although mercury is well-known for its toxicity, whether cinnabar induces neurotoxicity, especially in infants and children, is unknown. The purpose of this study was to explore the neurotoxic effects of low-dose of cinnabar (10 mg/kg/day on developing mice. The results revealed neurobehavioral defects in F1-C-Cin group, which were associated with Hg accumulation, increased NOx levels in whole blood, and Na+/K+-ATPase activities in brain tissues. F1- and F2-Cin-V groups were found to increase brain Hg contents and prominent neurobehavioral defects compared with F1-C-V group, suggesting that the fetal brain was more susceptible to irreversible effects for cinnabar-induced damage. Moreover, F1- and F2-Cin-Cin groups had severely neurobehavioral dysfunctions, closely correlated with the further alteration of NOx levels and Na+/K+-ATPase activities than F1- and F2-C-Cin groups. Effects in F2-Cin-Cin group were more significant than those in F1-Cin-Cin group. In conclusion, this study demonstrates that exposure to low-dose of cinnabar during the perinatal and developmental stages results in irreversible and severe injuries of the neurotoxicity in offspring, and NOx and Na+/K+-ATPase activities may exist potential and useful biomarkers for neurotoxicity-induced by low-doses of mercuric compounds.

  3. The effects of maternal and post-weaning diet interaction on glucose metabolism and gut microbiota in male mice offspring.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Qi, Cuijuan; Wang, Tong

    2016-07-01

    Substantial studies demonstrated that maternal nutrition can significantly determine the susceptibility to developing some metabolic diseases in offspring. However, investigations into the later-life effects of these diets on gut microbiota in the offspring are limited. Our objective was to explore the effects of maternal and post-weaning diet interaction on offspring's gut microbiota and glucose metabolism in later life. The male offspring of dams fed on either a high-fat (HF) diet or control (C) diet and then weaned to either a HF or C diet, generating four groups: C-C, HF-C, C-HF and HF-HF (n=8 in each group). The C-C offspring had lower body weight than C-HF group at 16 weeks of age (Pgroup at 24 and 32 weeks of age (Pgroup. The C-HF group had higher BG at 30 min than HF-HF group (Pgroups was also significantly larger than C-C group (Pgroups than C-C group at 32 weeks of age (Pgroups (Pgroups were Bacteroidetes, Firmicutes and Proteobacteria, which also showed significantly different percentages in the group (Pinteraction predisposes the offspring to aberrant glucose metabolism and alterations of gut microbiota in later life. Our study is novel in focusing on the effects of maternal and post-weaning diet interaction on offspring gut microbiota and glucose metabolism in later life.

  4. Neonatal immune activation during early and late postnatal brain development differently influences depression-related behaviors in adolescent and adult C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Jafar Majidi-Zolbanin

    2014-06-01

    Full Text Available Aim: Immune challenge during early and late neonatal periods can induce robust alterations in physiological and behavioral functions, resulting in greater risk for the development of neuropsychiatric disorders, such as anxiety and depression, later in life. In addition, previous studies concluded that increasing age correlates with increased depression behaviors in humans and rodents. This study aimed to investigate for the first time whether immune challenge with a viral mimic, synthetic double-stranded ribonucleic acid (Poly I: C during different neonatal periods can differently affect depression-related behaviors in adolescent and adult mice. Methods: Male C57BL/6 mice were treated with either saline or Poly I:C (1 mg/kg and 4 mg/kg on postnatal days (PND 3-5 (early neonatal phase or PND 14-16 (late neonatal phase, and then subjected to behavioral tests, including tail suspension test and forced swimming test, during adolescence (PND 35 or 40 and adulthood (PND 85 or 90. Results: The results demonstrated that early neonatal immune activation increases depression-related behaviors in both adolescent and adult mice, but late neonatal immune activation only increases depression in adult mice. In other words, these findings indicated that the nature of the offspring's neuropathology can depend on the severity of the insult, the pup's age at the time of the insult, and offspring age at the time of behavioral testing. Conclusion: These findings suggest that dose and timing of neonatal insult and offspring age may be important factors for evaluating neuropsychiatric disorders in adults who experienced early life infection.

  5. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    Science.gov (United States)

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-06

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory

  6. Reproductive abnormalities in adult male mice following preimplantation exposures to estradiol or pesticide methoxychlor.

    Science.gov (United States)

    Amstislavsky, Sergei Ya; Amstislavskaya, Tamara G; Amstislavsky, Vjacheslav S; Tibeikina, Marina A; Osipov, Kiril V; Eroschenko, Victor P

    2006-02-01

    Adult females of ICR strain of mice were bred, separated into different experimental groups, and treated as follows. On Days 2-4 of pregnancy, the mice received daily subcutaneous injections of either 0.05 ml sesame oil (vehicle) or same volume of 5.0mg of purified methoxychlor (MXC) suspended in the vehicle. Another group received a single subcutaneous injection of 1.0 microg of estradiol-17beta (E) on Day 2 of pregnancy only. Male offspring were tested at 3 and 6 months of age. At 3 months, E or MXC did not alter the weights of seminal vesicles, preputial glands, or testes, although after exposure for 30 min to a female in estrus behind a partition, testosterone levels were significantly reduced in treated males in comparison to control males exposed to the same partition test. At 6 months, the preputial glands and testes weight remained unchanged, while the seminal vesicles were significantly heavier in E- and MXC-treated males. Same partition tests again revealed that in E and MXC groups, testosterone levels remained significantly lower in comparison to control males. MXC or E exposures during preimplantation appear to induce long-term effects on the sexual development in 3 and 6 month-old-males by compromising their sexual arousal and altering seminal vesicles weights in the older group.

  7. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  8. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring

    Science.gov (United States)

    Hua, Fangyuan; Fletcher, Robert J.; Sieving, Kathryn E.; Dorazio, Robert M.

    2013-01-01

    Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk.

  9. Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats.

    Directory of Open Access Journals (Sweden)

    Joanna Sowa

    Full Text Available The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential--smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP. These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring.

  10. Perinatal caffeine, acting on maternal adenosine A(1 receptors, causes long-lasting behavioral changes in mouse offspring.

    Directory of Open Access Journals (Sweden)

    Olga Björklund

    Full Text Available BACKGROUND: There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period, partly because there may be long-lasting behavioral changes after caffeine exposure early in life. METHODOLOGY/PRINCIPAL FINDINGS: We show that pregnant wild type (WT mice given modest doses of caffeine (0.3 g/l in drinking water gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We performed the same behavioral experiments on mice heterozygous for adenosine A(1 receptor gene (A(1RHz. In these mice signaling via adenosine A(1 receptors is reduced to about the same degree as after modest consumption of caffeine. A(1RHz mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother's genotype, not offspring's, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A(1 receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A(1R Hz grandmother preserved higher locomotor response to cocaine. CONCLUSIONS/SIGNIFICANCE: We suggest that perinatal caffeine, by acting on adenosine A(1 receptors in the mother, causes long-lasting behavioral changes in the offspring that even manifest themselves in the second generation.

  11. The Association of Maternal Socialization in Childhood and Adolescence with Adult Offsprings' Sympathy/Caring

    Science.gov (United States)

    Eisenberg, Nancy; VanSchyndel, Sarah K.; Hofer, Claire

    2015-01-01

    The purpose of the study was to examine associations between mothers' socialization practices in childhood and adolescence and offsprings' (N = 32, 16 female) sympathy/concern in early adulthood. Mothers reported on their socialization practices and beliefs a total of 6 times using a Q-sort during their offsprings' childhood…

  12. Effects of autoimmune NGF deprivation in the adult rabbit and offspring.

    Science.gov (United States)

    Johnson, E M; Gorin, P D; Osborne, P A; Rydel, R E; Pearson, J

    1982-05-20

    An experimental autoimmune approach to the production of nerve growth factor deprivation, which we have previously described in the rat and guinea pig, has been applied to the rabbit. This species was chosen for study because of several potential advantages. The rabbit produces large litters and has a relatively short gestation period. More importantly, rabbits generate high titers of antibody against mouse NGF and large amounts of maternal antibody are passively transferred to the developing rabbit fetus compared to most other species, particularly the rat. The sympathetic nervous system of adult rabbit immunized against mouse NGF underwent degeneration with up to an 85% decrease in neuronal numbers in the superior cervical ganglion after 10 months of immunization, thus providing further evidence that NGF is required for the survival of mature sympathetic neurons. Despite the fact that newborn rabbits born to anti-NGF producing mothers had much higher titers of anti-NGF than did rats, the effects on the developing sympathetic and sensory nervous systems were not found to be any greater than in rats. Reductions in norepinephrine levels in the heart and spleen of adult rabbits born to anti-NGF producing mothers were greater than in small intestine. Prenatal exposure to maternal anti-NGF caused reductions (up to 70%) in the number of neurons in the dorsal root ganglia. Substance-P immunoreactivity was reduced in the substantia gelatinosa of the spinal cord of rabbit exposed to maternal anti-NGF. These changes, however, were not greater than seen in the rat. We conclude that although the rabbits offers some advantage in the study of the effects of NGF deprivation in the adult animal, it appears less well suited than the rat or guinea pig to the study of the effects of NGF deprivation on development.

  13. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring.

    Directory of Open Access Journals (Sweden)

    Nelson Vilches

    Full Text Available Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring's rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL, these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum, we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of

  14. [Caring friends and neighbors as informal caregivers of older adults: A comparison with offspring].

    Science.gov (United States)

    Egging, S; de Boer, A H; Stevens, N L

    2011-12-01

    This study compared informal care to older, non-coresiding adults provided by friends and neighbours and informal care by children or their partners. Using data from a Dutch representative survey among informal caregivers conducted by CBS and SCP, caregivers of friends (n=133), neighbours (n=108) and parents (n=1,008) were compared with one another to investigate care that friends and neighbours provide to the elderly non-coresiding adults (age 55 and over). Nine percent of those providing care to someone outside the household were friends and nine percent were neighbours. Friends, like children, usually provide long-lasting care, up to four or five years. Friends are similar to neighbours in the number of hours that they provide care. Friends and neighbours experience a lower caregiver burden than children. However, when fulfilling multiple caring tasks, both friends and children, have a greater chance of experiencing higher levels of burden. When there were other caregivers to help, friends experienced a small reduction in burden. Friends and neighbours deserve to be recognized as informal caregivers by policy makers and they deserve attention and support along with family caregivers.

  15. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  16. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Jean-François Gautier

    Full Text Available Fetal exposure to hyperglycemia impacts negatively kidney development and function.Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring.Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D (case group were matched with 28 offspring of T1D fathers (control group for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium. In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR and Effective Renal Plasma Flow (ERPF at baseline and during vasodilatation produced by amino acid infusion.Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls.Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  17. Increased cardiovascular reactivity to acute stress and salt-loading in adult male offspring of fat fed non-obese rats.

    Directory of Open Access Journals (Sweden)

    Olena Rudyk

    Full Text Available Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11 or lard-enriched (23.6% fat, n = 16 chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old offspring cardiovascular parameters were measured (radiotelemetry. The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF and controls (OC. However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP and Δheart rate (HR with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week male OF demonstrated higher SBP (p<0.05 in the awake phase (night-time and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli.

  18. Adult neurogenesis in the four-striped mice (Rhabdomys pumilio)

    Institute of Scientific and Technical Information of China (English)

    Olatunbosun O Olaleye; Amadi O Ihunwo

    2014-01-01

    In this study, we investigated non-captive four-striped mice (Rhabdomys pumilio) for evidence that adult neurogenesis occurs in the adult brain of animal models in natural environment. Ki-67 (a marker for cell proliferation) and doublecortin (a marker for immature neurons) immunos-taining conifrmed that adult neurogenesis occurs in the active sites of subventricular zone of the lateral ventricle with the migratory stream to the olfactory bulb, and the subgranular zone of the dentate gyrus of the hippocampus. No Ki-67 proliferating cells were observed in the striatum substantia nigra, amygdala, cerebral cortex or dorsal vagal complex. Doublecortin-immunore-active cells were observed in the striatum, third ventricle, cerebral cortex, amygdala, olfactory bulb and along the rostral migratory stream but absent in the substantia nigra and dorsal vagal complex. The potential neurogenic sites in the four-striped mouse species could invariably lead to increased neural plasticity.

  19. Appraisals of discriminatory events among adult offspring of Indian residential school survivors: the influences of identity centrality and past perceptions of discrimination.

    Science.gov (United States)

    Bombay, Amy; Matheson, Kimberly; Anisman, Hymie

    2014-01-01

    As part of a government policy of assimilation beginning in the mid-1800s, a large proportion of Aboriginal children in Canada were forcibly removed from their homes to attend Indian Residential Schools (IRSs), a practice which continued into the 1990s. This traumatic experience had lasting negative effects not only on those who attended but also on their offspring, who were previously found to report higher levels of perceived discrimination and depressive symptoms compared with Aboriginal adults whose families were not directly affected by IRSs. In attempt to elucidate the processes involved in these previous findings, the current study (N = 399) revealed that greater levels of past perceptions of discrimination among IRS offspring, together with their greater likelihood of considering their Aboriginal heritage to be a central component of their self-concept (i.e., high identity centrality), were associated with an increased likelihood of appraising subsequent negative intergroup scenarios to be a result of discrimination and as threatening to their well-being. In turn, these altered appraisals of threat in response to the scenarios were associated with higher levels of depressive symptoms relative to non-IRS adults. The apparent reinforcing relationships between past discrimination, identity centrality, and appraisals of discrimination and threat in intergroup interactions highlight the need for interventions targeting this cycle that appears to contribute to heightened psychological distress among offspring of those who were directly victimized by collective race-based traumas.

  20. Brief maternal exposure of rats to the xenobiotics dibutyl phthalate or diethylstilbestrol alters adult-type Leydig cell development in male offspring

    Institute of Scientific and Technical Information of China (English)

    Richard Ivell; Kee Heng; Helen Nicholson; Ravinder Anand-Ivell

    2013-01-01

    Maternal exposure to estrogenic xenobiotics or phthalates has been implicated in the distortion of early male reproductive development,referred to in humans as the testicular dysgenesis syndrome.It is not known,however,whether such early gestational and/or lactational exposure can influence the later adult-type Leydig cell phenotype.In this study,Sprague-Dawley rats were exposed to dibutyl phthalate (DBP; from gestational day (GD) 14.5 to postnatal day (PND) 6) or diethylstilbestrol (DES; from GD14.5 to GD16.5) during a short gestational/lactational window,and male offspring subsequently analysed for various postnatal testicular parameters.All offspring remained in good health throughout the study.Maternal xenobiotic treatment appeared to modify specific Leydig cell gene expression in male offspring,particularly during the dynamic phase of mid-puberty,with serum INSL3 concentrations showing that these compounds led to a faster attainment of peak values,and a modest acceleration of the pubertal trajectory.Part of this effect appeared to be due to a treatment-specific impact on Leydig cell proliferation during puberty for both xenobiotics.Taken together,these results support the notion that maternal exposure to certain xenobiotics can also influence the development of the adult-type Leydig cell population,possibly through an effect on the Leydig stem cell population.

  1. Trans and interesterified fat and palm oil during the pregnancy and lactation period inhibit the central anorexigenic action of insulin in adult male rat offspring.

    Science.gov (United States)

    Bispo, Kenia Pereira; de Oliveira Rodrigues, Letícia; da Silva Soares de Souza, Érica; Mucci, Daniela; Tavares do Carmo, Maria das Graças; de Albuquerque, Kelse Tibau; de Carvalho Sardinha, Fatima Lucia

    2015-01-01

    Palm oil and interesterified fat have been used to replace partially hydrogenated fats, rich in trans isomers, in processed foods. This study investigated whether the maternal consumption of normolipidic diets containing these lipids affects the insulin receptor and Akt/protein kinase B (PKB) contents in the hypothalamus and the hypophagic effect of centrally administered insulin in 3-month-old male offspring. At 90 days, the intracerebroventricular injection of insulin decreased 24-h feeding in control rats but not in the palm, interesterified or trans groups. The palm group exhibited increases in the insulin receptor content of 64 and 69 % compared to the control and trans groups, respectively. However, the quantifications of PKB did not differ significantly across groups. We conclude that the intake of trans fatty acid substitutes during the early perinatal period affects food intake regulation in response to centrally administered insulin in the young adult offspring; however, the underlying mechanisms remain unclear.

  2. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice.

    Science.gov (United States)

    Stephenson, Erin J; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R; Parvathareddy, Jyothi; Peloquin, Matthew J; Saravia, Jordy; Han, Joan C; Cormier, Stephania A; Bridges, Dave

    2016-06-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle.

  3. Discovery of nigral dopaminergic neurogenesis in adult mice

    Directory of Open Access Journals (Sweden)

    Brad E Morrison

    2016-01-01

    Full Text Available Parkinson′s disease is characterized by the loss of dopaminergic neurons in the substantia nigra. As a result, intensive efforts have focused upon mechanisms that facilitate the death of mature dopaminergic neurons. Unfortunately, these efforts have been unsuccessful in providing an effective treatment to address neurodegeneration in this disease. Therefore, alternative theories of pathogenesis are being explored. Adult neurogenesis of dopaminergic neurons is an attractive concept that would provide a possible mechanism of neurodegeneration as well as offer an endogenous means to replenish affected neurons. To determine whether dopaminergic neurons experience neurogenesis in adult mice we developed a novel cell lineage tracing model that permitted detection of neurogenesis without many of the issues associated with popular techniques. Remarkably, we discovered that dopaminergic neurons are replenished in adult mice by Nestin+/Sox2- progenitor cells. What′s more, the rate of neurogenesis is similar to the rate of dopaminergic neuron loss reported using a chronic, systemic inflammatory response mouse model. This observation may indicate that neuron loss in Parkinson′s disease results from inhibition of neurogenesis.

  4. Paternal retrievals increase testosterone levels in both male and female California mouse (Peromyscus californicus) offspring.

    Science.gov (United States)

    Chary, Mamatha C; Cruz, Jayson P; Bardi, Massimo; Becker, Elizabeth A

    2015-07-01

    The importance of maternal care on offspring development has received considerable attention, although more recently, researchers have begun to focus on the significance of paternal contributions. In the monogamous and bi-parental California mouse, fathers provide high levels of care, and therefore serve as a model system for studying paternal effects on behavior and underlying neuroendocrine mechanisms. Paternal retrievals in this species influence long term changes in brain (expression of arginine vasopressin-AVP) and behavior (aggression and parenting) in adult male offspring. Further, paternal retrievals induce a transient increase in testosterone (T) in male offspring, which is thought to mediate the relationship between paternal retrievals and AVP expression. Although the father-son relationship has been well characterized, few studies have examined father-daughter interactions. In California mice, paternal retrievals increase aggression in female offspring. Although T has been implicated in the regulation of female aggression, it remains unclear whether T may underlie long-term changes in female offspring aggression in response to paternal retrievals. In the current study, we examined the influence of paternal retrievals on T in both male and female offspring. Retrievals were manipulated experimentally by displacement of the pup and trunk blood was collected from retrieved, non-retrieved, and non-manipulated (baseline) pups. We found that fathers expressed similar levels of retrievals towards sons and daughters, and that T levels were elevated in retrieved, as compared to non-retrieved offspring. Similar to what has been previously described in male offspring and replicated here, female offspring that were retrieved had higher T levels than non-retrieved females. Neither females nor males experienced a change in corticosterone levels in response to retrievals suggesting offspring do not mount a stress response to paternal care. Therefore, our data suggest

  5. Maternal n-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: associated with DNA methylation of brain-derived neurotrophic factor transcripts.

    Science.gov (United States)

    Fan, Chaonan; Fu, Huicong; Dong, Hua; Lu, Yuanyuan; Lu, Yanfei; Qi, Kemin

    2016-09-01

    In this study, we hypothesized that n-3 polyunsaturated fatty acid (PUFA) deficiency during pregnancy and lactation will make a lasting impact on brain neurogenesis and apoptosis of the adult offspring and that these harmful effects cannot be reversed by n-3 PUFA supplementation after weaning. Moreover, the underlying mechanisms may be attributable to the epigenetic changes of brain-derived neurotrophic factor (BDNF). C57BL/6J female mice were fed with n-3 PUFA-deficient diet (n-3 def) or n-3 PUFA-adequate diet (n-3 adq) throughout pregnancy and lactation. At postnatal 21 days, equal numbers of male pups from both groups were fed the opposite diet, and the remaining male pups were fed with the same diets as their mothers until 3 months of age. Feeding the n-3 adq diet to pups from the maternal n-3 def group significantly increased the n-3 PUFA concentration but did not change expressions of calretinin, Bcl2, and Bax in the hippocampus. Feeding the n-3 def diet to pups from the maternal n-3 adq group significantly reduced the n-3 PUFA concentration but did not reduce expressions of calretinin and Bcl2. Similarly, BDNF levels, especially mRNA expressions of BDNF transcripts IV and IX, were also reduced by maternal n-3 def and not reversed by n-3 PUFA supplementation after weaning. The decrease in BDNF expression by maternal n-3 def diet was associated with greater DNA methylation at special CpG sites. These results suggested that the maternal n-3 PUFA deficiency during pregnancy and lactation imprints long-term changes of brain development in adult offspring.

  6. The nuclear factor-κB inhibitor pyrrolidine dithiocarbamate reduces polyinosinic-polycytidilic acid-induced immune response in pregnant rats and the behavioral defects of their adult offspring

    Directory of Open Access Journals (Sweden)

    Song Xueqin

    2011-12-01

    Full Text Available Abstract Background Epidemiological studies have indicated that maternal infection during pregnancy may lead to a higher incidence of schizophrenia in the offspring. It is assumed that the maternal infection increases the immune response, leading to neurodevelopmental disorders in the offspring. Maternal polyinosinic-polycytidilic acid (PolyI:C treatment induces a wide range of characteristics in the offspring mimicking some schizophrenia symptoms in humans. These observations are consistent with the neurodevelopmental hypothesis of schizophrenia. Methods We examined whether suppression of the maternal immune response could prevent neurodevelopmental disorders in adult offspring. PolyI:C or saline was administered to early pregnant rats to mimic maternal infection, and the maternal immune response represented by tumor necrosis factor alpha (TNF-α and interleukin-10 (IL-10 levels was determined by enzyme-linked immunosorbent assays (ELISA. The NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC was used to suppress the maternal immune response. Neurodevelopmental disorders in adult offspring were examined by prepulse inhibition (PPI, passive avoidance, and active avoidance tests. Results PolyI:C administration to early pregnant rats led to elevated serum cytokine levels as shown by massive increases in serum TNF-α and IL-10 levels. The adult offspring showed defects in prepulse inhibition, and passive avoidance and active avoidance tests. PDTC intervention in early pregnant rats suppressed cytokine increases and reduced the severity of neurodevelopmental defects in adult offspring. Conclusions Our findings suggest that PDTC can suppress the maternal immune response induced by PolyI:C and partially prevent neurodevelopmental disorders of adult offspring.

  7. The association between parental history of diagnosed mood/anxiety disorders and psychiatric symptoms and disorders in young adult offspring

    Directory of Open Access Journals (Sweden)

    Low Nancy CP

    2012-11-01

    Full Text Available Abstract Background Parental history of mood or anxiety disorders is one of the strongest and most consistent risk factors for the development of these disorders in offspring. Gaps remain however in our knowledge of whether maternal or paternal disorders are more strongly associated with offspring disorders, and whether the association exists in non-clinical samples. This study uses a large population-based sample to test if maternal or paternal history of mood and/or anxiety disorders increases the risk of mood and/or anxiety disorders, or symptoms of specific anxiety disorders, in offspring. Methods Data were drawn from the Nicotine Dependence in Teens Study, a prospective cohort investigation of 1293 grade 7 students. Data on mental health outcomes were collected in mailed self-report questionnaires when participants were aged 20.4 (0.7 years on average. Parental data were collected in mailed self-report questionnaires. This current analysis pertains to 564 participants with maternal and/or paternal data. The association between maternal and paternal history and each of diagnosed anxiety disorder, diagnosed mood disorder, and symptoms of specific anxiety disorders in offspring was studied in multivariate logistic regression. Results A higher proportion of mothers than fathers had a diagnosed mood/anxiety disorder (23% versus 12%. Similarly, 14% of female offspring had a diagnosed mood/anxiety disorder, compared to 6% of male offspring. The adjusted odds ratio (95% confidence interval for maternal history was 2.2 (1.1, 4.5 for diagnosed mood disorders, 4.0 (2.1, 7.8 for diagnosed anxiety disorders, and 2.2 (1.2, 4.0 for social phobia symptoms. Paternal history was not associated with any of the mental health outcomes in offspring. Conclusion Maternal, but not paternal mood/anxiety disorders were associated with diagnosed psychiatric disorders, as well as symptoms of specific anxiety disorders, in offspring. Efforts to detect mood and anxiety

  8. Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK-3α, β and NR2B in adult offspring during fear extinction in rats.

    Science.gov (United States)

    Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen

    2014-06-01

    Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain.

  9. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring

    Directory of Open Access Journals (Sweden)

    Sabiha S. Chowdhury

    2016-08-01

    Full Text Available Along with diabetes and obesity, chronic kidney disease (CKD is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD for 13–14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD.

  10. Chronic exposure to cigarette smoke during gestation results in altered cholinesterase enzyme activity and behavioral deficits in adult rat offspring: potential relevance to schizophrenia.

    Science.gov (United States)

    Zugno, Alexandra I; Fraga, Daiane B; De Luca, Renata D; Ghedim, Fernando V; Deroza, Pedro F; Cipriano, Andreza L; Oliveira, Mariana B; Heylmann, Alexandra S A; Budni, Josiane; Souza, Renan P; Quevedo, João

    2013-06-01

    Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.

  11. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    Science.gov (United States)

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes.

  12. 妊娠期和哺乳期双酚A暴露对幼年子代小鼠焦虑和抑郁行为的影响%Gestational and Lactational Exposure to Bisphenol A Affects Anxiety- and Depression-Behaviors in Young Offspring Mice

    Institute of Scientific and Technical Information of China (English)

    杨宇杰; 徐晓虹; 洪星; 谢灵丹; 余奇静; 田栋

    2012-01-01

    Bisphenol A (BPA) is an environmental estrogenic disrupter widely used in the production of plastics, and ubiquitous human exposure to this chemical has been proposed to be a potential risk to public health. There has been a growing concern about the effect of early-life exposure to low doses of BPA. This study was to investigate the behavior difference of mice which exposed to BPA in gestation period or lactation period separately. After acclimatization for one week, adult female ICR mice were placed with males (two females : one male) and vaginal smears were examined daily. A sperm-positive smear determined gestational day (GD) 1. Pregnant mice were divided into 2 groups randomly. One group was orally exposed to BPA dissolved in peanut oil (0.4 or 4 mg/kg ·d) or only peanut oil as vehicle control from GD8 until offspring mice born. The other group was exposed to BPA with the same method from offspring mice born to postnatal day (PND) 14. At PND21 of age, open field, dark/light transition, mirror chamber, elevated plus-maze, forced swim and step-down were respectively used to test spontaneous activity, exploratory behavior, anxiety, depression, and passive avoidance memory in offspring mice. The results showed that gestational or lactational exposure to BPA differently affects behaviors in offspring mice. Gestational exposure to BPA weakened anxiety and increased spontaneous activity of young offspring, as well as enhanced exploratory behavior of male offspring and passive avoidance memory of female offspring. Lactational exposure to BPA decreased the spontaneous activity of young offspring, but no significant effect on anxiety was found in offspring mice. Both gestational and lactational exposure to BPA strengthened depression in male and female offspring mice. These results suggested that non-reproductive behaviors in offspring mice, such as anxiety, depression, passive avoidance memory, were affected by both gestational and lactational exposure to BPA, while

  13. Stem cell antigen 2 expression in adult and developing mice.

    Science.gov (United States)

    Antica, M; Wu, L; Scollay, R

    1997-01-01

    Stem cell antigen 2 (Sca-2) expression can distinguish the most immature T-lymphocyte precursors in the thymus from the hemopoietic stem cells. Sequence analysis of the Sca-2 protein showed that Sca-2 is a glycosylphosphatidylinositol (GPI) anchored molecule that shares some characteristics with the members of the Ly-6 multigene family, and that it is the same as the thymic shared antigen-1 (TSA-1). Here we extend these studies and critically reassess the expression of the Sca-2/TSA-1 antigen in hematopoietic tissues of adult and developing mice. With more sensitive methods we show that the distribution of Sca-2/TSA-1 differs from existing reports. We find especially high expression of Sca-2/TSA1 at day 14 of fetal development.

  14. Evaluation of Oogenesis Aspects in Neonatal and Adult Mice after Toloaldoxime Treatment

    Directory of Open Access Journals (Sweden)

    Mohammad Fazeltabar Malekshah

    2015-10-01

    Full Text Available Objective: Oximes are important materials in organic chemistry. Synparamethyl benzaldehyde oxime (toloaldoxime is structurally similar to other oximes, hence we have studied its effects on the neonatal and adult female Balb/c mice reproductive systems in order to provide a platform for future studies on the production of female contraceptive drugs. Materials and Methods: In experimental study, we studied the effects of toloaldoxime on ovary growth and gonadal hormones of neonatal and adult Balb/c mice. A regression model for prediction was presented. Results: The effects of toloaldoxime on neonatal mice were more than adult mice. The greatest effect was on the number of Graafian follicles (59.6% in adult mice and 31.83% in neonatal mice. The least effect was on ovary weight, and blood serum levels of follicle stimulating hormone (FSH and luteinizing hormone (LH. Conclusion: According to the data obtained, toloaldoxime can be considered an antipregnancy substance.

  15. Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice.

    Directory of Open Access Journals (Sweden)

    Yan Long

    Full Text Available Perfluorooctane sulfonate (PFOS is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA and 3,4-dihydrophenylacetic acid (DOPAC in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase, Herc5 (hect domain and RLD 5 isoform 2 and Tyro3 (TYRO3 protein tyrosine kinase 3 were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit, Gzma (Isoform HF1 of Granzyme A precursor, Plau (Urokinase-type plasminogen activator precursor and Lig4 (DNA ligase 4 were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.

  16. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    carry germline mutations. Importantly, the effect of a long-term suppression of the GH/IGF-1 axis during adulthood, as would be considered for human therapeutic purposes, has not been tested. The goal of this study was to determine whether temporally controlled Ghr gene deletion in adult mice would...... affect metabolism and longevity. Thus, we produced adult-onset GHRKO (aGHRKO) mice by disrupting the Ghr gene at 6 weeks of age. We found that aGHRKO mice replicate many of the beneficial effects observed in long-lived GHRKO mice. For example, aGHRKO mice, like GHRKO animals, displayed retarded growth...

  17. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    Directory of Open Access Journals (Sweden)

    James P Kesby

    Full Text Available Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old and aged (15 months old mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.

  18. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    Science.gov (United States)

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.

  19. Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring.

    Science.gov (United States)

    Macchione, A F; Beas, C; Dadam, F M; Caeiro, X E; Godino, A; Ponce, L F; Amigone, J L; Vivas, L

    2015-07-01

    Exposure to an altered osmotic environment during a pre/postnatal period can differentially program the fluid intake and excretion pattern profile in a way that persists until adulthood. However, knowledge about the programming effects on the underlying brain neurochemical circuits of thirst and hydroelectrolyte balance, and its relation with behavioral outputs, is limited. We evaluated whether early voluntary intake of hypertonic NaCl solution may program adult offspring fluid balance, plasma vasopressin, neural activity, and brain vasopressin and angiotensinergic receptor type 1a (AT1a)-receptor gene expression. The manipulation (M) period covered dams from 1 week before conception until offspring turned 1-month-old. The experimental groups were (i) Free access to hypertonic NaCl solution (0.45 M NaCl), food (0.18% NaCl) and water [M-Na]; and (ii) Free access to food and water only [M-Ctrol]. Male offspring (2-month-old) were subjected to iv infusion (0.15 ml/min) of hypertonic (1.5M NaCl), isotonic (0.15M NaCl) or sham infusion during 20 min. Cumulative water intake (140 min) and drinking latency to the first lick were recorded from the start of the infusion. Our results indicate that, after systemic sodium overload, the M-Na group had increased water intake, and diminished neuronal activity (Fos-immunoreactivity) in the subfornical organ (SFO) and nucleus of the solitary tract. They also showed reduced relative vasopressin (AVP)-mRNA and AT1a-mRNA expression at the supraoptic nucleus and SFO, respectively. The data indicate that the availability of a rich source of sodium during the pre/postnatal period induces a long-term effect on drinking, neural activity, and brain gene expression implicated in the control of hydroelectrolyte balance.

  20. Both food restriction and high-fat diet during gestation induce low birth weight and altered physical activity in adult rat offspring: the "Similarities in the Inequalities" model.

    Directory of Open Access Journals (Sweden)

    Fábio da Silva Cunha

    Full Text Available We have previously described a theoretical model in humans, called "Similarities in the Inequalities", in which extremely unequal social backgrounds coexist in a complex scenario promoting similar health outcomes in adulthood. Based on the potential applicability of and to further explore the "similarities in the inequalities" phenomenon, this study used a rat model to investigate the effect of different nutritional backgrounds during gestation on the willingness of offspring to engage in physical activity in adulthood. Sprague-Dawley rats were time mated and randomly allocated to one of three dietary groups: Control (Adlib, receiving standard laboratory chow ad libitum; 50% food restricted (FR, receiving 50% of the ad libitum-fed dam's habitual intake; or high-fat diet (HF, receiving a diet containing 23% fat. The diets were provided from day 10 of pregnancy until weaning. Within 24 hours of birth, pups were cross-fostered to other dams, forming the following groups: Adlib_Adlib, FR_Adlib, and HF_Adlib. Maternal chow consumption and weight gain, and offspring birth weight, growth, physical activity (one week of free exercise in running wheels, abdominal adiposity and biochemical data were evaluated. Western blot was performed to assess D2 receptors in the dorsal striatum. The "similarities in the inequalities" effect was observed on birth weight (both FR and HF groups were smaller than the Adlib group at birth and physical activity (both FR_Adlib and HF_Adlib groups were different from the Adlib_Adlib group, with less active males and more active females. Our findings contribute to the view that health inequalities in fetal life may program the health outcomes manifested in offspring adult life (such as altered physical activity and metabolic parameters, probably through different biological mechanisms.

  1. Adolescent mice are more vulnerable than adults to single injection-induced behavioral sensitization to amphetamine

    OpenAIRE

    Kameda, Sonia Regina; Fukushiro, Daniela Fukue [UNIFESP; Trombin, Thaís Fernanda [UNIFESP; Procopio-Souza, Roberta [UNIFESP; Patti, Camilla de Lima [UNIFESP; Hollais, André Willian [UNIFESP; Calzavara, Mariana Bendlin [UNIFESP; Abílio, Vanessa Costhek [UNIFESP; Ribeiro, Rosana de Alencar [UNIFESP; Tufik, Sergio; D'Almeida, Vânia; Frussa Filho, Roberto [UNIFESP

    2011-01-01

    Drug-induced behavioral sensitization in rodents has enhanced our understanding of why drugs acquire increasing motivational and incentive value. Compared to adults, human adolescents have accelerated dependence courses with shorter times from first exposure to dependence. We compared adolescent and adult mice in their ability to develop behavioral sensitization to amphetamine following a single injection. Adult (90-day-old) and adolescent (45-day-old) male Swiss mice received an acute intrap...

  2. Antidepressant-like effect of lead in adult mice

    Directory of Open Access Journals (Sweden)

    Mantovani M.

    1999-01-01

    Full Text Available It has been reported that lead can cause behavioral impairment by inhibiting the N-methyl-D-aspartate (NMDA receptor complex. MK-801, a noncompetitive NMDA receptor antagonist, exhibits an antidepressant-like action in the forced swimming test. The purpose of the present study was to determine whether subacute lead exposure in adult male Swiss mice weighing 30-35 g causes an antidepressant-like action in a forced swimming test. Mice were injected intraperitoneally (ip with 10 mg/kg lead acetate or saline daily for 7 consecutive days. Twenty-four hours after the last treatment, the saline and lead-treated mice received an injection of MK-801 (0.01 mg/kg, ip or saline and were tested in forced swimming and in open-field tests. Immobility time was similarly reduced in the saline-MK-801, Pb-saline and Pb-MK-801 groups compared to the saline-saline group (mean ± SEM; 197.3 ± 18.5, 193.5 ± 15.8, 191.3 ± 12.3 and 264.0 ± 14.4 s, respectively; N = 9. These data indicate that lead may exert its effect on the forced swimming test by directly or indirectly inhibiting the NMDA receptor complex. Lead treatment caused no deficit in memory of habituation and did not affect locomotor activity in an open-field (N = 14. However, mice that received MK-801 after lead exhibited a deficit in habituation (22% reduction in rearing responses between session 3 and 1; N = 14 as compared to control (41% reduction in rearing responses; N = 15, further suggesting that lead may have affected the NMDA receptor activity. Forced-swim immobility in a basin in two daily consecutive sessions was also significantly decreased by lead exposure (mean ± SEM; day 1 = 10.6 ± 3.2, day 2 = 19.6 ± 3.6; N = 16 as compared to control (day 1 = 18.4 ± 3.8, day 2 = 34.0 ± 3.7; N = 17, whereas the number of crossings was not affected by lead treatment, further indicating a specific antidepressant-like action of lead.

  3. Offspring of xenogeneically-reconstituted scid scid mice are capable of a primary xenogeneic immune response to DNP-KLH

    NARCIS (Netherlands)

    Greenwood, JD; Bos, NA; Croy, BA

    1996-01-01

    Human peripheral blood leukocyte (PBL) reconstitution of severe combined immunodeficient (SCID) mice has provided a small animal model system (hu-PBL-SCID) useful for the study of the human immune system and disease pathogenesis. Transfer of xenogeneic PBL from donors other than humans has also been

  4. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  5. Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs.

    Science.gov (United States)

    Hu, Youjia; Peng, Jian; Tai, Ningwen; Hu, Changyun; Zhang, Xiaojun; Wong, F Susan; Wen, Li

    2015-11-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that involves the slow, progressive destruction of islet β cells and loss of insulin production, as a result of interaction with environmental factors, in genetically susceptible individuals. The gut microbiome is established very early in life. Commensal microbiota establish mutualism with the host and form an important part of the environment to which individuals are exposed in the gut, providing nutrients and shaping immune responses. In this study, we studied the impact of targeting most Gram-negative bacteria in the gut of NOD mice at different time points in their life, using a combination of three antibiotics--neomycin, polymyxin B, and streptomycin--on diabetes development. We found that the prenatal period is a critical time for shaping the immune tolerance in the progeny, influencing development of autoimmune diabetes. Prenatal neomycin, polymyxin B, and streptomycin treatment protected NOD mice from diabetes development through alterations in the gut microbiota, as well as induction of tolerogenic APCs, which led to reduced activation of diabetogenic CD8 T cells. Most importantly, we found that the protective effect was age dependent, and the most profound protection was found when the mice were treated before birth. This indicates the importance of the prenatal environment and early exposure to commensal bacteria in shaping the host immune system and health.

  6. A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus model.

    Directory of Open Access Journals (Sweden)

    Samyra M S N Lacerda

    Full Text Available BACKGROUND: Germ cell transplantation results in fertile recipients and is the only available approach to functionally investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O. niloticus, in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan. METHODOLOGY/PRINCIPAL FINDINGS: Using two different tilapia strains, the production of fertile spermatozoa with donor characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes. These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor spermatogenesis and offspring compared to previously described methods. CONCLUSION: Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserve endangered fish species.

  7. A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation.

    Science.gov (United States)

    Gray, Clint; Vickers, Mark H; Segovia, Stephanie A; Zhang, Xiaohuan D; Reynolds, Clare M

    2015-01-01

    Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA) is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON) or purified control diet supplemented with 1% CLA (of total fat), a purified high fat (HF) diet (45%kcal from fat) and a purified HF diet supplemented with 1% CLA (of total fat) (HFCLA). All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21) until the end of the study (day 150). Systolic blood pressure (SBP) was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh). Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory EDHF

  8. A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA supplementation.

    Directory of Open Access Journals (Sweden)

    Clint Gray

    Full Text Available Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON or purified control diet supplemented with 1% CLA (of total fat, a purified high fat (HF diet (45%kcal from fat and a purified HF diet supplemented with 1% CLA (of total fat (HFCLA. All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21 until the end of the study (day 150. Systolic blood pressure (SBP was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh. Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory

  9. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring

    OpenAIRE

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue...

  10. Intramaze and extramaze cue processing in adult APPSWE Tg2576 transgenic mice.

    Science.gov (United States)

    Barnes, Philip; Hale, Gemma; Good, Mark

    2004-12-01

    The present study examined spatial and nonspatial learning in adult Tg2576 mice. Transgenic mice were impaired in acquisition of a T-maze forced-choice alternation task. However, mutant mice were as sensitive as control mice to the introduction of retention intervals and proactive interference, and this suggested that short-term memory processes were intact in Tg2576 mice. Probe trials revealed that the Tg2576 mice did not use an allocentric strategy to navigate to the goal arm. However, mutant mice acquired an intramaze brightness discrimination, a simple room discrimination, and a contextual biconditional left-right discrimination in a T maze. Results suggest that Tg2576 mice are able to process both intramaze and extramaze stimuli but are impaired in forming an allocentric representation of their environment.

  11. In utero exposure of mice to diesel exhaust particles affects spatial learning and memory with reduced N-methyl-D-aspartate receptor expression in the hippocampus of male offspring.

    Science.gov (United States)

    Yokota, Satoshi; Sato, Akira; Umezawa, Masakazu; Oshio, Shigeru; Takeda, Ken

    2015-09-01

    Diesel exhaust consists of diesel exhaust particles (DEPs) and gaseous compounds. Previous studies reported that in utero exposure to diesel exhaust affects the central nervous system. However, there was no clear evidence that these effects were caused by diesel exhaust particles themselves, gaseous compounds, or both. Here, we explored the effects of in utero exposure to DEPs on learning and memory in male ICR mice. DEP solutions were administered subcutaneously to pregnant ICR mice at a dose of 0 or 200 μg/kg body weight on gestation days 6, 9, 12, 15, and 18. We examined learning and memory in 9-to-10-week-old male offspring using the Morris water maze test and passive avoidance test. Immediately after the behavioral tests, hippocampi were isolated. Hippocampal N-methyl-D-aspartate receptor (NR) expression was also measured by quantitative RT-PCR analysis. Mice exposed to DEPs in utero showed deficits in the Morris water maze test, but their performance was not significantly different from that of control mice in the passive avoidance test. In addition, DEP-exposed mice exhibited decreased hippocampal NR2A expression. The present results indicate that maternal DEP exposure disrupts learning and memory in male offspring, which is associated with reduced hippocampal NR2A expression.

  12. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice.

    Science.gov (United States)

    Kikuchihara, Yoh; Abe, Hajime; Tanaka, Takeshi; Kato, Mizuho; Wang, Liyun; Ikarashi, Yoshiaki; Yoshida, Toshinori; Shibutani, Makoto

    2015-05-04

    We previously found persistent aberration of hippocampal adult neurogenesis, along with brain manganese (Mn) accumulation, in mouse offspring after developmental exposure to 800-ppm dietary Mn. Reduction of parvalbumin (Pvalb)(+) γ-aminobutyric acid (GABA)-ergic interneurons in the hilus of the dentate gyrus along with promoter region hypermethylation are thought to be responsible for this aberrant neurogenesis. The present study was conducted to examine the relationship between the induction of aberrant neurogenesis and brain Mn accumulation after oral Mn exposure as well as the responsible mechanism in young adult animals. We used two groups of mice with 28- or 56-day exposure periods to oral MnCl2·xH2O at 800 ppm as Mn, a dose sufficient to lead to aberrant neurogenesis after developmental exposure. A third group of mice received intravenous injections of Mn at 5-mg/kg body weight once weekly for 28 days. The 28-day oral Mn exposure did not cause aberrations in neurogenesis. In contrast, 56-day oral exposure caused aberrations in neurogenesis suggestive of reductions in type 2b and type 3 progenitor cells and immature granule cells in the dentate subgranular zone. Brain Mn accumulation in 56-day exposed cases, as well as in directly Mn-injected cases occurred in parallel with reduction of Pvalb(+) GABAergic interneurons in the dentate hilus, suggesting that this may be responsible for aberrant neurogenesis. For reduction of Pvalb(+) interneurons, suppression of brain-derived neurotrophic factor-mediated signaling of mature granule cells may occur via suppression of c-Fos-mediated neuronal plasticity due to direct Mn-toxicity rather than promoter region hypermethylation of Pvalb.

  13. Vaccination of mice with liposome-entrapped adult antigens of Nippostrongylus brasiliensis.

    Science.gov (United States)

    Rhalem, A; Bourdieu, C; Luffau, G; Pery, P

    1988-01-01

    An immunization procedure was developed to induce protection of mice against the gastrointestinal helminth Nippostrongylus brasiliensis. Mice immunized by the oral route with antigens which were released by adult worms during their in vitro survival in a detergent-containing medium and which were entrapped in liposomes were protected against a challenge infection.

  14. Targeting of CD25 and glucocorticoid-induced TNF receptor family-related gene-expressing T cells differentially modulates asthma risk in offspring of asthmatic and normal mother mice.

    Science.gov (United States)

    Hubeau, Cedric; Apostolou, Irina; Kobzik, Lester

    2007-02-01

    Immunological mechanisms leading to increased asthma susceptibility in early life remain obscure. In this study, we examined the effects of neonatal Ab treatments targeting T cell populations on the development of an asthma syndrome. We used a model of increased asthma susceptibility where offspring of asthmatic BALB/c mother mice are more prone (than normal pups) to develop the disease. Neonatal pretreatment of naive pups with mAb directed against the IL-2Ralpha chain (CD25), the costimulatory molecule glucocorticoid-induced TNFR family related gene, and the inhibitory molecule CTLA-4 elicited contrasting effects in offspring depending on the mother's asthma status. Specifically, neonatal CD25(high) T cell depletion stimulated asthma susceptibility in normal offspring whereas it ameliorated the condition of pups born of asthmatic mothers. Conversely, glucocorticoid-induced TNFR family related gene ligation as a primary signal reduced the spleen cellularity and largely abrogated asthma susceptibility in asthma-prone offspring, without inducing disease in normal pups. Striking changes in Th1/Th2 cytokine levels, especially IL-4, followed mAb pretreatment and were consistent with the impact on asthma susceptibility. These results point to major differences in neonatal T cell population and responsiveness related to maternal asthma history. Interventions that temporarily remove and/or inactivate specific T cell subsets may therefore prove useful to attenuate early life asthma susceptibility and prevent the development of Th2-driven allergic airway disease.

  15. Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality.

    Science.gov (United States)

    Ghasemi, N; Babaei, H; Azizallahi, S; Kheradmand, A

    2009-08-01

    This study was set to investigate whether the adverse effects of heat on spermatozoa and subsequent foetuses could be prevented by long-term zinc administration. The scrotums of animals were immersed in water at either 43 degrees C (heat group) or 23 degrees C (control group). Half of the heat and control mice were given 10 mg kg(-1) zinc every other day for 60 days and the others received sterile saline instead of zinc. Heat stress significantly reduced sperm motility, concentration, hypoosmotic swelling-water test (HOS-WT) positive and chromomycin A(3) (CMA(3)) negative spermatozoa at the first 15 days, and the greatest decrease occurred at 30 days (P spermatozoa were also reduced initially in the zinc administered group, but we did not observe any further decrease in the above mentioned parameters on day 30 (P zinc therapy caused a partial recovery (P > 0.05). This study demonstrates that the adverse effects of hyperthermia on semen parameters may be prevented by zinc therapy. Likewise, long-term administration of zinc could improve quality of litter obtained from the females mated with scrotal heat treatment males.

  16. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  17. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats.

    Science.gov (United States)

    Hallam, Megan C; Reimer, Raylene A

    2016-01-14

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation.

  18. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    Directory of Open Access Journals (Sweden)

    Megan C. Hallam

    2016-01-01

    Full Text Available The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF had lower body weight and adiposity than animals re-matched to a high protein (HP or control (C diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05. Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones. The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation.

  19. Effect of Benzene on Proliferation and Apoptosis of Splenic Lymphocytes in Mother Generation and Offspring Mice%苯对母鼠和子鼠脾淋巴细胞的增殖与凋亡影响

    Institute of Scientific and Technical Information of China (English)

    旷亦乐; 李纯颖; 杨双波; 李紫; 吴成秋

    2011-01-01

    Objective To explore the effect of benzene on proliferation and apoptceis of splenic lymphocytes in mother generation and offspring mice. Methods Forty pregnant mice were divided averagely into 4 groups at random. From the 7th day after pregnancy, each of group was exposed to benzene vapour until to parturition (0.0, 5.0, 10.0 and 15.0 mg/m3,respectively), 2 hours par day. At the 1st and 7th days after parturition, 5 mother generation mice end 5 offspring mice of each group were killed to detect the proliferation, cell cycle and apoptosis of splenic lymphocytes in mother generation and offspring mice by MTT assay and flow cytometric analysis. Results During the 1st day and 7th day after parturition, the proliferation of splenic lymphocytes of mother generation and offspring mice in the middle - and high - concentration of benzene groups was inhibited significantly in a concentration-dependent manner (P<O. 05). The cell cycle of splenic lymphocytes of mother generation and offspring mice was blocked in G0/G1 phase in the middle - and high - concentration of benzene groups. The quantity of splenic lymphocytes apoptosis was increased significantly in a concentration- dependent manner in each benzene group (P < 0.05). Conclusion Benzene exposure during pregnancy can damage the immunological function of mother generation mice and offspring mice.%目的 探讨妊娠期接触苯对母鼠及其子鼠免疫功能的影响.方法 40只孕鼠被随机等分为空气对照组和5.0、10.0、15.0 mg/m3三个不同浓度的苯染毒组,各组从孕7 d开始,连续染毒至分娩,每天染毒2 h.分别在分娩后的1 d及7 d,每组取5只母鼠和5只子鼠处死,取脾制备脾淋巴细胞;检测母鼠和子鼠脾淋巴细胞增殖力、细胞周期及细胞凋亡.结果 在分娩后1 d及7 d,中、高浓度苯染毒组母鼠及子鼠的脾淋巴细胞增殖力均低于对照组(P<0.05),并有明显的剂量-效应关系(P<0.05);子鼠与母鼠的淋巴细胞增殖抑制

  20. Effect of maternal and post weaning folate supply on gene-specific DNA methylation in the small intestine of weaning and adult Apc+/Min and wild type mice.

    Directory of Open Access Journals (Sweden)

    Jill Ann Mckay

    2011-05-01

    Full Text Available Increasing evidence supports the developmental origins of adult health and disease hypothesis which argues for a causal relationship between adverse early life nutrition and increased disease risk in adulthood. Modulation of epigenetic marks, e.g. DNA methylation and consequential altered gene expression, has been proposed as a mechanism mediating these effects. Via its role as a methyl donor, dietary folate supply may influence DNA methylation. As aberrant methylation is an early event in colorectal cancer (CRC pathogenesis, we hypothesised low maternal and/or post-weaning folate intake may influence methylation of genes involved in CRC development. We investigated the effects of maternal folate depletion during pregnancy and lactation on selected gene methylation in the small intestine (SI of wild type (WT and Apc+/Min mice at weaning and as adults. We also investigated the effects of folate depletion post-weaning on gene methylation in adult mice. Female C57Bl6/J mice were fed low or normal folate diets from mating with Apc+/Min males to the end of lactation. A sub set of offspring were killed at weaning. Remaining offspring were weaned on to low or normal folate diets, resulting in 4 treatment groups of Apc+/Min and WT mice. p53 was more methylated in weaning and adult WT compared with Apc+/Min mice (p>0.001. Igf2 and Apc were hypermethylated in adult Apc+/Mi n compared with WT mice (p=0.004 & p=0.012 respectively. Low maternal folate reduced p53 methylation in adults (p=0.04. Low post-weaning folate increased Apc methylation in Apc+/Min mice only (p=0.008 for interaction. These observations demonstrate that folate depletion in early life can alter epigenetic marks in a gene specific manner. Also, the differential effects of altered folate supply on DNA methylation in WT and Apc+/Min mice suggest that genotype may modulate epigenetic responses to environmental cues and may have implications for the development of personalised nutrition.

  1. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas.

    Science.gov (United States)

    Soeda, Jumpei; Mouralidarane, Angelina; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Carter, Rebeca; Kapur, Sabrina R; Pombo, Joaquim; Poston, Lucilla; Taylor, Paul D; Vinciguerra, Manlio; Oben, Jude A

    2016-06-01

    The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity. Twenty female C57BL/6J mice were assigned to control (Con) or obesogenic (Ob) diets prior to and during pregnancy and lactation. Their offspring were weaned onto Con or Ob diets up to 6 months post-partum. Then, after sacrifice, plasma biochemical analyses, gene expression, and protein concentrations were measured in pancreata. Offspring of Ob-fed mice had significantly increased body weight (p < 0.001) and plasma leptin (p < 0.001) and decreased insulin (p < 0.01) levels. Maternal obesogenic diet decreased the total and phosphorylated Eif2α and increased spliced X-box binding protein 1 (XBP1). Pancreatic gene expression of downstream regulators of UPR (EDEM, homocysteine-responsive endoplasmic reticulum-resident (HERP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP)) and autophagy-related proteins (LC3BI/LC3BII) were differently disrupted by obesogenic feeding in both mothers and offspring (from p < 0.1 to p < 0.001). Maternal obesity and Ob feeding in their offspring alter UPR in NAFPD, with involvement of proapoptotic and autophagy-related markers. Upstream and downstream regulators of PERK, IRE1α, and ATF6 pathways were affected differently following the obesogenic insults.

  2. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance.

    Science.gov (United States)

    Sun, Yuxiang; Butte, Nancy F; Garcia, Jose M; Smith, Roy G

    2008-02-01

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R), are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and negative (caloric restriction) energy balance. In contrast to results from young N2 mutant mice, changes in body weight and energy expenditure are not clearly distinguishable across genotypes. Although respiratory quotient was lower in mice fed a high-fat diet, no differences were evident between littermate wild-type and null genotypes. With normal chow, a modest decrease trend in respiratory quotient was detected in ghrelin(-/-) mice but not in Ghsr(-/-) mice. Under caloric restriction, the weight loss of ghrelin(-/-) and Ghsr(-/-) mice was identical to wild-type littermates, but blood glucose levels were significantly lower. We conclude that adult congenic ghrelin(-/-) and Ghsr(-/-) mice are not resistant to diet-induced obesity but under conditions of negative energy balance show impairment in maintaining glucose homeostasis. These results support our hypothesis that the primary metabolic function of ghrelin in adult mice is to modulate glucose sensing and insulin sensitivity, rather than directly regulate energy intake and energy expenditure.

  3. 孕期炎症刺激对子代小鼠脂质代谢及 FAT/CD36表达的影响%Prenatal exposure to lipopolysaccharide results in lipid metabolism and FAT/CD36 expression in mice offspring

    Institute of Scientific and Technical Information of China (English)

    秦书刚; 陈新; 贾乙; 周见至; 苏敏; 李晓辉

    2016-01-01

    Aim To explore the effect of prenatal expo-sure to lipopolysaccharide ( LPS ) on lipid metabolism in mice offspring from the starting point of FAT/CD36 expression.Methods 8-week old C57 mice mated 2∶1, then they were caged separately , marked as preg-nancy 0 d.The pregnant mice were given single intrap-eritoneal injection of 75 μg・ kg -1 LPS, and the con-trol received injections of 0.2 mL saline .The perirenal adipose of female mice and epididymis adipose of male mice were collected in 4 w,8 w,12 w,respectively. The weight of visceral adipose tissue and the free fatty acid( FFA) and triglyceride ( TG) of adipose tissue and FAT/CD36 of offspring mice were quantitated .Results The body weight of offspring of LPS group was also significantly higher than that of NS group , and LPS group offspring displayed increased adipose tissue wet weights , the expression of TG and FFA was increased in LPS group compared with NS .Especially , prenatal exposure to inflammatory stimulation resulted in marked increase of FAT/CD36 and abnormal adipocyte development .Conclusions Inflammation induced by prenatal exposure to LPS results in increased body weight , adipose coefficient and FAT/CD36 that might develop into obesity in adult mice .These results are relevant in that anomalous local adipose tissue and FAT/CD36 regulation may be an important mechanism underlying obesity .%目的:以FAT/CD36为切入点,研究母体孕期炎症刺激对子代脂质代谢的影响。方法8周龄C57小鼠,♀♂2∶1合笼配种,d 2♀鼠分笼饲养记为在孕0 d,在孕11 d给予孕鼠一次性腹腔注射脂多糖(LPS)(75μg・ kg-1),对照组注射0.2 mL的生理盐水。分别于子鼠4、8、12周取材(♀鼠取肾周脂肪、♂鼠取附睾周围脂肪),对子代小鼠体重、内脏脂肪重量、脂肪组织和细胞中游离脂肪酸( FFA)、甘油三酯( TG)、FAT/CD36表达量进行检测。结果与NS组相比, LPS组小鼠体重、内

  4. Offspring Protection

    Directory of Open Access Journals (Sweden)

    Eric T. Steiner

    2016-08-01

    Full Text Available Parental aggression, that is, offspring protection aggression, can be viewed as a type of parental investment. Most mammalian males do not exhibit parental investment and therefore exhibit little, if any, parental aggression. Men demonstrate parental investment, and are typically more physically aggressive than women, but parental physical aggression in humans has been largely unexplored. The current study examined potential sex differences in estimates of parental physical aggression involving hypothetical situations, while controlling for general physical aggression. A self-report measure was administered to 217 students from a western U.S. university (55 male nonparents, 50 female nonparents, 54 fathers, and 58 mothers. Male nonparents reported higher parental physical aggression than female nonparents, but there was no difference between mothers and fathers. The results are interpreted in light of ancestral effects of sexual selection and proximal effects of sex differences in testosterone, risk taking, and fear aversion.

  5. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring

    Science.gov (United States)

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a) sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b) features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c) tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed. PMID:27806128

  6. Comparing Sexuality Communication Among Offspring of Teen Parents and Adult Parents: a Different Role for Extended Family

    OpenAIRE

    Grossman, Jennifer M; Tracy, Allison J.; Richer, Amanda M.; Erkut, Sumru

    2015-01-01

    This brief report examined teenagers’ sexuality communication with their parents and extended families. It compared who teens of early parents (those who had children when they were adolescents) and teens of later parents (those who were adults when they had children) talk to about sex. Eighth grade students (N=1281) in 24 schools completed survey items about their communication about sex. Structural equation modeling was used to predict communication profiles, while adjusting for the nesting...

  7. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    Science.gov (United States)

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  8. Unexpected long-term protection of adult offspring born to high-fat fed dams against obesity induced by a sucrose-rich diet.

    Directory of Open Access Journals (Sweden)

    Odile Couvreur

    Full Text Available BACKGROUND: Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet, rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. CONCLUSIONS/SIGNIFICANCE: HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in

  9. Adolescent mice are more vulnerable than adults to single injection-induced behavioral sensitization to amphetamine.

    Science.gov (United States)

    Kameda, Sonia R; Fukushiro, Daniela F; Trombin, Thaís F; Procópio-Souza, Roberta; Patti, Camilla L; Hollais, André W; Calzavara, Mariana B; Abílio, Vanessa C; Ribeiro, Rosana A; Tufik, Sergio; D'Almeida, Vânia; Frussa-Filho, Roberto

    2011-04-01

    Drug-induced behavioral sensitization in rodents has enhanced our understanding of why drugs acquire increasing motivational and incentive value. Compared to adults, human adolescents have accelerated dependence courses with shorter times from first exposure to dependence. We compared adolescent and adult mice in their ability to develop behavioral sensitization to amphetamine following a single injection. Adult (90-day-old) and adolescent (45-day-old) male Swiss mice received an acute intraperitoneal injection of saline or amphetamine (1.0, 2.0 or 4.0 mg/kg). Seven days later, half of the mice from the saline group received a second injection of saline. The remaining animals were challenged with 2.0 mg/kg amphetamine. Following all of the injections, mice were placed in activity chambers and locomotion was quantified for 45 min. The magnitude of both the acute and sensitized locomotor stimulatory effect of amphetamine was higher in the adolescent mice. Previous experience with the test environment inhibited the acute amphetamine stimulation in both adolescent and adult mice, but facilitated the detection of elevated spontaneous locomotion in adolescent animals. These results support the notion that the adolescent period is associated with an increased risk for development of drug abuse. Additionally, they indicate a complex interaction between the environmental novelty, adolescence and amphetamine.

  10. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and its implication in executive functions in adult offspring of alcohol-dependent probands.

    Science.gov (United States)

    Benzerouk, Farid; Gierski, Fabien; Gorwood, Philip; Ramoz, Nicolas; Stefaniak, Nicolas; Hübsch, Bérengère; Kaladjian, Arthur; Limosin, Frédéric

    2013-06-01

    Impairment of executive functions (EFs) mediated by the prefrontal lobe is regarded as a cognitive endophenotype of alcohol dependence, being observed both in probands and in healthy offspring. Given its impact on the anatomy of the prefrontal cortex, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism may well be involved in this specific endophenotype. Forty-six healthy adult children of alcoholics (HACA) and 82 healthy controls (HC) took part in the study. All the participants were assessed with the Diagnostic Interview for Genetic Studies, and their family histories of alcohol and substance use were assessed with the Family Informant Schedule and Criteria. The Trail Making Test, Arithmetic Switching Task, Stroop Color-Word Test and Wisconsin Card Sorting Test were administered to assess EFs. An overall executive factor score was calculated using factorial analyses. Genotyping of the BDNF Val66Met polymorphism was performed using the TaqMan® allelic discrimination assay. HACA had significantly lower EFs performance than HC. Genetic analysis showed that BDNF genotype distributions were in Hardy-Weinberg equilibrium in the HACA and HC. Genotype and allele distributions did not differ significantly between the two groups. Participants with the Met allele performed significantly more poorly than participants with the Val allele, and a group by allele interaction was observed, the BDNF Met allele being associated with a poorer executive factor score in the HACA group. These results suggest that the BDNF Val66Met polymorphism may contribute to alcohol dependence vulnerability via lower EFs performance.

  11. 十二烷基苯磺酸钠对雄性染毒小鼠子代生精功能的影响%Study on LAS to Spermatogenic Function of Male Offspring Mice

    Institute of Scientific and Technical Information of China (English)

    姜俊怡; 任春娥; 韩海艳; 乔鹏云

    2013-01-01

    Objective To determine the effects of LAS on spermatogenic function of male offspring mice .Methods One hun-dred and twenty Kun-ming male mice and 120 female mice were randomly divided into four groups .Group A1 was the male offspring mice of the male mice gavaged by LAS for two months;Group B1 was the male offspring mice of the male mice gavaged by LAS for two months and stopped for one month.Group A2 and group B2 were the control groups respectively .The mice weight,weight of testicle,density,viability and morphology of the sperm,the histological structure and the ultra structure of testicle were studied .Results Compared with the control groups , there was no difference in the mice weight and the weight of testicle of group A 1 and group B1.However,there was significant difference in the density,viability and morphology of the sperm .There was no difference between group A1 and group B1 in mice weight,weight of testicle, density,viability and morphology of the sperm .Conclusion Sodium dodecyl benzene sulfonate have an significant toxicity effect on the se-men quality and the structure of testicle of male offspring mice and they can't recover after they leaving off being gavaged for one month .%  目的探讨十二烷基苯磺酸钠(LAS)对雄性染毒小鼠子代生精功能的影响。方法将昆明种雌、雄小鼠各120只随机分为4组,每组各30只。 A1组为雄性小鼠经灌胃方式染毒LAS 2个月后交配生育的雄性小鼠;B1组为雄性小鼠经灌胃方式染毒LAS 2个月,停止染毒1个月后交配生育的雄性小鼠。 A1,B1两组分别设对照组为A2,B2组。对小鼠体重、睾丸重量、精子密度、活力及畸形率、睾丸的组织学结构和超微结构进行分析。结果A1,B1两组小鼠的体重、睾丸重量与对照组相比差异无显著性(P>0.05)。精子密度、活力及畸形率有显著性差异(P<0.05)。 A1,B1两组之间比较,小鼠的体重、睾丸重量、

  12. Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice

    Institute of Scientific and Technical Information of China (English)

    Shaochen Su; Tao Qi; Baoli Su; Huibin Gu; Jianlin Wang; Lan Yang

    2014-01-01

    Tooth loss has been shown to affect learning and memory in mice and increases the risk of Alz-heimer’s disease. The dentate gyrus is strongly associated with cognitive function. This study hypothesized that tooth loss affects neurons in the dentate gyrus. Adult male mice were random-ly assigned to either the tooth loss group or normal control group. In the tooth loss group, the left maxillary and mandibular molars were extracted. Normal control mice did not receive any intervention. Immunolfuorescence staining revealed that the density and absorbance of double-cortin-and neuronal nuclear antigen-positive cells were lower in the tooth loss group than in the normal control group. These data suggest that tooth loss may inhibit neurogenesis in the dentate gyrus of adult mice.

  13. Neuroinflammation Induced by Surgery Does Not Impair the Reference Memory of Young Adult Mice

    Science.gov (United States)

    Zhao, Yanhua; Huang, Lili; Xu, Huan; Wu, Guangxi; Zhu, Mengyi; Tian, Jie; Wang, Hao; Yu, Weifeng

    2016-01-01

    Postoperative cognitive dysfunction (POCD) increases morbidity and mortality after surgery. But the underlying mechanism is not clear yet. While age is now accepted as the top one risk factor for POCD, results from studies investigating postoperative cognitive functions in adults have been controversial, and data about the very young adult individuals are lacking. The present study investigated the spatial reference memory, IL-1β, IL-6, and microglia activation changes in the hippocampus in 2-month-old mice after anesthesia and surgery. We found that hippocampal IL-1β and IL-6 increased at 6 hours after surgery. Microglia were profoundly activated in the hippocampus 6 to 24 hours after surgery. However, no significant behavior changes were found in these mice. These results indicate that although anesthesia and surgery led to neuroinflammation, the latter was insufficient to impair the spatial reference memory of young adult mice. PMID:27956760

  14. A Simplified Method for Three-Dimensional (3-D Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice.

    Directory of Open Access Journals (Sweden)

    Carolyn M Higuchi

    Full Text Available In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART. Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture. We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-, A (Membrane/activin+, M (Matrigel/activin-, and M+A (Matrigel/activin+. We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A. Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM and in vitro fertilization (IVF. Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A than with those grown in membrane culture (C, A. In particular, activin A treatment further improved 3-D culture (M+A success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian

  15. The programming effects of nutrition-induced catch-up growth on gut microbiota and metabolic diseases in adult mice.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Qi, Cuijuan; Wang, Tong

    2016-04-01

    Substantial evidence indicated that catch-up growth could increase the susceptibility to obesity, insulin resistance, and type 2 diabetes mellitus in adulthood. However, investigations into the "programming" effects of catch-up growth on gut microbiota in the offspring are limited. C57/BL6 mice were fed on either low protein (LP) or normal chow (NC) diet throughout gestation and lactation. Then, the offspring were randomly weaned to either NC or high fat (HF) diet until 32 weeks of age, generating four experimental groups: NC-NC, NC-HF, LP-NC, and LP-HF. Metabolic parameters and gut microbiota were examined in the offspring. It showed that the NC-HF and LP-HF offspring displayed higher body weight (P r = -0.886, P = 0.019). In conclusion, catch-up growth predisposes the offspring to gut microbiota perturbation, obesity, impaired glucose tolerance, insulin resistance, and dyslipidemia. Our study is novel in showing the "programming" effects of nutrition-induced catch-up growth on gut microbiota and metabolic diseases in later life.

  16. Pentavalent outer membrane vesicles of Vibrio cholerae induce adaptive immune response and protective efficacy in both adult and passive suckling mice models.

    Science.gov (United States)

    Sinha, Ritam; Koley, Hemanta; Nag, Dhrubajyoti; Mitra, Soma; Mukhopadhyay, Asish K; Chattopadhyay, Brajadulal

    2015-03-01

    Recently, we demonstrated oral immunizations with single serotype outer membrane vesicles of Vibrio cholerae induced serogroup specific protective immunity in the RITARD model. In our present study, we advanced our research by formulating multi-serotype outer membrane vesicles, mixing the OMVs of five virulent V. cholerae strains. Four doses of oral immunization with cholera pentavalent outer membrane vesicles (CPMVs) induced V. cholerae specific B and T cell responses. CPMVs-immunized mice generated long lasting serum IgG, IgA, IgM as well as mucosal sIgA and also elicited a higher percentage of CD4+ T cell distribution in spleen. Our study revealed that in vitro CPMVs-activated dendritic cells were secreting T cell polarizing cytokines, IL-12p40, IL-4, IL-6 and IL-1β. Moreover, purified splenic CD4+ T cells of immunized mice also secreted IL-4, IL-13 and IL-17 cytokines, indicating the initiation of Th2 and Th17 cell mediated immune responses. CPMVs immunized adult female mice and their offspring were significantly protected from heterologous challenge with wild type V. cholerae. CPMVs could be exploited for the development of a novel non-living vaccine against circulating cholera in near future.

  17. Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice

    Directory of Open Access Journals (Sweden)

    Chiaki Kajiwara

    2012-08-01

    It is controversial whether a functional androgen receptor (AR on germ cells, including spermatogonia, is essential for their development into sperm and, thus, initiation and maintenance of spermatogenesis. It was recently shown that many spermatocytes underwent apoptosis in the testes of Hsp90α KO mice. We had generated Hsp90α KO mice independently and confirmed this phenotype. However, the important question of whether Hsp90α is required to maintain spermatogenesis in adult mice in which testicular maturation is already completed could not be addressed using these conventional KO mice. To answer this question, we generated a tamoxifen-inducible deletion mutant of Hsp90α and found that conditional deletion of Hsp90α in adult mice caused even more severe apoptosis in germ cells beyond the pachytene stage, leading to complete arrest of spermatogenesis and testicular atrophy. Importantly, immunohistochemical analysis revealed that AR expression in WT testis was more evident in spermatogonia than in spermatocytes, whereas its expression was aberrant and ectopic in Hsp90α KO testis, raising the possibility that an AR abnormality in primordial germ cells is involved in spermatogenesis arrest in the Hsp90α KO mice. Our results suggest that the AR, specifically chaperoned by Hsp90α in spermatogonia, is critical for maintenance of established spermatogenesis and for survival of spermatocytes in adult testis, in addition to setting the first wave of spermatogenesis before puberty.

  18. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    Science.gov (United States)

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  19. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    Science.gov (United States)

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na(+)K(+)-ATPase, Mg(2+)-ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  20. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ

    2013-01-01

    and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal...... development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of Cn...

  1. The influence of parental history of diabetes and offspring birthweight on offspring glucose metabolism in adulthood

    DEFF Research Database (Denmark)

    Lauenborg, Jeannet; Jørgensen, Mie Kw; Damm, Peter

    2011-01-01

    Background. Links are well established between both family history of diabetes and reduced birthweight and increased risk of diabetes in adulthood. Objectives. 1) To investigate the influence of parental history of type 2 diabetes (T2DM) on offspring birthweight and adult offspring glucose...... with a spouse without known diabetes. Methods. Oral glucose tolerance tests and frequently sampled intravenous glucose tolerance tests (FSIGT) in non-diabetic offspring. Birthweight and length obtained from birth records. Results. Among 122 offspring with maternal history of T2DM, 14.8% had diabetes compared...

  2. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice.

    Science.gov (United States)

    Wang, Bing; Feng, Wei-Yue; Wang, Tian-Cheng; Jia, Guang; Wang, Meng; Shi, Jun-Wen; Zhang, Fang; Zhao, Yu-Liang; Chai, Zhi-Fang

    2006-02-20

    The purpose of this study is to evaluate the acute toxicity of oral exposure to nanoscale zinc powder in mice. The healthy adult male and female mice were gastro-intestinally administered at a dose of 5 g/kg body weight with two size particles, nanoscale zinc (N-Zn) and microscale zinc (M-Zn) powder, while one group mice treated with sodium carboxy methyl cellulose was used as the control. The symptoms and mortality after zinc powder treatment were recorded. The effects of particles on the blood-element, the serum biochemical level and the blood coagulation were studied after 2 weeks of administration. The organs were collected for histopathological examination. The N-Zn treated mice showed more severe symptoms of lethargy, vomiting and diarrhea in the beginning days than the M-Zn mice. Deaths of two mice occurred in the N-Zn group after the first week of treatment. The mortalities were confirmed by intestinal obstruction of the nanoscale zinc aggregation. The biochemical liver function tests of serum showed significantly elevated ALT, AST, ALP, and LDH in the M-Zn mice and ALT, ALP, and LDH in the N-Zn mice compared with the controls (Pnano-scale zinc powders. The clinical changes were observed in the two treated group mice as well. The levels of the above enzymes were generally higher in the M-Zn mice than in the N-Zn mice, which implied that M-Zn powder could induce more severe liver damage than N-Zn. The biochemical renal function tests of serum BUN and CR in the M-Zn mice markedly increased either compared with the N-Zn mice or with the controls (P<0.05), but no significant difference was found between the N-Zn and the control mice. However, severe renal lesions were found by the renal histopathological examination in the N-Zn exposed mice. Therefore, we concluded that severe renal damage could occur in the N-Zn treated mice, though no significant change of blood biochemical levels occurred. Blood-element test showed that in the N-Zn mice, PLT and RDW

  3. Sertraline exposure leads to small left heart syndrome in adult mice

    OpenAIRE

    Haskell, Sarah E.; Hermann, Gregory M; Benjamin E Reinking; Volk, Kenneth A.; Peotta, Veronica A.; Zhu, Vivian; Roghair, Robert D

    2012-01-01

    Background Sertraline, a selective serotonin reuptake inhibitor (SSRI), is the most commonly prescribed therapy for maternal depression. Epidemiologic studies have linked SSRI exposure with decreased fetal growth, altered autonomic regulation, and cardiac malformations. We hypothesized SSRI exposure decreases left ventricular volumes and increases adult sympathetic nervous system activation, resulting in increased adult heart rates. Methods C57BL/6 mice received saline or sertraline (5 or 15 ...

  4. Food restriction increases long-term memory persistence in adult or aged mice.

    Science.gov (United States)

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults.

  5. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    Science.gov (United States)

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  6. Study on mechanisms of hypertension in rat adult offspring following prenatal exposure to immuno-inflammatory stimulants

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-zhi; LI Xiao-hui

    2008-01-01

    Objective Essential hypertension (EH) is one of the most common cardiovascular disease and the main causes of human fatility. Recently significant progress has been made in our lab, it was found that exterior stimulation during pregnancy may play a key role in chronicle adult disease. However, what factors affect the growth of fetus after those exterior stimulation and why has not been reported. Based on our previous finding, this study intends to investigate how immuno-inflammatory stimulation affect the development of embryo. Methods 1. Sprague-Dawley (SD) rats, dams in each group received i.p. injections of 0.79 mg· kg-1 LPS, 8 mg·kg-1 zymosan or sterile saline respectively on their gestational days 8, 10, and 12.2. The serums were collected in tail nick at 2 h after the last injection, and the amniotic fluid was mixed at 2, 12, 24,48 h after the last injection. TNF-α and IL-6 levels of serum and amniotic fluid were measured by RIA method. 3. TNF-α and IL-6 mRNA levels were quantitated in amnion, placenta, amniotic fluid, Embryo and maerophage by real-time fluorescent quantitative-PCR. Results 1. The serum level of TNF-α and IL-6 in LPS group and zymosan group was higher than that in control group (P<0.01). It showed that there was immuno-imflammatory response after LPS or zymosan injection in rats. The mRNA levels of TNF-α and IL-6 was very higher in macrophage than in other organization. 2. In embryo, the mRNA level of IL-6 was more than other organization, but the mRNA level of TNF-α was lower than other organization. However, the IL-6 mRNA level of LPS group and zymosan group was higher several dozens times than control group on 24 h and 48 h. Conclusions It suggested that IL-6 was important in the model that prenatalexposure to immuno-inflammatory stimulant results in increases of blood pressure and body weight in rats.

  7. Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age.

    Directory of Open Access Journals (Sweden)

    Adam J Watkins

    Full Text Available Human and animal studies have revealed a strong association between periconceptional environmental factors, such as poor maternal diet, and an increased propensity for cardiovascular and metabolic disease in adult offspring. Previously, we reported cardiovascular and physiological effects of maternal low protein diet (LPD fed during discrete periods of periconceptional development on 6-month-old mouse offspring. Here, we extend the analysis in 1 year aging offspring, evaluating mechanisms regulating growth and adiposity. Isocaloric LPD (9% casein or normal protein diet (18% casein; NPD was fed to female MF-1 mice either exclusively during oocyte maturation (for 3.5 days prior to mating; Egg-LPD, Egg-NPD, respectively, throughout gestation (LPD, NPD or exclusively during preimplantation development (for 3.5 days post mating; Emb-LPD. LPD and Emb-LPD female offspring were significantly lighter and heavier than NPD females respectively for up to 52 weeks. Egg-LPD, LPD and Emb-LPD offspring displayed significantly elevated systolic blood pressure at 52 weeks compared to respective controls (Egg-NPD, NPD. LPD females had significantly reduced inguinal and retroperitoneal fat pad: body weight ratios compared to NPD females. Expression of the insulin receptor (Insr and insulin-like growth factor I receptor (Igf1r in retroperitoneal fat was significantly elevated in Emb-LPD females (P<0.05, whilst Emb-LPD males displayed significantly decreased expression of the mitochondrial uncoupling protein 1 (Ucp1 gene compared to NPD offspring. LPD females displayed significantly increased expression of Ucp1 in interscapular brown adipose tissue when compared to NPD offspring. Our results demonstrate that aging offspring body weight, cardiovascular and adiposity homeostasis can be programmed by maternal periconceptional nutrition. These adverse outcomes further exemplify the criticality of dietary behaviour around the time of conception on long-term offspring

  8. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1.

    Directory of Open Access Journals (Sweden)

    You-Ying Chau

    2011-12-01

    Full Text Available There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1 suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2 highlight the differences between foetal and adult tissue regulation; 3 point to the importance of adult mesenchyme in tissue turnover.

  9. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    OpenAIRE

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize tha...

  10. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    Science.gov (United States)

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male miceJohn C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.1Reproductive Toxicology Division, National Health and Envir...

  11. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  12. Dysregulated transforming growth factor-beta in neonatal and adult autoimmune MRL-lpr mice.

    Science.gov (United States)

    Kreft, B; Yokoyama, H; Naito, T; Kelley, V R

    1996-08-01

    Transforming growth factor- beta (TGF- beta) is a cytokine that promotes inflammatory processes and prevents tissue injury. Autoimmune destruction of the kidney in MRL-lpr mice is spontaneous, rapid, fatal and consists of glomerular damage and an influx of lymphocytes surrounding vessels and in the interstitium. In MRL-lpr mice, cytokine dysregulation is apparent in neonates and continues throughout the life span. Circulating levels of tumour necrosis factor (TNF- alpha) and colony stimulating factor-1 (CSF-1) are detected in neonatal mice and progressively increase in proportion to the loss of renal function. We now report elevated intracellular expression of distinct isoforms of TGF- beta (TGF- beta 3, TGF- beta 2, and TGF- beta 1) detected immunohistochemically in MRL-lpr kidneys and other tissues including the liver and thymus. Enhanced TGF- beta 3 and TGF- beta 2 isoforms are detectable in neonatal mice within the renal tubular epithelial cells (TEC) and vascular smooth muscle cells (VSMC). In MRL-lpr mice 4-6 months of age, TGF- beta 2 and TGF- beta 1 are detected in TEC, VSMC, glomerular epithelial cells (GEC) and in perivascular infiltrating cells. By comparison, TGF- beta is minimally detectable in the normal kidneys of age and sex matched MRL(-)+2 or C3H/Fej mice. Paradoxically, in vitro cultured TEC and VSMC from MRL-lpr mice secrete less TGF- beta than TEC and VSMC isolated from MRL(-)+2 or C3H/FeJ mice. TNF- alpha, but not IL-6, CSF-1, or IFN- gamma stimulated the secretion of TGF- beta in TEC and VSMC. Our data demonstrate the dysregulation of TGF- beta isoforms in neonatal and adult MRL-lpr mice prior to and after the onset of autoimmune renal disease. We suggest that TNF- alpha and/or other molecules increase TGF- beta expression in MRL-lpr mice. We speculate that enhanced expression of TGF- beta promotes autoinmune renal injury in MRL-lpr mice.

  13. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Lucia Morgado-Palacin

    2015-10-01

    Full Text Available Diamond-Blackfan anemia (DBA is characterized by anemia and cancer susceptibility and is caused by mutations in ribosomal genes, including RPL11. Here, we report that Rpl11-heterozygous mouse embryos are not viable and that Rpl11 homozygous deletion in adult mice results in death within a few weeks, accompanied by bone marrow aplasia and intestinal atrophy. Importantly, Rpl11 heterozygous deletion in adult mice results in anemia associated with decreased erythroid progenitors and defective erythroid maturation. These defects are also present in mice transplanted with inducible heterozygous Rpl11 bone marrow and, therefore, are intrinsic to the hematopoietic system. Additionally, heterozygous Rpl11 mice present increased susceptibility to radiation-induced lymphomagenesis. In this regard, total or partial deletion of Rpl11 compromises p53 activation upon ribosomal stress or DNA damage in fibroblasts. Moreover, fibroblasts and hematopoietic tissues from heterozygous Rpl11 mice present higher basal cMYC levels. We conclude that Rpl11-deficient mice recapitulate DBA disorder, including cancer predisposition.

  14. Morphometric study of Schistosoma mansoni adult worms recovered from undernourished infected mice

    Directory of Open Access Journals (Sweden)

    Sheilla A Oliveira

    2003-07-01

    Full Text Available Some unfavourable effects of malnutrition of the host on Schistosoma mansoni worm biology and structure have been reported based upon brigthfield microscopy. This paper aims to study by morphometric techniques, some morphological parameters in male and female adult worms recovered from undernourished albino mice in comparison with parasites recovered from well-fed infected mice. Undernourished animals were fed a multideficient and essentially low protein diet (RBD diet and compared to well-fed control mice fed with the commercial diet NUVILAB. Seventy-five days post-infection with 80 cercarie (BL strain animals were sacrificed. All adult worms were fixed in 10% formalin and stained with carmine chloride. One hundred male and 60 female specimens from each group (undernourished and control were examined using an image system analysis Leica Quantimet 500C and the Sigma Scan Measurement System. The following morphometrical parameters were studied: body length and width, oral and ventral suckers, number and area of testicular lobes, length and width of ovary and uterine egg. For statistical analysis, the Student's t test for unpaired samples was applied. Significant differences (p < 0.05 were detected in body length and width, in parameters of suckers, uterine egg width, ovary length and area of testicular lobes, with lower values for specimens from undernourished mice. The nutritional status of the host has negative influence on S. mansoni adult worms, probably through unavailability of essential nutrients to the parasites.

  15. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    Science.gov (United States)

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  16. The effects of lactational maternal stress on neuronal behavior of adolescent offspring in mice%哺乳期母源应激对子代小鼠青春期神经行为的影响

    Institute of Scientific and Technical Information of China (English)

    尹希; 牛建; 史海水

    2013-01-01

    Objective To explore the effects of lactational maternal stress on neurobehavioral development of offsprings.Methods Maternal mice were divided into normal control,maternal deprivation and maternal stress group.A 5-min/day cold water swimming was used as maternal stress for continuously of 14 day since the 7th postnatal day.The increasing bodyweight and neurobehavior of adolescent offspring mice were assessed by forced swimming test,tail suspension test and locomotor activity in the 35th postnatal day.Results Maternal chronic stress in lactational stage significantly increased the vulnerability of offspring to acute stress,which was reflected by significantly increased immobility time of adolescent offspring in forced swimming test (female:(139±6) s,(138±9) s,(96±9) s respectively; male:(139±9) s,(112±9) s,(96±9) s respectively) and in tail suspension test (femal:(127±8) s,(123±8) s,(98±6) s respectively ; male:(141 ±7) s,(105±5) s,(92±6) s respectively).Meanwhile,sexual difference occurred for adolescent offspring to acute stress,and the female offspring were more vulnerable to acute stress.Conclusion Lactational maternal stress may be important factors for development of adolescent depression.Our findings highlight the area of early prevention and intervention for adolescent depression.%目的 探讨哺乳期母源应激对子代小鼠青春期神经行为发育的影响.方法 哺乳期母鼠随机分为应激组、分离组、对照组,小鼠出生7d后,应激组母鼠每天进行5 min的冷水游泳应激,持续14 d,采用强迫游泳、悬尾实验、自发活动等方法对子代小鼠青春期(35 d)体质量、神经行为进行评定.结果 哺乳期母源慢性应激显著增加青春期子代小鼠对应激的易感性,表现为对强迫游泳漂浮不动时间的显著增加[雌性:应激组、分离组和对照组分别为(139±6)s,(138±9)s和(96±9)s;雄性:3组分别为(139±9)s,(112±9)s和(96±9)s]和悬尾测试中小鼠不动时间

  17. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Directory of Open Access Journals (Sweden)

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  18. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Noelle [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University (Canada); Wong, Michael [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Holloway, Alison C. [Department of Obstetrics and Gynecology, McMaster University (Canada); Hardy, Daniel B., E-mail: Daniel.Hardy@schulich.uwo.ca [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Children' s Health Research Institute, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada)

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  19. The impact of parental educational trajectories on their adult offspring's overweight/obesity status: a study of three generations of Swedish men and women.

    Science.gov (United States)

    Chaparro, M P; Koupil, Ilona

    2014-11-01

    The objective of this study was to investigate the impact of grandparental and parental education and parental educational trajectory on their adult offspring's overweight/obesity. We used register data from the Uppsala Birth Cohort Multigenerational Study, based on a representative cohort born in Sweden 1915-1929 (G1). Our sample included 5122 women and 11,204 men who were grandchildren of G1 (G3), their parents (G2), and grandparents. G3's overweight/obesity (BMI≥25 kg/m2) was based on pre-pregnancy weight/height for women before their first birth (average age=26 years), and measured weight/height at conscription for men (average age=18 years). G1's, G2's, and G3's highest educational attainment was obtained from routine registers and classified as low, intermediate, or high based on respective sample distributions. Parental (G2) educational trajectory was defined as change in education between their own and their highest educated parent (G1), classified into 5 categories: always advantaged (AA), upward trajectory (UT), stable-intermediate (SI), downward trajectory (DT), and always disadvantaged (AD). We used hierarchical gender-stratified logistic regression models adjusted for G3's age, education, year of BMI collection, lineage and G2's year of birth and income. Grandparental and parental education were negatively associated with men's odds of overweight/obesity and parental education affected women's overweight/obesity risk. Furthermore, men and women whose parents belonged to the UT, SI, DT, and AD groups had greater odds of overweight/obesity compared to men and women whose parents belonged to the AA group (adjusted for G3's age, year of BMI collection, lineage, and G2's year of birth). These associations were attenuated when further adjusting for parental income and G3's own education. Socioeconomic inequalities can have long-term consequences and impact the health of future generations. For overweight/obesity in concurrent young cohorts, this inequality

  20. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  1. Fetal origins of adult vascular dysfunction in mice lacking endothelial nitric oxide synthase.

    Science.gov (United States)

    Longo, Monica; Jain, Venu; Vedernikov, Yuri P; Bukowski, Radek; Garfield, Robert E; Hankins, Gary D; Anderson, Garland D; Saade, George R

    2005-05-01

    Epidemiological studies have shown increased incidence of hypertension and coronary artery disease in growth-restricted fetuses during their adult life. A novel animal model was used to test the hypothesis regarding the role of an abnormal uterine environment in fetal programming of adult vascular dysfunction. Mice lacking a functional endothelial nitric oxide synthase (NOS3-/-KO, where KO is knockout) and wild-type (WT) mice (NOS3+/+WT) were crossbred to produce homozygous NOS3-/-KO, maternally derived heterozygous (NOS3+/-mat, mother with NOS3 deficiency), paternally derived heterozygous (NOS3+/-pat, normal mother), and NOS3+/+WT litters. Number of fetuses per litter was smaller in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Adult female mice from these litters (7-8 wk old) were killed, and ring preparations of carotid and mesenteric arteries were mounted in a wire myograph to evaluate the passive and reactive vascular characteristics. Slope of the length-tension plot (a measure of vascular compliance) was increased, and optimal diameter (as calculated by Laplace equation) was decreased in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Acetylcholine caused vasorelaxation in NOS3+/-pat and NOS3+/+WT and contraction in NOS3-/-KO and NOS3+/-mat mice. Responses to phenylephrine and Ca2+ were increased in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Relaxation to isoproterenol was decreased in NOS3-/-KO and NOS3+/-mat vs. NOS3+/-pat and NOS3+/+WT mice. Abnormalities in the passive and reactive in vitro vascular properties seen in NOS+/-mat that developed in a NOS3-deficient maternal/uterine environment compared with the genetically identical NOS3+/-pat mice that developed in a normal environment are the first direct evidence in support of a role for uterine environment in determining vascular function in later life.

  2. Reproductive and developmental outcomes, and influence on maternal and offspring tissue mineral concentrations, of (−-epicatechin, (+-catechin, and rutin ingestion prior to, and during pregnancy and lactation in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Mary N.R. Lesser

    2015-01-01

    Full Text Available Maternal nutrition can have a significant effect on developmental processes during pregnancy and lactation. While certain flavonoids have been postulated to be beneficial for health, little is known about the effects of ingestion during pregnancy and lactation on the mother and progeny. We report on the effects of maternal consumption of high levels of certain flavonoids on reproductive and developmental outcomes in a mouse model. C57BL/6J female mice were fed a control diet (CT, the CT diet supplemented with 1% or 2% of a mix of epicatechin and catechin (EC1, EC2, or rutin (RU1, RU2 prior to, during pregnancy, and lactation. A subset of dams was killed on gestation day (GD 18.5 to evaluate fetal outcomes and the remainder was allowed to deliver to evaluate offspring. Maternal food intake, body and tissue weight did not differ among groups. The number of resorptions, implantations, litter size, postnatal survival, body weight, and skeletal development were also similar. Alterations in maternal and offspring liver mineral concentrations were observed. The current results indicate that consumption of high amounts of epicatechin, catechin, and rutin during gestation and lactation is not associated with any marked developmental effects, although changes in liver mineral concentrations were noted.

  3. Schmallenberg virus infection of adult type I interferon receptor knock-out mice.

    Science.gov (United States)

    Wernike, Kerstin; Breithaupt, Angele; Keller, Markus; Hoffmann, Bernd; Beer, Martin; Eschbaumer, Michael

    2012-01-01

    Schmallenberg virus (SBV), a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR(-/-)) mice are a suitable small animal model for SBV. Twenty IFNAR(-/-) mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR(-/-) mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research.

  4. Schmallenberg virus infection of adult type I interferon receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Kerstin Wernike

    Full Text Available Schmallenberg virus (SBV, a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR(-/- mice are a suitable small animal model for SBV. Twenty IFNAR(-/- mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR(-/- mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research.

  5. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  6. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    Science.gov (United States)

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  7. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring

    Science.gov (United States)

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell…

  8. Adolescent mice, unlike adults, consume more alcohol in the presence of peers than alone.

    Science.gov (United States)

    Logue, Sheree; Chein, Jason; Gould, Thomas; Holliday, Erica; Steinberg, Laurence

    2014-01-01

    One hallmark of adolescent risk-taking is that it typically occurs when adolescents are with peers. It has been hypothesized that the presence of peers primes a reward-sensitive motivational state that overwhelms adolescents' immature capacity for inhibitory control. We examined this hypothesis using a rodent model. A sample of mice were raised in same-sex triads and were tested for alcohol consumption either as juveniles or as adults, with half in each age group tested alone and half tested with their cagemates. The presence of 'peers' increased alcohol consumption among adolescent mice, but not adults. The peer effect on human adolescent reward-seeking may reflect a hard-wired, evolutionarily conserved process through which the presence of agemates increases individuals' sensitivity to potential rewards in their immediate environment.

  9. How does long-term odor deprivation affect the olfactory capacity of adult mice?

    Directory of Open Access Journals (Sweden)

    Coppola David M

    2010-05-01

    Full Text Available Abstract Background Unilateral naris occlusion (UNO has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. However, despite the large corpus on the effects of this manipulation, dating back to the 19th century, little is known about its behavioral sequela. Here we report the results of standard olfactory habituation and discrimination studies on adult mice that had undergone perinatal UNO followed by adult contralateral olfactory bulbectomy (bulb-x. Methods The olfactory performance of UNO mice was compared to matched controls that had unilateral bulb-x but open nares. Both habituation and discrimination (operant experiments employed a protocol in which after successful dishabituation or discrimination to dilute individual odors (A = 0.01% isoamyl acetate; B = 0.01% ethyl butyrate; each v/v in mineral oil, mice were challenged with a single odor versus a mixture comparison (A vs. A + B. In a series of tests the volume portion of Odor B in the mixture was systematically decreased until dishabituation or discrimination thresholds were reached. Results For the habituation experiment, UNOs (n = 10 and controls (n = 9 dishabituated to a 10% mixture of Odor B in Odor A after being habituated to A alone, while both groups failed to show differential responding to a 2% mixture of B in A. However, the UNO group's increased investigation durations for the 2% mixture approached significance (p Conclusions Adult mice relying on an olfactory system deprived of odor by naris occlusion from near the time of birth display enhanced olfactory capacity compared to control mice. This counterintuitive result suggests that UNO is neither an absolute method of deprivation nor does it diminish olfactory capabilities. Enhanced olfactory capacity, as observed in the current study, that is a consequence of deprivation, is consistent with recent molecular and physiological evidence that stimulus deprivation triggers

  10. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  11. Theory of hantavirus infection spread incorporating localized adult and itinerant juvenile mice

    Science.gov (United States)

    Kenkre, V. M.; Giuggioli, L.; Abramson, G.; Camelo-Neto, G.

    2007-02-01

    A generalized model of the spread of the Hantavirus in mice populations is presented on the basis of recent observational findings concerning the movement characteristics of the mice that carry the infection. The factual information behind the generalization is based on mark-recapture observations reported in Giuggioli et al. [Bull. Math. Biol. 67, 1135 (2005)] that have necessitated the introduction of home ranges in the simple model of Hantavirus spread presented by Abramson and Kenkre [Phys. Rev. E 66, 11912 (2002)]. The essential feature of the model presented here is the existence of adult mice that remain largely confined to locations near their home ranges, and itinerant juvenile mice that are not so confined, and, during their search for their own homes, move and infect both other juveniles and adults that they meet during their movement. The model is presented at three levels of description: mean field, kinetic and configuration. Results of calculations are shown explicitly from the mean field equations and the simulation rules, and are found to agree in some respects and to differ in others. The origin of the differences is shown to lie in spatial correlations. It is indicated how mark-recapture observations in the field may be employed to verify the applicability of the theory.

  12. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice.

    Science.gov (United States)

    Sauter, Kristin A; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J; Beard, Philippa M; Mabbott, Neil A; Smith, Lee B; Hume, David A

    2014-08-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development.

  13. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Science.gov (United States)

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  14. Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice

    Science.gov (United States)

    Schuster, Andrea C.; Carl, Teresa; Foerster, Katharina

    2017-04-01

    Knowledge on animal personality has provided new insights into evolutionary biology and animal ecology, as behavioural types have been shown to affect fitness. Animal personality is characterized by repeatable and consistent between-individual behavioural differences throughout time and across different situations. Behavioural repeatability within life history stages and consistency between life history stages should be checked for the independence of sex and age, as recent data have shown that males and females in some species may differ in the repeatability of behavioural traits, as well as in their consistency. We measured the repeatability and consistency of three behavioural and one cognitive traits in juvenile and adult Eurasian harvest mice ( Micromys minutus). We found that exploration, activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before and after maturation, as well as before and after first sexual contact. Data on spatial recognition provided little evidence for consistency. Further, we found some evidence for a litter effect on behaviours by comparing different linear mixed models. We concluded that harvest mice express animal personality traits as behaviours were repeatable across sexes and consistent across life history stages. The tested cognitive trait showed low repeatability and was less consistent across life history stages. Given the rising interest in individual variation in cognitive performance, and in its relationship to animal personality, we suggest that it is important to gather more data on the repeatability and consistency of cognitive traits.

  15. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.

  16. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring.

    Directory of Open Access Journals (Sweden)

    Julia A Sabet

    Full Text Available The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well.In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content.Male Apc1638N mice (prone to intestinal tumor formation were fed diets containing replete (control, CTRL, mildly deficient (DEF, or supplemental (SUPP quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden.No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring.In this animal model, modulation of paternal B vitamin intake prior to mating

  17. Risk of emotional disorder in offspring of depressed parents: Gender differences in the effect of a second emotionally affected parent

    NARCIS (Netherlands)

    Landman-Peeters, K.M.C.; Ormel, J.; Van Sonderen, E.L.P.; Den Boer, J.A.; Minderaa, R.B.; Hartman, C.A.

    2008-01-01

    In offspring of depressed parents a second parent with emotional problems is likely to increase risk of emotional disorder. This effect may however differ between sons and daughters and between offspring of depressed fathers and offspring of depressed mothers. In adolescent and young-adult offspring

  18. Risk of emotional disorder in offspring of depressed parents : Gender differences in the effect of a second emotionally affected parent

    NARCIS (Netherlands)

    Landman-Peeters, K.M.; Ormel, J.; van Sonderen, E.L.; den Boer, J.A.; Minderaa, R.B.; Hartman, C.A.

    2008-01-01

    In offspring of depressed parents a second parent with emotional problems is likely to increase risk of emotional disorder. This effect may however differ between sons and daughters and between offspring of depressed fathers and offspring of depressed mothers. In adolescent and young-adult offspring

  19. Loss of AND-34/BCAR3 expression in mice results in rupture of the adult lens

    Science.gov (United States)

    Near, Richard I.; Smith, Richard S.; Toselli, Paul A.; Freddo, Thomas F.; Bloom, Alexander B.; Vanden Borre, Pierre; Seldin, David C.

    2009-01-01

    Purpose AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. Methods AND-34−/− mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. Results Western analyses confirmed total loss of expression in AND-34−/− splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34−/− mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34−/− mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34−/− mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34+/+ lens epithelial cells, it was markedly reduced in the AND-34−/− lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34+/+ than in AND-34−/− lens epithelium. Conclusions These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens. PMID:19365570

  20. Morphological and behavioral characterization of adult mice deficient for SrGAP3.

    Science.gov (United States)

    Bertram, Jonathan; Koschützke, Leif; Pfannmöller, Jörg P; Esche, Jennifer; van Diepen, Laura; Kuss, Andreas W; Hartmann, Bianca; Bartsch, Dusan; Lotze, Martin; von Bohlen Und Halbach, Oliver

    2016-10-01

    SrGAP3 belongs to the family of Rho GTPase proteins. These proteins are thought to play essential roles in development and in the plasticity of the nervous system. SrGAP3-deficient mice have recently been created and approximately 10 % of these mice developed a hydrocephalus and died shortly after birth. The others survived into adulthood, but displayed neuroanatomical alteration, including increased ventricular size. We now show that SrGAP3-deficient mice display increased brain weight together with increased hippocampal volume. This increase was accompanied by an increase of the thickness of the stratum oriens of area CA1 as well as of the thickness of the molecular layer of the dentate gyrus (DG). Concerning hippocampal adult neurogenesis, we observed no significant change in the number of proliferating cells. The density of doublecortin-positive cells also did not vary between SrGAP3-deficient mice and controls. By analyzing Golgi-impregnated material, we found that, in SrGAP3-deficient mice, the morphology and number of dendritic spines was not altered in the DG. Likewise, a Sholl-analysis revealed no significant changes concerning dendritic complexity as compared to controls. Despite the distinct morphological alterations in the hippocampus, SrGAP3-deficient mice were relatively inconspicuous in their behavior, not only in the open-field, nest building but also in the Morris water-maze. However, the SrGAP3-deficient mice showed little to no interest in burying marbles; a behavior that is seen in some animal models related to autism, supporting the view that SrGAP3 plays a role in neurodevelopmental disorders.

  1. Excretory/secretory products from Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    Full Text Available BACKGROUND: Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. METHODS AND FINDINGS: Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN, and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17 in the spleens, MLN and colon of treated mice. CONCLUSIONS: Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.

  2. Oestradiol Exposure Early in Life Programs Daily and Circadian Activity Rhythms in Adult Mice.

    Science.gov (United States)

    Royston, S E; Bunick, D; Mahoney, M M

    2016-01-01

    Hormone signalling during critical periods organises the adult circadian timekeeping system by altering adult hormone sensitivity and shaping fundamental properties of circadian rhythmicity. However, the timing of when developmental oestrogens modify the timekeeping system is poorly understood. To test the hypothesis that alterations in postnatal oestrogenic signalling organise adult daily activity rhythms, we utilised aromatase knockout mice (ArKO), which lack the enzyme required for oestradiol synthesis. ArKO and wild-type (WT) males and females were administered either oestradiol (E) or oil (OIL) daily for the first 5 postnatal days (p1-5E and p1-5OIL , respectively) because this time encompasses the emergence of clock gene rhythmicity and light responsiveness in the suprachiasmatic nucleus, a bilateral hypothalamic structure regarded as the 'master oscillator'. After sexual maturation, gonadectomy and exogenous oestradiol supplementation, locomotor parameters were assessed. We determined that altered oestrogenic signalling in early life exerts organisational control over the expression of daily and circadian activity rhythms in adult mice. Specifically, p1-5E reduced total wheel running activity in male and female ArKO and female WT mice but had no effect on WT male activity levels. In females, wheel running was consolidated by p1-5E to the early versus late evening, a phenomenon characteristic of male mice. The time of peak activity was advanced by p1-5E in WT and ArKO females but not males. P1-5E shortened the length of the active phase (alpha) in WT males but had no effect on ArKO males or females of either genotypes. Finally, p1-5E altered the magnitude of photic-induced shifts, suggesting that developmental oestrogenic signalling impacts adult circadian functions. In the present study, we further define both a critical period of development of the adult timekeeping system and the role that oestrogenic signalling plays in the expression of daily and

  3. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice.

    Science.gov (United States)

    Holloway, Benjamin B; Viar, Kenneth E; Stornetta, Ruth L; Guyenet, Patrice G

    2015-09-01

    The retrotrapezoid nucleus (RTN) is a bilateral cluster of neurons located at the ventral surface of the brainstem below the facial nucleus. The RTN is activated by hypercapnia and stabilises arterial Pco2 by adjusting lung ventilation in a feedback manner. RTN neurons contain vesicular glutamate transporter-2 (Vglut2) transcripts (Slc17a6), and their synaptic boutons are Vglut2-immunoreactive. Here, we used optogenetics to test whether the RTN increases ventilation in conscious adult mice by releasing glutamate. Neurons located below the facial motor nucleus were transduced unilaterally to express channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein, with lentiviral vectors that employ the Phox2b-activated artificial promoter PRSx8. The targeted population consisted of two types of Phox2b-expressing neuron: non-catecholaminergic neurons (putative RTN chemoreceptors) and catecholaminergic (C1) neurons. Opto-activation of a mix of ChR2-expressing RTN and C1 neurons produced a powerful stimulus frequency-dependent (5-15 Hz) stimulation of breathing in control conscious mice. Respiratory stimulation was comparable in mice in which dopamine-β-hydroxylase (DβH)-positive neurons no longer expressed Vglut2 (DβH(C) (re/0);;Vglut2(fl/fl)). In a third group of mice, i.e. DβH(+/+);;Vglut2(fl/fl) mice, we injected a mixture of PRSx8-Cre lentiviral vector and Cre-dependent ChR2 adeno-associated virus 2 unilaterally into the RTN; this procedure deleted Vglut2 from ChR2-expressing neurons regardless of whether or not they were catecholaminergic. The ventilatory response elicited by photostimulation of ChR2-positive neurons was almost completely absent in these mice. Resting ventilatory parameters were identical in the three groups of mice, and their brains contained similar numbers of ChR2-positive catecholaminergic and non-catecholaminergic neurons. From these results, we conclude that RTN neurons increase breathing in conscious adult mice by releasing glutamate.

  4. Glutamate neurotransmission is affected in prenatally stressed offspring

    DEFF Research Database (Denmark)

    Adrover, Ezequiela; Pallarés, Maria Eugenia; Baier, Carlos Javier

    2015-01-01

    Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization with syn...

  5. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    Science.gov (United States)

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-04

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  6. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  7. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  8. Effect of low-dose fenvalerate on semen quality capacitation in adult mice

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-dan; BI Huan-jing; FU He-ling; LI Liang-yun; LIU De-kang; LI Jian-min

    2011-01-01

    Background Fenvalerate (FEN) has been demonstrated to be a reproductive toxicant in humans and rodents. However,little is known about whether short-term exposure to low-dose FEN produces reproductive toxicity.Methods We administered FEN (0.009 375, 0.1875, 3.750, or 45.00 mg·kg-1d-1 by gavage for 30 days) to male ICR mice and compared reproductive toxicity parameters between groups receiving different concentrations of FEN.Reproductive toxicity was evaluated by computer-assisted semen quality analysis (CASA), chlortetracycline (CTC) assay,and histopathology.Results The sperm morphology and testis histology of FEN-exposed mice (all doses) were similar to that in controlling mice. Exposure to FEN at a concentration of 0.1875 mg·kg-1d-1 decreased sperm path straightness (STR) and linearity (LIN) (both P< 0.05), but had no significant impact on average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), lateral amplitude (ALH), beat cross frequency (BCF), or progressive motility (MOT). FEN reduced the rate of mouse sperm capacitation in a dose-dependent manner.Conclusion The present results demonstrate that exposure to low-dose FEN for 30 days reduces semen quality and sperm capacitation in adult mice.

  9. Osthole Upregulates BDNF to Enhance Adult Hippocampal Neurogenesis in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Liu, Hong; Xue, Xinhong; Shi, Huijian; Qi, Lifeng; Gong, Dianrong

    2015-01-01

    Adult hippocampal neurogenesis occurs in the dentate gyrus (DG) of the mouse hippocampus, and plays roles in learning and memory progresses. In amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, a rodent model of Alzheimer's disease (AD), severe impairment of neurogenesis in the dentate subgranular zone (SGZ) of the DG has been reported. Osthole, an active constituent of Cnidium monnieri (L.) CUSSON, has been reported to exert neuroprotective effects and may promote neural stem cell proliferation. However, whether osthole ameliorates spatial memory deficits and improves hippocampal neurogenesis in APP/PS1 mice remains unknown. In this study we found that osthole (30 mg/kg intraperitoneally (i.p.) once daily) treatment dramatically ameliorated the cognitive impairments by Morris Water Maze test and passive avoidance test, and augmented neurogenesis in the DG of hippocampus in APP/PS1 mice. Furthermore, osthole treatment upregulated expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of the BDNF receptor tyrosine receptor kinase B (TrkB) following increased phosphorylation of cyclic AMP response element-binding protein (CREB), indicating that osthole improves neurogenesis via stimulating BDNF/TrkB/CREB signaling in APP/PS1 transgenic mice.

  10. Effect of Tamoxifen on Seminiferous Tubules Structure during Pregnancy in Adult Mice

    Directory of Open Access Journals (Sweden)

    J Soleimani Rad

    2016-03-01

    Full Text Available Introduction: Tamoxifen is a nonsteroidal drug which mainly treats breast cancer. It is also applied for stimulation of ovulation and remedy of infertility. Regarding the tamoxifen binding to estrogen receptors and the possible role of estrogens in spermatogenesis, the present study aimed to histologically evaluate spermatogenesis in the seminiferous ducts of mice, whose mothers had received tamoxifen during pregnancy. Methods: In the present study, 30 female and 15 male mice of NMRI race were selected for mating. Since 13th day of pregnancy, the experimental group received tamoxifen with the dosage of 5 mg/kg intra-peritoneally for 7 days, wherease the control group received normal saline. After childbirth of the mated mice, male infants were selected and monitored in the standard laboratory conditions. After reaching the age of puberty (6-8Weeks, adult mice were sacrificed by the cervical dislocation, and the testes were removed for histological evaluation of spermatogenesis. After routine histological processing, the samples were studied by the light microscope. Results: Histological studies showed that spermatogenic and Sertoli cells in the seminiferous tubules in control and experimental groups were significantly different, though no difference was observed in the number of Leydig cells in the both groups. Conclusion: The findings of the present study showed that tamoxifen exposure during development can cause histological changes in the seminiferous tubules, which can lead to infertility in the male rat.

  11. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    Science.gov (United States)

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings.

  12. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Directory of Open Access Journals (Sweden)

    Chen Tao

    2009-12-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i regular spiking (RS cells (24.7%, intrinsic bursting (IB cells (30.9%, and intermediate (IM cells (44.4%. In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5% and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.

  13. Development of the adult neurogenic niche in the hippocampus of mice

    Directory of Open Access Journals (Sweden)

    Zeina eNicola

    2015-05-01

    Full Text Available When does adult hippocampal neurogenesis begin? We describe the development of the neurogenic niche in the subgranular zone (SGZ of the hippocampal dentate gyrus. We did so from the perspective of the situation in the adult.Ontogeny of the dentate gyrus is complex and results in an ectopic neurogenic niche that lifelong generates new granule cells. Neurogenesis during the fetal and early postnatal periods builds the dentate gyrus and gives way to activity-dependent adult neurogenesis. We used markers most relevant to adult neurogenesis research to describe this transition: Nestin, Sox2, BLBP, GFAP, Tbr2, Doublecortin (DCX, NeuroD1 and Prox1. We found that massive changes and a local condensation of proliferating precursor cells occurs between postnatal day 7 (P7, near the peak in proliferation, and P14. Before and around P7, the spatial distribution of cells and the co-localization of markers were distinct from the situation in the adult. Unlike the adult SGZ, the marker pair Nestin/Sox2 and the radial glial marker BLBP were not overlapping during embryonic development, presumably indicating different types of radial glia-like cells. Before P7 GFAP-positive cells in the hilus lacked the radial orientation that is characteristic of the adult type-1 cells. DCX, which is concentrated in type-2b and type-3 progenitor cells and early postmitotic neurons in the adult, showed diffuse expression before P7. Intermediate progenitor cell marker Tbr2 became restricted to the SGZ but was found in the granule cell layer and hilus before. Lineage markers NeuroD1 and Prox1 confirmed this pattern.We conclude that the neurogenic niche of adult neurogenesis is in place well before true adulthood. This might indicate that consistent with the hypothesized function of adult neurogenesis in activity-dependent plasticity, the early transition from postnatal neurogenesis to adult neurogenesis coincides with the time, when the young mice start to become active themselves.

  14. p27kip1 Is Required for Functionally Relevant Adult Hippocampal Neurogenesis in Mice.

    Science.gov (United States)

    Hörster, Henrik; Garthe, Alexander; Walker, Tara L; Ichwan, Muhammad; Steiner, Barbara; Khan, Muhammad Amir; Lie, Dieter Chichung; Nicola, Zeina; Ramirez-Rodriguez, Gerardo; Kempermann, Gerd

    2017-03-01

    We asked whether cell-cycle associated protein p27kip1 might be involved in the transition of precursor cells to postmitotic maturation in adult hippocampal neurogenesis. p27kip1 was expressed throughout the dentate gyrus with a strong nuclear expression in early postmitotic, calretinin-positive neurons and neuronally determined progenitor cells (type-3 and some type-2b), lower or absent expression in radial glia-like precursor cells (type-1) and type-2a cells and essentially no expression in granule cells. This suggested a transitory role in late proliferative and early postmitotic phases of neurogenesis. Inconsistent with a role limited to cell cycle arrest the acute stimuli, voluntary wheel running (RUN), environmental enrichment (ENR) and kainate-induced seizures increased p27kip1 expressing cells. Sequential short-term combination of RUN and ENR yielded more p27kip1 cells than either stimulus alone, indicating an additive effect. In vitro, p27kip1 was lowly expressed by proliferating precursor cells but increased upon differentiation. In p27kip1-/- mice neurogenesis was reduced in vivo, whereas the number of proliferating cells was increased. Accordingly, the microdissected dentate gyrus of p27kip1-/- mice generated more colonies in the neurosphere assay and an increased number of larger spheres with the differentiation potential unchanged. In p27kip1-/- monolayer cultures, proliferation was increased and cell cycle genes were upregulated. In the Morris water maze p27kip1-/- mice learned the task but were specifically impaired in the reversal phase explainable by the decrease in adult neurogenesis. We conclude that p27kip1 is involved in the decisive step around cell-cycle exit and plays an important role in activity-regulated and functionally relevant adult hippocampal neurogenesis. Stem Cells 2017;35:787-799.

  15. Face-Emotion Processing in Offspring at Risk for Panic Disorder.

    Science.gov (United States)

    Pine, Daniel S.; Klein, Rachel G.; Mannuzza, Salvatore; Moulton, John L., III; Lissek, Shmuel; Guardino, Mary; Woldehawariat, Girma

    2005-01-01

    Objective: Panic disorder (PD) has been linked to perturbed processing of threats. This study tested the hypotheses that offspring of parents with PD and offspring with anxiety disorders display relatively greater sensitivity and attention allocation to fear provocation. Method: Offspring of adults with PD, major depressive disorder (MDD), or no…

  16. Food restriction increases long- term memory persistence in adult or aged mice

    OpenAIRE

    Talhati, Fernanda [UNIFESP; Patti, Camila de Lima [UNIFESP; Zanin, Karina Agustini [UNIFESP; Lopes-Silva, Leonardo Brito [UNIFESP; Ceccon, Liliane Minglini Barbosa [UNIFESP; Hollais, André Willian [UNIFESP; Bizerra, Carolina Souza [UNIFESP; Santos, Renan [UNIFESP; Tufik, Sergio; Frussa-Filho, Roberto

    2014-01-01

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12 h) or repeated (12 h/day for 2 days) FR pro...

  17. Distinct effects of chronic dopaminergic stimulation on hippocampal neurogenesis and striatal doublecortin expression in adult mice

    Directory of Open Access Journals (Sweden)

    Rachele eSalvi

    2016-03-01

    Full Text Available While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG and the subventricular zone (SVZ, recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g. the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX and Ropinirole (ROP, on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2'-deoxyuridine (BrdU a proliferation paradigm was performed in which two BrdU injections (100 mg/kg were applied intraperitoneally within 12 hours after a 14-day-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and NeuN 32 days after the last of five BrdU injections (50 mg/kg applied at the beginning of 14-day DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active and

  18. Learning deficits and suppression of the cell proliferation in the hippocampal dentate gyrus of offspring are attenuated by maternal chewing during prenatal stress.

    Science.gov (United States)

    Onishi, Mika; Iinuma, Mitsuo; Tamura, Yasuo; Kubo, Kin-Ya

    2014-02-07

    Prenatal stress in dams induces learning deficits and suppresses neurogenesis in the hippocampal dentate gyrus (DG) of offspring via increasing corticosterone levels in the dam. Chewing under stressful conditions prevents stress-induced behavioral impairments and morphologic changes. Here, we examined whether chewing during prenatal stress prevents the stress-induced learning deficits and the suppression of cell proliferation in the hippocampal DG in adult offspring. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Half of the dams were given a wooden stick to chew on during restraint. The pups were raised to adulthood, and learning ability and cell proliferation in the hippocampal DG were assessed. In dams, chewing during prenatal stress attenuated the stress-induced increase in plasma corticosterone levels. In the adult offspring, prenatal stress impaired learning and decreased cell proliferation in the DG, whereas maternal chewing during prenatal stress significantly attenuated the prenatal stress-induced learning deficits and decreased cell proliferation in the DG in their offspring. These findings suggest that maternal chewing during prenatal stress is an effective stress-coping method for the dam to prevent learning deficits and suppression of cell proliferation in offspring.

  19. Maternal protein restriction induces alterations in hepatic tumor necrosis factor-α/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Tian, Baoling; Chen, Dong; Gao, Hong; Xi, Chunyan; Xing, Yanlin; Yuan, Zhengwei

    2014-07-01

    It is well recognized that adverse events in utero impair fetal development and lead to the development of obesity and metabolic syndrome in adulthood. To investigate the mechanisms linking impaired fetal growth to increased cholesterol, an important clinical risk factor characterizing the metabolic syndrome and cardiovascular disease, we examined the impact of maternal undernutrition on tumor necrosis factor-α (TNF-α)/c-jun N-terminal kinase (JNK) signaling pathway and the cholesterol 7α-hydroxylase (CYP7A1) expression in the livers of the offspring with a protein restriction model. The male offspring with intrauterine growth restriction (IUGR) caused by the isocaloric low-protein diet showed decreased liver weight at birth and augmented circulation and hepatic cholesterol levels at 40 weeks of age. Maternal undernutrition significantly upregulated cytokine TNF-α expression and JNK phospholytion levels in the livers from fetal age to adulthood. Elevated JNK phospholytion could be linked to downregulated hepatocyte nuclear factor-4α and CYP7A1 expression, subsequently led to higher hepatic cholesterol. This work demonstrated that intrauterine malnutrition-induced IUGR might result in intrinsic disorder in hepatic TNF-α/CYP7A1 signaling, and contribute to the development of hypercholesterolemia in later life.

  20. Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice.

    Science.gov (United States)

    Kikuta, Shu; Sakamoto, Takashi; Nagayama, Shin; Kanaya, Kaori; Kinoshita, Makoto; Kondo, Kenji; Tsunoda, Koichi; Mori, Kensaku; Yamasoba, Tatsuya

    2015-02-11

    Although it is well known that injury induces the generation of a substantial number of new olfactory sensory neurons (OSNs) in the adult olfactory epithelium (OE), it is not well understood whether olfactory sensory input influences the survival and maturation of these injury-induced OSNs in adults. Here, we investigated whether olfactory sensory deprivation affected the dynamic incorporation of newly generated OSNs 3, 7, 14, and 28 d after injury in adult mice. Mice were unilaterally deprived of olfactory sensory input by inserting a silicone tube into their nostrils. Methimazole, an olfactotoxic drug, was also injected intraperitoneally to bilaterally ablate OSNs. The OE was restored to its preinjury condition with new OSNs by day 28. No significant differences in the numbers of olfactory marker protein-positive mature OSNs or apoptotic OSNs were observed between the deprived and nondeprived sides 0-7 d after injury. However, between days 7 and 28, the sensory-deprived side showed markedly fewer OSNs and mature OSNs, but more apoptotic OSNs, than the nondeprived side. Intrinsic functional imaging of the dorsal surface of the olfactory bulb at day 28 revealed that responses to odor stimulation were weaker in the deprived side compared with those in the nondeprived side. Furthermore, prevention of cell death in new neurons 7-14 d after injury promoted the recovery of the OE. These results indicate that, in the adult OE, sensory deprivation disrupts compensatory OSN regeneration after injury and that newly generated OSNs have a critical time window for sensory-input-dependent survival 7-14 d after injury.

  1. Ischemia Induces Release of Endogenous Amino Acids from the Cerebral Cortex and Cerebellum of Developing and Adult Mice

    Directory of Open Access Journals (Sweden)

    Simo S. Oja

    2013-01-01

    Full Text Available Ischemia enhanced release of endogenous neuroactive amino acids from cerebellar and cerebral cortical slices. More glutamate was released in adult than developing mice. Taurine release enhanced by K+ stimulation and ischemia was more than one magnitude greater than that of GABA or glutamate in the developing cerebral cortex and cerebellum, while in adults the releases were almost comparable. Aspartate release was prominently enhanced by both ischemia and K+ stimulation in the adult cerebral cortex. In the cerebellum K+ stimulation and ischemia evoked almost 10-fold greater GABA release in 3-month olds than in 7-day olds. The release of taurine increased severalfold in the cerebellum of 7-day-old mice in high-K+ media, whereas the K+-evoked effect was rather small in adults. In 3-month-old mice no effects of K+ stimulation or ischemia were seen in the release of aspartate, glycine, glutamine, alanine, serine, or threonine. The releases from the cerebral cortex and cerebellum were markedly different and also differed between developing and adult mice. In developing mice only the release of inhibitory taurine may be large enough to counteract the harmful effects of excitatory amino acids in ischemia in both cerebral cortex and cerebellum, in particular since at that age the release of glutamate and aspartate cannot be described as massive.

  2. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis.

    Science.gov (United States)

    Garthe, Alexander; Roeder, Ingo; Kempermann, Gerd

    2016-02-01

    We here show that living in a stimulus-rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss-of-function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals' behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro-neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end-point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences.

  3. Lgr5⁺ amacrine cells possess regenerative potential in the retina of adult mice.

    Science.gov (United States)

    Chen, Mengfei; Tian, Shenghe; Glasgow, Nathan G; Gibson, Gregory; Yang, Xiaoling; Shiber, Christen E; Funderburgh, James; Watkins, Simon; Johnson, Jon W; Schuman, Joel S; Liu, Hongjun

    2015-08-01

    Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5(+) cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5(+) amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5(+) amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5(+) amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age-related retinal degenerative diseases.

  4. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice.

    Science.gov (United States)

    Majidi, Jafar; Kosari-Nasab, Morteza; Salari, Ali-Akbar

    2016-01-01

    Neonatal infection is associated with increased lifetime risk for neuropsychiatric disorders including anxiety and depression, with evidence showing that dysregulation of the hypothalamic-pituitary-adrenal-(HPA)-axis system may be partly responsible. Preclinical and clinical studies demonstrate that minocycline exhibits antidepressant effects through inhibition of microglial activation and anti-inflammatory actions, and of interest is that recent studies suggest that minocycline alleviates the behavioral abnormalities induced by early-life insults. The current study was designed to determine if developmental minocycline treatment attenuates the neonatal immune activation-induced anxiety- and depression-like symptoms and HPA-axis-dysregulation later in life. To this end, neonatal mice were treated to either lipopolysaccharide or saline on postnatal days (PND) 3-5, then dams during lactation (PND 6-20) and male offspring during adolescence (PND 21-40) received oral administration of minocycline or water via regular drinking bottles. Anxiety- and depression-like behaviors, HPA-axis-reactivity (corticosterone), and hippocampal inflammation (TNF-α and IL-1β) after exposure to stress were evaluated. The results indicated that neonatal immune activation resulted in increased anxiety and depression-like symptoms, HPA-axis-hyperactivity, and elevated the levels of TNF-α and IL-1β in the hippocampus in response to stress in adulthood. Interestingly, developmental minocycline treatment significantly reduced the abnormalities induced by neonatal inflammation in adult mice. In addition, minocycline, regardless of postnatal inflammation, did not have any detrimental effects on the above measured parameters. Considering that minocycline is currently under exploration as an alternative or adjunctive therapy for reducing the symptoms of neurological disorders, our findings suggest that minocycline during development can decrease the behavioral abnormalities induced by early

  5. Effect of maternal dietary cow’s milk on the immune response to beta-lactoglobulin in the offspring: A four generation study in mice

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Christensen, Hanne Risager; Barkholt, Vibeke;

    2005-01-01

    generations may be necessary to obtain immunologically naive animals. METHODS: To determine the most appropriate breeding conditions of mice to be used in immunological studies on food proteins, we examined immune responses towards beta-lactoglobulin (BLG) in mice bred on a milk-containing diet (F0......Evaluation of immune responses to food proteins in animal models requires that the animals are not already sensitized or orally tolerized against the proteins in question. Since maternal transfer of specific immune responses has been observed, breeding of animals on an antigen-free diet for several...... appropriate for immunological studies of food proteins. Although the small quantity of BLG in the milk-free diet did not induce detectable oral tolerance in the present study, it is strongly recommended that the potential effect of contaminating dietary antigen is considered in future studies on food proteins...

  6. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2015-09-01

    Full Text Available The data provides information in support of the research article, “Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging”, Journal of Proteome Research, 2014, 13 (11, 2008–21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys containing peptides was alkylated using N-ethylmalemide (d0-NEM. Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethylphosphine (TCEP and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM. Label-free analysis of the global proteome of adult (n=5 and old (n=4 gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0 NEM labeled and reversibly oxidized d(5–NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response.

  7. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells.

  8. Mode of delivery and offspring body mass index, overweight and obesity in adult life: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Karthik Darmasseelane

    Full Text Available BACKGROUND: It has been suggested that mode of delivery, a potentially powerful influence upon long-term health, may affect later life body mass index (BMI. We conducted a systematic review and meta-analysis of the effect of Caesarean section (CS and vaginal delivery (VD on offspring BMI, overweight (BMI>25 and obesity (BMI>30 in adulthood. Secondary outcomes were subgroup analyses by gender and type of CS (in-labour/emergency, pre-labour/elective. METHODS: Using a predefined search strategy, Pubmed, Google Scholar and Web of Science were searched for any article published before 31(st March 2012, along with references of any studies deemed relevant. Studies were selected if they reported birth characteristics and long-term offspring follow-up into adulthood. Aggregate data from relevant studies were extracted onto a pre-piloted data table. A random-effects meta-analysis was carried out in RevMan5. Results are illustrated using forest plots and funnel plots, and presented as mean differences or odds ratios (OR and 95% confidence intervals. RESULTS: Thirty-five studies were identified through the search, and 15 studies with a combined population of 163,796 [corrected] were suitable for inclusion in the meta-analysis. Comparing all CS to VD in pooled-gender unadjusted analyses, mean BMI difference was 0·44 kg·m(-2 (0·17, 0·72; p = 0·002, OR for incidence of overweight was 1·26 (1·16, 1·38; p<0·00001 and OR for incidence of obesity was 1·22 (1·05, 1·42; p = 0·01. Heterogeneity was low in all primary analyses. Similar results were found in gender-specific subgroup analyses. Subgroup analyses comparing type of CS to VD showed no significant impact on any outcome. CONCLUSIONS: There is a strong association between CS and increased offspring BMI, overweight and obesity in adulthood. Given the rising CS rate worldwide there is a need to determine whether this is causal, or reflective of confounding influences. SYSTEMATIC REVIEW

  9. Physical Exercise Preserves Adult Visual Plasticity in Mice and Restores it after a Stroke in the Somatosensory Cortex

    Science.gov (United States)

    Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Hüppe, Janika M.; Löwel, Siegrid

    2016-01-01

    The primary visual cortex (V1) is widely used to study brain plasticity, which is not only crucial for normal brain function, such as learning and memory, but also for recovery after brain injuries such as stroke. In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in V1 declines with age and is compromised by a lesion in adjacent and distant cortical regions. In contrast, mice raised in an enriched environment (EE), exhibit lifelong OD plasticity and are protected from losing OD plasticity after a stroke-lesion in the somatosensory cortex. Since SC mice with an access to a running wheel (RW) displayed preserved OD plasticity during aging, we investigated whether physical exercise might also provide a plasticity promoting effect after a cortical stroke. To this end, we tested if adult RW-raised mice preserved OD plasticity after stroke and also if short-term running after stroke restored OD plasticity to SC mice. Indeed, unlike mice without a RW, adult RW mice continued to show OD plasticity even after stroke, and a 2 weeks RW experience after stroke already restored lost OD plasticity. Additionally, the experience-enabled increase of the spatial frequency and contrast threshold of the optomotor reflex of the open eye, normally lost after a stroke, was restored in both groups of RW mice. Our data suggest that physical exercise alone can not only preserve visual plasticity into old age, but also restore it after a cortical stroke. PMID:27708575

  10. An animal model of adult T-cell leukemia: humanized mice with HTLV-1-specific immunity.

    Science.gov (United States)

    Tezuka, Kenta; Xun, Runze; Tei, Mami; Ueno, Takaharu; Tanaka, Masakazu; Takenouchi, Norihiro; Fujisawa, Jun-ichi

    2014-01-16

    Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate ATL pathogenesis in vivo, a variety of animal models have been established; however, the mechanisms driving this disorder remain poorly understood due to deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected humanized mouse model generated by intra-bone marrow injection of human CD133(+) stem cells into NOD/Shi-scid/IL-2Rγc null (NOG) mice (IBMI-huNOG mice). Upon infection, the number of CD4(+) human T cells in the periphery increased rapidly, and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells were observed 4 to 5 months after infection. Proliferation was seen in both CD25(-) and CD25(+) CD4 T cells with identical proviral integration sites; however, a limited number of CD25(+)-infected T-cell clones eventually dominated, indicating an association between clonal selection of infected T cells and expression of CD25. Additionally, HTLV-1-specific adaptive immune responses were induced in infected mice and might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL leukemogenesis and evaluating anti-ATL drug and vaccine candidates.

  11. Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice.

    Science.gov (United States)

    Jaiswal, Abhishek; Koley, Hemanta; Mitra, Soma; Saha, Dhira Rani; Sarkar, Banwarilal

    2014-05-01

    In this study, we have established an oral phage cocktail therapy in adult mice model and also performed a comparative analysis between phage cocktail, antibiotic and oral rehydration treatment for orally developed Vibrio cholerae infection. Four groups of mice were orally infected with Vibrio cholerae MAK 757 strain. Phage cocktail and antibiotic treated groups received 1×10(8) plaque forming unit/ml (once a daily) and 40mg/kg (once a daily) as an oral dose respectively for consecutive three days after bacterial infection. In case of oral rehydration group, the solution was supplied after bacterial infection mixed with the drinking water. To evaluate the better and safer approach of treatment, tissue and serum samples were collected. Here, phage cocktail treated mice reduced the log10 numbers of colony per gram by 3log10 (p0.05). Besides, it was evident that antibiotic and phage cocktail treated group had a gradual decrease in both IL-6 and TNF-α level for 3 days (pcholera ciprofloxacin was found to be a better antimicrobial agent, but from the safety and specificity point of view, a better method of application could fill the bridge and advances the phages as a valuable agent in treating Vibrio cholerae infection.

  12. Androgens inhibit the osteogenic response to mechanical loading in adult male mice.

    Science.gov (United States)

    Sinnesael, Mieke; Laurent, Michaël R; Jardi, Ferran; Dubois, Vanessa; Deboel, Ludo; Delisser, Peter; Behets, Geert J; D'Haese, Patrick C; Carmeliet, Geert; Claessens, Frank; Vanderschueren, Dirk

    2015-04-01

    Androgens are well known to enhance exercise-induced muscle hypertrophy; however, whether androgens also influence bone's adaptive response to mechanical loading remains unclear. We studied the adaptive osteogenic response to unilateral in vivo mechanical loading of tibia in adult male mice in both a long- and a short-term experimental set-up. Mice were divided into four groups: sham operated, orchidectomized (ORX), T (ORX+T), or nonaromatizable dihydrotestosterone (ORX+DHT) replacement. Significant interactions between androgen status and osteogenic response to mechanical loading were observed. Cortical thickness increased by T (0.14 vs 0.11 mm sham, P<.05) and DHT (0.17 vs 0.11 mm sham, P<.05). However, T partially (+36%) and DHT completely (+10%) failed to exhibit the loading-related increase observed in sham (+107%) and ORX (+131%, all P<.05) mice. ORX decreased periosteal bone formation, which was restored to sham levels by T and DHT. However, both androgens completely suppressed the loading-related increase in periosteal bone formation. Short-term loading decreased the number of sclerostin-positive osteocytes in sham, whereas in control fibulas, ORX decreased and T increased the number of sclerostin-positive osteocytes. Loading no longer down-regulated sclerostin in the ORX or T groups. In conclusion, both T and DHT suppress the osteogenic response to mechanical loading.

  13. Sustained Engraftment of Cryopreserved Human Bone Marrow CD34(+) Cells in Young Adult NSG Mice.

    Science.gov (United States)

    Wiekmeijer, Anna-Sophia; Pike-Overzet, Karin; Brugman, Martijn H; Salvatori, Daniela C F; Egeler, R Maarten; Bredius, Robbert G M; Fibbe, Willem E; Staal, Frank J T

    2014-06-01

    Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.

  14. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    Directory of Open Access Journals (Sweden)

    Natalie J Groves

    Full Text Available Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD deficiency in BALB/c mice was associated with (a adult hippocampal neurogenesis at baseline, b following 6 weeks of voluntary wheel running and (c a depressive-like phenotype on the forced swim test (FST, which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX, and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.

  15. Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.

    Science.gov (United States)

    Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Fernandes, Lynette B; Zosky, Graeme R; Sly, Peter D; Larcombe, Alexander N

    2014-01-01

    Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.

  16. Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.

    Directory of Open Access Journals (Sweden)

    Jennifer A Phan

    Full Text Available Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B. Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils, increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance. We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.

  17. Parental legacy in insects: variation of transgenerational immune priming during offspring development.

    Directory of Open Access Journals (Sweden)

    Ute Trauer

    Full Text Available In insects, a parental immune challenge can prepare and enhance offspring immune activity. Previous studies of such transgenerational immune priming (TGIP mainly focused on a single offspring life stage. However, different developmental stages may be exposed to different risks and show different susceptibility to parental immune priming. Here we addressed the question (i whether TGIP effects on the immunity of Manduca sexta offspring vary among the different developmental offspring stages. We differentiated between unchallenged and immunochallenged offspring; for the latter type of offspring, we further investigated (ii whether TGIP has an impact on the time that enhanced immune levels persist after offspring immune challenge. Finally, we determined (iii whether TGIP effects on offspring performance depend on the offspring stage. Our results show that TGIP effects on phenoloxidase (PO activity, but not on antibacterial activity, vary among unchallenged offspring stages. In contrast, TGIP effects on PO and antibacterial activity did not vary among immunochallenged offspring stages. The persistence of enhanced immune levels in immunochallenged offspring was dependent on the parental immune state. Antibacterial (but not PO activity in offspring of immunochallenged parents decreased over five days after pupal immune challenge, whereas no significant change over time was detectable in offspring of control parents. Finally, TGIP effects on the developmental time of unchallenged offspring varied among stages; young larvae of immunochallenged parents developed faster and gained more weight than larvae of control parents. However, offspring females of immunochallenged parents laid fewer eggs than females derived from control parents. These findings suggest that the benefits which the offspring gains from TGIP during juvenile development are paid by the adults with reduced reproductive power. Our study shows that TGIP effects vary among offspring stages

  18. Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli.

  19. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis.

    Science.gov (United States)

    Medina-Bolívar, Carolina; González-Arnay, Emilio; Talos, Flaminia; González-Gómez, Miriam; Moll, Ute M; Meyer, Gundela

    2014-08-01

    Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.

  20. Adolescent but not adult ethanol binge drinking modulates cocaine withdrawal symptoms in mice

    Science.gov (United States)

    Aguilar, Maria A.; Giménez-Gómez, Pablo; Miñarro, José; Rodríguez-Arias, Marta

    2017-01-01

    Background Ethanol (EtOH) binge drinking is an increasingly common behavior among teenagers that induces long-lasting neurobehavioral alterations in adulthood. An early history of EtOH abuse during adolescence is highly correlated with cocaine addiction in adulthood. Abstinence of cocaine abuse can cause psychiatric symptoms, such as anxiety, psychosis, depression, and cognitive impairments. This study assessed the consequences of adolescent exposure to EtOH on the behavioral alterations promoted by cocaine withdrawal in adulthood. Methods We pretreated juvenile (34–47 days old) or adult (68–81 days old) mice with EtOH (1.25 g/kg) following a binge-drinking pattern. Then, after a three-week period without drug delivery, they were subjected to a chronic cocaine treatment in adulthood and tested under cocaine withdrawal by the ensuing paradigms: open field, elevated plus maze, prepulse inhibition, tail suspension test, and object recognition. Another set of mice were treated with the same EtOH binge-drinking procedure during adolescence and were tested immediately afterwards under the same behavioral paradigms. Results Adolescent EtOH pretreatment undermined the anxiogenic effects observed after cocaine abstinence, reduced prepulse inhibition, and increased immobility scores in the tail suspension test following cocaine withdrawal. Moreover, the memory deficits evoked by these substances when given separately were enhanced in cocaine-withdrawn mice exposed to EtOH during adolescence. EtOH binge drinking during adolescence also induced anxiety, depressive symptoms, and memory impairments when measured immediately afterwards. In contrast, neither EtOH nor cocaine alone or in combination altered any of these behaviors when given in adulthood. Conclusions EtOH binge drinking induces short- and long-term behavioral alterations and modulates cocaine withdrawal symptoms when given in adolescent mice. PMID:28291777

  1. Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation

    DEFF Research Database (Denmark)

    Ritz, Caitlin; Ruminski, Wojciech; Hougaard, Karin S.

    2011-01-01

    (PAPs) from industrial environments cause DNA damage and mutations in the sperm of adult male mice. Effects on the female and male germline during critical stages of development (in utero) are unknown. In mice, previous studies have shown that expanded simple tandem repeat (ESTR) loci exhibit high rates...... and mated with control CBA mice. The F2 descendents were collected and ESTR germline mutation rates were derived from full pedigrees (mother, father, offspring) of F1 male and female mice. We found no evidence for increased ESTR mutation rates in females exposed in utero to DEP relative to control females...

  2. Molecular mechanisms mediating a deficit in recall of fear extinction in adult mice exposed to cocaine in utero.

    Directory of Open Access Journals (Sweden)

    Zeeba D Kabir

    Full Text Available Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it's phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.

  3. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice.

    Science.gov (United States)

    Samaddar, Sreyashi; Vazquez, Kizzy; Ponkia, Dipen; Toruno, Pedro; Sahbani, Karim; Begum, Sultana; Abouelela, Ahmed; Mekhael, Wagdy; Ahmed, Zaghloul

    2017-02-01

    Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords.NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a

  4. Study on the toxicity of LAS to male mice and male offspring spermatogenic function%LAS对雄性小鼠及其子代生精功能毒性作用的研究

    Institute of Scientific and Technical Information of China (English)

    韩海艳; 任春娥; 乔鹏云; 姜俊怡; 张茂翔

    2013-01-01

    Objective:To study the toxicities impact of the linear alkylbenzene sulfonates on the male mice and offspring male reproductive function.Methods:All of the 120 Kunming male mice were divided into four groups randomly and every group was 30.Group A was treated P.O.with LAS 630mg/kg,one time per day,for eight weeks and then mated with female mice (the proportion was 1∶1).Group B was treated P.O.with LAS 630mg/kg,one time per day,for eight weeks and stopped treating for 4 weeks,then mated with female mice (the proportion was 1 ∶ 1).Both of the male mice of the group A and group B were pulled neck to death after mating.Group a and group b were the contrast groups of group A and group B separately.They were treated with physiological saline solution and pulled neck to death after mating.The offspring male mice of the group A,B,a,b was group A1,B1,a1,b1 separately and pulled neck to death when they growed upto 6 ~ 8 weeks.The weight of the body and testicle,concentration and vitality of sperm,sperm forms,histophthology and electron transmission microscopy of the testis were assayed.Results:Compared with the controls,lower of sperm concentration and vitality and higher malformation were obvious.The histology revealed that each spermatocytes and spermids obviously reduced,spermatogenic cells arranged chaoticly.Determination revealed that the morphology of mitochondria in spermospore,leydig cells and sertoli cells from the experimental group showed a greater variance than that in mice from the control group.Furthermore,there showed no obvious recovery of all the morphological abnormalities after be stopped treating with LAS for 4 weeks.Conclusion:LAS has evident toxicities impact on the male animals reproductive function,and the damage the LAS has made could not recovery in a short time.%目的:探讨十二烷基苯磺酸钠(LAS)对雄性小鼠及其子代雄性小鼠生精功能的毒性作用.方法:将120只昆明种雄性小鼠随机分为4组,每组30只.实验A

  5. Environmental modulations of the number of midbrain dopamine neurons in adult mice.

    Science.gov (United States)

    Tomas, Doris; Prijanto, Augustinus H; Burrows, Emma L; Hannan, Anthony J; Horne, Malcolm K; Aumann, Tim D

    2015-01-01

    Long-lasting changes in the brain or 'brain plasticity' underlie adaptive behavior and brain repair following disease or injury. Furthermore, interactions with our environment can induce brain plasticity. Increasingly, research is trying to identify which environments stimulate brain plasticity beneficial for treating brain and behavioral disorders. Two environmental manipulations are described which increase or decrease the number of tyrosine hydroxylase immunopositive (TH+, the rate-limiting enzyme in dopamine (DA) synthesis) neurons in the adult mouse midbrain. The first comprises pairing male and female mice together continuously for 1 week, which increases midbrain TH+ neurons by approximately 12% in males, but decreases midbrain TH+ neurons by approximately 12% in females. The second comprises housing mice continuously for 2 weeks in 'enriched environments' (EE) containing running wheels, toys, ropes, nesting material, etc., which increases midbrain TH+ neurons by approximately 14% in males. Additionally, a protocol is described for concurrently infusing drugs directly into the midbrain during these environmental manipulations to help identify mechanisms underlying environmentally-induced brain plasticity. For example, EE-induction of more midbrain TH+ neurons is abolished by concurrent blockade of synaptic input onto midbrain neurons. Together, these data indicate that information about the environment is relayed via synaptic input to midbrain neurons to switch on or off expression of 'DA' genes. Thus, appropriate environmental stimulation, or drug targeting of the underlying mechanisms, might be helpful for treating brain and behavioral disorders associated with imbalances in midbrain DA (e.g. Parkinson's disease, attention deficit and hyperactivity disorder, schizophrenia, and drug addiction).

  6. Renal and hepatotoxic alterations in adult mice on inhalation of specific mixture of organic solvents.

    Science.gov (United States)

    Ketan, Vaghasia K; Bhavyata, Kalariya; Linzbuoy, George; Hyacinth, Highland N

    2015-12-01

    This study was aimed at investigating alterations in renal and hepatic toxicity induced by exposing to a combination of three solvents, namely, benzene, toluene and xylene in adult mice. The mice were divided into three groups (control, low-dose-treated (450 ppm) and high-dose (675 ppm) groups) using randomization methods. The treated groups were exposed to vapours of a mixture of benzene, toluene and xylene at doses of 450 and 675 ppm, for 6 h day(-1) for a short-term of 7-day exposure period. The study revealed that the solvent exposure resulted in an increase in the weight of liver and kidney as compared to the control. Biochemical analyses indicated a significant decline in the activities of superoxide dismutase and catalase in both the treated groups, with concomitant increase in lipid peroxidation. Liver aminotransferases (alanine aminotransferase and aspartate aminotransferase) were elevated with significant alterations in the levels of protein, creatinine and cholesterol in these tissues upon solvent exposure. Correlated with these changes, serum thyroid hormones T3 and T4 were also significantly altered. This study, therefore, demonstrates that inhalation of vapours from the solvent mixture resulted in significant dose-dependent biochemical and functional changes in the vital tissues (liver and kidney) studied. The study has specific relevance since humans are increasingly being exposed to such solvents due to increased industrial use in such combinations.

  7. Transcription factor GATA1 is dispensable for mast cell differentiation in adult mice.

    Science.gov (United States)

    Ohneda, Kinuko; Moriguchi, Takashi; Ohmori, Shin'ya; Ishijima, Yasushi; Satoh, Hironori; Philipsen, Sjaak; Yamamoto, Masayuki

    2014-05-01

    Although previous studies have shown that GATA1 is required for mast cell differentiation, the effects of the complete ablation of GATA1 in mast cells have not been examined. Using conditional Gata1 knockout mice (Gata1(-/y)), we demonstrate here that the complete ablation of GATA1 has a minimal effect on the number and distribution of peripheral tissue mast cells in adult mice. The Gata1(-/y) bone marrow cells were capable of differentiating into mast cells ex vivo. Microarray analyses showed that the repression of GATA1 in bone marrow mast cells (BMMCs) has a small impact on the mast cell-specific gene expression in most cases. Interestingly, however, the expression levels of mast cell tryptases in the mouse chromosome 17A3.3 were uniformly reduced in the GATA1 knockdown cells, and GATA1 was found to bind to a 500-bp region at the 5' end of this locus. Revealing a sharp contrast to that observed in the Gata1-null BMMCs, GATA2 deficiency resulted in a significant loss of the c-Kit(+) FcεRIα(+) mast cell fraction and a reduced expression of several mast cell-specific genes. Collectively, GATA2 plays a more important role than GATA1 in the regulation of most mast cell-specific genes, while GATA1 might play specific roles in mast cell functions.

  8. Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2.

    Directory of Open Access Journals (Sweden)

    Ariel B Abraham

    Full Text Available Neural stem and progenitor cells (NSCs/NPCs are distinct groups of cells found in the mammalian central nervous system (CNS. Previously we determined that members of the High Mobility Group (HMG B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/- mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM, along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2-/- SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration.

  9. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  10. Evaluation of Sperm Quality, Maturation and DNA Integrity in Adult Mice Treated with Sulpiride

    Directory of Open Access Journals (Sweden)

    S Salami

    2012-07-01

    Full Text Available Background: Use of certain antipsychotic drugs has severe effects on fertility in males. Hypothalamus and hypophysial impressions and changes in plasma hormones concentration like prolactin, LH and FSH can affect sperm production. In this study, we investigated the effects of sulpiride on sperm quality, maturation and DNA damage. Methods: Twenty for adult male mice (age: 6-8 weeks were divided into three groups. The treatment group received 40 mg/kg sulpiride solution and the control sham group was given carrier of the drug intraperitoneally (IP daily for 45 days but the control group received nothing. Finally, all the mice were sacrificed by cervical dislocation and their cauda epididymis were removed surgically. The excised specimens were placed in 1 ml HTF medium and incubated for 30 min in CO2 incubator to allow the spermatozoa to swim out. Later, sperm count, motility and viability were analyzed. Additionally, sperm chromatin quality and DNA integrity were assessed by aniline blue and acridine orange staining. Results: Significant decrease in sperm motility and count were observed in the treatment group while the number of abnormal sperm increased as compared with the other two groups. Sperm viability and DNA maturation showed significant reduction and the rate of DNA damage increased in comparison with the control sham and the control groups (P<0.05. Conclusion: The study showed that sulpiride has negative effects on sperm parameters in treated animals and in some cases it could cause secondary infertility.

  11. Postanesthetic effects of isoflurane on behavioral phenotypes of adult male C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Kumiko Yonezaki

    Full Text Available Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depression test battery, sociability test battery, attention test battery, and learning test battery, which were started 7 days after anesthesia with 1.8% isoflurane. In addition to the control group, we included a yoked control group that was exposed to the same stress of handling as the isoflurane-treated animals before being anesthetized. Our comprehensive behavioral test batteries revealed impaired latent inhibition in the isoflurane-treated group, but the concentration of residual isoflurane in the brain was presumably negligible. The yoked control group and isoflurane-treated group exhibited higher anxiety in the elevated plus-maze test and impaired learning function in the cued fear conditioning test. No influences were observed in sensory functions, motor functions, antidepressant behaviors, and social behaviors. A number of papers have reported an effect of isoflurane on animal behaviors, but no systematic investigation has been performed. To the best of our knowledge, this study is the first to systematically investigate the general health, neurological reflexes, sensory functions, motor functions, and higher behavioral functions of mice exposed to isoflurane as adults. Our results suggest that the postanesthetic effect of isoflurane causes attention deficit in mice. Therefore, isoflurane must be used with great care in the clinical setting and veterinary anesthesia.

  12. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice.

    Science.gov (United States)

    Fox, Donald A; Hamilton, W Ryan; Johnson, Jerry E; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B; O'Callaghan, James P

    2011-11-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  13. Sex-specific positive and negative consequences of avoidance training during childhood on adult active avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    Almuth eSpröwitz

    2013-10-01

    Full Text Available In humans and animals cognitive training during childhood plays an important role in shaping neural circuits and thereby determines learning capacity later in life. Using a negative feedback learning paradigm, the two-way active avoidance (TWA learning, we aimed to investigate in mice (i the age-dependency of TWA learning, (ii the consequences of pretraining in childhood on adult learning capacity and (iii the impact of sex on the learning paradigm in mice. Taken together, we show here for the first time that the beneficial or detrimental outcome of pretraining in childhood depends on the age during which TWA training is encountered, indicating that different, age-dependent long-term memory traces might be formed, which are recruited during adult TWA training and thereby either facilitate or impair adult TWA learning. While pretraining during infancy results in learning impairment in adulthood, pretraining in late adolescence improved avoidance learning.The experiments revealed a clear sex difference in the group of late-adolescent mice: female mice showed better avoidance learning during late adolescence compared to males, and the beneficial impact of late-adolescent pretraining on adult learning was more pronounced in females compared to males.

  14. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    Science.gov (United States)

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  15. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    Science.gov (United States)

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  16. Retinoid-related orphan receptor γ (RORγ) adult induced knockout mice develop lymphoblastic lymphoma.

    Science.gov (United States)

    Liljevald, Maria; Rehnberg, Maria; Söderberg, Magnus; Ramnegård, Marie; Börjesson, Jenny; Luciani, Donatella; Krutrök, Nina; Brändén, Lena; Johansson, Camilla; Xu, Xiufeng; Bjursell, Mikael; Sjögren, Anna-Karin; Hornberg, Jorrit; Andersson, Ulf; Keeling, David; Jirholt, Johan

    2016-11-01

    RORγ is a nuclear hormone receptor which controls polarization of naive CD4(+) T-cells into proinflammatory Th17 cells. Pharmacological antagonism of RORγ has therapeutic potential for autoimmune diseases; however, this mechanism may potentially carry target-related safety risks, as mice deficient in Rorc, the gene encoding RORγ, develop T-cell lymphoma with 50% frequency. Due to the requirement of RORγ during development, the Rorc knockout (KO) animals lack secondary lymphoid organs and have a dysregulation in the generation of CD4+ and CD8+ T cells. We wanted to extend the evaluation of RORγ deficiency to address the question whether lymphomas, similar to those observed in the Rorc KO, would develop in an animal with an otherwise intact adult immune system. Accordingly, we designed a conditional RORγ knockout mouse (Rorc CKO) where the Rorc locus could be deleted in adult animals. Based on these studies we can confirm that these animals also develop lymphoma in a similar time frame as embryonic Rorc knockouts. This study also suggests that in animals where the gene deletion is incomplete, the thymus undergoes a rapid selection process replacing Rorc deficient cells with remnant thymocytes carrying a functional Rorc locus and that subsequently, these animals do not develop lymphoblastic lymphoma.

  17. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins.

    Directory of Open Access Journals (Sweden)

    Verena Olivier

    Full Text Available Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX, and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.

  18. Isoflurane does not cause neuroapoptosis but reduces astroglial processes in young adult mice

    Directory of Open Access Journals (Sweden)

    Dallasen Renee M

    2011-11-01

    Full Text Available Abstract Background Isoflurane, a volatile anesthetic widely used clinically, has been implicated to be both neuroprotective and neurotoxic. The claim about isoflurane causing neural apoptosis remains controversial. In this study, we investigated the effects of isoflurane exposures on apoptotic and anti-apoptotic signals, cell proliferation and neurogenesis, and astroglial processes in young adult mouse brains. Methods Sixty 6-week-old mice were randomly assigned to four anesthetic concentration groups (0 as control and 0.6%, 1.3%, and 2% with four recovery times (2 h and 1, 6, and 14 d after 2-h isoflurane exposure. Immunohistochemistry measurements of activated caspase-3 and Bcl-xl for apoptotic and anti-apoptotic signals, respectively, glial fibrillary acidic protein (GFAP and vimentin for reactive astrocytosis, doublecortin (Dcx for neurogenesis, and BrdU for cell proliferation were performed. Results Contrary to the previous conclusion derived from studies with neonatal rodents, we found no evidence of isoflurane-induced apoptosis in the adult mouse brain. Neurogenesis in the subgranule zone of the dentate gyrus was not affected by isoflurane. However, there is a tendency of reduced cell proliferation after 2% isoflurane exposure. VIM and GFAP staining showed that isoflurane exposure caused a delayed reduction of astroglial processes in the hippocampus and dentate gyrus. Conclusion Two-hour exposure to isoflurane did not cause neuroapoptosis in adult brains. The delayed reduction in astroglial processes after isoflurane exposure may explain why some volatile anesthetics can confer neuroprotection after experimental stroke because reduced glial scarring facilitates better long-term neuronal recoveries.

  19. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  20. Feeding Pregnant and Lactating Mice Rhodiola kirilowii Extracts helps to Preserve Thymus Function of their Adult Progeny.

    Science.gov (United States)

    Bień, K; Lewicki, S; Zdanowski, R; Skopinska-Różewska, E; Krzyżowska, M

    2016-09-01

    Plants belonging to Rhodiola kirilowii species, members of Rhodiola genus and Crassulaceae family, grow wildly in Tibet, Mongolia and China mountains and are traditionally used as adaptogens, antidepressants and anti-inflammatory remedies. Nowadays, R. kirilowii is cultivated in some countries, also in Poland. In our previous papers we reported immuno- and angio-modulatory effects of aqueous and hydro-alcoholic extracts of radix and rhizome of this plant in non-pregnant and pregnant mice. The aim of the present study was to evaluate the effect of feeding pregnant and further lactating mice these extracts on selected thymus function parameters in adult progeny. The counts of M-30+ apoptotic cells, in the thymuses obtained from progeny of mice fed during pregnancy and lactation water or 50% water-alcoholic extract of Rhodiola kirilowii, were significantly lower (pthymuses obtained from progeny of the control mice and mothers treated with water or hydro-alcohol extracts of Rhodiola kirilowii were observed.

  1. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging.

    Science.gov (United States)

    Kang, S; Louboutin, J-P; Datta, P; Landel, C P; Martinez, D; Zervos, A S; Strayer, D S; Fernandes-Alnemri, T; Alnemri, E S

    2013-02-01

    mnd2 mice die prematurely as a result of neurodegeneration 30-40 days after birth due to loss of the enzymatic activity of the mitochondrial quality control protease HtrA2/Omi. Here, we show that transgenic expression of human HtrA2/Omi in the central nervous system of mnd2 mice rescues them from neurodegeneration and prevents their premature death. Interestingly, adult transgenic mnd2 mice develop accelerated aging phenotypes, such as premature weight loss, hair loss, reduced fertility, curvature of the spine, heart enlargement, increased autophagy, and death by 12-17 months of age. These mice also have elevated levels of clonally expanded mitochondrial DNA (mtDNA) deletions in their tissues. Our results provide direct genetic evidence linking mitochondrial protein quality control to mtDNA deletions and aging in mammals.

  2. Investment Decisions and Offspring Gender

    OpenAIRE

    Bogan, Vicki

    2009-01-01

    Economic research has documented many economic affects of offspring gender on parental behavior. However, an open question exists as to whether offspring gender has any influence on parental investment decision making. Specifically, I investigate whether female offspring have an impact on investment decisions with respect to stock and bondholding. Using a panel data set, I find that for male respondents, having only female offspring increases the probability of stockholding by over 17%. In co...

  3. Physical exercise preserves adult visual plasticity in mice and restores it after a stroke in the somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Evgenia Kalogeraki

    2016-09-01

    Full Text Available The primary visual cortex is widely used to study brain plasticity, which is not only crucial for normal brain function, such as learning and memory, but also for recovery after brain injuries such as stroke. In standard cage raised mice, experience-dependent ocular dominance plasticity in the primary visual cortex declines with age and is compromised by a lesion in adjacent and distant cortical regions. In contrast, mice raised in an enriched environment exhibit lifelong ocular dominance plasticity and are protected from losing ocular dominance plasticity after a stroke-lesion in the somatosensory cortex. Since standard cage mice with an access to a running wheel displayed preserved ocular dominance plasticity during ageing, we investigated whether physical exercise might also provide a plasticity promoting effect after a cortical stroke. To this end, we tested if adult running wheel-raised mice preserved ocular dominance plasticity after stroke and also if short-term running after stroke restored ocular dominance plasticity to standard cage mice. Indeed, unlike mice without a running wheel, adult running wheel mice continued to show ocular dominance plasticity even after stroke, and a two weeks running wheel experience after stroke already restored lost ocular dominance plasticity. Additionally, the experience-enabled increase of the spatial frequency and contrast threshold of the optomotor reflex of the open eye, normally lost after stroke, was restored in both groups of running wheel mice. Our data suggest that physical exercise alone can, not only preserve visual plasticity into old age but also restore it after a cortical stroke.

  4. Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2015-04-01

    Full Text Available Recently we have reported that intermediate-frequency magnetic field (IF-MF exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1, inflammatory mediators (COX2, IL-1 b,TNF-α, and the oxidative stress marker heme-oxygenase (HO-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes.

  5. Production of transgenic mice by random recombination of targeted genes in female germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Ji Xiong; Jie Xiang; Ji Wu; Zhaojuan Yang; Yunze Yang; Shuzeng Wang; Lingjun Shi; Wenhai Xie; Kejing Sun; Kang Zou; Lei Wang

    2011-01-01

    Oocyte production in most mammalian species is believed to cease before birth. However, this idea has been challenged with the finding that postnatal mouse ovaries possess mitotically active germ cells. A recent study showed that female germline stem cells (FGSCs) from adult mice were isolated, cultured long term and produced oocytes and progeny after transplantation into infertile mice. Here, we demonstrate the successful generation of transgenic or gene knock-down mice using FGSCs. The FGSCs from ovaries of 5-day-old and adult mice were isolated and either infected with recombinant viruses carrying green fluorescent protein, Oocyte-G1 or the mouse dynein axonemal intermediate chain 2 gene, or transfected with the Oocyte-G1 specific shRNA expression vector (pRS shOocyte-G1 vector), and then transplanted into infertile mice. Transplanted cells in the ovaries underwent oogenesis and produced heterozygous offspring after mating with wild-type male mice. The offspring were genetically characterized and the biological functions of the transferred or knock-down genes were investigated. Efficiency of genetransfer or gene knock-down was 29%-37% and it took 2 months to produce transgenic offspring. Gene manipulation of FGSCs is a rapid and efficient method of animal transgenesis and may serve as a powerful tool for biomedical science and biotechnology.

  6. Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice.

    Science.gov (United States)

    Asp, Linnéa; Beraki, Simret; Kristensson, Krister; Ogren, Sven Ove; Karlsson, Håkan

    2009-08-01

    Epidemiological studies suggest that early life infections may contribute to the development of psychiatric disorders characterized by cognitive deficits. Here, we studied the effects of a neonatal influenza A/WSN/33 virus infection on locomotor activity, working memory and emotional behavior in adult mice. In addition to wild type mice, immunodeficient (Tap1(-/-)) mice lacking functional CD8(+) T cells, were included in the study to model the potential influence of a genetic deficit relating to virus clearance. Three to four months after the infection, infected Tap1(-/-) mice, but not wild type mice, exhibited deficits in working memory as well as increased rearing activity and anxiety. In the medial prefrontal cortices of these infected Tap1(-/-) mice reduced levels of type III Nrg1 transcripts were observed supporting a role for neuregulin 1 signaling in neuronal circuits involved in working memory. Virus replication, distribution or clearance did not differ between the two genotypes. The lack of CD8(+) T cells, however, appeared to contribute to a more pronounced glia response in Tap1(-/-) than in wild type mice. Thus, the present study suggest that the risk of developing deficits in cognitive and emotional behavior following a CNS infection during brain development is influenced by genetic variation in genes involved in the immune response.

  7. Single and repeated sevoflurane or desflurane exposure does not impair spatial memory performance of young adult mice.

    Science.gov (United States)

    Kilicaslan, Alper; Belviranli, Muaz; Okudan, Nilsel; Nurullahoglu Atalik, Esra

    2013-12-01

    Volatile anesthetics are known to disturb the spatial memory in aged rodents, but there is insufficient information on their effects on young adult rodents. The aim of this study was to compare the effects of single and repeated exposure to desflurane and sevoflurane on spatial learning and memory functions in young adult mice. Balb/c mice (2 months old) were randomly divided into six equal groups (n = 8). The groups with single inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 4 h, respectively. The groups with repeated inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 2 h a day during 5 consecutive days. Spatial learning and memory were tested in the Morris water maze 24 h after exposure. In the learning phase, the parameters associated with finding the hidden platform and swimming speed, and in the memory phase, time spent in the target quadrant and the adjacent quadrants, were assessed and compared between the groups. In the 4-day learning process, there was no significant difference between the groups in terms of mean latency to platform, mean distance traveled and average speed (P > 0.05). During the memory-test phase, all mice exhibited spatial memory, but there was no significant difference between the groups in terms of time spent in the target quadrant (P > 0.05). Sevoflurane and desflurane anesthesia did not impair acquisition learning and retention memory in young adult mice.

  8. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice.

    Science.gov (United States)

    Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B

    2014-05-01

    Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.

  9. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment.

    Directory of Open Access Journals (Sweden)

    Jonathan Chabout

    Full Text Available Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs, but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals.

  10. Morning sickness: impact on offspring salt preference.

    Science.gov (United States)

    Crystal, S R; Bernstein, I L

    1995-12-01

    These studies examined the relationship between salt preference of adult offspring and their mothers' symptoms of morning sickness during pregnancy. College students who could provide information about their mothers' symptoms of morning sickness completed a survey about their dietary salt intake (study 1; n = 169) or rated and consumed ten snack foods (study 2; n = 66). In study 1 a salt-use score was calculated based on responses to the Salt Intake Questionnaire; offspring of women with moderate or severe vomiting reported a significantly higher level of salt use (p < 0.01) than those whose mothers report little or no symptoms. In study 2 saltiness and pleasantness ratings of high-salt foods, intake of those foods and total sodium intake were the focus of analysis. Offspring of women reporting moderate or severe vomiting showed a significantly greater preference for the snack food subjects rated as saltiest than those whose mothers reported no or mild vomiting. They also ate more of that food and consumed more total sodium during the test session. Effects were stronger in Caucasian than Asian subjects. These studies suggest that moderate to severe vomiting during pregnancy can be associated with significantly higher salt intake in offspring. Thus, a gestational event may be an important determinant of salt intake and preference in adulthood.

  11. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  12. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  13. Role of prenatal undernutrition in the expression of serotonin, dopamine and leptin receptors in adult mice: implications of food intake.

    Science.gov (United States)

    Manuel-Apolinar, Leticia; Rocha, Luisa; Damasio, Leticia; Tesoro-Cruz, Emiliano; Zarate, Arturo

    2014-02-01

    Perturbations in the levels of serotonin expression have a significant impact on behavior and have been implicated in the pathogenesis of several neuropsychiatric disorders including anxiety, mood and appetite. Fetal programming is a risk factor for the development of metabolic diseases during adulthood. Moreover, previous studies have shown that serotonin (5‑HT), dopamine and leptin are important in energy balance. In the present study, the impact of maternal malnutrition‑induced prenatal undernutrition (UN) was investigated in mice and the expression of 5‑HT1A, dopamine (D)1, D2 and Ob‑Rb receptors was analyzed in the hypothalamus during adulthood. The UN group showed a low birth weight compared with the control group. With regard to receptor expression, 5‑HT1A in the UN group was increased in the hypothalamus and D1 was reduced, whereas D2 showed an increase from postnatal day (P)14 in the arcuate nucleus. Ob‑Rb receptor expression was increased in the hypothalamus at P14 and P90. These observations indicated that maternal caloric restriction programs a postnatal body weight gain in offspring with an increased food intake in early postnatal life which continues into adulthood. In addition, UN in mice was found to be affected by Ob‑Rb, 5‑HT1A and D1/2 receptor expression, indicating that these observations may be associated with hyperphagia and obesity.

  14. Regional-specific effects of ovarian hormone loss on synaptic plasticity in adult human APOE targeted replacement mice.

    Directory of Open Access Journals (Sweden)

    Rebecca C Klein

    Full Text Available The human apolipoprotein ε4 allele (APOE4 has been implicated as one of the strongest genetic risk factors associated with Alzheimer's disease (AD and in influencing normal cognitive functioning. Previous studies have demonstrated that mice expressing human apoE4 display deficits in behavioral and neurophysiological outcomes compared to those with apoE3. Ovarian hormones have also been shown to be important in modulating synaptic processes underlying cognitive function, yet little is known about how their effects are influenced by apoE. In the current study, female adult human APOE targeted replacement (TR mice were utilized to examine the effects of human APOE genotype and long-term ovarian hormone loss on synaptic plasticity in limbic regions by measuring dendritic spine density and electrophysiological function. No significant genotype differences were observed on any outcomes within intact mice. However, there was a significant main effect of genotype on total spine density in apical dendrites in the hippocampus, with post-hoc t-tests revealing a significant reduction in spine density in apoE3 ovariectomized (OVX mice compared to sham operated mice. There was also a significant main effect of OVX on the magnitude of LTP, with post-hoc t-tests revealing a decrease in apoE3 OVX mice relative to sham. In contrast, apoE4 OVX mice showed increased synaptic activity relative to sham. In the lateral amygdala, there was a significant increase in total spine density in apoE4 OVX mice relative to sham. This increase in spine density was consistent with a significant increase in spontaneous excitatory activity in apoE4 OVX mice. These findings suggest that ovarian hormones differentially modulate synaptic integrity in an apoE-dependent manner within brain regions that are susceptible to neurophysiological dysfunction associated with AD.

  15. Learning and memory deficits in male adult mice treated with a benzodiazepine sleep-inducing drug during the juvenile period

    Directory of Open Access Journals (Sweden)

    Yusuke Furukawa

    2016-07-01

    Full Text Available Gamma-aminobutyric acid (GABA, the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R mediated signaling (GABA-R signal during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the temporal stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ or the non-benzodiazepine drug zolpidem (ZP. We detected deficits in learning and memory in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs, which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible brain dysfunction in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause late onset learning and memory defects.

  16. The effect of genetic counseling for adult offspring of patients with type 2 diabetes on attitudes toward diabetes and its heredity: a randomized controlled trial.

    Science.gov (United States)

    Nishigaki, M; Tokunaga-Nakawatase, Y; Nishida, J; Kazuma, K

    2014-10-01

    The aim of this study is to investigate the effect of diabetes genetic counseling on attitudes toward diabetes and its heredity in relatives of type 2 diabetes patients. This study was an unmasked, randomized controlled trial at a medical check-up center in Japan. Subjects in this study are healthy adults between 30 and 60 years of age who have a family history of type 2 diabetes in their first degree relatives. Participants in the intervention group received a brief genetic counseling session for approximately 10 min. Genetic counseling was structured based on the Health Belief Model. Both intervention and control groups received a booklet for general diabetes prevention. Risk perception and recognition of diabetes, and attitude towards its prevention were measured at baseline, 1 week and 1 year after genetic counseling. Participants who received genetic counseling showed significantly higher recognition about their sense of control over diabetes onset than control group both at 1 week and 1 year after the session. On the other hand, anxiety about diabetes did not change significantly. The findings show that genetic counseling for diabetes at a medical check center helped adults with diabetes family history understand they are able to exert control over the onset of their disease through lifestyle modification.

  17. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring's Sperm.

    Science.gov (United States)

    Fullston, Tod; Ohlsson-Teague, E Maria C; Print, Cristin G; Sandeman, Lauren Y; Lane, Michelle

    2016-01-01

    The prevalence of obesity is increasing worldwide and has tripled in men of reproductive age since the 1970s. Concerningly, obesity is not only comorbid with other chronic diseases, but there is mounting evidence that it increases the non-communicable disease load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity) and reproductive disorders in offspring. Epigenetic changes within sperm are clear mechanistic candidates that are associated with both changes to the father's environment and offspring phenotype. Specifically there is emerging evidence that a father's sperm microRNA content both responds to paternal environmental cues and alters the gene expression profile and subsequent development of the early embryo. We used a mouse model of high fat diet (HFD) induced obesity to investigate whether male obesity could modulate sperm microRNA content. We also investigated whether this alteration to a father's sperm microRNA content lead to a similar change in the sperm of male offspring. Our investigations were initially guided by a Taqman PCR array, which indicated the differential abundance of 28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of founder males demonstrated that 13 of these microRNAs were differentially abundant (11 up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive phenotypes also being observed in grand-offspring fathered via the male offspring lineage, there was no evidence that any of the 13 microRNAs were also dysregulated in male offspring sperm. This was presumably due to the variation seen within both groups of offspring and suggests other mechanisms might act between offspring and grand-offspring. Thus 13 sperm borne microRNAs are modulated by a father's HFD and the presumed transfer of this altered microRNA payload to the embryo at fertilisation

  18. Maternal allergic contact dermatitis causes increased asthma risk in offspring

    Directory of Open Access Journals (Sweden)

    Kobzik Lester

    2007-07-01

    Full Text Available Abstract Background Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring. Methods BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice. Results Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease. Conclusion Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate can result in the maternal transmission of asthma risk in mice.

  19. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring.

  20. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  1. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    Science.gov (United States)

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice. PMID:27689088

  2. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice.

    Directory of Open Access Journals (Sweden)

    Valérie Manceau

    Full Text Available The brain-enriched protein kinase KIS (product of the gene UHMK1 has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF(65-SF1-RNA complex which occurs at the 3' end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.

  3. Mass mortality of adult male subantarctic fur seals: are alien mice the culprits?

    Directory of Open Access Journals (Sweden)

    P J Nico de Bruyn

    Full Text Available BACKGROUND: Mass mortalities of marine mammals due to infectious agents are increasingly reported. However, in contrast to previous die-offs, which were indiscriminate with respect to sex and age, here we report a land-based mass mortality of Subantarctic fur seals with apparent exclusivity to adult males. An infectious agent with a male-predilection is the most plausible explanation for this die-off. Although pathogens with gender-biased transmission and pathologies are unusual, rodents are known sources of male-biased infectious agents and the invasive Mus musculus house mouse, occurs in seal rookeries. METHODOLOGY/ PRINCIPAL FINDINGS: Molecular screening for male-biased pathogens in this potential rodent reservoir host revealed the absence of Cardiovirus and Leptospirosis genomes in heart and kidney samples, respectively, but identified a novel Streptococcus species with 30% prevalence in mouse kidneys. CONCLUSIONS/ SIGNIFICANCE: Inter-species transmission through environmental contamination with this novel bacterium, whose congenerics display male-bias and have links to infirmity in seals and terrestrial mammals (including humans, highlights the need to further evaluate disease risks posed by alien invasive mice to native species, on this and other islands.

  4. Maternal exposure to low levels of corticosterone during lactation protects against experimental inflammatory colitis-induced damage in adult rat offspring.

    Directory of Open Access Journals (Sweden)

    Carla Petrella

    Full Text Available Opposing emotional events (negative/trauma or positive/maternal care during the postnatal period may differentially influence vulnerability to the effects of stress later in life. The development and course of intestinal disorders such as inflammatory bowel disease are negatively affected by persistent stress, but to date the role of positive life events on these pathologies has been entirely unknown. In the present study, the effect of early life beneficial experiences in the development of intestinal dysfunctions, where inflammation and stress stimuli play a primary role, was investigated. As a "positive" experimental model we used adult male rat progeny nursed by mothers whose drinking water was supplemented with moderate doses of corticosterone (CORT (0.2 mg/ml during the lactation period. Such animals have been generally shown to cope better with different environmental situations during life. The susceptibility to inflammatory experimental colitis induced by intracolonic infusion of TNBS (2,4,6-trinitrobenzenesulphonic acid was investigated in CORT-nursed rats in comparison with control rats. This mild increase in maternal corticosterone during lactation induced, in CORT-nursed rats, a long lasting protective effect on TNBS-colitis, characterized by improvements in some indices of the disease (increased colonic myeloperoxidase activity, loss of body weight and food intake and by the involvement of endogenous peripheral pathways known to participate in intestinal disorder development (lower plasma corticosterone levels and colonic mast cell degranulation, alterations in the colonic expression of both corticotrophin releasing factor/CRF and its receptor/CRH-1R. All these findings contribute to suggesting that the reduced vulnerability to TNBS-colitis in CORT-nursed rats is due to recovery from the colonic mucosal barrier dysfunction. Such long lasting changes induced by mild hormonal manipulation during lactation, making the adult also

  5. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    Directory of Open Access Journals (Sweden)

    Toshio Watanabe

    Full Text Available Toll-like receptor 2 (TLR2 recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO, a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α, intercellular adhesion molecule-1 (ICAM-1, and cyclooxygenase-2 (COX-2 in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory

  6. Teenage parents and their offspring.

    Science.gov (United States)

    Kaufman, J

    1996-06-18

    Teenage parents are cast into adult roles before the role experimentation and identity development tasks of middle adolescence can be completed. Understanding the etiology of this social problem requires an ecological perspective encompassing individual characteristics, person-context variables, and societal factors such as race and social class. Risk factors identified in the literature on adolescent pregnancy in the US include: absence of a future orientation or aspirations, lack of assertiveness and interpersonal skills to control physical intimacy, low socioeconomic status and minority group membership, growing up in a single-parent family, a history of sexual abuse, five or more siblings, a sister or friend who became a teenage mother, lax parental supervision of dating and free time, low self-esteem, and dropping out or failing in school. The limited data on adolescent fathers suggest they have histories of substance use, delinquency, failure to graduate from high school, financial difficulty, and exposure to family violence. The offspring of adolescent parents show a higher incidence of developmental delays and mild mental retardation than children of adults and are at increased risk of child abuse and neglect. Teen parents raised in dysfunctional families tend to perpetuate destructive methods of child rearing and have unrealistic, age-inappropriate expectations for infants and toddlers. Teenage parents' lack of competence can be mitigated, however, by positive living arrangements, a supportive family of origin, peer support groups, quality child care, school-based services, and accurate information about parenting and child development.

  7. TNF-like weak inducer of apoptosis (TWEAK promotes beta cell neogenesis from pancreatic ductal epithelium in adult mice.

    Directory of Open Access Journals (Sweden)

    Fei Wu

    Full Text Available AIM/HYPOTHESIS: The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis promotes β-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice. METHODS: C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreER(TM: R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14 deficient mice after Px. RESULTS: TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or β-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic β-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion. CONCLUSIONS/INTERPRETATION: We conclude that TWEAK is a novel factor mediating pancreatic β-cell neogenesis from ductal epithelium in normal adult mice.

  8. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Science.gov (United States)

    Soumiya, Hitomi; Godai, Ayumi; Araiso, Hiromi; Mori, Shingo; Furukawa, Shoei; Fukumitsu, Hidefumi

    2016-01-01

    Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD). While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice) and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  9. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hitomi Soumiya

    Full Text Available Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD. While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  10. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  11. Functional Analysis of Neurovascular Adaptations to Exercise in the Dentate Gyrus of Young Adult Mice Associated With Cognitive Gain

    OpenAIRE

    Clark, Peter J.; Brzezinska, Weronika J.; Puchalski, Emily K.; Krone, David A.; Rhodes, Justin S.

    2009-01-01

    The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neu...

  12. Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice.

    Science.gov (United States)

    Ding, Tianbing; McConaha, Melinda; Boyd, Kelli L; Osteen, Kevin G; Bruner-Tran, Kaylon L

    2011-04-01

    We have previously described diminished uterine progesterone response and increased uterine sensitivity to inflammation in adult female mice with a history of developmental exposure to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). Since parturition in mammals is an inflammatory process mediated in part by a decline in progesterone action, toxicant-mediated disruption of progesterone receptor (PR) expression at the maternal-fetal interface would likely impact the timing of birth. Therefore, in the current study, we examined pregnancy outcomes in adult female mice with a similar in utero exposure to TCDD. We also examined the impact of in utero TCDD exposure of male mice on pregnancy outcomes in unexposed females since the placenta, a largely paternally derived organ, plays a major role in the timing of normal parturition via inflammatory signaling. Our studies indicate that developmental exposure of either parent to TCDD is associated with preterm birth in a subsequent adult pregnancy due to altered PR expression and placental inflammation.

  13. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats.

    Science.gov (United States)

    Galvão, Rui P; Garcia-Verdugo, José Manuel; Alvarez-Buylla, Arturo

    2008-12-10

    In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test whether this effect is cell-autonomous, we grafted SVZ cells from TrkB knock-out mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin(+) periglomerular interneurons seemed unaffected by the loss of TrkB, whereas dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis.

  14. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  15. Loss of endothelial-ARNT in adult mice contributes to dampened circulating proangiogenic cells and delayed wound healing.

    Science.gov (United States)

    Han, Yu; Tao, Jiayi; Gomer, Alla; Ramirez-Bergeron, Diana L

    2014-12-01

    The recruitment and homing of circulating bone marrow-derived cells include endothelial progenitor cells (EPCs) that are critical to neovascularization and tissue regeneration of various vascular pathologies. We report here that conditional inactivation of hypoxia-inducible factor's (HIF) transcriptional activity in the endothelium of adult mice (Arnt(ΔiEC) mice) results in a disturbance of infiltrating cells, a hallmark of neoangiogenesis, during the early phases of wound healing. Cutaneous biopsy punches show distinct migration of CD31(+) cells into wounds of control mice by 36 hours. However, a significant decline in numbers of infiltrating cells with immature vascular markers, as well as decreased transcript levels of genes associated with their expression and recruitment, were identified in wounds of Arnt(ΔiEC) mice. Matrigel plug assays further confirmed neoangiogenic deficiencies alongside a reduction in numbers of proangiogenic progenitor cells from bone marrow and peripheral blood samples of recombinant vascular endothelial growth factor-treated Arnt(ΔiEC) mice. In addition to HIF's autocrine requirements in endothelial cells, our data implicate that extrinsic microenvironmental cues provided by endothelial HIF are pivotal for early migration of proangiogenic cells, including those involved in wound healing.

  16. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  17. Excess of the endocannabinoid anandamide during lactation induces overweight, fat accumulation and insulin resistance in adult mice

    Directory of Open Access Journals (Sweden)

    Aguirre Carolina A

    2012-07-01

    Full Text Available Abstract Background Environmental conditions in early life can induce permanent physiological changes, sometimes increasing the risk of chronic diseases during adulthood. Neural and peripheral circuits controlling energy balance may be modulated during such a critical period. Since type 1 cannabinoid receptors (CB1R have recently emerged as targets for modulating energy balance, their premature chronic activation during early life may result in long-term metabolic consequences associated to overweight/obesity. Endogenous activation of CB1R mainly occurs after binding to the endocannabinoid Anandamide (AEA. Objective To evaluate long-term effects of AEA treatment during lactation on body weight, epididymal fat accumulation and related metabolic parameters during adulthood. Design Male mice pups were orally treated with a solution of AEA (20 μg/g body weight in soy oil or vehicle during the whole lactation period. After weaning, food intake and body weight were recorded every 10 days. Adult animals were subjected to glucose and insulin tolerance tests. Subsequently, animals were sacrificed and epididymal fat pads were extracted. Circulating levels of plasma insulin, leptin, non-sterified fatty acids (NEFA, triglyceride and cholesterol were also evaluated. Results AEA-treated mice during lactation showed a significant increase in accumulated food intake, body weight and epididymal fat during adulthood when compared to control mice. When evaluating CB1R protein expression in epididymal fat, the AEA-treated group showed a 150 % increase in expression compared to the control mice. This group also displayed significantly higher levels of circulating glucose, insulin, leptin, triglycerides, cholesterol and NEFA. Moreover, a marked state of insulin resistance was an important finding in the AEA-treated group. Conclusion This study showed that overweight, accumulation of visceral fat and associated metabolic disturbances, such as a higher lipid

  18. Post-training, intrahippocampal HDAC inhibition differentially impacts neural circuits underlying spatial memory in adult and aged mice.

    Science.gov (United States)

    Dagnas, Malorie; Micheau, Jacques; Decorte, Laurence; Beracochea, Daniel; Mons, Nicole

    2015-07-01

    Converging evidence indicates that pharmacologically elevating histone acetylation using post-training, systemic or intrahippocampal, administration of histone deacetylase inhibitor (HDACi) can enhance memory consolidation processes in young rodents but it is not yet clear, whether such treatment is sufficient to prevent memory impairments associated with aging. To address this question, we used a 1-day massed spatial learning task in the water maze to investigate the effects of immediate post-training injection of the HDACi trichostatin A (TSA) into the dorsal hippocampus on long-term memory consolidation in 3-4 and 18-20 month-old mice. We show that TSA improved the 24 h-memory retention for the hidden platform location in young-adults, but failed to rescue memory impairments in older mice. The results further indicate that Young-TSA mice sacrificed 1 h after training had a robust increase in histone H4 acetylation in the dorsal hippocampal CA1 region (dCA1) and the dorsomedial part of the striatum (DMS), a structure important for spatial information processing. Importantly, TSA infusion in aged mice completely rescued altered H4 acetylation in the dCA1 but failed to alleviate age-associated decreased H4 acetylation in the DMS. Moreover, intrahippocampal TSA infusion produced concomitant decreases (in adults) or increases (in older mice) of acetylated histone levels in the ventral hippocampus (vCA1 and vCA3) and the lateral amygdala, two structures critically involved in stress and emotional responses. These data suggest that the failure of post-training, intrahippocampal TSA injection to reverse age-associated memory impairments may be related to an inability to recruit appropriate circuit-specific epigenetic patterns during early consolidation processes.

  19. Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice

    Science.gov (United States)

    Yang, Junhua; Qi, Fangfang; Yao, Zhibin

    2016-01-01

    The Bacillus Calmette-Guérin (BCG) vaccine is routinely administered to human neonates worldwide. BCG has recently been identified as a neuroprotective immune mediator in several neuropathological conditions, exerting neuroprotection in a mouse model of Parkinson's disease and slowing the progression of clinically isolated syndrome in patients with multiple sclerosis. The immune system is significantly involved in brain development, and several types of neonatal immune activations exert influences on the brain and behavior following a secondary immune challenge in adulthood. However, whether the neonatal BCG vaccination affects the brain in adulthood remains to be elucidated. In the present study, newborn C57BL/6 mice were injected subcutaneously with BCG (105 colony forming units) or phosphate-buffered saline (PBS). A total of 12 weeks later, the mice were injected intraperitoneally with 330 µg/kg lipopolysaccharide (LPS) or PBS. The present study reported that the neonatal BCG vaccination alleviated sickness, anxiety and depression-like behavior, lessened the impairments in hippocampal cell proliferation and downregulated the proinflammatory responses in the serum and brain that were induced by the adult LPS challenge. However, BCG vaccination alone had no evident influence on the brain and behavior in adulthood. In conclusion, the neonatal BCG vaccination alleviated the neurobehavioral impairments and neuroinflammation induced by LPS exposure in adult mice, suggesting a potential neuroprotective role of the neonatal BCG vaccination in adulthood. PMID:27357155

  20. Circadian cycle-dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation.

    Science.gov (United States)

    Adler, D A; Ammanuel, S; Lei, J; Dada, T; Borbiev, T; Johnston, M V; Kadam, S D; Burd, I

    2014-09-05

    Intrauterine infection or inflammation in preterm neonates is a known risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. Our previous data suggest that there is acute fetal brain inflammation in a mouse model of intrauterine exposure to lipopolysaccharides (LPS). We hypothesized that the in utero inflammation induced by LPS produces long-term electroencephalogram (EEG) biomarkers of neurodegeneration in the exposed mice that could be determined by using continuous quantitative video/EEG/electromyogram (EMG) analyses. A single LPS injection at E17 was performed in pregnant CD1 dams. Control dams were injected with same volumes of saline (LPS n=10, Control n=8). At postnatal age of P90-100, 24-h synchronous video/EEG/EMG recordings were done using a tethered recording system and implanted subdural electrodes. Behavioral state scoring was performed blind to treatment group, on each 10s EEG epoch using synchronous video, EMG and EEG trace signatures to generate individual hypnograms. Automated EEG power spectrums were analyzed for delta and theta-beta power ratios during wake vs. sleep cycles. Both control and LPS hypnograms showed an ultradian wake/sleep cycling. Since rodents are nocturnal animals, control mice showed the expected diurnal variation with significantly longer time spent in wake states during the dark cycle phase. In contrast, the LPS-treated mice lost this circadian rhythm. Sleep microstructure also showed significant alteration in the LPS mice specifically during the dark cycle, caused by significantly longer average non-rapid eye movement (NREM) cycle durations. No significance was found between treatment groups for the delta power data; however, significant activity-dependent changes in theta-beta power ratios seen in controls were absent in the LPS-exposed mice. In conclusion, exposure to in utero inflammation in CD1 mice resulted in significantly altered sleep architecture as adults that were circadian

  1. Effect of insulin supplementation on in vitro maturation of pre-antral follicles from adult and pre-pubertal mice.

    Science.gov (United States)

    Nath, Amar; Hakim, Bilal Ahmad; Rajender, Singh; Singh, Kavita; Sachdev, Monika; Konwar, Rituraj

    2016-05-01

    This study was aimed to determine the impact of insulin concentrations on in vitro pre-antral follicle growth, survival, antrum formation rate, and retrieval of mature oocytes in mice. Mice pre-antral follicle growth were recorded on days 2, 4, 6, 8, 10, and 12 in α-modified essential media (α-MEM) supplemented with insulin concentrations of 6, 8, and 10 μg/ml along with 10% FBS, 100 mIU/ml follicle stimulating hormone, 10 mIU/ml luteinizing hormone, 100 μg/ml penicillin, and 50 μg/ml streptomycin. After 12 d of growth in vitro, follicles were allowed to mature for 16-18 h in α-MEM supplemented with 1.5 IU/ml human chorionic gonadotrophin (hCG) and 5 ng/ml epidermal growth factor (EGF). The initial diameter (54.86 ± 2.5 μm) of mice oocyte progressively increased in all the three insulin concentration groups and attained a maximum size on day 12 (71.90 ± 2.8 μm). Supplementation with higher concentrations of insulin (both 8 and 10 μg/ml) significantly enhanced antrum formation without effecting the oocyte diameter and percent retrieval of mature oocyte in all the three concentration groups. Both in vitro cultured as well as in vivo collected follicles and oocytes showed similar localization and expression of oocyte maturation markers SAS1B and GDF9. Insulin concentration of 8 μg/ml was found to be optimal for in vitro follicle culture of adult mice (42-49 d). Optimized follicle culture conditions were also assessed successfully with pre-pubertal mice (12-14 d); however, adult mice showed higher follicle survival, antrum formation, and more mature oocytes production in comparison to pre-pubertal mice.

  2. Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice.

    Science.gov (United States)

    Zhou, Siru; Xie, Yangli; Li, Wei; Huang, Junlan; Wang, Zuqiang; Tang, Junzhou; Xu, Wei; Sun, Xianding; Tan, Qiaoyan; Huang, Shuo; Luo, Fengtao; Xu, Meng; Wang, Jun; Wu, Tingting; Chen, Liang; Chen, Hangang; Su, Nan; Du, Xiaolan; Shen, Yue; Chen, Lin

    2016-04-04

    Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3(f/f); Col2a1-CreER(T2) (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage.

  3. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice.

    Science.gov (United States)

    Hu, Lili; Han, Bo; Zhao, Xiaoge; Mi, Lihua; Song, Qiang; Wang, Jue; Song, Tusheng; Huang, Chen

    2016-04-13

    Chronic scream sounds during adulthood affect spatial learning and memory, both of which are sexually dimorphic. The long-term effects of chronic early postnatal scream sound stress (SSS) during postnatal days 1-21 (P1-P21) on spatial learning and memory in adult mice as well as whether or not these effects are sexually dimorphic are unknown. Therefore, the present study examines the performance of adult male and female mice in the Morris water maze following exposure to chronic early postnatal SSS. Hippocampal NR2A and NR2B levels as well as NR2A/NR2B subunit ratios were tested using immunohistochemistry. In the Morris water maze, stress males showed greater impairment in spatial learning and memory than background males; by contrast, stress and background females performed equally well. NR2B levels in CA1 and CA3 were upregulated, whereas NR2A/NR2B ratios were downregulated in stressed males, but not in females. These data suggest that chronic early postnatal SSS influences spatial learning and memory ability, levels of hippocampal NR2B, and NR2A/NR2B ratios in adult males. Moreover, chronic early stress-induced alterations exert long-lasting effects and appear to affect performance in a sex-specific manner.

  4. Transient Treg-cell depletion in adult mice results in persistent self-reactive CD4(+) T-cell responses.

    Science.gov (United States)

    Nyström, Sofia N; Bourges, Dorothée; Garry, Sarah; Ross, Ellen M; van Driel, Ian R; Gleeson, Paul A

    2014-12-01

    Depletion of Foxp3(+) CD4(+) regulatory T cells (Treg) in adults results in chronic inflammation and autoimmune disease. However, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. Here, we studied the effect of transient depletion of Treg cells on CD4(+) T-cell responses to endogenous self-antigens. Short-term ablation of Treg cells in mice resulted in rapid activation of CD4(+) T cells, increased percentage of IFN-γ(+) and Th17 cells in lymphoid organs, and development of autoimmune gastritis. To track self-reactive responses, we analyzed the activation of naïve gastric-specific CD4(+) T cells. There was a dramatic increase in proliferation and acquisition of effector function of gastric-specific T cells in the stomach draining LNs of Treg-cell-depleted mice, compared with untreated mice, either during Treg-cell depletion or after Treg-cell reconstitution. Moreover, the hyperproliferation of gastric-specific T cells in the Treg-cell-ablated mice was predominantly antigen-dependent. Transient depletion of Treg cells resulted in a shift in the ratio of peripheral:thymic Treg cells in the reemerged Treg-cell population, indicating an altered composition of Treg cells. These findings indicate that transient Treg-cell depletion results in ongoing antigen-driven self-reactive T-cell responses and emphasize the continual requirement for an intact Treg-cell population.

  5. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres.

    Science.gov (United States)

    Durko, Margaret; Allen, Carol; Nalbantoglu, Josephine; Karpati, George

    2010-09-01

    Duchenne muscular dystrophy is a genetic muscle disease characterized by the absence of sub-sarcolemmal dystrophin that results in muscle fibre necrosis, progressive muscle wasting and is fatal. Numerous experimental studies with dystrophin-deficient mdx mice, an animal model for the disease, have demonstrated that extrasynaptic upregulation of utrophin, an analogue of dystrophin, can prevent muscle fibre deterioration and reduce or negate the dystrophic phenotype. A different approach for ectopic expression of utrophin relies on augmentation of CT-GalNAc transferase in muscle fibre. We investigated whether CT-GalNAc transferase overexpression in adult mice influence appearance of utrophin in the extrasynaptic sarcolemma. After electrotransfer of plasmid DNA carrying an expression cassette of CT-GalNAc transferase into tibialis anterior muscle of wild type and dystrophic mice, muscle sections were examined by immunofluorescence. CT-GalNAc transgene expression augmented sarcolemmal carbohydrate glycosylation and was accompanied by extrasynaptic utrophin. A 6-week time course study showed that the highest efficiency of utrophin overexpression in a plasmid harboured muscle fibres was 32.2% in CD-1 and 52% in mdx mice, 2 and 4 weeks after CT-GalNAc gene transfer, respectively. The study provides evidence that postnatal CT-GalNAc transferase overexpression stimulates utrophin upregulation that is inherently beneficial for muscle structure and strength restoration. Thus CT-GalNAc may provide an important therapeutic molecule for treatment of dystrophin deficiency in Duchenne muscular dystrophy.

  6. 丹参素改善子痫前期模型小鼠仔代发育的实验评价%Trail Assessment of Favorable Effects of Danshensu on Offspring Growth in Preeclampsia Mice Model

    Institute of Scientific and Technical Information of China (English)

    沈杨; 胡娅莉; 张焱; 谈勇

    2011-01-01

    OBJECTIVE To investigate the favorable effects of Danshensu on offspring growth in PS/PC induced pre-eclampsia mice model. METHODS Forty-seven ICR mice were randomly divided into four groups. From days 5.5 to 16. 5 of pregnancy, each group was respectively treated as follows: control group of 12 injected with 100 μL of filtered phosphate-buffered saline into the tail vein every day; preeclampsia model group of 15 injected in the same way with 100 μL of filtered PS/PC vesicle suspension; group treated with low-dose Danshensu of 10 injected with 10 μg/g Danshensu; and group treated with high-dose Danshensu of 10 injected with 30 (μ/g Danshensu. the number of potentially viable fetuses, weight of fetuses and placentas, weight of fetal brains, nose-breech length, ponderal index (PI), cerebral index (CI) and neurons with hematoxylin-eosin(H/E) and toluidine blue-eosin (Nissl's) staining were all evaluated as indices for fetal syndrome. RESULTS We found the following changes: increased fetal body weight and length in every Danshensu treated groups, greater amelioration on maternal body weight, fetal nose-breech length and fetal brain weight in group treated with high-dose Danshensu, better changes on survival fetal number in group treated with low-dose Danshensu, and more corrected brain development in both Danshensu treated groups.CONCLUSION Conclusions: Danshensu has been proven effective in ameliorating the prognosis of fetal syndrome (FGR, fetal death and absorbed fetal) and improving curative effect of cerebral dysgenesis in the preeclampsia mice model. Moreover, it is suggested the high-dose Danshensu is moreeffective to relieving FGR in general.%目的 结合PS/PC诱导的子痫前期样小鼠模型,探讨丹参素对子痫前期模型小鼠仔代发育的改善作用.方法 随机将47只妊娠ICR鼠分为4组,模型组(12只)于妊娠第5.5天(gd 5.5)起,尾静脉给0.1 mL PS/PC至gd 16.5;对照组(15只)于gd5.5起,尾静脉给生理盐水至gd 16.5

  7. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice.

    Science.gov (United States)

    Trinchero, Mariela F; Koehl, Muriel; Bechakra, Malik; Delage, Pauline; Charrier, Vanessa; Grosjean, Noelle; Ladeveze, Elodie; Schinder, Alejandro F; Abrous, D Nora

    2015-11-01

    New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM.

  8. Transmission of parental neuroticism to offspring's depression: the mediating role of rumination.

    Science.gov (United States)

    Sachs-Ericsson, Natalie; Selby, Edward A; Hames, Jennifer L; Joiner, Thomas E; Fingerman, Karen L; Zarit, Steven H; Birditt, Kira S; Hilt, Lori M

    2014-10-01

    Rumination is a cognitive process that involves repetitively focusing on the causes, situational factors and consequences of one's negative emotion, and it is a potent risk factor for depression. Parental depression and neuroticism may exert an influence on offspring's development of rumination, which may increase offspring's risk for depression. The current study included 375 biological parent-offspring dyads. Parents were assessed for depressive symptoms and neuroticism; adult offspring were assessed for depressive symptoms and rumination. Structural equation modelling was used to examine the effects of parental depressive symptoms and parental neuroticism on adult offspring's depression, and to determine whether offspring's rumination mediated this relationship. Results provided evidence that offspring's rumination fully mediated the relationship between parental neuroticism and offspring's depressive symptoms. Parental depressive symptoms and neuroticism may contribute a genetic predisposition for depressive symptoms in offspring, but it also may promote an environment in which maladaptive cognitive processes, such as rumination, are learned. Given the role that rumination plays in mediating the association between neuroticism and depressive symptoms-targeting rumination in the treatment of high risk individuals would be important in reducing onset of depressive disorders.

  9. Adrenocortical responses to offspring-directed threats in two open-nesting birds.

    Science.gov (United States)

    Butler, Luke K; Bisson, Isabelle-Anne; Hayden, Timothy J; Wikelski, Martin; Romero, L Michael

    2009-07-01

    Dependent young are often easy targets for predators, so for many parent vertebrates, responding to offspring-directed threats is a fundamental part of reproduction. We tested the parental adrenocortical response of the endangered black-capped vireo (Vireo atricapilla) and the common white-eyed vireo (V. griseus) to acute and chronic threats to their offspring. Like many open-nesting birds, our study species experience high offspring mortality. Parents responded behaviorally to a predator decoy or human 1-2m from their nests, but, in contrast to similar studies of cavity-nesting birds, neither these acute threats nor chronic offspring-directed threats altered plasma corticosterone concentrations of parents. Although parents in this study showed no corticosterone response to offspring-directed threats, they always increased corticosterone concentrations in response to capture. To explain these results, we propose that parents perceive their risk of nest-associated death differently depending on nest type, with cavity-nesting adults perceiving greater risk to themselves than open-nesters that can readily detect and escape from offspring-directed threats. Our results agree with previous studies suggesting that the hypothalamic-pituitary-adrenal axis, a major physiological mechanism for coping with threats to survival, probably plays no role in coping with threats to offspring when risks to parents and offspring are not correlated. We extend that paradigm by demonstrating that nest style may influence how adults perceive the correlation between offspring-directed and self-directed threats.

  10. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  11. Dietary cystine level affects metabolic rate and glycaemic control in adult mice.

    Science.gov (United States)

    Elshorbagy, Amany K; Church, Chris; Valdivia-Garcia, Maria; Smith, A David; Refsum, Helga; Cox, Roger

    2012-04-01

    Plasma total cysteine (tCys) is strongly and independently associated with obesity in large human cohorts, but whether the association is causal is unknown. Dietary cyst(e)ine increases weight gain in some rodent models. We investigated the body composition, metabolic rate and metabolic phenotype of mature C3H/HeH mice assigned to low-cystine (LC) or high-cystine (HC) diets for 12 weeks. Compared to LC mice, HC mice gained more weight (P=.004 for 12-week weight gain %), with increased fat mass and lean mass, and lowered O₂ consumption and CO₂ production by calorimetry. The HC mice had 30% increase in intestinal fat/body weight % (P=.003) and ∼twofold elevated hepatic triglycerides (P=.046), with increased expression of hepatic lipogenic factors, peroxisome proliferator-activated receptor-γ and sterol regulatory element binding protein-1. Gene expression of both basal and catecholamine-stimulated lipolytic enzymes, adipose triglyceride lipase and hormone-sensitive lipase was inhibited in HC mice adipose tissue. The HC mice also had elevated fasting glucose (7.0 vs. 4.5 mmol/L, Pcystine intake promotes adiposity and an adverse metabolic phenotype in mice, indicating that the positive association of plasma tCys with obesity in humans may be causal.

  12. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12 or mothers treated with the antibiotic (ATB amoxicillin around parturition (n = 11. Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic

  13. Exposure of pregnant rats to diverse chemicals during pregnancy causes elevated blood pressure in offspring

    Science.gov (United States)

    Objective: Global undernutrition, low protein diet or dexamethasone treatment during pregnancy has been demonstrated in animal models to result in adverse health effects including hypertension and insulln resistance in adult offspring. Most protocols that produce these effects ca...

  14. Clone-forming activity of embryonal stem hemopoietic cells after transplantation to newborn or adult sublethally irradiated mice.

    Science.gov (United States)

    Drize, N I; Chertkov, I L

    2000-07-01

    Hemopoietic activity of stem hemopoietic cells from the liver of embryos was studied at different terms of intrauterine development. The fate of individual clones of hemopoietic cells marked by human adenosine deaminase gene was followed up in sublethally irradiated or newborn recipients. The efficiency of marker gene incorporation in primitive stem hemopoietic cells from the liver of 12-, 13-, and 17-day embryos was not high. Gene transfer was performed without cell prestimulation to division, and hence, these data show that primitive stem cells proliferate even in 17-day embryos. Cells from embryonal liver in all terms maintain hemopoiesis both in newborn and adult microenvironment, hemopoiesis being realized according to the clonal succession model, i. e. in the some way after transplantation of the bone marrow from adult mice.

  15. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    Science.gov (United States)

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  16. Exposure to N-ethyl-N-nitrosourea in adult mice alters structural and functional integrity of neurogenic sites.

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    Full Text Available BACKGROUND: Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU, a N-nitroso compound (NOC found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ, the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG, and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test and a deficit in spatial memory (Barnes maze performance, two functions primarily related to the SVZ and the DG regions, respectively. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits.

  17. Environmental enrichment enhances episodic-like memory in association with a modified neuronal activation profile in adult mice.

    Directory of Open Access Journals (Sweden)

    Marianne Leger

    Full Text Available Although environmental enrichment is well known to improve learning and memory in rodents, the underlying neuronal networks' plasticity remains poorly described. Modifications of the brain activation pattern by enriched condition (EC, especially in the frontal cortex and the baso-lateral amygdala, have been reported during an aversive memory task in rodents. The aims of our study were to examine 1 whether EC modulates episodic-like memory in an object recognition task and 2 whether EC modulates the task-induced neuronal networks. To this end, adult male mice were housed either in standard condition (SC or in EC for three weeks before behavioral experiments (n = 12/group. Memory performances were examined in an object recognition task performed in a Y-maze with a 2-hour or 24-hour delay between presentation and test (inter-session intervals, ISI. To characterize the mechanisms underlying the promnesiant effect of EC, the brain activation profile was assessed after either the presentation or the test sessions using immunohistochemical techniques with c-Fos as a neuronal activation marker. EC did not modulate memory performances after a 2 h-ISI, but extended object recognition memory to a 24 h-ISI. In contrast, SC mice did not discriminate the novel object at this ISI. Compared to SC mice, no activation related to the presentation session was found in selected brain regions of EC mice (in particular, no effect was found in the hippocampus and the perirhinal cortex and a reduced activation was found in the baso-lateral amygdala. On the other hand, an activation of the hippocampus and the infralimbic cortex was observed after the test session for EC, but not SC mice. These results suggest that the persistence of object recognition memory in EC could be related to a reorganization of neuronal networks occurring as early as the memory encoding.

  18. High levels of gene expression in the hepatocytes of adult mice, neonatal mice and tree shrews via retro-orbital sinus hydrodynamic injections of naked plasmid DNA.

    Science.gov (United States)

    Yan, Shaoduo; Fu, Qiuxia; Zhou, Yong; Wang, Jidong; Liu, Ying; Duan, Xiangguo; Jia, Shuaizheng; Peng, Jianchun; Gao, Bo; Du, Juan; Zhou, Qianqian; Li, Yuan; Wang, Xiaohui; Zhan, Linsheng

    2012-08-10

    Hydrodynamic-based gene delivery has emerged as an efficient and simple method for the intracellular transfection of naked plasmid DNA (pDNA) in vivo. In this system, a hydrodynamic injection via the tail vein is the most effective non-viral method of liver-targeted gene delivery. However, this injection is often technically challenging when used in animals whose tail veins are difficult to visualize or too small to operate on. To overcome this limitation, an alternative in vivo gene delivery method, the rapid injection of large volume of pDNA solution through retro-orbital sinus, was established. Using this technique, we successfully delivered pDNA to the tissue of adult mice, neonatal mice and tree shrews. The efficient expression of exogenous genes was specifically detected in the liver of test animals treated with this gene delivery method. This study demonstrates for the first time that the hydrodynamic gene delivery via the retro-orbital sinus can not only reach the same transgene efficiency as a tradition hydrodynamic-based intravascular injection but also be used in animals that are difficult to inject via the tail vein. This method could open up new areas in gene function studies and gene therapy disease treatment.

  19. Intrahepatic transplantation of CD34+ cord blood stem cells into newborn and adult NOD/SCID mice induce differential organ engraftment.

    Science.gov (United States)

    Wulf-Goldenberg, Annika; Keil, Marlen; Fichtner, Iduna; Eckert, Klaus

    2012-04-01

    In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34(+) cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation. Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34(+) cord blood stem cell preparations.

  20. Long-term voluntary running improves diet-induced adiposity in young adult mice

    Science.gov (United States)

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  1. Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice.

    Science.gov (United States)

    Klempin, Friederike; Kronenberg, Golo; Cheung, Giselle; Kettenmann, Helmut; Kempermann, Gerd

    2011-01-01

    The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.

  2. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    Directory of Open Access Journals (Sweden)

    Eva María Medina-Rodríguez

    Full Text Available During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs, a cell type that is a significant proportion of the total cells (3-8% in the adult central nervous system (CNS of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  3. 产前应激促进慢性应激诱导的子代鼠海马β-淀粉样蛋白形成%Prenatal stress promotes formation of chronic stress-induced hippocampal amyloid β protein in offspring mice

    Institute of Scientific and Technical Information of China (English)

    王正玉; 韩振敏; 唐伟; 姚余有

    2015-01-01

    目的 探讨产前应激是否能促进慢性应激诱导的6月龄雄性子代鼠海马β-淀粉样蛋白(Aβ)形成及其作用机制. 方法 以APPswe/PS1 dE9双转基因小鼠为研究对象,将雄性APPswe/PS1 dE9双转基因子代鼠根据产前是否应激和子代鼠是否慢性应激分为产前应激-子代慢性应激(TT)组、产前应激-子代正常处理(TC)组、产前正常处理-子代慢性应激(CT)组和产前正常处理-子代正常处理(CC)组,每组18只.采用刚果红染色检查子代鼠脑组织的淀粉样斑块;采用Western blotting检测海马组织磷酸化真核翻译起始因子2的α亚单位(p-eIF2α)、磷酸化蛋白激酶R样内质网激酶(p-PERK)、葡萄糖调节蛋白78(Grp78)和淀粉样前体蛋白β位点分裂酶1(BACE1)的表达水平;采用ELISA法检测Aβ1-40和Aβ1-42表达水平;采用荧光酶标仪检测BACE1活性. 结果 与CC组相比,CT组、TT组、TC组小鼠脑组织淀粉样斑块数目增多.与CC组相比,CT组小鼠海马组织p-eIF2α、p-PERK、Grp78、BACE1、Aβ1-40和Aβ1-42表达水平明显升高,差异均有统计学意义(P<0.05).与CT组相比,TT组海马组织p-eIF2α、p-PERK、Grp78、BACE1、Aβ1-40和Aβ1-42表达水平进一步升高,差异均有统计学意义(P<0.05).各组小鼠海马组织BACE1活性比较差异无统计学意义(P>0.05). 结论 产前应激可促进慢性应激诱导的6月龄雄性APPswe/PS1 dE9双转基因小鼠子代鼠Aβ生成增多,其机制可能是产前应激通过促进子代鼠海马神经元内质网应激,激活PERK,引起eIF2α磷酸化,促进BACE1表达增加,从而促进Aβ生成.%Objective To explore whether prenatal stress promotes formation of chronic stress-induced hippocampal amyloid β (Aβ) protein in 6-month-old male offspring mice and its mechanism.Methods The APPswe/PSIdE9 double transgenic mice were divided into 4 groups according to the prenatal stress and offspring mice stress:prenatal control-offspring control group (CC

  4. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction.

    Science.gov (United States)

    Monteiro da Rocha, André; Ding, Jun; Slawny, Nicole; Wolf, Amber M; Smith, Gary D

    2015-05-01

    Glycogen synthase kinase-3 (GSK3) is a constitutively active serine threonine kinase with 1) two isoforms (GSK3A and GSK3B) that have unique and overlapping functions, 2) multiple molecular intracellular mechanisms that involve phosphorylation of diverse substrates, and 3) implications in pathogenesis of many diseases. Insulin causes phosphorylation and inactivation of GSK3 and mammalian oocytes have a functional insulin-signaling pathway whereby prolonged elevated insulin during follicle/oocyte development causes GSK3 hyperphosphorylation, reduced GSK3 activity, and altered oocyte chromatin remodeling. Periconceptional diabetes and chronic hyperinsulinemia are associated with congenital malformations and onset of adult diseases of cardiovascular origin. Objectives were to produce transgenic mice with individual or concomitant loss of GSK3A and/or GSK3B and investigate the in vivo role of oocyte GSK3 on fertility, fetal development, and offspring health. Wild-type males bred to females with individual or concomitant loss of oocyte GSK3 isoforms did not have reduced fertility. However, concomitant loss of GSK3A and GSK3B in the oocyte significantly increased neonatal death rate due to congestive heart failure secondary to ventricular hyperplasia. Individual loss of oocyte GSK3A or GSK3B did not induce this lethal phenotype. In conclusion, absence of oocyte GSK3 in the periconceptional period does not alter fertility yet causes offspring cardiac hyperplasia, cardiovascular defects, and significant neonatal death. These results support a developmental mechanism by which periconceptional hyperinsulinemia associated with maternal metabolic syndrome, obesity, and/or diabetes can act on the oocyte and affect offspring cardiovascular development, function, and congenital heart malformation.

  5. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice

    NARCIS (Netherlands)

    Arnold, K.; Sarkar, A.; Yram, M.A.; Polo, J.M.; Bronson, R.; Sengupta, S.; Seandel, M.; Geijsen, N.; Hochedlinger, K.

    2011-01-01

    The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We show here that Sox2 marks adult cells in several epithelial

  6. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    Science.gov (United States)

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  7. Targeted Disruption of the Lama3 Gene in Adult Mice Is Sufficient to Induce Skin Inflammation and Fibrosis.

    Science.gov (United States)

    Pesch, Monika; König, Sabrina; Aumailley, Monique

    2017-02-01

    Genetic, clinical, and biochemical studies have shown that integrity of the dermal-epidermal junction requires a particular subset of laminins, that is, those containing the α3 chain encoded by the Lama3 gene. Inherited mutations in the human gene or introduction of constitutive mutations in the mouse gene prevent expression of these laminins, causing junctional epidermolysis bullosa, a very severe, often lethal disorder characterized by detachment of the epidermis from the dermis. This has precluded in vivo functional analysis of α3 chain-containing laminins, and it is still unknown whether and how they contribute to adult skin homeostasis. To address this question, we have disrupted the Lama3 gene in basal keratinocytes of adult mice. This led to the gradual disappearance of α3 chain-containing laminins along the dermal-epidermal junction and formation of subepidermal blisters like in congenital junctional epidermis bullosa. The mice lose their nails and have bullae and erosions on the footpads. Because the blistering is restricted to the interfollicular epidermis, the animals do not lose the epidermis and are viable. There is abundant and scattered deposition of collagen VII on the dermal side of the blisters, inflammation, and development of skin fibrosis with extensive accumulation of interstitial and microfibrillar collagens.

  8. Differential antioxidant effects of consuming tea from Sideritis clandestina subsp. peloponnesiaca on cerebral regions of adult mice.

    Science.gov (United States)

    Linardaki, Zacharoula I; Vasilopoulou, Catherine G; Constantinou, Caterina; Iatrou, Gregoris; Lamari, Fotini N; Margarity, Marigoula

    2011-09-01

    Oxidative stress is involved in the pathophysiology of neurodegenerative diseases and aging. Many species of the genus Sideritis (mountain tea) are widely consumed in the Mediterranean region as herbal tea. This study evaluated the effect of supplementation of mice with herbal tea from Sideritis clandestina subsp. peloponnesiaca on the antioxidant status of different brain regions. To select the most bioactive herbal tea, the polyphenolic content (Folin-Ciocalteu method) and the antioxidant properties (ferric reducing antioxidant power [FRAP] and 2,2-diphenyl-1-picrylhydrazyl assays) of several taxa and different populations of the S. clandestina infusions were measured in vitro. Male adult mice had ad libitum access to water (control) or the herbal tea (4% w/v) for 6 weeks. At the end of the treatment period we assessed the total antioxidant power (FRAP assay) and the levels of malondialdehyde (indicator of lipid peroxidation) and reduced glutathione in the cerebral cortex, cerebellum, and midbrain. These biochemical measures have also been determined in liver samples used as a comparative reference peripheral tissue. Consumption of 4% herbal tea increased the total antioxidant power of the midbrain by 72% (Pantioxidant defense of the adult rodent brain in a region-specific manner.

  9. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  10. Delivery of human EV71 receptors by adeno-associated virus increases EV71 infection-induced local inflammation in adult mice.

    Science.gov (United States)

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Chen, Chih-Yeh; Tao, Mi-Hua; Liu, Shih-Jen

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  11. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice

    Science.gov (United States)

    Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R.; Radden, Taylor; Dunson, David B.; Fisher, Simon E.; Jarvis, Erich D.

    2016-01-01

    Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.

  12. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    Science.gov (United States)

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies.

  13. Memory formation and retention are affected in adult miR-132/212 knockout mice.

    Science.gov (United States)

    Hernandez-Rapp, Julia; Smith, Pascal Y; Filali, Mohammed; Goupil, Claudia; Planel, Emmanuel; Magill, Stephen T; Goodman, Richard H; Hébert, Sébastien S

    2015-01-01

    The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.

  14. Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice.

    Science.gov (United States)

    Mastrorilli, Valentina; Scopa, Chiara; Saraulli, Daniele; Costanzi, Marco; Scardigli, Raffaella; Rouault, Jean-Pierre; Farioli-Vecchioli, Stefano; Tirone, Felice

    2017-02-28

    Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.

  15. Repeated dose liver micronucleus assay using adult mice with multiple genotoxicity assays concurrently performed as a combination test.

    Science.gov (United States)

    Hagio, Soichiro; Furukawa, Satoshi; Abe, Masayoshi; Kuroda, Yusuke; Hayashi, Seigo; Ogawa, Izumi

    2014-06-01

    Recently, the liver micronucleus (MN) assay using young adult rats with repeated administrations has been investigated by employing a new method without partial hepatectomy or in situcollagenase perfusion as the repeated dose liver MN (RDLMN) assay by Narumi et al. (2012). In our study, in order to investigate the possibility of the RDLMN assay using young adult mice instead of rats and the feasibility of employing some genotoxicity assays along with the RDLMN assay as a combination test, two genotoxic carcinogens (N,N-diethylnitrosoamine (DEN) and cisplatin (CIS)) and a nongenotoxic carcinogen (phenobarbital sodium (PHE)) were administered to mice for 15 or 29 days. Then, the liver MN assay, peripheral blood (PB) MN assay and comet assay using the liver and kidney were concurrently performed as a combination test. DEN showed positive responses to all endpoints except MN induction in PB after 15 days of repeat administration. A cross-linking agent, CIS, showed MN induction in liver after 29 days of repeat administration, and in PB after 15 and 29 days of repeat administration, although the comet assay yielded negative responses for both organs at both sampling times. PHE yielded negative responses for all endpoints. In conclusion, it is suggested that the RDLMN assay using mice is a feasible method to be integrated into the general repeated toxicity test along with the combination assays, i.e., comet assay or PB MN assay, which would help in risk assessment for carcinogenicity by comparing the results of combination assays with each other.

  16. Protective effect of early prenatal stress on the induction of asthma in adult mice: Sex-specific differences.

    Science.gov (United States)

    Vargas, Mauro Henrique Moraes; Campos, Natália Evangelista; de Souza, Rodrigo Godinho; da Cunha, Aline Andrea; Nuñez, Nailê Karine; Pitrez, Paulo Márcio; Donadio, Márcio Vinícius Fagundes

    2016-10-15

    Adversities faced during the prenatal period can be related to the onset of diseases in adulthood. However, little is known about the effects on the respiratory system. This study aimed to evaluate the effects of prenatal stress in two different time-points during pregnancy on pulmonary function and on the inflammatory profile of mice exposed to an asthma model. Male and female BALB/c mice were divided into 3 groups: control (CON), prenatal stress from the second week of pregnancy (PNS1) and prenatal stress on the last week of pregnancy (PNS2). Both PNS1 and PNS2 pregnant females were submitted to restraint stress. As adults, fear/anxiety behaviors were assessed, and animals were subjected to an asthma model induced by ovalbumin. Pulmonary function, inflammatory parameters in bronchoalveolar lavage (BAL) and histology were evaluated. There was a significant decrease in the number of entries and time spent in the central quadrant on the open field test for the PNS1 animals. Females (PNS1) showed improved pulmonary function (airway resistance, tissue damping and pulmonary elastance), significant increase in the percentage of neutrophils and lymphocytes and a decrease in eosinophils when compared to controls. There was a significant decrease in inflammatory cytokines in BAL of both males (IL-5 and IL-13) and females (IL-4, IL-5 and IL-13) from PNS1 and PNS2 when compared to the CON group. Prenatal stress starting from the beginning of pregnancy reduces the impact of asthma development in adult female mice, showing an improved pulmonary function and a lower inflammatory response in the lungs.

  17. Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice.

    Science.gov (United States)

    Diz-Chaves, Yolanda; Astiz, Mariana; Bellini, Maria José; Garcia-Segura, Luis M

    2013-02-01

    Early life experiences, such as prenatal stress, may result in permanent alterations in the function of the nervous and immune systems. In this study we have assessed whether prenatal stress affects the inflammatory response of the hippocampal formation of male mice to an inflammatory challenge during adulthood. Pregnant C57BL/6 mice were randomly assigned to stress (n=10) or non-stress (n=10) groups. Animals of the stress group were placed in plastic transparent cylinders and exposed to bright light for 3 sessions of 45min every day from gestational day 12 to parturition. Non-stressed pregnant mice were left undisturbed. At four months of age, non stressed and prenatally stressed male offspring were killed, 24h after the systemic administration of lipopolysaccharide (LPS) or vehicle. Under basal conditions, prenatally stressed animals showed increased expression of interleukin 1β and tumor necrosis factor-α (TNF-α) in the hippocampus and an increased percentage of microglia cells with reactive morphology in CA1 compared to non-stressed males. Furthermore, prenatally stressed mice showed increased TNF-α immunoreactivity in CA1 and increased number of Iba-1 immunoreactive microglia and GFAP-immunoreactive astrocytes in the dentate gyrus after LPS administration. In contrast, LPS did not induce such changes in non-stressed animals. These findings indicate that prenatal stress induces a basal proinflammatory status in the hippocampal formation during adulthood that results in an enhanced activation of microglia and astrocytes in response to a proinflammatory insult.

  18. Neural precursors (NPCs) from adult L967Q mice display early commitment to "in vitro" neuronal differentiation and hyperexcitability.

    Science.gov (United States)

    DiFebo, Francesca; Curti, Daniela; Botti, Francesca; Biella, Gerardo; Bigini, Paolo; Mennini, Tiziana; Toselli, Mauro

    2012-08-01

    The pathogenic factors leading to selective degeneration of motoneurons in ALS are not yet understood. However, altered functionality of voltage-dependent Na(+) channels may play a role since cortical hyperexcitability was described in ALS patients and riluzole, the only drug approved to treat ALS, seems to decrease glutamate release via blockade or inactivation of voltage-dependent Na(+) channels. The wobbler mouse, a murine model of motoneuron degeneration, shares some of the clinical features of human ALS. At early stages of the wobbler disease, increased cortical hyperexcitability was observed. Moreover, riluzole reduced motoneuron loss and muscular atrophy in treated wobbler mice. Here, we focussed our attention on specific electrophysiological properties, like voltage-activated Na(+) currents and underlying regenerative electrical activity, as read-outs of the neuronal maturation process of neural stem/progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of adult early symptomatic wobbler mice. In self-renewal conditions, the rate of wobbler NPC proliferation "in vitro" was 30% lower than that of healthy mice. Conversely, the number of wobbler NPCs displaying early neuronal commitment and action potentials was significantly higher. Upon switching from proliferative to differentiative conditions, NPCs underwent significant changes in the key properties of voltage gated Na(+) currents. The most notable finding, in cells with neuronal morphology, was an increase in Na(+) current density that strictly correlated with an increased probability to generate action potentials. This feature was remarkably more pronounced in neurons differentiated from wobbler NPCs that upon sustained stimulation, displayed short trains of pathological facilitation. In agreement with this result, an increase in the number of c-Fos positive cells, a surrogate marker of neuronal network activation, was observed in the mesial cortex of the wobbler mice "in situ". Thus these

  19. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  20. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Ismail, Amani M; Abou-El-Mahasen, Mona A; Ashamallah, Sylvia A; Khater, Sherry M; El-Halawani, Sawsan M; Ibrahim, Rana Y; Uin, Gan Shu; Kloc, Malgorzata; Calne, Roy Y; Ghoneim, Mohamed A

    2013-01-01

    Harvesting, expansion, and directed differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSCs) could provide an autologous source of surrogate β-cells that would alleviate the limitations of availability and/or allogenic rejection following pancreatic or islet transplantation. Bone marrow cells were obtained from three adult type 2 diabetic volunteers and three nondiabetic donors. After 3 days in culture, adherent MSCs were expanded for two passages. At passage 3, differentiation was carried out in a three-staged procedure. Cells were cultured in a glucose-rich medium containing several activation and growth factors. Cells were evaluated in vitro by flow cytometry, immunolabeling, RT-PCR, and human insulin and c-peptide release in responses to increasing glucose concentrations. One thousand cell clusters were inserted under the renal capsule of diabetic nude mice followed by monitoring of their diabetic status. At the end of differentiation, ∼5-10% of cells were immunofluorescent for insulin, c-peptide or glucagon; insulin, and c-peptide were coexpressed. Nanogold immunolabeling for electron microscopy demonstrated the presence of c-peptide in the rough endoplasmic reticulum. Insulin-producing cells (IPCs) expressed transcription factors and genes of pancreatic hormones similar to those expressed by pancreatic islets. There was a stepwise increase in human insulin and c-peptide release by IPCs in response to increasing glucose concentrations. Transplantation of IPCs into nude diabetic mice resulted in control of their diabetic status for 3 months. The sera of IPC-transplanted mice contained human insulin and c-peptide but negligible levels of mouse insulin. When the IPC-bearing kidneys were removed, rapid return of diabetic state was noted. BM-MSCs from diabetic and nondiabetic human subjects could be differentiated without genetic manipulation to form IPCs that, when transplanted, could maintain euglycemia in diabetic mice for 3 months

  1. Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts.

    Science.gov (United States)

    Wang, Tao; Guo, Xiaoyong; Hong, Yang; Han, Hongxiao; Cao, Xiaodan; Han, Yanhui; Zhang, Min; Wu, Miaoli; Fu, Zhiqiang; Lu, Ke; Li, Hao; Zhao, Zhixin; Lin, Jiaojiao

    2016-10-30

    Schistosomiasis remains a serious public health concern in China. BALB/c mice are susceptible to Schistosoma japonicum infection, whereas the Wistar rats are less susceptible. Apoptosis phenomenon was observed in 42d adult worms of S. japonicum from both rats and mice at the morphologic, DNA, cellular, and gene levels by transmission electron microscopy (TEM), fluorometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, fluorescein isothiocyanate-annexin-V/propidium iodide staining flow cytometry (FCM) analysis, and real-time PCR. The results showed that the apoptotic state in worms from two different susceptible hosts was diverse. Several classical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and lunate marginalization, splitting of the nucleoli, nuclear shrinkage and apoptotic body formation were observed by TEM. TUNEL analysis showed that there were much more apoptosis spots in adult worms from rats than those from mice. Statistical analysis revealed that the degree of apoptosis and percentage of necrotic cells in adult worms from Wistar rats were significantly greater (Pworms from Wistar rats, as compared to those from BALB/c mice. The results obtained in this study collectively demonstrated that differential development of adult S. japonicum in less-susceptible rats and susceptible mice was significantly associated with apoptosis in the worm, and provided valuable information to guide further investigations of the mechanisms governing apoptosis and host interactions in schistosome infection.

  2. Offspring psychopathology following preconception, prenatal, and postnatal maternal bereavement stress

    Science.gov (United States)

    Class, Quetzal A.; Abel, Kathryn M.; Khashan, Ali S.; Rickert, Martin E.; Dalman, Christina; Larsson, Henrik; Hultman, Christina M.; Långström, Niklas; Lichtenstein, Paul; D’Onofrio, Brian M.

    2013-01-01

    Background Preconception, prenatal, and postnatal maternal stress are associated with increased offspring psychopathology, but findings are inconsistent and need replication. We estimated associations between maternal bereavement stress and offspring autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder, schizophrenia, suicide attempt, and completed suicide. Methods Using Swedish registers, we conducted the largest population-based study to date examining associations between stress exposure in 738,144 offspring born 1992–2000 for childhood outcomes and 2,155,221 offspring born 1973–1997 for adult outcomes with follow-up through 2009. Maternal stress was defined as death of a first degree relative during 6 months before conception, across pregnancy, or the first two postnatal years. Cox proportional survival analyses were used to obtain hazard ratios (HR) in unadjusted and adjusted analyses. Results Marginal increased risk of bipolar disorder and schizophrenia following preconception bereavement stress was not significant. Third trimester prenatal stress increased risk of ASD (adjusted HR=1.58, 95% CI: 1.15–2.17) and ADHD (adjusted HR=1.31, 95% CI: 1.04–1.66). First postnatal year stress increased risk for offspring suicide attempt (adjusted HR=1.13, 95% CI: 1.02–1.25) and completed suicide (adjusted HR=1.51, 95% CI: 1.08–2.11). Bereavement stress during the second postnatal year increased risk of ASD (adjusted HR=1.30, 95% CI: 1.09–1.55). Conclusions Further research is needed on associations between preconception stress and psychopathological outcomes. Prenatal bereavement stress increases risk of offspring ASD and ADHD. Postnatal bereavement stress moderately increases risk of offspring suicide attempt, completed suicide, and ASD. Smaller previous studies may have overestimated associations between early stress and psychopathological outcomes. PMID:23591021

  3. Habitat structure influences parent-offspring association in a social lizard

    Directory of Open Access Journals (Sweden)

    Thomas Botterill-James

    2016-08-01

    Full Text Available Parental care emerges as a result of an increase in the extent of interaction between parents and their offspring. These interactions can provide the foundation for the evolution of a range of complex parental behaviors. Therefore, fundamental to understanding the evolution of parental