WorldWideScience

Sample records for adult mouse subventricular

  1. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    Science.gov (United States)

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone

    Science.gov (United States)

    Campos-Ordoñez, Tania; Herranz-Pérez, Vicente; Chaichana, Kaisorn L.; Rincon-Torroella, Jordina; Rigamonti, Daniele; García-Verdugo, Jose M.; Quiñones-Hinojosa, Alfredo; Gonzalez-Perez, Oscar

    2014-01-01

    Hydrocephalus can develop secondarily to a disturbance in production, flow and/or absorption of cerebrospinal fluid. Experimental models of hydrocephalus, especially subacute and chronic hydrocephalus, are few and limited, and the effects of hydrocephalus on the subventricular zone are unclear. The aim of this study was to analyze the effects of long-term obstructive hydrocephalus on the subventricular zone, which is the neurogenic niche lining the lateral ventricles. We developed a new method to induce hydrocephalus by obstructing the aqueduct of Sylvius in the mouse brain, thus simulating aqueductal stenosis in humans. In 120-day-old rodents (n = 18 per group), the degree of ventricular dilatation and cellular composition of the subventricular zone were studied by immunofluorescence and transmission electron microscopy. In adult patients (age > 18 years), the sizes of the subventricular zone, corpus callosum, and internal capsule were analyzed by magnetic resonance images obtained from patients with and without aqueductal stenosis (n=25 per group). Mice with 60-day hydrocephalus had a reduced number of Ki67+ and doublecortin+ cells on immunofluorescence, as well as decreased number of neural progenitors and neuroblasts in the subventricular zone on electron microscopy analysis as compared to non-hydrocephalic mice. Remarkably, a number of extracellular matrix structures (fractones) contacting the ventricular lumen and blood vessels were also observed around the subventricular zone in mice with hydrocephalus. In humans, the widths of the subventricular zone, corpus callosum, and internal capsule in patients with aqueductal stenosis were significantly smaller than age and gender-matched patients without aqueductal stenosis. In summary, supratentorial hydrocephalus reduces the proliferation rate of neural progenitors and modifies the cytoarchitecture and extracellular matrix compounds of the subventricular zone. In humans, this similar process reduces the

  3. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  4. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    OpenAIRE

    Lazarini, Fran?oise; Mouthon, Marc-Andr?; Gheusi, Gilles; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lamarque, St?phanie; Abrous, Djoher Nora; Boussin, Fran?ois D.; Lledo, Pierre-Marie

    2009-01-01

    International audience; BACKGROUND: In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we irradiated adult mice to impair c...

  5. A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone

    OpenAIRE

    Vergni, Davide; Castiglione, Filippo; Briani, Maya; Middei, Silvia; Alberdi, Elena; Reymann, Klaus G.; Natalini, Roberto; Volont?, Cinzia; Matute, Carlos; Cavaliere, Fabio

    2009-01-01

    12 p. We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose...

  6. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres

    DEFF Research Database (Denmark)

    Popa, Natalia; Cédile, Oriane; Pollet-Villard, Xavier

    2011-01-01

    playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression......, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here...

  7. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis.

    Science.gov (United States)

    Kawaguchi, Daichi; Furutachi, Shohei; Kawai, Hiroki; Hozumi, Katsuto; Gotoh, Yukiko

    2013-01-01

    Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone. Dll1 protein is induced in activated NSCs and segregates to one daughter cell during mitosis. Dll1-expressing cells reside in close proximity to quiescent NSCs, suggesting a feedback signal for NSC maintenance by their sister cells and progeny. Our data suggest a model in which NSCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis.

  8. A model of ischemia-induced neuroblast activation in the adult subventricular zone.

    Directory of Open Access Journals (Sweden)

    Davide Vergni

    Full Text Available We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6-24 hours, neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days, they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours. The process is further enhanced by elevating the production of the chemoattractant SDf-1alpha and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies.

  9. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Science.gov (United States)

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural

  10. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    Full Text Available Recent studies suggest that the subventricular zone (SVZ of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to

  11. Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta

    NARCIS (Netherlands)

    van den Berge, S.A.; Middeldorp, J.; Zhang, C.E.; Curtis, M.A.; Leonard, B.W.; Mastroeni, D.; Voorn, P.; van de Berg, W.D.J.; Huitinga, I.; Hol, E.M.

    2010-01-01

    A main neurogenic niche in the adult human brain is the subventricular zone (SVZ). Recent data suggest that the progenitors that are born in the human SVZ migrate via the rostral migratory stream (RMS) towards the olfactory bulb (OB), similar to what has been observed in other mammals. A

  12. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    Science.gov (United States)

    Lazarini, Françoise; Mouthon, Marc-André; Gheusi, Gilles; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lamarque, Stéphanie; Abrous, Djoher Nora; Boussin, François D.; Lledo, Pierre-Marie

    2009-01-01

    Background In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. Methodology/Principal Findings In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation. Conclusion/Significance These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces. PMID:19753118

  13. Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice.

    Directory of Open Access Journals (Sweden)

    Françoise Lazarini

    2009-09-01

    Full Text Available In mammals, new neurons are added to the olfactory bulb (OB throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear.In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation.These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces.

  14. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis

    OpenAIRE

    Kawaguchi, Daichi; Furutachi, Shohei; Kawai, Hiroki; Hozumi, Katsuto; Gotoh, Yukiko

    2013-01-01

    Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch...

  15. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  16. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres.

    Science.gov (United States)

    Popa, Natalia; Cedile, Oriane; Pollet-Villard, Xavier; Bagnis, Claude; Durbec, Pascale; Boucraut, José

    2011-01-01

    Improving and controlling the capacity of endogenous or grafted adult neural stem cells to repair the nervous system relies on a better knowledge of interactions between immune cells and neural stem cells. Class I major histocompatibility complex (MHC) family members comprise numerous proteins playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression of two MHC class I-related members by neural stem/progenitor cells: retinoic acid early induced transcript (RAE)-1 and CD1d. The expression of RAE-1 but not CD1d disappears when differentiation of neurosphere cells is induced. Interestingly, RAE-1 transcripts are expressed in the brain during development, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here, we do not detect any NKG2D expression in the SVZ either in physiological or in pathological conditions. Interestingly, inhibition of RAE-1 expression in neurosphere cells reduces cell proliferation without alteration of cell viability, which argues for a nonimmune role for RAE-1. These results reveal an unexpected role of RAE-1 in regulating adult SVZ neurogenesis by supporting stem/progenitor cells proliferation. © 2010 Wiley-Liss, Inc.

  17. Location of subventricular zone recurrence and its radiation dose predicts survival in patients with glioblastoma.

    Science.gov (United States)

    Weinberg, Brent D; Boreta, Lauren; Braunstein, Steve; Cha, Soonmee

    2018-07-01

    Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.

  18. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone

    Directory of Open Access Journals (Sweden)

    Vivian eCapilla-Gonzalez

    2015-09-01

    Full Text Available Neural stem cells persist in the adult mammalian brain through life. The subventricular zone is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the subventricular zone suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the neural stem cell population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is not compromised. Interestingly, the human brain seems to primarily preserve the ability to produce new oligodendrocytes instead of neurons, which could be related to the development of neurological disorders. Further studies in this matter are required to improve our understanding and the current strategies for fighting neurological diseases associated with senescence.

  19. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    Science.gov (United States)

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  20. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone.

    Science.gov (United States)

    Rushing, Gabrielle; Ihrie, Rebecca A

    2016-08-01

    The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including

  1. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells

    Directory of Open Access Journals (Sweden)

    Doughty Martin L

    2011-05-01

    Full Text Available Abstract Background Histone deacetylases (HDACs are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs. In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes

  2. BTG1 is required to maintain the pool of stem and progenitor cells of dentate gyrus and subventricular zone

    OpenAIRE

    Stefano eFarioli-Vecchioli; Laura eMicheli; Daniele eSaraulli; Manuela eCeccarelli; Sara eCannas; Raffaella eScardigli; Luca eLeonardi; Irene eCinà; Marco eCostanzi; Maria Teresa eCiotti; Pedro eMoreira; Jean-Pierre eRouault; Vincenzo eCestari; Felice eTirone

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons.Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at two months of age the number of these proliferating cells, a...

  3. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    OpenAIRE

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as...

  4. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Anna Engler

    2018-01-01

    Full Text Available Neurogenesis continues in the ventricular-subventricular zone (V-SVZ of the adult forebrain from quiescent neural stem cells (NSCs. V-SVZ NSCs are a reservoir for new olfactory bulb (OB neurons that migrate through the rostral migratory stream (RMS. To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.

  5. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  6. A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies

    International Nuclear Information System (INIS)

    Vik-Mo, Einar Osland; Sandberg, Cecilie; Joel, Mrinal; Stangeland, Biljana; Watanabe, Yasuhiro; Mackay-Sim, Alan; Moe, Morten Carstens; Murrell, Wayne; Langmoen, Iver Arne

    2011-01-01

    Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.

  7. New Insights on the Morphology of Adult Mouse Penis1

    Science.gov (United States)

    Rodriguez, Esequiel; Weiss, Dana A.; Yang, Jennifer H.; Menshenina, Julia; Ferretti, Max; Cunha, Tristan J.; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Cunha, Gerald R.; Baskin, Laurence S.

    2011-01-01

    ABSTRACT The adult mouse penis represents the end point of masculine sex differentiation of the embryonic genital tubercle and contains bone, cartilage, the urethra, erectile bodies, several types of epithelium, and many individual cell types arrayed into specific anatomical structures. Using contemporary high-resolution imaging techniques, we sought to provide new insights to the current description of adult mouse penile morphology to enable understanding of penile abnormalities, including hypospadias. Examination of serial transverse and longitudinal sections, scanning electron microscopy, and three-dimensional (3D) reconstruction provided a new appreciation of the individual structures in the adult mouse penis and their 3D interrelationships. In so doing, we discovered novel paired erectile bodies, the male urogenital mating protuberance (MUMP), and more accurately described the urethral meatus. These morphological observations were quantified by morphometric analysis and now provide accurate morphological end points of sex differentiation of mouse penis that will be the foundation of future studies to identify normal and abnormal penile development. PMID:21918128

  8. ATM localization and gene expression in the adult mouse eye.

    Science.gov (United States)

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice; Abitbol, Marc

    2009-01-01

    High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Atm gene expression was analyzed by RT-PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue sections, with a special

  9. A Comprehensive Atlas of the Adult Mouse Penis

    Science.gov (United States)

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  10. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  11. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain

    NARCIS (Netherlands)

    van den Berge, S.A.; van Strien, M.E.; Korecka, J.A.; Dijkstra, A.A.; Sluijs, J.A; Kooijman, L.; Eggers, R.; De Filippis, L.; Vescovi, A.L.; Verhaagen, J.; van de Berg, W.D.J.; Hol, E.M.

    2011-01-01

    There are many indications that neurogenesis is impaired in Parkinson's disease, which might be due to a lack of dopamine in the subventricular zone. An impairment in neurogenesis may have negative consequences for the development of new therapeutic approaches in Parkinson's disease, as neural stem

  12. Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone.

    Science.gov (United States)

    Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M; Restrepo, Diego; Macklin, Wendy B

    2018-02-13

    Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1 -null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1 -null mice. Young adult Plp1- null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. © 2018, Gould et al.

  13. Transcriptome signature of the adult mouse choroid plexus

    Directory of Open Access Journals (Sweden)

    Marques Fernanda

    2011-01-01

    Full Text Available Abstract Background Although the gene expression profile of several tissues in humans and in rodent animal models has been explored, analysis of the complete choroid plexus (CP transcriptome is still lacking. A better characterization of the CP transcriptome can provide key insights into its functions as one of the barriers that separate the brain from the periphery and in the production of cerebrospinal fluid. Methods This work extends further what is known about the mouse CP transcriptome through a microarray analysis of CP tissue from normal mice under physiological conditions. Results We found that the genes most highly expressed are those implicated in energy metabolism (oxidative phosphorylation, glycolysis/gluconeogenesis and in ribosomal function, which is in agreement with the secretory nature of the CP. On the other hand, genes encoding for immune mediators are among those with lower expression in basal conditions. In addition, we found genes known to be relevant during brain development, and not previously identified to be expressed in the CP, including those encoding for various axonal guidance and angiogenesis molecules and for growth factors. Some of these are known to influence the neural stem cell niche in the subventricular zone, highlighting the involvement of the CP as a likely modulator of neurogenesis. Interestingly, our observations confirm that the CP transcriptome is unique, displaying low homology with that of other tissues. Of note, we describe here that the closest similarity is with the transcriptome of the endothelial cells of the blood-brain barrier. Conclusions Based on the data presented here, it will now be possible to further explore the function of particular proteins of the CP secretome in health and in disease.

  14. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  15. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  16. Conditional reduction of adult born doublecortin-positive neurons reversibly impairs selective behaviours

    Directory of Open Access Journals (Sweden)

    Lillian eGarrett

    2015-11-01

    Full Text Available Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ along the walls of the lateral ventricles and the subgranular zone (SGZ of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB - and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreERT2 under doublecortin (DCX promoter control were crossed with mice where diphtheria toxin A (DTA was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM, results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months and middle (from 10 months aged mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the tamoxifen treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior.

  17. Adult neurogenesis and specific replacement of interneuron subtypes in the mouse main olfactory bulb

    Directory of Open Access Journals (Sweden)

    LaRocca Greg

    2007-11-01

    Full Text Available Abstract Background New neurons are generated in the adult brain from stem cells found in the subventricular zone (SVZ. These cells proliferate in the SVZ, generating neuroblasts which then migrate to the main olfactory bulb (MOB, ending their migration in the glomerular layer (GLL and the granule cell layer (GCL of the MOB. Neuronal populations in these layers undergo turnover throughout life, but whether all neuronal subtypes found in these areas are replaced and when neurons begin to express subtype-specific markers is not known. Results Here we use BrdU injections and immunohistochemistry against (calretinin, calbindin, N-copein, tyrosine hydroxylase and GABA and show that adult-generated neurons express markers of all major subtypes of neurons in the GLL and GCL. Moreover, the fractions of new neurons that express subtype-specific markers at 40 and 75 days post BrdU injection are very similar to the fractions of all neurons expressing these markers. We also show that many neurons in the glomerular layer do not express NeuN, but are readily and specifically labeled by the fluorescent nissl stain Neurotrace. Conclusion The expression of neuronal subtype-specific markers by new neurons in the GLL and GCL changes rapidly during the period from 14–40 days after BrdU injection before reaching adult levels. This period may represent a critical window for cell fate specification similar to that observed for neuronal survival.

  18. New neurons in the adult brain : The role of sleep and consequences of sleep loss

    NARCIS (Netherlands)

    Meerlo, Peter; Mistiberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis; Mistlberger, Ralph E.

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a

  19. Identification and characterization of adult mouse meniscus stem/progenitor cells.

    Science.gov (United States)

    Gamer, Laura W; Shi, Rui Rui; Gendelman, Ashira; Mathewson, Dylan; Gamer, Jackson; Rosen, Vicki

    Meniscal damage is a common problem that accelerates the onset of knee osteoarthritis. Stem cell-based tissue engineering treatment approaches have shown promise in preserving meniscal tissue and restoring meniscal function. The purpose of our study was to identify meniscus-derived stem/progenitor cells (MSPCs) from mouse, a model system that allows for in vivo analysis of the mechanisms underlying meniscal injury and healing. MSPCs were isolated from murine menisci grown in explant culture and characterized for stem cell properties. Flow cytometry was used to detect the presence of surface antigens related to stem cells, and qRT-PCR was used to examine the gene expression profile of MSPCs. Major proteins associated with MSPCs were localized in the adult mouse knee using immunohistochemistry. Our data show that MSPCs have universal stem cell-like properties including clonogenicity and multi-potentiality. MSPCs expressed the mesenchymal stem cell markers CD44, Sca-1, CD90, and CD73 and when cultured had elevated levels of biglycan and collagen type I, important extracellular matrix components of adult meniscus. MSPC also expressed significant levels of Lox and Igf-1, genes associated with the embryonic meniscus. Localization studies showed staining for these same proteins in the superficial and outer zones of the adult mouse meniscus, regions thought to harbor endogenous repair cells. MSPCs represent a novel resident stem cell population in the murine meniscus. Analysis of MSPCs in mice will allow for a greater understanding of the cell biology of the meniscus, essential information for enhancing therapeutic strategies for treating knee joint injury and disease.

  20. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    Science.gov (United States)

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  1. Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.

    Science.gov (United States)

    Pushkar, Yulia; Robison, Gregory; Sullivan, Brendan; Fu, Sherleen X; Kohne, Meghan; Jiang, Wendy; Rohr, Sven; Lai, Barry; Marcus, Matthew A; Zakharova, Taisiya; Zheng, Wei

    2013-10-01

    Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  2. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates...... intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation...... induced Ca(2+) increases in 40-50% of SVZ astrocytes. GABA(A)-induced Ca(2+) increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC). The L-type Ca(2+) channel activator BayK 8644 increased the percentage of GABA(A)-responding astrocyte...

  3. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  4. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  5. Transplanted Adult Neural Stem Cells Express Sonic Hedgehog In Vivo and Suppress White Matter Neuroinflammation after Experimental Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Genevieve M. Sullivan

    2017-01-01

    Full Text Available Neural stem cells (NSCs delivered intraventricularly may be therapeutic for diffuse white matter pathology after traumatic brain injury (TBI. To test this concept, NSCs isolated from adult mouse subventricular zone (SVZ were transplanted into the lateral ventricle of adult mice at two weeks post-TBI followed by analysis at four weeks post-TBI. We examined sonic hedgehog (Shh signaling as a candidate mechanism by which transplanted NSCs may regulate neuroregeneration and/or neuroinflammation responses of endogenous cells. Mouse fluorescent reporter lines were generated to enable in vivo genetic labeling of cells actively transcribing Shh or Gli1 after transplantation and/or TBI. Gli1 transcription is an effective readout for canonical Shh signaling. In ShhCreERT2;R26tdTomato mice, Shh was primarily expressed in neurons and was not upregulated in reactive astrocytes or microglia after TBI. Corroborating results in Gli1CreERT2;R26tdTomato mice demonstrated that Shh signaling was not upregulated in the corpus callosum, even after TBI or NSC transplantation. Transplanted NSCs expressed Shh in vivo but did not increase Gli1 labeling of host SVZ cells. Importantly, NSC transplantation significantly reduced reactive astrogliosis and microglial/macrophage activation in the corpus callosum after TBI. Therefore, intraventricular NSC transplantation after TBI significantly attenuated neuroinflammation, but did not activate host Shh signaling via Gli1 transcription.

  6. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal. PMID:22969701

  7. Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?

    Directory of Open Access Journals (Sweden)

    Sara eXapelli

    2014-02-01

    Full Text Available Neural stem cells (NSCs from the subventricular zone (SVZ have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system (CNS. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin, a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that hemopressin and derivatives may be of potential interest for the development of future strategies to treat demyelinating diseases.

  8. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  9. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    Science.gov (United States)

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  10. Olfactory memory is enhanced in mice exposed to extremely low-frequency electromagnetic fields via Wnt/β-catenin dependent modulation of subventricular zone neurogenesis.

    Science.gov (United States)

    Mastrodonato, Alessia; Barbati, Saviana Antonella; Leone, Lucia; Colussi, Claudia; Gironi, Katia; Rinaudo, Marco; Piacentini, Roberto; Denny, Christine A; Grassi, Claudio

    2018-01-10

    Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.5 h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target β-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF's effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/β-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function.

  11. Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Maruschak, Brigitte

    2007-01-01

    to be strongly expressed in mature oligodendrocytes in vivo. In the present investigation we analyzed the expression patterns of Nogo-A in adult mouse and human CNS as well as in demyelinating animal models and multiple sclerosis lesions. Nogo-A expression was compared with that of other frequently used...... oligodendroglial markers such as CC1, CNP, and in situ hybridization for proteolipid protein mRNA. Nogo-A strongly and reliably labeled oligodendrocytes in the adult CNS as well as in demyelinating lesions and thus represents a valuable tool for the identification of oligodendrocytes in human and mouse CNS tissue...

  12. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease

    International Nuclear Information System (INIS)

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-01-01

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP swe /PS1 ΔE9 mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP swe /PS1 ΔE9 transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  13. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris.

    Science.gov (United States)

    Schulze, Katja; Galichet, Arnaud; Sayar, Beyza S; Scothern, Anthea; Howald, Denise; Zymann, Hillard; Siffert, Myriam; Zenhäusern, Denise; Bolli, Reinhard; Koch, Peter J; Garrod, David; Suter, Maja M; Müller, Eliane J

    2012-02-01

    Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may have a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice that have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we developed a model with passive transfer of AK23 (a mouse monoclonal pathogenic anti-Dsg3 antibody) into adult 8-week-old C57Bl/6J mice. Validated using histopathological and molecular methods, we found that this model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23 transfer, we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion, and predominant blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for investigations on novel keratinocyte-specific therapeutic strategies.

  14. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    Directory of Open Access Journals (Sweden)

    Jack W Hickmott

    2016-01-01

    Full Text Available Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6 gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  15. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    Science.gov (United States)

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  16. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    Science.gov (United States)

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  17. Doublecortin-like knockdown in the adult mouse brain : implications for neurogenesis, neuroplasticity and behaviour

    NARCIS (Netherlands)

    Saaltink, Dirk-Jan

    2014-01-01

    The results in this thesis showed for the first time doublecortin-like (DCL)-specific expression in the adult mouse brain. Besides the expected regions with the capacity to generate new neurons (hippocampus and olfactory forebrain), DCL expression was found in three novel brain areas namely

  18. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    Science.gov (United States)

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  19. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

    Science.gov (United States)

    Fiorelli, Roberto; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose-Manuel; Raineteau, Olivier

    2013-12-01

    Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mouse line (hGFAP-CreERT2) to conditionally label GFAP-expressing cells in the adult SVZ and SC periaqueduct, and directly and systematically compared their self-renewal and multipotential properties in vitro. We demonstrate that a population of GFAP(+) cells that share the morphology and the antigenic properties of SVZ-NSCs mostly reside in the dorsal aspect of the central canal (CC) throughout the spinal cord. These cells are non-proliferative in the intact spinal cord, but incorporate the S-phase marker EdU following spinal cord injury. Multipotent, clonal YFP-expressing neurospheres (i.e., deriving from recombined GFAP-expressing cells) were successfully obtained from both the intact and injured spinal cord. These spheres however showed limited self-renewal properties when compared with SVZ-neurospheres, even after spinal cord injury. Altogether, these results demonstrate that significant differences exist in NSCs lineages between neurogenic and non-neurogenic regions of the adult CNS. Thus, although we confirm that a population of multipotent GFAP(+) cells co-exists alongside with multipotent ependymal cells within the adult SC, we identify these cells as multipotent progenitors showing limited self-renewal properties. Copyright © 2013 Wiley Periodicals, Inc.

  20. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  1. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  2. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Paula G Franco

    Full Text Available Neural Stem and Progenitor Cells (NSC/NPC are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  3. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  4. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    Science.gov (United States)

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  6. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  7. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  8. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  9. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb

    Science.gov (United States)

    Gengatharan, Archana; Bammann, Rodrigo R.; Saghatelyan, Armen

    2016-01-01

    In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future. PMID:27092050

  10. Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus

    Science.gov (United States)

    Kelava, Iva; Reillo, Isabel; Murayama, Ayako Y.; Kalinka, Alex T.; Stenzel, Denise; Tomancak, Pavel; Matsuzaki, Fumio; Lebrand, Cécile; Sasaki, Erika; Schwamborn, Jens C.; Okano, Hideyuki; Borrell, Víctor

    2012-01-01

    Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type. PMID:22114084

  11. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions

    Science.gov (United States)

    Ming, Guo-li; Song, Hongjun

    2011-01-01

    Summary Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade. PMID:21609825

  12. Neurotransmitter regulation of adult neurogenesis: putative therapeutic targets.

    Science.gov (United States)

    Vaidya, V A; Vadodaria, K C; Jha, S

    2007-10-01

    The evidence that new neuron addition takes place in the mammalian brain throughout adult life has dramatically altered our perspective of the potential for plasticity in the adult CNS. Although several recent reports suggest a latent neurogenic capacity in multiple brain regions, the two major neurogenic niches that retain the ability to generate substantial numbers of new neurons in adult life are the subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone (SGZ) in the hippocampal formation. The discovery of adult neurogenesis has also unveiled a novel therapeutic target for the repair of damaged neuronal circuits. In this regard, understanding the endogenous mechanisms that regulate adult neurogenesis holds promise both for a deeper understanding of this form of structural plasticity, as well as the identification of pathways that can serve as therapeutic targets to manipulate adult neurogenesis. The purpose of the present review is to discuss the regulation of adult neurogenesis by neurotransmitters and to highlight the relevance of these endogenous regulators as targets to modulate adult neurogenesis in a clinical context.

  13. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  14. Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain.

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    Full Text Available Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats. Microglia and astrocyte activation levels were suppressed with graphene functionalization. In addition, self-assembled graphene implants prevented glial scarring in the brain 7 weeks following implantation. Astrocyte guidance within the scaffold and redirection of neuroblasts from the subventricular zone along the implants was also demonstrated. These findings provide new functional evidence for the potential use of graphene scaffolds as a therapeutic platform to support central nervous system regeneration.

  15. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  16. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Song, Min; Wang, Yanyan [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Fan, Xiaotang [Department of Histology and Embryology, Third Military Medical University, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@yahoo.com.cn [Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Bai, Yun, E-mail: baiyungene@gmail.com [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China)

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  17. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    Science.gov (United States)

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  18. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    Science.gov (United States)

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  19. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Directory of Open Access Journals (Sweden)

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  20. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  1. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  2. A novel type of self-beating cardiomyocytes in adult mouse ventricles

    International Nuclear Information System (INIS)

    Omatsu-Kanbe, Mariko; Matsuura, Hiroshi

    2009-01-01

    This study was designed to investigate the presence of resident heart cells that are distinct from terminally-differentiated cardiomyocytes. Adult mouse heart was coronary perfused with collagenase, and ventricles were excised and further digested. After spinning cardiomyocyte-containing fractions down, the supernatant fraction was collected and cultured without adding any chemicals. Two to five days after plating, some of rounded cells adhered to the culture dish, gradually changed their shape and then started self-beating. These self-beating cells did not appreciably proliferate but underwent a further morphological maturation process to form highly branched shapes with many projections. These cells were mostly multinucleated, well sarcomeric-organized and expressed cardiac marker proteins, defined as atypically-shaped cardiomyocytes (ACMs). Patch-clamp experiments revealed that ACMs exhibited spontaneous action potentials arising from the preceding slow diastolic depolarization. We thus found a novel type of resident heart cells in adult cardiac ventricles that spontaneously develop into self-beating cardiomyocytes.

  3. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain.

    Science.gov (United States)

    Tang, Jason J; Podratz, Jewel L; Lange, Miranda; Scrable, Heidi J; Jang, Mi-Hyeon; Windebank, Anthony J

    2017-07-07

    Mechano growth factor (MGF) is a splice variant of IGF-1 first described in skeletal muscle. MGF induces muscle cell proliferation in response to muscle stress and injury. In control mice we found endogenous expression of MGF in neurogenic areas of the brain and these levels declined with age. To better understand the role of MGF in the brain, we used transgenic mice that constitutively overexpressed MGF from birth. MGF overexpression significantly increased the number of BrdU+ proliferative cells in the dentate gyrus (DG) of the hippocampus and subventricular zone (SVG). Although MGF overexpression increased the overall rate of adult hippocampal neurogenesis at the proliferation stage it did not alter the distribution of neurons at post-mitotic maturation stages. We then used the lac-operon system to conditionally overexpress MGF in the mouse brain beginning at 1, 3 and 12 months with histological and behavioral observation at 24 months of age. With conditional overexpression there was an increase of BrdU+ proliferating cells and BrdU+ differentiated mature neurons in the olfactory bulbs at 24 months when overexpression was induced from 1 and 3 months of age but not when started at 12 months. This was associated with preserved olfactory function. In vitro, MGF increased the size and number of neurospheres harvested from SVZ-derived neural stem cells (NSCs). These findings indicate that MGF overexpression increases the number of neural progenitor cells and promotes neurogenesis but does not alter the distribution of adult newborn neurons at post-mitotic stages. Maintaining youthful levels of MGF may be important in reversing age-related neuronal loss and brain dysfunction.

  4. Detrimental role of prolonged sleep deprivation on adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Carina eFernandes

    2015-04-01

    Full Text Available Adult mammalian brains continuously generate new neurons, a phenomenon called neurogenesis. Both environmental stimuli and endogenous factors are important regulators of neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and neurogenesis in brain function, such as learning, memory and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on neurogenesis.

  5. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast.

    Directory of Open Access Journals (Sweden)

    Ryan Anderson

    Full Text Available High-resolution Magnetic Resonance Imaging (MRI has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT, especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.

  6. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J

    1999-01-01

    that goal, we have used this mouse model to map the distribution of the truncated RPTP-kappa/beta-geo fusion protein in the adult mouse brain using beta-galactosidase as a marker enzyme. Visualization of the beta-galactosidase activity revealed a non-random pattern of expression, and identified cells......-6596]. Nevertheless, since the transgene's expression is driven by the endogenous RPTP-kappa promoter, distribution of the truncated RPTP-kappa/beta-geo fusion protein should reflect the regional and cellular expression of wild-type RPTP-kappa, and thus may identify sites where RPTP-kappa is important. Towards...

  7. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    OpenAIRE

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (...

  8. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    Science.gov (United States)

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  9. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    Science.gov (United States)

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  10. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    Science.gov (United States)

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  11. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex.

    Science.gov (United States)

    Zemmar, Ajmal; Chen, Chia-Chien; Weinmann, Oliver; Kast, Brigitt; Vajda, Flora; Bozeman, James; Isaad, Noel; Zuo, Yi; Schwab, Martin E

    2018-06-01

    Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.

  12. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J

    1999-01-01

    processes such as axonal growth and target recognition, as has been demonstrated for certain Drosophila RPTPs. The brain distribution of RPTP-kappa-expressing cells has not been determined, however. In a gene-trap mouse model with a beta-gal+neo (beta-geo) insertion in the endogenous RPTP-kappa gene......-6596]. Nevertheless, since the transgene's expression is driven by the endogenous RPTP-kappa promoter, distribution of the truncated RPTP-kappa/beta-geo fusion protein should reflect the regional and cellular expression of wild-type RPTP-kappa, and thus may identify sites where RPTP-kappa is important. Towards...... that goal, we have used this mouse model to map the distribution of the truncated RPTP-kappa/beta-geo fusion protein in the adult mouse brain using beta-galactosidase as a marker enzyme. Visualization of the beta-galactosidase activity revealed a non-random pattern of expression, and identified cells...

  13. Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin

    Directory of Open Access Journals (Sweden)

    Yiwen Jiang

    2017-01-01

    Full Text Available The identity of the glioblastoma (GBM cell of origin and its contributions to disease progression and treatment response remain largely unknown. We have analyzed how the phenotypic state of the initially transformed cell affects mouse GBM development and essential GBM cell (GC properties. We find that GBM induced in neural stem-cell-like glial fibrillary acidic protein (GFAP-expressing cells in the subventricular zone of adult mice shows accelerated tumor development and produces more malignant GCs (mGC1GFAP that are less resistant to cancer drugs, compared with those originating from more differentiated nestin- (mGC2NES or 2,′3′-cyclic nucleotide 3′-phosphodiesterase (mGC3CNP-expressing cells. Transcriptome analysis of mouse GCs identified a 196 mouse cell origin (MCO gene signature that was used to partition 61 patient-derived GC lines. Human GC lines that clustered with the mGC1GFAP cells were also significantly more self-renewing, tumorigenic, and sensitive to cancer drugs compared with those that clustered with mouse GCs of more differentiated origin.

  14. The number of stem cells in the subependymal zone of the adult rodent brain is correlated with the number of ependymal cells and not with the volume of the niche.

    Science.gov (United States)

    Kazanis, Ilias; Ffrench-Constant, Charles

    2012-05-01

    The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.

  15. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  16. C/EBPalpha and C/EBPbeta are required for Sebocyte differentiation and stratified squamous differentiation in adult mouse skin.

    Directory of Open Access Journals (Sweden)

    John S House

    Full Text Available C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3 and melanocortin 5 receptor (MC5R, two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.

  17. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li; Wu, Zhou; Baba, Masashi [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan); Peters, Christoph [Institute fuer Molekulare Medizin und Zellforshung, Albert-Ludwings-Universitaet Freiburg, D-79104 Freiburg (Germany); Uchiyama, Yasuo [Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo (Japan); Nakanishi, Hiroshi, E-mail: nakan@dent.kyushu-u.ac.jp [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan)

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  18. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    International Nuclear Information System (INIS)

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-01-01

    Research highlights: → Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. → CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. → CB-deficiency significantly increased the mean survival ratio of injured neurons. → Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy-induced mortor neuron

  19. Adult-Brain-Derived Neural Stem Cells Grafting into a Vein Bridge Increases Postlesional Recovery and Regeneration in a Peripheral Nerve of Adult Pig

    Directory of Open Access Journals (Sweden)

    Olivier Liard

    2012-01-01

    Full Text Available We attempted transplantation of adult neural stem cells (ANSCs inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy.

  20. Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus

    OpenAIRE

    Smalheiser, Neil R; Lugli, Giovanni; Lenon, Angela L; Davis, John M; Torvik, Vetle I; Larson, John

    2010-01-01

    Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct respon...

  1. Doublecortin (DCX is not essential for survival and differentiation of newborn neurons in the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Jagroop eDhaliwal

    2016-01-01

    Full Text Available In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX is associated with neural progenitor cells (NPCs that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX.

  2. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    Science.gov (United States)

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. PPARg mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-09-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARg is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARg signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARg-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARg mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARg mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis, and the subfornical organ. Within the hypothalamus, PPARg was present at moderate levels in the suprachiasmatic nucleus and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARg was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARg mRNA expression was upregulated in the suprachiasmatic nucleus in response to fasting. Double in situ hybridization further demonstrated that PPARg was primarily expressed in neurons. Collectively, our observations provide a comprehensive map of PPARg distribution and regulation in the intact adult mouse hypothalamus.

  4. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    Science.gov (United States)

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  5. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  6. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The NKG2D ligands RAE-1δ and RAE-1ε differ with respect to their receptor affinity, expression profiles and transcriptional regulation

    DEFF Research Database (Denmark)

    Cédile, Oriane; Popa, Natalia; Pollet-Villard, Frédéric

    2010-01-01

    RAE-1 is a ligand of the activating receptor NKG2D expressed by NK cells, NKT, γδT and some CD8(+)T lymphocytes. RAE-1 is overexpressed in tumor cell lines and its expression is induced after viral infection and genotoxic stress. We have recently demonstrated that RAE-1 is expressed in the adult...... subventricular zone (SVZ) from C57BL/6 mice. RAE-1 is also expressed in vitro by neural stem/progenitor cells (NSPCs) and plays a non-immune role in cell proliferation. The C57BL/6 mouse genome contains two rae-1 genes, rae-1δ and rae-1ε encoding two different proteins. The goals of this study are first...

  8. Protein composition and synthesis in the adult mouse spinal cord

    International Nuclear Information System (INIS)

    Stodieck, L.S.; Luttges, M.W.

    1983-01-01

    Properties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (less than 2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain

  9. Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    2010-07-01

    Full Text Available The subventricular zone (SVZ is one of two regions where neurogenesis persists in the postnatal brain. The SVZ, located along the lateral ventricle, is the largest neurogenic zone in the brain that contains multiple cell populations including astrocyte-like cells and neuroblasts. Neuroblasts migrate in chains to the olfactory bulb where they differentiate into interneurons. Here, we discuss the experimental approaches to record the electrophysiology of these cells and image their migration and calcium activity in acute slices. Although these techniques were in place for studying glial cells and neurons in mature networks, the SVZ raises new challenges due to the unique properties of SVZ cells, the cellular diversity, and the architecture of the region. We emphasize different methods, such as the use of transgenic mice and in vivo electroporation that permit identification of the different SVZ cell populations for patch clamp recording or imaging. Electroporation also permits genetic labeling of cells using fluorescent reporter mice and modification of the system using either RNA interference technology or floxed mice. In this review, we aim to provide conceptual and technical details of the approaches to perform electrophysiological and imaging studies of SVZ cells.

  10. Radio-Protective Effects of Melatonin on Subventricular Zone in Irradiated Rat: Decrease in Apoptosis and Upregulation of Nestin.

    Science.gov (United States)

    Naseri, Shafigheh; Moghahi, Seyed Mohammad Hossein Noori; Mokhtari, Tahmineh; Roghani, Mehrdad; Shirazi, Ali Reza; Malek, Fatemeh; Rastegar, Tayebeh

    2017-10-01

    Neural stem cells are self-renewing, multipotent cells that can be found in subventricular (SVZ) and subgranular (SGZ) zones of the brain. These zones are susceptible to irradiation-induced apoptosis and oxidative stress. Melatonin (MLT) is a natural protector of neural cells against toxicity. The aim of this study was to evaluate the effects of MLT as a radio-protective material effective in reducing tissue lesions in the SVZ of the brain and changing local apoptotic potential in rats. Twenty-five Gray irradiation was applied on adult rat brain for this study. One hour before irradiation, 100 mg/kg/IP MLT was injected, and 6 h later, the animals were sacrificed. The antioxidant enzymes and MDA activity levels were measured post-sacrifice. Also, the expression level of Nestin and caspase 3 were studied by immunohistochemistry. Spectrophotometric analysis showed significant increases in the amount of malondialdehyde (MDA) levels in the irradiation-exposed (RAD) group compared to that of the control (Co) group (P < 0.05). Pre-treatment with MLT (100 mg/kg) ameliorates the harmful effects of the aforementioned 25 Gy irradiation by increasing antioxidant enzyme activity and decreasing MDA levels. A significant reduction in apoptotic cells was observed in rats treated with MLT 1 h before exposure (P < 0.001). Nestin-positive cells were also reduced in the RAD group (P < 0.001). Our results confirm the anti-apoptotic and antioxidant role of MLT. The MLT concentration used may serve as a threshold for significant protection against 25 Gy gamma irradiations on neural stem cells in SVZ.

  11. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  12. Axonal Control of the Adult Neural Stem Cell Niche

    Science.gov (United States)

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  13. Stroke Repair via Biomimicry of the Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Rita Matta

    2018-03-01

    Full Text Available Stroke is among the leading causes of death and disability worldwide, 85% of which are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time and fail to effectively complete the recovery of the damaged area. Magnetic resonance imaging of the subventricular zone (SVZ following infarct/stroke has allowed visualization of new axonal connections and projections being formed, while new immature neurons migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a primary source of regenerative cells for the repair and regeneration of stroke-damaged neurons and tissue. Therefore, the development of tissue engineered scaffolds that serve as a bioreplicative SVZ niche would support the survival of multiple cell types that reside in the SVZ. Essential to replication of the human SVZ microenvironment is the establishment of microvasculature that regulates both the healthy and stroke-injured blood–brain barrier, which is dysregulated poststroke. In order to reproduce this niche, understanding how cells interact in this environment is critical, in particular neural stem cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support functional recovery when enhanced by an artificial niche that supports the survival and proliferation of migrating vascular and neuronal cells. Critical considerations to mimic this area include an understanding of resident cell types, delivery method, and the use of biocompatible materials. Controlling stem cell survival, differentiation, and migration are key factors to consider when transplanting stem cells. Here, we discuss the role of the SVZ architecture and resident cells in the promotion and enhancement of endogenous repair mechanisms. We elucidate the interplay between the extracellular matrix composition and cell interactions prior to and following stroke

  14. Stroke Repair via Biomimicry of the Subventricular Zone

    Science.gov (United States)

    Matta, Rita; Gonzalez, Anjelica L.

    2018-03-01

    Stroke is among the leading causes of death and disability worldwide, 85% of which are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time and fail to effectively complete the recovery of the damaged area. Magnetic resonance imaging of the subventricular zone (SVZ) following infarct/stroke has allowed visualization of new axonal connections and projections being formed, while new immature neurons migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a primary source of regenerative cells for the repair and regeneration of stroke-damaged neurons and tissue. Therefore, the development of tissue engineered scaffolds that serve as a bioreplicative SVZ niche would support the survival of multiple cell types that reside in the SVZ. Essential to replication of the human SVZ microenvironment is the establishment of microvasculature that regulates both the healthy and stroke-injured blood brain barrier, which is dysregulated post-stroke. In order to reproduce this niche, understanding how cells interact in this environment is critical, in particular neural stem cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support functional recovery when enhanced by an artificial niche that supports the survival and proliferation of migrating vascular and neuronal cells. Critical considerations to mimic this area include an understanding of resident cell types, delivery method, and the use of biocompatible materials. Controlling stem cell survival, differentiation, and migration are key factors to consider when transplanting stem cells. Here, we discuss the role of the SVZ architecture and resident cells in the promotion and enhancement of endogenous repair mechanisms. We elucidate the interplay between the extracellular matrix composition and cell interactions prior to and following stroke. Lastly, we review

  15. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    Directory of Open Access Journals (Sweden)

    Michelle Erin Miller

    Full Text Available Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs and implicate reactive oxygen species (ROS as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA26Sor(tm1(Cre/ERTNat/J or B6.Cg-Tg(Mx1-Cre1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation.

  16. Dissection of Hippocampal Dentate Gyrus from Adult Mouse

    Science.gov (United States)

    Hagihara, Hideo; Toyama, Keiko; Yamasaki, Nobuyuki; Miyakawa, Tsuyoshi

    2009-01-01

    The hippocampus is one of the most widely studied areas in the brain because of its important functional role in memory processing and learning, its remarkable neuronal cell plasticity, and its involvement in epilepsy, neurodegenerative diseases, and psychiatric disorders. The hippocampus is composed of distinct regions; the dentate gyrus, which comprises mainly granule neurons, and Ammon's horn, which comprises mainly pyramidal neurons, and the two regions are connected by both anatomic and functional circuits. Many different mRNAs and proteins are selectively expressed in the dentate gyrus, and the dentate gyrus is a site of adult neurogenesis; that is, new neurons are continually generated in the adult dentate gyrus. To investigate mRNA and protein expression specific to the dentate gyrus, laser capture microdissection is often used. This method has some limitations, however, such as the need for special apparatuses and complicated handling procedures. In this video-recorded protocol, we demonstrate a dissection technique for removing the dentate gyrus from adult mouse under a stereomicroscope. Dentate gyrus samples prepared using this technique are suitable for any assay, including transcriptomic, proteomic, and cell biology analyses. We confirmed that the dissected tissue is dentate gyrus by conducting real-time PCR of dentate gyrus-specific genes, tryptophan 2,3-dioxygenase (TDO2) and desmoplakin (Dsp), and Ammon's horn enriched genes, Meis-related gene 1b (Mrg1b) and TYRO3 protein tyrosine kinase 3 (Tyro3). The mRNA expressions of TDO2 and Dsp in the dentate gyrus samples were detected at obviously higher levels, whereas Mrg1b and Tyro3 were lower levels, than those in the Ammon's horn samples. To demonstrate the advantage of this method, we performed DNA microarray analysis using samples of whole hippocampus and dentate gyrus. The mRNA expression of TDO2 and Dsp, which are expressed selectively in the dentate gyrus, in the whole hippocampus of alpha

  17. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future.

    Science.gov (United States)

    Woods, Dori C; White, Yvonne A R; Tilly, Jonathan L

    2013-01-01

    Contemporary claims that mitotically active female germ line or oogonial stem cells (OSCs) exist and support oogenesis during postnatal life in mammals have been debated in the field of reproductive biology since March 2004, when a mouse study posed the first serious challenge to the dogma of a fixed pool of oocytes being endowed at birth in more than 50 years. Other studies have since been put forth that further question the validity of this dogma, including the isolation of OSCs from neonatal and adult mouse ovaries by 4 independent groups using multiple strategies. Two of these groups also reported that isolated mouse OSCs, once transplanted back into ovaries of adult female mice, differentiate into fully functional eggs that ovulate, fertilize, and produce healthy embryos and offspring. Arguably, one of the most significant advances in this emerging field was provided by a new research study published this year, which reported the successful isolation and functional characterization of OSCs from ovaries of reproductive age women. Two commentaries on this latest work, one cautiously supportive and one highly skeptical, were published soon afterward. This article evaluates the current literature regarding postnatal oogenesis in mammals and discusses important next steps for future work on OSC biology and function.

  18. Adult Hippocampal Neurogenesis in Parkinson’s Disease: Impact on Neuronal Survival and Plasticity

    Directory of Open Access Journals (Sweden)

    Martin Regensburger

    2014-01-01

    Full Text Available In Parkinson’s disease (PD and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.

  19. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    2017-03-01

    Full Text Available Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP, to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  20. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  1. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  2. How age affects pointing with mouse and touchpad

    DEFF Research Database (Denmark)

    Hertzum, Morten; Hornbæk, Kasper

    2010-01-01

    pointing with mouse and touchpad. The goal is to provide an integrated analysis of (a) how these three age groups differ in pointing performance, (b) how these differences are affected by the two pointing devices, and (c) how the submovement structure of cursor trajectories may explain performance...... neither more nor less errors than young and adult participants. All three age groups were slower and made more errors with the touchpad than the mouse, but the touchpad slowed down elderly participants more than young participants, who in turn were slowed down more than adult participants. Adult......Effects of age on pointing performance have become increasingly important as computers have become extensively used by still larger parts of the population. This study empirically investigates young (12-14 years), adult (25-33 years), and elderly (61-69 years) participants' performance when...

  3. Recent Advances on the Role of Neurogenesis in the Adult Brain: Therapeutic Potential in Parkinson's and Alzheimer's Diseases.

    Science.gov (United States)

    Radad, Khaled; Moldzio, Rudolf; Al-Shraim, Mubarak; Kranner, Barbara; Krewenka, Christopher; Rausch, Wolf-Dieter

    2017-01-01

    Generation of nascent functional neurons from neural stem cells in the adult brain has recently become largely accepted by the neuroscience community. In adult mammals including humans, the process of neurogenesis has been well documented in two brain regions; the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. Some evidence has indicated neurogenesis in other regions of the adult mammalian brain such as the neocortex, cerebellum, striatum, amygdala and hypothalamus. These discoveries question a long standing dogma on nervous system regeneration and provide medical science with potential new strategies to harness the process of neurogenesis for treating neurological disabilities and neurodegenerative diseases. In this current review, we address the most recent advances on the role of neurogenesis in the adult brain and therapeutic potential in the two most common neurodegenerative disorders, Parkinson's and Alzheimer's diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood.

    Science.gov (United States)

    Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela

    2011-02-04

    p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xia Chen

    Full Text Available We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG, but not undifferentiated neuronal progenitor cells (NPCs from ventral subventricular zone (SVZ, results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2. NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control. By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+, whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+. At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative. Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78% expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

  6. Hard-Diet Feeding Recovers Neurogenesis in the Subventricular Zone and Olfactory Functions of Mice Impaired by Soft-Diet Feeding

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Sasajima, Hitoshi; Noguchi, Tomohiro; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-01-01

    The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB. PMID:24817277

  7. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro.

    Science.gov (United States)

    Morales-García, Jose A; de la Fuente Revenga, Mario; Alonso-Gil, Sandra; Rodríguez-Franco, María Isabel; Feilding, Amanda; Perez-Castillo, Ana; Riba, Jordi

    2017-07-13

    Banisteriopsis caapi is the basic ingredient of ayahuasca, a psychotropic plant tea used in the Amazon for ritual and medicinal purposes, and by interested individuals worldwide. Animal studies and recent clinical research suggests that B. caapi preparations show antidepressant activity, a therapeutic effect that has been linked to hippocampal neurogenesis. Here we report that harmine, tetrahydroharmine and harmaline, the three main alkaloids present in B. caapi, and the harmine metabolite harmol, stimulate adult neurogenesis in vitro. In neurospheres prepared from progenitor cells obtained from the subventricular and the subgranular zones of adult mice brains, all compounds stimulated neural stem cell proliferation, migration, and differentiation into adult neurons. These findings suggest that modulation of brain plasticity could be a major contribution to the antidepressant effects of ayahuasca. They also expand the potential application of B. caapi alkaloids to other brain disorders that may benefit from stimulation of endogenous neural precursor niches.

  8. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    Science.gov (United States)

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  9. Cell proliferation, movement and differentiation during maintenance of the adult mouse adrenal cortex.

    Directory of Open Access Journals (Sweden)

    Su-Ping Chang

    Full Text Available Appropriate maintenance and regeneration of adult endocrine organs is important in both normal physiology and disease. We investigated cell proliferation, movement and differentiation in the adult mouse adrenal cortex, using different 5-bromo-2'-deoxyuridine (BrdU labelling regimens and immunostaining for phenotypic steroidogenic cell markers. Pulse-labelling showed that cell division was largely confined to the outer cortex, with most cells moving inwards towards the medulla at around 13-20 µm per day, though a distinct labelled cell population remained in the outer 10% of the cortex. Pulse-chase-labelling coupled with phenotypic immunostaining showed that, unlike cells in the inner cortex, most BrdU-positive outer cortical cells did not express steroidogenic markers, while co-staining for BrdU and Ki67 revealed that some outer cortical BrdU-positive cells were induced to proliferate following acute adrenocorticotropic hormone (ACTH treatment. Extended pulse-chase-labelling identified cells in the outer cortex which retained BrdU label for up to 18-23 weeks. Together, these observations are consistent with the location of both slow-cycling stem/progenitor and transiently amplifying cell populations in the outer cortex. Understanding the relationships between these distinct adrenocortical cell populations will be crucial to clarify mechanisms underpinning adrenocortical maintenance and long-term adaptation to pathophysiological states.

  10. Early Postnatal but Not Late Adult Neurogenesis Is Impaired in the Pitx3-Mutant Animal Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Moritz D. Brandt

    2017-08-01

    Full Text Available The generation of new neurons in the adult dentate gyrus has functional implications for hippocampal formation. Reduced hippocampal neurogenesis has been described in various animal models of hippocampal dysfunction such as dementia and depression, which are both common non-motor-symptoms of Parkinson's disease (PD. As dopamine plays an important role in regulating precursor cell proliferation, the loss of dopaminergic neurons in the substantia nigra (SN in PD may be related to the reduced neurogenesis observed in the neurogenic regions of the adult brain: subventricular zone (SVZ and dentate gyrus (DG. Here we examined adult hippocampal neurogenesis in the Pitx3-mutant mouse model of PD (aphakia mice, which phenotypically shows a selective embryonic degeneration of dopamine neurons within the SN and to a smaller extent in the ventral tegmental area (VTA. Proliferating cells were labeled with BrdU in aphakia mice and healthy controls from 3 to 42 weeks of age. Three weeks old mutant mice showed an 18% reduction of proliferating cells in the DG and of 26% in the SVZ. Not only proliferation but also the number of new neurons was impaired in young aphakia mice resulting in 33% less newborn cells 4 weeks after BrdU-labeling. Remarkably, however, the decline in the number of proliferating cells in the neurogenic regions vanished in older animals (8–42 weeks indicating that aging masks the effect of dopamine depletion on adult neurogenesis. Region specific reduction in precursor cells proliferation correlated with the extent of dopaminergic degeneration in mesencephalic subregions (VTA and SN, which supports the theory of age- and region-dependent regulatory effects of dopaminergic projections. Physiological stimulation of adult neurogenesis by physical activity (wheel running almost doubled the number of proliferating cells in the dentate gyrus of 8 weeks old aphakia mice to a number comparable to that of wild-type mice, abolishing the slight

  11. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    Directory of Open Access Journals (Sweden)

    Fabio Cavaliere

    2016-01-01

    Full Text Available Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson’s disease, and cerebral ischemia.

  12. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    Energy Technology Data Exchange (ETDEWEB)

    Anna-Liisa Brownell

    2003-11-28

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.

  13. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    International Nuclear Information System (INIS)

    Anna-Liisa Brownell

    2003-01-01

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons

  14. Glioblastoma Recurrence Patterns After Radiation Therapy With Regard to the Subventricular Zone

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, Sebastian, E-mail: Sebastian.adeberg@med.uni-heidelberg [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); König, Laila; Bostel, Tilman; Harrabi, Semi; Welzel, Thomas [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Heidelberg Ion Therapy Center, Heidelberg (Germany); DKFZ Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center Heidelberg (Germany); Combs, Stephanie E. [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Heidelberg Ion Therapy Center, Heidelberg (Germany)

    2014-11-15

    Purpose: We evaluated the influence of tumor location and tumor spread in primary glioblastoma (GBM), with respect to the subventricular zone (SVZ), on recurrence behavior, progression-free survival (PFS), and overall survival (OS). Methods and Materials: 607 patients (376 male and 231 female) with a median age of 61.3 years (range, 3.0-87.9 years) and primary GBM treated with radiation therapy (RT) from 2004 to 2012 at a single institution were included in this retrospective study. Preoperative images and follow-up examination results were assessed to evaluate tumor location. Tumors were classified according to the tumor location in relation to the SVZ. Results: The median PFS of the study population was 5.2 months (range, 1-91 months), and the median OS was 13.8 months (range, 1-102 months). Kaplan-Meier analysis showed that tumor location in close proximity to the SVZ was associated with a significant decline in PFS and OS (4.8 and 12.3 months, respectively; each P<.001). Furthermore, in cases where tumors were involved with the SVZ, distant cerebral progression (43.8%; P=.005) and multifocal progression (39.8%; P=.008) were more common. Interestingly, opening of the ventricle during the previous surgery showed no impact on PFS and OS. Conclusion: GBM in close proximity to the SVZ was associated with decreased survival and had a higher risk of multifocal or distant progression. Ventricle opening during surgery had no effect on survival rates.

  15. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse.

    Science.gov (United States)

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.

  16. Gene expression of drug metabolizing enzymes in adult and aged mouse liver: A modulation by immobilization stress

    International Nuclear Information System (INIS)

    Mikhailova, O.N.; Gulyaeva, L.F.; Filipenko, M.L.

    2005-01-01

    The role of stress in the regulation of enzymatic systems involved in the biotransformation of xenobiotics, as well as endogenous substrates in the liver was investigated using single immobilization stress as a model. Adult (3 months of age) and aged (26 months) C3H/a male mice were used. Cytochrome P450 1A1 and 1A2 (CYP1A1 and CYP1A2), glutathione S-transferase M1 (GSTM1), aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and catechol-O-methyltransferase (COMT) mRNA levels in the mouse liver were measured by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method. Excluding CYP1A1, experiments revealed significant differences in the expression of these genes between adult- and aged-control animals. The influence of stress on the expression of genes studied was shown to be higher in adult mice than in aged ones. Our results clearly demonstrate the lack of response or even the attenuation of gene expression in aged animals that may play an important role in age-related pathologies and diseases

  17. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Tae Woo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  18. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal

    2016-04-26

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  19. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    Directory of Open Access Journals (Sweden)

    Sarah Malvaut

    2016-01-01

    Full Text Available The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ and migrate along the rostral migratory stream (RMS towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour.

  20. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    Science.gov (United States)

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709

  1. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    Science.gov (United States)

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults.

    Science.gov (United States)

    Chen, Jiayin; Or, Calvin

    2017-11-01

    This study assessed the use of an immersive virtual reality (VR), a mouse and a touchscreen for one-directional pointing, multi-directional pointing, and dragging-and-dropping tasks involving targets of smaller and larger widths by young (n = 18; 18-30 years), middle-aged (n = 18; 40-55 years) and older adults (n = 18; 65-75 years). A three-way, mixed-factorial design was used for data collection. The dependent variables were the movement time required and the error rate. Our main findings were that the participants took more time and made more errors in using the VR input interface than in using the mouse or the touchscreen. This pattern applied in all three age groups in all tasks, except for multi-directional pointing with a larger target width among the older group. Overall, older adults took longer to complete the tasks and made more errors than young or middle-aged adults. Larger target widths yielded shorter movement times and lower error rates in pointing tasks, but larger targets yielded higher rates of error in dragging-and-dropping tasks. Our study indicated that any other virtual environments that are similar to those we tested may be more suitable for displaying scenes than for manipulating objects that are small and require fine control. Although interacting with VR is relatively difficult, especially for older adults, there is still potential for older adults to adapt to that interface. Furthermore, adjusting the width of objects according to the type of manipulation required might be an effective way to promote performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology.

    Science.gov (United States)

    Kim, Hyunjeong; Kim, Eosu; Park, Minsun; Lee, Eun; Namkoong, Kee

    2013-03-05

    One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Quantitative expression profile of distinct functional regions in the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Takeya Kasukawa

    Full Text Available The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B* project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/ for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems.

  5. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    Science.gov (United States)

    Pitzonka, Laura; Ullas, Sumana; Chinnam, Meenalakshmi; Povinelli, Benjamin J; Fisher, Daniel T; Golding, Michelle; Appenheimer, Michelle M; Nemeth, Michael J; Evans, Sharon; Goodrich, David W

    2014-01-01

    Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  6. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Laura Pitzonka

    Full Text Available Co-transcriptionally assembled ribonucleoprotein (RNP complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  7. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain.

    Science.gov (United States)

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here, we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (Ndp(AP)). In the CNS, Ndp(AP) expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of Ndp(AP) expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, Ndp(AP) expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. CRMP5 regulates generation and survival of newborn neurons in olfactory and hippocampal neurogenic areas of the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Alexandra Veyrac

    Full Text Available The Collapsin Response Mediator Proteins (CRMPS are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB and the dentate gyrus (DG. During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/- mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.

  9. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor be......, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery....

  10. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease

    Science.gov (United States)

    Kim, Hye Yun; Kim, Hyunjin V.; Yoon, Jin H.; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-01-01

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages. PMID:25502280

  11. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia.

    Directory of Open Access Journals (Sweden)

    Matthieu M Vermeren

    Full Text Available Phospholipase D2 (PLD2 is an enzyme that produces phosphatidic acid (PA, a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction.

  12. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Gabriela Vierci

    2016-01-01

    Full Text Available Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3-AcH4 and its modulation by visual experience in the mouse visual cortex (VC during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment. We found that AcH3-AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3-AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3-AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3-H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC.

  13. Differential Structural Development of Adult-Born Septal Hippocampal Granule Cells in the Thy1-GFP Mouse, Nuclear Size as a New Index of Maturation.

    Directory of Open Access Journals (Sweden)

    Tijana Radic

    Full Text Available Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7-77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell's structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.

  14. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    Science.gov (United States)

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  15. The satiating hormone amylin enhances neurogenesis in the area postrema of adult rats

    Directory of Open Access Journals (Sweden)

    Claudia G. Liberini

    2016-10-01

    Full Text Available Objective: Adult neurogenesis in the subgranular zone and subventricular zone is generally accepted, but its existence in other brain areas is still controversial. Circumventricular organs, such as the area postrema (AP have recently been described as potential neurogenic niches in the adult brain. The AP is the major site of action of the satiating hormone amylin. Amylin has been shown to promote the formation of neuronal projections originating from the AP in neonatal rodents but the role of amylin in adult neurogenesis remains unknown. Methods: To test this, we first performed an RNA-sequencing of the AP of adult rats acutely injected with either amylin (20 μg/kg, amylin plus the amylin receptor antagonist AC187 (500 μg/kg or vehicle. Second, animals were subcutaneously equipped with minipumps releasing either amylin (50 μg/kg/day or vehicle for 3 weeks to assess cell proliferation and differentiation with the 5′-bromo-2-deoxyuridine (BrdU technique. Results: Acute amylin injections affected genes involved in pathways and processes that control adult neurogenesis. Amylin consistently upregulated NeuroD1 transcript and protein in the adult AP, and this effect was blocked by the co-administration of AC187. Further, chronic amylin treatment increased the number of newly proliferated AP-cells and significantly promoted their differentiation into neurons rather than astrocytes. Conclusion: Our findings revealed a novel role of the satiating hormone amylin in promoting neurogenesis in the AP of adult rats. Keywords: Amylin, Adult neurogenesis, Area postrema, BrdU, Circumventricular organs

  16. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  17. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  18. Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zimmer, Jens; Wahlberg, Lars U

    2008-01-01

    Tissue blocks containing neural precursor cells were isolated from the rat forebrain subventricular zone (SVZ) and ventral mesencephalon (VM) and propagated as neural tissue-spheres (NTS). In the presence of fibroblast growth factor-2 (FGF2) and epidermal growth factor (EGF), SVZ-derived NTS were...... propagated and maintained for more than 6 months with a cell population doubling time of 21.5 days. The replacement of EGF by leukemia inhibitory factor (LIF) resulted in a cell population doubling time of 19.8 days, corresponding to a 10-fold increase in estimated cell numbers over a period of 70 days......, at which point these NTS ceased to grow. In the presence of FGF2 and LIF, VM-derived NTS displayed a cell population doubling time of 24.6 days, which was maintained over a period of more than 200 days. However, when LIF was replaced by EGF, the cell numbers only increased 1.2 fold over 50 days. Using...

  19. Regional localization of activin-βA, activin-βC, follistatin, proliferation, and apoptosis in adult and developing mouse prostate ducts.

    Science.gov (United States)

    Gold, Elspeth; Zellhuber-McMillan, Sylvia; Risbridger, Gail; Marino, Francesco Elia

    2017-01-01

    Activins and inhibins, members of the TGF-β superfamily, are growth and differentiation factors involved in the regulation of several biological processes, including reproduction, development, and fertility. Previous studies have shown that the activin-β A subunit plays a pivotal role in prostate development. Activin-A inhibits branching morphogenesis in the developing prostate, and its expression is associated with increased apoptosis in the adult prostate. Follistatin, a structurally unrelated protein to activins, is an antagonist of activin-A. A balance between endogenous activin-A and follistatin is required to maintain prostatic branching morphogenesis. Deregulation of this balance leads to branching inhibition or excessive branching and increased maturation of the stroma surrounding the differentiating epithelial ducts. Recent work identified another member of the TGF-β superfamily, the activin-β C subunit, as a novel antagonist of activin-A. Over-expression of activin-C (β C -β C ) alters prostate homeostasis, by interfering with the activin-A signaling. The current study characterized the spatiotemporal localization of activin-A, activin-C and follistatin in the adult and developing mouse prostate using immunohistochemical analysis. Results showed activin-C and follistatin are differentially expressed during prostate development and suggested that the antagonistic property of follistatin is secondary to the action of activin-C. In conclusion, the present study provides evidence to support a role of activin-C in prostate development and provides new insights in the spatiotemporal localization of activins and their antagonists during mouse prostate development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Olfactory Discrimination Training Up-Regulates and Reorganizes Expression of MicroRNAs in Adult Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2010-01-01

    Full Text Available Adult male mice (strain C57Bl/6J were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: Olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour or pseudo-training (exposed to two odours with reward not contingent upon response. These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of ~40 min of training. The hippocampus was dissected bilaterally from each mouse (N=7 in each group and profiling of 585 miRNAs (microRNAs was carried out using multiplex RT–PCR (reverse transcription–PCR plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P=0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor, CAMK2b (calcium/calmodulin-dependent protein kinase IIβ, CREB1 (cAMP-response-element-binding protein 1 and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  1. Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus.

    Science.gov (United States)

    Smalheiser, Neil R; Lugli, Giovanni; Lenon, Angela L; Davis, John M; Torvik, Vetle I; Larson, John

    2010-02-26

    Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of approximately 40 min of training). The hippocampus was dissected bilaterally from each mouse (N = 7 in each group) and profiling of 585 miRNAs (microRNAs) was carried out using multiplex RT-PCR (reverse transcription-PCR) plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P = 0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor), CAMK2b (calcium/calmodulin-dependent protein kinase IIβ), CREB1 (cAMP-response-element-binding protein 1) and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila)-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  2. ZNF 197L is dispensable in mouse development

    African Journals Online (AJOL)

    Jane

    2011-07-27

    protein interactions (Kim et al., 1996; Friedman et .... A fragment of pU17 vector was used as a probe to detect the trapping ... RNA was isolated from adult mouse brain, heart, lung, .... Zinc finger peptides for the regulation of gene.

  3. Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Andrée-Anne Berthiaume

    2018-01-01

    Full Text Available Summary: Direct contact and communication between pericytes and endothelial cells is critical for maintenance of cerebrovascular stability and blood-brain barrier function. Capillary pericytes have thin processes that reach hundreds of micrometers along the capillary bed. The processes of adjacent pericytes come in close proximity but do not overlap, yielding a cellular chain with discrete territories occupied by individual pericytes. Little is known about whether this pericyte chain is structurally dynamic in the adult brain. Using in vivo two-photon imaging in adult mouse cortex, we show that while pericyte somata were immobile, the tips of their processes underwent extensions and/or retractions over days. The selective ablation of single pericytes provoked exuberant extension of processes from neighboring pericytes to contact uncovered regions of the endothelium. Uncovered capillary regions had normal barrier function but were dilated until pericyte contact was regained. Pericyte structural plasticity may be critical for cerebrovascular health and warrants detailed investigation. : Pericyte-endothelial contact is important for many aspects of cerebrovascular health. Berthiaume et al. use longitudinal two-photon imaging to show that the processes of brain capillary pericytes are structurally plastic in vivo. Their processes can grow hundreds of micrometers to ensure contact with exposed endothelium following ablation of a single pericyte. Keywords: capillary, pericyte, endothelium, blood-brain barrier, blood flow, plasticity, two-photon imaging, Alzheimer’s disease, dementia, stroke

  4. Distribution and densitometry mapping of L1-CAM Immunoreactivity in the adult mouse brain – light microscopic observation

    Directory of Open Access Journals (Sweden)

    Yamasaki Hironobu

    2003-04-01

    Full Text Available Abstract Background The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain. Results We examined the overall distribution of L1 in the adult mouse brain by immunohistochemistry using two polyclonal antibodies against different epitopes for L1. Immunoreactive L1 was widely but unevenly distributed from the olfactory bulb to the upper cervical cord. The accumulation of immunoreactive L1 was greatest in a non-neuronal element of the major fibre bundles, i.e. the lateral olfactory tract, olfactory and temporal limb of the anterior commissure, corpus callosum, stria terminalis, globus pallidus, fornix, mammillothalamic tract, solitary tract, and spinal tract of the trigeminal nerve. High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc. High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc. Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc. Conclusion L1 is widely and unevenly distributed in the matured mouse brain, where immunoreactivity was present not only in neuronal elements; axons, synapses and cell soma, but also in non-neuronal elements.

  5. Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury.

    Science.gov (United States)

    Goodus, Matthew T; Guzman, Alanna M; Calderon, Frances; Jiang, Yuhui; Levison, Steven W

    2015-01-01

    Pediatric traumatic brain injury is a significant problem that affects many children each year. Progress is being made in developing neuroprotective strategies to combat these injuries. However, investigators are a long way from therapies to fully preserve injured neurons and glia. To restore neurological function, regenerative strategies will be required. Given the importance of stem cells in repairing damaged tissues and the known persistence of neural precursors in the subventricular zone (SVZ), we evaluated regenerative responses of the SVZ to a focal brain lesion. As tissues repair more slowly with aging, injury responses of male Sprague Dawley rats at 6, 11, 17, and 60 days of age and C57Bl/6 mice at 14 days of age were compared. In the injured immature animals, cell proliferation in the dorsolateral SVZ more than doubled by 48 h. By contrast, the proliferative response was almost undetectable in the adult brain. Three approaches were used to assess the relative numbers of bona fide neural stem cells, as follows: the neurosphere assay (on rats injured at postnatal day 11, P11), flow cytometry using a novel 4-marker panel (on mice injured at P14) and staining for stem/progenitor cell markers in the niche (on rats injured at P17). Precursors from the injured immature SVZ formed almost twice as many spheres as precursors from uninjured age-matched brains. Furthermore, spheres formed from the injured brain were larger, indicating that the neural precursors that formed these spheres divided more rapidly. Flow cytometry revealed a 2-fold increase in the percentage of stem cells, a 4-fold increase in multipotential progenitor-3 cells and a 2.5-fold increase in glial-restricted progenitor-2/multipotential-3 cells. Analogously, there was a 2-fold increase in the mitotic index of nestin+/Mash1- immunoreactive cells within the immediately subependymal region. As the early postnatal SVZ is predominantly generating glial cells, an expansion of precursors might not

  6. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  7. Expression of C4.4A, a structural uPAR homolog, reflects squamous epithelial differentiation in the adult mouse and during embryogenesis

    DEFF Research Database (Denmark)

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Hald, Andreas

    2011-01-01

    by a comprehensive immunohistochemical mapping. This task was accomplished by staining paraffin-embedded tissues with a specific rabbit polyclonal anti-C4.4A antibody. In the adult mouse, C4.4A was predominantly expressed in the suprabasal layers of the squamous epithelia of the oral cavity, esophagus, non...... expression first appears in the developing squamous epithelium at embryonic day 13.5. This anatomical location of C4.4A is thus concordant with a possible functional role in early differentiation of stratified squamous epithelia....

  8. Visualizing form and function in organotypic slices of the adult mouse parotid gland.

    Science.gov (United States)

    Warner, Jennifer D; Peters, Christian G; Saunders, Rudel; Won, Jong Hak; Betzenhauser, Matthew J; Gunning, William T; Yule, David I; Giovannucci, David R

    2008-09-01

    An organotypic slice preparation of the adult mouse parotid salivary gland amenable to a variety of optical assessments of fluid and protein secretion dynamics is described. The semi-intact preparation rendered without the use of enzymatic treatment permitted live-cell imaging and multiphoton analysis of cellular and supracellular signals. Toward this end we demonstrated that the parotid slice is a significant addition to the repertoire of tools available to investigators to probe exocrine structure and function since there is currently no cell culture system that fully recapitulates parotid acinar cell biology. Importantly, we show that a subpopulation of the acinar cells of parotid slices can be maintained in short-term culture and retain their morphology and function for up to 2 days. This in vitro model system is a significant step forward compared with enzymatically dispersed acini that rapidly lose their morphological and functional characteristics over several hours, and it was shown to be long enough for the expression and trafficking of exogenous protein following adenoviral infection. This system is compatible with a variety of genetic and physiological approaches used to study secretory function.

  9. Posttraining ablation of adult-generated olfactory granule cells degrades odor-reward memories.

    Science.gov (United States)

    Arruda-Carvalho, Maithe; Akers, Katherine G; Guskjolen, Axel; Sakaguchi, Masanori; Josselyn, Sheena A; Frankland, Paul W

    2014-11-19

    Proliferation of neural progenitor cells in the subventricular zone leads to the continuous generation of new olfactory granule cells (OGCs) throughout life. These cells synaptically integrate into olfactory bulb circuits after ∼2 weeks and transiently exhibit heightened plasticity and responses to novel odors. Although these observations suggest that adult-generated OGCs play important roles in olfactory-related memories, global suppression of olfactory neurogenesis does not typically prevent the formation of odor-reward memories, perhaps because residual OGCs can compensate. Here, we used a transgenic strategy to selectively ablate large numbers of adult-generated OGCs either before or after learning in mice. Consistent with previous studies, pretraining ablation of adult-generated OGCs did not prevent the formation of an odor-reward memory, presumably because existing OGCs can support memory formation in their absence. However, ablation of a similar cohort of adult-generated OGCs after training impaired subsequent memory expression, indicating that if these cells are available at the time of training, they play an essential role in subsequent expression of odor-reward memories. Memory impairment was associated with the loss of adult-generated OGCs that were >10 d in age and did not depend on the developmental stage in which they were generated, suggesting that, once sufficiently mature, OGCs generated during juvenility and adulthood play similar roles in the expression of odor-reward memories. Finally, ablation of adult-generated OGCs 1 month after training did not produce amnesia, indicating that adult-generated OGCs play a time-limited role in the expression of odor-reward memories. Copyright © 2014 the authors 0270-6474/14/3415793-11$15.00/0.

  10. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors

    Directory of Open Access Journals (Sweden)

    Jasmine Kolb

    2018-04-01

    Full Text Available Summary: Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. : A hallmark of adult neurogenesis is its strong dependence on physiological stimuli and environmental signals. Schulte and colleagues show that the nuclear localization and activity of a transcriptional regulator of adult neurogenesis is controlled by posttranslational modification. Their results link intrinsic control over neuron production to external signals and help to explain how adult neurogenesis can occur “on demand.” Keywords: subventricular zone, stem cell niche, posttranslational modification, controlled nuclear import, TALE-homdomain protein, MEIS2, PBX1, CRM1, neurogenesis, stem cell niche

  11. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    Science.gov (United States)

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  12. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  13. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    Science.gov (United States)

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  14. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    J.H. Song

    2014-01-01

    Full Text Available A defect in Klotho gene expression in the mouse results in a syndrome that resembles rapid human aging. In this study, we investigated the detailed distribution and the time of the first appearance of Klotho in developing and adult mouse kidney. Kidneys from 16-(F16, 18-(F18 and 20-day-old (F20 fetuses, 1- (P1, 4- (P4, 7- (P7, 14- (P14, and 21-day-old (P21 pups and adults were processed for immunohistochemistry and immunoblot analyses. In the developing mouse kidney, Klotho immunoreactivity was initially observed in a few cells of the connecting tubules (CNT of 18-day-old fetus (F and in the medullary collecting duct (MCD and distal nephron of the F16 developing kidney. In F20, Klotho immunoreactivity was increased in CNT and additionally observed in the outer portion of MCD and tip of the renal papilla. During the first 3 weeks after birth, Klotho-positive cells gradually disappeared from the MCD due to apoptosis, but remained in the CNT and cortical collecting ducts (CCD. In the adult mouse, the Klotho protein was expressed only in a few cells of the CNT and CCD in cortical area. Also, Klotho immunoreactivity was observed in the aquaporin 2-positive CNT, CCD, and NaCl co-transporter-positive distal convoluted tubule (DCT cells and type B and nonA-nonB intercalated cells of CNT, DCT, and CCD. Collectively, our data indicate that immunolocalization of Klotho is closely correlated with proliferation in the intercalated cells of CNT and CCD from aging, and may be involved in the regulation of tubular proliferation.

  15. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Science.gov (United States)

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  16. Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kathrin Hemmer

    2014-09-01

    Full Text Available Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]. iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  17. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain

    Directory of Open Access Journals (Sweden)

    Michalina Respondek

    2015-12-01

    Full Text Available Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC, which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  18. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Kusumawidjaja G

    2016-03-01

    Full Text Available Grace Kusumawidjaja,1 Patricia Zhun Hong Gan,1 Whee Sze Ong,2 Achiraya Teyateeti,3 Pittaya Dankulchai,3 Daniel Yat Harn Tan,1 Eu Tiong Chua,1 Kevin Lee Min Chua,1 Chee Kian Tham,4 Fuh Yong Wong,1 Melvin Lee Kiang Chua1,5 1Division of Radiation Oncology, National Cancer Centre, Singapore; 2Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore; 3Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand; 4Division of Medical Oncology, National Cancer Centre, Singapore; 5Duke-NUS Graduate Medical School, Singapore Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor with high relapse rate. In this study, we aimed to determine if dose-escalated (DE radiotherapy improved tumor control and survival in GBM patients. Methods: We conducted a retrospective analysis of 49 and 23 newly-diagnosed histology-proven GBM patients, treated with DE radiotherapy delivered in 70 Gy (2.33 Gy per fraction and conventional doses (60 Gy, respectively, between 2007 and 2013. Clinical target volumes for 70 and 60 Gy were defined by 0.5 and 2.0 cm expansion of magnetic resonance imaging T1-gadolinium-enhanced tumor/surgical cavity, respectively. Bilateral subventricular zones (SVZ were contoured on a co-registered pre-treatment magnetic resonance imaging and planning computed tomography dataset as a 5 mm wide structure along the lateral margins of the lateral ventricles. Survival outcomes of both cohorts were compared using log-rank test. Radiation dose to SVZ in the DE cohort was evaluated. Results: Median follow-up was 13.6 and 15.1 months for the DE- and conventionally-treated cohorts, respectively. Median overall survival (OS of patients who received DE radiotherapy was 15.2 months (95% confidence interval [CI] =11.0–18.6, while median OS of the latter cohort was 18.4 months (95% CI =12.5–31.4, P=0.253. Univariate analyses of

  19. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    Traumatic brain injury represents a leading cause of morbidity in young individuals and there is an imperative need for neuroprotective treatments limiting the neurologic impairment following such injury. It has recently been demonstrated that bio-liberated gold ions liberated from small metallic...... gold implants reduce inflammation and neuronal apoptosis, while generating an increased neuronal stem cell response following focal brain damage. In this study mice were subjected to a unilateral traumatic cryo-lesion with concomitant injection of 25-45 microm gold particles near the lesion. Placebo...... increase in cell proliferation in both the ipsilateral and the contralateral subventricular zone was found in response to gold-treatment. In conclusion: we confirmed the previously demonstrated anti-inflammatory effect of bio-liberated gold ions, and further show that metallic gold increases growth factor...

  20. [Brain repair after ischemic stroke: role of neurotransmitters in post-ischemic neurogenesis].

    Science.gov (United States)

    Sánchez-Mendoza, Eduardo; Bellver-Landete, Víctor; González, María Pilar; Merino, José Joaquín; Martínez-Murillo, Ricardo; Oset-Gasque, María Jesús

    2012-11-01

    Brain ischemia and reperfusion produce alterations in the microenvironment of the parenchyma, including ATP depletion, ionic homeostasis alterations, inflammation, release of multiple cytokines and abnormal release of neurotransmitters. As a consequence, the induction of proliferation and migration of neural stem cells towards the peri-infarct region occurs. The success of new neurorestorative treatments for damaged brain implies the need to know, with greater accuracy, the mechanisms in charge of regulating adult neurogenesis, both under physiological and pathological conditions. Recent evidence demonstrates that many neurotransmitters, glutamate in particular, control the subventricular zone, thus being part of the complex signalling network that influences the production of new neurons. Neurotransmitters provide a link between brain activity and subventricular zone neurogenesis. Therefore, a deeper knowledge of the role of neurotransmitters systems, such as glutamate and its transporters, in adult neurogenesis, may provide a valuable tool to be used as a neurorestorative therapy in this pathology.

  1. What is CAR doing in the middle of the adult neurogenic road?

    Science.gov (United States)

    Junyent, Felix; Coré, Nathalie; Cremer, Harold

    2017-01-01

    ABSTRACT The molecular and cellular basis of adult neurogenesis has attracted considerable attention for fundamental and clinical applications because neural stem cells and newborn neurons may, one day, be harnessed to replace neurons and allow cognitive improvement in the diseased brain. In rodents, neural progenitors are located in the dentate gyrus and the sub/periventricular zone. In the dentate gyrus the generation of newborn neurons is associated with plasticity, including regulation of memory. The role of subventricular zone neural precursors that migrate to the olfactory bulb is less characterized. Identifying factors that impact neural stem cell proliferation, migration and differentiation is therefore sine qua non before we can harness their potential. Here, we expand upon our recent results showing that CAR, the coxsackievirus and adenovirus receptor, is among the developing list of key players when it comes to the complex process of integrating newborn neurons into existing circuits in the mature brain. PMID:28516108

  2. Characterization of mouse neuro-urological dynamics in a novel decerebrate arterially perfused mouse (DAPM) preparation

    OpenAIRE

    Ito, Hiroki; Drake, Marcus J.; Fry, Christopher H.; Kanai, Anthony J.; Pickering, Anthony E.

    2018-01-01

    Aim To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. Methods Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer's solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a “pithed” DAPM which has no brains...

  3. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  4. Is forebrain neurogenesis a potential repair mechanism after stroke?

    OpenAIRE

    Inta, Dragos; Gass, Peter

    2015-01-01

    The use of adult subventricular zone (SVZ) neurogenesis as brain repair strategy after stroke represents a hot topic in neurologic research. Recent radiocarbon-14 dating has revealed a lack of poststroke neurogenesis in the adult human neocortex; however, adult neurogenesis has been shown to occur, even under physiologic conditions, in the human striatum. Here, these results are contrasted with experimental poststroke neurogenesis in the murine brain. Both in humans and in rodents, the SVZ ge...

  5. Hyperelastic Material Properties of Mouse Skin under Compression.

    Directory of Open Access Journals (Sweden)

    Yuxiang Wang

    Full Text Available The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus. These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks and intermediate (13-19 weeks adult ages but by body weight in mature mice (26-34 weeks. Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given

  6. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro.

    Science.gov (United States)

    Burns, Joseph C; Yoo, James J; Atala, Anthony; Jackson, John D

    2012-01-01

    The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A) triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5-7 days after infection, and then decreased ~60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore regenerative

  7. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro.

    Directory of Open Access Journals (Sweden)

    Joseph C Burns

    Full Text Available The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5-7 days after infection, and then decreased ~60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore

  8. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong; Webster, Keith A.

    2010-01-01

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  9. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong [Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Webster, Keith A., E-mail: kwebster@med.miami.edu [Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2010-06-11

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  10. Astrocitary niches in human adult medulla oblongata.

    Science.gov (United States)

    Rusu, Mugurel Constantin; Dermengiu, Dan; Loreto, Carla; Motoc, Andrei Gheorghe Marius; Pop, Elena

    2013-04-01

    Astrocytes are considered as neuromodulators of the CNS. Whereas experimental studies on astrocitary functions are gaining importance, the anatomy of the astrocitary niches in the human CNS has been overlooked. The study was performed on the brainstem of 10 adult cadavers. We aimed to determine astrocitary niches in the human medulla oblongata using immunohistochemical labeling with vimentin and also CD34 immunostaining to accurately diagnose associated microvessels. Niches rich in astrocytes were identified as follows: (a) the superficial layer of astrocytes, ventral and ventrolateral, in the rostral medulla oblongata; (b) the median raphe; (c) medullary nuclei: arcuate nucleus, area postrema, nucleus of the solitary tract; (d) the subependymal zone (SEZ, caudal medulla) and subventricular zone (SVZ, rostral medulla). Astrocytes were scarce in the ventrolateral medulla, and mostly present within the pyramidal tract and the olivary nucleus. Apart from the SEZ and SVZ, the brainstem niches of astrocytes mostly overlap those regions known to perform roles as central respiratory chemoreceptors. The astrocytes of the SEZ and SVZ, which are known as stem cell niches, are related to an increased microvascular density. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications

    Institute of Scientific and Technical Information of China (English)

    Tomoko Kuwabara; Makoto Asashima

    2012-01-01

    Neural stem cells (NSCs),which are responsible for continuous neurogenesis during the adult stage,are present in human adults.The typical neurogenic regions are the hippocampus and the subventricular zone; recent studies have revealed that NSCs also exist in the olfactory bulb.Olfactory bulb-derived neural stem cells (OB NSCs) have the potential to be used in therapeutic applications and can be easily harvested without harm to the patient.Through the combined influence of extrinsic cues and innate programming,adult neurogenesis is a finely regulated process occurring in a specialized cellular environment,a niche.Understanding the regulatory mechanisms of adult NSCs and their cellular niche is not only important to understand the physiological roles of neurogenesis in adulthood,but also to provide the knowledge necessary for developing new therapeutic applications using adult NSCs in other organs with similar regulatory environments.Diabetes is a devastating disease affecting more than 200 million people worldwide.Numerous diabetic patients suffer increased symptom severity after the onset,involving complications such as retinopathy and nephropathy.Therefore,the development of treatments for fundamental diabetes is important.The utilization of autologous cells from patients with diabetes may address challenges regarding the compatibility of donor tissues as well as provide the means to naturally and safely restore function,reducing future risks while also providing a long-term cure.Here,we review recent findings regarding the use of adult OB NSCs as a potential diabetes cure,and discuss the potential of OB NSC-based pharmaceutical applications for neuronal diseases and mental disorders.

  12. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice

    Directory of Open Access Journals (Sweden)

    Charlton HM

    2003-02-01

    Full Text Available Abstract During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3β-hydroxysteroid dehydrogenase type VI (3βHSD VI, 17β-hydroxysteroid dehydrogenase type III (17βHSD III, prostaglandin D (PGD-synthetase and oestrogen sulphotransferase (EST is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3βHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3βHSD VI and 17βHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.

  13. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Directory of Open Access Journals (Sweden)

    Christian Much

    2016-06-01

    Full Text Available Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  14. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Science.gov (United States)

    Much, Christian; Auchynnikava, Tania; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O'Carroll, Dónal

    2016-06-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  15. The evidence for increased L1 activity in the site of human adult brain neurogenesis.

    Directory of Open Access Journals (Sweden)

    Alexey A Kurnosov

    Full Text Available Retroelement activity is a common source of polymorphisms in human genome. The mechanism whereby retroelements contribute to the intraindividual genetic heterogeneity by inserting into the DNA of somatic cells is gaining increasing attention. Brain tissues are suspected to accumulate genetic heterogeneity as a result of the retroelements somatic activity. This study aims to expand our understanding of the role retroelements play in generating somatic mosaicism of neural tissues. Whole-genome Alu and L1 profiling of genomic DNA extracted from the cerebellum, frontal cortex, subventricular zone, dentate gyrus, and the myocardium revealed hundreds of somatic insertions in each of the analyzed tissues. Interestingly, the highest concentration of such insertions was detected in the dentate gyrus-the hotspot of adult neurogenesis. Insertions of retroelements and their activity could produce genetically diverse neuronal subsets, which can be involved in hippocampal-dependent learning and memory.

  16. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Directory of Open Access Journals (Sweden)

    Eric J Chater-Diehl

    Full Text Available The molecular basis of Fetal Alcohol Spectrum Disorders (FASD is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  17. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Science.gov (United States)

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  18. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  19. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    Science.gov (United States)

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  20. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    Science.gov (United States)

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  1. Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Directory of Open Access Journals (Sweden)

    Aurelien Kerever

    2014-03-01

    Full Text Available In the adult subventricular zone (neurogenic niche, neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.

  2. Isolation and culture of adult mouse vestibular nucleus neurons

    Science.gov (United States)

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  3. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    Science.gov (United States)

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  5. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. PMID:20010817

  6. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  7. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Li, Yue; Stockton, Michael E; Bhuiyan, Ismat; Eisinger, Brian E; Gao, Yu; Miller, Jessica L; Bhattacharyya, Anita; Zhao, Xinyu

    2016-04-27

    Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome. Copyright © 2016, American Association for the Advancement of Science.

  8. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis.

    Science.gov (United States)

    Lu, Hong; Lei, Xiaohong; Zhang, Qinghao

    2015-07-30

    The NF-kB signaling, regulated by IKK1-p52/RelB and IKK2-p65, is activated by various stresses to protect or damage the liver, in context-specific manners. Two previous studies of liver-specific expression of constitutive active IKK2 (IKK2ca) showed that strong activation of IKK2-NF-kB in mouse livers caused inflammation, insulin resistance, and/or fibrosis. The purpose of this study was to understand how moderate activation of IKK2-NF-kB in adult mouse livers alters hepatic gene expression and pathophysiology. We generated mice with adult hepatocyte-specific activation of Ikk2 (Liv-Ikk2ca) using Alb-cre mice and Ikk2ca Rosa26 knockin mice in which a moderate expression of Ikk2ca transgene was driven by the endogenous Rosa26 promoter. Surprisingly, compared to wild-type mice, adult male Liv-Ikk2ca mice had higher hepatic mRNA expression of Ikk2 and classical NF-kB targets (e.g. Lcn2 and A20), as well as IKK1, NIK, and RelB, but no changes in markers of inflammation or fibrosis. Blood levels of IL-6 and MCP-1 remained unchanged, and histology analysis showed a lack of injury or infiltration of inflammatory cells in livers of Liv-Ikk2ca mice. Moreover, Liv-Ikk2ca mice had lower mRNA expression of prooxidative enzymes Cyp2e1 and Cyp4a14, higher expression of antioxidative enzymes Sod2, Gpx1, and Nqo1, without changes in key enzymes for fatty acid oxidation, glucose utilization, or gluconeogenesis. In parallel, Liv-Ikk2ca mice and wild-type mice had similar levels of hepatic reduced glutathione, endogenous reactive oxygen species, and lipid peroxidation. Additionally, Liv-Ikk2ca mice had higher Cyp3a11 without down-regulation of most drug processing genes. Regarding nuclear proteins of NF-kB subunits, Liv-Ikk2ca mice had moderately higher p65 and p50 but much higher RelB. Results of ChIP-qPCR showed that the binding of p50 to multiple NF-kB-target genes was markedly increased in Liv-Ikk2ca mice. Additionally, Liv-Ikk2ca mice had moderate increase in triglycerides in

  9. Exosomes as novel regulators of adult neurogenic niches

    Directory of Open Access Journals (Sweden)

    Luis Federico Batiz

    2016-01-01

    Full Text Available Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ of the dentate gyrus (DG in the hippocampus, and the sub-ventricular zone (SVZ of the lateral ventricles. SGZ newborn neurons are destined to the granular cell layer of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb. The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs, which reside in a unique and specialized microenvironment known as neurogenic niche. Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs. EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs, proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult

  10. Mouse immature oocytes irradiated in vivo at 14-days of age and evaluated for transmitted effects using the aggregation embryo chimera assay

    International Nuclear Information System (INIS)

    Straume, T.; Raabe, O.G.; Walsh, K.J.; Wiley, L.M.

    1996-01-01

    A previous study using the mouse-preimplantation-embryo-chimera assay demonstrated a reproducible transmitted effect (proliferation disadvantage observed in early embryos) from females irradiated as 49-day-old adults using 0.15 Gy of gamma rays and then mated seven weeks later, i.e., embryos were from oocytes that were immature at time of irradiation. Because mouse immature oocytes are known to be much more radiosensitive to cell killing in juveniles than in adults, a follow-on study was performed here using 14-day-old juvenile mice. In contrast to adults, the exposure of juveniles to 0.15 Gy of gamma rays did not result in a detectable transmitted proliferation disadvantage when animals were mated 7 or 12 weeks later. This observation is discussed in light of previous studies on mouse immature oocytes and embryo chimeras

  11. Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues.

    Science.gov (United States)

    Fischer, Romy; Debbabi, Hajer; Blais, Anne; Dubarry, Michel; Rautureau, Michèle; Boyaka, Prosper N; Tome, Daniel

    2007-10-01

    Lactoferrin is a glycoprotein with antimicrobial and immunoregulatory properties, which is found in milk, other external secretions, and in the secondary granules of neutrophils. The present study examined the time course of uptake and the pattern of tissue accumulation of bovine lactoferrin (bLf) following intragastric intubation of a single dose to adult naïve mice or to mice daily fed bLf for 4 weeks. Following ingestion, bLf was transferred from the intestine into peripheral blood in a form with intact molecular weight (80 kDa) and localized within 10 to 20 min after oral administration in the liver, kidneys, gall bladder, spleen, and brain of both groups of mice. Immunoreactive bLf could also be detected in the luminal contents of the stomach, small intestine and colon 1 h after intragastric intubation. Interestingly, serum and tissue accumulation of bLf was approximately 50% lower in mice chronically fed this protein than in those given only the single oral dose. Furthermore, significant levels of bLf-specific IgA and IgG antibodies as well as bLf-containing IgA- and IgG immune complexes were detected in mice chronically fed bLf but not in those fed only once. Taken together, these results indicate that bLf resists major proteolytic degradation in the intestinal lumen and is readily absorbed in an antigenic form in blood and various mouse tissues. Chronic ingestion of lactoferrin reduces its uptake, probably through mechanisms such as immune exclusion, which minimize potential harmful reactions to food products.

  12. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior

    Science.gov (United States)

    Lévy, Frederic; Batailler, Martine; Meurisse, Maryse; Migaud, Martine

    2017-01-01

    Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior. PMID:29109674

  13. S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone.

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    Full Text Available The postnatal subventricular zone (SVZ contains proliferating neural progenitor cells in close proximity to blood vessels. Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries throughout the SVZ that constrict upon applications of the thromboxane A(2 receptor agonist U-46119 in acute brain slice preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum, which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may provide energy and nutrient for cell cycle progression.

  14. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer's type.

    Science.gov (United States)

    Bassani, Taysa B; Turnes, Joelle M; Moura, Eric L R; Bonato, Jéssica M; Cóppola-Segovia, Valentín; Zanata, Silvio M; Oliveira, Rúbia M M W; Vital, Maria A B F

    2017-09-29

    Curcumin is a natural polyphenol with evidence of antioxidant, anti-inflammatory and neuroprotective properties. Recent evidence also suggests that curcumin increases cognitive performance in animal models of dementia, and this effect would be related to its capacity to enhance adult neurogenesis. The aim of this study was to test the hypothesis that curcumin treatment would be able to preserve cognition by increasing neurogenesis and decreasing neuroinflammation in the model of dementia of Alzheimer's type induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) in Wistar rats. The animals were injected with ICV-STZ or vehicle and curcumin treatments (25, 50 and 100mg/kg, gavage) were performed for 30days. Four weeks after surgery, STZ-lesioned animals exhibited impairments in short-term spatial memory (Object Location Test (OLT) and Y maze) and short-term recognition memory (Object Recognition Test - ORT), decreased cell proliferation and immature neurons (Ki-67- and doublecortin-positive cells, respectively) in the subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus, and increased immunoreactivity for the glial markers GFAP and Iba-1 (neuroinflammation). Curcumin treatment in the doses of 50 and 100mg/kg prevented the deficits in recognition memory in the ORT, but not in spatial memory in the OLT and Y maze. Curcumin treatment exerted only slight improvements in neuroinflammation, resulting in no improvements in hippocampal and subventricular neurogenesis. These results suggest a positive effect of curcumin in object recognition memory which was not related to hippocampal neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Aiming and clicking in young children's use of the computer mouse

    NARCIS (Netherlands)

    Donker, A.; Reitsma, P.

    2007-01-01

    The present study investigated the abilities of young children to aim and click with a computer mouse. Young children have not yet fully developed their motor skills and they are therefore more likely than adults to click next to targets on the computer screen. Because in educational software

  17. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  18. The longest telomeres: a general signature of adult stem cell compartments

    Science.gov (United States)

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  19. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    Science.gov (United States)

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  20. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    Directory of Open Access Journals (Sweden)

    Marta Chaverra

    2017-05-01

    Full Text Available Hereditary sensory and autonomic neuropathies (HSANs are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS dysfunction. HSAN type III, known as familial dysautonomia (FD, results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1 for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4 are associated with central nervous system (CNS disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on

  1. Lineage Reprogramming of Astroglial Cells from Different Origins into Distinct Neuronal Subtypes

    Directory of Open Access Journals (Sweden)

    Malek Chouchane

    2017-07-01

    Full Text Available Astroglial cells isolated from the rodent postnatal cerebral cortex are particularly susceptible to lineage reprogramming into neurons. However, it remains unknown whether other astroglial populations retain the same potential. Likewise, little is known about the fate of induced neurons (iNs in vivo. In this study we addressed these questions using two different astroglial populations isolated from the postnatal brain reprogrammed either with Neurogenin-2 (Neurog2 or Achaete scute homolog-1 (Ascl1. We show that cerebellum (CerebAstro and cerebral cortex astroglia (CtxAstro generates iNs with distinctive neurochemical and morphological properties. Both astroglial populations contribute iNs to the olfactory bulb following transplantation in the postnatal and adult mouse subventricular zone. However, only CtxAstro transfected with Neurog2 differentiate into pyramidal-like iNs after transplantation in the postnatal cerebral cortex. Altogether, our data indicate that the origin of the astroglial population and transcription factors used for reprogramming, as well as the region of integration, affect the fate of iNs.

  2. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse.

    Science.gov (United States)

    Xiong, Xiaolu; Zhong, Anyuan; Xu, Huajun

    2014-01-01

    Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis. Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice. MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.

  3. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse.

    Directory of Open Access Journals (Sweden)

    Xiaolu Xiong

    Full Text Available Microcystins LR (MC-LR are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis.Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH and luteinizing hormone (LH were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro.MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice.MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.

  4. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  5. Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain

    International Nuclear Information System (INIS)

    Collombet, Jean-Marc; Four, Elise; Bernabe, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valerie; Baubichon, Dominique; Lallement, Guy

    2005-01-01

    To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning was estimated in mouse brains at various times ranging from 1 to 90 days post-poisoning. Using immunochemistry and dye staining techniques (hemalun-eosin staining), the number of degenerating neurons, the number of dividing neural progenitors, and microglial, astroglial or oligodendroglial cell activation were studied. Soman poisoning led to rapid and massive (post-soman day 1) death of mature neurons as assessed by hemalun-eosin staining. Following this acute poisoning phase, a weak toxicity effect on mature neurons was still observed for a period of 1 month after poisoning. A massive short-termed microgliosis peaked on day 3 post-poisoning. Delayed astrogliosis was observed from 3 to 90 days after soman poisoning, contributing to glial scar formation. On the other hand, oligodendroglial cells or their precursors were practically unaffected by soman poisoning. Interestingly, neural progenitors located in the subgranular zone of the dentate gyrus (SGZ) or in the subventricular zone (SVZ) of the brain survived soman poisoning. Furthermore, soman poisoning significantly increased neural progenitor proliferation in both SGZ and SVZ brain areas on post-soman day 3 or day 8, respectively. This increased proliferation rate was detected up to 1 month after poisoning

  6. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  7. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells.

    Science.gov (United States)

    Barazzuol, Lara; Rickett, Nicole; Ju, Limei; Jeggo, Penny A

    2015-10-01

    The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal dentate gyrus, and whether they activate apoptosis. We used mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C)), ataxia telangiectasia mutated (Atm(-/-)) and double mutant Atm(-/-)/Lig4(Y288C) mice. We demonstrate that, although DSBs do not arise at a high frequency in adult neural stem cells, the low numbers of DSBs that persist endogenously in Lig4(Y288C) mice or that are induced by low radiation doses can activate apoptosis. A temporal analysis shows that DSB levels in Lig4(Y288C) mice diminish gradually from the embryo to a steady state level in adult mice. The neonatal SVZ compartment of Lig4(Y288C) mice harbours diminished DSBs compared to its differentiated counterpart, suggesting a process selecting against unfit stem cells. Finally, we reveal high endogenous apoptosis in the developing SVZ of wild-type newborn mice. © 2015. Published by The Company of Biologists Ltd.

  8. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain

    Directory of Open Access Journals (Sweden)

    Vanesa eNieto-Estévez

    2016-02-01

    Full Text Available The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs. This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP and the subventricular zone-olfactory bulb (SVZ-OB. By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also, by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis and neuron integration in synaptic circuits.

  9. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    Science.gov (United States)

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  10. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  11. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    Science.gov (United States)

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  12. Hericium erinaceus Extract Reduces Anxiety and Depressive Behaviors by Promoting Hippocampal Neurogenesis in the Adult Mouse Brain.

    Science.gov (United States)

    Ryu, Sun; Kim, Hyoun Geun; Kim, Joo Youn; Kim, Seong Yun; Cho, Kyung-Ok

    2018-02-01

    Versatile biological activities of Hericium erinaceus (HE) have been reported in many brain diseases. However, roles of HE in major psychiatric disorders such as depression and anxiety remain to be investigated. Therefore, we evaluated whether HE could reduce anxiety and depressive behaviors in the adult mouse and its underlying mechanisms. Male C57BL/6 mice were administered HE (20 or 60 mg/kg, p.o.) or saline once a day for 4 weeks. Open field and tail suspension tests were performed 30 min after the last administration of HE, followed by forced swim test 2 days later. We found that chronic administration of HE showed anxiolytic and antidepressant-like effects. To elucidate possible mechanisms, proliferative activity of the hippocampal progenitor cells was assessed by immunohistochemistry of proliferating cell nuclear antigen (PCNA) and Ki67. Moreover, to evaluate neuronal survival in the dentate gyrus, 5-bromo-2'-deoxyuridine (BrdU) (120 mg/kg, i.p.) was given at the first day of HE administration, followed by isolation of the brains 4 weeks later. HE (60 mg/kg) increased the number of PCNA- and Ki67-positive cells in the subgranular zone of the hippocampus, indicating increased proliferation of hippocampal progenitors. In addition, BrdU- and BrdU/NeuN-positive cells in the dentate gyrus were significantly increased when treated with HE (60 mg/kg) compared with the saline-treated group, demonstrating enhanced neurogenesis by HE treatment. Taken together, the results indicate that chronic HE administration can exert anxiolytic and antidepressant-like effects, possibly by enhancing adult hippocampal neurogenesis.

  13. The scarless heart and the MRL mouse.

    Science.gov (United States)

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2004-05-29

    The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.

  14. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  15. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain.

    Science.gov (United States)

    Ara, Jahan; De Montpellier, Sybille

    2013-09-01

    Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Gender markedly modulates behavioral thermoregulation in a non-human primate species, the mouse lemur (Microcebus murinus).

    Science.gov (United States)

    Terrien, J; Perret, M; Aujard, F

    2010-11-02

    Age and gender are known to significantly modulate thermoregulatory capacities in mammals, suggesting strong impacts on behavioral adjustments, which are used to minimize the energy costs of thermoregulation. We tested the effects of sex and age on spontaneous choice of ambient temperature (Ta) in a non-human primate species, the mouse lemur (Microcebus murinus). The animals acclimated to both winter and summer photoperiods, two seasons significantly modifying thermoregulation function, were experimented in a thermal gradient device. During winter, adult males did not show preference for warm Tas whereas old males did. In contrast, female mouse lemurs of both age categories exhibited great preferences for warm Tas. Acclimation to summer revealed that males selected colder Ta for the day than during the night. Such behavior did not exist in females. Old females explored and selected warmer nests than adult ones. This study raised novel issues on the effect of gender on thermoregulatory capacities in the mouse lemur. Females probably use behavioral adjustments to limit energy expenditure and might prefer to preserve energy for maternal investment by anticipation of and during the breeding season. Further experiments focusing on female thermoregulatory capacities are needed to better understand the energy challenge that may occur during winter and summer in female mouse lemurs, and whether this trade-off changes during aging. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Picq

    Full Text Available The mouse lemur (Microcebus murinus is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12 and aged (n = 8 adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  18. Identification of 2 novel genes developmentally regulated in the mouse aorta-gonad-mesonephros region

    NARCIS (Netherlands)

    C. Orelio; E.A. Dzierzak (Elaine)

    2003-01-01

    textabstractThe first adult-repopulating hematopoietic stem cells (HSCs) emerge in the mouse aorta-gonad-mesonephros (AGM) region at embryonic day 10.5 prior to their appearance in the yolk sac and fetal liver. Although several genes are implicated in the regulation of HSCs, there

  19. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    Science.gov (United States)

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  20. Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring

    NARCIS (Netherlands)

    Pruis, M. G. M.; Lendvai, A.; Bloks, V. W.; Zwier, M. V.; Baller, J. F. W.; de Bruin, A.; Groen, A. K.; Plosch, T.

    AimMetabolic programming via components of the maternal diet during gestation may play a role in the development of different aspects of the metabolic syndrome. Using a mouse model, we aimed to characterize the role of maternal western-type diet in the development of non-alcoholic fatty liver

  1. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation

    International Nuclear Information System (INIS)

    Barazzuol, Lara; Jeggo, Penny A.

    2016-01-01

    The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5–14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4 Y288C ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4 Y288C embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4 Y288C mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis

  2. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A; Sykora, Peter; Liu, Dong; Cordonnier, Stephanie; Fang, Evandro F; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2017-02-01

    Alzheimer's disease (AD) involves the progressive degeneration of neurons critical for learning and memory. In addition, patients with AD typically exhibit impaired olfaction associated with neuronal degeneration in the olfactory bulb (OB). Because DNA base excision repair (BER) is reduced in brain cells during normal aging and AD, we determined whether inefficient BER due to reduced DNA polymerase-β (Polβ) levels renders OB neurons vulnerable to degeneration in the 3xTgAD mouse model of AD. We interrogated OB histopathology and olfactory function in wild-type and 3xTgAD mice with normal or reduced Polβ levels. Compared to wild-type control mice, Polβ heterozygous (Polβ +/- ), and 3xTgAD mice, 3xTgAD/Polβ +/- mice exhibited impaired performance in a buried food test of olfaction. Polβ deficiency did not affect the proliferation of OB neural progenitor cells in the subventricular zone. However, numbers of newly generated neurons were reduced by approximately 25% in Polβ +/- and 3xTgAD mice, and by over 60% in the 3xTgAD/Polβ +/- mice compared to wild-type control mice. Analyses of DNA damage and apoptosis revealed significantly greater degeneration of OB neurons in 3xTgAD/Polβ +/- mice compared to 3xTgAD mice. Levels of amyloid β-peptide (Aβ) accumulation in the OB were similar in 3xTgAD and 3xTgAD/Polβ +/- mice, and cultured Polβ-deficient neurons exhibited increased vulnerability to Aβ-induced death. Olfactory deficit is an early sign in human AD, but the mechanism is not yet understood. Our findings in a new AD mouse model demonstrate that diminution of BER can endanger OB neurons, and suggest a mechanism underlying early olfactory impairment in AD. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Distinct spatiotemporal expression of ISM1 during mouse and chick development.

    Science.gov (United States)

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species.

  4. Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture

    Directory of Open Access Journals (Sweden)

    Maria Angeles Marques-Torrejon

    2018-02-01

    Full Text Available Glioblastoma multiforme (GBM is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as glioma stem cells (GSCs. Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human. Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring live cell behaviours. Here, we explored whole adult brain coronal organotypic slices as an alternative model. Mouse adult brain slices remain viable in a serum-free basal medium for several weeks. GSCs can be easily microinjected into specific anatomical sites ex vivo, and we demonstrate distinct responses of engrafted GSCs to diverse microenvironments in the brain tissue. Within the subependymal zone – one of the adult neural stem cell niches – injected tumour cells could effectively engraft and respond to endothelial niche signals. Tumour-transplanted slices were treated with the antimitotic drug temozolomide as proof of principle of the utility in modelling responses to existing treatments. Engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices therefore provides a simplified, yet flexible, experimental model. This will help to increase the precision and throughput of modelling GSC-host brain interactions and complements ongoing in vivo studies. This article has an associated First Person interview with the first author of the paper.

  5. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart.

    Science.gov (United States)

    Fan, Yi; Zhang, Qijun; Li, Hua; Cheng, Zijie; Li, Xing; Chen, Yumei; Shen, Yahui; Wang, Liansheng; Song, Guixian; Qian, Lingmei

    2017-09-01

    Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Mouse allergen exposure and immunologic responses: IgE-mediated mouse sensitization and mouse specific IgG and IgG4 levels

    NARCIS (Netherlands)

    Matsui, Elizabeth C.; Krop, Esmeralda J. M.; Diette, Gregory B.; Aalberse, Rob C.; Smith, Abigail L.; Eggleston, Peyton A.

    2004-01-01

    Although there is evidence that contact with mice is associated with IgE-mediated mouse sensitization and mouse specific antibody responses, the exposure-response relationships remain unclear. To determine whether IgE-mediated mouse sensitization and mouse specific IgG (mIgG) and mIgG4 levels

  7. The morphological changes of adult mouse testes after 60Co Gamma-radiation

    International Nuclear Information System (INIS)

    Koruji, M.; Movahedin, M.; Gourabi, H.; Jabbary Arfaee, A.

    2008-01-01

    Cytotoxic therapy can lead to prolonged azoospermia or even sterility. In the present study, we investigated the morphological changes of mouse testes after γ-Radiation. Methods: After anesthetizing of NMRI mice, testes and their surrounding tissues were irradiated using a cobalt therapy machine. Four experimental groups were irradiated with fractionated doses of: 1.5+8, 1.5+12 and 1.5+16 Gy (with an interval of 24 h) and single dose of 14 Gy. Non-irradiated mice were considered as control group. Testes were removed 4, 6 and 8 weeks following irradiation, weighed and processed for light microscopic study. Diameters of seminiferous tubules and their lumens, epithelium thickness, percentage of different types of tubules and number of spermatogenic cell were measured. Moreover, sperm count motility and viability rates were evaluated in epididymis. Results: Number of normal tubules, epithelium thickness, tubules diameter and lumen diameter were significantly reduced with high dose irradiation in comparison with control testes. The recovery was observed after 8 weeks. Epididymal sperm count, motility and viability rates were significantly decreased in the irradiated mice comparing non-irradiated ones. These parameters were increased after 8 weeks. Conclusion: According to the results, irradiation can cause temporary azoospermia in mouse and this effect is reversible after 8 weeks

  8. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells

    Directory of Open Access Journals (Sweden)

    Jing-Peng Fu

    2016-08-01

    Full Text Available Abstract Living organisms are exposed to the geomagnetic field (GMF throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF, leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT, produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2, and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.

  9. The effects of chronic alcoholism on cell proliferation in the human brain.

    Science.gov (United States)

    Sutherland, G T; Sheahan, P J; Matthews, J; Dennis, C V P; Sheedy, D S; McCrossin, T; Curtis, M A; Kril, J J

    2013-09-01

    Neurogenesis continues in the human subventricular zone and to a lesser extent in the hippocampal subgranular zone throughout life. Subventricular zone-derived neuroblasts migrate to the olfactory bulb where survivors become integrated as interneurons and are postulated to contribute to odor discrimination. Adult neurogenesis is dysregulated in many neurological, neurovascular and neurodegenerative diseases. Alcohol abuse can result in a neurodegenerative condition called alcohol-related brain damage. Alcohol-related brain damage manifests clinically as cognitive dysfunction and the loss of smell sensation (hyposmia) and pathologically as generalized white matter atrophy and focal neuronal loss. The exact mechanism linking chronic alcohol intoxication with alcohol-related brain damage remains largely unknown but rodent models suggest that decreased neurogenesis is an important component. We investigated this idea by comparing proliferative events in the subventricular zone and olfactory bulb of a well-characterized cohort of 15 chronic alcoholics and 16 age-matched controls. In contrast to the findings in animal models there was no difference in the number of proliferative cell nuclear antigen-positive cells in the subventricular zone of alcoholics (mean±SD=28.7±20.0) and controls (27.6±18.9, p=1.0). There were also no differences in either the total (p=0.89) or proliferative cells (p=0.98) in the granular cell layer of the olfactory bulb. Our findings show that chronic alcohol consumption does not affect cell proliferation in the human SVZ or olfactory bulb. In fact only microglial proliferation could be demonstrated in the latter. Therefore neurogenic deficits are unlikely to contribute to hyposmia in chronic alcoholics. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Uncompensated polyuria in a mouse model of Bartter's syndrome

    Science.gov (United States)

    Takahashi, Nobuyuki; Chernavvsky, Daniel R.; Gomez, R. Ariel; Igarashi, Peter; Gitelman, Hillel J.; Smithies, Oliver

    2000-01-01

    We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney. PMID:10779555

  11. Molecular Targets of Chromatin Repressive Mark H3K9me3 in Primate Progenitor Cells within Adult Neurogenic Niches

    Directory of Open Access Journals (Sweden)

    Michael R Foret

    2014-07-01

    Full Text Available Histone 3 Lysine 9 (H3K9 methylation is known to be associated with pericentric heterochromatin and important in genomic stability. In this study, we show that trimethylation at H3K9 (H3K9me3 is enriched in an adult neural stem cell niche- the subventricular zone (SVZ on the walls of the lateral ventricle in both rodent and non-human primate baboon brain. Previous studies have shown that there is significant correlation between baboon and human regarding genomic similarity and brain structure, suggesting that findings in baboon are relevant to human. To understand the function of H3K9me3 in this adult neurogenic niche, we performed genome-wide analyses using ChIP-Seq (chromatin immunoprecipitation and deep-sequencing and RNA-Seq for in vivo SVZ cells purified from baboon brain. Through integrated analyses of ChIP-Seq and RNA-Seq, we found that H3K9me3-enriched genes associated with cellular maintenance, post-transcriptional and translational modifications, signaling pathways, and DNA replication are expressed, while genes involved in axon/neuron, hepatic stellate cell, or immune-response activation are not expressed. As neurogenesis progresses in the adult SVZ, cell fate restriction is essential to direct proper lineage commitment. Our findings highlight that H3K9me3 repression in undifferentiated SVZ cells is engaged in the maintenance of cell type integrity, implicating a role for H3K9me3 as an epigenetic mechanism to control cell fate transition within this adult germinal niche.

  12. Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring.

    Science.gov (United States)

    Vanselow, Jens; Kucia, Marzena; Langhammer, Martina; Koczan, Dirk; Metges, Cornelia C

    2016-04-01

    Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.

  13. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  14. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  15. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate.

    Science.gov (United States)

    Okubo, Tadashi; Clark, Cheryl; Hogan, Brigid L M

    2009-02-01

    The epithelium of the mouse tongue and soft palate consists of at least three distinct epithelial cell populations: basal cells, keratinized cells organized into filiform and fungiform papillae, and taste receptor cells present in tight clusters known as taste buds in the fungiform and circumvallate papillae and soft palate. All three cell types develop from the simple epithelium of the embryonic tongue and palate, and are continually replaced in the adult by cell turnover. Previous studies using pulse-chase tritiated thymidine labeling in the adult mouse provided evidence for a high rate of cell turnover in the keratinocytes (5-7 days) and taste buds (10 days). However, little is known about the localization and phenotype of the long-term stem or progenitor cells that give rise to the mature taste bud cells and surrounding keratinocytes in these gustatory tissues. Here, we make use of a tamoxifen-inducible K14-CreER transgene and the ROSA26 LacZ reporter allele to lineage trace the mature keratinocytes and taste bud cells of the early postnatal and adult mouse tongue and soft palate. Our results support the hypothesis that both the pore keratinocytes and receptor cells of the taste bud are derived from a common K14(+)K5(+)Trp63(+)Sox2(+) population of bipotential progenitor cells located outside the taste bud. The results are also compatible with models in which the keratinocytes of the filiform and fungiform papillae are derived from basal progenitor cells localized at the base of these structures.

  16. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  17. The effect of interferon-β on mouse neural progenitor cell survival and differentiation

    International Nuclear Information System (INIS)

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-01-01

    Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  18. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Marek [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Knight, Julia [Neuroscience Department, University of Vermont College of Medicine, Burlington, VT (United States); Tobita, Mari; Soltys, John; Panitch, Hillel [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Mao-Draayer, Yang, E-mail: yang.mao-draayer@vtmednet.org [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States)

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  19. Mouse fetal antigen 1 (mFA1), the circulating gene product of mdlk, pref-1 and SCP-1: isolation, characterization and biology

    DEFF Research Database (Denmark)

    Bachmann, E; Krogh, T N; Højrup, P

    1996-01-01

    The mouse homologue to human fetal antigen 1 (hFA1) was purified from mouse amniotic fluid by cation exchange chromatography and immunospecific affinity chromatography. Mouse FA1 (mFA1) is a single chain glycoprotein with an M(r) of 42-50 kDa (SDS-PAGE). The N-terminal amino acid sequence (39...... residues) revealed 74% identity to hFA1 and 100% identity to the translated cDNAs referred to as mouse dlk, pref-1 and SCP-1. mFA1 is the secreted processed molecule encoded by the mRNA defined by these identical mouse cDNAs. Monospecific rabbit anti-mFA1 antibodies, purified by ammonium sulfate...... precipitation and immunospecific affinity chromatography, were used for immunohistochemical and quantitative ELISA techniques. The indirect immunoperoxidase technique demonstrated mFA1 within the endocrine structures of adult mouse pancreas, whereas the exocrine tissue remained unstained. FA1-positive staining...

  20. [Effect of Tribulus terrestris extract on melanocyte-stimulating hormone expression in mouse hair follicles].

    Science.gov (United States)

    Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan

    2006-12-01

    To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (PTribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.

  1. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Science.gov (United States)

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  2. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus

    DEFF Research Database (Denmark)

    Fabricius, K.; Wörtwein, Gitta; Pakkenberg, B.

    2008-01-01

    , the number of errors made by the MS24 mice compared to controls and in total distance moved. The mice were subsequently sacrificed and the total number of neurons estimated in the hippocampus using the optical fractionator. We found a significant loss of neurons in the dentate gyrus in MS mice compared...... to controls. Apparently a single maternal separation can impact the number of neurons in mouse hippocampus either by a decrease of neurogenesis or as an increase in neuron apoptosis. This study is the first to assess the result of maternal separation combining behaviour and stereology Udgivelsesdato: 2008/2...

  3. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation.

    Science.gov (United States)

    Barazzuol, Lara; Jeggo, Penny A

    2016-08-01

    The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Inhibition of Adult Neurogenesis through ERK5 knockdown Impairs Complex Hippocampus-dependent Spatial Memory Tasks

    NARCIS (Netherlands)

    Fitzsimons, C.P.; Vreugdenhil, E.; Lucassen, P.J.

    2012-01-01

    This study reports on the identification of the extracellular MAPK ERK5 as a novel signaling molecule regulating adult hippocampal neurogenesis. The authors use an inducible and conditional mouse line to knockout ERK5 expression, specifically in the neurogenic regions of the adult brain and provide

  5. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    Science.gov (United States)

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has

  6. EMMPRIN (basigin/CD147) expression is not correlated with MMP activity during adult mouse mammary gland development.

    Science.gov (United States)

    Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F

    2009-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.

  7. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting

    Directory of Open Access Journals (Sweden)

    Amanda M. Ackermann

    2017-03-01

    Full Text Available Objective: α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER “knock-in” mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreERT2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. Methods: We utilized CRISPR-Cas9 technology to insert an IRES-CreERT2 sequence into the 3′ UTR of the Glucagon (Gcg locus in mouse embryonic stem cells (ESCs. Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreERT2 mice. Recombination efficiency in GCG+ pancreatic α-cells and glucagon-like peptide 1 positive (GLP1+ enteroendocrine L-cells was measured in Gcg-CreERT2;Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Results: Tamoxifen injection of Gcg-CreERT2;Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively, as well as in first-wave fetal α-cells (36% and adult enteroendocrine L-cells (33%. Mice homozygous for the Gcg-CreERT2 allele were phenotypically normal. Conclusions: We successfully derived a Gcg-CreERT2 mouse line that expresses CreERT2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice

  8. Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases.

    Directory of Open Access Journals (Sweden)

    Aroa Relaño-Ginès

    Full Text Available Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.

  9. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  10. The lncRNA Malat1 Is Dispensable for Mouse Development but Its Transcription Plays a cis-Regulatory Role in the Adult

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2012-07-01

    Full Text Available Genome-wide studies have identified thousands of long noncoding RNAs (lncRNAs lacking protein-coding capacity. However, most lncRNAs are expressed at a very low level, and in most cases there is no genetic evidence to support their in vivo function. Malat1 (metastasis associated lung adenocarcinoma transcript 1 is among the most abundant and highly conserved lncRNAs, and it exhibits an uncommon 3′-end processing mechanism. In addition, its specific nuclear localization, developmental regulation, and dysregulation in cancer are suggestive of it having a critical biological function. We have characterized a Malat1 loss-of-function genetic model that indicates that Malat1 is not essential for mouse pre- and postnatal development. Furthermore, depletion of Malat1 does not affect global gene expression, splicing factor level and phosphorylation status, or alternative pre-mRNA splicing. However, among a small number of genes that were dysregulated in adult Malat1 knockout mice, many were Malat1 neighboring genes, thus indicating a potential cis-regulatory role of Malat1 gene transcription.

  11. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neural stem cells

    Directory of Open Access Journals (Sweden)

    Stéphanie eSEGURA

    2015-09-01

    Full Text Available Adipocyte-derived hormone leptin has been recently implicated in the control of neuronal plasticity. To explore whether modulation of adult neurogenesis may contribute to leptin control of neuronal plasticity, we used the neurosphere assay of neural stem cells derived from the adult rat subventricular zone (SVZ. Endogenous expression of specific leptin receptor (ObRb transcripts, as revealed by RT-PCR, is associated with activation of both ERK and STAT-3 pathways via phosphorylation of the critical ERK/STAT-3 amino acid residues upon addition of leptin to neurospheres. Furthermore, leptin triggered withdrawal of neural stem cells from the cell cycle as monitored by Ki67 labelling. This effect was blocked by pharmacological inhibition of ERK activation thus demonstrating that ERK mediates leptin effects on neural stem cell expansion. Leptin-dependent withdrawal of neural stem cells from the cell cycle was associated with increased apoptosis, as detected by TUNEL, which was preceded by cyclin D1 induction. Cyclin D1 was indeed extensively colocalized with TUNEL-positive apoptotic cells. Cyclin-D1 silencing by specific shRNA prevented leptin-induced decrease of the cell number per neurosphere thus pointing to the causal relationship between leptin actions on apoptosis and cyclin D1 induction. Leptin target cells in SVZ neurospheres were identified by double TUNEL/phenotypic marker immunocytofluorescence as differentiating neurons mostly. The inhibition of neural stem cell expansion via ERK/cyclin D1-triggered apoptosis defines novel biological action of leptin which may be involved in adiposity-dependent neurotoxicity.

  12. Effects of neuroinflammation on the regenerative capacity of brain stem cells

    OpenAIRE

    Russo, Isabella; Barlati, Sergio; Bosetti, Francesca

    2011-01-01

    In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system ...

  13. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  14. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  15. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    Science.gov (United States)

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  16. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    Science.gov (United States)

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  17. Adult-Onset Fluoxetine Treatment Does Not Improve Behavioral Impairments and May Have Adverse Effects on the Ts65Dn Mouse Model of Down Syndrome

    Directory of Open Access Journals (Sweden)

    Markus Heinen

    2012-01-01

    Full Text Available Down syndrome is caused by triplication of chromosome 21 and is associated with neurocognitive phenotypes ranging from severe intellectual disability to various patterns of more selective neuropsychological deficits, including memory impairments. In the Ts65Dn mouse model of Down syndrome, excessive GABAergic neurotransmission results in local over-inhibition of hippocampal circuits, which dampens hippocampal synaptic plasticity and contributes to cognitive impairments. Treatments with several GABAA receptor antagonists result in increased plasticity and improved memory deficits in Ts65Dn mice. These GABAA receptor antagonists are, however, not suitable for clinical applications. The selective serotonin reuptake inhibitor fluoxetine, in contrast, is a widely prescribed antidepressant that can also enhance plasticity in the adult rodent brain by lowering GABAergic inhibition. For these reasons, we wondered if an adult-onset 4-week oral fluoxetine treatment restores spatial learning and memory impairments in Ts65Dn mice. Fluoxetine did not measurably improve behavioral impairments of Ts65Dn mice. On the contrary, we observed seizures and mortality in fluoxetine-treated Ts65Dn mice, raising the possibility of a drug × genotype interaction with respect to these adverse treatment outcomes. Future studies should re-address this in larger animal cohorts and determine if fluoxetine treatment is associated with adverse treatment effects in individuals with Down syndrome.

  18. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    Science.gov (United States)

    Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567

  19. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    Science.gov (United States)

    Lissner, Michelle M; Thomas, Brandon J; Wee, Kathleen; Tong, Ann-Jay; Kollmann, Tobias R; Smale, Stephen T

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development.

  20. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Sánchez-Martín

    Full Text Available Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb, an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD. Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons, and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.

  1. Phosphorylation of Histone H2AX in the Mouse Brain from Development to Senescence

    Directory of Open Access Journals (Sweden)

    Serena Barral

    2014-01-01

    Full Text Available Phosphorylation of the histone H2AX (γH2AX form is an early response to DNA damage and a marker of aging and disease in several cells and tissues outside the nervous system. Little is known about in vivo phosphorylation of H2AX in neurons, although it was suggested that γH2AX is an early marker of neuronal endangerment thus opening the possibility to target it as a neuroprotective strategy. After experimental labeling of DNA-synthesizing cells with 5-bromo-2-deoxyuridine (BrdU, we studied the brain occurrence of γH2AX in developing, postnatal, adult and senescent (2 years mice by light and electron microscopic immunocytochemistry and Western blotting. Focal and/or diffuse γH2AX immunostaining appears in interkinetic nuclei, mitotic chromosomes, and apoptotic nuclei. Immunoreactivity is mainly associated with neurogenetic areas, i.e., the subventricular zone (SVZ of telencephalon, the cerebellar cortex, and, albeit to a much lesser extent, the subgranular zone of the hippocampal dentate gyrus. In addition, γH2AX is highly expressed in the adult and senescent cerebral cortex, particularly the piriform cortex. Double labeling experiments demonstrate that γH2AX in neurogenetic brain areas is temporally and functionally related to proliferation and apoptosis of neuronal precursors, i.e., the type C transit amplifying cells (SVZ and the granule cell precursors (cerebellum. Conversely, γH2AX-immunoreactive cortical neurons incorporating the S phase-label BrdU do not express the proliferation marker phosphorylated histone H3, indicating that these postmitotic cells undergo a significant DNA damage response. Our study paves the way for a better comprehension of the role of H2AX phosphorylation in the normal brain, and offers additional data to design novel strategies for the protection of neuronal precursors and mature neurons in central nervous system (CNS degenerative diseases.

  2. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    Science.gov (United States)

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice

  4. Optimization of the virtual mouse HeadMouse to foster its classroom use by children with physical disabilities

    Directory of Open Access Journals (Sweden)

    Merce TEIXIDO

    2014-03-01

    Full Text Available This paper presents the optimization of a virtual mouse called HeadMouse in order to foster its classroom use by children with physical disabilities. HeadMouse is an absolute virtual mouse that converts head movements in cursor displacement and facial gestures in click actions. The virtual mouse combines different image processing algorithms: face detection, pattern matching and optical flow in order to emulate the behaviour of a conventional computer mouse. The original implementation of HeadMouse requires large computational power and this paper proposes specific optimizations in order to enable its use by children with disabilities in standard low cost classroom computers.

  5. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    Science.gov (United States)

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  6. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia

    Science.gov (United States)

    Ferland, Russell J.; Batiz, Luis Federico; Neal, Jason; Lian, Gewei; Bundock, Elizabeth; Lu, Jie; Hsiao, Yi-Chun; Diamond, Rachel; Mei, Davide; Banham, Alison H.; Brown, Philip J.; Vanderburg, Charles R.; Joseph, Jeffrey; Hecht, Jonathan L.; Folkerth, Rebecca; Guerrini, Renzo; Walsh, Christopher A.; Rodriguez, Esteban M.; Sheen, Volney L.

    2009-01-01

    Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in ‘Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315–1325, 1998; Sheen et al. in ‘Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69–76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in ‘MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789–801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (α-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventicular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell

  7. Female presence and estrous state influence mouse ultrasonic courtship vocalizations.

    Directory of Open Access Journals (Sweden)

    Jessica L Hanson

    Full Text Available The laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions. These vocalizations can be grouped into syllable types that are consistently produced by different subspecies and strains of mice. Vocalizations are unique to individuals, vary across development, and depend on social housing conditions. The behavioral significance of different syllable types, including the contexts in which different vocalizations are made and the responses listeners have to different types of vocalizations, is not well understood. We examined the effect of female presence and estrous state on male vocalizations by exploring the use of syllable types and the parameters of syllables during courtship. We also explored correlations between vocalizations and other behaviors. These experimental manipulations produced four main findings: 1 vocalizations varied among males, 2 the production of USVs and an increase in the use of a specific syllable type were temporally related to mounting behavior, 3 the frequency (kHz, bandwidth, and duration of syllables produced by males were influenced by the estrous phase of female partners, and 4 syllable types changed when females were removed. These findings show that mouse ultrasonic courtship vocalizations are sensitive to changes in female phase and presence, further demonstrating the context-sensitivity of these calls.

  8. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    International Nuclear Information System (INIS)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon; Jung, Kwang Hwa; Kim, Jeong Kyu; Bae, Hyun Jin; Xie Hongjian; Ryu, Jae Chun; Ahn, Young Min; Min, Jin-Hye; Park, Won Sang; Lee, Jung Young; Rhee, Gyu Seek; Nam, Suk Woo

    2009-01-01

    The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.

  9. Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb.

    Science.gov (United States)

    Giachino, Claudio; Taylor, Verdon

    2009-07-01

    The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.

  10. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    Science.gov (United States)

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  11. Restriction of neural precursor ability to respond to Nurr1 by early regional specification.

    Directory of Open Access Journals (Sweden)

    Chiara Soldati

    Full Text Available During neural development, spatially regulated expression of specific transcription factors is crucial for central nervous system (CNS regionalization, generation of neural precursors (NPs and subsequent differentiation of specific cell types within defined regions. A critical role in dopaminergic differentiation in the midbrain (MB has been assigned to the transcription factor Nurr1. Nurr1 controls the expression of key genes involved in dopamine (DA neurotransmission, e.g. tyrosine hydroxylase (TH and the DA transporter (DAT, and promotes the dopaminergic phenotype in embryonic stem cells. We investigated whether cells derived from different areas of the mouse CNS could be directed to differentiate into dopaminergic neurons in vitro by forced expression of the transcription factor Nurr1. We show that Nurr1 overexpression can promote dopaminergic cell fate specification only in NPs obtained from E13.5 ganglionic eminence (GE and MB, but not in NPs isolated from E13.5 cortex (CTX and spinal cord (SC or from the adult subventricular zone (SVZ. Confirming previous studies, we also show that Nurr1 overexpression can increase the generation of TH-positive neurons in mouse embryonic stem cells. These data show that Nurr1 ability to induce a dopaminergic phenotype becomes restricted during CNS development and is critically dependent on the region of NPs derivation. Our results suggest that the plasticity of NPs and their ability to activate a dopaminergic differentiation program in response to Nurr1 is regulated during early stages of neurogenesis, possibly through mechanisms controlling CNS regionalization.

  12. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    International Nuclear Information System (INIS)

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G.; Flaws, Jodi A.

    2016-01-01

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  13. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shreya, E-mail: Shreya.patel214@gmail.com [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Peretz, Jackye, E-mail: Jackye.peretz@gmail.com [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Pan, Yuan-Xiang, E-mail: yxpan@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Helferich, William G., E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  14. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  15. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    2010-10-01

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  16. Comparison of multimammate mouse (Mastomys natalensis) demography in monoculture and mosaic agricultural habitat

    DEFF Research Database (Denmark)

    Sluydts, Vincent; Davis, Stephen; Mercelis, Saskia

    2009-01-01

    . The multimammate mouse (Mastomys natalensis) is a major pest in rural areas throughout sub-Saharan Africa. It appears difficult to control since it has an opportunistic diet and the capacity for explosive population growth. We compared demographic rates between a population in an extensive maize monoculture...... in the mosaic compared to the monoculture. The probability of capture was higher in the mosaic structured grid for both the subadult and adult part of the population. The model selection procedure demonstrated that a model without an effect of habitat in both survival and seniority received most support from...... the data. No differences in the multimammate mouse demography between the monoculture and mosaic structured habitat were observed which had a substantial impact on population dynamics. This means that rodent management options in both agricultural systems could focus on the same aspects of rodent ecology....

  17. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  18. HUPO BPP pilot study: a proteomics analysis of the mouse brain of different developmental stages.

    Science.gov (United States)

    Wang, Jing; Gu, Yong; Wang, Lihong; Hang, Xingyi; Gao, Yan; Wang, Hangyan; Zhang, Chenggang

    2007-11-01

    This study is a part of the HUPO Brain Proteome Project (BPP) pilot study, which aims at obtaining a reliable database of mouse brain proteome, at the comparison of techniques, laboratories, and approaches as well as at preparing subsequent proteome studies of neurologic diseases. The C57/Bl6 mouse brains of three developmental stages at embryonic day 16 (E16), postnatal day 7 (P7), and 8 wk (P56) (n = 5 in each group) were provided by the HUPO BPP executive committee. The whole brain proteins of each animal were individually prepared using 2-DE coupled with PDQuest software analysis. The protein spots representing developmentally related or stably expressed proteins were then prepared with in-gel digestion followed with MALDI-TOF/TOF MS/MS and analyzed using the MASCOT search engines to search the Swiss-Prot or NCBInr database. The 2-DE gel maps of the mouse brains of all of the developmental stages were obtained and submitted to the Data Collection Centre (DCC). The proteins alpha-enolase, stathmin, actin, C14orf166 homolog, 28,000 kDa heat- and acid-stable phosphoprotein, 3-mercaptopyruvate sulfurtransferase and 40 S ribosomal protein S3a were successfully identified. A further Western blotting analysis demonstrated that enolase is a protein up-regulated in the mouse brain from embryonic stage to adult stage. These data are helpful for understanding the proteome changes in the development of the mouse brain.

  19. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E

    2009-01-01

    BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described the cell......BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described...... the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...

  20. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease.

    Science.gov (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E

    2012-02-14

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  1. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  2. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    Science.gov (United States)

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  3. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    Science.gov (United States)

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Isolation and characterization of neural stem cells from dystrophic mdx mouse

    International Nuclear Information System (INIS)

    Annese, Tiziana; Corsi, Patrizia; Ruggieri, Simona; Tamma, Roberto; Marinaccio, Christian; Picocci, Sabrina; Errede, Mariella; Specchia, Giorgina; De Luca, Annamaria; Frassanito, Maria Antonia; Desantis, Vanessa; Vacca, Angelo; Ribatti, Domenico; Nico, Beatrice

    2016-01-01

    The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier

  5. Isolation and characterization of neural stem cells from dystrophic mdx mouse

    Energy Technology Data Exchange (ETDEWEB)

    Annese, Tiziana [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Corsi, Patrizia [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Physiology, University of Bari Medical School, Bari (Italy); Ruggieri, Simona; Tamma, Roberto; Marinaccio, Christian [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Picocci, Sabrina [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Physiology, University of Bari Medical School, Bari (Italy); Errede, Mariella [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Specchia, Giorgina [Department of Emergency and Transplantation, Section of Hematology, University of Bari Medical School, Bari (Italy); De Luca, Annamaria [Department of Bioscience, Biotechnology and Pharmacological Sciences, Section of Pharmacology, University of Bari (Italy); Frassanito, Maria Antonia; Desantis, Vanessa; Vacca, Angelo [Department of Internal Medicine and Oncology, University of Bari Medical School, Bari (Italy); Ribatti, Domenico, E-mail: domenico.ribatti@uniba.it [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); National Cancer Institute “Giovanni Paolo II”, Bari (Italy); Nico, Beatrice, E-mail: beatrice.nico@uniba.it [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy)

    2016-05-01

    The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier

  6. Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, M Angel; Besalduch, Nuria; Tomàs, Josep

    2010-03-01

    Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75(NTR), are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase b (trkB) and p75(NTR) at the adult neuromuscular junction. Our confocal immunofluorescence results on the whole mounts of the mouse Levator auris longus muscle and on semithin cross-sections showed that BDNF, NT-4, trkB, and p75(NTR) were localized on the three cells in the neuromuscular synapse (motor axons, post-synaptic muscle and Schwann cells).

  7. Astrogliosis in the neonatal and adult murine brain post-trauma

    DEFF Research Database (Denmark)

    Rostworowski, M; Balasingam, V; Chabot, S

    1997-01-01

    inflammatory cytokines in injury systems in which the presence or absence of astrogliosis could be produced selectively. A stab injury to the adult mouse brain using a piece of nitrocellulose (NC) membrane elicited a prompt and marked increase in levels of transcripts for interleukin (IL)-1alpha, IL-1beta......, and because its exogenous administration to rodents enhanced astrogliosis after adult or neonatal insults. A lack of requirement for endogenous IFN-gamma was demonstrated by three lines of evidence. First, no increase in IFN-gamma transcripts could be found at injury. Second, the administration...

  8. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    Science.gov (United States)

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Hyperexpressed netrin-1promoted neural stem cells migration in mice after focal cerebral ischemia

    OpenAIRE

    Haiyan Lu; Xiaoyan Song; Feng Wang; Guodong Wang; Yuncheng Wu; Qiaoshu Wang; Yongting Wang; Guoyuan Yang; Zhijun Zhang

    2016-01-01

    Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells migration from the subventricular zone (SVZ) region after cerebral ischemia. Adult CD-1 mice were injected stereotacticly with AAV carrying NT-1 gene (AAV-NT-1). Mice underwent ...

  10. Assessment of plasminogen synthesis in vitro by mouse tumor cells using a competition radioimmunoassay for mouse plasminogen

    International Nuclear Information System (INIS)

    Roblin, R.O.; Bell, T.E.; Young, P.L.

    1978-01-01

    A sensitive, specific competition radioimmunoassay for mouse plasmin(ogen) has been developed in order to determine whether mouse tumor cells can synthesize plasminogen in vitro. The rabbit anti-BALB/c mouse plasminogen antibodies used in the assay react with the plasminogen present in serum from BALB/c, C3H, AKR and C57BL/6 mice, and also recognized mouse plasmin. The competition radiommunoassay can detect as little as 50 ng of mouse plasminogen. No competition was observed with preparations of fetal calf, human and rabbit plasminogens. A variety of virus-transformed and mouse tumor cell lines were all found to contain less than 100 ng mouse plasminogen/mg of cell extract protein. Thus, if the plasminogen activator/plasmin system is important in the growth or movement of this group of tumor cells, the cells will be dependent upon the circulatory system of the host for their plasminogen supply. (Auth.)

  11. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  12. Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.

    Science.gov (United States)

    Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa

    2018-04-07

    Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone

    DEFF Research Database (Denmark)

    Ribeiro Xavier, Anna L.; Kress, Benjamin T.; Goldman, Steven A.

    2015-01-01

    found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low...... STATEMENT: Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural...... toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal progenitor survival and migration in the mammalian brain....

  14. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  16. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline.

    Science.gov (United States)

    Lupo, Giuseppe; Nisi, Paola S; Esteve, Pilar; Paul, Yu-Lee; Novo, Clara Lopes; Sidders, Ben; Khan, Muhammad A; Biagioni, Stefano; Liu, Hai-Kun; Bovolenta, Paola; Cacci, Emanuele; Rugg-Gunn, Peter J

    2018-06-01

    Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Cloning and analysis of the mouse Fanconi anemia group A cDNA and an overlapping penta zinc finger cDNA.

    Science.gov (United States)

    Wong, J C; Alon, N; Norga, K; Kruyt, F A; Youssoufian, H; Buchwald, M

    2000-08-01

    Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a model system, we cloned and characterized the mouse homolog of the human FANCA cDNA. The mouse cDNA (Fanca) encodes a 161-kDa protein that shares 65% amino acid sequence identity with human FANCA. Fanca is located at the distal region of mouse chromosome 8 and has a ubiquitous pattern of expression in embryonic and adult tissues. Expression of the mouse cDNA in human FA-A cells restores the cellular drug sensitivity to normal levels. Thus, the expression pattern, protein structure, chromosomal location, and function of FANCA are conserved in the mouse. We also isolated a novel zinc finger protein, Zfp276, which has five C(2)H(2) domains. Interestingly, Zfp276 is situated in the Fanca locus, and the 3'UTR of its cDNA overlaps with the last four exons of Fanca in a tail-to-tail manner. Zfp276 is expressed in the same tissues as Fanca, but does not complement the mitomycin C (MMC)-sensitive phenotype of FA-A cells. The overlapping genomic organization between Zfp276 and Fanca may have relevance to the disease phenotype of FA. Copyright 2000 Academic Press.

  18. Functional organization of the transcriptome in human brain

    Science.gov (United States)

    Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H

    2009-01-01

    The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986

  19. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression.

    Science.gov (United States)

    Miwa, Hiroyuki; Era, Takumi

    2018-01-29

    Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.

  20. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma

    International Nuclear Information System (INIS)

    Evers, Patrick; Lee, Percy P; DeMarco, John; Agazaryan, Nzhde; Sayre, James W; Selch, Michael; Pajonk, Frank

    2010-01-01

    Glioblastoma is the most common brain tumor in adults. The mechanisms leading to glioblastoma are not well understood but animal studies support that inactivation of tumor suppressor genes in neural stem cells (NSC) is required and sufficient to induce glial cancers. This suggests that the NSC niches in the brain may harbor cancer stem cells (CSCs), Thus providing novel therapy targets. We hypothesize that higher radiation doses to these NSC niches improve patient survival by eradicating CSCs. 55 adult patients with Grade 3 or Grade 4 glial cancer treated with radiotherapy at UCLA between February of 2003 and May of 2009 were included in this retrospective study. Using radiation planning software and patient radiological records, the SVZ and SGL were reconstructed for each of these patients and dosimetry data for these structures was calculated. Using Kaplan-Meier analysis we show that patients whose bilateral subventricular zone (SVZ) received greater than the median SVZ dose (= 43 Gy) had a significant improvement in progression-free survival if compared to patients who received less than the median dose (15.0 vs 7.2 months PFS; P = 0.028). Furthermore, a mean dose >43 Gy to the bilateral SVZ yielded a hazard ratio of 0.73 (P = 0.019). Importantly, similarly analyzing total prescription dose failed to illustrate a statistically significant impact. Our study leads us to hypothesize that in glioma targeted radiotherapy of the stem cell niches in the adult brain could yield significant benefits over radiotherapy of the primary tumor mass alone and that damage caused by smaller fractions of radiation maybe less efficiently detected by the DNA repair mechanisms in CSCs

  1. The Mouse That Soared

    Science.gov (United States)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  2. The breaking and making of healthy adult human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Kjaer, Michael

    2017-01-01

    and highlights the importance of the basement membrane in the process of regeneration. In addition, it provides insight into parallels between the regeneration of adult skeletal muscle in mouse and man, confirming that this model may be a useful tool in investigating myofibre and matrix formation, as well...

  3. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  4. A Transgenic Tri-Modality Reporter Mouse

    OpenAIRE

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent...

  5. Prolonged Running, not Fluoxetine Treatment, Increases Neurogenesis, but does not Alter Neuropathology, in the 3xTg Mouse Model of Alzheimer's Disease.

    NARCIS (Netherlands)

    Marlatt, M.W.; Potter, M.C.; Bayer, T.A.; van Praag, H.; Lucassen, P.J.

    2013-01-01

    Reductions in adult neurogenesis have been documented in the original 3xTg mouse model of Alzheimer's disease (AD), notably occurring at the same age when spatial memory deficits and amyloid plaque pathology appeared. As this suggested reduced neurogenesis was associated with behavioral deficits, we

  6. 4-N-pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Jhillu S; Das, Pragna P; Bag, Indira; Krishnan, Anita; Jagannadh, Bulusu; Mohapatra, Debendra K; Bhadra, Manika Pal [Division of Organic Chemistry-I, Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007 (India); Lavanya, Madugula P; Bhadra, Utpal [Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007 (India)

    2010-04-16

    p-aminobenzoic acid (PABA), a structural moiety of many commercial drugs, is self-assembled with linker alkyl side chains to form tubular nanostructures. The tubes exhibited fluorescence either intrinsic or from fluorescent molecules embedded in the wall during self-assembly. Uptake and inter-cellular delivery of the conjugated nanotubes in human cancer cells and in mouse embryonic stem cells were demonstrated by fluorescence imaging and flow cytometry. Biocompatibility, cytotoxicity and clearance were monitored both ex vivo in mouse multipotent embryonic stem cells and in vivo in adult Drosophila. Accumulation of nanotubes had no adverse effects and abnormalities on stem cell morphology and proliferation rate. A distinct distribution of two separate nanotubes in various internal organs of Drosophila interprets that accumulation of nanomaterials might be interdependent on the side chain modifications and physiological settings of cell or tissue types. Unlike carbon nanomaterials, exposure of PABA nanotubes does not produce any hazards including locomotion defects and mortality of adult flies. Despite differential uptake and clearance from multiple live tissues, the use of self-assembled nanotubes can add new dimensions and scope to the development of dual-purpose oral carriers for the fulfilment of many biological promises.

  7. 4-N-pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila

    International Nuclear Information System (INIS)

    Yadav, Jhillu S; Das, Pragna P; Bag, Indira; Krishnan, Anita; Jagannadh, Bulusu; Mohapatra, Debendra K; Bhadra, Manika Pal; Lavanya, Madugula P; Bhadra, Utpal

    2010-01-01

    p-aminobenzoic acid (PABA), a structural moiety of many commercial drugs, is self-assembled with linker alkyl side chains to form tubular nanostructures. The tubes exhibited fluorescence either intrinsic or from fluorescent molecules embedded in the wall during self-assembly. Uptake and inter-cellular delivery of the conjugated nanotubes in human cancer cells and in mouse embryonic stem cells were demonstrated by fluorescence imaging and flow cytometry. Biocompatibility, cytotoxicity and clearance were monitored both ex vivo in mouse multipotent embryonic stem cells and in vivo in adult Drosophila. Accumulation of nanotubes had no adverse effects and abnormalities on stem cell morphology and proliferation rate. A distinct distribution of two separate nanotubes in various internal organs of Drosophila interprets that accumulation of nanomaterials might be interdependent on the side chain modifications and physiological settings of cell or tissue types. Unlike carbon nanomaterials, exposure of PABA nanotubes does not produce any hazards including locomotion defects and mortality of adult flies. Despite differential uptake and clearance from multiple live tissues, the use of self-assembled nanotubes can add new dimensions and scope to the development of dual-purpose oral carriers for the fulfilment of many biological promises.

  8. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    Science.gov (United States)

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission

    OpenAIRE

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J.

    2016-01-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discriminatio...

  10. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    Science.gov (United States)

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  11. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  12. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat.

    Science.gov (United States)

    Fernandez, M; Pirondi, S; Manservigi, M; Giardino, L; Calzà, L

    2004-10-01

    Oligodendrocyte development and myelination are under thyroid hormone control. In this study we analysed the effects of chronic manipulation of thyroid status on the expression of a wide spectrum of oligodendrocyte precursor cells (OPCs) markers and myelin basic protein (MBP) in the subventricular zone (SVZ), olfactory bulb and optic nerve, and on neural stem cell (NSC) lineage in adult rats. Hypo- and hyperthyroidism were induced in male rats, by propyl-thio-uracil (PTU) and L-thyroxin (T4) treatment, respectively. Hypothyroidism increased and hyperthyroidism downregulated proliferation in the SVZ and olfactory bulb (Ki67 immunohistochemistry and Western blotting, bromodeoxyuridine uptake). Platelet-derived growth factor receptor alpha (PDGFalpha-R) and MBP mRNA levels decreased in the optic nerve of hypothyroid rats; the same also occurred at the level of MBP protein. Hyperthyroidism slightly upregulates selected markers such as NG2 in the olfactory bulb. The lineage of cells derived from primary cultures of NSC prepared from the forebrain of adult hypo- and hyperthyroid also differs from those derived from control animals. Although no difference of in vitro proliferation of NSCs was observed in the presence of epidermal growth factor, maturation of oligodendrocytes (defined by process number and length) was enhanced in hyperthyroidism, suggesting a more mature state than in control animals. This difference was even greater when compared with the hypothyroid group, the morphology of which suggested a delay in differentiation. These results indicate that thyroid hormone affects NSC and OPC proliferation and maturation also in adulthood.

  13. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.

  14. Isolation of sphere-forming stem cells from the mouse inner ear.

    Science.gov (United States)

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  15. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    International Nuclear Information System (INIS)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M.

    2015-01-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult

  16. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M., E-mail: aallan@salud.unm.edu

    2015-10-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult

  17. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  18. A novel minimal invasive mouse model of extracorporeal circulation.

    Science.gov (United States)

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  19. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Shuhua Luo

    2015-01-01

    Full Text Available Extracorporeal circulation (ECC is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n=20 survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  20. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  1. Tissue- and Cell Type-Specific Expression of the Long Noncoding RNA Klhl14-AS in Mouse

    Directory of Open Access Journals (Sweden)

    Sara Carmela Credendino

    2017-01-01

    Full Text Available lncRNAs are acquiring increasing relevance as regulators in a wide spectrum of biological processes. The extreme heterogeneity in the mechanisms of action of these molecules, however, makes them very difficult to study, especially regarding their molecular function. A novel lncRNA has been recently identified as the most enriched transcript in mouse developing thyroid. Due to its genomic localization antisense to the protein-encoding Klhl14 gene, we named it Klhl14-AS. In this paper, we highlight that mouse Klhl14-AS produces at least five splicing variants, some of which have not been previously described. Klhl14-AS is expressed with a peculiar pattern, characterized by diverse relative abundance of its isoforms in different mouse tissues. We examine the whole expression level of Klhl14-AS in a panel of adult mouse tissues, showing that it is expressed in the thyroid, lung, kidney, testis, ovary, brain, and spleen, although at different levels. In situ hybridization analysis reveals that, in the context of each organ, Klhl14-AS shows a cell type-specific expression. Interestingly, databases report a similar expression profile for human Klhl14-AS. Our observations suggest that this lncRNA could play cell type-specific roles in several organs and pave the way for functional characterization of this gene in appropriate biological contexts.

  2. Variations in DNA synthesis and mitotic indices in hepatocytes and sinusoid litoral cells of adult intact male mouse along a circadian time span.

    Science.gov (United States)

    Surur, J M; Moreno, F R; Badrán, A F; Llanos, J M

    1985-01-01

    Variations of DNA synthesis (DNAS) and mitotic indices along a circadian time span are described in the hepatocyte and sinusoid litoral cell populations of adult intact male mouse liver. Standardized (light from 0600 to 1800) mice were killed in groups of six to nine animals, every 2-4 hr along a circadian time span. Hepatocytes show significant peaks in the synthesis of DNA and the mitotic activity at 0200 and 1400, respectively. These results correspond to those previously described by us in young immature liver, regenerating liver and hepatomas. The phase differences between these peaks and the differences between their absolute values are discussed. Also considered are the practical consequences of our findings for experimental design. The curve of DNA synthesis of sinusoid litoral cells show a peak at 0200. The mitotic index show a bimodal waveform with peaks at 0800 and 2000. The existence of four different cell populations composing the so called sinusoid litoral cells and also the migration into and out of the liver of some macrophages considered as litoral (Kupffer) cells in our counts, makes interpretation of the curves somewhat complicated and deserves further analysis.

  3. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    Science.gov (United States)

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Noriko Okumura

    Full Text Available The canonical Wnt/β-catenin signaling pathway plays a crucial role in the maintenance of the balance between proliferation and differentiation throughout embryogenesis and tissue homeostasis. β-Catenin, encoded by the Ctnnb1 gene, mediates an intracellular signaling cascade activated by Wnt. It also plays an important role in the maintenance of various types of stem cells including adult stem cells and cancer stem cells. However, it is unclear if β-catenin is required for the derivation of mouse embryo-derived stem cells. Here, we established β-catenin-deficient (β-cat(Δ/Δ mouse embryo-derived stem cells and showed that β-catenin is not essential for acquiring self-renewal potential in the derivation of mouse embryonic stem cells (ESCs. However, teratomas formed from embryo-derived β-cat(Δ/Δ ESCs were immature germ cell tumors without multilineage differentiated cell types. Re-expression of functional β-catenin eliminated their neoplastic, transformed phenotype and restored pluripotency, thereby rescuing the mutant ESCs. Our findings demonstrate that β-catenin has pleiotropic effects in ESCs; it is required for the differentiation of ESCs and prevents them from acquiring tumorigenic character. These results highlight β-catenin as the gatekeeper in differentiation and tumorigenesis in ESCs.

  5. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré

    2017-09-01

    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  6. Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40

    DEFF Research Database (Denmark)

    Bjørnbak, Camilla; Brøchner, Christian B; Larsen, Lars A

    2014-01-01

    and subventricular zones showed specific YKL-40 reactivity confined to pericytes. Furthermore, a population of YKL-40-positive, small, rounded cells was identified in the ventricular and subventricular zones. Real-time quantitative RT-PCR analysis showed strong YKL-40 mRNA expression in the leptomeninges...

  7. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  8. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  9. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.

    Directory of Open Access Journals (Sweden)

    Liang Lei

    Full Text Available Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM. Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors.To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival.This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies.

  10. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Science.gov (United States)

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  11. Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Geraldine Gontier

    2018-02-01

    Full Text Available Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2, which catalyzes the production of 5-hydroxymethylcytosine (5hmC, rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.

  12. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    Science.gov (United States)

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  13. BAC-Dkk3-EGFP Transgenic Mouse: An In Vivo Analytical Tool for Dkk3 Expression

    Directory of Open Access Journals (Sweden)

    Yuki Muranishi

    2012-01-01

    Full Text Available Dickkopf (DKK family proteins are secreted modulators of the Wnt signaling pathway and are capable of regulating the development of many organs and tissues. We previously identified Dkk3 to be a molecule predominantly expressed in the mouse embryonic retina. However, which cell expresses Dkk3 in the developing and mature mouse retina remains to be elucidated. To examine the precise expression of the Dkk3 protein, we generated BAC-Dkk3-EGFP transgenic mice that express EGFP integrated into the Dkk3 gene in a BAC plasmid. Expression analysis using the BAC-Dkk3-EGFP transgenic mice revealed that Dkk3 is expressed in retinal progenitor cells (RPCs at embryonic stages and in Müller glial cells in the adult retina. Since Müller glial cells may play a potential role in retinal regeneration, BAC-Dkk3-EGFP mice could be useful for retinal regeneration studies.

  14. Steroid metabolism in the mouse placenta

    International Nuclear Information System (INIS)

    Okker-Reitsma, G.H.

    1976-01-01

    The purpose of the study described in this thesis was to investigate the capacity for steroid synthesis of the mouse placenta - especially the production of progesterone, androgens and estrogens - and to determine, if possible, the relation of steroid synthesis to special cell types. In an introductory chapter the androgen production in the mouse placenta is surveyed by means of a histochemical and bioindicator study of different stages of development of the placenta. The metabolism of [ 3 H]-dehydroepiandrosterone and [ 3 H]-progesterone by mouse placental tissue in vitro is studied. The metabolism of [ 3 H]-progesterone by the mouse fetal adrenal in vitro is also studied

  15. Putative Adult Neurogenesis in Old World Parrots: The Congo African Grey Parrot (Psittacus erithacus and Timneh Grey Parrot (Psittacus timneh

    Directory of Open Access Journals (Sweden)

    Pedzisai Mazengenya

    2018-02-01

    Full Text Available In the current study, we examined for the first time, the potential for adult neurogenesis throughout the brain of the Congo African grey parrot (Psittacus erithacus and Timneh grey parrot (Psittacus timneh using immunohistochemistry for the endogenous markers proliferating cell nuclear antigen (PCNA, which labels proliferating cells, and doublecortin (DCX, which stains immature and migrating neurons. A similar distribution of PCNA and DCX immunoreactivity was found throughout the brain of the Congo African grey and Timneh grey parrots, but minor differences were also observed. In both species of parrots, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, subventricular zone of the lateral wall of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and the rhombencephalon. The olfactory bulb and telencephalic subdivisions exhibited a higher density of both PCNA and DCX immunoreactive cells than any other brain region. DCX immunoreactive staining was stronger in the telencephalon than in the subtelencephalic structures. There was evidence of proliferative hot spots in the dorsal and ventral poles of the lateral ventricle in the Congo African grey parrots at rostral levels, whereas only the dorsal accumulation of proliferating cells was observed in the Timneh grey parrot. In most pallial regions the density of PCNA and DCX stained cells increased from rostral to caudal levels with the densest staining in the nidopallium caudolaterale (NCL. The widespread distribution of PCNA and DCX in the brains of both parrot species suggest the importance of adult neurogenesis and neuronal plasticity during learning and adaptation to external environmental variations.

  16. Putative Adult Neurogenesis in Old World Parrots: The Congo African Grey Parrot (Psittacus erithacus) and Timneh Grey Parrot (Psittacus timneh).

    Science.gov (United States)

    Mazengenya, Pedzisai; Bhagwandin, Adhil; Manger, Paul R; Ihunwo, Amadi O

    2018-01-01

    In the current study, we examined for the first time, the potential for adult neurogenesis throughout the brain of the Congo African grey parrot ( Psittacus erithacus ) and Timneh grey parrot ( Psittacus timneh ) using immunohistochemistry for the endogenous markers proliferating cell nuclear antigen (PCNA), which labels proliferating cells, and doublecortin (DCX), which stains immature and migrating neurons. A similar distribution of PCNA and DCX immunoreactivity was found throughout the brain of the Congo African grey and Timneh grey parrots, but minor differences were also observed. In both species of parrots, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, subventricular zone of the lateral wall of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and the rhombencephalon. The olfactory bulb and telencephalic subdivisions exhibited a higher density of both PCNA and DCX immunoreactive cells than any other brain region. DCX immunoreactive staining was stronger in the telencephalon than in the subtelencephalic structures. There was evidence of proliferative hot spots in the dorsal and ventral poles of the lateral ventricle in the Congo African grey parrots at rostral levels, whereas only the dorsal accumulation of proliferating cells was observed in the Timneh grey parrot. In most pallial regions the density of PCNA and DCX stained cells increased from rostral to caudal levels with the densest staining in the nidopallium caudolaterale (NCL). The widespread distribution of PCNA and DCX in the brains of both parrot species suggest the importance of adult neurogenesis and neuronal plasticity during learning and adaptation to external environmental variations.

  17. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    Science.gov (United States)

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  18. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.

    Science.gov (United States)

    Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan

    2014-01-01

    Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    Science.gov (United States)

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  20. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    Science.gov (United States)

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  1. MouseMine: a new data warehouse for MGI.

    Science.gov (United States)

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface.

  2. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    Directory of Open Access Journals (Sweden)

    James P Charles

    Full Text Available Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  3. Evidence of functional duplicity of Nestin expression in the adult mouse midbrain

    Directory of Open Access Journals (Sweden)

    Parisa Farzanehfar

    2017-03-01

    Full Text Available Whether or not neurogenesis occurs in the adult substantia nigra pars compacta (SNc is an important question relevant for developing better treatments for the motor symptoms of Parkinson's disease (PD. Although controversial, it is generally believed that dividing cells here remain undifferentiated or differentiate into glia, not neurons. However, there is a suggestion that Nestin-expressing neural precursor cells (NPCs in the adult SNc have a propensity to differentiate into neurons, which we sought to confirm in the present study. Adult (>8-weeks old transgenic NesCreERT2/GtROSA or NesCreERT2/R26eYFP mice were used to permanently label Nestin-expressing cells and their progeny with β-galactosidase (β-gal or enhanced yellow fluorescent protein (eYFP, respectively. Most β-gal+ or eYFP+ cells were found in the ependymal lining of the midbrain aqueduct (Aq and in the midline ventral to Aq. Smaller but significant numbers were in the periaqueductal gray (PAG, the ventral tegmental area (VTA, and in SNc. Low-level basal proliferation was evidenced by a modest increase in number of β-gal+ or eYFP+ cells over time, fewer β-gal+ or eYFP+ cells when mice were administered the anti-mitotic agent Cytarabine, and incorporation of the proliferation marker bromodeoxyuridine (BrdU in a very small number of β-gal+ cells. No evidence of migration was found, including no immunoreactivity against the migration markers doublecortin (DCX or polysialic acid neural cell adhesion molecule (PSA-NCAM, and no dispersal of β-gal+ or eYFP+ cells through the midbrain parenchyma over time. However, β-gal+ or eYFP+ cells did increase in size and express higher levels of mature neuronal genes over time, indicating growth and neuronal differentiation. In mice whose SNc dopamine neurons had been depleted with 6-hydroxy-dopamine, a model of PD, there were ~2-fold more β-gal+ cells in SNc specifically, although the proportion that were also NeuN+ was not affected

  4. Chronic fluoxetine treatment in middle-aged rats induces changes in the expression of plasticity-related molecules and in neurogenesis

    Directory of Open Access Journals (Sweden)

    Guirado Ramon

    2012-01-01

    Full Text Available Abstract Background Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents. Results We have analyzed the effects of 14 days of fluoxetine treatment on the density of puncta expressing PSA-NCAM and different presynaptic markers in the medial prefrontal cortex, hippocampus and amygdala of middle-aged (8 months old rats. The density of puncta expressing PSA-NCAM increased in the dorsal cingulate cortex, as well as in different hippocampal and amygdaloid regions. In these later regions there were also increases in the density of puncta expressing glutamic acid decarboxylase 65/67 (GAD6, synaptophysin (SYN, PSA-NCAM/SYN and PSA-NCAM/GAD6, but a decrease of those expressing vesicular glutamate transporter 1 (VGluT1. Since there is controversy on the effects of antidepressants on neurogenesis during aging, we analyzed the number of proliferating cells expressing Ki67 and that of immature neurons expressing doublecortin or PSA-NCAM. No significant changes were found in the subgranular zone, but the number of proliferating cells decreased in the subventricular zone. Conclusions These results indicate that the effects of fluoxetine in middle-aged rats are different to those previously described in young-adult animals, being more restricted in the mPFC and even following an opposite direction in the amygdala or the subventricular zone.

  5. Developing Novel Automated Apparatus for Studying Battery of Social Behaviors in Mutant Mouse Models for Autism

    Science.gov (United States)

    2013-06-01

    coloured blobs ) and RFID data (open circles) are then independently processed offline to extract the X–Y coordinates of each identified mouse within the...such as in most rodents, fish and insects. Radio-frequency identified (RFID) tagging has been success- fully applied to track the position of uniquely...large animal groups (for example, insect colonies, fish schools)40. Methods Animals. Adult male and female mice from the C57BL/6Jx129sv and BTBR Toþ4

  6. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    Science.gov (United States)

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  7. Distribution of alarin in the mouse brain and in tumors of the central nervous system

    International Nuclear Information System (INIS)

    Eberhard, N.

    2011-01-01

    Alarin is a 25 amino acid peptide that belongs to the galanin neuropeptide family and is a splice variant of the galanin-like peptide (GALP) gene. It was first identified in gangliocytes of neuroblastic tumors and recently, alarin was demonstrated to stimulate food intake as well as the hypothalamic-pituitary-gonadal axis in rodents. However, mRNA and protein expression of alarin in the central nervous system have not been described yet. Therefore, we investigated GALP/alarin promoter activity using a transgenic reporter mouse model. This mouse model expresses YFP when the GALP/alarin promoter is active and therefore is a suitable tool to indicate nuclei where GALP/alarin mRNA is expressed. Immunohistochemical analysis of YFP expression in these transgenic mice revealed a wide distribution of GALP/alarin promoter activity throughout the whole murine brain. As the promoter activity studies cannot discriminate between GALP and alarin expression the next aim was to determine the distribution of alarin peptide- in the adult murine brain with an anti-alarin antibody. The specificity of the antibody against alarin was demonstrated by the absence of labeling after pre-absorption of the antiserum with synthetic alarin peptide and in transgenic mouse brains depleted of cells expressing the GALP/alarin gene. In wild type animals alarin-like immunoreacitivity (alarin-LI) was observed in different areas of the murine brain including the accessory olfactory bulb, medial preoptic area and the hypothalamus. Furthermore, immunohistochemical analysis of alarin expression in peripheral tissues revealed high alarin levels in the testis of adult mice, whereas no alarin-Li was detected in the oesophagus of mice and trachea of rats. The galanin peptide family is known to play a role in cancer and alarin was first described in human neuroblastic tumors. Therefore, alarin expression in different CNS-tumor types was determined in the present study. Immunohistochemical analysis of a variety

  8. 9 CFR 113.33 - Mouse safety tests.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be...

  9. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice

    Czech Academy of Sciences Publication Activity Database

    Tadokoro, T.; Miyanohara, A.; Navarro, M.; Kamizato, K.; Juhás, Štefan; Juhásová, Jana; Maršala, S.; Platoshyn, O.; Curtis, E.; Gabel, B.; Ciacci, J. D.; Lukáčová, N.; Bimbová, K.; Maršala, M.

    2017-01-01

    Roč. 125, č. 13 (2017), č. článku e55770. ISSN 1940-087X R&D Projects: GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 Keywords : AAV9 * adult mouse Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 1.232, year: 2016

  10. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    Science.gov (United States)

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  11. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.

    Science.gov (United States)

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Moini, Ashraf; Ataeinejad, Nahid; Zendedel, Adib; Hassanzadeh, Gholamreza

    2017-02-01

    Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.

  12. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    Science.gov (United States)

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  13. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  14. Chronic Progressive Neurodegeneration in a transgenic mouse model of Prion disease

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2016-11-01

    Full Text Available Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic protein without accompanying neurodegeneration pattern. The lack of a comprehensive model hinders the efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice, mimicking for genetic Creutzfeldt-Jacob disease as compared to age matched wild type mice. Mice exhibited a neurodegenerative process indicated by progressive reduction in cortical neurons and synapses, starting at age of 4-6 months, in accordance with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with progressive neurological disease, indicating these mice can serve as a model for neurodegenerative diseases.

  15. Chronic Progressive Neurodegeneration in a Transgenic Mouse Model of Prion Disease.

    Science.gov (United States)

    Fainstein, Nina; Dori, Dvir; Frid, Kati; Fritz, Alexa T; Shapiro, Ilona; Gabizon, Ruth; Ben-Hur, Tamir

    2016-01-01

    Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic proteins without an accompanying neurodegeneration pattern. The lack of a comprehensive model hinders efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice mimicking for genetic Creutzfeldt-Jacob disease as compared to age-matched wild-type mice. Mice exhibited a neurodegenerative process of progressive reduction in cortical neurons and synapses starting at age of 4-6 months, in accord with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with neurological disease progression, indicating these mice can serve as a model for neurodegenerative diseases.

  16. Dose dependent qualitative analysis of the effects of tritiated water (HTO) on the developing mouse cerebellum from 15th day Post - Coitum

    International Nuclear Information System (INIS)

    Jain, N.; Bhatia, A.L.

    1994-01-01

    An evaluation of tritium toxicity in the developing mouse brain has demonstrated that the cerebellum is fairly vulnerable to tritium exposure even in young adult mice. Tritium toxicity in the postnatally developing mouse cerebellum with respect to the radiopathological changes has also been reported. In the absence of adequate dose response data on inhaled beta emitting radionuclides in man, it is necessary to obtain such information in experimental animals. This presentation is an attempt to look into the toxicity of tritium on the cerebellum of developing Swiss albino mice and hence, to collect such dose response data which are necessary to establish the safety standards for the personnel involved with radiation protection programs

  17. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  18. The Role of Epithelial Stat3 in Amelogenesis during Mouse Incisor Renewal.

    Science.gov (United States)

    Zhang, Bin; Meng, Bo; Viloria, Edward; Naveau, Adrien; Ganss, Bernhard; Jheon, Andrew H

    2018-03-16

    The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis. © 2018 S. Karger AG, Basel.

  19. A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.

    Science.gov (United States)

    Rahme, Gilbert J; Luikart, Bryan W; Cheng, Chao; Israel, Mark A

    2018-02-19

    Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma. We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells. The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature. Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  1. Metabolism of choline in brain of the aged CBF-1 mouse

    International Nuclear Information System (INIS)

    Saito, M.; Kindel, G.; Karczmar, A.G.; Rosenberg, A.

    1986-01-01

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM [ 3 H] choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain

  2. Transgenic Expression of Constitutively Active RAC1 Disrupts Mouse Rod Morphogenesis

    Science.gov (United States)

    Song, Hongman; Bush, Ronald A.; Vijayasarathy, Camasamudram; Fariss, Robert N.; Kjellstrom, Sten; Sieving, Paul A.

    2014-01-01

    Purpose. Dominant-active RAC1 rescues photoreceptor structure in Drosophila rhodopsin-null mutants, indicating an important role in morphogenesis. This report assesses the morphogenetic effect of activated RAC1 during mammalian rod photoreceptor development using transgenic mice that express constitutively active (CA) RAC1. Methods. Transgenic mice were generated by expressing CA RAC1 under control of the Rhodopsin promoter, and morphological features of the photoreceptors were evaluated by histology, immunohistochemistry, and transmission electron microscopy. Function was evaluated by electroretinography. Potential protein partners of CA RAC1 were identified by co-immunoprecipitation of retinal extracts. Results. Constitutively active RAC1 expression in differentiating rods disrupted outer retinal lamination as early as postnatal day (P)6, and many photoreceptor cell nuclei were displaced apically into the presumptive subretinal space. These photoreceptors did not develop normal inner and outer segments and had abnormal placement of synaptic elements. Some photoreceptor nuclei were also mislocalized into the inner nuclear layer. Extensive photoreceptor degeneration was subsequently observed in the adult animal. Constitutively active RAC1 formed a complex with the polarity protein PAR6 and with microtubule motor dynein in mouse retina. The normal localization of the PAR6 complex was disrupted in CA RAC1-expressing rod photoreceptors. Conclusions. Constitutively active RAC1 had a profound negative effect on mouse rod cell viability and development. Rod photoreceptors in the CA RAC1 retina exhibited a defect in polarity and migration. Constitutively active RAC1 disrupted rod morphogenesis and gave a phenotype resembling that found in the Crumbs mutant. PAR6 and dynein are two potential downstream effectors that may be involved in CA RAC1-mediated defective mouse photoreceptor morphogenesis. PMID:24651551

  3. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  4. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  5. Mouse Resource Browser-a database of mouse databases

    NARCIS (Netherlands)

    Zouberakis, Michael; Chandras, Christina; Swertz, Morris; Smedley, Damian; Gruenberger, Michael; Bard, Jonathan; Schughart, Klaus; Rosenthal, Nadia; Hancock, John M.; Schofield, Paul N.; Kollias, George; Aidinis, Vassilis

    2010-01-01

    The laboratory mouse has become the organism of choice for discovering gene function and unravelling pathogenetic mechanisms of human diseases through the application of various functional genomic approaches. The resulting deluge of data has led to the deployment of numerous online resources and the

  6. Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus).

    Science.gov (United States)

    Costa, Guilherme M J; Leal, Marcelo C; França, Luiz R

    2017-08-01

    Japanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.

  7. Adult Mouse Liver Contains Two Distinct Populations of Cholangiocytes

    Directory of Open Access Journals (Sweden)

    Bin Li

    2017-08-01

    Full Text Available The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.

  8. Thyroid Hormone Signaling in the Mouse Retina.

    Directory of Open Access Journals (Sweden)

    Patrick Arbogast

    Full Text Available Thyroid hormone is a crucial regulator of gene expression in the developing and adult retina. Here we sought to map sites of thyroid hormone signaling at the cellular level using the transgenic FINDT3 reporter mouse model in which neurons express β-galactosidase (β-gal under the control of a hybrid Gal4-TRα receptor when triiodothyronine (T3 and cofactors of thyroid receptor signaling are present. In the adult retina, nearly all neurons of the ganglion cell layer (GCL, ganglion cells and displaced amacrine cells showed strong β-gal labeling. In the inner nuclear layer (INL, a minority of glycineric and GABAergic amacrine cells showed β-gal labeling, whereas the majority of amacrine cells were unlabeled. At the level of amacrine types, β-gal labeling was found in a large proportion of the glycinergic AII amacrines, but only in a small proportion of the cholinergic/GABAergic 'starburst' amacrines. At postnatal day 10, there also was a high density of strongly β-gal-labeled neurons in the GCL, but only few amacrine cells were labeled in the INL. There was no labeling of bipolar cells, horizontal cells and Müller glia cells at both stages. Most surprisingly, the photoreceptor somata in the outer nuclear layer also showed no β-gal label, although thyroid hormone is known to control cone opsin expression. This is the first record of thyroid hormone signaling in the inner retina of an adult mammal. We hypothesize that T3 levels in photoreceptors are below the detection threshold of the reporter system. The topographical distribution of β-gal-positive cells in the GCL follows the overall neuron distribution in that layer, with more T3-signaling cells in the ventral than the dorsal half-retina.

  9. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    Science.gov (United States)

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  10. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  11. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Marco L Davila

    Full Text Available Although many adults with B cell acute lymphoblastic leukemia (B-ALL are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  12. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus

    Science.gov (United States)

    Autio, Henri; Mätlik, Kert; Rantamäki, Tomi; Lindemann, Lothar; Hoener, Marius C; Chao, Moses; Arumäe, Urmas; Castrén, Eero

    2014-01-01

    Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD. PMID:21820453

  13. Organization of Estrogen-Associated Circuits in the Mouse Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available Sex steroid hormones influence the perceptual processing of sensory signals in vertebrates. In particular, decades of research have shown that circulating levels of estrogen correlate with hearing function. The mechanisms and sites of action supporting this sensory-neuroendocrine modulation, however, remain unknown. Here we combined a molecular cloning strategy, fluorescence in-situ hybridization and unbiased quantification methods to show that estrogen-producing and -sensitive neurons heavily populate the adult mouse primary auditory cortex (AI. We also show that auditory experience in freely-behaving animals engages estrogen-producing and -sensitive neurons in AI. These estrogen-associated networks are greatly stable, and do not quantitatively change as a result of acute episodes of sensory experience. We further demonstrate the neurochemical identity of estrogen-producing and estrogen-sensitive neurons in AI and show that these cell populations are phenotypically distinct. Our findings provide the first direct demonstration that estrogen-associated circuits are highly prevalent and engaged by sensory experience in the mouse auditory cortex, and suggest that previous correlations between estrogen levels and hearing function may be related to brain-generated hormone production. Finally, our findings suggest that estrogenic modulation may be a central component of the operational framework of central auditory networks.

  14. EuroPhenome and EMPReSS: online mouse phenotyping resource.

    Science.gov (United States)

    Mallon, Ann-Marie; Blake, Andrew; Hancock, John M

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC).

  15. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  16. Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC

    Directory of Open Access Journals (Sweden)

    Zeynab Nayernia

    2017-10-01

    Full Text Available There is emerging evidence for the involvement of reactive oxygen species (ROS in the regulation of stem cells and cellular differentiation. Absence of the ROS-generating NADPH oxidase NOX2 in chronic granulomatous disease (CGD patients, predominantly manifests as immune deficiency, but has also been associated with decreased cognition. Here, we investigate the role of NOX enzymes in neuronal homeostasis in adult mouse brain and in neural cells derived from human induced pluripotent stem cells (iPSC. High levels of NOX2 were found in mouse adult neurogenic regions. In NOX2-deficient mice, neurogenic regions showed diminished redox modifications, as well as decrease in neuroprecursor numbers and in expression of genes involved in neural differentiation including NES, BDNF and OTX2. iPSC from healthy subjects and patients with CGD were used to study the role of NOX2 in human in vitro neuronal development. Expression of NOX2 was low in undifferentiated iPSC, upregulated upon neural induction, and disappeared during neuronal differentiation. In human neurospheres, NOX2 protein and ROS generation were polarized within the inner cell layer of rosette structures. NOX2 deficiency in CGD-iPSCs resulted in an abnormal neural induction in vitro, as revealed by a reduced expression of neuroprogenitor markers (NES, BDNF, OTX2, NRSF/REST, and a decreased generation of mature neurons. Vector-mediated NOX2 expression in NOX2-deficient iPSCs rescued neurogenesis. Taken together, our study provides novel evidence for a regulatory role of NOX2 during early stages of neurogenesis in mouse and human.

  17. Teratology studies in the mouse.

    Science.gov (United States)

    Marsden, Edward; Leroy, Mariline

    2013-01-01

    The rat is the routine species of choice as the rodent model for regulatory safety testing of xenobiotics such as medicinal products, food additives, and other chemicals. However, the rat is not always suitable for pharmacological, toxicological, immunogenic, pharmacokinetic, or even practical reasons. Under such circumstances, the mouse offers an alternative for finding a suitable rodent model acceptable to the regulatory authorities. Since all essential routes of administration are possible, the short reproductive cycle and large litter size of the mouse make it a species well adapted for use in teratology studies. Given that good quality animals, including virgin mated females, can be acquired relatively easily and inexpensively, the mouse has been used in reproductive toxicity studies for decades and study protocols are well established.

  18. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...... are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum...

  19. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  20. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  1. Radio-deoxynucleoside Analogs used for Imaging tk Expression in a Transgenic Mouse Model of Induced Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Haibin Tian, Xincheng Lu, Hong Guo, David Corn, Joseph Molter, Bingcheng Wang, Guangbin Luo, Zhenghong Lee

    2012-01-01

    Full Text Available Purpose: A group of radiolabeled thymidine analogs were developed as radio-tracers for imaging herpes viral thymidine kinase (HSV1-tk or its variants used as reporter gene. A transgenic mouse model was created to express tk upon liver injury or naturally occurring hepatocellular carcinoma (HCC. The purpose of this study was to use this unique animal model for initial testing with radio-labeled thymidine analogs, mainly a pair of newly emerging nucleoside analogs, D-FMAU and L-FMAU.Methods: A transgeneic mouse model was created by putting a fused reporter gene system, firefly luciferase (luc and HSV1-tk, under the control of mouse alpha fetoprotein (Afp promoter. Initial multimodal imaging, which was consisted of bioluminescent imaging (BLI and planar gamma scintigraphy with [125I]-FIAU, was used for examining the model creation in the new born and liver injury in the adult mice. Carcinogen diethylnitrosamine (DEN was then administrated to induce HCC in these knock-in mice such that microPET imaging could be used to track the activity of Afp promoter during tumor development and progression by imaging tk expression first with [18F]-FHBG. Dynamic PET scans with D-[18F]-FMAU and L-[18F]-FMAU were then performed to evaluate this pair of relatively new tracers. Cells were derived from these liver tumors for uptake assays using H-3 labeled version of PET tracers.Results: The mouse model with dual reporters: HSV1-tk and luc placed under the transcriptional control of an endogenous Afp promoter was used for imaging studies. The expression of the Afp gene was highly specific in proliferative hepatocytes, in regenerative liver, and in developing fetal liver, and thus provided an excellent indicator for liver injury and cancer development in adult mice. Both D-FMAU and L-FMAU showed stable liver tumor uptake where the tk gene was expressed under the Afp promoter. The performance of this pair of tracers was slightly different in terms of signal

  2. mouseTube – a database to collaboratively unravel mouse ultrasonic communication [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nicolas Torquet

    2016-09-01

    Full Text Available Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1 the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2 the biological protocol used to elicit ultrasonic vocalisations; 3 the characteristics of the individual emitting ultrasonic vocalisations (e.g., strain, sex, age. To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.

  3. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches

    DEFF Research Database (Denmark)

    Giannakis, Marios; Stappenbeck, Thaddeus S; Mills, Jason C

    2006-01-01

    pathways. Wnt/beta-catenin, phosphoinositide-3/Akt kinase, insulin-like growth factor-1, vascular endothelial growth factor, integrin, and gamma-aminobutyric acid receptor signaling cascades, plus glycerolipid, fatty acid, and amino acid metabolic pathways are among those prominently represented in adult...

  4. Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis

    OpenAIRE

    Chen, Hung-Chih; Chin, Yu-Feng; Lundy, David J.; Liang, Chung-Tiang; Chi, Ya-Hui; Kuo, Paolin; Hsieh, Patrick C. H.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn ?/? mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/? mouse models, we demonstrate the contribution of Dp427 (f...

  5. Mousetrap: An integrated, open-source mouse-tracking package.

    Science.gov (United States)

    Kieslich, Pascal J; Henninger, Felix

    2017-10-01

    Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .

  6. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    Science.gov (United States)

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  7. A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors

    Directory of Open Access Journals (Sweden)

    Huixuan Liang

    2012-09-01

    Nestin-cre transgenic mice have been widely used to direct recombination to neural stem cells (NSCs and intermediate neural progenitor cells (NPCs. Here we report that a readily utilized, and the only commercially available, Nestin-cre line is insufficient for directing recombination in early embryonic NSCs and NPCs. Analysis of recombination efficiency in multiple cre-dependent reporters and a genetic mosaic line revealed consistent temporal and spatial patterns of recombination in NSCs and NPCs. For comparison we utilized a knock-in Emx1cre line and found robust recombination in NSCs and NPCs in ventricular and subventricular zones of the cerebral cortices as early as embryonic day 12.5. In addition we found that the rate of Nestin-cre driven recombination only reaches sufficiently high levels in NSCs and NPCs during late embryonic and early postnatal periods. These findings are important when commercially available cre lines are considered for directing recombination to embryonic NSCs and NPCs.

  8. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur.

    Science.gov (United States)

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-08-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. IFN-{gamma} enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Nemirovsky, Anna; Harpaz, Idan

    2008-01-01

    the spatial learning and memory performance of the animals. In older mice, the effect of IFN-gamma is more pronounced in both wild-type mice and mice with Alzheimer's-like disease and is associated with neuroprotection. In addition, IFN-gamma reverses the increase in oligodendrogenesis observed in a mouse...... mechanisms can generate immunity to such deficits in neuronal repair. We demonstrate that in contrast to primarily innate immunity cytokines, such as interleukin-6 and tumor necrosis factor-alpha, the adaptive immunity cytokine IFN-gamma enhances neurogenesis in the dentate gyrus of adult mice and improves...

  10. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo.

    Science.gov (United States)

    Zou, Zhiyuan; Sun, Zhaolin; Li, Pan; Feng, Tao; Wu, Sen

    2016-12-14

    Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26 lacZ , we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases.

  11. Co-expression of GAD67 and choline acetyltransferase in neurons in the mouse spinal cord: A focus on lamina X.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Yanagawa, Yuchio; Deuchars, Jim; Deuchars, Susan A

    2016-09-01

    Lamina X of the spinal cord is a functionally diverse area with roles in locomotion, autonomic control and processing of mechano and nociceptive information. It is also a neurochemically diverse region. However, the different populations of cells in lamina X remain to be fully characterised. To determine the co-localisation of the enzymes responsible for the production of GABA and acetylcholine (which play major roles in the spinal cord) in lamina X of the adult and juvenile mouse, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurons, combined with choline acetyltransferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurons were observed in lamina X of both adult and juvenile mice and in both age groups a population of cells containing both ChAT-IR and GAD67-GFP were observed in lumbar, thoracic and cervical spinal cord. Such dual labelled cells were predominantly located ventral to the central canal. Immunohistochemistry for vesicular acetylcholine transporter (VAChT) and GAD67 revealed a small number of double labelled terminals located lateral, dorsolateral and ventrolateral to the central canal. This study therefore describes in detail a population of ChAT-IR/GAD67-GFP neurons predominantly ventral to the central canal of the cervical, thoracic and lumbar spinal cord of adult and juvenile mice. These cells potentially correspond to a sub-population of the cholinergic central canal cluster cells which may play a unique role in controlling spinal cord circuitry. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior.

    Science.gov (United States)

    Sun, Dong; Sun, Xiang-Dong; Zhao, Lu; Lee, Dae-Hoon; Hu, Jin-Xia; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Zhu, Xiao-Juan; Xiong, Wen-Cheng

    2018-01-08

    Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.

  13. Prevention of mouse-rat brain xenograft rejection by a combination therapy of cyclosporin A, prednisolone and azathioprine

    DEFF Research Database (Denmark)

    Pedersen, E B; Poulsen, F R; Zimmer, J

    1995-01-01

    Embryonic mouse hippocampal tissue was grafted as tissue blocks to the hippocampal region of adult rats and the effect of two different immunosuppressive treatments compared. Immunosuppression with cyclosporin A, prednisolone and azathioprine or with cyclosporin A alone was compared with placebo....... Transplants in the trimedication group displayed distinct cell and neuropil layers and only minimal cellular infiltration by leukocyte common antigen-expressing cells, whereas grafts in cyclosporin A- and placebo-treated groups were densely infiltrated. The results are discussed in relation to the need...

  14. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  15. Sex-reversed somatic cell cloning in the mouse.

    Science.gov (United States)

    Inoue, Kimiko; Ogonuki, Narumi; Mekada, Kazuyuki; Yoshiki, Atsushi; Sado, Takashi; Ogura, Atsuo

    2009-10-01

    Somatic cell nuclear transfer has many potential applications in the fields of basic and applied sciences. However, it has a disadvantage that can never be overcome technically-the inflexibility of the sex of the offspring. Here, we report an accidental birth of a female mouse following nuclear transfer using an immature Sertoli cell. We produced a batch of 27 clones in a nuclear transfer experiment using Sertoli cells collected from neonatal male mice. Among them, one pup was female. This "male-derived female" clone grew into a normal adult and produced offspring by natural mating with a littermate. Chromosomal analysis revealed that the female clone had a 39,X karyotype, indicating that the Y chromosome had been deleted in the donor cell or at some early step during nuclear transfer. This finding suggests the possibility of resuming sexual reproduction after a single male is cloned, which should be especially useful for reviving extinct or endangered species.

  16. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  17. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab.

    Science.gov (United States)

    He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W

    2018-02-23

    The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.

  18. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model

    OpenAIRE

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-01-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30–35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose,...

  19. Detection of mouse endogenous type B astrocytes migrating towards brain lesions

    Directory of Open Access Journals (Sweden)

    Gema Elvira

    2015-01-01

    Full Text Available Neuroblasts represent the predominant migrating cell type in the adult mouse brain. There are, however, increasing evidences of migration of other neural precursors. This work aims at identifying in vivo endogenous early neural precursors, different from neuroblasts, able to migrate in response to brain injuries. The monoclonal antibody Nilo1, which unequivocally identifies type B astrocytes and embryonic radial glia, was coupled to magnetic glyconanoparticles (mGNPs. Here we show that Nilo1–mGNPs in combination with magnetic resonance imaging in living mice allowed the in vivo identification of endogenous type B astrocytes at their niche, as well as their migration to the lesion site in response to glioblastoma, demyelination, cryolesion or mechanical injuries. In addition, Nilo1+ adult radial glia-like structures were identified at the lesion site a few hours after damage. For all damage models used, type B astrocyte migration was fast and orderly. Identification of Nilo1+ cells surrounding an induced glioblastoma was also possible after intraperitoneal injection of the antibody. This opens up the possibility of an early identification of the initial damage site(s after brain insults, by the migration of type B astrocytes.

  20. A report from the Sixth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Saint Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  1. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G

    1986-01-01

    Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme...

  2. Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser.

    Science.gov (United States)

    Kan, H-W; Chiang, H; Lin, W-M; Yu, I-S; Lin, S-W; Hsieh, S-T

    2018-02-08

    Sensory nerve degeneration and consequent abnormal sensations are the earliest and most prevalent manifestations of familial amyloid polyneuropathy (FAP) due to amyloidogenic transthyretin (TTR). FAP is a relentlessly progressive degenerative disease of the peripheral nervous system. However, there is a lack of mouse models to replicate the early neuropathic manifestations of FAP. We established human TTR knock-in mice by replacing one allele of the mouse Ttr locus with human wild-type TTR (hTTR wt ) or human TTR with the A97S mutation (hTTR A97S ). Given the late onset of neuropathic manifestations in A97S-FAP, we investigated nerve pathology, physiology, and behavioural tests in these mice at two age points: the adult group (8 - 56 weeks) and the ageing group (> 104 weeks). In the adult group, nerve profiles, neurophysiology and behaviour were similar between hTTR wt and hTTR A97S mice. By contrast, ageing hTTR A97S mice showed small fibre neuropathy with decreased intraepidermal nerve fibre density and behavioural signs of mechanical allodynia. Furthermore, significant reductions in sural nerve myelinated nerve fibre density and sensory nerve action potential amplitudes in these mice indicated degeneration of large sensory fibres. The unaffected motor nerve physiology replicated the early symptoms of FAP patients, that is, sensory nerves were more vulnerable to mutant TTR than motor nerves. These results demonstrate that the hTTR A97S mouse model develops sensory nerve pathology and corresponding physiology mimicking A97S-FAP and provides a platform to develop new therapies for the early stage of A97S-FAP. © 2018 British Neuropathological Society.

  3. A role for adult TLX-positive neural stem cells in learning and behaviour.

    Science.gov (United States)

    Zhang, Chun-Li; Zou, Yuhua; He, Weimin; Gage, Fred H; Evans, Ronald M

    2008-02-21

    Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.

  4. cDNA cloning and characterization of mouse DTEF-1 and ETF, members of the TEA/ATTS family of transcription factors.

    Science.gov (United States)

    Yockey, C E; Shimizu, N

    1998-02-01

    Members of the TEA/ATTS family of transcription factors have been found in most representative eukaryotic organisms. In vertebrates, the TEA family contains at least four members, which share overlapping DNA-binding specificity and have similar transcriptional activation properties. In this article, we describe the cDNA cloning and characterization of the murine TEA proteins DTEF-1 (mDTEF-1) and ETF. Using in situ hybridization analysis of mouse embryos, we found that mDTEF-1 and ETF transcript distributions substantially overlap. ETF is expressed throughout the embryo except in the myocardium early in development, whereas late in development, it is enriched in lung and neuroectoderm. Mouse DTEF-1 is expressed at a much lower level throughout development and is substantially enriched in ectoderm and skin, as well as in the developing pituitary at midgestation. Northern blot analysis of adult mouse tissue total RNA showed that both ETF and mDTEF-1 are abundant in uterus and lung relative to other tissues. Using gel mobility shift assays and GAL4-fusion protein analysis, we demonstrated that the full coding sequences of ETF and mDTEF-1 encode M-CAT/GT-IIC-binding proteins containing activation domains.

  5. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model.

    Science.gov (United States)

    Koohestani, Faezeh; Qiang, Wenan; MacNeill, Amy L; Druschitz, Stacy A; Serna, Vanida A; Adur, Malavika; Kurita, Takeshi; Nowak, Romana A

    2016-07-01

    Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights

  6. The MAGIC Touch: Combining MAGIC-Pointing with a Touch-Sensitive Mouse

    Science.gov (United States)

    Drewes, Heiko; Schmidt, Albrecht

    In this paper, we show how to use the combination of eye-gaze and a touch-sensitive mouse to ease pointing tasks in graphical user interfaces. A touch of the mouse positions the mouse pointer at the current gaze position of the user. Thus, the pointer is always at the position where the user expects it on the screen. This approach changes the user experience in tasks that include frequent switching between keyboard and mouse input (e.g. working with spreadsheets). In a user study, we compared the touch-sensitive mouse with a traditional mouse and observed speed improvements for pointing tasks on complex backgrounds. For pointing task on plain backgrounds, performances with both devices were similar, but users perceived the gaze-sensitive interaction of the touch-sensitive mouse as being faster and more convenient. Our results show that using a touch-sensitive mouse that positions the pointer on the user’s gaze position reduces the need for mouse movements in pointing tasks enormously.

  7. Oculomotor deficits in aryl hydrocarbon receptor null mouse.

    Directory of Open Access Journals (Sweden)

    Aline Chevallier

    Full Text Available The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD. Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/- leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR, were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.

  8. Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum

    DEFF Research Database (Denmark)

    Lukácová, Slávka; Khalil, Azza Ahmed; Overgaard, Jens

    2005-01-01

    To investigate the possible relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin (OPN) levels measured in mouse serum. MATERIAL AND METHODS: Experiments were performed in CDF1 mice that were either non-tumour bearing or with different sized tumours implanted...... in the right rear foot. Osteopontin levels in extracted mouse blood serum and tissue from the transplanted tumours were measured using an ELISA assay. The tumour oxygenation status was estimated using the Eppendorf Histograph and the fraction of oxygen partial pressure (pO2) values =5 mm Hg (HF5...

  9. Targeted disruption of the mouse Lipoma Preferred Partner gene

    International Nuclear Information System (INIS)

    Vervenne, Hilke B.V.K.; Crombez, Koen R.M.O.; Delvaux, Els L.; Janssens, Veerle; Ven, Wim J.M. van de; Petit, Marleen M.R.

    2009-01-01

    LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp -/- females. Fertility of Lpp -/- males was proven to be normal, however, females from Lpp -/- x Lpp -/- crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp -/- mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp -/- mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.

  10. Expression of extracellular matrix components is disrupted in the immature and adult estrogen receptor β-null mouse ovary.

    Directory of Open Access Journals (Sweden)

    Alexandra Zalewski

    Full Text Available Within the ovary, Estrogen Receptor β (ERβ is localized to the granulosa cells of growing follicles. 17β-estradiol (E2 acting via ERβ augments the actions of follicle stimulating hormone in granulosa cells, leading to granulosa cell differentiation and formation of a preovulatory follicle. Adult ERβ-null females are subfertile and possess ovaries with reduced numbers of growing follicles and corpora lutea. Because the majority of E2 production by granulosa cells occurs once puberty is reached, a role for ERβ in the ovary prior to puberty has not been well examined. We now provide evidence that lack of ERβ disrupts gene expression as early as post-natal day (PND 13, and in particular, we identify a number of genes of the extracellular matrix (ECM that are significantly higher in ERβ-null follicles than in wildtype (WT follicles. Considerable changes occur to the ECM occur during normal folliculogenesis to allow for the dramatic growth, cellular differentiation, and reorganization of the follicle from the primary to preovulatory stage. Using quantitative PCR and immunofluorescence, we now show that several ECM genes are aberrantly overexpressed in ERβ-null follicles. We find that Collagen11a1, a protein highly expressed in cartilage, is significantly higher in ERβ-null follicles than WT follicles as early as PND 13, and this heightened expression continues through PND 23-29 into adulthood. Similarly, Nidogen 2, a highly conserved basement membrane glycoprotein, is elevated in ERβ-null follicles at PND 13 into adulthood, and is elevated specifically in the ERβ-null focimatrix, a basal lamina-like matrix located between granulosa cells. Focimatrix laminin and Collagen IV expression were also higher in ERβ-null ovaries than in WT ovaries at various ages. Our findings suggest two novel observations: a that ERβ regulates granulosa cell gene expression ovary prior to puberty, and b that ERβ regulates expression of ECM components in the

  11. Exposure of the mouse perinatal testis to radiation leads to hypospermia at sexual maturity

    International Nuclear Information System (INIS)

    Forand, A.; Messiaen, S.; Habert, R.; Bernardino-Sgherri, J.

    2009-01-01

    The first round of mouse spermatogenesis begins from 3 to 4 days after birth through differentiation of gonocytes into spermatogonial-stem cells and type A spermatogonia. Consequently, this step of differentiation may determine generation of the original population of stem cells and the fertility potential of the adult mouse. We aimed to determine the effect of perinatal exposure to ionizing radiation on the testis at the end of the first wave of spermatogenesis and at sexual maturity. Our results show that, radiation sensitivity of the testis substantially decreases from late foetal life to the end of the first week after birth. In addition, partial or full recovery from radiation induced testicular weight loss occurred between the first round of spermatogenesis and sexual maturity, and this was associated with the stimulation of spermatogonial proliferation. Exposure of mice at 17.5 days after conception or at 1 day after birth to γ-rays decreased the sperm counts at sexual maturity, while exposure of 8 day-old mice had no effect. This suggests that irradiation of late foetal or early neonatal testes has a direct impact on the generation of the neonatal spermatogonial-stem cell pool. (authors)

  12. Sequence and chromosomal localization of the mouse brevican gene

    DEFF Research Database (Denmark)

    Rauch, U; Meyer, H; Brakebusch, C

    1997-01-01

    Brevican is a brain-specific proteoglycan belonging to the aggrecan family. Phage clones containing the complete mouse brevican open reading frame of 2649 bp and the complete 3'-untranslated region of 341 bp were isolated from a mouse brain cDNA library, and cosmid clones containing the mouse...

  13. TGFβ lengthens the G1 phase of stem cells in aged mouse brain.

    Science.gov (United States)

    Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André

    2014-12-01

    Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.

  14. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  15. Chemical Aspects of Lesser Mouse Deer Meat

    Directory of Open Access Journals (Sweden)

    Djalal Rosyidi

    2012-02-01

    Full Text Available An experiment aiming for studying chemical aspects of lesser mouse deer meat (Tragulus javanicus. This research explored the chemical aspects of lesser mouse deer meat (Tragulus javanicus. Eight lesser mouse deer (four female and four male were used in chemical aspects of lesser mouse deer meat. The parameters observed included proximate analysis, amino acid, fatty acid, cholesterol and EPA-DHA of the meat. The results showed that average meat chemical composition were content of water, protein, fat, ash and cholesterol were 76.33 %, 21.42 %, 0.51 %, 1.20% and 50.00 mg/100 g, respectively. Fatty acid consist of lauric acid, miristate, palmitate, stearic, oleic, linoleic, and linolenic were 1.04 % 3.09%, 30.97, 0.77%., 59.41%, 3.22% and 1.12%, respectively. The total EPA and DHA was 0.13% and 0.05%,   Keywords: amino acid, fatty acid, cholesterol and EPA-DHA

  16. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  17. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model.

    Science.gov (United States)

    Shuda, Masahiro; Guastafierro, Anna; Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M; Lukianov, Stefan; Jenkins, Frank J; Honda, Kord; Maricich, Stephen M; Moore, Patrick S; Chang, Yuan

    2015-01-01

    Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.

  18. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  19. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  20. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  1. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  2. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    Science.gov (United States)

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  3. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease.

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F; Armour, Maxime R; Montero, Ramon B; Schiller, Paul C; Andreopoulos, Fotios M; D'Ippolito, Gianluca

    2017-02-17

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.

  4. Upregulated expression of Nogo-A and NgR in an experimental model of focal microgyria regulates the migration, proliferation and self-renewal of subventricular zone neural progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sixun; Shu, Haifeng; Yang, Tao; Huang, Haidong [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China); Li, Song [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 (China); Zhao, Ziyi [Central Laboratory, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, 610075 (China); Kuang, Yongqin, E-mail: kuangyongqin@163.com [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China)

    2016-04-29

    Nogo-A and its receptor (NgR) were first described as myelin-associated inhibitors of neuronal regeneration in response to injury. In recent years, knowledge about the important role of the Nogo-A protein in several neuronal pathologies has grown considerably. Here, we employed a neonatal cortex freeze-lesion (NFL) model in neonatal rats and measured the expression of Nogo-A and NgR in the resulting cerebrocortical microdysgenesis 5–75 days after freezing injury. We observed marked upregulation of Nogo-A and NgR in protein levels. Furthermore, the migration of neural precursor cells (NPCs) derived from the subventricular zone (SVZ) toward the sits of injury was perturbed by treatment of NgR antagonist peptide NEP1-40. In vitro analysis showed that the knockdown of NgR by lentivirus-delivered siRNA promoted in axonal regeneration and SVZ-derived neural stem cell/progenitor cell (SVZ-NPCs) adhesion and migration, findings which were similar to the effects of NEP1-40. Taken together, our results indicate an important role for NgR in regulating the physiological processes of SVZ-NPCs. The observation of upregulated Nogo-A/NgR in lesion sites in the NFL model suggest that the effects of the perturbed Nogo-A are a key feature during the development and/or the progression of cortical malformation. - Highlights: • NFL model is an accurate experimental reproduction of focal microgyria of FCD. • The increase of the Nogo-A Levels occurs in response to freeze-induced focal lesioning. • Nogo-A/NgR may play a critical role for in the pathologic progression of FCD. • Nogo-A is associated with the migration, proliferation and self-renewal of SVZ-NPCs.

  5. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion.

    Science.gov (United States)

    Gaub, S; Fisher, S E; Ehret, G

    2016-02-01

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Mouse myocardial first-pass perfusion MR imaging

    NARCIS (Netherlands)

    Coolen, Bram F.; Moonen, Rik P. M.; Paulis, Leonie E. M.; Geelen, Tessa; Nicolay, Klaas; Strijkers, Gustav J.

    2010-01-01

    A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300-400 msec. The method was

  7. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  8. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    Science.gov (United States)

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  9. Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Kamil Kruczek

    2017-06-01

    Full Text Available The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs. Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.

  10. Bilateral Transplantation of Allogenic Adult Human Bone Marrow-Derived Mesenchymal Stem Cells into the Subventricular Zone of Parkinson’s Disease: A Pilot Clinical Study

    Directory of Open Access Journals (Sweden)

    N. K. Venkataramana

    2012-01-01

    Full Text Available The progress of PD and its related disorders cannot be prevented with the medications available. In this study, we recruited 8 PD and 4 PD plus patients between 5 to 15 years after diagnosis. All patients received BM-MSCs bilaterally into the SVZ and were followed up for 12 months. PD patients after therapy reported a mean improvement of 17.92% during “on” and 31.21% during “off” period on the UPDRS scoring system. None of the patients increased their medication during the follow-up period. Subjectively, the patients reported clarity in speech, reduction in tremors, rigidity, and freezing attacks. The results correlated with the duration of the disease. Those patients transplanted in the early stages of the disease (less than 5 years showed more improvement and no further disease progression than the later stages (11–15 years. However, the PD plus patients did not show any change in their clinical status after stem cell transplantation. This study demonstrates the safety of adult allogenic human BM-MSCs transplanted into the SVZ of the brain and its efficacy in early-stage PD patients.

  11. Mouse myocardial first-pass perfusion MR imaging

    NARCIS (Netherlands)

    Coolen, B.F.; Moonen, R.P.M.; Paulis, L.E.M.; Geelen, T.; Nicolay, K.; Strijkers, G.J.

    2010-01-01

    A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300–400 msec. The method was

  12. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-01-01

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  13. Treatment and outcome of adult-onset neuroblastoma.

    Science.gov (United States)

    Suzuki, Maya; Kushner, Brian H; Kramer, Kim; Basu, Ellen M; Roberts, Stephen S; Hammond, William J; LaQuaglia, Michael P; Wolden, Suzanne L; Cheung, Nai-Kong V; Modak, Shakeel

    2018-03-25

    Adult-onset neuroblastoma is rare and little is known about its biology and clinical course. There is no established therapy for adult-onset neuroblastoma. Anti-GD2 immunotherapy is now standard therapy in children with high-risk neuroblastoma; however, its use has not been reported in adults. Forty-four adults (18-71 years old) diagnosed with neuroblastoma between 1979 and 2015 were treated at Memorial Sloan Kettering Cancer Center. Five, 1, 5 and 33 patients had INSS stage 1, 2, 3 and 4 diseases, respectively. Genetic abnormalities included somatic ATRX (58%) and ALK mutations (42%) but not MYCN-amplification. In the 11 patients with locoregional disease, 10-year progression-free (PFS) and overall survival (OS) was 35.4 ± 16.1% and 61.4 ± 15.3%, respectively. Among 33 adults with stage 4 neuroblastoma, 7 (21%) achieved complete response (CR) after induction chemotherapy and/or surgery. Seven patients with primary refractory neuroblastoma (all with osteomedullary but no soft tissue disease) received anti-GD2 antibodies, mouse or humanized 3F8. Antibody-related adverse events were similar to those in children, response rate being 71.4%. In patients with stage 4 disease at diagnosis, 5-year PFS was 9.7± 5.3% and most patients who were alive with disease at 5 years died of neuroblastoma over the next 5 years, 10-year OS being only 19.0 ± 8.2%. Patients who achieved CR after induction had superior PFS and OS (p = 0.006, p = 0.031, respectively). Adult-onset neuroblastoma appeared to have different biology from pediatric or adolescent NB, and poorer outcome. Complete disease control appeared to improve long-term survival. Anti-GD2 immunotherapy was well tolerated and might be beneficial. © 2018 UICC.

  14. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    International Nuclear Information System (INIS)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.

    2016-01-01

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  15. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingam, Sharada, E-mail: mahalin2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gao, Liying, E-mail: lgao@uiuc.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gonnering, Marni, E-mail: mgonne2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Helferich, William, E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  16. Perineuronal nets play a role in regulating striatal function in the mouse.

    Directory of Open Access Journals (Sweden)

    Hyunchul Lee

    Full Text Available The striatum is the primary input nucleus of the basal ganglia, a collection of nuclei that play important roles in motor control and associative learning. We have previously reported that perineuronal nets (PNNs, aggregations of chondroitin-sulfate proteoglycans (CSPGs, form in the matrix compartment of the mouse striatum during the second postnatal week. This period overlaps with important developmental changes, including the attainment of an adult-like gait. Here, we investigate the identity of the cells encapsulated by PNNs, characterize their topographical distribution and determine their function by assessing the impact of enzymatic digestion of PNNs on two striatum-dependent behaviors: ambulation and goal-directed spatial learning. We show PNNs are more numerous caudally, and that a substantial fraction (41% of these structures surrounds parvalbumin positive (PV+ interneurons, while approximately 51% of PV+ cells are ensheathed by PNNs. The colocalization of these structures is greatest in dorsal, lateral and caudal regions of the striatum. Bilateral digestion of striatal PNNs led to an increase in both the width and variability of hind limb gait. Intriguingly, this also resulted in an improvement in the acquisition rate of the Morris water maze. Together, these data show that PNNs are associated with specific elements of striatal circuits and play a key role in regulating the function of this important structure in the mouse.

  17. Perineuronal nets play a role in regulating striatal function in the mouse.

    Science.gov (United States)

    Lee, Hyunchul; Leamey, Catherine A; Sawatari, Atomu

    2012-01-01

    The striatum is the primary input nucleus of the basal ganglia, a collection of nuclei that play important roles in motor control and associative learning. We have previously reported that perineuronal nets (PNNs), aggregations of chondroitin-sulfate proteoglycans (CSPGs), form in the matrix compartment of the mouse striatum during the second postnatal week. This period overlaps with important developmental changes, including the attainment of an adult-like gait. Here, we investigate the identity of the cells encapsulated by PNNs, characterize their topographical distribution and determine their function by assessing the impact of enzymatic digestion of PNNs on two striatum-dependent behaviors: ambulation and goal-directed spatial learning. We show PNNs are more numerous caudally, and that a substantial fraction (41%) of these structures surrounds parvalbumin positive (PV+) interneurons, while approximately 51% of PV+ cells are ensheathed by PNNs. The colocalization of these structures is greatest in dorsal, lateral and caudal regions of the striatum. Bilateral digestion of striatal PNNs led to an increase in both the width and variability of hind limb gait. Intriguingly, this also resulted in an improvement in the acquisition rate of the Morris water maze. Together, these data show that PNNs are associated with specific elements of striatal circuits and play a key role in regulating the function of this important structure in the mouse.

  18. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1 C YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+) s evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  19. Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Stephenson Diane T

    2011-05-01

    Full Text Available Abstract Background The inbred mouse strain BTBR T+ tf/J (BTBR exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. Methods Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, dou