WorldWideScience

Sample records for adult human muscle

  1. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  2. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  3. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  4. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  5. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  6. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  7. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  8. The breaking and making of healthy adult human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Kjaer, Michael

    2017-01-01

    and highlights the importance of the basement membrane in the process of regeneration. In addition, it provides insight into parallels between the regeneration of adult skeletal muscle in mouse and man, confirming that this model may be a useful tool in investigating myofibre and matrix formation, as well...

  9. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens)

    OpenAIRE

    Potau, J. M.; Arias-Martorell, J.; Bello-Hellegouarch, G.; Casado, A.; Pastor, J. F.; de Paz, F.; Diogo, R.

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan\\ud troglodytes) and bonobos(Pan paniscus) and compared them to anatomic variations in these muscles in humans(Homo sapiens). We\\ud have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and\\ud five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we...

  10. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  11. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  12. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  13. Normal isometric strength of rotator cuff muscles in adults

    OpenAIRE

    Chezar, A.; Berkovitch, Y.; Haddad, M.; Keren, Y.; Soudry, M.; Rosenberg, N.

    2013-01-01

    Objectives The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for e...

  14. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    Science.gov (United States)

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  15. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens).

    Science.gov (United States)

    Potau, J M; Arias-Martorell, J; Bello-Hellegouarch, G; Casado, A; Pastor, J F; de Paz, F; Diogo, R

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) and compared them to anatomic variations in these muscles in humans (Homo sapiens) . We have macroscopically dissected these muscles in six adult Pan troglodytes , five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens . Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes ; none of the Pan paniscus , however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus . In all six Pan troglodytes , the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens , it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  16. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes, Bonobos (Pan paniscus, and Humans (Homo sapiens

    Directory of Open Access Journals (Sweden)

    J. M. Potau

    2018-01-01

    Full Text Available We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes and bonobos (Pan paniscus and compared them to anatomic variations in these muscles in humans (Homo sapiens. We have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes; none of the Pan paniscus, however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus. In all six Pan troglodytes, the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens, it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  17. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  18. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  19. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  20. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  1. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  2. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  3. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.

    Science.gov (United States)

    Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A

    2011-07-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.

  4. Radioimmunoassay of human muscle carbonic anhydrase III in dystrophic states

    Energy Technology Data Exchange (ETDEWEB)

    Heath, R.; Jeffery, S.; Carter, N. (Department of Child Health, St. George' s Hospital Medical School, London (UK))

    1982-03-12

    A radioimmunoassay for the human isozyme carbonic anhydrase III (CAIII) has been developed. The assay can detect levels as low as 4..mu..g/l of sample. Plasma CAIII levels in patients suffering from Duchenne muscular dystrophy were found to be up to 39 times greater than in a control group. Urine CAIII levels in patients suffering from Duchenne muscular dystrophy were not significantly different from the levels found in urine from normal adults. Measurement of plasma CAIII levels may be useful in prenatal diagnosis of Duchenne muscular dystrophy, and in investigation of adult skeletal muscle disease.

  5. Radioimmunoassay of human muscle carbonic anhydrase III in dystrophic states

    International Nuclear Information System (INIS)

    Heath, R.; Jeffery, S.; Carter, N.

    1982-01-01

    A radioimmunoassay for the human isozyme carbonic anhydrase III (CAIII) has been developed. The assay can detect levels as low as 4μg/l of sample. Plasma CAIII levels in patients suffering from Duchenne muscular dystrophy were found to be up to 39 times greater than in a control group. Urine CAIII levels in patients suffering from Duchenne muscular dystrophy were not significantly different from the levels found in urine from normal adults. Measurement of plasma CAIII levels may be useful in prenatal diagnosis of Duchenne muscular dystrophy, and in investigation of adult skeletal muscle disease. (Auth.)

  6. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  7. Skeletal muscle abnormalities and exercise capacity in adults with a Fontan circulation.

    Science.gov (United States)

    Cordina, Rachael; O'Meagher, Shamus; Gould, Haslinda; Rae, Caroline; Kemp, Graham; Pasco, Julie A; Celermajer, David S; Singh, Nalin

    2013-10-01

    The peripheral muscle pump is key in promoting cardiac filling during exercise, especially in subjects who lack a subpulmonary ventricle (the Fontan circulation). A muscle-wasting syndrome exists in acquired heart failure but has not been assessed in Fontan subjects. We sought to investigate whether adults with the Fontan circulation exhibit reduced skeletal muscle mass and/or metabolic abnormalities. Sixteen New York Heart Association Class I/II Fontan adults (30±2 years) underwent cardiopulmonary exercise testing and lean mass quantification with dual x-ray absorptiometry (DXA); eight had calf muscle (31)P magnetic resonance spectroscopy as did eight healthy age-matched and sex-matched controls. DXA results were compared with Australian reference data. Single tertiary referral centre. Peak VO2 was 1.9±0.1 L/min (66±3% of predicted values). Skeletal muscle mass assessed by relative appendicular lean mass index was significantly reduced compared with age-matched and sex-matched reference values (Z-score -1.46±0.22, pskeletal muscle mass correlated with poorer VO2 max (r=0.67, p=0.004). Overall, skeletal muscle mass T-score (derived from comparison with young normal reference mean) was -1.47±0.21; 4/16 Fontan subjects had sarcopenic range muscle wasting (T-score Muscle aerobic capacity, measured by the rate constant (k) of postexercise phosphocreatine resynthesis, was significantly impaired in Fontan adults versus controls (1.48±0.13 vs 2.40±0.33 min(-1), p=0.02). Fontan adults have reduced skeletal muscle mass and intrinsic muscle metabolic abnormalities.

  8. Three-dimensional architecture of the whole human soleus muscle in vivo

    Science.gov (United States)

    Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.

    2018-01-01

    Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the

  9. Normal isometric strength of rotatorcuff muscles in adults.

    Science.gov (United States)

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  11. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  12. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    Science.gov (United States)

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. © The Author(s) 2016.

  13. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise

    International Nuclear Information System (INIS)

    Jemiolo, Bozena; Trappe, Scott

    2004-01-01

    Reverse transcription and real-time PCR have become the method of choice for the detection of low-abundance mRNA transcripts obtained from small human muscle biopsy samples. GAPDH, β-actin, β-2M, and 18S rRNA are widely employed as endogenous control genes, with the assumption that their expression is unregulated and constant for given experimental conditions. The aim of this study was to determine if mRNA transcripts could be performed on isolated human single muscle fibers and to determine reliable housekeeping genes (HKGs) using quantitative gene expression protocols at rest and in response to an acute exercise bout. Muscle biopsies were obtained from the gastrocnemius of three adult males before, immediately after, and 4 h following 30 min of treadmill running at 70% of VO 2 max. A total of 40 single fibers (MHC I and IIa) were examined for GAPDH, β-actin, β-2M, and 18S rRNA using quantitative RT-PCR and SYBR Green detection. All analyzed single fiber segments showed ribosomal RNA (28S/18S). No degradation or additional bands below ribosomal were detected (rRNA ratio 1.5-1.8). Also, no high or low-molecular weight genomic DNA contamination was observed. For each housekeeping gene the duplicate average SD was ±0.13 with a CV of 0.58%. Stable expression of GAPDH was observed at all time points for each fiber type (MHC I and IIa). Inconsistent expression of β-actin, β-2M, and 18S rRNA was observed during the post-exercise time points for each fiber type. These data indicate that successful extraction of high quality RNA from human single muscle fibers along with quantification of mRNA of selected genes can be performed. Furthermore, exercise does influence the expression of certain HKGs with GAPDH being the most stable

  14. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults.

    Directory of Open Access Journals (Sweden)

    Adeel Safdar

    Full Text Available The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; female symbol = male symbol. We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging.

  15. The expression of NFATc1 in adult rat skeletal muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  16. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    2010-10-01

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  17. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  18. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.

  19. Effect of generalized joint hypermobility on knee function and muscle activation in children and adults

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Olesen, Annesofie T.; Pedersen, Mogens Theisen

    2013-01-01

    Introduction: We investigated muscle activation strategy and performance of knee extensor and flexor muscles in children and adults with generalized joint hypermobility (GJH) and compared them with controls. Methods: Muscle activation, torque steadiness, electromechanical delay, and muscle strength...... were evaluated in 39 children and 36 adults during isometric knee extension and flexion. Subjects performed isometric maximum contractions, submaximal contractions at 25% maximum voluntary contraction (MVC), and explosive contractions. Results: Agonist activation was reduced, and coactivation ratio...... was greater in GJH during knee flexion compared with controls. Torque steadiness was impaired in adults with GJH during knee flexion. No effect of GJH was found on muscle strength or electromechanical delay. Correlation analysis revealed an association between GJH severity and function in adults. Conclusions...

  20. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  1. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Science.gov (United States)

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  2. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review

    Directory of Open Access Journals (Sweden)

    Ozaki H

    2013-03-01

    Full Text Available Hayao Ozaki,1 Jeremy P Loenneke,2 Robert S Thiebaud,2 Joel M Stager,3 Takashi Abe31Juntendo University, Inzai, Chiba, Japan; 2Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA; 3Department of Kinesiology, Indiana University, Bloomington, IN, USAAbstract: It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.Keywords: aerobic exercise, muscle mass, aging, strength, sarcopenia

  3. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    Directory of Open Access Journals (Sweden)

    Jamie I. Baum

    2015-07-01

    Full Text Available Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1. Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  4. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review

    Directory of Open Access Journals (Sweden)

    Papa EV

    2017-06-01

    Full Text Available Evan V Papa,1 Xiaoyang Dong,2 Mahdi Hassan1 1Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China; 2Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, TX, USA Abstract: Human aging results in a variety of changes to skeletal muscle. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Previous research has demonstrated that resistance training can attenuate skeletal muscle function deficits in older adults, however few articles have focused on the effects of resistance training on functional mobility. The purpose of this systematic review was to 1 present the current state of literature regarding the effects of resistance training on functional mobility outcomes for older adults with skeletal muscle function deficits and 2 provide clinicians with practical guidelines that can be used with seniors during resistance training, or to encourage exercise. We set forth evidence that resistance training can attenuate age-related changes in functional mobility, including improvements in gait speed, static and dynamic balance, and fall risk reduction. Older adults should be encouraged to participate in progressive resistance training activities, and should be admonished to move along a continuum of exercise from immobility, toward the recommended daily amounts of activity. Keywords: aging, strength training, sarcopenia, mobility, balance

  5. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  6. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked meats, especially pork. The cysts hatch in the intestines and produce large numbers of larvae that migrate into muscle tissue. The cysts ...

  7. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  8. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training.

    Science.gov (United States)

    Wyckelsma, Victoria L; Levinger, Itamar; McKenna, Michael J; Formosa, Luke E; Ryan, Michael T; Petersen, Aaron C; Anderson, Mitchell J; Murphy, Robyn M

    2017-06-01

    Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole

  9. Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Vissing, Christoffer R; Hedermann, Gitte

    2017-01-01

    also tested for association with sex, body mass index (BMI), physical activity, and lower back pain. RESULTS: Both paraspinal and leg fat fractions correlated directly with age (P ages, fat fraction was higher in paraspinal than leg muscles. The age-related increase in fat fraction...... was associated with lumbar paraspinal fat fraction (P activity or lower back pain. CONCLUSION: The paraspinal muscles were more susceptible to age-related changes than leg muscles. Further, men had......PURPOSE: The aims of this study were to investigate the age-related changes in fatty replacement and cross-sectional area (CSA) of cervical, thoracic, and lumbar paraspinal muscles versus leg muscles in healthy adults and to test for association between muscle fat fraction and lifestyle factors...

  10. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Laborda, Jorge; Baladron, Victoriano

    2013-01-01

    skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular......Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability...... fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration....

  11. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    Science.gov (United States)

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  12. Upper-limb exoskeleton for human muscle fatigue

    OpenAIRE

    Ali, SK; Tokhi, MO

    2017-01-01

    Human muscle fatigue is identified as one of the causes to musculuskeletal disorder (MSD). The objective of this paper is to investigate the effect of an exoskeleton in dealing with muscle fatigue in a virtual environment. The focus of this work is, for the exoskeleton to provide support as needed by human joint. A (Proportional, Integration and Derivative) controller is used for both human and exoskeleton. Simmechanics and Simulink are used to evaluate the performance of the exoskeleton. Exp...

  13. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  14. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    Mireia Rovira

    2017-12-01

    Full Text Available Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest

  15. Dynamic stability control in forward falls: postural corrections after muscle fatigue in young and older adults.

    Science.gov (United States)

    Mademli, Lida; Arampatzis, Adamantios; Karamanidis, Kiros

    2008-06-01

    Many studies report that muscle strength loss may alter the human system's capacity to generate rapid force for balance corrections after perturbations, leading to deficient recovery behaviours. Yet little is known regarding the effect of modifications in the neuromuscular system induced by fatigue on dynamic stability control during postural perturbations. This study investigates the effect of muscle strength decline induced by fatiguing contractions on the dynamic stability control of young and older adults during forward falls. Eleven young and eleven older male adults had to regain balance after sudden falls before and after submaximal fatiguing knee extension-flexion contractions. Young subjects had a higher margin of stability than older ones before and after the fatiguing task. This reflects their enhanced ability in using mechanisms for maintaining dynamic stability (i.e. a greater base of support). The margin of stability, the boundary of the base of support and the position of the extrapolated centre of mass, remained unaffected by the reduction in muscle strength induced by the fatiguing contractions, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Both young and older adults were able to counteract the decreased horizontal ground reaction forces after the fatiguing task by flexing their knee to a greater extent, leading to similar decreases in the horizontal velocity of centre of mass as in the pre fatigue condition. The results demonstrate the ability of the central nervous system to rapidly modify the execution of postural corrections including mechanisms for maintaining dynamic stability.

  16. Effects of age and acute muscle fatigue on reactive postural control in healthy adults.

    Science.gov (United States)

    Papa, Evan V; Foreman, K Bo; Dibble, Leland E

    2015-12-01

    Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-min (T15) and 30-min (T30) of rest. Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 min of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. EFFECTS OF AGE AND ACUTE MUSCLE FATIGUE ON REACTIVE POSTURAL CONTROL IN HEALTHY ADULTS

    Science.gov (United States)

    Papa, Evan V.; Foreman, K. Bo; Dibble, Lee E.

    2015-01-01

    BACKGROUND Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. METHODS A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-minutes (T15) and 30-minutes (T30) of rest. FINDINGS Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. INTERPRETATION Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 minutes of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. PMID:26351001

  18. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  19. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  20. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  1. Orbital Floor Fracture with Atypical Extraocular Muscle Entrapment Pattern and Intraoperative Asystole in an Adult

    Science.gov (United States)

    Merali, Farhan I.; Grant, Michael P.; Mahoney, Nicholas R.

    2015-01-01

    Extraocular muscle entrapment in a nondisplaced orbital fracture, although a well-known entity in pediatric trauma, is atypical in adults. It can present with a triad of bradycardia, nausea, and in rare cases, syncope, and result in severe fibrosis of damaged and incarcerated muscle. We present a case of muscle entrapment in a partially nondisplaced two-wall orbital fracture with accompanying preoperative bradycardia and intraoperative asystole in an adult PMID:26576246

  2. Slow early growers have more muscle in relation to adult activity: evidence from Cebu, Philippines.

    Science.gov (United States)

    Workman, M; McDade, T W; Adair, L S; Kuzawa, C W

    2015-12-01

    Adult skeletal muscle mass (SMM) protects against type 2 diabetes, but little is known about its developmental antecedents. We examined whether pace of early weight gain predicted adult SMM in a birth cohort from Cebu City, Philippines. In addition, we examined whether increases in SMM associated with adult muscle-building exercise varied according to the early growth. Data came from 1472 participants of the Cebu Longitudinal Health and Nutrition Survey. Weight was measured at birth and at 6-month intervals through the age of 24 months. Adult SMM was estimated from anthropometric measurements when participants were 20-22-years old. Interviews provided the information on adult exercise/lifestyle habits. SMM (mean ± s.d.) was 20.8 ± 3.9 kg (men) and 13.6 ± 3.4 kg (women). Faster early weight gain predicted a higher adult SMM. After adjustment for height and lifestyle factors, strongest associations with SMM were found for 6-12 months growth in men (β=0.17, P=0.001) and for birth weight in women (β=0.14, P=0.001). Individuals who had grown slowly displayed greater SMM in association with adult weightlifting, basketball playing and physically demanding forms of employment (men) or household chores (women). These results suggest heightened sensitivity of activity-induced muscle hypertrophy among the adults who were born light or who gained weight slowly as infants. Future research should test this finding by comparing responses of muscle mass to an intervention in slow vs fast early growers. Findings suggest that adults who display a reduced SMM following suboptimal early growth may be good candidates for new anti-diabetes interventions that promote muscle-building activities.

  3. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  4. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  5. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  6. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  7. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  8. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  9. Blood pressure and the contractility of a human leg muscle.

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  10. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Science.gov (United States)

    Aversi-Ferreira, Roqueline A. G. M. F.; Bretas, Rafael Vieira; Maior, Rafael Souto; Davaasuren, Munkhzul; Paraguassú-Chaves, Carlos Alberto; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing. PMID:24860810

  11. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Roqueline A. G. M. F. Aversi-Ferreira

    2014-01-01

    Full Text Available The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing.

  12. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  13. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja M; Holm, Lars

    2010-01-01

    young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P ...RNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates...... matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue....

  14. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  15. Physical inactivity and muscle oxidative capacity in humans.

    Science.gov (United States)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated in humans, and further studies are required to substantiate this hypothesis, which could expand our knowledge of the potential link between lifestyle-related diseases and muscle oxidative capacity. Furthermore, even though a large body of literature reports the effect of physical training on muscle oxidative capacity, the adaptations that occur with physical inactivity may not always be opposite to that of physical training. Thus, it is concluded that studies on the effect of physical inactivity per se on muscle oxidative capacity in functional human skeletal muscle are warranted.

  16. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  17. Muscle Coordination and Locomotion in Humans.

    Science.gov (United States)

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002adults for the trunk (0.001older adults for the ankle (0.009Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Lower leg muscle density is independently associated with fall status in community-dwelling older adults.

    Science.gov (United States)

    Frank-Wilson, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Davison, K S; Olszynski, W P; Kontulainen, S A

    2016-07-01

    Muscle density is a risk factor for fractures in older adults; however, its association with falls is not well described. After adjusting for biologically relevant confounding factors, a unit decrease in muscle density was associated with a 17 % increase in odds of reporting a fall, independent of functional mobility. Falls are the leading cause of injury, disability, and fractures in older adults. Low muscle density (i.e., caused by muscle adiposity) and functional mobility have been identified as risk factors for incident disability and fractures in older adults; however, it is not known if these are also independently associated with falls. The purpose of this study was to explore the associations of muscle density and functional mobility with fall status. Cross-sectional observational study of 183 men and women aged 60-98 years. Descriptive data, including a 12-month fall recall, Timed Up and Go (TUG) test performance, lower leg muscle area, and density. Odds ratio (OR) of being a faller were calculated, adjusted for age, sex, body mass index, general health status, diabetes, and comorbidities. Every mg/cm(3) increase in muscle density (mean 70.2, SD 2.6 mg/cm(3)) independently reduced the odds of being a faller by 19 % (OR 0.81 [95 % CI 0.67 to 0.97]), and every 1 s longer TUG test time (mean 9.8, SD 2.6 s) independently increased the odds by 17 % (OR 1.17 [95 % CI 1.01 to 1.37]). When both muscle density and TUG test time were included in the same model, only age (OR 0.93 [95 % CI 0.87 to 0.99]) and muscle density (OR 0.83 [95 % CI 0.69 to 0.99]) were independently associated with fall status. Muscle density was associated with fall status, independent of functional mobility. Muscle density may compliment functional mobility tests as a biometric outcome for assessing fall risk in well-functioning older adults.

  20. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  1. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  2. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  3. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  4. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  5. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  6. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  7. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.

    Science.gov (United States)

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2018-05-01

    To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  9. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  10. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  11. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  12. Differences in intramuscular vascular connections of human and dog latissimus dorsi muscles.

    Science.gov (United States)

    Yang, D; Morris, S F

    1999-02-01

    Distal ischemia and necrosis of the dog latissimus dorsi muscle flap used in experimental cardiomyoplasty have been reported. However, little information on the intramuscular vascular anatomy of the dog latissimus dorsi is available. It is unclear whether there are any anatomic factors relating to the muscle flap ischemia and necrosis, and whether the dog latissimus dorsi is a suitable experimental model. To study the intramuscular vascular territories in the dog latissimus dorsi muscle, and to compare the intramuscular vasculature of the dog with that of the human, 5 fresh dog cadavers and 7 fresh human cadavers were injected with a mixture of lead oxide, gelatin, and water (200 mL/kg) through the carotid artery. Both the dog and the human latissimus dorsi muscles and neurovascular pedicles were dissected and radiographed. The intramuscular vascular anatomy of the latissimus dorsi muscles was compared. Radiographs demonstrate clearly that the pattern of latissimus dorsi intramuscular anastomoses between branches of the thoracodorsal artery and the perforators of posterior intercostal arteries in the proximal half of the muscle are different between the dog and the human. In the dog muscle, vascular connections between the thoracodorsal artery and the posterior intercostal arteries are formed by reduced-caliber choke arteries, whereas four to six true anastomoses without a change in caliber between them are found in the human muscle. The portion of the latissimus dorsi muscle supplied by the dominant thoracodorsal vascular territory was 25.9% +/- 0.3% in the dog and 23.9% +/- 0.5% in the human. For further comparison, an extended vascular territory in the latissimus dorsi muscle was demonstrated, including both the thoracodorsal territory and the posterior intercostal territories. The area of the extended vascular territory was 52% +/- 0.5% of the total muscle. The dog latissimus dorsi model may not be a perfect predictor of the behavior of the human latissimus

  13. Restoration of heart functions using human embryonic stem cells derived heart muscle cells.

    Science.gov (United States)

    Gepstein, Lior; Kehat, Izhak

    2005-02-01

    Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.

  14. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  15. Nutrition and muscle loss in humans during spaceflight

    Science.gov (United States)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  16. Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults

    DEFF Research Database (Denmark)

    Hvid, Lars G; Strotmeyer, Elsa S; Skjødt, Mathias

    2016-01-01

    Incomplete voluntary muscle activation may contribute to impaired muscle mechanical function and physical function in older adults. Exercise interventions have been shown to increase voluntary muscle activation, although the evidence is sparse for mobility-limited older adults, particularly...... in association with physical function. This study examined the effects of 12weeks of power training on outcomes of voluntary muscle activation and gait speed in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 37 older men and women with a usual gait speed...... in TG (r=0.67, pactivation is improved in mobility-limited older adults following 12-weeks of progressive power training, and is associated with improved maximal gait speed. Incomplete voluntary muscle activation should be considered one of the key mechanisms...

  17. The Fibularis (Peroneus Tertius Muscle in Humans: A Meta-Analysis of Anatomical Studies with Clinical and Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Kaissar Yammine

    2017-01-01

    Full Text Available Being considered an exclusive human structure for a long time, fibularis tertius (FT is believed to have a secondary function of foot dorsiflexion and eversion. This study is an attempt to approach the issue from an anatomical perspective. A systematic literature search identified 35 studies (7601 legs which met the inclusion criteria. The weighted results of FT presence were as follows: an “adult cadaveric” frequency of 93.2% and a clinical frequency of 80%. The most common FT origin and insertion sites were the distal half of fibula and the base of the 5th metatarsal, respectively. In 95% of cases, an accessory fibular muscle was detected when FT was lacking. We demonstrated that the discrepancy found between the adult cadaveric and clinical frequency values would point out a probable bias in interpreting previous kinesiological results. On an evolutionary level, comparative anatomy demonstrated a very low FT prevalence among monkeys while reaching a frequency of 30% in gorillas, the only non-human apes having an almost exclusive terrestrial locomotion. The consistent prevalence among humans and the presence of similar functional muscles when it is missing would support an essential role of FT during the phylogenetic development of the erect bipedal posture and probably during gait.

  18. Human skeletal muscle contains no detectable guanidinoacetic acid

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena

    2018-01-01

    We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline ...... nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading....

  19. GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Schürmann, A

    2004-01-01

    or amyotrophic lateral sclerosis (ALS) were studied. GLUT8 and 12 immunoreactivity was below detection level in both developing and adult muscle fibres. GLUT11 immunoreactivity, however, was present in slow-twitch muscle fibres, but not in fast twitch fibres. Since, in contrast, GLUT4 was expressed in all...... exclusively in slow-twitch muscle fibres and is unaffected by physiological and pathophysiological conditions except in primary myopathy. GLUT8 and GLUT12 do not appear to be of importance in human muscle under physiological and pathophysiological conditions....... to induce GLUT8 or -12 expression. Likewise, the fibre type-dependent pattern of GLUT11 immunoreactivity was unaltered. However, some slow muscle fibres lose their GLUT11 immunoreactivity under regeneration. Our results indicate that GLUT11 immunoreactivity, in contrast to that of GLUT4, is expressed...

  20. [Association of muscle strength with early markers of cardiovascular risk in sedentary adults].

    Science.gov (United States)

    Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson

    2013-10-01

    To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Mathur, Sunita; Takai, Karen Pr; Macintyre, Donna L; Reid, Darlene

    2008-02-01

    Quantifying muscle mass is an essential part of physical therapy assessment, particularly in older adults and in people with chronic conditions associated with muscle atrophy. The purposes of this study were to examine the relationship between muscle cross-sectional area (CSA) and volume by use of magnetic resonance imaging (MRI) and to compare anthropometric estimations of midthigh CSA with measurements obtained from MRI. Twenty older adults who were healthy and 20 people with chronic obstructive pulmonary disease (COPD), matched for age, sex, and body mass index, underwent MRI to obtain measurements of thigh muscle CSA and volume. Anthropometric measurements (skinfold thickness and thigh circumference) were used to estimate midthigh CSA. Muscle volumes were significantly lower in the people with COPD than in the older adults who were healthy. Moderate to high correlations were found between midthigh CSA and volume in both groups (r=.61-.94). Anthropometric measurements tended to overestimate midthigh CSA in both the people with COPD (estimated CSA=64.9+/-17.8; actual CSA=48.3+/-10.2 cm(2)) and the older adults who were healthy (estimated quadriceps femoris muscle CSA=65.0+/-14.0; actual CSA=56.8+/-13.5 cm(2)). Furthermore, the estimated quadriceps femoris muscle CSAs were not sensitive enough to detect a difference in muscle size between people with COPD and controls. Thigh circumference alone was not different between groups and showed only low to moderate correlations with muscle volume (r=.19-.47). Muscle CSA measured from a single slice provides a good indication of volume, but the most representative slice should be chosen on the basis of the muscle group of interest. Thigh circumference is not correlated with muscle volume and, therefore, should not be used as an indicator of muscle size. The development of population-specific reference equations for estimating muscle CSA from anthropometric measurements is warranted.

  2. Multi-frequency bioimpedance in human muscle assessment

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test...... healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes......, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles....

  3. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  4. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  5. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy.

    Science.gov (United States)

    Frisk, Rasmus F; Jensen, Peter; Kirk, Henrik; Bouyer, Laurent J; Lorentzen, Jakob; Nielsen, Jens B

    2017-12-01

    Exaggerated sensory activity has been assumed to contribute to functional impairment following lesion of the central motor pathway. However, recent studies have suggested that sensory contribution to muscle activity during gait is reduced in stroke patients and children with cerebral palsy (CP). We investigated whether this also occurs in CP adults and whether daily treadmill training is accompanied by alterations in sensory contribution to muscle activity. Seventeen adults with CP and 12 uninjured individuals participated. The participants walked on a treadmill while a robotized ankle-foot orthosis applied unload perturbations at the ankle, thereby removing sensory feedback naturally activated during push-off. Reduction of electromyographic (EMG) activity in the soleus muscle caused by unloads was compared and related to kinematics and ankle joint stiffness measurements. Similar measures were obtained after 6 wk of gait training. We found that sensory contribution to soleus EMG activation was reduced in CP adults compared with uninjured adults. The lowest contribution of sensory feedback was found in participants with lowest maximal gait speed. This was related to increased ankle plantar flexor stiffness. Six weeks of gait training did not alter the contribution of sensory feedback. We conclude that exaggerated sensory activity is unlikely to contribute to impaired gait in CP adults, because sensory contribution to muscle activity during gait was reduced compared with in uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait so that a larger part of plantar flexor muscle activity must be generated by descending motor commands. NEW & NOTEWORTHY Findings suggest that adults with cerebral palsy have less contribution of sensory feedback to ongoing soleus muscle activation during push-off than uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory

  6. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    Science.gov (United States)

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  7. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    Science.gov (United States)

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  8. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten

    2013-01-01

    BACKGROUND: Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown....... METHODS: This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary...... end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. RESULTS: Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction...

  9. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    Science.gov (United States)

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults.

  10. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  11. Effects of exercise on insulin binding to human muscle

    International Nuclear Information System (INIS)

    Bonen, A.; Tan, M.H.; Clune, P.; Kirby, R.L.

    1985-01-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O 2 consumption (VO 2 max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO 2 max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO 2 max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO 2 max but that a marked decrement occurs when exercise is greater than or equal to 69% VO 2 max

  12. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  13. Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord

    Directory of Open Access Journals (Sweden)

    Guillon Hélène

    2011-10-01

    Full Text Available Abstract Background The adult central nervous system (CNS contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium. Results Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin. These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. Conclusion Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

  14. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  15. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  16. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  17. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults.

    Science.gov (United States)

    Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M

    2007-01-01

    Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.

  18. The longitudinal relation between smoking and muscle strength in healthy adults

    NARCIS (Netherlands)

    Kok, Maarten O; Hoekstra, T.; Twisk, Jos W R

    2012-01-01

    AIM: To assess longitudinally whether smoking tobacco is related to muscle strength in healthy adults and to assess the influence of lifestyle covariates on this relation. METHODS: Data were obtained from the observational Amsterdam Growth and Health Longitudinal Study, with four repeated

  19. The effect of basketball training on the muscle strength of adults with mental retardation.

    Science.gov (United States)

    Tsimaras, Vasilios K; Samara, Christina A; Kotzamanidou, Marianna C; Bassa, Eleni I; Fotiadou, Eleni G; Kotzamanidis, Christos M

    2009-12-01

    The purpose of this study was to evaluate the effect of basketball training on the muscle strength of adults with mental retardation (MR). Twenty-four adults with and without MR were separated into 3 groups. Eight adults (mean age 25.4 years) with normal IQ constituted the control group (NIQ). Eight adults (mean age 26.5 years) with MR and all participating in a 4-year systematic basketball exercise program constituted the trained group (MR-T), and 8 adults (mean age 25.3 years) with MR exercised occasionally for recreational reasons formed the MR-R group. Parameters measured were isometric and isokinetic concentric and eccentric muscle strength. All subjects performed a leg strength test on a Cybex Norm isokinetic dynamometer. Analysis of variance was used to examine mean differences between the values of the 3 groups. A significance level of 0.05 was used for all tests. The NIQ group showed a statistically significant difference in all measured values compared to the MR groups. The MR-T group presented higher absolute and relative torque scores for both knee extensors and flexors than the MR-R group, whereas the MR-R group presented statistically higher antagonistic activity for both knee extensors and flexors than the MR-T group. In addition, both MR groups presented statistically higher antagonistic activity for both knee extensors and flexors compared to the NIQ group. Data support participation on a systematic and well-designed basketball training program to improve muscle strength levels of adults with MR. Participation in basketball without necessarily focusing on developing specific fitness components may be an effective training strategy for the promotion of strength of adults with MR.

  20. Observational Study on the Occurrence of Muscle Spindles in Human Digastric and Mylohyoideus Muscles

    Directory of Open Access Journals (Sweden)

    Daniele Saverino

    2014-01-01

    Full Text Available Although the occurrence of muscle spindles (MS is quite high in most skeletal muscles of humans, few MS, or even absence, have been reported in digastric and mylohyoideus muscles. Even if this condition is generally accepted and quoted in many papers and books, observational studies are scarce and based on histological sections of a low number of specimens. The aim of the present study is to confirm previous data, assessing MS number in a sample of digastric and mylohyoideus muscles. We investigated 11 digastric and 6 mylohyoideus muscles from 13 donors. Muscle samples were embedded in paraffin wax, cross-sectioned in a rostrocaudal direction, and stained using haematoxylin-eosin. A mean of 5.1 ± 1.1 (range 3–7 MS was found in digastric muscles and mean of 0.5 ± 0.8 (range 0–2 in mylohyoideus muscles. A significant difference (P<0.001 was found with the control sample, confirming the correctness of the histological procedure. Our results support general belief that the absolute number of spindles is sparse in digastric and mylohyoideus muscles. External forces, such as food resistance during chewing or gravity, do not counteract jaw-opening muscles. It is conceivable that this condition gives them a limited proprioceptive importance and a reduced need for having specific receptors as MS.

  1. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    NARCIS (Netherlands)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to

  2. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    NARCIS (Netherlands)

    Douma, Rob; Regterschot, G.R.H.; Krijnen, Wim; Slager, Geranda; van der Schans, Cees; Zijlstra, W.

    2016-01-01

    Background: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to

  3. Prevalence of clinically relevant muscle weakness and its association with vitamin D status among older adults in Ecuador.

    Science.gov (United States)

    Orces, Carlos H

    2017-10-01

    Muscle weakness and 25-hydroxyvitamin D (25(OH)D) deficiency have been associated with adverse outcomes among older adults. However, little is known about the relationship between clinically relevant muscle weakness and 25(OH)D levels in Ecuador. To examine the prevalence of muscle weakness and its association with 25(OH)D status among subjects aged 60 years and older in Ecuador. The present study was based on data from 2205 participants in the first National Survey of Health, Wellbeing, and Aging. The Foundation for the National Institute of Health Sarcopenia Project criteria was used to examine muscle weakness prevalence rates. Gender-specific general linear and logistic regression models adjusted for potential confounders were created to compare mean 25(OH)D concentrations and 25(OH)D deficiency across muscle strength categories, respectively. An estimated 32.2% of women and 33.4% of men had evidence of clinically relevant muscle weakness in Ecuador. In general, increased muscle weakness prevalence rates were present among Indigenous, residents in the rural Andes Mountains, underweight subjects, and those with a sedentary lifestyle. Muscle strength was significantly and directly correlated with mean 25(OH)D levels. After controlling for potential confounders, 25(OH)D deficiency prevalence rates were 31 and 43% higher among men and women with muscle weakness than those with normal strength, respectively. One-third of older adults nationwide had evidence of muscle weakness. While the present study found a significant correlation between muscle strength and 25(OH)D concentrations, further research is needed to examine whether optimizing 25(OH)D levels may improve muscle weakness among older adults.

  4. Artificial muscle: the human chimera is the future.

    Science.gov (United States)

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  5. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children

    Directory of Open Access Journals (Sweden)

    Chariklia K. Deli

    2017-01-01

    Full Text Available Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults (n=14 and children (n=11 received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK, and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation (p<0.01. In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  6. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-04-01

    Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.

  7. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  8. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2015-09-01

    Full Text Available The data provides information in support of the research article, “Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging”, Journal of Proteome Research, 2014, 13 (11, 2008–21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys containing peptides was alkylated using N-ethylmalemide (d0-NEM. Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethylphosphine (TCEP and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM. Label-free analysis of the global proteome of adult (n=5 and old (n=4 gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0 NEM labeled and reversibly oxidized d(5–NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response.

  9. Esmolol acutely alters oxygen supply-demand balance in exercising muscles of healthy humans.

    Science.gov (United States)

    Proctor, David N; Luck, J Carter; Maman, Stephan R; Leuenberger, Urs A; Muller, Matthew D

    2018-04-01

    Beta-adrenoreceptor antagonists (β blockers) reduce systemic O 2 delivery and blood pressure (BP) during exercise, but the subsequent effects on O 2 extraction within the active limb muscles are unknown. In this study, we examined the effects of the fast-acting, β 1 selective blocker esmolol on systemic hemodynamics and leg muscle O 2 saturation (near infrared spectroscopy, NIRS) during submaximal leg ergometry. Our main hypothesis was that esmolol would augment exercise-induced reductions in leg muscle O 2 saturation. Eight healthy adults (6 men, 2 women; 23-67 year) performed light and moderate intensity bouts of recumbent leg cycling before (PRE), during (β 1 -blocked), and 45 min following (POST) intravenous infusion of esmolol. Oxygen uptake, heart rate (HR), BP, and O 2 saturation (SmO 2 ) of the vastus lateralis (VL) and medial gastrocnemius (MG) muscles were measured continuously. Esmolol attenuated the increases in HR and systolic BP during light (-12 ± 9 bpm and -26 ± 12 mmHg vs. PRE) and moderate intensity (-20 ± 10 bpm and -40 ± 18 mmHg vs. PRE) cycling (all P Exercise-induced reductions in SmO 2 occurred to a greater extent during the β 1 -blockade trial in both the VL (P = 0.001 vs. PRE) and MG muscles (P = 0.022 vs. PRE). HR, SBP and SmO 2 were restored during POST (all P exercising muscles of healthy humans. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle.

    Science.gov (United States)

    De Lisio, Michael; Farup, Jean; Sukiennik, Richard A; Clevenger, Nicole; Nallabelli, Julian; Nelson, Brett; Ryan, Kelly; Rahbek, Stine K; de Paoli, Frank; Vissing, Kristian; Boppart, Marni D

    2015-10-15

    Skeletal muscle pericytes increase in quantity following eccentric exercise (ECC) and contribute to myofiber repair and adaptation in mice. The purpose of the present investigation was to examine pericyte quantity in response to muscle-damaging ECC and protein supplementation in human skeletal muscle. Male subjects were divided into protein supplement (WHY; n = 12) or isocaloric placebo (CHO; n = 12) groups and completed ECC using an isokinetic dynamometer. Supplements were consumed 3 times/day throughout the experimental time course. Biopsies were collected prior to (PRE) and 3, 24, 48, and 168 h following ECC. Reflective of the damaging protocol, integrin subunits, including α7, β1A, and β1D, increased (3.8-fold, 3.6-fold and 3.9-fold, respectively, P muscle-damaging ECC increases α7β1 integrin content in human muscle, yet pericyte quantity is largely unaltered. Future studies should focus on the capacity for ECC to influence pericyte function, specifically paracrine factor release as a mechanism toward pericyte contribution to repair and adaptation postexercise. Copyright © 2015 the American Physiological Society.

  11. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary...... surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  12. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  13. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  14. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  15. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  16. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  17. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  18. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    Science.gov (United States)

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (pinternal oblique (pexternal oblique (pinternal oblique (pexternal oblique: pinternal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  20. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children.

    Science.gov (United States)

    Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Tsiokanos, Athanasios; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2017-01-01

    Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults ( n = 14) and children ( n = 11) received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK), and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation ( p exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  1. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A

    2012-01-01

    Indirect evidence that the motor cortex and the corticospinal tract contribute to the control of walking in human subjects has been provided in previous studies. In the present study we used coherence analysis of the coupling between EEG and EMG from active leg muscles during human walking...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  2. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  3. Therapeutic potential of eccentric exercises for age-related muscle atrophy

    Directory of Open Access Journals (Sweden)

    Jae-Young Lim

    2016-09-01

    Full Text Available Recent studies have focused on evidence-based interventions to prevent mobility decline and enhance physical performance in older adults. Several modalities, in addition to traditional strengthening programs, have been designed to manage age-related functional decline more effectively. In this study, we reviewed the current relevant literatures to assess the therapeutic potential of eccentric exercises for age-related muscle atrophy (sarcopenia. Age-related changes in human skeletal muscle, and their relationship with physical performance, are discussed with reference to in vitro physiologic and human biomechanics studies. An overview of issues relevant to sarcopenia is provided in the context of the recent consensus on the diagnosis and management of the condition. A decline in mobility among the aging population is closely linked with changes in the muscle force–velocity relationship. Interventions based specifically on increasing velocity and eccentric strength can improve function more effectively compared with traditional strengthening programs. Eccentric strengthening programs are introduced as a specific method for improving both muscle force and velocity. To be more effective, exercise interventions for older adults should focus on enhancing the muscle force–velocity relationship. Exercises that can be performed easily, and that utilize eccentric strength (which is relatively spared during the aging process, are needed to improve both muscle force and velocity.

  4. The correlation between surface electromyography and bite force of mastication muscles in Asian young adults.

    Science.gov (United States)

    Yen, Cheng-I; Mao, Shih-Hsuan; Chen, Chih-Hao; Chen, Chien-Tzung; Lee, Ming-Yih

    2015-05-01

    Mastication function is related to mandible movement, muscle strength, and bite force. No standard device for measuring bite force has been developed. A linear relationship between electromyographic activity and bite force has been reported by several investigators, but data on the reliability of this relationship remain limited in Asian young adults. The purpose of this study was to develop a clinically applicable, reliable, quantitative, and noninvasive system to measure the kinetic mastication function and observe the correlation between surface electromyography (sEMG) and bite force. The study group consisted of 41 young healthy adults (24 men and 17 women). Surface electromyography was used to evaluate bilateral temporalis and masseter muscle activities, and an occlusal bite force system was used concurrently to measure the bite force during maximal voluntary biting. Bilateral symmetry was compared, and the correlation between EMG and bite force was calculated. The sEMG signals were 107.7±55.0 μV and 106.0±56.0 μV (P=0.699) on right and left temporalis muscles and 183.7±86.2 μV and 194.8±94.3 μV (P=0.121) on right and left masseter muscles, respectively. The bite force was 5.0±3.2 kg on the right side and 5.7±4.0 kg on the left side (P=0.974). A positive correlation between sEMG and bite force was observed. The correlation coefficient between the temporalis muscle and bite force was 0.512, and that between the masseter muscle and bite force was 0.360. No significant difference between the bilateral electromyographic activities of the temporalis and masseter muscles and bilateral bite force was observed in young healthy adults in Taiwan. A positive correlation between sEMG signals and bite force was noted. By combining sEMG and bite force, we developed a clinically applicable, quantitative, reliable, and noninvasive system for evaluating mastication function by using characteristics of biofeedback.

  5. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  6. Differences of muscle co-contraction of the ankle joint between young and elderly adults during dynamic postural control at different speeds.

    Science.gov (United States)

    Iwamoto, Yoshitaka; Takahashi, Makoto; Shinkoda, Koichi

    2017-08-02

    Agonist and antagonist muscle co-contractions during motor tasks are greater in the elderly than in young adults. During normal walking, muscle co-contraction increases with gait speed in young adults, but not in elderly adults. However, no study has compared the effects of speed on muscle co-contraction of the ankle joint during dynamic postural control in young and elderly adults. We compared muscle co-contractions of the ankle joint between young and elderly subjects during a functional stability boundary test at different speeds. Fifteen young adults and 16 community-dwelling elderly adults participated in this study. The task was functional stability boundary tests at different speeds (preferred and fast). Electromyographic evaluations of the tibialis anterior and soleus were recorded. The muscle co-contraction was evaluated using the co-contraction index (CI). There were no statistically significant differences in the postural sway parameters between the two age groups. Elderly subjects showed larger CI in both speed conditions than did the young subjects. CI was higher in the fast speed condition than in the preferred speed condition in the young subjects, but there was no difference in the elderly subjects. Moreover, after dividing the analytical range into phases (acceleration and deceleration phases), the CI was larger in the deceleration phase than in the acceleration phase in both groups, except for the young subjects in the fast speed conditions. Our results showed a greater muscle co-contraction of the ankle joint during dynamic postural control in elderly subjects than in young subjects not only in the preferred speed condition but also in the fast speed condition. In addition, the young subjects showed increased muscle co-contraction in the fast speed condition compared with that in the preferred speed condition; however, the elderly subjects showed no significant difference in muscle co-contraction between the two speed conditions. This indicates

  7. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  8. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  9. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    Science.gov (United States)

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  10. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Science.gov (United States)

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  11. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  12. Effect of neurturin on multipotent cells isolated from the adult skeletal muscle

    International Nuclear Information System (INIS)

    Vourc'h, Patrick; Lacar, Benjamin; Mignon, Laurence; Lucas, Paul A.; Young, Henry E.; Chesselet, Marie-Francoise

    2005-01-01

    Ligands of the glial cell line-derived neurotrophic factors (GDNF)-family are trophic factors for the development and survival of multiple cell types, however their effects on non-neuronal stem cells are unknown. We examined the action of neurturin on a candidate stem cell population isolated from adult skeletal muscles. When grown as spheres, these cells expressed mRNAs for GDNF, persephin, GFR-α2, GFR-α4 (neurturin receptor), and Ret. Exposure of these cells to neurturin significantly augmented cell numbers via increased cell proliferation. After addition of retinoic acid, the cells exited the cell cycle, developed thin processes, and became immunoreactive for βIII-tubulin, while Ret mRNA expression decreased, without changes in the level of GFR-α2 mRNA. Neurturin induced an outgrowth of processes on these βIII-tubulin positive cells. Neurturin may therefore be beneficial in the use of these multipotent cells isolated from adult muscles for autologous transplants in neurological applications

  13. Comparison of muscle strength, sprint power and aerobic capacity in adults with and without cerebral palsy

    NARCIS (Netherlands)

    de Groot, Sonja; Dallmeijer, Annet J.; Bessems, Paul J. C.; Lamberts, Marcel L.; van der Woude, Lucas H. V.; Janssen, Thomas W. J.

    Objective: To compare: (i) muscle strength, sprint power and maximal aerobic capacity; and (ii) the correlations between these variables in adults with and without cerebral palsy. Design: Cross-sectional study. Subjects: Twenty adults with and 24 without cerebral palsy. Methods: Isometric and

  14. Comparison of muscle strength, sprint power and aerobic capacity in adults with and without cerebral palsy

    NARCIS (Netherlands)

    de Groot, S.; Dallmeijer, A.J.; Bessems, P.J.C.; Lamberts, M.L.; van der Woude, L.H.V.; Janssen, T.W.J.

    2012-01-01

    Objective: To compare: (i) muscle strength, sprint power and maximal aerobic capacity; and (ii) the correlations between these variables in adults with and without cerebral palsy. Design: Cross-sectional study. Subjects: Twenty adults with and 24 without cerebral palsy. Methods: Isometric and

  15. Effect of virtual reality exercise using the nintendo wii fit on muscle activities of the trunk and lower extremities of normal adults.

    Science.gov (United States)

    Park, Jungseo; Lee, Daehee; Lee, Sangyong

    2014-02-01

    [Purpose] The present study aimed to determine the effect of virtual reality exercise using the Nintendo Wii Fit on the muscle activities of the trunk and lower extremities of normal adults. [Subjects] The subjects of the study were 24 normal adults who were divided into a virtual reality exercise group (VREG, n=12) and a stable surface exercise group (SEG, n=12). [Methods] The exercises of the VREG using the Nintendo Wii Fit and the SEG using a stable surface were conducted three times a week for six weeks. Electromyography was used to measure the muscle activities of the tibialis anterior (TA), medial gastrocnemius (MG), erector spinae (ES), and rectus abdominal (RA) muscles. [Results] VREG showed significant within group differences in TA and MG muscle activities, while the SEG showed a significant difference in the muscle activity of the MG. [Conclusion] Virtual reality exercise using the Nintendo Wii Fit was an effective intervention for the muscle activities of the TA and MG of normal adults.

  16. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  17. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  18. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  19. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  20. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  1. Morphological and qualitative characteristics of the quadriceps muscle of community-dwelling older adults based on ultrasound imaging: classification using latent class analysis.

    Science.gov (United States)

    Kawai, Hisashi; Kera, Takeshi; Hirayama, Ryo; Hirano, Hirohiko; Fujiwara, Yoshinori; Ihara, Kazushige; Kojima, Motonaga; Obuchi, Shuichi

    2018-04-01

    Muscle thickness and echo intensity measured using ultrasound imaging represent both increased muscle volume and connective tissue accumulation. In combination, these ultrasound measurements can be utilized for assessing sarcopenia in community-dwelling older adults. This study aimed to determine whether morphological and qualitative characteristics classified by quadriceps muscle thickness and echo intensity measured using ultrasound are associated with muscle strength, physical function, and sarcopenia in community-dwelling older adults. Quadriceps muscle thickness and echo intensity were measured using ultrasound imaging in 1239 community-dwelling older adults. Latent class analyses were conducted to classify participants based on similarity in the subcutaneous fat thickness (FT), quadriceps muscle thickness (MT), subcutaneous fat echo intensity (FEI), and muscle echo intensity (MEI), which were assessed using ultrasound imaging. Morphological and qualitative characteristics were classified into four types as follows: (A) normal, (B) sarcopenic obesity, (C) obesity, and (D) sarcopenia type. Knee extension strength was significantly greater in A than in B and D. FT and percent body fat were greater in C than in the other types. The correlation between the ultrasound measures and knee extension strength differed among the classification types. The classification types were significantly associated with sarcopenia prevalence. Classification of the morphological and qualitative characteristics obtained from ultrasound imaging may be useful for assessing sarcopenia in community-dwelling older adults.

  2. Roles of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Cabo, Helena

    2014-01-01

    Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant sys...... underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity up-regulates antioxidant systems which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG....... system. Aging is associated with accumulation of oxidative damage to lipids, DNA and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across...... the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included...

  3. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  4. Pumping Iron in Australia: Prevalence, Trends and Sociodemographic Correlates of Muscle Strengthening Activity Participation from a National Sample of 195,926 Adults.

    Directory of Open Access Journals (Sweden)

    Jason A Bennie

    Full Text Available The current Australian Physical Activity Guidelines recommend that adults engage in regular muscle-strengthening activity (e.g. strength or resistance training. However, public health surveillance studies describing the patterns and trends of population-level muscle-strengthening activity participation are sparse. The aim of this study is to examine the prevalence, trends and sociodemographic correlates of muscle-strengthening activity participation in a national-representative sample of Australians aged 15 years and over.Between 2001 and 2010, quarterly cross-sectional national telephone surveys were conducted as part of the Australian Sports Commission's 'Exercise, Recreation and Sport Survey'. Pooled population-weighted proportions were calculated for reporting: [i] no muscle-strengthening activity; [ii] insufficient muscle-strengthening activity, and [iii] sufficient muscle-strengthening activity. Associations with sociodemographic variables were assessed using multiple logistic regression analyses.Out of 195,926 participants, aged 15-98 years, only 10.4% (95% CI: 10.1-10.7 and 9.3% (95% CI: 9.1-9.5 met the muscle-strengthening activity recommendations in the past two weeks and in the past year, respectively. Older adults (50+ years, and those living in socioeconomically disadvantaged, outer regional/remote areas and with lower education were less likely to report sufficient muscle-strengthening activity (p<0.001. Over the 10-year monitoring period, there was a significant increase in the prevalence of sufficient muscle-strengthening activity (6.4% to 12.0%, p-value for linear trend <0.001.A vast majority of Australian adults did not engage in sufficient muscle-strengthening activity. There is a need for public health strategies to support participation in muscle-strengthening activity in this population. Such strategies should target older and lower educated adults, and those living in socioeconomically disadvantaged, outer regional

  5. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    Science.gov (United States)

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  6. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering.

    Science.gov (United States)

    Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio

    2018-04-17

    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  8. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    Science.gov (United States)

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  9. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  10. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    Science.gov (United States)

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.

  11. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  12. Ultrastructure of striated muscle fibers in the middle third of the human esophagus

    OpenAIRE

    Faussone-Pellegrini, M.S; Cortesini, C.

    1986-01-01

    Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...

  13. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans.

    Directory of Open Access Journals (Sweden)

    Barbora de Courten

    Full Text Available Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists.Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography, % body fat (bioimpedance, abdominal subcutaneous and visceral adiposity (magnetic resonance imaging, insulin sensitivity (euglycaemic hyperinsulinemic clamp, resting energy expenditure (REE, indirect calorimetry, free-living ambulatory physical activity (accelerometers and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04 and subcutaneous (r = 0.38, p = 0.02 but not visceral fat (r = 0.17, p = 0.33. Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008, REE (r = -0.58, p<0.001 and HDL-cholesterol levels (r = -0.34, p = 0.048. Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity.Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.

  14. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    Science.gov (United States)

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  15. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults

    OpenAIRE

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (...

  16. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  17. Muscle oxygen kinetics at onset of intense dynamic exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, J; Krustrup, P; González-Alonso, J

    2000-01-01

    The present study examined the onset and the rate of rise of muscle oxidation during intense exercise in humans and whether oxygen availability limits muscle oxygen uptake in the initial phase of intense exercise. Six subjects performed 3 min of intense one-legged knee-extensor exercise [65.3 +/-...

  18. Leucine incorporation into mixed skeletal muscle protein in humans

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Griggs, R.C.

    1988-01-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [ 13 C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1- 13 C]leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 ± 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 ± 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS

  19. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    Full Text Available Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: 1 Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. 2 Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects.The results showed three major distinctive features of muscle modularity: 1 the number of motor components was preserved across all locomotion conditions, 2 the non-negative factors were consistent in shape and timing across all locomotion conditions, and 3 the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e. novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations

  20. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  1. A dietary supplementation with leucine and antioxidants is capable to accelerate muscle mass recovery after immobilization in adult rats.

    Directory of Open Access Journals (Sweden)

    Isabelle Savary-Auzeloux

    Full Text Available Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for counteracting muscle loss and facilitating recovery. Adult rats (6-8 months were subjected to unilateral hindlimb casting for 8 days (I0-I8 and then permitted to recover for 10 to 40 days (R10-R40. They were fed a Control or Experimental diet supplemented with antioxidants/polyphenols (AOX (I0 to I8, AOX and leucine (AOX + LEU (I8 to R15 and LEU alone (R15 to R40. Muscle mass, absolute protein synthesis rate and proteasome activities were measured in gastrocnemius muscle in casted and non-casted legs in post prandial (PP and post absorptive (PA states at each time point. Immobilized gastrocnemius protein content was similarly reduced (-37% in both diets compared to the non-casted leg. Muscle mass recovery was accelerated by the AOX and LEU supplementation (+6% AOX+LEU vs. Control, P<0.05 at R40 due to a higher protein synthesis both in PA and PP states (+23% and 31% respectively, Experimental vs. Control diets, P<0.05, R40 without difference in trypsin- and chymotrypsin-like activities between diets. Thus, this nutritional supplementation accelerated the recovery of muscle mass via a stimulation of protein synthesis throughout the entire day (in the PP and PA states and could be a promising strategy to be tested during recovery from bed rest in humans.

  2. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    The masseter muscle of several animal species was investigated by use of a histochemical method for the demonstration of acid-stable and alkali-stable myosin adenosine triphosphatase (ATPase). The following subdivisions of fiber types were used: Type I fibers show weak ATPase activity at pH 9...... II and I fibers, with type II predominating. Cow masseter muscle consisted mainly of type I fibers, although some cow masseter muscles contained a very small number of type II fibers. Pig masseter muscle had both type I, II, and IM fibers. One of the characteristics of human masseter muscle is type...... IM fibers, which are rarely seen in muscles other than the masticatory muscles. Therefore, pig masseter muscle might be a suitable animal model for experimental studies, such as an investigation of the distribution and diameter of fiber types in the masticatory muscles before and after orthognathic...

  3. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  4. Clinical significance of magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults

    Energy Technology Data Exchange (ETDEWEB)

    Nishikai, Masahiko; Akiya, Kumiko [National Tokyo Medical Center (Japan)

    2000-12-01

    The purpose of this study was to evaluate the clinical significance of magnetic resonance imaging (MRI) of skeletal muscles in Japanese patients with idiopathic inflammatory myopathies (IIM). MRI was performed in 23 adult patients with IIM, including 10 with polymyositis, 12 with dermatomyositis, and 1 with focal myositis. Seven (73%) of 11 patients with active IIM and 2 (17%) of 12 patients with inactive IIM showed hyperintensity of T2-weighted images and normal intensity of T1-weighted images, indicating 'edema-like abnormalities' (MRI findings for active myositis). Muscle lipomatosis and fibrosis were demonstrated in four patients and 1 patient, respectively. Considerable selectivity of muscles in developing inflammatory disorders was found. In quadriceps muscles, for example, vastus muscles seemed to be more often affected in DM patients, whereas adductors were more often affected in PM patients. Serial examination of muscle MRIs was carried out in 4 patients and the findings paralleled the disease activities. The muscle MRI findings did not necessarily correlate with other findings, such as the presence of muscle weakness, elevated serum creatine kinase levels, myogenic electromyogram, or muscle biopsy findings. The muscle MRI was considered to be an additional useful tool for the diagnosis, evaluation of disease activity, and planning treatment of IIM. (author)

  5. Clinical significance of magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults

    International Nuclear Information System (INIS)

    Nishikai, Masahiko; Akiya, Kumiko

    2000-01-01

    The purpose of this study was to evaluate the clinical significance of magnetic resonance imaging (MRI) of skeletal muscles in Japanese patients with idiopathic inflammatory myopathies (IIM). MRI was performed in 23 adult patients with IIM, including 10 with polymyositis, 12 with dermatomyositis, and 1 with focal myositis. Seven (73%) of 11 patients with active IIM and 2 (17%) of 12 patients with inactive IIM showed hyperintensity of T2-weighted images and normal intensity of T1-weighted images, indicating 'edema-like abnormalities' (MRI findings for active myositis). Muscle lipomatosis and fibrosis were demonstrated in four patients and 1 patient, respectively. Considerable selectivity of muscles in developing inflammatory disorders was found. In quadriceps muscles, for example, vastus muscles seemed to be more often affected in DM patients, whereas adductors were more often affected in PM patients. Serial examination of muscle MRIs was carried out in 4 patients and the findings paralleled the disease activities. The muscle MRI findings did not necessarily correlate with other findings, such as the presence of muscle weakness, elevated serum creatine kinase levels, myogenic electromyogram, or muscle biopsy findings. The muscle MRI was considered to be an additional useful tool for the diagnosis, evaluation of disease activity, and planning treatment of IIM. (author)

  6. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies.

    Science.gov (United States)

    Heuss, Dieter; Klascinski, Janine; Schubert, Steffen W; Moriabadi, Tehmur; Lochmüller, Hanns; Hashemolhosseini, Said

    2008-09-01

    Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.

  7. Short-latency crossed responses in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew J T; Kamavuako, Ernest N; Geertsen, Svend Sparre

    2015-01-01

    Interlimb reflexes contribute to the central neural coordination between different limbs in both humans and animals. Although commissural interneurons have only been directly identified in animals, spinally mediated interlimb reflexes have been discovered in a number of human lower limb muscles......, indicating their existence in humans. The aim of the present study was to investigate whether short-latency crossed-spinal reflexes are present in the contralateral biceps femoris (cBF) muscle following ipsilateral knee (iKnee) joint rotations during a sitting task, where participants maintained a slight pre...... pathways (likely involving commissural interneurons) from ipsilateral afferents to common motoneurons in the contralateral leg can likely explain the perturbation direction-dependent reversal in the sign of the short-latency cBF reflex. This article is protected by copyright. All rights reserved....

  8. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    International Nuclear Information System (INIS)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M.

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  9. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  10. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  11. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  12. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  13. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor....... Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production....... Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise...

  14. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  15. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  16. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... rest (0.13+/-0.03, 0.07+/-0.03, and 0.07+/-0.02 micromol/L, respectively) to exercise (10 W; 2.00+/-1.32, 2.08+/-1.23, and 1.65+/-0.50 micromol/L, respectively; Pskeletal muscle...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  17. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    Directory of Open Access Journals (Sweden)

    Eiichi Yoshimura

    2014-01-01

    Full Text Available Objective: To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods: 75 males and females were randomly assigned to the groups ‘diet only' (DO; n = 42 or ‘diet plus aerobic exercise' (D/Ex; n = 33 for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA, normal-density muscle area (NDMA, and visceral fat area. Results: Total body weight (DO: -6.6 ± 3.6%; D/Ex: -7.3 ± 4.6% and visceral fat (DO: -16.0 ± 13.8%; D/Ex: -23.1 ± 14.7% decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5% compared with the D/Ex group (-2.5 ± 5.0%. NDMA decreased significantly in the DO (-4.9 ± 4.9% but not in the D/Ex group (-1.4 ± 5.0%. Conclusion: Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity.

  18. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    Science.gov (United States)

    Yoshimura, Eiichi; Kumahara, Hideaki; Tobina, Takuro; Matsuda, Takuro; Watabe, Kiwa; Matono, Sakiko; Ayabe, Makoto; Kiyonaga, Akira; Anzai, Keizo; Higaki, Yasuki; Tanaka, Hiroaki

    2014-01-01

    Objective To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods 75 males and females were randomly assigned to the groups ‘diet only’ (DO; n = 42) or ‘diet plus aerobic exercise’ (D/Ex; n = 33) for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA), normal-density muscle area (NDMA), and visceral fat area. Results Total body weight (DO: −6.6 ± 3.6%; D/Ex: −7.3 ± 4.6%) and visceral fat (DO: −16.0 ± 13.8%; D/Ex: −23.1 ± 14.7%) decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5%) compared with the D/Ex group (-2.5 ± 5.0%). NDMA decreased significantly in the DO (-4.9 ± 4.9%) but not in the D/Ex group (-1.4 ± 5.0%). Conclusion Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity. PMID:24457527

  19. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Science.gov (United States)

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  20. Activation timing of postural muscles of lower legs and prediction of postural disturbance during bilateral arm flexion in older adults.

    Science.gov (United States)

    Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe

    2017-12-22

    Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults

  1. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  2. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  3. Endurance training enhances skeletal muscle interleukin-15 in human male subjects

    DEFF Research Database (Denmark)

    Rinnov, Anders; Yfanti, Christina; Nielsen, Søren

    2014-01-01

    Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular...... endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer...... weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p...

  4. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia

    2012-01-01

    in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis...

  5. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  6. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases.

    Science.gov (United States)

    de Almeida, Fernanda Losi Alves; Carvalho, Robson Francisco; Pinhal, Danillo; Padovani, Carlos Roberto; Martins, Cesar; Dal Pai-Silva, Maeli

    2008-12-01

    Skeletal muscle is the edible part of the fish. It grows by hypertrophy and hyperplasia, events regulated by differential expression of myogenic regulatory factors (MRFs). The study of muscle growth mechanisms in fish is very important in fish farming development. Pacu (Piaractus mesopotamicus) is one of the most important food species farmed in Brazil and has been extensively used in Brazilian aquaculture programs. The aim of this study was to analyze hyperplasia and hypertrophy and the MRF MyoD expression pattern in skeletal muscle of pacu (P. mesopotamicus) during juvenile and adult growth stages. Juvenile (n=5) and adult (n=5) fish were anaesthetized, sacrificed, and weight (g) and total length (cm) determined. White dorsal region muscle samples were collected and immersed in liquid nitrogen. Transverse sections (10 microm thick) were stained with Haematoxilin-Eosin (HE) for morphological and morphometric analysis. Smallest fiber diameter from 100 muscle fibers per animal was calculated in each growth phase. These fibers were grouped into three classes (50 microm) to evaluate hypertrophy and hyperplasia in white skeletal muscle. MyoD gene expression was determined by semi-quantitative RT-PCR. PCR products were cloned and sequenced. Juvenile and adult pacu skeletal muscle had similar morphology. The large number of fish confirms active hyperplasia. In adult fish, most fibers were over 50 microm diameter and denote more intense muscle fiber hypertrophy. The MyoD mRNA level in juveniles was higher than in adults. A consensus partial sequence for MyoD gene (338 base pairs) was obtained. The Pacu MyoD nucleotide sequence displayed high similarity among several vertebrates, including teleosts. The differential MyoD gene expression observed in pacu white muscle is possibly related to differences in growth patterns during the phases analyzed, with hyperplasia predominant in juveniles and hypertrophy in adult fish. These results should provide a foundation for

  7. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    Science.gov (United States)

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the

  8. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  9. Relationship between Human Aging Muscle and Oxidative System Pathway

    Directory of Open Access Journals (Sweden)

    Enrico Doria

    2012-01-01

    Full Text Available Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function.

  10. Effects of flexi-bar and non-flexi-bar exercises on trunk muscles activity in different postures in healthy adults.

    Science.gov (United States)

    Chung, Jun Sub; Park, Seol; Kim, JiYoung; Park, Ji Won

    2015-07-01

    [Purpose] The purpose of this study was to assess the effects of flexi-bar exercises and non-flexi-bar exercises on trunk muscle activity in different postures in healthy adults. [Subjects] Twenty healthy right-hand dominant adults (10 males and 10 females) were selected for this study. None of the participants had experienced any orthopedic problems in the spine or in the upper and lower extremities in the previous six months. [Methods] The subjects were instructed to adopt three exercise postures: posture 1, quadruped; posture 2, side-bridge; and posture 3, standing. Surface electromyography of selected trunk muscles was normalized to maximum voluntary isometric contraction. [Results] The external oblique, internal oblique, and erector spinae muscle activity showed significant differences between flexi-bar exercises and non-flexi-bar exercises. [Conclusion] The results of this study suggest that flexi-bar exercises are useful in the activation of trunk muscles.

  11. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  12. Technique, muscle activity and kinematic differences in young adults texting on mobile phones.

    Science.gov (United States)

    Gustafsson, Ewa; Johnson, Peter W; Lindegård, Agneta; Hagberg, Mats

    2011-05-01

    The aim of this study was to investigate whether there are differences in technique between young adults with and without musculoskeletal symptoms when using a mobile phone for texting and whether there are differences in muscle activity and kinematics between different texting techniques. A total of 56 young adults performed a standardised texting task on a mobile phone. Their texting techniques were registered using an observation protocol. The muscular activity in six muscles in the right forearm/hand and both shoulders were registered by surface electromyography and the thumb abduction/adduction and flexion/extension were registered using a biaxial electrogoniometer. Differences in texting techniques were found between the symptomatic and the asymptomatic group, with a higher proportion of sitting with back support and forearm support and with a neutral head position in the asymptomatic group. Differences in muscle activity and kinematics were also found between different texting techniques. The differences in texting technique between symptomatic and asymptomatic subjects cannot be explained by them having symptoms but may be a possible contribution to their symptoms. STATEMENT OF RELEVANCE: There has been a dramatically increased use of mobile phones for texting especially among young people during the last years. A better understanding of the physical exposure associated with the intensive use is important in order to prevent the development of musculoskeletal disorders and decreased work ability related to this use.

  13. Direct observation of glycogen synthesis in human muscle with 13C NMR

    International Nuclear Information System (INIS)

    Jue, T.; Rothman, D.L.; Shulman, G.I.; Tavitian, B.A.; DeFronzo, R.A.; Shulman, R.G.

    1989-01-01

    On the basis of previous indirect measurements, skeletal muscle has been implicated as the major site of glucose uptake and it has been suggested that muscle glycogen formation is the dominant pathway. However, direct measurements of the rates of glycogen synthesis have not been possible by previous techniques. The authors have developed 13 C NMR methods to measure directly the rate of human muscle glycogen formation from infused, isotopically labeled [1- 13 C]glucose. They show that under conditions of imposed hyperglycemia and hyperinsulinemia, a majority of the infused glucose was converted to muscle glycogen in a normal man. This directly shows that muscle is the major site of glucose disposal under these conditions, and provides quantitation of the glucose flux to muscle glycogen

  14. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Low muscle mass is associated with metabolic syndrome only in nonobese young adults: the Korea National Health and Nutrition Examination Survey 2008-2010.

    Science.gov (United States)

    Kim, Byung Chul; Kim, Mee Kyoung; Han, Kyungdo; Lee, Sae-Young; Lee, Seung-Hwan; Ko, Seung-Hyun; Kwon, Hyuk-Sang; Merchant, Anwar T; Yim, Hyeon Woo; Lee, Won-Chul; Park, Yong Gyu; Park, Yong-Moon

    2015-12-01

    Little is known about the relationship between body composition and metabolic risk factors in young adults. We hypothesized that low muscle mass (LMM) is associated with metabolic syndrome (MetS) and its components in young adults and that the associations vary by obesity. A cross-sectional analysis was conducted using the Korea National Health and Nutrition Examination Survey data. In total, 5300 young adults aged 19 to 39 years were evaluated. Low muscle mass was defined as an appendicular skeletal muscle mass/weight less than 1 SD below the mean for each participant's corresponding sex and age group. Obesity was defined as a body mass index greater than or equal to 25 kg/m2. The prevalence of LMM was higher in obese than nonobese participants (37.6% vs. 9.6%). In the nonobese participants, the prevalence of MetS, high waist circumference, high triglycerides, and high blood pressure was significantly greater in the LMM group than in the high muscle mass group. In the nonobese group, compared with high muscle mass participants, those with LMM had odds ratios for MetS of 3.6 (95% confidence interval, 1.48-8.76; P young adults with LMM may have a high risk of MetS, especially when they are nonobese. Interventions aimed at increasing muscle mass at younger ages may have the potential to reduce MetS. Published by Elsevier Inc.

  16. Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Winitsky Steve O

    2005-01-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  17. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  18. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  19. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Early Stress History Alters Serum Insulin-Like Growth Factor-1 and Impairs Muscle Mitochondrial Function in Adult Male Rats.

    Science.gov (United States)

    Ghosh, S; Banerjee, K K; Vaidya, V A; Kolthur-Seetharam, U

    2016-09-01

    Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood. © 2016 British Society for Neuroendocrinology.

  1. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    Science.gov (United States)

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  2. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.

    Science.gov (United States)

    Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew

    2016-08-01

     To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain.  Reliability study.  n = 13 (69.3 ± 8.2 years old)  After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated.  Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area.  Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of

  3. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  4. Association between healthy diet and exercise and greater muscle mass in older adults.

    Science.gov (United States)

    Kim, Jinhee; Lee, Yunhwan; Kye, Seunghee; Chung, Yoon-Sok; Kim, Kwang-Min

    2015-05-01

    To examine the association between healthy diet and exercise, individually and combined, and low muscle mass in older Korean adults. Population-based cross-sectional study from the Fourth and Fifth Korea National Health and Nutrition Examination Surveys from 2008 to 2011. Community. Nationally representative sample aged 65 and older (1,486 men, 1,799 women) in the Republic of Korea. A food frequency questionnaire was used to determine frequency of food group consumption (meat, fish, eggs, legumes; vegetables; fruits). Participation in exercise (aerobic and resistance) was based on self-report. Combined healthy lifestyle factors were calculated as the number of recommendations met regarding consumption of food groups and exercise performed. Appendicular skeletal muscle mass (ASM) was measured using dual-energy X-ray absorptiometry, and low muscle mass was defined using the variable of ASM adjusted for weight. Logistic regression analysis was performed to examine the association between healthy lifestyle factors and low muscle mass, adjusting for sociodemographic characteristics and health-related variables. In women, after controlling for covariates, vegetable consumption (odds ratio (OR)=0.52, 95% confidence interval (CI)=0.30-0.89) and aerobic exercise (OR=0.62, 95% CI=0.39-1.00) were inversely associated with low muscle mass. Also, the odds of low muscle mass was lower in women with three or more healthy lifestyle factors versus none (OR=0.45, 95% CI=0.23-0.87). In men, there were no associations between food group consumption and exercise and low muscle mass. Older women who exercise and consume a healthy diet have lower odds of low muscle mass. Engaging in multiple healthy behaviors may be important in preventing low muscle mass in late life. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  5. Skeletal muscle myofilament adaptations to aging, disease and disuse and their effects on whole muscle performance in older adult humans

    Directory of Open Access Journals (Sweden)

    Mark Stuart Miller

    2014-09-01

    Full Text Available Skeletal muscle contractile function declines with aging, disease and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role. Alterations in myofilament protein biology, therefore, may contribute to the development of functional limitations and disability in these conditions. Recent studies suggest that these conditions are associated with altered single fiber performance due to decreased expression of myofilament proteins and/or changes in myosin-actin cross-bridge interactions. Furthermore, cellular and myofilament-level adaptations are related to diminished whole muscle and whole body performance. Notably, the effect of these various conditions on myofilament and single fiber function tends to be larger in older women compared to older men, which may partially contribute to their higher rates of disability. To maintain functionality and provide the most appropriate and effective countermeasures to aging, disease and disuse in both sexes, a more thorough understanding is needed of the contribution of myofilament adaptations to functional disability in older men and women and their contribution to tissue level function and mobility impairment.

  6. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    Science.gov (United States)

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  7. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  8. Dysphagia risk, low muscle strength and poor cognition predict malnutrition risk in older adults athospital admission.

    Science.gov (United States)

    Chatindiara, Idah; Allen, Jacqueline; Popman, Amy; Patel, Darshan; Richter, Marilize; Kruger, Marlena; Wham, Carol

    2018-03-21

    Malnutrition in patients admitted to hospital may have detrimental effects on recovery and healing. Malnutrition is preceded by a state of malnutrition risk, yet malnutrition risk is often not detected during admission. The aim of the current study was to investigate the magnitude and potential predictors of malnutrition risk in older adults, at hospital admission. A cross-sectional was study conducted in 234 older adults (age ≥ 65 or ≥ 55 for Māori or Pacific ethnicity) at admission to hospital in Auckland, New Zealand. Assessment of malnutrition risk status was performed using the Mini Nutritional Assessment Short-Form (MNA®-SF), dysphagia risk by the Eating Assessment Tool (EAT-10), muscle strength by hand grip strength and cognitive status by the Montreal Cognitive Assessment (MoCA) tool. Among 234 participants, mean age 83.6 ± 7.6 years, 46.6% were identified as at malnutrition risk and 26.9% malnourished. After adjusting for age, gender and ethnicity, the study identified [prevalence ratio (95% confidence interval)] high dysphagia risk [EAT-10 score: 0.98 (0.97-0.99)], low body mass index [kg/m 2 : 1.02 (1.02-1.03)], low muscle strength [hand grip strength, kg: 1.01 (1.00-1.02)] and decline in cognition [MoCA score: 1.01 (1.00-1.02)] as significant predictors of malnutrition risk in older adults at hospital admission. Among older adults recently admitted to the hospital, almost three-quarters were malnourished or at malnutrition risk. As the majority (88%) of participants were admitted from the community, this illustrates the need for routine nutrition screening both at hospital admission and in community-dwelling older adults. Factors such as dysphagia, unintentional weight loss, decline in muscle strength, and poor cognition may indicate increased risk of malnutrition.

  9. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    Science.gov (United States)

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  10. The loss of skeletal muscle strength, mass, and quality in older adults : the health, aging and body composition study

    NARCIS (Netherlands)

    Goodpaster, Bret H; Park, Seok Won; Harris, Tamara B; Kritchevsky, Steven B; Nevitt, Michael; Schwartz, Ann V; Simonsick, Eleanor M; Tylavsky, Frances A; Visser, Marjolein; Newman, Anne B

    2006-01-01

    BACKGROUND: The loss of muscle mass is considered to be a major determinant of strength loss in aging. However, large-scale longitudinal studies examining the association between the loss of mass and strength in older adults are lacking. METHODS: Three-year changes in muscle mass and strength were

  11. Bionic Humans Using EAP as Artificial Muscles Reality and Challenges

    Directory of Open Access Journals (Sweden)

    Yoseph Bar-Cohen

    2008-11-01

    Full Text Available For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, the author initiated and organized a series of international forums that are leading to a growing number of research and development projects and to great advances in the field. In 1999, he challenged the worldwide science and engineering community of EAP experts to develop a robotic arm that is actuated by artificial muscles to win a wrestling match against a human opponent. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

  12. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  13. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  14. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  15. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  16. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence.

    Science.gov (United States)

    Tezze, Caterina; Romanello, Vanina; Desbats, Maria Andrea; Fadini, Gian Paolo; Albiero, Mattia; Favaro, Giulia; Ciciliot, Stefano; Soriano, Maria Eugenia; Morbidoni, Valeria; Cerqua, Cristina; Loefler, Stefan; Kern, Helmut; Franceschi, Claudio; Salvioli, Stefano; Conte, Maria; Blaauw, Bert; Zampieri, Sandra; Salviati, Leonardo; Scorrano, Luca; Sandri, Marco

    2017-06-06

    Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    Science.gov (United States)

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  18. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.

    Science.gov (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore

    2014-11-01

    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  19. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  20. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  1. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James

    2011-01-01

    In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the ability...... with an examination of muscle activation to give a broader insight to neuromuscular interaction during walking. Despite the advances in understanding that these techniques have brought, there is clearly still a need for more direct methods to study both neural and mechanical parameters during human walking in order...... of these receptors to act as length, velocity and force transducers is the complex pattern of interaction between muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length in the human lower limb. In essence, changes in muscle-tendon mechanics can influence the firing...

  2. Quantitative analysis of energy metabolism in human muscle using SLOOP 31P-MR-spectroscopy

    International Nuclear Information System (INIS)

    Beer, M.; Koestler, H.; Buchner, S.; Sandstede, J.; Hahn, D.

    2002-01-01

    Objective: Energy metabolism is vital for regular muscle function. In humans, in vivo analysis using 31 P-MR-spectroscopy (MRS) is mostly restricted to semiquantitative parameters due to technical demands. We applied spatial localization with optimal pointspread function (SLOOP) for quantification in human skeletal and cardiac muscle. Subjects/Methods: 10 healthy volunteers and 4 patients with myotonic dystrophy type 1 were examined using a 1.5 T system (Magnetom VISION) and chemical shift imaging (CSI) for data collection. Concentrations of PCr, ATP and P i as well as PCr/ATP ratios were calculated by SLOOP. Results: Concentrations of PCr, ATP and P i were 29.9±3.4, 7.1±0.9 and 5.7±1.2 [mmol/kg] in normal skeletal muscle, corresponding to previously published studies. Two of the patients with a duration of disease longer than 10 years and a pronounced muscle weakness showed a significant decrease of PCr and ATP in skeletal muscle below 10 and 5 mmol/kg. One of these patients had an additional reduction of PCr in cardiac muscle. (orig.) [de

  3. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.

    Science.gov (United States)

    McGregor, Robin A; Poppitt, Sally D; Cameron-Smith, David

    2014-09-01

    Progressive age-related changes in skeletal muscle mass and composition, underpin decreases in muscle function, which can inturn lead to impaired mobility and quality of life in older adults. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in skeletal muscle and are associated with aging. Accumulating evidence suggests that miRNAs play an important role in the age-related changes in skeletal muscle mass, composition and function. At the cellular level, miRNAs have been demonstrated to regulate muscle cell proliferation and differentiation. Furthermore, miRNAs are involved in the transitioning of muscle stem cells from a quiescent, to either an activated or senescence state. Evidence from animal and human studies has shown miRNAs are modulated in muscle atrophy and hypertrophy. In addition, miRNAs have been implicated in changes in muscle fiber composition, fat infiltration and insulin resistance. Both exercise and dietary interventions can combat age-related changes in muscle mass, composition and function, which may be mediated by miRNA modulation in skeletal muscle. Circulating miRNA species derived from myogenic cell populations represent potential biomarkers of aging muscle and the molecular responses to exercise or diet interventions, but larger validation studies are required. In future therapeutic approaches targeting miRNAs, either through exercise, diet or drugs may be able to slow down or prevent the age-related changes in skeletal muscle mass, composition, function, hence help maintain mobility and quality of life in old age. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of the epaxial muscles in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Eleonore KÖhler, S.; Lamers, Wouter H.

    2016-01-01

    Although the intrinsic muscles of the back are defined by their embryological origin and innervation pattern, no detailed study on their development is available. Human embryos (5-10 weeks development) were studied, using Amira3D® reconstruction and Cinema4D® remodeling software for visualization.

  5. The capillary pattern in human masseter muscle during ageing

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Janáček, Jiří; Kubínová, Lucie; Eržen, I.

    2013-01-01

    Roč. 32, č. 3 (2013), s. 135-144 ISSN 1580-3139 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : 3D analysis * capillaries * confocal microscopy * human * masseter * muscle Subject RIV: EA - Cell Biology Impact factor: 0.697, year: 2013

  6. Photobiomodulation in human muscle tissue: an advantage in sports performance?

    Science.gov (United States)

    Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R

    2016-12-01

    Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to stimulate, heal, and regenerate damaged tissue. Both preconditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n = 1045 participants). Studies used single laser probes, cluster of laser diodes, LED clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    Science.gov (United States)

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  8. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Juliane Brun

    Full Text Available The use of mesenchymal stromal cells (MSCs differentiated toward a smooth muscle cell (SMC phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2, transgelin (TAGLN, calponin (CNN1, and smooth muscle myosin heavy chain (SM-MHC; MYH11 according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion

  9. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  10. Characterisation of L-Type Amino Acid Transporter 1 (LAT1 Expression in Human Skeletal Muscle by Immunofluorescent Microscopy

    Directory of Open Access Journals (Sweden)

    Nathan Hodson

    2017-12-01

    Full Text Available The branch chain amino acid leucine is a potent stimulator of protein synthesis in skeletal muscle. Leucine rapidly enters the cell via the L-Type Amino Acid Transporter 1 (LAT1; however, little is known regarding the localisation and distribution of this transporter in human skeletal muscle. Therefore, we applied immunofluorescence staining approaches to visualise LAT1 in wild type (WT and LAT1 muscle-specific knockout (mKO mice, in addition to basal human skeletal muscle samples. LAT1 positive staining was visually greater in WT muscles compared to mKO muscle. In human skeletal muscle, positive LAT1 staining was noted close to the sarcolemmal membrane (dystrophin positive staining, with a greater staining intensity for LAT1 observed in the sarcoplasmic regions of type II fibres (those not stained positively for myosin heavy-chain 1, Type II—25.07 ± 5.93, Type I—13.71 ± 1.98, p < 0.01, suggesting a greater abundance of this protein in these fibres. Finally, we observed association with LAT1 and endothelial nitric oxide synthase (eNOS, suggesting LAT1 association close to the microvasculature. This is the first study to visualise the distribution and localisation of LAT1 in human skeletal muscle. As such, this approach provides a validated experimental platform to study the role and regulation of LAT1 in human skeletal muscle in response to various physiological and pathophysiological models.

  11. Postmortem muscle protein degradation in humans as a tool for PMI delimitation.

    Science.gov (United States)

    Pittner, Stefan; Ehrenfellner, Bianca; Monticelli, Fabio C; Zissler, Angela; Sänger, Alexandra M; Stoiber, Walter; Steinbacher, Peter

    2016-11-01

    Forensic estimation of time since death relies on diverse approaches, including measurement and comparison of environmental and body core temperature and analysis of insect colonization on a dead body. However, most of the applied methods have practical limitations or provide insufficient results under certain circumstances. Thus, new methods that can easily be implemented into forensic routine work are required to deliver more and discrete information about the postmortem interval (PMI). Following a previous work on skeletal muscle degradation in the porcine model, we analyzed human postmortem skeletal muscle samples of 40 forensic cases by Western blotting and casein zymography. Our results demonstrate predictable protein degradation processes in human muscle that are distinctly associated with temperature and the PMI. We provide information on promising degradation markers for certain periods of time postmortem, which can be useful tools for time since death delimitation. In addition, we discuss external influencing factors such as age, body mass index, sex, and cause of death that need to be considered in future routine application of the method in humans.

  12. Multivariate analysis of electrical impedance spectra for relaxed and contracted skeletal muscle

    International Nuclear Information System (INIS)

    Zagar, T; Krizaj, D

    2008-01-01

    Four-electrode impedance spectra of relaxed and contracted muscle biceps brachii were analyzed in an adult human subject over the frequency range from 300 Hz to 75 kHz. A feasibility of the principal component analysis of bioimpedance measurement for the evaluation of skeletal muscle contractile state was examined. The principal components score plots show a data grouping of the impedance spectra from the two muscle groups. The classification was performed using a soft independent modeling of class analogy (SIMCA) method. The data set comprised 32 samples (16 samples of contracted muscle and 16 samples of relaxed muscle). The leave-one-out test of the classification yields about 80% of correctly classified samples (11 samples for contracted and 15 samples for relaxed muscle)

  13. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  14. Adults with initial metabolic syndrome have altered muscle deoxygenation during incremental exercise.

    Science.gov (United States)

    Machado, Alessandro da Costa; Barbosa, Thales Coelho; Kluser Sales, Allan Robson; de Souza, Marcio Nogueira; da Nóbrega, Antonio Claudio Lucas; Silva, Bruno Moreira

    2017-02-01

    Reduced aerobic power is independently associated with metabolic syndrome (MetS) incidence and prevalence in adults. This study investigated whether muscle deoxygenation (proxy of microvascular O 2 extraction) during incremental exercise is altered in MetS and associated with reduced oxygen consumption ( V˙O 2peak ). Twelve men with initial MetS (no overt diseases and medication-naive; mean ± SD, age 38 ± 7 years) and 12 healthy controls (HCs) (34 ± 7 years) completed an incremental cycling test to exhaustion, in which pulmonary ventilation and gas exchange (metabolic analyzer), as well as vastus lateralis deoxygenation (near infrared spectroscopy), were measured. Subjects with MetS, in contrast to HCs, showed lower V˙O 2peak normalized to total lean mass, similar V˙O 2 response to exercise, and earlier break point (BP) in muscle deoxygenation. Consequently, deoxygenation slope from BP to peak exercise was greater. Furthermore, absolute V˙O 2peak was positively associated with BP in correlations adjusted for total lean mass. MetS, without overt diseases, altered kinetics of muscle deoxygenation during incremental exercise, particularly at high-intensity exercise. Therefore, the balance between utilization and delivery of O 2 within skeletal muscle is impaired early in MetS natural history, which may contribute to the reduction in aerobic power. © 2017 The Obesity Society.

  15. Older Adults with Weaker Muscle Strength Stand up from a Sitting Position with More Dynamic Trunk Use

    Directory of Open Access Journals (Sweden)

    Rob C. van Lummel

    2018-04-01

    Full Text Available The ability to stand up from a sitting position is essential for older adults to live independently. Body-fixed inertial sensors may provide an approach for quantifying the sit-to-stand (STS in clinical settings. The aim of this study was to determine whether measurements of STS movements using body-fixed sensors yield parameters that are informative regarding changes in STS performance in older adults with reduced muscle strength. In twenty-seven healthy older adults, handgrip strength was assessed as a proxy for overall muscle strength. Subjects were asked to stand up from a chair placed at three heights. Trunk movements were measured using an inertial sensor fixed to the back. Duration, angular range, and maximum angular velocity of STS phases, as well as the vertical velocity of the extension phase, were calculated. Backwards elimination using Generalized Estimating Equations was used to determine if handgrip strength predicted the STS durations and trunk kinematics. Weaker subjects (i.e., with lower handgrip strength were slower during the STS and showed a larger flexion angular range and a larger extension angular range. In addition, weaker subjects showed a greater maximum angular velocity, which increased with lower seat heights. Measurements with a single inertial sensor did reveal that older adults with lower handgrip strength employed a different strategy to stand up from a sitting position, involving more dynamic use of the trunk. This effect was greatest when elevating body mass. Trunk kinematic parameters were more sensitive to reduced muscle strength than durations.

  16. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  17. Camphor induces cold and warm sensations with increases in skin and muscle blood flow in human.

    Science.gov (United States)

    Kotaka, Tomohiko; Kimura, Shoji; Kashiwayanagi, Makoto; Iwamoto, Jun

    2014-01-01

    Application of camphor to the skin has been empirically thought to improve blood circulation. However, camphor's effects on blood circulation to the skin and on thermal sensation have not been well elucidated. In this study, we examined its effects on the quality of sensation as well as on skin and muscle blood flow in human. Nine adults (average age 37±9.4 years) participated in the study. Petroleum jelly containing 5%, 10%, 20% camphor, or 2% menthol was separately applied to the skin on the medial side of one forearm of each subject. Just after the application, camphor at each concentration induced a cold sensation in a dose-dependent manner. Within 10 min, each subject reported that the cold sensation had faded, after which it was replaced by a warm sensation. As reported previously, a cold sensation was induced by application of 2% menthol, but the subjects did not adapt to that sensation. In addition, menthol did not induce a warm sensation at all. Application of menthol has been shown to increase blood flow in the skin. Finally, we measured blood flow in skin and muscle after the application of camphor or menthol. Application of camphor or menthol separately induced increases in local blood flow in the skin and muscle. The present results indicate that camphor induces both cold and warm sensations and improves blood circulation.

  18. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  19. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  20. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Directory of Open Access Journals (Sweden)

    Kazushige Sasaki

    Full Text Available We have previously shown that unloaded shortening velocity (V(0 of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005. In the present study, to investigate the effect of motor unit recruitment pattern on V(0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC. The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95. Regression analysis showed that V(0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2 = 0.52, P<0.001. By contrast, V(0 of electrically activated dorsiflexor muscles remained unchanged (R(2<0.001, P = 0.98 among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.

  2. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Junior, Gerson Souza; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-01-01

    Background: Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional

  3. Terrestrial applications of bone and muscle research in microgravity

    Science.gov (United States)

    Booth, F. W.

    1994-08-01

    Major applications to people on Earth are possible from NASA-sponsored research on bone and muscle which is conducted either in microgravity or on Earth using models mimicking microgravity. In microgravity bone and muscle mass are lost. Humans experience a similar loss under certain conditions on Earth. Bone and muscle loss exist on Earth as humans age from adulthood to senescence, during limb immobilization for healing of orthopedic injuries, during wheelchair confinement because of certain diseases, and during chronic bed rest prescribed for curing of diseases. NASA-sponsored research is dedicated to learning both what cause bone and muscle loss as well as finding out how to prevent this loss. The health ramifications of these discoveries will have major impact. Objective 1.6 of Healthy People 2000, a report from the U.S. Department of Health and Human Services, states that the performance of physical activities that improve muscular strength, muscular endurance, and flexibility is particularly important to maintaining functional independence and social integration in older adults /1/. This objective further states that these types of physical activities are important because they may protect against disability, an event which costs the U.S. economy hugh sums of money. Thus NASA research related to bone and muscle loss has potential major impact on the quality of life in the U.S. Relative to its potential health benefits, NASA and Congressional support of bone and muscle research is funded is a very low level.

  4. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1 and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes.

  5. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  6. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults.

    Science.gov (United States)

    Lustgarten, Michael S; Fielding, Roger A

    2017-12-15

    Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and qMetabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle

  7. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P contraction, subjects dropping in force showed lower ATP economy compared with those maintaining the force (3.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P contraction could be due to an increase in the ATP economy of contracting muscle fibers offsetting the effects of increased temperature and low ATP economy...

  8. Physical inactivity and muscle oxidative capacity in humans

    DEFF Research Database (Denmark)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present...... literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents...... of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated...

  9. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells.

    Science.gov (United States)

    Thomas, Kelsey A; Gibbons, Michael C; Lane, John G; Singh, Anshuman; Ward, Samuel R; Engler, Adam J

    2017-08-01

    Full thickness rotator cuff tendon (RCT) tears have long-term effects on RC muscle atrophy and fatty infiltration, with lasting damage even after surgical tendon repair. Skeletal muscle progenitor cells (SMPs) are critical for muscle repair in response to injury, but the inability of RC muscles to recover from chronic RCT tear indicates possible deficits in repair mechanisms. Here we investigated if muscle injury state was a crucial factor during human SMP expansion and differentiation ex vivo. SMPs were isolated from muscles in patients with no, partial-thickness (PT), or full-thickness (FT) RCT tears. Despite using growth factors, physiological niche stiffness, and muscle-mimetic extracellular matrix (ECM) proteins, we found that SMPs isolated from human RC muscle with RCT tears proliferated slower but fused into myosin heavy chain (MHC)-positive myotubes at higher rates than SMPs from untorn RCTs. Proteomic analysis of RC muscle tissue revealed shifts in muscle composition with pathology, as muscle from massive RCT tears had increased ECM deposition compared with no tear RC muscle. Together these data imply that the remodeled niche in a torn RCT primes SMPs not for expansion but for differentiation, thus limiting longer-term self-renewal necessary for regeneration after surgical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1816-1823, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Motor units in the human medial gastrocnemius muscle are not spatially localized or functionally grouped.

    Science.gov (United States)

    Héroux, Martin E; Brown, Harrison J; Inglis, J Timothy; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2015-08-15

    Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories or regions, with low-threshold units preferentially located distally. We used intramuscular recordings to measure the territory of muscle fibres from MG MUs and determine whether these MUs are grouped by recruitment threshold or joint action (ankle plantar flexion and knee flexion). The territory of MUs from the MG muscle varied from somewhat localized to highly distributed, with approximately half the MUs spanning at least half the length and width of the muscle. There was also no evidence of regional muscle activity based on MU recruitment thresholds or joint action. The CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories, with low-threshold units preferentially located distally. In this study, subjects (n = 8) performed ramped and sustained isometric contractions (ankle plantar flexion and knee flexion; range: ∼1-40% maximal voluntary contraction) and we measured MU territory size with spike-triggered averages from fine-wire electrodes inserted along the length (seven electrodes) or across the width (five electrodes) of the MG muscle. Of 69 MUs identified along the length of the muscle, 32 spanned at least half the muscle length (≥ 6.9 cm), 11 of which spanned all recording sites (13.6-17.9 cm). Distal fibres had smaller pennation angles (P recruitment threshold or contraction type, nor was there a relationship between MU territory size and recruitment threshold (Spearman's rho = -0.20 and 0.13, P > 0.18). MUs in the human MG have larger territories than previously reported and are not localized based on recruitment threshold or joint action. This indicates that the CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. © 2015 The Authors. The Journal of

  11. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  12. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-01-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  13. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    Science.gov (United States)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  14. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  15. Power training using pneumatic machines vs. plate-loaded machines to improve muscle power in older adults.

    Science.gov (United States)

    Balachandran, Anoop T; Gandia, Kristine; Jacobs, Kevin A; Streiner, David L; Eltoukhy, Moataz; Signorile, Joseph F

    2017-11-01

    Power training has been shown to be more effective than conventional resistance training for improving physical function in older adults; however, most trials have used pneumatic machines during training. Considering that the general public typically has access to plate-loaded machines, the effectiveness and safety of power training using plate-loaded machines compared to pneumatic machines is an important consideration. The purpose of this investigation was to compare the effects of high-velocity training using pneumatic machines (Pn) versus standard plate-loaded machines (PL). Independently-living older adults, 60years or older were randomized into two groups: pneumatic machine (Pn, n=19) and plate-loaded machine (PL, n=17). After 12weeks of high-velocity training twice per week, groups were analyzed using an intention-to-treat approach. Primary outcomes were lower body power measured using a linear transducer and upper body power using medicine ball throw. Secondary outcomes included lower and upper body muscle muscle strength, the Physical Performance Battery (PPB), gallon jug test, the timed up-and-go test, and self-reported function using the Patient Reported Outcomes Measurement Information System (PROMIS) and an online video questionnaire. Outcome assessors were blinded to group membership. Lower body power significantly improved in both groups (Pn: 19%, PL: 31%), with no significant difference between the groups (Cohen's d=0.4, 95% CI (-1.1, 0.3)). Upper body power significantly improved only in the PL group, but showed no significant difference between the groups (Pn: 3%, PL: 6%). For balance, there was a significant difference between the groups favoring the Pn group (d=0.7, 95% CI (0.1, 1.4)); however, there were no statistically significant differences between groups for PPB, gallon jug transfer, muscle muscle strength, timed up-and-go or self-reported function. No serious adverse events were reported in either of the groups. Pneumatic and plate

  16. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  17. Effect of higher muscle coactivation on standing postural response to perturbation in older adults.

    Science.gov (United States)

    Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao

    2017-04-01

    Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.

  18. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression

    DEFF Research Database (Denmark)

    Ozanne, SE; Jensen, CB; Tingey, KJ

    2005-01-01

    muscle in a human cohort and a rat model. METHODS: We recruited 20 young men with low birthweight (mean birthweight 2702+/-202 g) and 20 age-matched control subjects (mean birthweight 3801+/-99 g). Biopsies were obtained from the vastus lateralis muscle and protein expression of selected insulin......-signalling proteins was determined. Rats used for this study were male offspring born to dams fed a standard (20%) protein diet or a low (8%) protein diet during pregnancy and lactation. Protein expression was determined in soleus muscle from adult offspring. RESULTS: Low-birthweight subjects showed reduced muscle...... expression of protein kinase C (PKC)zeta, p85alpha, p110beta and GLUT4. PKCzeta, GLUT4 and p85 were also reduced in the muscle of rats fed a low-protein diet. Other proteins studied were unchanged in low-birthweight humans and in rats fed a low-protein diet when compared with control groups. CONCLUSIONS...

  19. Anaerobic muscle strengthening physical activity and depression severity among USA adults.

    Science.gov (United States)

    Cangin, Causenge; Harris, Randall; Binkley, Philip; Schwartzbaum, Judith; Focht, Brian

    2018-06-01

    We investigated the association between depression and anaerobic physical activity (while controlling aerobic physical activity), using a nationally representative sample of USA adults ( n  = 7354) who participated in the cross sectional National Health and Nutrition Examination Survey (NHANES, 1999-2006). We defined depression using the validated "Patient Health Questionnaire" (PHQ 9 ) scale of 0-27 as PHQ 9   ≥  10. Severity of depression was classified by clinically established PHQ 9 levels: mild (5-9), dysthymic (10-14), moderate (15-19), and major depression ( ≥ 20). We used logistic regression to estimate adjusted odds ratios of depression associated with distinct types of activity (only aerobic, only anaerobic, combined regime). We used multinomial logistic regression to examine associations of anaerobic activity with various severity levels of depression (mild, dysthymic, moderate, and major depression) with adjustment for aerobic activity. Women had higher prevalence of depression than men (8.4% versus 5.7%), whereas anaerobic muscle strengthening activity was more common in men than women (35% versus 24%). Adjusting for aerobic activity , anaerobic activity was inversely associated with depression (PHQ 9   ≥  10) in women under 50 (OR = 0.57; 95%CI = 0.41-0.81), all women (OR = 0.59; 0.43-0.80), men under 50 (OR = 0.85; 0.58-1.2), and all men (OR = 0.72; 0.51-1.01). Anaerobic activity was inversely associated with severity level of depressive symptoms in women and men. The combined regimen of anaerobic muscle strengthening activity and meeting the Physical Activity Guideline for America (PAGA) was related to the lowest odds ratio of depression in women (OR = 0.50; 95%CI = 0.33-0.75) and men (OR = 0.39; 95%CI = 0.23-0.62). Independent of aerobic physical activity, anaerobic muscle strengthening activity is significantly and inversely associated with depression among USA adults.

  20. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  1. Leucine Supplementation in a Chronically Protein-Restricted Diet Enhances Muscle Weight and Postprandial Protein Synthesis of Skeletal Muscle by Promoting the mTOR Pathway in Adult Rats

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-10-01

    Full Text Available Low protein intake causes a decrease in protein deposition in most animal tissues. The purpose of this study was to investigate whether leucine supplementation would increase the synthesis rate of protein and muscle weight in adult rats, which chronically consume only 58.8% of their protein requirements. Thirty-six male Sprague-Dawley rats were assigned to one of three dietary treatments including a 20% casein diet (CON, a 10% casein + 0.44% alanine diet (R, and a 10% casein + 0.87% leucine diet (RL. After a 10 d dietary treatment, plasma amino acid levels were measured after feeding, the gastrocnemius muscles and soleus muscles were harvested and weighed, and the fractional synthesis rate (FSR and mammalian target of rapamycin (mTOR signaling proteins in skeletal muscle were measured. Regarding the plasma amino acid level, the RL group had the highest concentration of leucine (P < 0.05 and the lowest concentration of isoleucine (P < 0.05 among the three groups, and the CON group had a lower concentration of valine (P < 0.05 than the R and RL groups. Compared with the R and RL groups, the CON group diet significantly increased (P < 0.05 feed intake, protein synthesis rate, and the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, and decreased the weight of abdominal adipose. Compared with the R group, the RL group significantly increased in gastrocnemius muscle weight, protein synthesis rate, and phosphorylation of both ribosomal protein S6 kinase 1 (S6K1 and 4E-BP1. In conclusion, when protein is chronically restricted in adult rat diets, leucine supplementation moderately improves body weight gain and increases muscle protein synthesis through mTOR activation.

  2. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    Science.gov (United States)

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  3. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    Science.gov (United States)

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  4. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse

    Directory of Open Access Journals (Sweden)

    Michele Salanova

    2013-01-01

    Full Text Available Activity-induced nitric oxide (NO imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study without and with exercise as countermeasure in order to assess (i the negative effects of chronic muscle disuse by nitrosative stress, (ii to test for possible attenuation by exercise countermeasure in bed rest and (iii to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre and at end (End from a bed rest disuse control group (CTR, n=9 and two bed rest resistive exercise groups either without (RE, n=7 or with superimposed vibration stimuli (RVE, n=7. At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  5. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  6. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  7. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.

    Science.gov (United States)

    Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce

    2016-12-01

    The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.

  8. Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults.

    Science.gov (United States)

    MacLellan, Michael J

    2017-07-01

    Human locomotor patterns require precise adjustments to successfully navigate complex environments. Studies suggest that the central nervous system may control such adjustments through supraspinal signals modifying a basic locomotor pattern at the spinal level. To explore this proposed control mechanism in the leading and trailing limbs during obstructed walking, healthy young adults stepped over obstacles measuring 0.1 and 0.2 m in height. Unobstructed walking with no obstacle present was also performed as a baseline. Full body three-dimensional kinematic data were recorded and electromyography (EMG) was collected from 14 lower limb muscles on each side of the body. EMG data were analyzed using two techniques: by mapping the EMG data to the approximate location of the motor neuron pools on the lumbosacral enlargement of the spinal cord and by applying a nonnegative matrix factorization algorithm to unilateral and bilateral muscle activations separately. Results showed that obstacle clearance may be achieved not only with the addition of a new activation pattern in the leading limb, but with a temporal shift of a pattern present during unobstructed walking in both the leading and trailing limbs. An investigation of the inter-limb coordination of these patterns suggested a strong bilateral linkage between lower limbs. These results highlight the modular organization of muscle activation in the leading and trailing limbs, as well as provide a mechanism of control when implementing a locomotor adjustment when stepping over an obstacle.

  9. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Isart Roca

    2015-01-01

    Full Text Available The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP made from induced pluripotent stem cells (iPSCs are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

  10. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  11. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure.

  12. Noninvasive optical imaging of resistance training adaptations in human muscle

    Science.gov (United States)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  13. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  14. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Oezdemir, Mahir S; Reyngoudt, Harmen; Deene, Yves de; Sazak, Hakan S; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-01-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pH i range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy ( 1 H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1 H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo

  15. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    Science.gov (United States)

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  16. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  17. Detection of Botulinum Toxin Muscle Effect in Humans Using Magnetic Resonance Imaging: A Qualitative Case Series.

    Science.gov (United States)

    O'Dell, Michael W; Villanueva, Mark; Creelman, Carly; Telhan, Gaurav; Nestor, Jaclyn; Hentel, Keith D; Ballon, Douglas; Dyke, Jonathan P

    2017-12-01

    Although important for dosing and dilution, there are few data describing botulinum toxin (BT) movement in human muscle. To better understand BT movement within human muscle. Proof-of-concept study with descriptive case series. Outpatient academic practice. Five subjects with stroke who were BT naive with a mean age of 60.4 ± 14 years and time poststroke of 4.6 ± 3.7 years. Three standardized injections were given to the lateral gastrocnemius muscle (LGM): 2 contained 25 units (U) of onabotulinumtoxinA (Botox) in 0.25 mL of saline solution and the third 0.25 mL of saline solution only. The tibialis anterior muscle (TAM) was not injected in any subject. A leg magnetic resonance image was obtained at baseline, 2 months, and 3 months later with a 3.0 Tesla Siemens scanner. Three muscles, the LGM, lateral soleus muscle (LSM), and TAM, were manually outlined on the T2 mapping sequence at each time point. A histogram of T2 relaxation times (T2-RT) for all voxels at baseline was used to calculate a mean and standard deviation (SD) T2-RT for each muscle. Botulinum toxin muscle effect (BTME) at 2 months and 3 months was defined as a subject- and muscle-specific T2-RT voxel threshold ≥3 SD above the baseline mean at or near BT injection sites. BTME volume for each leg magnetic resonance imaging slice at 3 time points and 3 muscles for all subjects. One subject missed the 3-month scan, leaving 18 potential observations of BTME. Little to no BTME effect was seen in the noninjected TAM. A BTME was detected in the LGM in 13 of 18 possible observations, and no effect was detected in 5 observations. Possible BTME effect was seen in the LSM in 3 subjects due to either diffusion through fascia or needle misplacement. Volume of BTME, as defined here, appeared to be substantially greater than the 0.25-mL injection volume. This descriptive case series is among the first attempts to quantify BTME within human muscle. Our findings are preliminary and are limited by a few

  18. Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance.

    Science.gov (United States)

    Zoladz, Jerzy A; Majerczak, Joanna; Duda, Krzysztof; Chlopicki, Stefan

    2015-08-01

    In this review, we present the relation between power generation capabilities and pulmonary oxygen uptake during incremental cycling exercise in humans and the effect of exercise intensity on the oxygen cost of work. We also discuss the importance of oxygen delivery to the working muscles as a factor determining maximal oxygen uptake in humans. Subsequently, we outline the importance of coronary blood flow, myocardial oxygen uptake and myocardial metabolic stability for exercise tolerance. Finally, we describe mechanisms of endothelium-dependent regulation of coronary and skeletal muscle blood flow, dysregulation of which may impair exercise capacity and increase the cardiovascular risk of exercise. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. All rights reserved.

  19. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  1. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Lacroix, Andre; Hortobagyi, Tibor; Beurskens, Rainer; Granacher, Urs

    Background Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature

  2. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Lacroix, Andre; Hortobagyi, Tibor; Beurskens, Rainer; Granacher, Urs

    2017-01-01

    Background Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature

  3. Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque.

    Science.gov (United States)

    Bonin, L R; Madden, K; Shera, K; Ihle, J; Matthews, C; Aziz, S; Perez-Reyes, N; McDougall, J K; Conroy, S C

    1999-03-01

    The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2

  4. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  5. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    Science.gov (United States)

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  6. Skeletal muscle munc18c and syntaxin 4 in human obesity

    Directory of Open Access Journals (Sweden)

    Bessesen Daniel H

    2008-07-01

    Full Text Available Abstract Background Animal and cell culture data suggest a critical role for Munc18c and Syntaxin 4 proteins in insulin mediated glucose transport in skeletal muscle, but no studies have been published in humans. Methods We investigated the effect of a 12 vs. 48 hr fast on insulin action and skeletal muscle Munc18c and Syntaxin 4 protein in lean and obese subjects. Healthy lean (n = 14; age = 28.0 +/- 1.4 yr; BMI = 22.8 +/- 0.42 kg/m2 and obese subjects (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5 kg/m2 were studied twice following a 12 and 48 hr fast. Skeletal muscle biopsies were obtained before a 3 hr 40 mU/m2/min hyperinsulinemic-euglycemic clamp with [6,6-2H2]glucose infusion. Results Glucose rate of disappearance (Rd during the clamp was lower in obese vs. lean subjects after the 12 hr fast (obese: 6.25 +/- 0.67 vs. lean: 9.42 +/- 1.1 mg/kgFFM/min, p = 0.007, and decreased significantly in both groups after the 48 hr fast (obese 3.49 +/- 0.31 vs. lean: 3.91 +/- 0.42 mg/kgFFM/min, p = 0.002. Munc18c content was not significantly different between lean and obese subjects after the 12 hour fast, and decreased after the 48 hr fast in both groups (p = 0.013. Syntaxin 4 content was not altered by obesity or fasting duration. There was a strong positive relationship between plasma glucose concentration and Munc18c content in lean and obese subjects during both 12 and 48 hr fasts (R2 = 0.447, p = 0.0015. Significant negative relationships were also found between Munc18c and FFA (p = 0.041, beta-hydroxybutyrate (p = 0.039, and skeletal muscle AKT content (p = 0.035 in lean and obese subjects. Conclusion These data indicate Munc18c and Syntaxin 4 are present in human skeletal muscle. Munc18c content was not significantly different between lean and obese subjects, and is therefore unlikely to explain obesity-induced insulin resistance. Munc18c content decreased after prolonged fasting in lean and obese subjects concurrently with reduced insulin

  7. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  8. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  9. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    Science.gov (United States)

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (pregression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  10. P6. Assessment of Muscles, Connective and Fat Tissue, Using ?CT Data: Feasibility Study for Meat Quality Control

    OpenAIRE

    Salmons, Stanley; Gargiulo, Paolo; Edmunds, Kyle; Sigurdsson, Sigurdur; Carraro, Ugo; Gudnason, Vilmundur; Franchi, Martino V; Reeves, Neil D; Maganaris, Costantinos; Smith, Ken; Atherton, Philip J; Narici, Marco V; Stephenson, Robert S; Jarvis, Jonathan C; Ortolan, Paolo

    2015-01-01

    Central Core Disease (CCD; OMIM# 117000), one of the most common human congenital myopathies, is characterized by hypotonia and proximal muscle weakness with slow (or non progressive) clinical course. 1 Diagnosis of CCD is confirmed by histological examination of muscle biopsies showing amorphous central areas or cores (typically found in type I muscle fibers), lacking glycolytic/oxidative enzymes and mitochondria. Usually, orthopedic complications limit the ability of CCD adult patient to pe...

  11. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    Science.gov (United States)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  12. Is the male dog comparable to human? A histological study of the muscle systems of the lower urinary tract.

    Science.gov (United States)

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Do, Minh; Dorschner, Wolfgang; Salomon, Franz-Viktor; Jurina, Konrad; Neuhaus, Jochen

    2002-08-01

    Because of their superficial anatomical resemblance, the male dog seems to be suitable for studying the physiologic and pathological alterations of the bladder neck of human males. The present study was carried out to compare and contrast the muscular anatomy of the male dog lower urinary tract with that of humans. The complete lower urinary tract, including the surrounding organs (bulb of penis, prostate, rectum and musculature of the pelvic floor) were removed from adult and newborn male dogs and histologically processed using serial section technique. Based on our own histological investigations, three-dimensional (3D)-models of the anatomy of the lower urinary tract were constructed to depict the corresponding structures and the differences between the species. The results of this study confirm that the lower urinary tract of the male dog bears some anatomical resemblance (musculus detrusor vesicae, prostate, prostatic and membranous urethra) to man. As with human males, the two parts of the musculus sphincter urethrae (glaber and transversostriatus) are evident in the canine bladder neck. Nevertheless, considerable differences in formation of individual muscles should be noted. In male dogs, no separate anatomic entity can be identified as vesical or internal sphincter. The individual course of the ventral and lateral longitudinal musculature and of the circularly arranged smooth musculature of the urethra is different to that of humans. Differences in the anatomy of individual muscles of the bladder neck in the male dog and man suggest that physiological interpretations of urethral functions obtained in one species cannot be attributed without qualification to the other.

  13. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults?

    NARCIS (Netherlands)

    Wind, Anne E.; Takken, Tim; Helders, Paul J. M.; Engelbert, Raoul H. H.

    2010-01-01

    The primary purpose of this study was to examine whether grip strength is related to total muscle strength in children, adolescents, and young adults. The second purpose was to provide reference charts for grip strength, which could be used in the clinical and research setting. This cross-sectional

  14. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    International Nuclear Information System (INIS)

    Krasin, Matthew J.; Wiese, Kristin M.; Spunt, Sheri L.; Hua, Chia-ho; Daw, Najat; Navid, Fariba; Davidoff, Andrew M.; McGregor, Lisa; Merchant, Thomas E.; Kun, Larry E.; McCrarey, Lola

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board−approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  15. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Krasin, Matthew J., E-mail: matthew.krasin@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Wiese, Kristin M. [Department of Rehabilitation Services, St. Jude Children' s Research Hospital, Memphis, TN (United States); Spunt, Sheri L. [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Hua, Chia-ho [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Daw, Najat [Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Navid, Fariba [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Davidoff, Andrew M. [Department of Surgery, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Surgery, University of Tennessee College of Medicine, Memphis, TN (United States); McGregor, Lisa [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Merchant, Thomas E.; Kun, Larry E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); McCrarey, Lola [Department of Rehabilitation Services, St. Jude Children' s Research Hospital, Memphis, TN (United States); and others

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  16. Ultrastructural changes in the flight muscle mitochondria of adult male mosquito Culex Pipiens L I

    International Nuclear Information System (INIS)

    Abd Elmeguid, A.; Elmoursy, A.A.; Rouchdy, H.; Elzahraa, F.

    1995-01-01

    Ultrastructural differences between differentiating myoblasts of 1-day old pupae and 2-day old pupae and between well developed flight muscles in newly emerged 1-day old and 2-day old and ageing 21-day old adult male Culex Pipiens were studied. Ageing mosquitoes showed various signs of deterioration, vocalization, fusion and disorientation of cristae. 6 figs

  17. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    Science.gov (United States)

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  18. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  19. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial.

    Science.gov (United States)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten; Nielsen, Ole Bruno Faurholt; Aagaard, Per

    2013-07-01

    Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown. This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction strength (18%) than the control group at follow up (between-group difference = 269 N, 95% CI = 122; 416, and p = .001). In contrast, the center of pressure velocity moment did not differ (1%) between WII and CON at follow-up (between-group difference = 0.23 mm(2)/s, 95% CI = -4.1; 4.6, and p = .92). For secondary end points, pre-to-post changes favoring the WII group were evident in the rate of force development (p = .03), Timed Up and Go test (p = .01), short Falls Efficacy Scale-International (p = .03), and 30-second repeated Chair Stand Test (p = .01). Finally, participants rated the Wii training highly motivating at 5 and 10 weeks into the intervention. Biofeedback-based Wii training led to marked improvements in maximal leg muscle strength (maximal voluntary contraction; rate of force development) and overall functional performance in community-dwelling older adults. Unexpectedly, static bilateral postural balance remained unaltered with Wii training. The high level of participant motivation suggests that biofeedback-based Wii exercise may ensure a high degree of compliance to home- and/or community

  20. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  1. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    Science.gov (United States)

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Brier, Tim J; Mellor, Ian R; Tikhonov, Denis B

    2003-01-01

    Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation-dependent, nonc......Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation...

  3. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  4. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans

    International Nuclear Information System (INIS)

    Consoli, A.; Nurjhan, N.; Reilly, J.J. Jr.; Bier, D.M.; Gerich, J.E.

    1990-01-01

    To quantitate alanine and lactate gluconeogenesis in postabsorptive humans and to test the hypothesis that muscle is the principal source of these precursors, we infused normal volunteers with [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose and calculated alanine and lactate incorporation into plasma glucose corrected for tricarboxylic acid cycle carbon exchange, the systemic appearance of these substrates, and their forearm fractional extraction, uptake, and release. Forearm alanine and lactate fractional extraction averaged 37 +/- 3 and 27 +/- 2%, respectively; muscle alanine release (2.94 +/- 0.27 mumol.kg body wt-1.min-1) accounted for approximately 70% of its systemic appearance (4.18 +/- 0.31 mumol.kg body wt-1.min-1); muscle lactate release (5.51 +/- 0.42 mumol.kg body wt-1.min-1) accounted for approximately 40% of its systemic appearance (12.66 +/- 0.77 mumol.kg body wt-1.min-1); muscle alanine and lactate uptake (1.60 +/- 0.7 and 3.29 +/- 0.36 mumol.kg body wt-1.min-1, respectively) accounted for approximately 30% of their overall disappearance from plasma, whereas alanine and lactate incorporation into plasma glucose (1.83 +/- 0.20 and 4.24 +/- 0.44 mumol.kg body wt-1.min-1, respectively) accounted for approximately 50% of their disappearance from plasma. We therefore conclude that muscle is the major source of plasma alanine and lactate in postabsorptive humans and that factors regulating their release from muscle may thus exert an important influence on hepatic gluconeogenesis

  5. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    Science.gov (United States)

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  7. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Directory of Open Access Journals (Sweden)

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  8. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  9. Muscle strength rather than muscle mass is associated with osteoporosis in older Chinese adults

    Directory of Open Access Journals (Sweden)

    Yixuan Ma

    2018-02-01

    Conclusion: Based on our study, muscle strength rather than muscle mass is negatively associated with OS in older people; thus, we should pay more attention to muscle strength training in the early stage of the OS.

  10. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  11. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  12. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency?

    DEFF Research Database (Denmark)

    Klefter, Oliver; Feldt-Rasmussen, Ulla

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  13. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  14. Multi-muscle FES force control of the human arm for arbitrary goals.

    Science.gov (United States)

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  15. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, S; Langberg, Henning; Skovgaard, D

    2000-01-01

    +. Calf muscle pain was assessed using a visual analogue scale. On average, [K+]I was 4.4 mmol l(-1) at rest and increased during minutes 3-5 of incremental exercise by approximately 1-7 mmol l(-1) as a positive function of power output. K+ release also increased as a function of exercise intensity......Changes in the concentration of interstitial K+ surrounding skeletal muscle fibres ([K+]I) probably play some role in the regulation of cardiovascular adjustments to muscular activity, as well as in the aetiology of muscle pain and fatigue during high-intensity exercise. However, there is very...... little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods...

  16. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    Science.gov (United States)

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (psimple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (plinear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  18. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  19. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels

    Directory of Open Access Journals (Sweden)

    Lurbe Empar

    2009-04-01

    Full Text Available Abstract Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67 and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0 have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p 2, p Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth weight and increased adult high blood pressure risk.

  20. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Rasmussen, Lotte Klejs; Kadi, Fawzi

    2016-01-01

    muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared...... activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human......With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor...

  1. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Norregaard, J.; Krogsgaard, M.

    2004-01-01

    into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim...... activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted......-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1...

  2. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage.

    Science.gov (United States)

    Barfield, Whitney L; Uaesoontrachoon, Kitipong; Wu, Chung-Sheih; Lin, Stephen; Chen, Yue; Wang, Paul C; Kanaan, Yasmine; Bond, Vernon; Hoffman, Eric P

    2014-08-01

    A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients. © The Author 2014. Published by Oxford University Press.

  3. Exercise and nutritional interventions for improving aging muscle health.

    Science.gov (United States)

    Forbes, Scott C; Little, Jonathan P; Candow, Darren G

    2012-08-01

    Skeletal muscle mass declines with age (i.e., sarcopenia) resulting in muscle weakness and functional limitations. Sarcopenia has been associated with physiological changes in muscle morphology, protein and hormonal kinetics, insulin resistance, inflammation, and oxidative stress. The purpose of this review is to highlight how exercise and nutritional intervention strategies may benefit aging muscle. It is well known that resistance exercise training increases muscle strength and size and evidence also suggests that resistance training can increase mitochondrial content and decrease oxidative stress in older adults. Recent findings suggest that fast-velocity resistance exercise may be an effective intervention for older adults to enhance muscle power and functional capacity. Aerobic exercise training may also benefit aging skeletal muscle by enhancing mitochondrial bioenergetics, improving insulin sensitivity, and/or decreasing oxidative stress. In addition to exercise, creatine monohydrate, milk-based proteins, and essential fatty acids all have biological effects which could enhance some of the physiological adaptations from exercise training in older adults. Additional research is needed to determine whether skeletal muscle adaptations to increased activity in older adults are further enhanced with effective nutritional interventions and whether this is due to enhanced muscle protein synthesis, improved mitochondrial function, and/or a reduced inflammatory response.

  4. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review.

    Science.gov (United States)

    Trommelen, Jorn; Groen, Bart B L; Hamer, Henrike M; de Groot, Lisette C P G M; van Loon, Luc J C

    2015-07-01

    Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults. © 2015 European Society of Endocrinology.

  5. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    Science.gov (United States)

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  7. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    Science.gov (United States)

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocityankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  9. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow......, respectively (P exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction....... was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by L-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release...

  10. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  11. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Nehlin, Jan O; Just, Marlene; Rustan, Arild C

    2011-01-01

    Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the prolif......Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways...... number and could be explained by reduced incorporation into diacyl- and triacylglycerols. The levels of long-chain acyl-CoA esters decreased with increased passage number. Late-passage, non-proliferating, myoblast cultures showed strong senescence-associated β-galactosidase activity indicating...... that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength....

  12. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  13. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility.

    Science.gov (United States)

    Nesmith, Alexander P; Wagner, Matthew A; Pasqualini, Francesco S; O'Connor, Blakely B; Pincus, Mark J; August, Paul R; Parker, Kevin Kit

    2016-10-10

    Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling. © 2016 Nesmith et al.

  14. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  15. Have you got any cholesterol? Adults' views of human nutrition

    Science.gov (United States)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  16. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle.

    NARCIS (Netherlands)

    Mulder, A.H.; Dijk, A.P.J. van; Smits, P.; Tack, C.J.J.

    2008-01-01

    OBJECTIVE: Muscle capillary perfusion can be measured by contrast-enhanced ultrasound. We examined whether a less time-consuming ultrasound technique, called "real-time imaging," could be used to measure capillary recruitment in human forearm skeletal muscle. METHODS: We measured microvascular blood

  17. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  18. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  19. Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle

    DEFF Research Database (Denmark)

    Wewer, U M; Thornell, L E; Loechel, F

    1997-01-01

    and Becker muscular dystrophy. Immunoaffinity chromatography of muscle extracts with a monoclonal antibody to the laminin alpha 2 chain followed by immunoblotting with various antibodies to the beta 2 chain demonstrated the presence of the laminin-4 (alpha 2-beta 2-gamma 1) isoform. Together the present...

  20. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  1. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus

    DEFF Research Database (Denmark)

    Jørgensen, Jens O L; Jessen, Niels; Pedersen, Steen Bønløkke

    2006-01-01

    Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n...... was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5...... tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human...

  2. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  3. Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique.

    Science.gov (United States)

    Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao

    2014-01-01

    The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.

  4. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dominik Müller

    Full Text Available BACKGROUND: Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS: The newly described homeobox gene, termed lateral muscles scarcer (lms, which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs, which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE: We have identified the homeobox gene lms as a new muscle identity gene

  5. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    Science.gov (United States)

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  6. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy

    NARCIS (Netherlands)

    Dallmeijer, A.J.; Baker, R.; Dodd, K.; Taylor, N.

    2011-01-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0. yr)

  7. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  8. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans

    DEFF Research Database (Denmark)

    Hansen, M; Trappe, T; Crameri, R M

    2008-01-01

    Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl-histidine......Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl....... Only after ES did the histochemical stainings show significant disruption of cytoskeletal proteins. Furthermore, intracellular disruption and destroyed Z-lines were markedly more pronounced in ES vs VOL. In conclusion, the local level of interstitial 3-MH in the skeletal muscle was significantly...... enhanced after ES compared with VOL immediately after exercise, while the level of 3-MH did not change in the post-exercise period after VOL. These results indicate that the local myofibrillar breakdown is accelerated after ES associated with severe myofiber damage....

  9. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    Science.gov (United States)

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  10. Skeletal Muscle Ultrasonography in Nutrition and Functional Outcome Assessment of Critically Ill Children: Experience and Insights From Pediatric Disease and Adult Critical Care Studies [Formula: see text].

    Science.gov (United States)

    Ong, Chengsi; Lee, Jan Hau; Leow, Melvin K S; Puthucheary, Zudin A

    2017-09-01

    Evidence suggests that critically ill children develop muscle wasting, which could affect outcomes. Muscle ultrasound has been used to track muscle wasting and association with outcomes in critically ill adults but not children. This review aims to summarize methodological considerations of muscle ultrasound, structural findings, and possibilities for its application in the assessment of nutrition and functional outcomes in critically ill children. Medline, Embase, and CINAHL databases were searched up until April 2016. Articles describing skeletal muscle ultrasound in children and critically ill adults were analyzed qualitatively for details on techniques and findings. Thickness and cross-sectional area of various upper and lower body muscles have been studied to quantify muscle mass and detect muscle changes. The quadriceps femoris muscle is one of the most commonly measured muscles due to its relation to mobility and is sensitive to changes over time. However, the margin of error for quadriceps thickness is too wide to reliably detect muscle changes in critically ill children. Muscle size and its correlation with strength and function also have not yet been studied in critically ill children. Echogenicity, used to detect compromised muscle structure in neuromuscular disease, may be another property worth studying in critically ill children. Muscle ultrasound may be useful in detecting muscle wasting in critically ill children but has not been shown to be sufficiently reliable in this population. Further study of the reliability and correlation with functional outcomes and nutrition intake is required before muscle ultrasound is routinely employed in critically ill children.

  11. The Recent Understanding of the Neurotrophin's Role in Skeletal Muscle Adaptation

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2011-01-01

    Full Text Available This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression. In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.

  12. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia

    Directory of Open Access Journals (Sweden)

    Laura H. Tetri

    2018-03-01

    Full Text Available Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

  13. Direct effects of FGF21 on glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Mashili, Fredirick L; Austin, Reginald L; Deshmukh, Atul S

    2011-01-01

    21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus...... normal glucose tolerant subjects (p muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p ... and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering...

  14. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  15. Tetranectin in slow intra- and extrafusal chicken muscle fibers

    DEFF Research Database (Denmark)

    Xu, X; Gilpin, B; Iba, K

    2001-01-01

    Tetranectin is a C-type lectin that occurs in the mammalian musculoskeletal system. In the present report we describe the first studies on an avian tetranectin. A full-length chicken tetranectin cDNA was isolated. Comparison of the deduced amino acid sequence of chicken tetranectin with mouse...... and human tetranectin showed an identity of 67 and 68%, respectively. Northern blot analysis demonstrated broad expression of chicken tetranectin mRNA, which was first detected on embryonic day 4. Tetranectin protein was detected in chicken serum and egg yolk. Since muscle is one of few tissues in which...... tetranectin protein is retained, we examined the distribution of tetranectin in various muscle types in chicken. Myofibers strongly positive for tetranectin were observed in several muscles including m. tibialis ant. and m. sartorius (from embryonic day 10 to adult). Using antibodies to fast and slow myosin...

  16. Limb muscle quality and quantity in elderly adults with dynapenia but not sarcopenia: An ultrasound imaging study.

    Science.gov (United States)

    Chang, Ke-Vin; Wu, Wei-Ting; Huang, Kuo-Chin; Jan, Wei Han; Han, Der-Sheng

    2018-03-28

    Dynapenia is prevalent in people with reduced skeletal muscle mass, i.e. sarcopenia, but a certain population develops muscle strength loss despite having normal skeletal muscle volume. To date, studies investigating muscle quality and quantity in groups with dynapenia but not sarcopenia are limited. Echogenicity and thickness of the biceps brachii, triceps brachii, rectus femoris, and medial gastrocnemius muscles were measured using high-resolution ultrasonography in 140 community-dwelling elderly adults. Participants with decreased handgrip strength but normal muscular volume were diagnosed as having dynapenia without sarcopenia. A multivariate regression model was used to analyze the association between dynapenia and ultrasound indicators of the sampled muscle expressed as odds ratio (OR) and 95% confidence interval (CI). A total of 140 participants were recruited for the study, 12.6% (n = 18) of whom had dynapenia. The dynapenia group had a higher mean age, higher proportion of women, slower fast gait speed, reduced handgrip strength, and decreased thicknesses of the biceps brachii, rectus femoris, and medial gastrocnemius muscles. On multivariate logistic regression analysis, dynapenia was associated with older age (OR, 1.18; 95% CI, 1.05 to 1.33), higher body mass index (OR, 1.28; 95% CI, 1.05 to 1.64), and decreased thicknesses of the rectus femoris (OR, 0.01; 95% CI, <0.01 to 0.24) and medial gastrocnemius muscles (OR, 0.03; 95% CI, <0.01 to 0.61). Dynapenia without sarcopenia is associated with decreased thicknesses of the rectus femoris and medial gastrocnemius muscles, an association that remains significant after adjustment for demographics, body composition, and physical performance. Ultrasound measurements of lower-limb muscle thickness can be considered an auxiliary criterion for evaluating dynapenia. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human

    Directory of Open Access Journals (Sweden)

    Kyoung-Sik, Park

    2004-06-01

    Full Text Available This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1 Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4, pisometacarpal lig.(SI-4, ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6, ulnar collateral lig.(SI-5, ext. digiti minimi m. tendon(SI-6, ext. carpi ulnaris(SI-7, triceps brachii(SI-9, teres major(SI-9, deltoid(SI-10, infraspinatus(SI-10, 11, trapezius(Sl-12, 13, 14, 15, supraspinatus(SI-12, 13, lesser rhomboid(SI-14, erector spinae(SI-14, 15, levator scapular(SI-15, sternocleidomastoid(SI-16, 17, splenius capitis(SI-16, semispinalis capitis(SI-16, digasuicus(SI-17, zygomaticus major(Il-18, masseter(SI-18, auriculoris anterior(SI-19 2 Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6, br. of mod. antebrachial cutaneous n.(SI-6, 7, br. of post. antebrachial cutaneous n.(SI-6,7, br. of radial n.(SI-7, ulnar n.(SI-8, br. of axillary n.(SI-9, radial n.(SI-9, subscapular n. br.(SI-9, cutaneous n. br. from C7, 8(SI-10, 14, suprascapular n.(SI-10, 11, 12, 13, intercostal n. br. from T2(SI-11, lat. supraclavicular n. br.(SI-12, intercostal n. br. from C8, T1(SI-12, accessory n. br.(SI-12, 13, 14, 15, 16, 17, intercostal n. br. from T1,2(SI-13, dorsal scapular n.(SI-14, 15, cutaneous n. br. from C6, C7(SI-15, transverse cervical n.(SI-16, lesser occipital n. & great auricular n. from

  18. Changes of gluteus medius muscle in the adult patients with unilateral developmental dysplasia of the hip

    Directory of Open Access Journals (Sweden)

    Liu RuiYu

    2012-06-01

    Full Text Available Abstract Background The gluteus medius muscle is essential for gait and hip stability. Changes that occur in the gluteus medius muscles in patients with developmental dysplasia of the hip (DDH are not well understood. A better understanding of DDH related changes will have positive repercussions toward hip soft tissue reconstruction. Methods 19 adult patients with unilateral DDH scheduled for total hip arthroplasty were assessed for: cross-sectional area (CSA, radiological density (RD and the length of gluteus medius using computed tomograhpy(CT (scanned before THA. Hip abductor moment arm and gluteus medius activation angle were also measured via hip anteroposterior radiographs. Results Both CSA and RD of gluteus medius muscle were significantly reduced (p  Conclusions The gluteus medius showed substantial loss of CSA, RD as well as decreased length in patients with DDH in the affected hip. These changes should be considered in both hip reconstruction and postoperative rehabilitation training in patients with DDH.

  19. FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal

    Directory of Open Access Journals (Sweden)

    Suchitra D. Gopinath

    2014-04-01

    Full Text Available Skeletal muscle stem cells, or “satellite cells” (SCs, are required for the regeneration of damaged muscle tissue. Although SCs self-renew during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the forkhead family of transcription factors, is expressed in quiescent SCs (QSCs. Conditional deletion of Foxo3 in QSCs impairs self-renewal and increases the propensity of SCs to adopt a differentiated fate. Transcriptional analysis of SCs lacking FOXO3 revealed a downregulation of Notch signaling, a key regulator of SC quiescence. Conversely, overexpression of Notch intracellular domain (NICD rescued the self-renewal deficit of FOXO3-deficient SCs. We show that FOXO3 regulates NOTCH1 and NOTCH3 receptor expression and that decreasing expression of NOTCH1 and NOTCH3 receptors phenocopies the effect of FOXO3 deficiency in SCs. We demonstrate that FOXO3, perhaps by activating Notch signaling, promotes the quiescent state during SC self-renewal in adult muscle regeneration.

  20. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans.

    Science.gov (United States)

    Fernández-Elías, Valentín E; Ortega, Juan F; Nelson, Rachael K; Mora-Rodriguez, Ricardo

    2015-09-01

    It is usually stated that glycogen is stored in human muscle bound to water in a proportion of 1:3 g. We investigated this proportion in biopsy samples during recovery from prolonged exercise. On two occasions, nine aerobically trained subjects ([Formula: see text] = 54.4 ± 1.05 mL kg(-1) min(-1); mean ± SD) dehydrated 4.6 ± 0.2 % by cycling 150 min at 65 % [Formula: see text] in a hot-dry environment (33 ± 4 °C). One hour after exercise subjects ingested 250 g of carbohydrates in 400 mL of water (REHLOW) or the same syrup plus water to match fluid losses (i.e., 3170 ± 190 mL; REHFULL). Muscle biopsies were obtained before, 1 and 4 h after exercise. In both trials muscle water decreased from pre-exercise similarly by 13 ± 6 % and muscle glycogen by 44 ± 10 % (P recovery, glycogen levels were similar in both trials (79 ± 15 and 87 ± 18 g kg(-1) dry muscle; P = 0.20) while muscle water content was higher in REHFULL than in REHLOW (3814 ± 222 vs. 3459 ± 324 g kg(-1) dm, respectively; P recovery ratio 1:3) while during REHFULL this ratio was higher (1:17). Our findings agree with the long held notion that each gram of glycogen is stored in human muscle with at least 3 g of water. Higher ratios are possible (e.g., during REHFULL) likely due to water storage not bound to glycogen.

  1. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.

    Science.gov (United States)

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2004-09-01

    Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.

  2. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  3. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate dir...

  4. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Søndergård, Stine D; Dela, Flemming; Helge, Jørn W

    2016-01-01

    Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized h...

  5. Qualitative analysis neurons in the adult human dentate nucleus

    Directory of Open Access Journals (Sweden)

    Marić Dušica

    2012-01-01

    Full Text Available Although many relevant findings regarding to the morphology and cytoarchitectural development of the dentate nucleus have been presented so far, very little qualitative information has been collected on neuronal morphology in the adult human dentate nucleus. The neurons were labelled by Golgi staining from thirty human cerebella, obtained from medico-legal forensic autopsies of adult human bodies and free of significant brain pathology. The human dentate neurons were qualitatively analyzed and these cells were classified into two main classes: the small and the large multipolar neurons. Considering the shape of the cell body, number of the primary dendrites, shape of the dendritic tree and their position within the dentate nucleus, three subclasses of the large multipolar neurons have been recognized. The classification of neurons from the human dentate nucleus has been qualitatively confirmed in fetuses and premature infants. This study represents the first qualitative analysis and classification of the large multipolar neurons in the dentate nucleus of the adult human.

  6. Effects of β-hydroxy-β-methylbutyrate on skeletal muscle mitochondrial content and dynamics, and lipids after 10 days of bed rest in older adults.

    Science.gov (United States)

    Standley, Robert A; Distefano, Giovanna; Pereira, Suzette L; Tian, Min; Kelly, Owen J; Coen, Paul M; Deutz, Nicolaas E P; Wolfe, Robert R; Goodpaster, Bret H

    2017-11-01

    Loss of muscle mass during periods of disuse likely has negative health consequences for older adults. We have previously shown that β-hydroxy-β-methylbutyrate (HMB) supplementation during 10 days of strict bed rest (BR) attenuates the loss of lean mass in older adults. To elucidate potential molecular mechanisms of HMB effects on muscle during BR and resistance training rehabilitation (RT), we examined mediators of skeletal muscle mitochondrial dynamics, autophagy and atrophy, and intramyocellular lipids. Nineteen older adults (60-76 yr) completed 10 days BR followed by 8-wk RT rehabilitation. Subjects were randomized to either HMB (3 g/day HMB; n = 11) or control (CON; n = 8) groups. Skeletal muscle cross-sectional area (CSA) was determined by histology from percutaneous vastus lateralis biopsies. We measured protein markers of mitochondrial content [oxidative phosphorylation (OXPHOS)], fusion and fission (MFN2, OPA1, FIS1, and DRP1), autophagy (Beclin1, LC3B, and BNIP3), and atrophy [poly-ubiquinated proteins (poly-ub)] by Western blot. Fatty acid composition of several lipid classes in skeletal muscle was measured by infusion-MS analysis. Poly-ub proteins and OXPHOS complex I increased in both groups following BR ( P HMB group ( P = 0.055). RT rehabilitation increased OXPHOS complex II protein ( P HMB group. In addition, higher levels of DRP1 and MFN2 were maintained in the HMB group after RT ( P HMB influences mitochondrial dynamics and lipid metabolism during disuse atrophy and rehabilitation. NEW & NOTEWORTHY Mitochondrial content and dynamics remained unchanged over 10 days of BR in older adults. HMB stimulated intramuscular lipid storage as triacylglycerol following 10 days of bed rest (BR) and maintained higher mitochondrial OXPHOS content and dynamics during the 8-wk resistance exercise rehabilitation program. Copyright © 2017 the American Physiological Society.

  7. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  8. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.

    Science.gov (United States)

    Messere, A; Turturici, M; Millo, G; Roatta, S

    2017-06-01

    Animal studies have shown that the rapid hyperemic response to external muscle compression undergoes inactivation upon repetitive stimulation, but this phenomenon has never been observed in humans. The aim of the present study was to determine whether 1) the vascular mechano-sensitivity underlying muscle compression-induced hyperemia is inactivated in an inter-stimulus interval (ISI)-dependent fashion upon repetitive stimulation, as suggested by animal studies, and 2) whether such inactivation also attenuates contraction-induced hyperemia. Brachial artery blood flow was measured by echo Doppler sonography in 13 healthy adults in response to 1) single and repetitive cuff muscle compression (CMC) of the forearm (20 CMCs, 1 s ISI); 2) a sequence of CMC delivered at decreasing ISI from 120 to 2 s; and 3) electrically-stimulated contraction of the forearm muscles before and after repetitive CMC. The peak amplitude of hyperemia in response to CMC normalized to baseline decreased from 2.2 ± 0.6 to 1.4 ± 0.4 after repetitive CMC and, in general, was decreased at ISI < 240 s. The peak amplitude of contraction-induced hyperemia was attenuated after as compared to before repeated CMC (1.7 ± 0.4 and 2.6 ± 0.6, respectively). Mechano-sensitivity of the vascular network can be conditioned by previous mechanical stimulation, and such preconditioning may substantially decrease contraction-induced hyperemia.

  9. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  10. [Adult form of Pompe disease].

    Science.gov (United States)

    Ziółkowska-Graca, Bozena; Kania, Aleksander; Zwolińska, Grazyna; Nizankowska-Mogilnicka, Ewa

    2008-01-01

    Pompe disease (glycogen-storage disease type II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA), leading to the accumulation of glycogen in the lysosomes primarily in muscle cells. In the adult form of the disease, proximal muscle weakness is noted and muscle volume is decreased. The infantile form is usually fatal. In the adult form of the disease the prognosis is relatively good. Muscle weakness may, however, interfere with normal daily activities, and respiratory insufficiency may be associated with obstructive sleep apnea. Death usually results from respiratory failure. Effective specific treatment is not available. Enzyme replacement therapy with recombinant human GAA (rh-GAA) still remains a research area. We report the case of a 24-year-old student admitted to the Department of Pulmonary Diseases because of severe respiratory insufficiency. Clinical symptoms such as dyspnea, muscular weakness and increased daytime sleepiness had been progressing for 2 years. Clinical examination and increased blood levels of CK suggested muscle pathology. Histopathological analysis of muscle biopsy, performed under electron microscope, confirmed the presence of vacuoles containing glycogen. Specific enzymatic activity of alpha-glucosidase was analyzed confirming Pompe disease. The only effective method to treat respiratory insufficiency was bi-level positive pressure ventilation. Respiratory rehabilitation was instituted and is still continued by the patient at home. A high-protein, low-sugar diet was proposed for the patient. Because of poliglobulia low molecular weight heparin was prescribed. The patient is eligible for experimental replacement therapy with rh-GAA.

  11. Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish

    NARCIS (Netherlands)

    Palstra, A.P.; Rovira, M.; Rizo-Roca, D.; Torrella, J.R.; Spaink, H.P.; Planas, J.V.

    2014-01-01

    Background The adult skeletal muscle is a plastic tissue with a remarkable ability to adapt to different levels of activity by altering its excitability, its contractile and metabolic phenotype and its mass. We previously reported on the potential of adult zebrafish as a tractable experimental model

  12. Muscle-tendon interaction and elastic energy usage in human walking

    DEFF Research Database (Denmark)

    Ishikawa, Masaki; Komi, Paavo V.; Grey, Michael James

    2005-01-01

    The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo......-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous...

  13. A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles.

    Directory of Open Access Journals (Sweden)

    Amy L Lee

    Full Text Available Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington's Disease (HD that is caused by a polyglutamine expansion in the human huntingtin protein (htt. The polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers neurodegeneration and the disruption of energy metabolism in muscle cells. However, the molecular mechanisms that underlie htt proteotoxicity have been somewhat elusive, and the muscle phenotypes have not been well studied. To generate tools to elucidate the basis for muscle dysfunction, we engineered Caenorhabditis elegans to express a disease-associated 513 amino acid fragment of human htt in body wall muscle cells. We show that this htt fragment aggregates in C. elegans in a polyglutamine length-dependent manner and is toxic. Toxicity manifests as motor impairment and a shortened lifespan. Compared to previous models, the data suggest that the protein context in which a polyglutamine tract is embedded alters aggregation propensity and toxicity, likely by affecting interactions with the muscle cell environment.

  14. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  15. Fetal Tendinous Connection Between the Tensor Tympani and Tensor Veli Palatini Muscles: A Single Digastric Muscle Acting for Morphogenesis of the Cranial Base.

    Science.gov (United States)

    Rodríguez-Vázquez, José Francisco; Sakiyama, Koji; Abe, Hiroshi; Amano, Osamu; Murakami, Gen

    2016-04-01

    Some researchers contend that in adults the tensor tympani muscle (TT) connects with the tensor veli palatini muscle (TVP) by an intermediate tendon, in disagreement with the other researchers. To resolve this controversy, we examined serial sections of 50 human embryos and fetuses at 6-17 weeks of development. At 6 weeks, in the first pharyngeal arch, a mesenchymal connection was found first to divide a single anlage into the TT and TVP. At and after 7 weeks, the TT was connected continuously with the TVP by a definite tendinous tissue mediolaterally crossing the pharyngotympanic tube. At 11 weeks another fascia was visible covering the cranial and lateral sides of the tube. This "gonial fascia" had two thickened borders: the superior one corresponded to a part of the connecting tendon between the TT and TVP; the inferior one was a fibrous band ending at the os goniale near the lateral end of the TVP. In association with the gonial fascia, the fetal TT and TVP seemed to provide a functional complex. The TT-TVP complex might first help elevate the palatal shelves in association with the developing tongue. Next, the tubal passage, maintained by contraction of the muscle complex, seems to facilitate the removal of loose mesenchymal tissues from the tympanic cavity. Third, the muscle complex most likely determined the final morphology of the pterygoid process. Consequently, despite the controversial morphologies in adults, the TT and TVP seemed to make a single digastric muscle acting for the morphogenesis of the cranial base. © 2016 Wiley Periodicals, Inc.

  16. Skeletal muscles of aged male mice fail to adapt following contractile activity.

    Science.gov (United States)

    Vasilaki, A; Iwanejko, L M; McArdle, F; Broome, C S; Jackson, M J; McArdle, A

    2003-04-01

    Skeletal muscle adapts rapidly following exercise by the increased production of heat-shock proteins (HSPs). The aim of this study was to examine the ability of muscle from adult and aged mice to produce HSPs following non-damaging exercise. Adult and aged B6XSJL mice were anaesthetized and their hind limbs were subjected to isometric contractions. At different time points, muscles were analysed for HSP production by Western and Northern blotting and by electrophoretic mobility-shift assay. HSP protein and mRNA levels in muscles from adult mice increased significantly following exercise. This was not evident in muscles of aged mice. In contrast, binding of the transcription factor heat-shock factor 1 (HSF1) was not grossly altered in muscles of aged mice compared with adult mice. The data suggest that the inability of muscles of aged mice to produce HSPs appears to be due to alterations during gene transcription.

  17. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    receptor blockade. BF heterogeneity within muscles was calculated from 16-mm(3) voxels in BF images and heterogeneity among the muscles from the mean values of the four QF compartments. Mean BF in the whole QF and its four parts increased, and heterogeneity decreased with workload both without......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...... and with theophylline (P heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  18. Impact of Weight Loss on Physical Function with Changes in Strength, Muscle Mass, and Muscle Fat Infiltration in Overweight to Moderately Obese Older Adults: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Adam J. Santanasto

    2011-01-01

    Full Text Available Purpose. Evaluate the effects of weight loss on muscle mass and area, muscle fat infiltration, strength, and their association with physical function. Methods. Thirty-six overweight to moderately obese, sedentary older adults were randomized into either a physical activity plus weight loss (PA+WL or physical activity plus successful aging health education (PA+SA program. Measurements included body composition by dual-energy X-ray absorptiometry, computerized tomography, knee extensor strength, and short physical performance battery (SPPB. Results. At 6 months, PA+WL lost greater thigh fat and muscle area compared to PA+SA. PA+WL lost 12.4% strength; PA+SA lost 1.0%. Muscle fat infiltration decreased significantly in PA+WL and PA+SA. Thigh fat area decreased 6-fold in comparison to lean area in PA+WL. Change in total SPPB score was strongly inversely correlated with change in fat but not with change in lean or strength. Conclusion. Weight loss resulted in additional improvements in function over exercise alone, primarily due to loss of body fat.

  19. Mercury and other metals in muscle and ovaries of goldeye (Hiodon alosoides).

    Science.gov (United States)

    Donald, David B; Sardella, Gino D

    2010-02-01

    Concentrations of 24 trace metals were assessed in gravid ovaries and in muscle of female juvenile and adult female goldeye (Hiodon alosoides), a fish with both low annual growth (16 g/year as adults) and a long life span (maximum longevity of 30 years). It was hypothesized that adult fish with these life-history characteristics would maintain stable concentrations of metals in their tissues with higher levels of essential elements compared with those that are potentially toxic. As hypothesized, the concentration of most metals in muscle of adult female goldeye was similar at all ages, suggesting that uptake and excretion of metals was equal. Mercury was a notable exception. Total Hg concentrations in muscle of adults increased throughout life from a mean of 206 ng/g wet weight at age 8 to 809 ng/g at age 28, or by 26.2 ng/g/year. Concentrations of Hg were low in ovaries (mean 21.1 ng/g wet wt) compared to the mean for muscle, only 7% of the concentration in muscle. This was the lowest percent of muscle concentration of all 24 metals. Concentrations of Al, Ba, La, V, and Mn were significantly greater in muscle of juveniles and in ovaries than in muscle of adults. Concentrations of 13 metals were higher in ovaries relative to muscle, seven were similar, and four were depleted. Silver was enriched by over 50-fold in ovaries. Overall, the present study suggests that low concentrations of some metals in muscle of adult female goldeye, relative to concentrations in female juveniles and ovaries, may be maintained in part by transfer of metals to the external environment in eggs at spawning. Copyright 2009 SETAC.

  20. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-12-01

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  1. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Guul, Martin Kjær; Nielsen, A. N.

    2017-01-01

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre...... of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve...... healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior...

  2. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than...... was increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  3. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  4. Texture-modified diets are associated with decreased muscle mass in older adults admitted to a rehabilitation ward.

    Science.gov (United States)

    Shimizu, Akio; Maeda, Keisuke; Tanaka, Kei; Ogawa, Mei; Kayashita, Jun

    2018-05-01

    Texture-modified diets (TMD) have significantly lower energy and protein content than normal diets. Therefore, TMD can cause malnutrition and loss of muscle mass. However, few studies have reported the relationship between TMD and decreased skeletal muscle mass. The aim of the present study was to clarify the association between TMD and decreased skeletal muscle mass. We reviewed data of 188 older adult patients who were admitted to a rehabilitation hospital. TMD were defined based on the Japanese Dysphagia Diet Criteria 2013 proposed by the Japanese Society of Dysphagia Rehabilitation. The Mini Nutritional Assessment-Short Form was used to assess nutritional status; dual-energy X-ray absorptiometry was used to measure the skeletal muscle mass index, and the cut-off values for decreased skeletal muscle mass index were based on the Asian Working Group for Sarcopenia; the Functional Independence Measure was used to evaluate activities of daily living. The patients' mean age was 80.6 ± 7.5 years, and 62% were women. A total of 22 patients (11.7%) consumed TMD. A total of 104 patients (55.3%) had decreased skeletal muscle mass, and approximately 90% of them consumed TMD. Decreased skeletal muscle mass index (odds ratio 7.199, 95% confidence interval 1.489-34.805, P ≤ 0.01) and Functional Independence Measure scores (odds ratio 0.972, 95% confidence interval 0.952-0.992, P ≤ 0.01) were independently related to TMD in the multivariate analysis. The TMD group was associated with decreased skeletal muscle mass. Future, prospective studies are necessary to investigate causality. Geriatr Gerontol Int 2018; 18: 698-704. © 2017 Japan Geriatrics Society.

  5. Changes in muscle strength after diet-induced weight reduction in adult men with obesity: a prospective study

    Directory of Open Access Journals (Sweden)

    Kim B

    2017-05-01

    Full Text Available Bokun Kim,1 Takehiko Tsujimoto,2,3 Rina So,4 Xiaoguang Zhao,5 Sechang Oh,6,7 Kiyoji Tanaka2 1Faculty of Sports Health Care, Inje University, Gyeongsangnamdo, Republic of Korea; 2Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 3Faculty of Human Sciences, Shimane University, Shimane, 4Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Kawasaki, Kanagawa, 5Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, 6Faculty of Medicine, University of Tsukuba, 7The Center of Sports Medicine and Health Sciences, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan Background and objective: The benefits of weight reduction for musculoskeletal disorders are well understood. Steep declines in muscle mass following considerable weight reduction can decrease muscle strength and, consequently, physical performance. However, only a limited number of studies have examined the changes in muscle mass and strength in the context of interventional weight reduction programs. Thus, we investigated the influence of muscle mass decrease caused by diet-induced weight reduction on muscle strength in obese men.Methods: A total of 24 men with obesity (body mass index [BMI]: 29.2 ± 2.6 kg/m2; age: 52.4 ± 10.0 years attended a 12-week weight reduction program that implemented dietary restrictions. Each participant underwent assessments of body weight (by a digital scale, body composition (by whole-body dual-energy X-ray absorptiometry [DEXA], and upper and lower extremity muscle strength (by a hand-held dynamometer and a Biodex System 3 dynamometer, respectively before and after the program.Results: The program led to significant reductions of 10.5% of weight and 6.1% of lower extremity muscle mass. Similarly, lower extremity muscle strength (measured using a Biodex System 3 dynamometer was significantly decreased (isometric 60° peak torque decreased by 10% and

  6. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    Science.gov (United States)

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  7. Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres

    Science.gov (United States)

    Hernández-Ochoa, Erick O.; Schneider, Martin F.

    2012-01-01

    Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655

  8. Activin receptor subunits in normal and dysfunctional adult human testis

    DEFF Research Database (Denmark)

    Dias, V; Meachem, S; Rajpert-De Meyts, E

    2008-01-01

    The cellular sites of activin action and its regulation in the normal and dysfunctional adult human testis are unknown.......The cellular sites of activin action and its regulation in the normal and dysfunctional adult human testis are unknown....

  9. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    Science.gov (United States)

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  10. Satellite cell proliferation in adult skeletal muscle

    Science.gov (United States)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  11. Experimental characterization of post rigor mortis human muscle subjected to small tensile strains and application of a simple hyper-viscoelastic model.

    Science.gov (United States)

    Gras, Laure-Lise; Laporte, Sébastien; Viot, Philippe; Mitton, David

    2014-10-01

    In models developed for impact biomechanics, muscles are usually represented with one-dimensional elements having active and passive properties. The passive properties of muscles are most often obtained from experiments performed on animal muscles, because limited data on human muscle are available. The aim of this study is thus to characterize the passive response of a human muscle in tension. Tensile tests at different strain rates (0.0045, 0.045, and 0.45 s⁻¹) were performed on 10 extensor carpi ulnaris muscles. A model composed of a nonlinear element defined with an exponential law in parallel with one or two Maxwell elements and considering basic geometrical features was proposed. The experimental results were used to identify the parameters of the model. The results for the first- and second-order model were similar. For the first-order model, the mean parameters of the exponential law are as follows: Young's modulus E (6.8 MPa) and curvature parameter α (31.6). The Maxwell element mean values are as follows: viscosity parameter η (1.2 MPa s) and relaxation time τ (0.25 s). Our results provide new data on a human muscle tested in vitro and a simple model with basic geometrical features that represent its behavior in tension under three different strain rates. This approach could be used to assess the behavior of other human muscles. © IMechE 2014.

  12. Recruitment of single human low-threshold motor units with increasing loads at different muscle lengths.

    Science.gov (United States)

    McNulty, P A; Cresswell, A G

    2004-06-01

    We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (Precruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.

  13. Changes in recruitment order of motor units in the human biceps muscle

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Denier van der Gon, J.J.; Gielen, C.C.A.M.

    1982-01-01

    Changes in recruitment threshold of individual motor units of the human biceps (caput longum), a multifunctional muscle, were investigated during different tasks, i.e., isometric flexion of the elbow, isometric supination of the forearm, and isometric exorotation of the humerus of the 110° flexed

  14. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human....... A nonmagnetic ergometer was used for ankle dorsiflexions that activated only the anterior tibial muscle as verified by post exercise imaging. The coil design and the adiabatic sech/tanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic...... recordings did not deteriorate the NMR spectra. The VARPRO time domain fitting routine was very suitable for estimating 31P muscle spectra. With these methods it was possible to accurately estimate parameters describing metabolic and electrical changes during rest, exercise and the entire recovery period...

  15. Germline stem cells and neo-oogenesis in the adult human ovary.

    Science.gov (United States)

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  16. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    Science.gov (United States)

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  17. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  18. Vitamin D and muscle function.

    Science.gov (United States)

    Dawson-Hughes, Bess

    2017-10-01

    Muscle weakness is a hallmark of severe vitamin D deficiency, but the effect of milder vitamin D deficiency or insufficiency on muscle mass and performance and risk of falling is uncertain. In this presentation, I review the evidence that vitamin D influences muscle mass and performance, balance, and risk of falling in older adults. Special consideration is given to the impact of both the starting 25-hydroxyvitamin D [25(OH)D] level and the dose administered on the clinical response to supplemental vitamin D in older men and women. Based on available evidence, older adults with serum 25(OH)D levels vitamin D dose range of 800-1000 IU per day has been effective in many studies; lower doses have generally been ineffective and several doses above this range have increased the risk of falls. In conclusion, older adults with serum 25(OH)D levels vitamin D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    Science.gov (United States)

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P stronger (stiffer) connectivity between the two muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  1. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  2. Wnt and β-Catenin Signaling and Skeletal Muscle Myogenesis in Response to Muscle Damage and Resistance Exercise and Training

    Directory of Open Access Journals (Sweden)

    Dan Newmire

    2015-10-01

    Full Text Available The factors that regulate skeletal muscle hypertrophy in human adults in response to resistance training (RT has largely focused on endogenous endocrine responses. However, the endocrine response to RT as having an obligatory role in muscle hypertrophy has come under scrutiny, as other mechanisms and pathways seem to also be involved in up-regulating muscle protein synthesis (MPS. Skeletal muscle myogenesis is a multifactorial process of tissue growth and repair in response to resistance training is regulated by many factors.  As a result, satellite cell-fused myogenesis is a possible factor in skeletal muscle regeneration and hypertrophy in response to RT.  The Wnt family ligands interact with various receptors and activate different downstream signaling pathways and have been classified as either canonical (β-catenin dependent or non-canonical (β-catenin independent.  Wnt is secreted from numerous tissues in a paracrine fashion. The Wnt/β-catenin signaling pathway is a highly-regulated and intricate pathway that is essential to skeletal muscle myogenesis.  The canonical Wnt/β-catenin pathway may influence satellite cells to myogenic commitment, differentiation, and fusion into muscle fibers in response to injury or trauma, self-renewal, and normal basal turnover.  The current literature has shown that, in response mechanical overload from acute resistance exercise and chronic resistance training, that the Wnt/β-catenin signaling pathway is stimulated which may actuate the process of muscle repair and hypertrophy in response to exercise-induced muscle damage. The purpose of this review is to elaborate on the Wnt/β-catenin signaling  pathway, the current literature investigating the relationship of the Wnt/β-catenin pathway and its effects on myogenesis is response to muscle damage and resistance exercise and training.      Keywords: skeletal muscle, hypertrophy, myogenesis, cell signaling, protein synthesis, resistance

  3. Determination of malachite green residues in the eggs, fry, and adult muscle-tissue of rainbow-trout (Oncorhynchus-mykiss)

    Science.gov (United States)

    Allen, John L.; Gofus, J.E.; Meinertz, Jeffery R.

    1994-01-01

    Malachite green, an effective antifungal therapeutant used in fish culture, is a known teratogen. We developed a method to simultaneously detect both the chromatic and leuco forms of malachite green residues in the eggs, fry, and adult muscle tissue of rainbow trout (oncorhynchus mykiss). Homogenates of these tissues were fortified with [c-14] malachite green chloride and extracted with 1% (v/v) acetic acid in acetonitrile or in methanol. The extracts were partitioned with chloroform, dried, redissolved in mobile phase, and analyzed by liquid chromatography (lc) with postcolumn oxidation of leuco malachite green to the chromatic form. Lc fractions were collected every 30 s for quantitation by scintillation counting. Recoveries of total [c-14] malachite green chloride residue were 85 and 98% in eggs fortified with labeled malachite green at concentrations of 0.5 And 1.00 Mug/g, respectively; 68% in fry similarly fortified at a concentration of 0.65 Mug/g; and 66% in muscle homogenate similarly fortified at a level of 1.00 Mug/g. The method was tested under operational conditions by exposing adult rainbow trout to 1.00 Mg/l [c-14] malachite green chloride bath for 1 h. Muscle samples analyzed by sample oxidation and scintillation counting contained 1.3 And 0.5 Mug/g total malachite green chloride residues immediately after exposure and after a 5-day withdrawal period, respectively.

  4. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  5. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  7. Anatomical Basis of the Myofascial Trigger Points of the Gluteus Maximus Muscle

    Directory of Open Access Journals (Sweden)

    Flavia Emi Akamatsu

    2017-01-01

    Full Text Available Myofascial pain syndrome is characterized by pain and limited range of motion in joints and caused by muscular contracture related to dysfunctional motor end plates and myofascial trigger points (MTrPs. We aimed to observe the anatomical correlation between the clinically described MTrPs and the entry point of the branches of the inferior gluteal nerve into the gluteus maximus muscle. We dissected twenty gluteus maximus muscles from 10 human adult cadavers (5 males and 5 females. We measured the muscles and compiled the distribution of the nerve branches into each of the quadrants of the muscle. Statistical analysis was performed by using Student’s t-test and Kruskal-Wallis tests. Although no difference was observed either for muscle measurements or for distribution of nerve branching among the subjects, the topography of MTrPs matched the anatomical location of the entry points into the muscle. Thus, anatomical substract of the MTrPs may be useful for a better understanding of the physiopathology of these disorders and provide basis for their surgical and clinical treatment.

  8. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, Severine, E-mail: severine.lecourt@sls.aphp.fr [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Marolleau, Jean-Pierre, E-mail: Marolleau.Jean-Pierre@chu-amiens.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); CHU Amiens Hopital Sud, Service d' Hematologie Clinique, UPJV, Amiens (France); Fromigue, Olivia, E-mail: olivia.fromigue@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); Vauchez, Karine, E-mail: k.vauchez@institut-myologie.org [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Genzyme S.A.S., Saint-Germain en Laye (France); Andriamanalijaona, Rina, E-mail: rinandria@yahoo.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Ternaux, Brigitte, E-mail: brigitte.ternaux@orange.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Lacassagne, Marie-Noelle, E-mail: mnlacassagne@free.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Robert, Isabelle, E-mail: isa-robert@hotmail.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Boumediene, Karim, E-mail: karim.boumediene@unicaen.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Chereau, Frederic, E-mail: fchereau@pervasistx.com [Myosix S.A., Saint-Germain en Laye (France); Marie, Pierre, E-mail: pierre.marie@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); and others

    2010-09-10

    Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56{sup +} cells grew rapidly, a population of CD15{sup +} cells emerged, partly from CD56{sup +} cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56{sup +} and CD15{sup +} cells shared osteogenic and chondrogenic abilities, while CD56{sup +} cells presented a myogenic capacity and CD15{sup +} cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.

  9. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway.

    Science.gov (United States)

    Görgens, Sven W; Benninghoff, Tim; Eckardt, Kristin; Springer, Christian; Chadt, Alexandra; Melior, Anita; Wefers, Jakob; Cramer, Andrea; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Al-Hasani, Hadi; Eckel, Jürgen

    2017-11-01

    Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP , a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity. © 2017 by the American Diabetes Association.

  10. Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury.

    Science.gov (United States)

    Lundell, L S; Savikj, M; Kostovski, E; Iversen, P O; Zierath, J R; Krook, A; Chibalin, A V; Widegren, U

    2018-02-08

    Spinal cord injury-induced loss of skeletal muscle mass does not progress linearly. In humans, peak muscle loss occurs during the first 6 weeks postinjury, and gradually continues thereafter. The aim of this study was to delineate the regulatory events underlying skeletal muscle atrophy during the first year following spinal cord injury. Key translational, autophagic and proteolytic proteins were analysed by immunoblotting of human vastus lateralis muscle obtained 1, 3 and 12 months following spinal cord injury. Age-matched able-bodied control subjects were also studied. Several downstream targets of Akt signalling decreased after spinal cord injury in skeletal muscle, without changes in resting Akt Ser 473 and Akt Thr 308 phosphorylation or total Akt protein. Abundance of mTOR protein and mTOR Ser 2448 phosphorylation, as well as FOXO1 Ser 256 phosphorylation and FOXO3 protein, decreased in response to spinal cord injury, coincident with attenuated protein abundance of E3 ubiquitin ligases, MuRF1 and MAFbx. S6 protein and Ser 235/236 phosphorylation, as well as 4E-BP1 Thr 37/46 phosphorylation, increased transiently after spinal cord injury, indicating higher levels of protein translation early after injury. Protein abundance of LC3-I and LC3-II decreased 3 months postinjury as compared with 1 month postinjury, but not compared to able-bodied control subjects, indicating lower levels of autophagy. Proteins regulating proteasomal degradation were stably increased in response to spinal cord injury. Together, these data provide indirect evidence suggesting that protein translation and autophagy transiently increase, while whole proteolysis remains stably higher in skeletal muscle within the first year after spinal cord injury. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Normal values for quantitative muscle ultrasonography in adults.

    NARCIS (Netherlands)

    Arts, I.M.P.; Pillen, S.; Schelhaas, H.J.; Overeem, S.; Zwarts, M.J.

    2010-01-01

    Ultrasonography can detect structural muscle changes caused by neuromuscular disease. Quantitative analysis is the preferred method to determine if ultrasound findings are within normal limits, but normative data are incomplete. The purpose of this study was to provide normative muscle

  12. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Lacroix, André; Hortobágyi, Tibor; Beurskens, Rainer; Granacher, Urs

    2017-11-01

    Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature analysis has been conducted to determine if supervision affects the effectiveness of these programs to improve healthy older adults' balance and muscle strength/power. The objective of this systematic review and meta-analysis was to quantify the effectiveness of supervised vs. unsupervised balance and/or resistance training programs on measures of balance and muscle strength/power in healthy older adults. In addition, the impact of supervision on training-induced adaptive processes was evaluated in the form of dose-response relationships by analyzing randomized controlled trials that compared supervised with unsupervised trials. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SportDiscus to detect articles examining the role of supervision in balance and/or resistance training in older adults. The initially identified 6041 articles were systematically screened. Studies were included if they examined balance and/or resistance training in adults aged ≥65 years with no relevant diseases and registered at least one behavioral balance (e.g., time during single leg stance) and/or muscle strength/power outcome (e.g., time for 5-Times-Chair-Rise-Test). Finally, 11 studies were eligible for inclusion in this meta-analysis. Weighted mean standardized mean differences between subjects (SMD bs ) of supervised vs. unsupervised balance/resistance training studies were calculated. The included studies were coded for the following variables: number of participants, sex, age, number and type of interventions, type of balance/strength tests, and change (%) from pre- to post-intervention values. Additionally, we coded training according

  13. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  14. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial.

    Science.gov (United States)

    Eckardt, Nils

    2016-11-24

    It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT]) on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT) and two types of URT, i.e., machine-based (M-URT) and free-weight URT (F-URT), on measures of lower-extremity muscle strength, power and balance in older adults. Seventy-five healthy community-dwelling older adults aged 65-80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength), power (e.g., chair rise test) and balance (e.g., functional reach test), carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an effective and safe alternative training program to mitigate

  15. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  16. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle

    DEFF Research Database (Denmark)

    Sahlin, Kent; Nielsen, Jens Steen; Mogensen, Martin

    2006-01-01

    Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2......+) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus...... lateralis. Mitochondria were isolated and respiratory function measured after incubation with H(2)O(2) (HPX) or control medium (Con). Mitochondrial function was not affected by RSC during Con. However, RSC exacerbated mitochondrial dysfunction during HPX, resulting in decreased respiratory control index...

  17. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  18. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, S; Langberg, Henning; Skovgaard, D

    2000-01-01

    little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods...

  19. Jaw muscles in older overdenture patients.

    Science.gov (United States)

    Newton, James P; McManus, Frank C; Menhenick, Stephen

    2004-03-01

    To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross-sectional area (CSA) and X-ray density of two jaw closing muscles. Cross-sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. The sample consisted of 24 subjects aged 55-68 years. CSA and X-ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X-ray density between different muscles or dental states. The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients' masticatory ability compared with those who were edentulous.

  20. Effects of a Supervised versus an Unsupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Lacroix, André; Kressig, Reto W; Muehlbauer, Thomas; Gschwind, Yves J; Pfenninger, Barbara; Bruegger, Othmar; Granacher, Urs

    2016-01-01

    Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be

  1. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  2. Aging is associated with diminished muscle re-growth and myogenic precursor cell expansion in the early recovery phase after immobility-induced atrophy in human skeletal muscle

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Mackey, Abigail L

    2013-01-01

    Recovery of skeletal muscle mass from immobilisation-induced atrophy is faster in young than older individuals, yet the cellular mechanisms remain unknown. We examined the cellular and molecular regulation of muscle recovery in young and old human subjects subsequent to 2 weeks of immobility...... expression analysis of key growth and transcription factors associated with local skeletal muscle milieu were performed after 2 weeks immobility (Imm) and following 3 days (+3d) and 4 weeks (+4wks) of re-training. OM demonstrated no detectable gains in MFA (VL muscle) and no increases in number of Pax7......-induced muscle atrophy. Re-training consisted of 4 weeks of supervised resistive exercise in 9 older (OM: 67.3yrs, range 61-74) and 11 young (YM: 24.4yrs, range 21-30) males. Measures of myofiber area (MFA), Pax7-positive satellite cells (SC) associated with type I and type II muscle fibres, as well as gene...

  3. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  4. Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro.

    Directory of Open Access Journals (Sweden)

    Jing Gong

    Full Text Available To investigate the effects of four strains, generally used in clinic, including Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis, and their related products on human colonic smooth muscle in vitro.Human colonic circular muscle strips obtained from disease-free margins of resected segments from 25 patients with colorectal cancer were isometrically examined in a constant-temperature organ bath and exposed to different concentrations of living bacteria, sonicated cell fractions and cell-free supernatant (CFS. The area under the curve (AUC representing the contractility of smooth muscle strips was calculated.(1 The four living probiotics inhibited the contractility of human colonic muscle strips only at high concentration (1010 CFUs/mL, all P0.05.Four common probiotics related products, including the sonicated cell fractions and the CFS, obviously inhibited human colonic smooth muscles strips contraction in a dose-dependent manner. Only high concentration living probiotics (1010 CFUs/mL can inhibit the colonic smooth muscles strips contraction. The NO pathway may be partly involved in the inhibitory effect of CFS from Streptococcus thermophilus and Enterococcus faecalis.

  5. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.’s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    Directory of Open Access Journals (Sweden)

    Hideyuki Usa

    2017-01-01

    Full Text Available This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm was calculated. Body weight and limb segment length (thigh and lower leg length were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  6. Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle.

    Science.gov (United States)

    Meznaric, M; Eržen, I; Karen, P; Cvetko, E

    2018-03-01

    The myosin heavy chain (MyHC) composition of ageing limb muscles is transformed into a slower phenotype and expresses fast-twitch fibre type atrophy, presumably due to age-related motor unit remodelling and a change in the patterns of physical activity. It is not known if ageing affects the sternocleidomastoid muscle (SCM) in a similar way. The goal of the study was to analyze the MyHC composition and the size of muscle fibres in the ageing SCM by immunohistochemical methods and quantitative analysis and stereology using our own software for morphometry. We hypothesize that with ageing the MyHC composition of SCM transforms similarly as in ageing limb muscles, but the size of the muscle fibres is less effected as in limb muscles. The study was performed on the autopsy samples of the SCM in 12 older males. The results were compared with those published in our previous study on 15 young adult males. An ageing SCM transforms into a slower MyHC profile: the percentage of slow-twitch fibres is enhanced (numerical proportion 44.6 vs. 31.5%, Pfibres is diminished (numerical proportion 14.1 vs. 26.8%, Pfast-twitch fibres expressing MyHC-2a and 2x is smaller (50.6 vs. 63.5%, Pfibres expressing the fastest myosin isoform MyHC-2x is smaller too (19.0 vs. 34.5%, Pfibres expressing the fastest MyHC-2x provide circumstantial evidence for: (i) more fast-twitch than slow-twitch motor units being lost; and (ii) reinnervation by the surviving motor units. There appears to be no significant influence on muscle fibre size, which is congruent with relatively unchanged SCM activity during life. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  8. GLUT4 expression at the plasma membrane is related to fibre volume in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gaster, M; Vach, W; Beck-Nielsen, H

    2002-01-01

    In this study we examined the relationship between GLUT4 expression at the plasma membrane and muscle fibre size in fibre-typed human muscle fibres by immunocytochemistry and morphometry in order to gain further insight into the regulation of GLUT4 expression. At the site of the plasma membrane...

  9. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    Science.gov (United States)

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  10. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  11. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  12. Wnt Signaling in Skeletal Muscle Development and Regeneration.

    Science.gov (United States)

    Girardi, Francesco; Le Grand, Fabien

    2018-01-01

    Wnt is a family of signaling molecules involved in embryogenesis, adult tissue repair, and cancer. They activate canonical and noncanonical Wnt signaling cascades in target cells. Several studies, within the last decades, showed that several Wnt ligands are involved in myogenesis and both canonical and noncanonical Wnt pathways regulate muscle formation and the maintenance of adult tissue homeostasis. In this review, we provide a comprehensive overview of the roles of Wnt signaling during muscle development and an updated description of Wnt functions during muscle repair. Lastly, we discuss the crosstalk between Wnt and TGFβ signaling pathways in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Rem uncouples excitation–contraction coupling in adult skeletal muscle fibers

    Science.gov (United States)

    Beqollari, Donald; Romberg, Christin F.; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon

    2015-01-01

    In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling. PMID:26078055

  14. Live imaging of muscle histolysis in Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  15. TAK1 regulates skeletal muscle mass and mitochondrial function

    Science.gov (United States)

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  16. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    Science.gov (United States)

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  17. Supplementing Breakfast with a Vitamin D and Leucine-Enriched Whey Protein Medical Nutrition Drink Enhances Postprandial Muscle Protein Synthesis and Muscle Mass in Healthy Older Men.

    Science.gov (United States)

    Chanet, Audrey; Verlaan, Sjors; Salles, Jérôme; Giraudet, Christophe; Patrac, Véronique; Pidou, Véronique; Pouyet, Corinne; Hafnaoui, Nordine; Blot, Adeline; Cano, Noël; Farigon, Nicolas; Bongers, Anke; Jourdan, Marion; Luiking, Yvette; Walrand, Stéphane; Boirie, Yves

    2017-12-01

    Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal. Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults. Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m 2 ) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D 3 ), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[ 2 H 5 ]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry. Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034). Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein

  18. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear.

    Science.gov (United States)

    Gumucio, Jonathan P; Flood, Michael D; Roche, Stuart M; Sugg, Kristoffer B; Momoh, Adeyiza O; Kosnik, Paul E; Bedi, Asheesh; Mendias, Christopher L

    2016-04-01

    Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.

  19. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Roepstorff, Carsten; Brandt, Nina

    2009-01-01

    This study evaluated whether improved insulin-stimulated glucose uptake in recovery from acute exercise coincides with reduced malonyl-CoA (MCoA) content in human muscle. Furthermore, we investigated whether a high-fat diet [65 energy-% (Fat)] would alter the content of MCoA and insulin action...... to be compromised, although to a minor extent, by the Fat diet. Collectively, this study indicates that reduced muscle MCoA content in recovery from exercise may be part of the adaptive response leading to improved insulin action on glucose uptake after exercise in human muscle....

  20. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.

    Science.gov (United States)

    Gray, Stuart R; Söderlund, Karin; Ferguson, Richard A

    2008-05-01

    In this study, we examined the effect of muscle temperature (Tm) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (Tm = 34.3 degrees C, s = 0.6) and elevated (T(m) = 37.3 degrees C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 - 25% IIX isoform), IIAX50 (26 - 50% IIX), IIAX75 (51 - 75% IIX), or IIAX100 (76 - 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev . min(-1) (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.

  1. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans.

    Science.gov (United States)

    Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael

    2017-02-01

    Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.

  2. Vascular smooth muscle responsiveness to nitric oxide is reduced in healthy adults with increased adiposity

    OpenAIRE

    Christou, Demetra D.; Pierce, Gary L.; Walker, Ashley E.; Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Meade, Thomas H.; English, Mark; Seals, Douglas R.

    2012-01-01

    Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18–79 years; body mass index (BMI), 16.4–42.2 kg/m2], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI...

  3. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    Science.gov (United States)

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.

  4. Strength and muscle quality in a well-functioning cohort of older adults : the Health, Aging and Body Composition Study

    NARCIS (Netherlands)

    Newman, Anne B; Haggerty, Catherine L; Goodpaster, Bret H; Harris, Tamara B; Kritchevsky, Steve; Nevitt, Michael; Miles, Toni P; Visser, Marjolein

    OBJECTIVES: To determine whether lower lean mass and higher fat mass have independent effects on the loss of strength and muscle quality in older adults and might explain part of the effect of age. DESIGN: Single-episode, cross-sectional analyses of a cohort of subjects in the Health, Aging and Body

  5. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...

  6. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  7. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    Science.gov (United States)

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  8. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  9. A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Cooper, Chris E; Wittekind, Anna L; Beneke, Ralph; Elwell, Clare E; Leung, Terence S; Van De Ville, Dimitri

    2010-01-01

    Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during rhythmically contracting exercising skeletal muscle. We found that the saturation of the blood during the contraction phase was lower than that during the relaxation phase. The calculated oxygen drop was then divided by the contraction time to generate a value for the muscle oxygen consumption in the optical region of interest. As a test we measured the muscle oxygen consumption in the human vastus lateralis during exercise on a cycle ergometer by 11 trained male athletes (32 ± 11 years old) at 40% and 110% peak aerobic power. We saw an increase from 13.78 µmol 100 g −1 min −1 to 19.72 µmol 100 g −1 min −1 with the increase in power. The measurements are theoretically exempt from usual NIRS confounders such as myoglobin and adipose tissue and could provide a useful tool for studying human physiology

  10. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  11. Adult Functional Literacy Curriculum: Effective Strategy for Human ...

    African Journals Online (AJOL)

    Adult functional literacy curriculum no doubt, is a panacea to human resource development in Nigeria. Government and non-government organizations have roles to play in providing functional education to adults who drop out of school or have no opportunity of attending the formal school system for all round development.

  12. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency? A systematic literature analysis

    DEFF Research Database (Denmark)

    Klefter, O.; Feldt-Rasmussen, U.

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  13. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    Science.gov (United States)

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Richiardi, Jonas; Van De Ville, Dimitri; Hyacinthe, Jean-Noël

    2012-01-01

    Using a small, but very instructive experiment, it is demonstrated that laser-Doppler flowmetry (LDF) at large interoptode spacing represents a unique tool for new investigations of thermoregulatory processes modulating the blood flow of small muscle masses in humans. It is shown on five healthy subjects that steady-state values of blood flow (perfusion) in the thenar eminence muscle group depend in a complex manner on both the local intramuscular temperature and local skin temperature, while the values of blood flow parameters measured during physiological transients, such as the post-ischaemic hyperhaemic response, depend only on the intramuscular temperature. In addition, it is shown that the so-called biological zero (i.e. remaining LDF signal during arterial occlusion) is influenced not only as expected by the intramuscular temperature, but also by the skin temperature. The proposed results reveal that the skeletal muscle has unique thermoregulatory characteristics compared, for example, to human skin. These and other observations represent new findings and we hope that they will serve as a stimulus for the creation of new experimental protocols leading to better understanding of blood flow regulation. (paper)

  15. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

    Science.gov (United States)

    Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S

    2017-12-01

    Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P lean subjects only (P lean or obese subjects (P > 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals. Copyright © 2017 Endocrine Society

  16. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    Science.gov (United States)

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  17. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial

    NARCIS (Netherlands)

    Verreijen, A.M.; Verlaan, S.; Engberink, M.F.; Swinkels, S.; Bosch, J.; Weijs, P.J.M.

    2015-01-01

    Background: Intentional weight loss in obese older adults is a risk factor for muscle loss and sarcopenia. Objective: The objective was to examine the effect of a high whey protein-, leucine-, and vitamin D-enriched supplement on muscle mass preservation during intentional weight loss in obese older

  18. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Prof. Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); De Melo Lima, V J [Department of Anatomy, Federal University of Pernambuco, Recife (Brazil); Robson Brown, K [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)], E-mail: rkramer@uol.com.br

    2010-01-07

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  19. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  20. Is passive stiffness in human muscles related to the elasticity of tendon structures?

    Science.gov (United States)

    Kubo, K; Kanehisa, H; Fukunaga, T

    2001-08-01

    The purpose of this study was to examine in vivo whether passive stiffness in human muscles was related to the elasticity of tendon structures and to performance during stretch-shortening cycle exercise. Passive torque of plantar flexor muscles was measured during passive stretch from 90 degrees (anatomical position) to 65 degrees of dorsiflexion at a constant velocity of 5 degrees.s-1. The slope of the linear portion of the passive torque-angle curve during stretching was defined as the passive stiffness of the muscle. The elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured using ultrasonography during ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force of MG and tendon elongation was fitted to a linear regression, the slope of which was defined as the stiffness of the tendon. In addition, the dynamic torques during maximal voluntary concentric plantar flexion with and without prior eccentric contraction were determined at a constant velocity of 120 degrees.s-1. There were no significant correlations between passive stiffness and either the tendon stiffness (r = 0.19, P > 0.05) or the relative increase in torque with prior eccentric contraction (r = -0.19, P > 0.05). However, tendon stiffness was negatively correlated to the relative increase in torque output (r = -0.42, P tendon structures, and had no favourable effect on the muscle performance during stretch-shortening cycle exercise.

  1. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Gerhart

    Full Text Available Posterior capsule opacification (PCO is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.

  2. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Directory of Open Access Journals (Sweden)

    Chantal Anne Pileggi

    2016-11-01

    Full Text Available A maternal high-fat (HF diet during pregnancy can lead to metabolic compromise such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat or a high fat diet (HFD; 45% kcal from fat for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1 and mitochondrial transcription factor A (mtTFA were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS respiratory complex subunits were supressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%, which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%. Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.

  3. Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus

    Science.gov (United States)

    Sato, Tatsuo; Koizumi, Masahiro; Kim, Ji Hyun; Kim, Jeong Hyun; Wang, Bao Jian; Murakami, Gen; Cho, Baik Hwan

    2011-01-01

    Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9–15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles. PMID:21954879

  4. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive...... arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P ....05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately...

  5. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-legged knee extensor exercise. Biopsies were obtained from the vastus lateralis muscle of both the untrained and trained legs before exercise and after 0, 2, 6 and 24 h of recovery. Time to exhaustion (2 min maximum resistance), as well as hexokinase II (HKII), citrate synthase and 3-hydroxyacyl...

  6. The Muscle Metabolome Differs between Healthy and Frail Older Adults.

    Science.gov (United States)

    Fazelzadeh, Parastoo; Hangelbroek, Roland W J; Tieland, Michael; de Groot, Lisette C P G M; Verdijk, Lex B; van Loon, Luc J C; Smilde, Age K; Alves, Rodrigo D A M; Vervoort, Jacques; Müller, Michael; van Duynhoven, John P M; Boekschoten, Mark V

    2016-02-05

    Populations around the world are aging rapidly. Age-related loss of physiological functions negatively affects quality of life. A major contributor to the frailty syndrome of aging is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy metabolome of healthy young, healthy older and frail older subjects to determine the effect of age and frailty on the metabolic signature of skeletal muscle tissue. In addition, the effects of prolonged whole-body resistance-type exercise training on the muscle metabolome of older subjects were examined. The baseline metabolome was measured in muscle biopsies collected from 30 young, 66 healthy older subjects, and 43 frail older subjects. Follow-up samples from frail older (24 samples) and healthy older subjects (38 samples) were collected after 6 months of prolonged resistance-type exercise training. Young subjects were included as a reference group. Primary differences in skeletal muscle metabolite levels between young and healthy older subjects were related to mitochondrial function, muscle fiber type, and tissue turnover. Similar differences were observed when comparing frail older subjects with healthy older subjects at baseline. Prolonged resistance-type exercise training resulted in an adaptive response of amino acid metabolism, especially reflected in branched chain amino acids and genes related to tissue remodeling. The effect of exercise training on branched-chain amino acid-derived acylcarnitines in older subjects points to a downward shift in branched-chain amino acid catabolism upon training. We observed only modest correlations between muscle and plasma metabolite levels, which pleads against the use of plasma metabolites as a direct read-out of muscle metabolism and stresses the need for direct assessment of metabolites in muscle tissue biopsies.

  7. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Science.gov (United States)

    Catoire, Milène; Mensink, Marco; Boekschoten, Mark V; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max). Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  8. Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults.

    Science.gov (United States)

    Jesunathadas, Mark; Marmon, Adam R; Gibb, James M; Enoka, Roger M

    2010-06-01

    The significant decline in motor neuron number after approximately 60 yr of age is accompanied by a remodeling of the neuromuscular system so that average motor unit force increases and the ability of old adults to produce an intended force declines. One possible explanation for the loss of movement precision is that the remodeling increases the difference in recruitment forces between successively recruited motor units in old adults and this augments force variability at motor unit recruitment. The purpose of the study was to compare the forces and discharge characteristics of motor units in a hand muscle of young and old adults at motor unit recruitment and derecruitment. The difference in recruitment force between pairs of motor units did not differ between young (n=54) and old adults (n=56; P=0.702). However, old adults had a greater proportion of contractions in which motor units discharged action potentials transiently before discharging continuously during the ramp increase in force (young: 0.32; old: 0.41; P=0.045). Force variability at motor unit recruitment was greater for old adults compared with young adults (Por=0.729). These results suggest that the difference in force between the recruitment of successive motor units does not differ between age groups, but that motor unit recruitment may be more transient and could contribute to the greater variability in force observed in old adults during graded ramp contractions.

  9. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Elisia D. Tichy

    2017-10-01

    Full Text Available Muscle stem cells (MuSCs contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells.

  10. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise.

    Science.gov (United States)

    D'Lugos, Andrew C; Patel, Shivam H; Ormsby, Jordan C; Curtis, Donald P; Fry, Christopher S; Carroll, Chad C; Dickinson, Jared M

    2018-04-01

    Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6 Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1 Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before

  11. Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults.

    Science.gov (United States)

    Beals, Joseph W; Sukiennik, Richard A; Nallabelli, Julian; Emmons, Russell S; van Vliet, Stephan; Young, Justin R; Ulanov, Alexander V; Li, Zhong; Paluska, Scott A; De Lisio, Michael; Burd, Nicholas A

    2016-10-01

    Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. Ten healthy-weight [HW; BMI (in kg/m 2 ): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring- 13 C 6 ]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767. © 2016 American Society for Nutrition.

  12. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  13. Productive infection of human skeletal muscle cells by pandemic and seasonal influenza A(H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Marion Desdouits

    Full Text Available Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1 in 2009. The pathogenesis of these influenza-associated myopathies (IAM remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1 isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes were highly susceptible to infection by both influenza A(H1N1 isolates, whereas undifferentiated cells (i. e. myoblasts were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.

  14. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  15. MicroRNA transcriptome profiles during swine skeletal muscle development

    Directory of Open Access Journals (Sweden)

    Sonstegard Tad S

    2009-02-01

    Full Text Available Abstract Background MicroRNA (miR are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.

  16. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults.

    Science.gov (United States)

    Costello, Joseph T; Baker, Philip R A; Minett, Geoffrey M; Bieuzen, Francois; Stewart, Ian B; Bleakley, Chris

    2015-09-18

    Recovery strategies are often used with the intention of preventing or minimising muscle soreness after exercise. Whole-body cryotherapy, which involves a single or repeated exposure(s) to extremely cold dry air (below -100 °C) in a specialised chamber or cabin for two to four minutes per exposure, is currently being advocated as an effective intervention to reduce muscle soreness after exercise. To assess the effects (benefits and harms) of whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, the British Nursing Index and the Physiotherapy Evidence Database. We also searched the reference lists of articles, trial registers and conference proceedings, handsearched journals and contacted experts.The searches were run in August 2015. We aimed to include randomised and quasi-randomised trials that compared the use of whole-body cryotherapy (WBC) versus a passive or control intervention (rest, no treatment or placebo treatment) or active interventions including cold or contrast water immersion, active recovery and infrared therapy for preventing or treating muscle soreness after exercise in adults. We also aimed to include randomised trials that compared different durations or dosages of WBC. Our prespecified primary outcomes were muscle soreness, subjective recovery (e.g. tiredness, well-being) and adverse effects. Two review authors independently screened search results, selected studies, assessed risk of bias and extracted and cross-checked data. Where appropriate, we pooled results of comparable trials. The random-effects model was used for pooling where there was substantial heterogeneity. We assessed the quality of the evidence using GRADE. Four laboratory-based randomised controlled trials were included. These reported results for 64

  17. Associations between muscle structure and contractile performance in seniors.

    Science.gov (United States)

    Randhawa, Avleen; Wakeling, James M

    2013-07-01

    Changes in muscle structure due to aging occur in a process known as sarcopenia. These changes can alter muscle mechanics during contraction that may limit mobility in seniors. The purpose of this study was to investigate the effect of sarcopenia on muscle fascicle length, pennation and belly thickness in a contracting muscle during isokinetic movements. Fascicles within a pennate muscle shorten at a slower velocity than that of the muscle belly, in a process called belly gearing. Belly gearing may be affected by atrophy and so was also tested in these seniors. The gastrocnemii were tested using ultrasound from 10 young adults (20-40 years) and 9 seniors (70-85 years). The muscle structure was imaged during standing and maximal plantarflexion at four constant velocities on a dynamometer and torque, position and time were recorded during contractions. The muscle belly thickness and pennation in seniors were significantly lower than young adults during standing. Belly thickness, changes in pennation, the belly gearing, ankle torque and power output were all significantly lower in seniors during plantarflexion contractions of the medial gastrocnemius (MG) and lateral gastrocnemius (LG). The higher pennation observed in young adults is commonly associated with increased fascicle rotations during contraction causing an increased belly gearing. The decreased fascicle rotations in seniors resulted in reduced belly gearing but the size of this effect did not match the loss in strength or power from the muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI

    NARCIS (Netherlands)

    van Spronsena, P. H.; van Ginkel, F. C.; van Schijndel, R. A.; Castelijns, J. A.; Tuinzing, D. B.

    Objective: In humans, the vertical craniofacial dimensions vary significantly with the size of the jaw muscles, which are regarded as important controlling factors of craniofacial growth. The functional relevance of the maximum cross-sectional area (CSA), indicating maximum muscle strength, is

  19. A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI

    NARCIS (Netherlands)

    Boom, H.P.W.; van Spronsen, P.H.; van Ginkel, F.C.; van Schijndel, R.A.; Castelijns, J.A.; Tuinzing, D.B.

    2008-01-01

    Objective In humans, the vertical craniofacial dimensions vary significantly with the size of the jaw muscles, which are regarded as important controlling factors of craniofacial growth. The functional relevance of the maximum cross-sectional area (CSA), indicating maximum muscle strength, is

  20. A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI

    NARCIS (Netherlands)

    Boom, H.P.; van Spronsen, P.H.; van Ginkel, F.C.; van Schijndel, R.A.; Castelijns, J.A.; Tuinzing, D.B.

    2008-01-01

    Objective: In humans, the vertical craniofacial dimensions vary significantly with the size of the jaw muscles, which are regarded as important controlling factors of craniofacial growth. The functional relevance of the maximum cross-sectional area (CSA), indicating maximum muscle strength, is