WorldWideScience

Sample records for adult drosophila brain

  1. Adult Neurogenesis in Drosophila

    OpenAIRE

    Ismael Fernández-Hernández; Christa Rhiner; Eduardo Moreno

    2013-01-01

    Adult neurogenesis has been linked to several cognitive functions and neurological disorders. Description of adult neurogenesis in a model organism like Drosophila could facilitate the genetic study of normal and abnormal neurogenesis in the adult brain. So far, formation of new neurons has not been detected in adult fly brains and hence has been thought to be absent in Drosophila. Here, we used an improved lineage-labeling method to show that, surprisingly, adult neurogenesis occurs in the m...

  2. Opposite effects of 5-HT/AKH and octopamine on the crop contractions in adult Drosophila melanogaster: Evidence of a double brain-gut serotonergic circuitry

    Science.gov (United States)

    Picciau, Lorenzo; Murru, Ludovico; Stoffolano, John G.

    2017-01-01

    This study showed that in adult Drosophila melanogaster, the type of sugar—either present within the crop lumen or in the bathing solution of the crop—had no effect on crop muscle contraction. What is important, however, is the volume within the crop lumen. Electrophysiological recordings demonstrated that exogenous applications of serotonin on crop muscles increases both the amplitude and the frequency of crop contraction rate, while adipokinetic hormone mainly enhances the crop contraction frequency. Conversely, octopamine virtually silenced the overall crop activity. The present study reports for the first time an analysis of serotonin effects along the gut-brain axis in adult D. melanogaster. Injection of serotonin into the brain between the interocellar area shows that brain applications of serotonin decrease the frequency of crop activity. Based on our results, we propose that there are two different, opposite pathways for crop motility control governed by serotonin: excitatory when added in the abdomen (i.e., directly bathing the crop) and inhibitory when supplied within the brain (i.e., by injection). Finally, our results point to a double brain-gut serotonergic circuitry suggesting that not only the brain can affect gut functions, but the gut can also affect the central nervous system. On the basis of our results, and data in the literature, a possible mechanism for these two discrete serotonergic functions is suggested. PMID:28334024

  3. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  4. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  5. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain.

    Science.gov (United States)

    Gu, Huaiyu; Jiang, Shaojuan Amy; Campusano, Jorge M; Iniguez, Jorge; Su, Hailing; Hoang, Andy An; Lavian, Monica; Sun, Xicui; O'Dowd, Diane K

    2009-01-01

    Voltage-gated calcium channels containing alpha1 subunits encoded by Ca(v)2 family genes are critical in regulating release of neurotransmitter at chemical synapses. In Drosophila, cac is the only Ca(v)2-type gene. Cacophony (CAC) channels are localized in motor neuron terminals where they have been shown to mediate evoked, but not AP-independent, release of glutamate at the larval neuromuscular junction (NMJ). Cultured embryonic neurons also express CAC channels, but there is no information about the properties of CAC-mediated currents in adult brain nor how these channels regulate transmission in central neural circuits where fast excitatory synaptic transmission is predominantly cholinergic. Here we report that wild-type neurons cultured from late stage pupal brains and antennal lobe projection neurons (PNs) examined in adult brains, express calcium currents with two components: a slow-inactivating current sensitive to the spider toxin Plectreurys toxin II (PLTXII) and a fast-inactivating PLTXII-resistant component. CAC channels are the major contributors to the slow-inactivating PLTXII-sensitive current based on selective reduction of this component in hypomorphic cac mutants (NT27 and TS3). Another characteristic of cac mutant neurons both in culture and in whole brain recordings is a reduced cholinergic miniature excitatory postsynaptic current frequency that is mimicked in wild-type neurons by acute application of PLTXII. These data demonstrate that cac encoded Ca(v)2-type calcium channels regulate action potential (AP)-independent release of neurotransmitter at excitatory cholinergic synapses in the adult brain, a function not predicted from studies at the larval NMJ.

  6. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain.

    Science.gov (United States)

    Nezis, Ioannis P; Simonsen, Anne; Sagona, Antonia P; Finley, Kim; Gaumer, Sébastien; Contamine, Didier; Rusten, Tor Erik; Stenmark, Harald; Brech, Andreas

    2008-03-24

    P62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.

  7. Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain

    Science.gov (United States)

    Levy, Peter; Larsen, Camilla

    2013-01-01

    Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing. PMID:23749685

  8. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  9. Drosophila neural stem cells in brain development and tumor formation.

    Science.gov (United States)

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  10. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain

    Science.gov (United States)

    Vonk, Jan J.; Lahaye, Liza L.; Kanon, Bart; van der Zwaag, Marianne; Velayos-Baeza, Antonio; Freire, Raimundo; van IJzendoorn, Sven C.; Grzeschik, Nicola A.; Sibon, Ody C. M.

    2017-01-01

    Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A) gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2)P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis. PMID:28107480

  11. Three-dimensional network of Drosophila brain hemisphere

    OpenAIRE

    Mizutani, Ryuta; Saiga, Rino; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The first step to understanding brain function is to determine the brain's network structure. We report a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation tomographic microscopy. A skeletonized wire model of the left half of the brain network was built by tracing the three-dimensional distribution of X-ray absorption coefficients. The obtained models of neuronal processes were classified into groups on the basis of their three-d...

  12. Drosophila adult and larval pheromones modulate larval food choice.

    Science.gov (United States)

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-06-07

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally--but not always--low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature.

  13. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  14. Three-dimensional network of Drosophila brain hemisphere

    CERN Document Server

    Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The first step to understanding brain function is to determine the brain's network structure. We report a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation tomographic microscopy. A skeletonized wire model of the left half of the brain network was built by tracing the three-dimensional distribution of X-ray absorption coefficients. The obtained models of neuronal processes were classified into groups on the basis of their three-dimensional structures. These classified groups correspond to neuronal tracts that send long-range projections or repeated structures of the optic lobe. The skeletonized model is also composed of neuronal processes that could not be classified into the groups. The distribution of these unclassified structures correlates with the distribution of contacts between neuronal processes. This suggests that neurons that cannot be classified into typical structures should play important roles in brain functions. The quantitative de...

  15. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  16. CCHamide-2 Is an Orexigenic Brain-Gut Peptide in Drosophila.

    Directory of Open Access Journals (Sweden)

    Guilin R Ren

    Full Text Available The neuroendocrine peptides CCHamide-1 and -2, encoded by the genes ccha1 and -2, are produced by endocrine cells in the midgut and by neurons in the brain of Drosophila melanogaster. Here, we used the CRISPR/Cas9 technique to disrupt the ccha1 and -2 genes and identify mutant phenotypes with a focus on ccha-2 mutants. We found that both larval and adult ccha2 mutants showed a significantly reduced food intake as measured in adult flies by the Capillary Feeding (CAFE assay (up to 72% reduced food intake compared to wild-type. Locomotion tests in adult flies showed that ccha2 mutants had a significantly reduced locomotor activity especially around 8 a.m. and 8 p.m., where adult Drosophila normally feeds (up to 70% reduced locomotor activity compared to wild-type. Reduced larval feeding is normally coupled to a delayed larval development, a process that is mediated by insulin. Accordingly, we found that the ccha2 mutants had a remarkably delayed development, showing pupariation 70 hours after the pupariation time point of the wild-type. In contrast, the ccha-1 mutants were not developmentally delayed. We also found that the ccha2 mutants had up to 80% reduced mRNA concentrations coding for the Drosophila insulin-like-peptides-2 and -3, while these concentrations were unchanged for the ccha1 mutants. From these experiments we conclude that CCHamide-2 is an orexigenic peptide and an important factor for controlling developmental timing in Drosophila.

  17. Continued neurogenesis in adult Drosophila as a mechanism for recruiting environmental cue-dependent variants.

    Directory of Open Access Journals (Sweden)

    Selim Ben Rokia-Mille

    Full Text Available BACKGROUND: The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. METHODOLOGY/PRINCIPAL FINDINGS: A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site. It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. CONCLUSIONS: We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and

  18. Drosophila melanogaster as a Model Organism of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Werner Paulus

    2009-02-01

    Full Text Available Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.

  19. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  20. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain

    Directory of Open Access Journals (Sweden)

    Philipp A. Kuert

    2012-08-01

    The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However, nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is expressed initially in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wildtype brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development.

  1. A signaling network for patterning of neuronal connectivity in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Mohammed Srahna

    2006-10-01

    Full Text Available The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF receptor, and Jun N-terminal kinase (JNK signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF-Breathless (FGF receptor axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.

  2. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  3. Inhibiting the Mitochondrial Calcium Uniporter during Development Impairs Memory in Adult Drosophila

    Directory of Open Access Journals (Sweden)

    Ilaria Drago

    2016-09-01

    Full Text Available The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn—a brain region critical for olfactory memory formation—causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism.

  4. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2003-08-01

    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  5. Transient Dysregulation of Dopamine Signaling in a Developing Drosophila Arousal Circuit Permanently Impairs Behavioral Responsiveness in Adults

    Science.gov (United States)

    Ferguson, Lachlan; Petty, Alice; Rohrscheib, Chelsie; Troup, Michael; Kirszenblat, Leonie; Eyles, Darryl W.; van Swinderen, Bruno

    2017-01-01

    The dopamine ontogeny hypothesis for schizophrenia proposes that transient dysregulation of the dopaminergic system during brain development increases the likelihood of this disorder in adulthood. To test this hypothesis in a high-throughput animal model, we have transiently manipulated dopamine signaling in the developing fruit fly Drosophila melanogaster and examined behavioral responsiveness in adult flies. We found that either a transient increase of dopamine neuron activity or a transient decrease of dopamine receptor expression during fly brain development permanently impairs behavioral responsiveness in adults. A screen for impaired responsiveness revealed sleep-promoting neurons in the central brain as likely postsynaptic dopamine targets modulating these behavioral effects. Transient dopamine receptor knockdown during development in a restricted set of ~20 sleep-promoting neurons recapitulated the dopamine ontogeny phenotype, by permanently reducing responsiveness in adult animals. This suggests that disorders involving impaired behavioral responsiveness might result from defective ontogeny of sleep/wake circuits. PMID:28243212

  6. Detection of transgenerational spermatogenic inheritance of adult male acquired CNS gene expression characteristics using a Drosophila systems model.

    Directory of Open Access Journals (Sweden)

    Abhay Sharma

    Full Text Available Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F(1 adults after treating F(0 adult males with PTZ and of F(2 adults resulting from a cross between F(1 males and normal females. Surprisingly, microarray clustering showed F(1 male profile as closest to F(1 female and F(0 male profile closest to F(2 male. Differentially expressed genes in F(1 males, F(1 females and F(2 males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F(2 males. Next, we generated microarray expression profiles of adult testis from F(0 and F(1 males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying

  7. Average shape standard atlas for the adult Drosophila ventral nerve cord.

    Science.gov (United States)

    Boerner, Jana; Duch, Carsten

    2010-07-01

    Neuroanatomy benefits from quantification of neural structures, i.e., neurons, circuits, and brain parts, within a common reference system. Recent improvements in imaging techniques and increased computational power have made the creation of Web-based databases possible, which serve as common platforms for incorporating anatomical data. This study establishes a standard average shape atlas for the ventral nerve cord (VNC) of Drosophila melanogaster. This atlas allows for the registration of morphological, developmental, and genetic data into one quantitative 3D reference system. The standard is based on an average adult Drosophila VNC neuropil as labeled in 24 whole-mount preparations with the commercially available antibody (nc82) recognizing the Drosophila Bruchpilot protein (Brp). For the standardization procedure no expert knowledge of brain anatomy is required and global thresholding as well as straightforward affine and elastic registration procedures minimize user interactions. Successful registration is demonstrated for tracts and commissures, gene expression patterns, and geometric reconstructions of individual neurons. Any structure that is counterstained with anti-Brp can be registered into the standard, allowing for fast comparison of data from different experiments and different laboratories. In addition, standard transformations can be applied to gray scale image data, so that any confocal image stack that is colabeled with anti-Brp can be analyzed within standardized 3D reference coordinates. This allows for the creation of putative neural connectivity maps and the comparison of expression patterns derived from different preparations. The standard and protocols for histological methods, segmentation, and registration procedures will be made available on the Web.

  8. Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila

    Directory of Open Access Journals (Sweden)

    Grau Yves

    2010-04-01

    Full Text Available Abstract Background The mushroom bodies (MBs are paired brain centers located in the insect protocerebrum involved in olfactory learning and memory and other associative functions. Processes from the Kenyon cells (KCs, their intrinsic neurons, form the bulk of the MB's calyx, pedunculus and lobes. In young adult Drosophila, the last-born KCs extend their processes in the α/β lobes as a thin core (α/β cores that is embedded in the surrounding matrix of other mature KC processes. A high level of L-glutamate (Glu immunoreactivity is present in the α/β cores (α/βc of recently eclosed adult flies. In a Drosophila model of fragile X syndrome, the main cause of inherited mental retardation, treatment with metabotropic Glu receptor (mGluR antagonists can rescue memory deficits and MB structural defects. Results To address the role of Glu signaling in the development and maturation of the MB, we have compared the time course of Glu immunoreactivity with the expression of various glutamatergic markers at various times, that is, 1 hour, 1 day and 10 days after adult eclosion. We observed that last-born α/βc KCs in young adult as well as developing KCs in late larva and at various pupal stages transiently express high level of Glu immunoreactivity in Drosophila. One day after eclosion, the Glu level was already markedly reduced in the α/βc neurons. Glial cell processes expressing glutamine synthetase and the Glu transporter dEAAT1 were found to surround the Glu-expressing KCs in very young adults, subsequently enwrapping the α/β lobes to become distributed equally over the entire MB neuropil. The vesicular Glu transporter DVGluT was detected by immunostaining in processes that project within the MB lobes and pedunculus, but this transporter is apparently never expressed by the KCs themselves. The NMDA receptor subunit dNR1 is widely expressed in the MB neuropil just after eclosion, but was not detected in the α/βc neurons. In contrast, we

  9. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos

    Directory of Open Access Journals (Sweden)

    Ng Fanny

    2008-12-01

    Full Text Available Abstract Background The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC heterodimers activate their feedback regulators period (per and timeless (tim via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. Results A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs, dorsal neurons 2 s (DN2s, and dorsal neuron 1 s (DN1s at embryonic stage (ES 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. Conclusion These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is

  10. Differential potencies of effector genes in adult Drosophila.

    Science.gov (United States)

    Thum, Andreas S; Knapek, Stephan; Rister, Jens; Dierichs-Schmitt, Eva; Heisenberg, Martin; Tanimoto, Hiromu

    2006-09-10

    The GAL4/UAS gene expression system in Drosophila has been crucial in revealing the behavioral significance of neural circuits. Transgene products that block neurotransmitter release and induce cell death have been proved to inhibit neural function powerfully. Here we compare the action of the five effector genes shibire(ts1), Tetanus toxin light chain (TNT), reaper, Diphtheria toxin A-chain (DTA), and inwardly rectifying potassium channel (Kir2.1) and show differences in their efficiency depending on the target cells and the timing of induction. Specifically, effectors blocking neuronal transmission or excitability led to adult-induced paralysis more efficiently than those causing cell ablation. We contrasted these differential potencies in adult to their actions during development. Furthermore, we induced TNT expression in the adult mushroom bodies. In contrast to the successful impairment in short-term olfactory memory by shibire(ts1), adult TNT expression in the same set of cells did not lead to any obvious impairment. Altogether, the efficiency of effector genes depends on properties of the targeted neurons. Thus, we conclude that the selection of the appropriate effector gene is critical for evaluating the function of neural circuits.

  11. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides.

    Directory of Open Access Journals (Sweden)

    Lily Kahsai

    Full Text Available In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a: Drosophila tachykinin (DTK, short neuropeptide F (sNPF and ion transport peptide (ITP. These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.

  12. Metabolic Stress Responses in Drosophila Are Modulated by Brain Neurosecretory Cells That Produce Multiple Neuropeptides

    Science.gov (United States)

    Kahsai, Lily; Kapan, Neval; Dircksen, Heinrich; Winther, Åsa M. E.; Nässel, Dick R.

    2010-01-01

    In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells. PMID:20628603

  13. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion.

  14. Central brain neurons expressing doublesex regulate female receptivity in Drosophila.

    Science.gov (United States)

    Zhou, Chuan; Pan, Yufeng; Robinett, Carmen C; Meissner, Geoffrey W; Baker, Bruce S

    2014-07-02

    Drosophila melanogaster females respond to male courtship by either rejecting the male or allowing copulation. The neural mechanisms underlying these female behaviors likely involve the integration of sensory information in the brain. Because doublesex (dsx) controls other aspects of female differentiation, we asked whether dsx-expressing neurons mediate virgin female receptivity to courting males. Using intersectional techniques to manipulate the activities of defined subsets of dsx-expressing neurons, we found that activation of neurons in either the pCd or pC1 clusters promotes receptivity, while silencing these neurons makes females unreceptive. Furthermore, pCd and pC1 neurons physiologically respond to the male-specific pheromone cis-vaccenyl acetate (cVA), while pC1 neurons also respond to male courtship song. The pCd and pC1 neurons expressing dsx in females do not express transcripts from the fruitless (fru) P1 promoter. Thus, virgin female receptivity is controlled at least in part by neurons that are distinct from those governing male courtship.

  15. Drosophila big brain does not act as a water channel, but mediates cell adhesion.

    Science.gov (United States)

    Tatsumi, Kimiko; Tsuji, Shoji; Miwa, Hideki; Morisaku, Toshinori; Nuriya, Mutsuo; Orihara, Minako; Kaneko, Kazunari; Okano, Hideyuki; Yasui, Masato

    2009-06-18

    The neurogenic gene Drosophila big brain (bib) has a high sequence homology to aquaporin-4. However, its cellular functions in Drosophila neurogenesis have remained elusive. Here we investigated cell adhesion, and the ion and water permeability of Bib. The adhesive function was examined by a cell aggregation assay using L cells. Bib-transfected L cells formed aggregated clusters, while control-L cells remained as a single cell suspension. Ion permeation was not confirmed in L cells stably expressing Bib. When expressed in COS7 cells, Bib exhibited limited water permeability. This newly found cell adhesive function of Bib may be important for Drosophila neurogenesis.

  16. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body.

  17. A role for the adult fat body in Drosophila male courtship behavior.

    Directory of Open Access Journals (Sweden)

    Anna A Lazareva

    2007-01-01

    Full Text Available Mating behavior in Drosophila depends critically on the sexual identity of specific regions in the brain, but several studies have identified courtship genes that express products only outside the nervous system. Although these genes are each active in a variety of non-neuronal cell types, they are all prominently expressed in the adult fat body, suggesting an important role for this tissue in behavior. To test its role in male courtship, fat body was feminized using the highly specific Larval serum protein promoter. We report here that the specific feminization of this tissue strongly reduces the competence of males to perform courtship. This effect is limited to the fat body of sexually mature adults as the feminization of larval fat body that normally persists in young adults does not affect mating. We propose that feminization of fat body affects the synthesis of male-specific secreted circulating proteins that influence the central nervous system. In support of this idea, we demonstrate that Takeout, a protein known to influence mating, is present in the hemolymph of adult males but not females and acts as a secreted protein.

  18. Primary brain tumours in adults.

    Science.gov (United States)

    Ricard, Damien; Idbaih, Ahmed; Ducray, François; Lahutte, Marion; Hoang-Xuan, Khê; Delattre, Jean-Yves

    2012-05-26

    Important advances have been made in the understanding and management of adult gliomas and primary CNS lymphomas--the two most common primary brain tumours. Progress in imaging has led to a better analysis of the nature and grade of these tumours. Findings from large phase 3 studies have yielded some standard treatments for gliomas, and have confirmed the prognostic value of specific molecular alterations. High-throughput methods that enable genome-wide analysis of tumours have improved the knowledge of tumour biology, which should lead to a better classification of gliomas and pave the way for so-called targeted therapy trials. Primary CNS lymphomas are a group of rare non-Hodgkin lymphomas. High-dose methotrexate-based regimens increase survival, but the standards of care and the place of whole-brain radiotherapy remain unclear, and are likely to depend on the age of the patient. The focus now is on the development of new polychemotherapy regimens to reduce or defer whole-brain radiotherapy and its delayed complications.

  19. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila

    DEFF Research Database (Denmark)

    Ren, Guilin Robin; Hauser, Frank; Rewitz, Kim Furbo;

    2015-01-01

    The neuroendocrine peptides CCHamide-1 and -2, encoded by the genes ccha1 and -2, are produced by endocrine cells in the midgut and by neurons in the brain of Drosophila melanogaster. Here, we used the CRISPR/Cas9 technique to disrupt the ccha1 and -2 genes and identify mutant phenotypes with a f......The neuroendocrine peptides CCHamide-1 and -2, encoded by the genes ccha1 and -2, are produced by endocrine cells in the midgut and by neurons in the brain of Drosophila melanogaster. Here, we used the CRISPR/Cas9 technique to disrupt the ccha1 and -2 genes and identify mutant phenotypes...

  20. Drosophila Brat and Human Ortholog TRIM3 Maintain Stem Cell Equilibrium and Suppress Brain Tumorigenesis by Attenuating Notch Nuclear Transport.

    Science.gov (United States)

    Mukherjee, Subhas; Tucker-Burden, Carol; Zhang, Changming; Moberg, Kenneth; Read, Renee; Hadjipanayis, Costas; Brat, Daniel J

    2016-04-15

    Cancer stem cells exert enormous influence on neoplastic behavior, in part by governing asymmetric cell division and the balance between self-renewal and multipotent differentiation. Growth is favored by deregulated stem cell division, which enhances the self-renewing population and diminishes the differentiation program. Mutation of a single gene in Drosophila, Brain Tumor (Brat), leads to disrupted asymmetric cell division resulting in dramatic neoplastic proliferation of neuroblasts and massive larval brain overgrowth. To uncover the mechanisms relevant to deregulated cell division in human glioma stem cells, we first developed a novel adult Drosophila brain tumor model using brat-RNAi driven by the neuroblast-specific promoter inscuteable Suppressing Brat in this population led to the accumulation of actively proliferating neuroblasts and a lethal brain tumor phenotype. brat-RNAi caused upregulation of Notch signaling, a node critical for self-renewal, by increasing protein expression and enhancing nuclear transport of Notch intracellular domain (NICD). In human glioblastoma, we demonstrated that the human ortholog of Drosophila Brat, tripartite motif-containing protein 3 (TRIM3), similarly suppressed NOTCH1 signaling and markedly attenuated the stem cell component. We also found that TRIM3 suppressed nuclear transport of active NOTCH1 (NICD) in glioblastoma and demonstrated that these effects are mediated by direct binding of TRIM3 to the Importin complex. Together, our results support a novel role for Brat/TRIM3 in maintaining stem cell equilibrium and suppressing tumor growth by regulating NICD nuclear transport. Cancer Res; 76(8); 2443-52. ©2016 AACR.

  1. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  2. Octopamine mediates starvation-induced hyperactivity in adult Drosophila

    Science.gov (United States)

    Yang, Zhe; Yu, Yue; Zhang, Vivian; Tian, Yinjun; Qi, Wei; Wang, Liming

    2015-01-01

    Starved animals often exhibit elevated locomotion, which has been speculated to partly resemble foraging behavior and facilitate food acquisition and energy intake. Despite its importance, the neural mechanism underlying this behavior remains unknown in any species. In this study we confirmed and extended previous findings that starvation induced locomotor activity in adult fruit flies Drosophila melanogaster. We also showed that starvation-induced hyperactivity was directed toward the localization and acquisition of food sources, because it could be suppressed upon the detection of food cues via both central nutrient-sensing and peripheral sweet-sensing mechanisms, via induction of food ingestion. We further found that octopamine, the insect counterpart of vertebrate norepinephrine, as well as the neurons expressing octopamine, were both necessary and sufficient for starvation-induced hyperactivity. Octopamine was not required for starvation-induced changes in feeding behaviors, suggesting independent regulations of energy intake behaviors upon starvation. Taken together, our results establish a quantitative behavioral paradigm to investigate the regulation of energy homeostasis by the CNS and identify a conserved neural substrate that links organismal metabolic state to a specific behavioral output. PMID:25848004

  3. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    Science.gov (United States)

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  4. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila

    DEFF Research Database (Denmark)

    Ren, Guilin Robin; Hauser, Frank; Rewitz, Kim Furbo;

    2015-01-01

    The neuroendocrine peptides CCHamide-1 and -2, encoded by the genes ccha1 and -2, are produced by endocrine cells in the midgut and by neurons in the brain of Drosophila melanogaster. Here, we used the CRISPR/Cas9 technique to disrupt the ccha1 and -2 genes and identify mutant phenotypes with a f...

  5. Raf-mediated cardiac hypertrophy in adult Drosophila.

    Science.gov (United States)

    Yu, Lin; Daniels, Joseph; Glaser, Alex E; Wolf, Matthew J

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFR(A887T), Ras85D(V12) and Ras85D(V12S35), which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERK(D334N), which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  6. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  7. Raf-mediated cardiac hypertrophy in adult Drosophila

    Science.gov (United States)

    Yu, Lin; Daniels, Joseph; Glaser, Alex E.; Wolf, Matthew J.

    2013-01-01

    SUMMARY In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  8. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    Science.gov (United States)

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  9. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults

    Science.gov (United States)

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-01-01

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous. PMID:26399327

  10. Constitutive expression and enzymatic activity of Tan protein in brain and epidermis of Ceratitis capitata and of Drosophila melanogaster wild-type and tan mutants.

    Science.gov (United States)

    Pérez, M M; Sabio, G; Badaracco, A; Quesada-Allué, L A

    2011-09-01

    The present report shows a partial biochemical characterization and life cycle expression of N-β-alanyldopamine hydrolase (Tan protein) in Ceratitis capitata and Drosophila melanogaster. This enzyme catalyzes the hydrolysis of N-β-alanyldopamine (NBAD), the main tanning precursor of insect brown cuticles. It also plays an important role in the metabolism of brain neurotransmitters, recycling dopamine and histamine. In contrast to NBAD-synthase, Tan is expressed constitutively in epidermis and does not respond directly to microbial challenge. Immunodetection experiments showed the novel localization of NBAD-hydrolase in the embryo central neural system and in different regions of the adult brain, in addition to optic lobes. We sequenced and characterized Drosophila mutants tan¹ and tan³. The latter appears to be a mutant with normal expression in neural tissue but weak one in epidermis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster

    Indian Academy of Sciences (India)

    Heinrich Reichert

    2014-09-01

    Groundbreaking work by Obaid Siddiqi has contributed to the powerful genetic toolkit that is now available for studying the nervous system of Drosophila. Studies carried out in this powerful neurogenetic model system during the last decade now provide insight into the molecular mechanisms that operate in neural stem cells during normal brain development and during abnormal brain tumorigenesis. These studies also provide strong support for the notion that conserved molecular genetic programs act in brain development and disease in insects and mammals including humans.

  12. Wolbachia-mediated antiviral protection in Drosophila larvae and adults following oral infection.

    Science.gov (United States)

    Stevanovic, Aleksej L; Arnold, Pieter A; Johnson, Karyn N

    2015-12-01

    Understanding viral dynamics in arthropods is of great importance when designing models to describe how viral spread can influence arthropod populations. The endosymbiotic bacterium Wolbachia spp., which is present in up to 40% of all insect species, has the ability to alter viral dynamics in both Drosophila spp. and mosquitoes, a feature that in mosquitoes may be utilized to limit spread of important arboviruses. To understand the potential effect of Wolbachia on viral dynamics in nature, it is important to consider the impact of natural routes of virus infection on Wolbachia antiviral effects. Using adult Drosophila strains, we show here that Drosophila-Wolbachia associations that have previously been shown to confer antiviral protection following systemic viral infection also confer protection against virus-induced mortality following oral exposure to Drosophila C virus in adults. Interestingly, a different pattern was observed when the same fly lines were challenged with the virus when still larvae. Analysis of the four Drosophila-Wolbachia associations that were protective in adults indicated that only the w1118-wMelPop association conferred protection in larvae following oral delivery of the virus. Analysis of Wolbachia density using quantitative PCR (qPCR) showed that a high Wolbachia density was congruent with antiviral protection in both adults and larvae. This study indicates that Wolbachia-mediated protection may vary between larval and adult stages of a given Wolbachia-host combination and that the variations in susceptibility by life stage correspond with Wolbachia density. The differences in the outcome of virus infection are likely to influence viral dynamics in Wolbachia-infected insect populations in nature and could also have important implications for the transmission of arboviruses in mosquito populations.

  13. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  14. Identifying specific light inputs for each subgroup of brain clock neurons in Drosophila larvae.

    Science.gov (United States)

    Klarsfeld, André; Picot, Marie; Vias, Carine; Chélot, Elisabeth; Rouyer, François

    2011-11-30

    In Drosophila, opsin visual photopigments as well as blue-light-sensitive cryptochrome (CRY) contribute to the synchronization of circadian clocks. We focused on the relatively simple larval brain, with nine clock neurons per hemisphere: five lateral neurons (LNs), four of which express the pigment-dispersing factor (PDF) neuropeptide, and two pairs of dorsal neurons (DN1s and DN2s). CRY is present only in the PDF-expressing LNs and the DN1s. The larval visual organ expresses only two rhodopsins (RH5 and RH6) and projects onto the LNs. We recently showed that PDF signaling is required for light to synchronize the CRY(-) larval DN2s. We now show that, in the absence of functional CRY, synchronization of the DN1s also requires PDF, suggesting that these neurons have no direct connection with the visual system. In contrast, the fifth (PDF(-)) LN does not require the PDF-expressing cells to receive visual system inputs. All clock neurons are light-entrained by light-dark cycles in the rh5(2);cry(b), rh6(1) cry(b), and rh5(2);rh6(1) double mutants, whereas the triple mutant is circadianly blind. Thus, any one of the three photosensitive molecules is sufficient, and there is no other light input for the larval clock. Finally, we show that constant activation of the visual system can suppress molecular oscillations in the four PDF-expressing LNs, whereas, in the adult, this effect of constant light requires CRY. A surprising diversity and specificity of light input combinations thus exists even for this simple clock network.

  15. Barrier mechanisms in the Drosophila blood-brain barrier

    OpenAIRE

    Samantha Jane Hindle; Roland Jerome Bainton

    2014-01-01

    The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated funct...

  16. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    Science.gov (United States)

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.

  17. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    Directory of Open Access Journals (Sweden)

    Òscar Martorell

    Full Text Available Whereas the series of genetic events leading to colorectal cancer (CRC have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  18. Secondary taste neurons that convey sweet taste and starvation in the Drosophila brain.

    Science.gov (United States)

    Kain, Pinky; Dahanukar, Anupama

    2015-02-18

    The gustatory system provides vital sensory information to determine feeding and appetitive learning behaviors. Very little is known, however, about higher-order gustatory circuits in the highly tractable model for neurobiology, Drosophila melanogaster. Here we report second-order sweet gustatory projection neurons (sGPNs) in the Drosophila brain using a powerful behavioral screen. Silencing neuronal activity reduces appetitive behaviors, whereas inducible activation results in food acceptance via proboscis extensions. sGPNs show functional connectivity with Gr5a(+) sweet taste neurons and are activated upon sucrose application to the labellum. By tracing sGPN axons, we identify the antennal mechanosensory and motor center (AMMC) as an immediate higher-order processing center for sweet taste. Interestingly, starvation increases sucrose sensitivity of the sGPNs in the AMMC, suggesting that hunger modulates the responsiveness of the secondary sweet taste relay. Together, our results provide a foundation for studying gustatory processing and its modulation by the internal nutrient state.

  19. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  20. A subset of neurons controls the permeability of the peritrophic matrix and midgut structure in Drosophila adults.

    Science.gov (United States)

    Kenmoku, Hiroyuki; Ishikawa, Hiroki; Ote, Manabu; Kuraishi, Takayuki; Kurata, Shoichiro

    2016-08-01

    The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2.1 to inhibit their activity. We identified an NP3253 line that is susceptible to oral infection by Gram-negative bacteria. The subset of neurons driven by the NP3253 line includes some of the enteric neurons innervating the anterior midgut, and these flies have a disorganized proventricular structure with high permeability of the peritrophic matrix and epithelial barrier. The findings of the present study indicate that neural control is crucial for maintaining the barrier function of the gut, and provide a route for genetic dissection of the complex brain-gut axis in adults of the model organism Drosophila.

  1. Brain size and limits to adult neurogenesis.

    Science.gov (United States)

    Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M; Alvarez-Buylla, Arturo

    2016-02-15

    The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.

  2. From the Eye to the Brain: Development of the Drosophila Visual System.

    Science.gov (United States)

    Nériec, Nathalie; Desplan, Claude

    2016-01-01

    How stem cells produce the huge diversity of neurons that form the visual system, and how these cells are assembled in neural circuits are a critical question in developmental neurobiology. Investigations in Drosophila have led to the discovery of several basic principles of neural patterning. In this chapter, we provide an overview of the field by describing the development of the Drosophila visual system, from the embryo to the adult and from the gross anatomy to the cellular level. We then explore the general molecular mechanisms identified that might apply to other neural structures in flies or in vertebrates. Finally, we discuss the major challenges that remain to be addressed in the field. © 2016 Elsevier Inc. All rights reserved.

  3. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    Directory of Open Access Journals (Sweden)

    Michael W. Chi

    2014-08-01

    Full Text Available Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  4. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies.

    Science.gov (United States)

    Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G

    2014-08-11

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  5. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila.

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2010-05-01

    Full Text Available Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF-like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz-EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest

  6. The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster.

    Science.gov (United States)

    Helfrich-Förster, Charlotte

    2003-10-01

    Neuroethologists try to assign behavioral functions to certain brain centers, if possible down to individual neurons and to the expression of specific genes. This approach has been successfully applied for the control of circadian rhythmic behavior in the fruit fly Drosophila melanogaster. Several so-called "clock genes" are expressed in specific neurons in the lateral and dorsal brain where they generate cell-autonomous molecular circadian oscillations. These clusters are connected with each other and contribute differentially to the control of behavioral rhythmicity. This report reviews the latest work on characterizing individual circadian pacemaker neurons in the fruit fly's brain that control activity and pupal eclosion, leading to the questions by which neuronal pathways they are synchronized to the external light-dark cycle, and how they impose periodicity on behavior. Copyright 2003 Wiley-Liss, Inc.

  7. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  8. Acupuncture stimulation induces neurogenesis in adult brain.

    Science.gov (United States)

    Nam, Min-Ho; Ahn, Kwang Seok; Choi, Seung-Hoon

    2013-01-01

    The discovery of adult neurogenesis was a turning point in the field of neuroscience. Adult neurogenesis offers an enormous possibility to open a new therapeutic paradigm of neurodegenerative diseases and stroke. Recently, several studies suggested that acupuncture may enhance adult neurogenesis. Acupuncture has long been an important treatment for brain diseases in the East Asia. The scientific mechanisms of acupuncture treatment for the diseases, such as Alzheimer's disease, Parkinson's disease, and stroke, have not been clarified yet; however, the neurogenic effect of acupuncture can be a possible reason. Here, we have reviewed the studies on the effect of stimulation at various acupoints for neurogenesis, such as ST36 and GV20. The suggested mechanisms are also discussed including upregulation of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, basic fibroblast growth factor and neuropeptide Y, and activation of the function of primo vascular system.

  9. Distinct sensory representations of wind and near-field sound in the Drosophila brain

    Science.gov (United States)

    Yorozu, Suzuko; Wong, Allan; Fischer, Brian J.; Dankert, Heiko; Kernan, Maurice J.; Kamikouchi, Azusa; Ito, Kei; Anderson, David J.

    2009-01-01

    Behavioral responses to wind are thought to play a critical role in controlling the dispersal and population genetics of wild Drosophila species1,2, as well as their navigation in flight3, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains4, exhibits robust wind-induced suppression of locomotion (WISL), in response to air currents delivered at speeds normally encountered in nature1,2. Here we identify wind-sensitive neurons in Johnston’s Organ (JO), an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in5,6). Using Gal4 lines targeted to different subsets of JO neurons7, and a genetically encoded calcium indicator8, we show that wind and near-field sound (courtship song) activate distinct populations of JO neurons, which project to different regions of the antennal and mechanosensory motor center (AMMC) in the central brain. Selective genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing hearing. Different neuronal subsets within the wind-sensitive population, moreover, respond to different directions of arista deflection caused by airflow and project to different regions of the AMMC, providing a rudimentary map of wind-direction in the brain. Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, while the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar airflow, respectively. These data identify wind-sensitive neurons in JO, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements, using a common sensory organ

  10. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  11. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence.

    Science.gov (United States)

    Chen, Hanqing; Wang, Bing; Feng, Weiyue; Du, Wei; Ouyang, Hong; Chai, Zhifang; Bi, Xiaolin

    2015-05-01

    The potential impacts of nanomaterials (NMs) on fetal development have attracted great concerns because of the increased potential exposure to NMs during pregnancy. Drosophila melanogaster oogenesis and developmental transitions may provide an attractive system to study the biological and environmental effects of NMs on the embryonic development. In this study, the effects of three types of magnetite (Fe3O4) nanoparticles (MNPs): UN-MNPs (pristine), CA-MNPs (citric acid modified) and APTS-MNPs (3-aminopropyltriethoxylsilane coated) on the development of Drosophila at 300 and 600 μg/g dosage were studied. The uptake of MNPs by female and male flies caused obvious reduction in the female fecundity, and the developmental delay at the egg-pupae and pupae-adult transitions, especially in those treated by the positive APTS-MNPs. Further investigation demonstrates that the parental uptake of MNPs disturbs the oogenesis period, induces ovarian defect, reduces the length of eggs, decreases the number of nurse cells and delays egg chamber development, which may contribute to the decrease of fecundity of female Drosophila and the development delay of their offspring. Using the synchrotron radiation-based micro-X-ray fluorescence (SR-μXRF), the dyshomeostasis of trace elements such as Fe, Ca and Cu along the anterior-posterior axis of the fertilized eggs was found, which may be an important reason for the development delay of Drosophila.

  12. Ultrastructural comparison of the Drosophila larval and adult ventral abdominal neuromuscular junction.

    Science.gov (United States)

    Wagner, Nicole

    2017-07-01

    Drosophila melanogaster has recently emerged as model system for studying synaptic transmission and plasticity during adulthood, aging and neurodegeneration. However, still little is known about the basic neuronal mechanisms of synaptic function in the adult fly. Per se, adult Drosophila neuromuscular junctions should be highly suited for studying these aspects as they allow for genetic manipulations in combination with ultrastructural and electrophysiological analyses. Although different neuromuscular junctions of the adult fly have been described during the last years, a direct ultrastructural comparison with their larval counterpart is lacking. The present study was designed to close this gap by providing a detailed ultrastructural comparison of the larval and the adult neuromuscular junction of the ventrolongitudinal muscle. Assessment of several parameters revealed similarities but also major differences in the ultrastructural organisation of the two model neuromuscular junctions. While basic morphological parameters are retained from the larval into the adult stage, the analysis discovered major differences of potential functional relevance in the adult: The electron-dense membrane apposition of the presynaptic and postsynaptic membrane is shorter, the subsynaptic reticulum is less elaborated and the number of synaptic vesicles at a certain distance of the presynaptic membrane is higher. © 2017 Wiley Periodicals, Inc.

  13. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  14. Mio acts in the Drosophila brain to control nutrient storage and feeding.

    Science.gov (United States)

    Docherty, James E B; Manno, Joseph E; McDermott, Jacqueline E; DiAngelo, Justin R

    2015-09-01

    Animals recognize the availability of nutrients and regulate the intake and storage of these nutrients accordingly. However, the molecular mechanisms underlying nutrient sensing and subsequent changes in behavior and metabolism are not fully understood. Mlx interactor (Mio), the Drosophila homolog of carbohydrate response element binding protein (ChREBP), functions as a transcription factor in the fat body of the fly to control triglyceride storage as well as feeding, suggesting that Mio may act in a nutrient-sensing pathway to coordinate food consumption and metabolism. Here, we show that Mio functions in neurons in Drosophila to regulate feeding and nutrient storage. Pan-neuronal disruption of Mio function leads to increased triglyceride and glycogen storage, and this phenotype is not due to increased food consumption. Interestingly, targeted disruption of Mio specifically in the insulin-producing cells (IPCs) has little effect on nutrient storage, but increases food consumption suggesting that Mio acts in these neurons to control feeding behavior. Since Mio is a transcription factor, one possible way Mio may act in the IPCs to control feeding is through regulating the expression of Drosophila insulin-like peptides (dilps) or drosulfakinin (dsk), neuropeptides produced in the IPCs. Consistent with this hypothesis, IPC-specific knockdown of Mio leads to an increase in dilp3 expression, while not affecting dilp2, 5 or dsk levels. Together, this study indicates a new function for Mio in the Drosophila brain and specifically in the IPCs, controlling neuropeptide gene expression, feeding and metabolism in accordance with nutrient availability. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain.

    Science.gov (United States)

    Drapeau, Mark David; Radovic, Anna; Wittkopp, Patricia J; Long, Anthony D

    2003-04-01

    The fruitless (fru) gene is a member of the Drosophila melanogaster somatic sex determination genetic pathway. Although it has been hypothesized that the primary function of fru is to regulate a genetic hierarchy specifying development of adult male courtship behavior, genes acting downstream of fru have not yet been identified. Here we demonstrate that the yellow (y) gene is genetically downstream of fru in the 3(rd)-instar larval brain. Yellow protein is present at elevated levels in neuroblasts, which also show expression of male-specific FRU proteins, compared to control neuroblasts without FRU. A location for y downstream of fru in a genetic pathway was experimentally demonstrated by analysis of fru mutants lacking transcription of zinc-finger DNA binding domains, and of animals with temporal, spatial, or sexual mis-expression of male-specific FRU. A subset of fru and y mutants is known to reduce levels of a specific behavioral component of the male courtship ritual, wing extension, and FRU and Yellow were detected in the general region of the brain whose maleness is necessary for development of that behavior. We therefore hypothesized that ectopic expression of Yellow in the 3(rd)-instar brain, in a y null background, would rescue low levels of wing extension and male competitive mating success, and this was found to be the case. Overall, these data suggest that y is a downstream member of the fru branch of the D. melanogaster sex determination hierarchy, where it plays a currently unknown role in the development of adult male wing extension during courtship.

  16. The development of adult abdominal muscles in Drosophila: myoblasts express twist and are associated with nerves.

    Science.gov (United States)

    Currie, D A; Bate, M

    1991-09-01

    During metamorphosis, the adult muscles of the Drosophila abdomen develop from pools of myoblasts that are present in the larva. The adult myoblasts express twist in the third larval instar and the early pupa and are closely associated with nerves. Growing adult nerves and the twist-expressing cells migrate out across the developing abdominal epidermis, and as twist expression declines, the myoblasts begin to synthesize beta 3 tubulin. There follows a process involving cell fusion and segregation into cell groups to form multinucleate muscle precursors. These bipolar precursors migrate at both ends to find their correct attachment points. beta 3 tubulin expression continues at least until 51 h APF by which time the adult muscle pattern has been established.

  17. Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila.

    Directory of Open Access Journals (Sweden)

    Lina E Enell

    Full Text Available Insulin-like peptides (ILPs regulate growth, reproduction, metabolic homeostasis, life span and stress resistance in worms, flies and mammals. A set of insulin producing cells (IPCs in the Drosophila brain that express three ILPs (DILP2, 3 and 5 have been the main focus of interest in hormonal DILP signaling. Little is, however, known about factors that regulate DILP production and release by these IPCs. Here we show that the IPCs express the metabotropic GABA(B receptor (GBR, but not the ionotropic GABA(A receptor subunit RDL. Diminishing the GBR expression on these cells by targeted RNA interference abbreviates life span, decreases metabolic stress resistance and alters carbohydrate and lipid metabolism at stress, but not growth in Drosophila. A direct effect of diminishing GBR on IPCs is an increase in DILP immunofluorescence in these cells, an effect that is accentuated at starvation. Knockdown of irk3, possibly part of a G protein-activated inwardly rectifying K(+ channel that may link to GBRs, phenocopies GBR knockdown in starvation experiments. Our experiments suggest that the GBR is involved in inhibitory control of DILP production and release in adult flies at metabolic stress and that this receptor mediates a GABA signal from brain interneurons that may convey nutritional signals. This is the first demonstration of a neurotransmitter that inhibits insulin signaling in its regulation of metabolism, stress and life span in an invertebrate brain.

  18. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    Science.gov (United States)

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-02

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI.

  19. Extracellular proteolysis in the adult murine brain.

    Science.gov (United States)

    Sappino, A P; Madani, R; Huarte, J; Belin, D; Kiss, J Z; Wohlwend, A; Vassalli, J D

    1993-08-01

    Plasminogen activators are important mediators of extracellular metabolism. In the nervous system, plasminogen activators are thought to be involved in the remodeling events required for cell migration during development and regeneration. We have now explored the expression of the plasminogen activator/plasmin system in the adult murine central nervous system. Tissue-type plasminogen activator is synthesized by neurons of most brain regions, while prominent tissue-type plasminogen activator-catalyzed proteolysis is restricted to discrete areas, in particular within the hippocampus and hypothalamus. Our observations indicate that tissue-type plasminogen activator-catalyzed proteolysis in neural tissues is not limited to ontogeny, but may also contribute to adult central nervous system physiology, for instance by influencing neuronal plasticity and synaptic reorganization. The identification of an extracellular proteolytic system active in the adult central nervous system may also help gain insights into the pathogeny of neurodegenerative disorders associated with extracellular protein deposition.

  20. In Situ Labeling of Mitochondrial DNA Replication in Drosophila Adult Ovaries by EdU Staining.

    Science.gov (United States)

    Chen, Zhe; Xu, Hong

    2016-10-15

    The mitochondrial genome is inherited exclusively through the maternal line. Understanding of how the mitochondrion and its genome are proliferated and transmitted from one generation to the next through the female oocyte is of fundamental importance. Because of the genetic tractability, and the elegant, ordered simplicity by which oocyte development proceeds, Drosophila oogenesis has become an invaluable system for mitochondrial study. An EdU (5-ethynyl-2´-deoxyuridine) labeling method was utilized to detect mitochondrial DNA (mtDNA) replication in Drosophila ovaries. This method is superior to the BrdU (5-bromo-2'-deoxyuridine) labeling method in that it allows for good structural preservation and efficient fluorescent dye penetration of whole-mount tissues. Here we describe a detailed protocol for labeling replicating mitochondrial DNA in Drosophila adult ovaries with EdU. Some technical solutions are offered to improve the viability of the ovaries, maintain their health during preparation, and ensure high-quality imaging. Visualization of newly synthesized mtDNA in the ovaries not only reveals the striking temporal and spatial pattern of mtDNA replication through oogenesis, but also allows for simple quantification of mtDNA replication under various genetic and pharmacological perturbations.

  1. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.

    Science.gov (United States)

    Riebli, Nadia; Viktorin, Gudrun; Reichert, Heinrich

    2013-04-23

    The central complex is a multimodal information-processing center in the insect brain composed of thousands of neurons representing more than 50 neural types arranged in a stereotyped modular neuroarchitecture. In Drosophila, the development of the central complex begins in the larval stages when immature structures termed primordia are formed. However, the identity and origin of the neurons that form these primordia and, hence, the fate of these neurons during subsequent metamorphosis and in the adult brain, are unknown. Here, we used two pointed-Gal4 lines to identify the neural cells that form the primordium of the fan-shaped body, a major component of the Drosophila central complex. We found that these early-born primordium neurons are generated by four identified type II neuroblasts that amplify neurogenesis through intermediate progenitors, and we demonstrate that these neurons generate the fan-shaped body primordium during larval development in a highly specific manner. Moreover, we characterize the extensive growth and differentiation that these early-born primordium neurons undergo during metamorphosis in pupal stages and show that these neurons persist in the adult central complex, where they manifest layer-specific innervation of the mature fan-shaped body. Taken together, these findings indicate that early-born neurons from type II neuroblast lineages have dual roles in the development of a complex brain neuropile. During larval stages they contribute to the formation of a specific central complex primordium; during subsequent pupal development they undergo extensive growth and differentiation and integrate into the modular circuitry of the adult brain central complex.

  2. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Directory of Open Access Journals (Sweden)

    Jean-René Martin

    Full Text Available Many different cells' signalling pathways are universally regulated by Ca(2+ concentration [Ca(2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+ reporter GFP-aequorin (GA in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+] transients in the Mushroom Bodies (MBs following nicotine stimulation were accompanied by a delayed secondary [Ca(2+] rise (up to 15 min. later in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  3. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Science.gov (United States)

    Martin, Jean-René; Rogers, Kelly L; Chagneau, Carine; Brûlet, Philippe

    2007-03-07

    Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  4. In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila

    Science.gov (United States)

    Chagneau, Carine; Brûlet, Philippe

    2007-01-01

    Many different cells' signalling pathways are universally regulated by Ca2+ concentration [Ca2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca2+ reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca2+] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca2+] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain. PMID:17342209

  5. Novel models for studying the blood-brain and blood-eye barriers in Drosophila.

    Science.gov (United States)

    Pinsonneault, Robert L; Mayer, Nasima; Mayer, Fahima; Tegegn, Nebiyu; Bainton, Roland J

    2011-01-01

    In species as varied as humans and flies, humoral/central nervous system barrier structures are a major obstacle to the passive penetration of small molecules including endogenous compounds, environmental toxins, and drugs. In vivo measurement of blood-brain physiologic function in vertebrate animal models is difficult and current ex vivo models for more rapid experimentation using, for example, cultured brain endothelial cells, only partially reconstitute the anatomy and physiology of a fully intact blood-brain barrier (BBB). To address these problems, we and others continue to develop in vivo assays for studying the complex physiologic function of central nervous system (CNS) barriers using the fruit fly Drosophila melanogaster (Dm). These methods involve the introduction of small molecule reporters of BBB physiology into the fly humoral compartment by direct injection. Since these reporters must cross the Dm BBB in order to be visible in the eye, we can directly assess genetic or chemical modulators of BBB function by monitoring retinal fluorescence. This assay has the advantage of utilizing a physiologically intact BBB in a model organism that is economical and highly amenable to genetic manipulation. In combination with other approaches outlined here, such as brain dissection and behavioral assessment, one can produce a fuller picture of BBB biology and physiology. In this chapter, we provide detailed methods for examining BBB biology in the fly, including a Dm visual assay to screen for novel modulators of the BBB.

  6. Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons.

    Science.gov (United States)

    Shinomiya, Kazunori; Matsuda, Keiji; Oishi, Takao; Otsuna, Hideo; Ito, Kei

    2011-04-01

    The long history of neuroscience has accumulated information about numerous types of neurons in the brain of various organisms. Because such neurons have been reported in diverse publications without controlled format, it is not easy to keep track of all the known neurons in a particular nervous system. To address this issue we constructed an online database called Flybrain Neuron Database (Flybrain NDB), which serves as a platform to collect and provide information about all the types of neurons published so far in the brain of Drosophila melanogaster. Projection patterns of the identified neurons in diverse areas of the brain were recorded in a unified format, with text-based descriptions as well as images and movies wherever possible. In some cases projection sites and the distribution of the post- and presynaptic sites were determined with greater detail than described in the original publication. Information about the labeling patterns of various antibodies and expression driver strains to visualize identified neurons are provided as a separate sub-database. We also implemented a novel visualization tool with which users can interactively examine three-dimensional reconstruction of the confocal serial section images with desired viewing angles and cross sections. Comprehensive collection and versatile search function of the anatomical information reported in diverse publications make it possible to analyze possible connectivity between different brain regions. We analyzed the preferential connectivity among optic lobe layers and the plausible olfactory sensory map in the lateral horn to show the usefulness of such a database.

  7. Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila.

    Science.gov (United States)

    Andrews, Hillary K; Giagtzoglou, Nikolaos; Yamamoto, Shinya; Schulze, Karen L; Bellen, Hugo J

    2009-06-01

    The adult Drosophila external sensory organ (ESO), comprising the hair, socket, neuron, sheath and glia cells, arises through the asymmetric division of sensory organ precursor cells (SOPs). In a mosaic screen designed to identify new components in ESO development, we isolated mutations in sequoia, which encodes a putative zinc-finger transcription factor that has previously been shown to have a role in dendritogenesis. Here, we show that adult clones mutant for seq exhibit a loss of hair cells and a gain of socket cells. We propose that the seq mutant phenotype arises, in part, owing to the loss of several crucial transcription factors known to be important in peripheral nervous system development such as D-Pax2, Prospero and Hamlet. Thus, Sequoia is a new upstream regulator of genes that orchestrates cell fate specification during development of the adult ESO lineage.

  8. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    Science.gov (United States)

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Study of bantam miRNA expression in brain tumour resulted due to loss of polarity modules in Drosophila melanogaster

    Indian Academy of Sciences (India)

    ANIMESH BANERJEE; JAGAT K. ROY

    2017-06-01

    Disturbance of delicate concordance between stem cell proliferation, specification and differentiation during brain development leads to several neural disorders including tumours. Accumulating evidences have demonstratedinvolvement of short noncoding microRNAs (miRNAs) in governing several biological as well as pathological processes, including tumourigenesis across various species. Drosophila bantam miRNA, known to regulate critical physiological functions is reported to have elevated expression in ovarian tumour. Here, we provide an update on the expression of bantam miRNA in Drosophila brain tumour background resulting due to loss of well characterized polarity proteins, Brat, Lgl and Scrib. Since, both miRNA TaqMan assay and bantam sensor assay showed elevated expression of bantam in brain tumour background, it clearly reflects presence of an antagonistic relationship between polarity proteins and bantam miRNA indicating of its involvement in tumour progression.

  10. Functional divisions for visual processing in the central brain of flying Drosophila.

    Science.gov (United States)

    Weir, Peter T; Dickinson, Michael H

    2015-10-06

    Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.

  11. Functional divisions for visual processing in the central brain of flying Drosophila

    Science.gov (United States)

    Weir, Peter T.; Dickinson, Michael H.

    2015-01-01

    Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910

  12. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    Science.gov (United States)

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  13. Differential transcription in defined parts of the insect brain: comparative study utilizing Drosophila melanogaster and Schistocerca gregaria.

    Science.gov (United States)

    Roeder, Thomas; Schramm, Guido; Marquardt, Helge; Bussmeyer, Ingo; Franz, Oliver

    2004-10-01

    The brain of all higher organisms has a modular architecture. Processing of various tasks, such as learning, olfaction, or motor control is performed in specialized brain areas, characterized by morphological and molecular peculiarities. To identify those genes that are transcribed in only one region of the insect brain, we chose two different approaches, differential display PCR and DNA array hybridization, with two different insect species, the desert locust Schistocerca gregaria and the fruitfly Drosophila melanogaster. The optic lobes (centers of visual information processing), the midbrain (the region of the brain where almost all "higher" centers are localized), and the thoracic ganglia (regions required to control various peripheral organs) were compared in both types of experiments. Both, the differential display PCR screen of the different parts of the locust brain as well as the DNA array screen of the Drosophila brain revealed almost identical numbers of transcripts exclusively present in either of the three above-mentioned brain areas. Interestingly, the brain areas with the largest number of differential transcripts are the thoracic ganglia and not the midbrain.

  14. The adult abdominal neuromuscular junction of Drosophila: a model for synaptic plasticity.

    Science.gov (United States)

    Hebbar, Sarita; Hall, Rachel E; Demski, Sarah A; Subramanian, Aswati; Fernandes, Joyce J

    2006-09-01

    During its life cycle, Drosophila makes two sets of neuromuscular junctions (NMJs), embryonic/larval and adult, which serve distinct stage-specific functions. During metamorphosis, the larval NMJs are restructured to give rise to their adult counterparts, a process that is integrated into the overall remodeling of the nervous system. The NMJs of the prothoracic muscles and the mesothoracic dorsal longitudinal (flight) muscles have been previously described. Given the diversity and complexity of adult muscle groups, we set out to examine the less complex abdominal muscles. The large bouton sizes of these NMJs are particularly advantageous for easy visualization. Specifically, we have characterized morphological attributes of the ventral abdominal NMJ and show that an embryonic motor neuron identity gene, dHb9, is expressed at these adult junctions. We quantified bouton numbers and size and examined the localization of synaptic markers. We have also examined the formation of boutons during metamorphosis and examined the localization of presynaptic markers at these stages. To test the usefulness of the ventral abdominal NMJs as a model system, we characterized the effects of altering electrical activity and the levels of the cell adhesion molecule, FasciclinII (FasII). We show that both manipulations affect NMJ formation and that the effects are specific as they can be rescued genetically. Our results indicate that both activity and FasII affect development at the adult abdominal NMJ in ways that are distinct from their larval and adult thoracic counterparts

  15. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut.

    Science.gov (United States)

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-02-11

    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control.

  16. From Drosophila development to adult: clues to Notch function in long-term memory

    Directory of Open Access Journals (Sweden)

    Jiabin eZhang

    2013-11-01

    Full Text Available Notch is a cell surface receptor that is well known to mediate inter-cellular communication during animal development. Data in the field indicate that it is also involved in the formation of long-term memory (LTM in the fully developed adults and in memory loss upon neurodegeneration. Our studies in the model organism Drosophila reveal that a non-canonical Notch-Protein Kinase C (PKC activity that plays critical roles in embryonic development also regulates Cyclic-AMP Response Element Binding protein (CREB during LTM formation in adults. Here we present a perspective on how the various known features of Notch function relate to LTM formation and how they might interface with elements of Wingless/Wnt signaling in this process.

  17. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shin-Hae; Park, Joung-Sun [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Young-Shin [Research Institute of Genetic Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Chung, Hae-Young [Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  18. Adult human brain cell culture for neuroscience research.

    Science.gov (United States)

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Variation in adult life history and stress resistance across five species of Drosophila

    Indian Academy of Sciences (India)

    N. Sharmila Bharathi; N. G. Prasad; Mallikarjun Shakarad; Amitabh Joshi

    2003-12-01

    Dry weight at eclosion, adult lifespan, lifetime fecundity, lipid and carbohydrate content at eclosion, and starvation and desiccation resistance at eclosion were assayed on a long-term laboratory population of Drosophila melanogaster, and one recently wild-caught population each of four other species of Drosophila, two from the melanogaster and two from the immigrans species group. The relationships among trait means across the five species did not conform to expectations based on correlations among these traits inferred from selection studies on D. melanogaster. In particular, the expected positive relationships between fecundity and size/lipid content, lipid content and starvation resistance, carbohydrate (glycogen) content and desiccation resistance, and the expected negative relationship between lifespan and fecundity were not observed. Most traits were strongly positively correlated between sexes across species, except for fractional lipid content and starvation resistance per microgram lipid. For most traits, there was evidence for significant sexual dimorphism but the degree of dimorphism did not vary across species except in the case of adult lifespan, starvation resistance per microgram lipid, and desiccation resistance per microgram carbohydrate. Overall, D. nasuta nasuta and D. sulfurigaster neonasuta (immigrans group) were heavier at eclosion than the melanogaster group species, and tended to have somewhat higher absolute lipid content and starvation resistance. Yet, these two immigrans group species were shorter-lived and had lower average daily fecundity than the melanogaster group species. The smallest species, D. malerkotliana (melanogaster group), had relatively high daily fecundity, intermediate lifespan and high fractional lipid content, especially in females. D. ananassae (melanogaster group) had the highest absolute and fractional carbohydrate content, but its desiccation resistance per microgram carbohydrate was the lowest among the five

  20. Protein and carbohydrate composition of larval food affects tolerance tothermal stress and desiccation in adult Drosophila melanogaster

    DEFF Research Database (Denmark)

    Andersen, Laila H; Kristensen, Torsten N; Loeschcke, Volker

    2010-01-01

    Larval nutrition may affect a range of different life history traits as well as responses to environmental stress in adult insects. Here we test whether raising larvae of fruit flies, Drosophila melanogaster, on two different nutritional regimes affects resistance to cold, heat and desiccation...

  1. The steroid molting hormone Ecdysone regulates sleep in adult Drosophila melanogaster.

    Science.gov (United States)

    Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2010-05-01

    Ecdysone is the major steroid hormone in insects and plays essential roles in coordinating developmental transitions such as larval molting and metamorphosis through its active metabolite 20-hydroxyecdysone (20E). Although ecdysone is present throughout life in both males and females, its functions in adult physiology remain largely unknown. In this study we demonstrate that ecdysone-mediated signaling in the adult is intimately involved in transitions between the physiological states of sleep and wakefulness. First, administering 20E to adult Drosophila melanogaster promoted sleep in a dose-dependent manner, and it did so primarily by altering the length of sleep and wake bouts without affecting waking activity. Second, mutants for ecdysone synthesis displayed the "short-sleep phenotype," and this was alleviated by administering 20E at the adult stage. Third, mutants for nuclear ecdysone receptors showed reduced sleep, and conditional overexpression of wild-type ecdysone receptors in the adult mushroom bodies resulted in an isoform-specific increase in sleep. Finally, endogenous ecdysone levels increased after sleep deprivation, and mutants defective for ecdysone signaling displayed little sleep rebound, suggesting that ecdysone is involved in homeostatic sleep regulation. In light of the recent finding that lethargus--a period at larval-stage transitions in the nematode worm Caenorhabditis elegans--is a sleep-like state, our results suggest that sleep is functionally and mechanistically linked to a genetically programmed, quiescent behavioral state during development.

  2. The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults.

    Science.gov (United States)

    Wang, Shu-Ping; Hu, Xing-Xing; Meng, Qing-Wei; Muhammad, Shahid Arain; Chen, Rui-Rui; Li, Fei; Li, Guo-Qing

    2013-09-01

    Methanol is among the most common short-chain alcohols in fermenting fruits, the natural food and oviposition sites of the fruit fly Drosophila melanogaster. Our previous results showed that cytochrome P450 monooxygenases (CYPs) were associated with methanol detoxification in the larvae. Catalases, alcohol dehydrogenases (ADHs), esterases (ESTs) and glutathione S-transferases (GSTs) were specifically inhibited by 3-amino-1,2,4-triazole (3-AT), 4-methylpyrazole (4-MP), triphenyl phosphate (TPP) and diethylmeleate (DEM), respectively. CYPs were inhibited by piperonyl butoxide (PBO) and 1-aminobenzotriazole (1-ABT). In the present paper, the involvements of these enzymes in methanol metabolism were investigated in female and male adults by determining the combination indices of methanol and their corresponding inhibitors. When PBO, 1-ABT, 3-AT, 4-MP and TPP were individually mixed with methanol, they exhibited significant synergism to the mortality of the adults after 72h of dietary exposure. In contrast, the DEM and methanol mixture showed additive effects. Moreover, methanol exposure dramatically increased CYP activity and up-regulated mRNA expression levels of several Cyp genes. Bioassays using different strains revealed that the variation in ADH activity and RNAi-mediated knockdown of α-Est7 significantly changed LC50 values for methanol. These results suggest that CYPs, catalases, ADHs and ESTs are partially responsible for methanol elimination in adults. It seems that there are some differences in methanol metabolism between larvae and adults, but not between female and male adults.

  3. A new brain dopamine-deficient Drosophila and its pharmacological and genetic rescue.

    Science.gov (United States)

    Cichewicz, K; Garren, E J; Adiele, C; Aso, Y; Wang, Z; Wu, M; Birman, S; Rubin, G M; Hirsh, J

    2017-03-01

    Dopamine (DA) is a neurotransmitter with conserved behavioral roles between invertebrate and vertebrate animals. In addition to its neural functions, in insects DA is a critical substrate for cuticle pigmentation and hardening. Drosophila tyrosine hydroxylase (DTH) is the rate limiting enzyme for DA biosynthesis. Viable brain DA-deficient flies were previously generated using tissue-selective GAL4-UAS binary expression rescue of a DTH null mutation and these flies show specific behavioral impairments. To circumvent the limitations of rescue via binary expression, here we achieve rescue utilizing genomically integrated mutant DTH. As expected, our DA-deficient flies have no detectable DTH or DA in the brain, and show reduced locomotor activity. This deficit can be rescued by l-DOPA/carbidopa feeding, similar to human Parkinson's disease treatment. Genetic rescue via GAL4/UAS-DTH was also successful, although this required the generation of a new UAS-DTH1 transgene devoid of most untranslated regions, as existing UAS-DTH transgenes express in the brain without a Gal4 driver via endogenous regulatory elements. A surprising finding of our newly constructed UAS-DTH1m is that it expresses DTH at an undetectable level when regulated by dopaminergic GAL4 drivers even when fully rescuing DA, indicating that DTH immunostaining is not necessarily a valid marker for DA expression. This finding necessitated optimizing DA immunohistochemistry, showing details of DA innervation to the mushroom body and the central complex. When DA rescue is limited to specific DA neurons, DA does not diffuse beyond the DTH-expressing terminals, such that DA signaling can be limited to very specific brain regions. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Fast PCA for processing calcium-imaging data from the brain of Drosophila melanogaster.

    Science.gov (United States)

    Strauch, Martin; Galizia, C Giovanni

    2012-04-30

    The calcium-imaging technique allows us to record movies of brain activity in the antennal lobe of the fruitfly Drosophila melanogaster, a brain compartment dedicated to information about odors. Signal processing, e.g. with source separation techniques, can be slow on the large movie datasets. We have developed an approximate Principal Component Analysis (PCA) for fast dimensionality reduction. The method samples relevant pixels from the movies, such that PCA can be performed on a smaller matrix. Utilising a priori knowledge about the nature of the data, we minimise the risk of missing important pixels. Our method allows for fast approximate computation of PCA with adaptive resolution and running time. Utilising a priori knowledge about the data enables us to concentrate more biological signals in a small pixel sample than a general sampling method based on vector norms. Fast dimensionality reduction with approximate PCA removes a computational bottleneck and leads to running time improvements for subsequent algorithms. Once in PCA space, we can efficiently perform source separation, e.g to detect biological signals in the movies or to remove artifacts.

  5. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    OpenAIRE

    Chi, Michael W.; Leslie C. Griffith; Vecsey, Christopher G.

    2014-01-01

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of pop...

  6. 454-Pyrosequencing survey of microbiota in adult Spotted Wing Drosophila (SWD) corroborates a core microbiome and additional symbiotic and entomopathogenic bacterial associates

    Science.gov (United States)

    Complete surveys of insect endosymbionts including species of economic importance have until recently been hampered by a lack of high-throughput genetic assays. We used 454-pyrosequencing of the 16S rRNA gene amplicon of adult spotted wing Drosophila (SWD) Drosophila suzukii (Matsumura) from souther...

  7. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing.

    Science.gov (United States)

    Vagnoni, Alessio; Bullock, Simon L

    2016-09-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons.

  8. Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain.

    Science.gov (United States)

    Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-01

    In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.

  9. Exposure to static electric fields leads to changes in biogenic amine levels in the brains of Drosophila

    Science.gov (United States)

    Newland, Philip L.; Al Ghamdi, Mesfer S.; Sharkh, Suleiman; Aonuma, Hitoshi; Jackson, Christopher W.

    2015-01-01

    Natural and anthropogenic static electric fields are commonly found in the environment and can have both beneficial and harmful effects on many animals. Here, we asked how the fruitfly responds to these fields and what the consequences of exposure are on the levels of biogenic amines in the brain. When given a choice in a Y-tube bioassay Drosophila avoided electric fields, and the greater the field strength the more likely Drosophila were to avoid it. By comparing wild-type flies, flies with wings surgically removed and vestigial winged flies we found that the presence of intact wings was necessary to produce avoidance behaviour. We also show that Coulomb forces produced by electric fields physically lift excised wings, with the smaller wings of males being raised by lower field strengths than larger female wings. An analysis of neurochemical changes in the brains showed that a suite of changes in biogenic amine levels occurs following chronic exposure. Taken together we conclude that physical movements of the wings are used by Drosophila in generating avoidance behaviour and are accompanied by changes in the levels of amines in the brain, which in turn impact on behaviour. PMID:26224706

  10. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    Science.gov (United States)

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  11. Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain.

    Directory of Open Access Journals (Sweden)

    Shizhong Li

    Full Text Available The insect neuropeptides CCHamide-1 and -2 are recently discovered peptides that probably occur in all arthropods. Here, we used immunocytochemistry, in situ hybridization, and quantitative PCR (qPCR, to localize the two peptides in the fruitfly Drosophila melanogaster. We found that CCHamide-1 and -2 were localized in endocrine cells of the midgut of larvae and adult flies. These endocrine cells had the appearance of sensory cells, projecting processes close to or into the gut lumen. In addition, CCHamide-2 was also localized in about forty neurons in the brain hemispheres and ventral nerve cord of larvae. Using qPCR we found high expression of the CCHamide-2 gene in the larval gut and very low expression of its receptor gene, while in the larval brain we found low expression of CCHamide-2 and very high expression of its receptor. These expression patterns suggest the following model: Endocrine CCHamide-2 cells in the gut sense the quality of food components in the gut lumen and transmit this information to the brain by releasing CCHamide-2 into the circulation; subsequently, after binding to its brain receptors, CCHamides-2 induces an altered feeding behavior in the animal and possibly other homeostatic adaptations.

  12. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    Science.gov (United States)

    Marie, Pauline P.; Ronsseray, Stéphane; Boivin, Antoine

    2016-01-01

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development. PMID:27932388

  13. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    Directory of Open Access Journals (Sweden)

    Pauline P. Marie

    2017-02-01

    Full Text Available In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs. Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.

  14. Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling.

    Science.gov (United States)

    Rabinovich, Dana; Mayseless, Oded; Schuldiner, Oren

    2015-01-01

    Holometabolous insects, including Drosophila melanogaster, undergo complete metamorphosis that includes a pupal stage. During metamorphosis, the Drosophila nervous system undergoes massive remodeling and growth, that include cell death and large-scale axon and synapse elimination as well as neurogenesis, developmental axon regrowth, and formation of new connections. Neuronal remodeling is an essential step in the development of vertebrate and invertebrate nervous systems. Research on the stereotypic remodeling of Drosophila mushroom body (MB) γ neurons has contributed to our knowledge of the molecular mechanisms of remodeling but our knowledge of the cellular mechanisms remain poorly understood. A major hurdle in understanding various dynamic processes that occur during metamorphosis is the lack of time-lapse resolution. The pupal case and opaque fat bodies that enwrap the central nervous system (CNS) make live-imaging of the central brain in-vivo impossible. We have established an ex vivo long-term brain culture system that supports the development and neuronal remodeling of pupal brains. By optimizing culture conditions and dissection protocols, we have observed development in culture at kinetics similar to what occurs in vivo. Using this new method, we have obtained the first time-lapse sequence of MB γ neurons undergoing remodeling in up to a single cell resolution. We found that axon pruning is initiated by blebbing, followed by one-two nicks that seem to initiate a more widely spread axon fragmentation. As such, we have set up some of the tools and methodologies needed for further exploration of the cellular mechanisms of neuronal remodeling, not limited to the MB. The long-term ex vivo brain culture system that we report here could be used to study dynamic aspects of neurodevelopment of any Drosophila neuron.

  15. 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity

    Directory of Open Access Journals (Sweden)

    David Dreyer

    2010-03-01

    Full Text Available The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system. In the current study, we provide 3D standard brain atlases of freshly eclosed adult female and male beetles (A0. The atlases include eight paired and three unpaired neuropils including antennal lobes, optic lobe neuropils, mushroom body calyces and pedunculi, and central complex. For each of the two standard brains, we averaged brain areas of 20 individual brains. Additionally, we characterized eight selected olfactory glomeruli from 10 A0 female and male beetles respectively, which we could unequivocally recognize from individual to individual owing to their size and typical position in the antennal lobes. In summary, comparison of the averaged neuropil volumes revealed no sexual dimorphism in any of the reconstructed neuropils in A0 Tribolium brains. Both, the female and male 3D standard brain are also used for interspecies comparisons, and, very importantly, will serve as future volumetric references after genetical manipulation especially regarding metamorphic development and adult plasticity.

  16. Live imaging of epidermal morphogenesis during the development of the adult abdominal epidermis of Drosophila.

    Science.gov (United States)

    Ninov, Nikolay; Martín-Blanco, Enrique

    2007-01-01

    During larval stages of Drosophila development, the abdominal epidermis is composed of histoblasts (adult precursors) and larval epidermal cells (LECs). During metamorphosis, histoblasts proliferate and colonize the territories occupied by the LECs, which die and become engulfed by macrophages. This morphogenetic process is an excellent model for in vivo analysis of epithelial migration, cell division, cell death, patterning and differentiation. Here, we describe a protocol for time-lapse recording of the developing epidermis during metamorphosis. The protocol describes the removal of the pupal case (which acts as an opaque barrier to effective imaging) and mounting and imaging of specimens of different stages so that normal developmental processes are preserved. This method enables high-resolution studies over long time periods using fluorescent markers and confocal microscopy. The protocol requires 1 h for pupal dissection and mounting and, depending on the stages and genotypes to be analyzed, several more hours for preprocessing and aging and developmental staging of flies and pupae.

  17. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  18. Critical care management of severe traumatic brain injury in adults

    OpenAIRE

    Haddad Samir H; Arabi Yaseen M

    2012-01-01

    Abstract Traumatic brain injury (TBI) is a major medical and socio-economic problem, and is the leading cause of death in children and young adults. The critical care management of severe TBI is largely derived from the "Guidelines for the Management of Severe Traumatic Brain Injury" that have been published by the Brain Trauma Foundation. The main objectives are prevention and treatment of intracranial hypertension and secondary brain insults, preservation of cerebral perfusion pressure (CPP...

  19. Drosophila ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons.

    Directory of Open Access Journals (Sweden)

    Ken-ichi Kimura

    Full Text Available Oviposition is a female-specific behavior that directly affects fecundity, and therefore fitness. If a fertilized female encounters another male that she has evaluated to be of better quality than her previous mate, it would be beneficial for her to remate with this male rather than depositing her eggs. Females who decided not to remate exhibited rejection behavior toward a courting male and engaged in oviposition. Although recent studies of Drosophila melanogaster identified sensory neurons and putative second-order ascending interneurons that mediate uterine afferents affecting female reproductive behavior, little is known about the brain circuitry that selectively activates rejection versus oviposition behaviors. We identified the sexually dimorphic pC2l and female-specific pMN2 neurons, two distinct classes of doublesex (dsx-expressing neurons that can initiate ovipositor extension associated with rejection and oviposition behavior, respectively. pC2l interneurons, which induce ovipositor extrusion for rejection in females, have homologues that control courtship behavior in males. Activation of these two classes of neurons appears to be mutually exclusive and each governs hierarchical control of the motor program in the VNC either for rejection or oviposition, contributing centrally to the switching on or off of the alternative motor programs.

  20. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.

  1. Spreading depolarization in the brain of Drosophila is induced by inhibition of the Na+/K+-ATPase and mitigated by a decrease in activity of protein kinase G.

    Science.gov (United States)

    Spong, Kristin E; Rodríguez, Esteban C; Robertson, R Meldrum

    2016-09-01

    Spreading depolarization (SD) is characterized by a massive redistribution of ions accompanied by an arrest in electrical activity that slowly propagates through neural tissue. It has been implicated in numerous human pathologies, including migraine, stroke, and traumatic brain injury, and thus the elucidation of control mechanisms underlying the phenomenon could have many health benefits. Here, we demonstrate the occurrence of SD in the brain of Drosophila melanogaster, providing a model system, whereby cellular mechanisms can be dissected using molecular genetic approaches. Propagating waves of SD were reliably induced by disrupting the extracellular potassium concentration ([K(+)]o), either directly or by inhibition of the Na(+)/K(+)-ATPase with ouabain. The disturbance was monitored by recording the characteristic surges in [K(+)]o using K(+)-sensitive microelectrodes or by monitoring brain activity by measuring direct current potential. With the use of wild-type flies, we show that young adults are more resistant to SD compared with older adults, evidenced by shorter bouts of SD activity and attenuated [K(+)]o disturbances. Furthermore, we show that the susceptibility to SD differs between wild-type flies and w1118 mutants, demonstrating that our ouabain model is influenced by genetic strain. Lastly, flies with low levels of protein kinase G (PKG) had increased latencies to onset of both ouabain-induced SD and anoxic depolarization compared with flies with higher levels. Our findings implicate the PKG pathway as a modulator of SD in the fly brain, and given the conserved nature of the signaling pathway, it could likely play a similar role during SD in the mammalian central nervous system.

  2. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    Science.gov (United States)

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration. © 2015. Published by The Company of Biologists Ltd.

  3. Development of diet-induced insulin resistance in adult Drosophila melanogaster.

    Science.gov (United States)

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H

    2012-08-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options.

  4. Are the structural changes in adult Drosophila mushroom bodies memory traces? Studies on biochemical learning mutants.

    Science.gov (United States)

    Balling, A; Technau, G M; Heisenberg, M

    2007-01-01

    The pre-imaginal development of Drosophila mushroom bodies is under the influence of an unknown variable which causes populations of wild-type flies at eclosion to differ in the average number of Kenyon cell fibers. During the first week of adult life the number adjusts to an intermediate level which depends upon the experience of the flies. Under olfactory deprivation or social isolation it reaches a lower level than under favorable rearing conditions (J. Neurogenet., 1 (1984) 113-126). The biochemical learning mutants dance and rutabaga show no experience-dependent modulation of fiber number (Fig. 2). In both strains the mushroom bodies of young adults seem to develop abnormally; in dance a loss of about 600 fibers is observed, in rutabaga fiber number is low at eclosion and does not increase (Fig. 1a). The following model for long-term memory is proposed: in mushroom bodies outgrowth and decay of Kenyon cell fibers occur simultaneously. The fibers randomly form transient synapses onto extrinsic output neurons of the mushroom bodies and receive synapses from modulating neurons. Experience consolidates certain synapses, thus prolonging survival of the respective Kenyon cell fibers and increasing the steady state level of fiber number (Fig. 3).

  5. Mef2 interacts with the Notch pathway during adult muscle development in Drosophila melanogaster.

    Science.gov (United States)

    Caine, Charlotte; Kasherov, Petar; Silber, Joël; Lalouette, Alexis

    2014-01-01

    Myogenesis of indirect flight muscles (IFMs) in Drosophila melanogaster follows a well-defined cellular developmental scheme. During embryogenesis, a set of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFMs. Although the cellular aspect of this developmental process is well studied, the molecular biology behind the different stages is still under investigation. In particular, the interactions required during the transition from proliferating myoblasts to differentiated myoblasts ready to fuse to the muscle fiber. It has been previously shown that the Notch pathway is active in proliferating myoblasts, and that this pathway is inhibited in developing muscle fibers. Furthermore, the Myocyte Enhancing Factor 2 (Mef2), Vestigial (Vg) and Scalloped (Sd) transcription factors are necessary for IFM development and that Vg is required for Notch pathway repression in differentiating fibers. Here we examine the interactions between Notch and Mef2 and mechanisms by which the Notch pathway is inhibited during differentiation. We show that Mef2 is capable of inhibiting the Notch pathway in non myogenic cells. A previous screen for Mef2 potential targets identified Delta a component of the Notch pathway. Dl is expressed in Mef2 and Sd-positive developing fibers. Our results show that Mef2 and possibly Sd regulate a Dl enhancer specifically expressed in the developing IFMs and that Mef2 is required for Dl expression in developing IFMs.

  6. Reduced Calcium Channel Function in Drosophila Disrupts Associative Learning in Larva and Behavior in Adults

    Directory of Open Access Journals (Sweden)

    Robin L. Cooper

    2008-01-01

    Full Text Available The temperature sensitive nature of a mutation in the Cacophony gene, which codes for the alpha subunit in the voltage-gated Ca2+ channel, reduces Ca2+ influx when exposed to non-permissive temperatures. We investigated the subtle nature in the impact for this mutation on whole animal function, in regards to learning and memory, in larvae and adults. The effects in acutely reducing evoked Ca2+ influx in nerve terminals during various behavioural assays greatly decreased the ability of larval Drosophila to learn, as demonstrated in associative learning assays. These assays are based on olfaction and gustation with association to light or dark environments with negative reinforces. Adult flies also showed defects in olfaction and sense of light when the animal is acutely depressed in normal Ca2+ influx within the nervous system. We demonstrated that this particular mutation does not alter cardiac function acutely. Thus, implying that the alpha 1 subunit mutation which retards neuronal function is not relevant for the pace maker and cardiac contractility as indexed by heart rate.

  7. [Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster].

    Science.gov (United States)

    Rovenko, B M; Lushchak, V I; Lushchak, O V

    2013-01-01

    The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.

  8. Guidelines for Better Communication with Brain Impaired Adults

    Science.gov (United States)

    ... FCA - A A + A You are here Home Guidelines for Better Communication with Brain Impaired Adults Printer- ... there are no easy solutions, following some basic guidelines should ease communication, and lower levels of stress ...

  9. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  10. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors

    Directory of Open Access Journals (Sweden)

    Elodie Reynaud

    2015-05-01

    Full Text Available In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed, which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL’s ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.

  11. An anatomically comprehensive atlas of the adult human brain transcriptome

    NARCIS (Netherlands)

    Hawrylycz, M.J.; Beckmann, Christian

    2012-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising

  12. Memory and Brain Volume in Adults Prenatally Exposed to Alcohol

    Science.gov (United States)

    Coles, Claire D.; Goldstein, Felicia C.; Lynch, Mary Ellen; Chen, Xiangchuan; Kable, Julie A.; Johnson, Katrina C.; Hu, Xiaoping

    2011-01-01

    The impact of prenatal alcohol exposure on memory and brain development was investigated in 92 African-American, young adults who were first identified in the prenatal period. Three groups (Control, n = 26; Alcohol-related Neurodevelopmental Disorder, n = 36; and Dysmorphic, n = 30) were imaged using structural MRI with brain volume calculated for…

  13. Adult circadian behavior in Drosophila requires developmental expression of cycle, but not period.

    Science.gov (United States)

    Goda, Tadahiro; Mirowska, Karolina; Currie, Jake; Kim, Min-Ho; Rao, Neethi Varadaraja; Bonilla, Gloribel; Wijnen, Herman

    2011-07-01

    Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LN(v)s) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LN(v)s resulted in abnormal peptidergic small-LN(v) dorsal projections, and (2) PER expression rhythms in the adult LN(v)s appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex.

  14. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  15. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA

    DEFF Research Database (Denmark)

    Weng, Ruifen; Cohen, Stephen M

    2015-01-01

    proliferation of transit-amplifying intermediate neural progenitor cells in type II neuroblast lineages. The stem cell factors brat and prospero are identified as bantam targets acting on different aspects of these processes. Thus, bantam appears to act in multiple regulatory steps in the maintenance......Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports...

  16. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  17. Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets.

    Science.gov (United States)

    Young, J M; Armstrong, J D

    2010-05-01

    The central complex (CX) is a defined set of neuropils located on the midline of the protocerebrum in several arthropods and has been implicated in a number of behaviors. To investigate the function of the CX further it is imperative to know the neuroarchitecture of this structure and to ensure all known neuron types conform to a common nomenclature system. Several types of CX neuron have been identified but it is not known if these exist singly or as components of isomorphic sets. We used an enhancer trap approach to study the adult structure, connectivity, and polarity of CX neurons in Drosophila. We observed several isomorphic sets of small-field neurons including pontine and fb-eb neurons, and also isomorphic sets of large-field neurons including R neurons and F neurons. We found that several types of large-field F neurons existed in isomorphic sets of approximately eight (four per hemisphere) and found evidence for small-field neuron types existing as isomorphic sets of 16. Small-field neurons were observed in clearly organized layers. This study provides a novel insight into CX structure and connectivity and provides a set of characterized enhancer trap lines that will be valuable for future study. (c) 2009 Wiley-Liss, Inc.

  18. The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila.

    Science.gov (United States)

    Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Liu, Ying; Hou, Gerald; Liu, Hanhan; Hou, Steven X

    2016-10-06

    Cancer stem cells (CSCs) may be responsible for tumour dormancy, relapse and the eventual death of most cancer patients. In addition, these cells are usually resistant to cytotoxic conditions. However, very little is known about the biology behind this resistance to therapeutics. Here we investigated stem-cell death in the digestive system of adult Drosophila melanogaster. We found that knockdown of the coat protein complex I (COPI)-Arf79F (also known as Arf1) complex selectively killed normal and transformed stem cells through necrosis, by attenuating the lipolysis pathway, but spared differentiated cells. The dying stem cells were engulfed by neighbouring differentiated cells through a draper-myoblast city-Rac1-basket (also known as JNK)-dependent autophagy pathway. Furthermore, Arf1 inhibitors reduced CSCs in human cancer cell lines. Thus, normal or cancer stem cells may rely primarily on lipid reserves for energy, in such a way that blocking lipolysis starves them to death. This finding may lead to new therapies that could help to eliminate CSCs in human cancers.

  19. Notch Intracellular Domain (NICD) Suppresses Long-Term Memory Formation in Adult Drosophila Flies.

    Science.gov (United States)

    Zhang, Jiabin; Yin, Jerry C P; Wesley, Cedric S

    2015-08-01

    Notch receptor signaling is evolutionarily conserved and well known for its roles in animal development. Many studies in Drosophila have shown that Notch also performs important functions in memory formation in adult flies. An intriguing observation is that increased expression of the full-length Notch receptor (Nfull) triggers long-term memory (LTM) formation even after very weak training (single training). Canonical Notch signaling is mediated by Notch intracellular domain (NICD), but it is not known whether increased expression of NICD recapitulates the LTM enhancement induced by increased Nfull expression. Here, we report that increased NICD expression either has no impact on LTM formation or suppresses it. Furthermore, it either has no impact or decreases both the levels and activity of cAMP response element binding protein, a key factor supporting LTM. These results indicate that NICD signaling is not sufficient to explain Nfull-induced LTM enhancement. Our findings may also shed light on the molecular mechanisms of memory loss in neurological diseases associated with increased NICD expression and canonical Notch signaling.

  20. Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain.

    Science.gov (United States)

    Shimada, Naoto; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro; Sakai, Takaomi

    2016-11-17

    Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies. PDF-expressing neurons consist of two neuronal clusters: small ventral-lateral neurons (s-LNvs) acting as the circadian pacemaker and large ventral-lateral neurons (l-LNvs) regulating light-driven arousal. We identified that Ap localizes to the nuclei of s-LNvs and l-LNvs. In light-dark (LD) cycles, RNAi knockdown or the targeted expression of dominant-negative forms of Ap or Chi in PDF-expressing neurons or l-LNvs promoted arousal. In contrast, in constant darkness, knockdown of Ap in PDF-expressing neurons did not promote arousal, indicating that a reduced Ap function in PDF-expressing neurons promotes light-driven arousal. Furthermore, Ap expression in l-LNvs showed daily rhythms (peaking at midnight), which are generated by a direct light-dependent mechanism rather than by the endogenous clock. These results raise the possibility that the daily oscillation of Ap expression in l-LNvs may contribute to the buffering of light-driven arousal in wild-type flies.

  1. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine.

  2. Segment-specific Ca(2+) transport by isolated Malpighian tubules of Drosophila melanogaster: A comparison of larval and adult stages.

    Science.gov (United States)

    Browne, Austin; O'Donnell, Michael J

    2016-04-01

    Haemolymph calcium homeostasis in insects is achieved through the regulation of calcium excretion by Malpighian tubules in two ways: (1) sequestration of calcium within biomineralized granules and (2) secretion of calcium in soluble form within the primary urine. Using the scanning ion-selective electrode technique (SIET), basolateral Ca(2+) transport was measured at the distal, transitional, main and proximal tubular segments of anterior tubules isolated from both 3rd instar larvae and adults of the fruit fly Drosophila melanogaster. Basolateral Ca(2+) transport exceeded transepithelial secretion by 800-fold and 11-fold in anterior tubules of larvae and adults, respectively. The magnitude of Ca(2+) fluxes across the distal tubule of larvae and adults were larger than fluxes across the downstream segments by 10 and 40 times, respectively, indicating a dominant role for the distal segment in whole animal Ca(2+) regulation. Basolateral Ca(2+) transport across distal tubules of Drosophila varied throughout the life cycle; Ca(2+) was released by distal tubules of larvae, taken up by distal tubules of young adults and was released once again by tubules of adults ⩾ 168 h post-eclosion. In adults and larvae, SIET measurements revealed sites of both Ca(2+) uptake and Ca(2+) release across the basolateral surface of the distal segment of the same tubule, indicating that Ca(2+) transport is bidirectional. Ca(2+) uptake across the distal segment of tubules of young adults and Ca(2+) release across the distal segment of tubules of older adults was also suggestive of reversible Ca(2+) storage. Our results suggest that the distal tubules of D. melanogaster are dynamic calcium stores which allow efficient haemolymph calcium regulation through active Ca(2+) sequestration during periods of high dietary calcium intake and passive Ca(2+) release during periods of calcium deficiency.

  3. High-throughput computer method for 3D neuronal structure reconstruction from the image stack of the Drosophila brain and its applications.

    Directory of Open Access Journals (Sweden)

    Ping-Chang Lee

    Full Text Available Drosophila melanogaster is a well-studied model organism, especially in the field of neurophysiology and neural circuits. The brain of the Drosophila is small but complex, and the image of a single neuron in the brain can be acquired using confocal microscopy. Analyzing the Drosophila brain is an ideal start to understanding the neural structure. The most fundamental task in studying the neural network of Drosophila is to reconstruct neuronal structures from image stacks. Although the fruit fly brain is small, it contains approximately 100,000 neurons. It is impossible to trace all the neurons manually. This study presents a high-throughput algorithm for reconstructing the neuronal structures from 3D image stacks collected by a laser scanning confocal microscope. The proposed method reconstructs the neuronal structure by applying the shortest path graph algorithm. The vertices in the graph are certain points on the 2D skeletons of the neuron in the slices. These points are close to the 3D centerlines of the neuron branches. The accuracy of the algorithm was verified using the DIADEM data set. This method has been adopted as part of the protocol of the FlyCircuit Database, and was successfully applied to process more than 16,000 neurons. This study also shows that further analysis based on the reconstruction results can be performed to gather more information on the neural network.

  4. The adult Drosophila malphigian tubules are maintained by multipotent stem cells | Center for Cancer Research

    Science.gov (United States)

    All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable and no stem cells have been identified.

  5. Perioperative Management of Adult Traumatic Brain Injury

    OpenAIRE

    Sharma, Deepak; Vavilala, Monica S.

    2012-01-01

    This article presents an overview of the management of traumatic brain injury (TBI) as relevant to the practicing anesthesiologist. Key concepts surrounding the pathophysiology, anesthetic principles are used to describe potential ways to reduce secondary insults and improve outcomes after TBI.

  6. Circadian- and Light-Dependent Regulation of Resting Membrane Potential and Spontaneous Action Potential Firing of Drosophila Circadian Pacemaker Neurons

    OpenAIRE

    Sheeba, Vasu; Gu, Huaiyu; Sharma, Vijay K.; O'Dowd, Diane K.; Holmes, Todd C

    2007-01-01

    The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential: tonic and burst firing of sodium-dependent action potentials. Resting membrane potential and spontaneous action potential firing are rapidly ...

  7. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state.

    Science.gov (United States)

    Edgecomb, R S; Harth, C E; Schneiderman, A M

    1994-12-01

    The regulation of feeding behavior in adult Drosophila melanogaster includes such elements as ingestion responsiveness, volume ingested in a single meal, food storage in the crop and rate of defecation. Our results suggest that feeding behavior varies in a manner dependent on feeding regime (food-deprived or ad-libitum-fed) and nutritional state. Fed flies that are subsequently food-deprived become increasingly more responsive to food stimuli over time and, when offered 1% agar diets containing different concentrations of sucrose, ingest greater amounts of diets that have higher sucrose concentrations. When fed ad libitum for 72 h on these same diets, D. melanogaster maintained much smaller crops on average than food-deprived flies fed a single meal. Additionally, ad-libitum-fed flies are grouped into two categories depending on the concentration of sucrose in the diet. Flies fed for 72 h on 1% agar diets having 50 mmoll-1 sucrose or more are not affected by the concentration of sucrose in the diet, while flies fed on diets of 15 or 25 mmoll-1 sucrose increase ingestion responsiveness, crop size and the rate of defecation with decreasing concentrations of sucrose in the diet. Flies fed on even lower sucrose concentrations (5 or 10 mmoll-1 sucrose) for 27-72 h exhibit both a shift over time to larger crop sizes and increased mortality over those of flies fed 15 mmoll-1 sucrose. These data suggest that flies fed ad libitum are capable of modulating their feeding behavior in response to their nutritional state.

  8. Inflammation is detrimental for neurogenesis in adult brain

    Science.gov (United States)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  9. Brain abscess caused by Citrobacter koseri infection in an adult.

    Science.gov (United States)

    Liu, Heng-Wei; Chang, Chih-Ju; Hsieh, Cheng-Ta

    2015-04-01

    Citrobacter koseri is a gram-negative bacillus that causes mostly meningitis and brain abscesses in neonates and infants. However, brain abscess caused by Citrobacter koseri infection in an adult is extremely rare, and only 2 cases have been described. Here, we reported a 73-year-old male presenting with a 3-week headache. A history of diabetes mellitus was noted. The images revealed a brain abscess in the left frontal lobe and pus culture confirmed the growth of Citrobacter koseri. The clinical symptoms improved completely postoperatively.

  10. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    Directory of Open Access Journals (Sweden)

    Alexandra Vaccaro

    2017-01-01

    Full Text Available Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0 and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1 clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  11. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    Science.gov (United States)

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  12. The histone variant His2Av is required for adult stem cell maintenance in the Drosophila testis.

    Directory of Open Access Journals (Sweden)

    Jose Rafael Morillo Prado

    2013-11-01

    Full Text Available Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.

  13. Decreased segregation of brain systems across the healthy adult lifespan.

    Science.gov (United States)

    Chan, Micaela Y; Park, Denise C; Savalia, Neil K; Petersen, Steven E; Wig, Gagan S

    2014-11-18

    Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20-89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults' brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating "associative" operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual's age.

  14. dSno facilitates baboon signaling in the Drosophila brain by switching the affinity of Medea away from Mad and toward dSmad2.

    Science.gov (United States)

    Takaesu, Norma T; Hyman-Walsh, Cathy; Ye, Ying; Wisotzkey, Robert G; Stinchfield, Michael J; O'connor, Michael B; Wotton, David; Newfeld, Stuart J

    2006-11-01

    A screen for modifiers of Dpp adult phenotypes led to the identification of the Drosophila homolog of the Sno oncogene (dSno). The dSno locus is large, transcriptionally complex and contains a recent retrotransposon insertion that may be essential for dSno function, an intriguing possibility from the perspective of developmental evolution. dSno is highly transcribed in the embryonic central nervous system and transcripts are most abundant in third instar larvae. dSno mutant larvae have proliferation defects in the optic lobe of the brain very similar to those seen in baboon (Activin type I receptor) and dSmad2 mutants. This suggests that dSno is a mediator of Baboon signaling. dSno binds to Medea and Medea/dSno complexes have enhanced affinity for dSmad2. Alternatively, Medea/dSno complexes have reduced affinity for Mad such that, in the presence of dSno, Dpp signaling is antagonized. We propose that dSno functions as a switch in optic lobe development, shunting Medea from the Dpp pathway to the Activin pathway to ensure proper proliferation. Pathway switching in target cells is a previously unreported mechanism for regulating TGFbeta signaling and a novel function for Sno/Ski family proteins.

  15. Peripheral nerve injury induces adult brain neurogenesis and remodelling.

    Science.gov (United States)

    Rusanescu, Gabriel; Mao, Jianren

    2017-02-01

    Unilateral peripheral nerve chronic constriction injury (CCI) has been widely used as a research model of human neuropathic pain. Recently, CCI has been shown to induce spinal cord adult neurogenesis, which may contribute to the chronic increase in nociceptive sensitivity. Here, we show that CCI also induces rapid and profound asymmetrical anatomical rearrangements in the adult rodent cerebellum and pons. This remodelling occurs throughout the hindbrain, and in addition to regions involved in pain processing, also affects other sensory modalities. We demonstrate that these anatomical changes, partially reversible in the long term, result from adult neurogenesis. Neurogenic markers Mash1, Ngn2, doublecortin and Notch3 are widely expressed in the rodent cerebellum and pons, both under normal and injured conditions. CCI-induced hindbrain structural plasticity is absent in Notch3 knockout mice, a strain with impaired neuronal differentiation, demonstrating its dependence on adult neurogenesis. Grey matter and white matter structural changes in human brain, as a result of pain, injury or learned behaviours have been previously detected using non-invasive neuroimaging techniques. Because neurogenesis-mediated structural plasticity is thought to be restricted to the hippocampus and the subventricular zone, such anatomical rearrangements in other parts of the brain have been thought to result from neuronal plasticity or glial hypertrophy. Our findings suggest the presence of extensive neurogenesis-based structural plasticity in the adult mammalian brain, which may maintain a memory of basal sensory levels, and act as an adaptive mechanism to changes in sensory inputs.

  16. [Endocrine functions of the brain in adult and developing mammals].

    Science.gov (United States)

    Ugriumov, M V

    2009-01-01

    The main prerequisite for organism's viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats--before the blood-brain barrier is formed--proved to have equally high

  17. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults.

  18. PDF cycling in the dorsal protocerebrum of the Drosophila brain is not necessary for circadian clock function.

    Science.gov (United States)

    Kula, Elzbieta; Levitan, Edwin S; Pyza, Elzbieta; Rosbash, Michael

    2006-04-01

    In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is a likely circadian molecule, secreted by central pacemaker neurons (LNvs). PDF is expressed in both small and large LNvs (sLNvs and lLNvs), and there are striking circadian oscillations of PDF staining intensity in the small cell termini, which require a functional molecular clock. This cycling may be relevant to the proposed role of PDF as a synchronizer of the clock system or as an output signal connecting pacemaker cells to locomotor activity centers. In this study, the authors use a generic neuropeptide fusion protein (atrial natriuretic factor-green fluorescent protein [ANF-GFP]) and show that it can be expressed in the same neurons as PDF itself. Yet, ANF-GFP as well as PDF itself does not manifest any cyclical accumulation in sLNv termini in adult transgenic flies. Surprisingly, the absence of detectable PDF cycling is not accompanied by any detectable behavioral pheno-type, since these transgenic flies have normal morning and evening anticipation in a light-dark cycle (LD) and are fully rhythmic in constant darkness (DD). The molecular clock is also not compromised. The results suggest that robust PDF cycling in sLNv termini plays no more than a minor role in the Drosophila circadian system and is apparently not even necessary for clock output function.

  19. Functional characterisation of human synaptic genes expressed in the Drosophila brain.

    Science.gov (United States)

    Zografos, Lysimachos; Tang, Joanne; Hesse, Franziska; Wanker, Erich E; Li, Ka Wan; Smit, August B; Davies, R Wayne; Armstrong, J Douglas

    2016-05-15

    Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the three strains expressing human tyrosine protein kinase Fyn, the small GTPase Rap1a and human Arc, respectively. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype.

  20. Functional characterisation of human synaptic genes expressed in the Drosophila brain

    Directory of Open Access Journals (Sweden)

    Lysimachos Zografos

    2016-05-01

    Full Text Available Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the three strains expressing human tyrosine protein kinase Fyn, the small GTPase Rap1a and human Arc, respectively. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype.

  1. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    Full Text Available BACKGROUND: Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE: Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules

  2. Retention of features on a mapped Drosophila brain surface using a Bézier-tube-based surface model averaging technique.

    Science.gov (United States)

    Chen, Guan-Yu; Wu, Cheng-Chi; Shao, Hao-Chiang; Chang, Hsiu-Ming; Chiang, Ann-Shyn; Chen, Yung-Chang

    2012-12-01

    Model averaging is a widely used technique in biomedical applications. Two established model averaging methods, iterative shape averaging (ISA) method and virtual insect brain (VIB) method, have been applied to several organisms to generate average representations of their brain surfaces. However, without sufficient samples, some features of the average Drosophila brain surface obtained using the above methods may disappear or become distorted. To overcome this problem, we propose a Bézier-tube-based surface model averaging strategy. The proposed method first compensates for disparities in position, orientation, and dimension of input surfaces, and then evaluates the average surface by performing shape-based interpolation. Structural features with larger individual disparities are simplified with half-ellipse-shaped Bézier tubes, and are unified according to these tubes to avoid distortion during the averaging process. Experimental results show that the average model yielded by our method could preserve fine features and avoid structural distortions even if only a limit amount of input samples are used. Finally, we qualitatively compare our results with those obtained by ISA and VIB methods by measuring the surface-to-surface distances between input surfaces and the averaged ones. The comparisons show that the proposed method could generate a more representative average surface than both ISA and VIB methods.

  3. A Novel Genetic Screen Identifies Modifiers of Age-Dependent Amyloid β Toxicity in the Drosophila Brain

    Science.gov (United States)

    Belfiori-Carrasco, Lautaro F.; Marcora, María S.; Bocai, Nadia I.; Ceriani, M. Fernanda; Morelli, Laura; Castaño, Eduardo M.

    2017-01-01

    The accumulation of amyloid β peptide (Aβ) in the brain of Alzheimer’s disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aβ soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aβ can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the “amyloid hypothesis”, compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aβ42 in the CNS. The expression of Aβ42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aβ42; (2) a quantifiable complex behavior; (3) Aβ neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aβ42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key

  4. File list: DNS.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Adult_brains.bed ...

  5. File list: InP.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43466,SRX643468,SRX643467,SRX643463,SRX643464,SRX643465,SRX643469,SRX643462 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.05.AllAg.Adult_brains.bed ...

  6. File list: DNS.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Adult_brains.bed ...

  7. File list: DNS.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Adult_brains.bed ...

  8. File list: NoD.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.10.AllAg.Adult_brains.bed ...

  9. File list: InP.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43464,SRX643462,SRX643465,SRX643469,SRX643463,SRX643466,SRX643468,SRX643467 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Adult_brains.bed ...

  10. File list: NoD.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Adult_brains.bed ...

  11. File list: ALL.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Adult_brains.bed ...

  12. File list: DNS.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Adult_brains.bed ...

  13. File list: ALL.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...643463,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Adult_brains.bed ...

  14. File list: ALL.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX01...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Adult_brains.bed ...

  15. File list: InP.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43468,SRX643467,SRX643464,SRX643465,SRX643462,SRX643466,SRX643469,SRX643463 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Adult_brains.bed ...

  16. File list: NoD.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Adult_brains hg19 No description Neural Adult brains SRX019404,ERX...161917 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Adult_brains.bed ...

  17. File list: ALL.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Adult_brains.bed ...

  18. File list: NoD.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.20.AllAg.Adult_brains.bed ...

  19. Adult Heat Tolerance Variation in Drosophila melanogaster is Not Related to Hsp70 Expression

    DEFF Research Database (Denmark)

    Jensen, Louise Toft; Cockerell, Fiona Elizabeth; Kristensen, Torsten Nygaard

    2010-01-01

    Expression of heat-inducible Hsp70 is considered closely linked to thermotolerance in Drosophila melanogaster and other ectotherms. However, intra-specific variation of Hsp70 expression levels and its relationship to heat resistance has only been investigated in a few studies. Although in Drosoph...

  20. Comprehensive cellular-resolution atlas of the adult human brain.

    Science.gov (United States)

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. Copyright © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  1. Comprehensive cellular‐resolution atlas of the adult human brain

    Science.gov (United States)

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  2. Effects of high-LET particles /A-40/ on the brain of Drosophila melanogaster

    Science.gov (United States)

    Miquel, J.; Herman, M. M.; Benton, E. V.; Welch, G.

    1976-01-01

    To investigate the effects of galactic heavy particles on nervous tissue, Drosophila melanogaster flies were exposed to A-40 from the Super-HILAC accelerator at the Lawrence Berkeley Laboratory. The energy of the particles reaching the Drosophila neurons was 4.8 MeV/nucleon, and the fluence ranged from 60,000 to 80 million particles/sq cm. Thirty-five days after irradiation at the higher fluences, extensive tissue fragmentation and cysts were found. At fluences as low as one hit/two cell bodies (about 5 million) and one hit/90 cell bodies (about 90,000 particles/sq cm or 21 rad average dose) swelling of neuronal cytoplasm and focally fragmented membranes were noted; at fluences ranging from one hit/six to one hit/135 cell bodies, there was frequently a marked increase in glial lamellae around nerve-cell processes, which often had degenerative features. These findings support the view that single hits by heavy particles may injure nervous tissue.

  3. Divergent Functions Through Alternative Splicing: The Drosophila CRMP Gene in Pyrimidine Metabolism, Brain, and Behavior

    Science.gov (United States)

    Morris, Deanna H.; Dubnau, Josh; Park, Jae H.; Rawls, John M.

    2012-01-01

    DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals. PMID:22649077

  4. Optical Dissection of Experience-Dependent Pre- and Postsynaptic Plasticity in the Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Ulrike Pech

    2015-03-01

    Full Text Available Drosophila represents a key model organism for dissecting neuronal circuits that underlie innate and adaptive behavior. However, this task is limited by a lack of tools to monitor physiological parameters of spatially distributed, central synapses in identified neurons. We generated transgenic fly strains that express functional fluorescent reporters targeted to either pre- or postsynaptic compartments. Presynaptic Ca2+ dynamics are monitored using synaptophysin-coupled GCaMP3, synaptic transmission is monitored using red fluorescent synaptophysin-pHTomato, and postsynaptic Ca2+ dynamics are visualized using GCaMP3 fused with the postsynaptic matrix protein, dHomer. Using two-photon in vivo imaging of olfactory projection neurons, odor-evoked activity across populations of synapses is visualized in the antennal lobe and the mushroom body calyx. Prolonged odor exposure causes odor-specific and differential experience-dependent changes in pre- and postsynaptic activity at both levels of olfactory processing. The approach advances the physiological analysis of synaptic connections across defined groups of neurons in intact Drosophila.

  5. Brain Network Activity in Monolingual and Bilingual Older Adults

    Science.gov (United States)

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  6. Interactions between the developmental and adult social environments mediate group dynamics and offspring traits in Drosophila melanogaster.

    Science.gov (United States)

    Morimoto, Juliano; Ponton, Fleur; Tychsen, Ilona; Cassar, Jason; Wigby, Stuart

    2017-06-15

    Developmental conditions can strongly influence adult phenotypes and social interactions, which in turn affect key evolutionary processes such as sexual selection and sexual conflict. While the implications of social interactions in phenotypically mixed populations at the individual level are increasingly well known, how these effects influence the fate of groups remains poorly understood, which limits our understanding of the broader ecological implications. To address this problem we manipulated adult phenotypes and social composition in Drosophila melanogaster - by experimentally manipulating the larval density of the group-members - and measured a range of group-level outcomes across the lifespan of groups. Adult groups composed of exclusively low larval-density individuals showed high courtship levels, and low early reproductive rates, group growth rates, offspring mass and offspring eclosion success, relative to high larval-density or mixed larval-density groups. Furthermore, high larval-density groups had lower survival. Offspring mass increased with time, but at a reduced rate in groups when male group members (but not females) were from a mixture of larval-densities; peak reproductive rates were also earlier in these groups. Our results suggest that that variation in developmental conditions experienced by adult group members can modify the reproductive output of groups.

  7. Gene structure of Drosophila diaphorase-1: diversity of transcripts in adult males and females, in different organs and at different stages of development

    Indian Academy of Sciences (India)

    Pavlina M. Ivanova; Boris H. Dunkov; Kiril H. Ralchev

    2008-08-01

    The gene EG:22E5.5 or CG4199 (accession number O77266, Q9W529) from Berkeley Drosophila Genome Project (BDGP) was found using the partial amino acid sequences of three tryptic peptides obtained from purified Drosophila virilis diaphorase-1. This gene is located on the X chromosome at position 2C9–2C10. The structure of the gene reveals three exons and two long introns. Using BDGP, we found six transcripts in this gene. The difference between these transcripts is in their 5′ ends; the 3′ ends of the six transcripts are identical. Thirty-four ESTs from different cDNA libraries were found, most of them from Schneider L2 cell culture (SH) cDNA library. The transcripts are represented at very low level in the cells of different organs and at different stages of Drosophila development. Using RT-PCR, we obtained five of these transcripts in cDNA samples from female adult flies. However, we could not find any of them in cDNA samples from male adult flies. Moreover, we obtained only the third transcript (CG4199-RC) in the sample of testis from adult flies and the fourth transcript (CG4199-RD) in an embryo sample. None of the other five transcripts were found in the samples of different organs and in the samples obtained at different stages of Drosophila development.

  8. Time Spent Caregiving and Help Received by Spouses and Adult Children of Brain-Impaired Adults.

    Science.gov (United States)

    Enright, Robert B., Jr.

    1991-01-01

    Surveyed 233 family caregivers for brain-impaired adults. Spousal caregivers (both husbands and wives) devoted much time to caregiving. Most caregivers received little assistance from other family members and friends, but husbands received more than others. Employed spouses received more paid help than unemployed spouses; employment did not affect…

  9. Three-dimensional imaging of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Leeanne McGurk

    Full Text Available BACKGROUND: The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT. The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy. METHODOLOGY: We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. CONCLUSION: We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

  10. Prevalence of abnormal findings on brain magnetic resonance (MR examinations in adult participants of brain docking

    Directory of Open Access Journals (Sweden)

    Taketomi-Takahashi Ayako

    2005-10-01

    Full Text Available Abstract Background To determine the prevalence of abnormal findings on brain magnetic resonance (MR examinations in adult participants of brain docking in order to assess its usefulness. Methods We analyzed screening brain MR examinations for 1113 adults (age, 52.6+/-8.5 years; range, 22–84; 761 male and 352 female performed during 6-year period from April 1998 to March 2004. All participants voluntarily sought a brain MR examination at their own expense. All subjects were studied using the same 1.0-T MR scanner, on axial T1-weighted spin echo (SE images, proton-density-weighted and T2-weighted fast SE images, and intracranial MR angiography (MRA. All abnormal findings were classified into three basic categories: (1 findings with no referral necessary; (2 findings not requiring further evaluation, but which needed to be reported to the referring physician; (3 findings requiring further evaluation. Results Participants with abnormal MR findings requiring further evaluation accounted for 1.3 %, but five of seven suspected intracranial aneurysms were not confirmed by other imaging modalities (false positive. No malignant tumors or other life-threatening pathology was detected, and only three participants (0.27 % with abnormalities underwent surgical treatment. No participant groups were identified from our data as being high risk for MR abnormal findings requiring further evaluation. Conclusion Brain-docking participants had a variety of abnormalities on brain MR examinations, but only a small percentage of these findings required further evaluation. The usefulness of the brain docking with MRI and MRA has yet to be proven, and at this time we cannot approve this screening procedure.

  11. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  12. A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine

    Directory of Open Access Journals (Sweden)

    Fanju W. Meng

    2015-11-01

    Full Text Available Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is expressed in intestinal stem cells (ISCs in the adult gut. Sox21a is essential for the proliferation of these cells during both normal epithelium turnover and repair. Its expression is induced in response to tissue damage, downstream of the Jun N-terminal kinase (JNK and extracellular signal-regulated kinase (ERK pathways, to promote ISC proliferation. Although short-lived, Sox21a mutant flies show no developmental defects, supporting the notion that this factor is a specific regulator of adult stem cell proliferation.

  13. Acute moderate exercise enhances compensatory brain activation in older adults.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  14. Tai Ji Quan, the brain, and cognition in older adults

    Directory of Open Access Journals (Sweden)

    Yu-Kai Chang

    2014-03-01

    Full Text Available The relationship between physical activity (PA and cognition has received much attention recently. While evidence of improved cognition following PA has consistently been observed, the majority of studies have spotlighted aerobic exercise and the effects of other modes of PA, such as Tai Ji Quan, on cognition have received limited attention. This article provides a brief review of the literature concerning the influence of Tai Ji Quan on cognition in older adults, including those with intact cognition and those with cognitive impairment. In addition, this review proposes potential mechanisms (cardiovascular fitness, motor fitness, movement coordination, social interaction, and meditation statuses as well brain structure and function evaluated from a neuroimaging perspective that may explain the Tai Ji Quan–cognition relationship. Finally, we present suggestions for future research. In conclusion, Tai Ji Quan, with its multi-faceted characteristics, shows promise as a mode of PA for enhancing cognition, as well as brain health, in older adults. Based on the findings in this review, further exploration of the effects of Tai Ji Quan on cognition in older adults is warranted.

  15. Morphological brain differences between adult stutterers and non-stutterers

    Directory of Open Access Journals (Sweden)

    Hänggi Jürgen

    2004-12-01

    Full Text Available Abstract Background The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. Methods Adults with PDS (n = 10 and controls (n = 10 matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM the brains of stutterers and non-stutterers were compared with respect to white matter (WM and grey matter (GM differences. Results We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale, the inferior frontal gyrus (including the pars triangularis, the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. Conclusions These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question.

  16. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  17. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior.

    Science.gov (United States)

    Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei

    2014-01-01

    Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior.

  18. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior

    Directory of Open Access Journals (Sweden)

    Hideo eOtsuna

    2014-02-01

    Full Text Available Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior.

  19. Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response

    Science.gov (United States)

    Fischbach, K. F.; Heisenberg, M.

    1981-01-01

    KS58, one out of six known alleles of the small optic lobes (sol) gene in Drosophila melanogaster, reduces the cell number in the medulla cortex by degeneration of ganglion cells in the pupae to about 50%. Also, about half the volume of the medulla and lobula complex neuropils is missing. Many Golgistained cells in the mutant optic lobes resemble their homologues in wild type. However, special classes of transmedullary columnar neurons projecting to the lobula or to both lobula and lobula plate are not seen in the mutant. Some neurons linking the lobula complex to the central brain send branches to the medulla (the branches do not exist in wild type); some other types seem to be missing. The fate mapping of the KS58 focus reveals a location ventral to the head bristles and in sine oculis (so) flies the mutation further reduces the rudiments of the optic lobes normally seen. Therefore the sol phenotype is not induced by mutant eyes and the primary gene action seems to be on nervous tissue. The structural alterations of the small optic lobes are reflected in visual orientation behavior. The optomotor yaw response, however, is almost quantitatively preserved. The respective neural network should still be present in the mutant optic lobes. Images PMID:16592962

  20. Identification of Mushroom body miniature, a zinc-finger protein implicated in brain development of Drosophila

    Science.gov (United States)

    Raabe, Thomas; Clemens-Richter, Susanne; Twardzik, Thomas; Ebert, Anselm; Gramlich, Gertrud; Heisenberg, Martin

    2004-01-01

    The mushroom bodies are bilaterally arranged structures in the protocerebrum of Drosophila and most other insect species. Mutants with altered mushroom body structure have been instrumental not only in establishing their role in distinct behavioral functions but also in identifying the molecular pathways that control mushroom body development. The mushroom body miniature1 (mbm1) mutation results in grossly reduced mushroom bodies and odor learning deficits in females. With a survey of genomic rescue constructs, we have pinpointed mbm1 to a single transcription unit and identified a single nucleotide exchange in the 5′ untranslated region of the corresponding transcript resulting in a reduced expression of the protein. The most obvious feature of the Mbm protein is a pair of C2HC zinc fingers, implicating a function of the protein in binding nucleic acids. Immunohistochemical analysis shows that expression of the Mbm protein is not restricted to the mushroom bodies. BrdUrd labeling experiments indicate a function of Mbm in neuronal precursor cell proliferation. PMID:15375215

  1. Open source tracking and analysis of adult Drosophila locomotion in Buridan's paradigm with and without visual targets.

    Directory of Open Access Journals (Sweden)

    Julien Colomb

    Full Text Available BACKGROUND: Insects have been among the most widely used model systems for studying the control of locomotion by nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan's paradigm, flies walk back and forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position and analyzing its trajectory has probably contributed to the slow acceptance of Buridan's paradigm. METHODOLOGY/PRINCIPAL FINDINGS: We present here a package of open source software designed to track a single animal walking in a homogenous environment (Buritrack and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a Principal Components Analysis (PCA. It was designed to be easily customized to personal requirements. In combination with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were clipped, either in the presence or in the absence of visual targets, and comparing the latter to different computer-generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual targets can alter the orientation of the flies without changing their overall patterns of activity. CONCLUSIONS/SIGNIFICANCE: Using computer generated data, the analysis software was tested, and chance values for some metrics (as well as chance value for their correlation were set. Our results prompt the hypothesis that fixation behavior is observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together with our companion paper, we provide new tools to promote Open Science as well as the collection and

  2. Glycogen distribution in adult and geriatric mice brains

    KAUST Repository

    Alrabeh, Rana

    2017-05-01

    Astrocytes, the most abundant glial cell type in the brain, undergo a number of roles in brain physiology; among them, the energetic support of neurons is the best characterized. Contained within astrocytes is the brain’s obligate energy store, glycogen. Through glycogenolysis, glycogen, a storage form of glucose, is converted to pyruvate that is further reduced to lactate and transferred to neurons as an energy source via MCTs. Glycogen is a multi-branched polysaccharide synthesized from the glucose uptaken in astrocytes. It has been shown that glycogen accumulates with age and contributes to the physiological ageing process in the brain. In this study, we compared glycogen distribution between young adults and geriatric mice to understand the energy consumption of synaptic terminals during ageing using computational tools. We segmented and densely reconstructed neuropil and glycogen granules within six (three 4 month old old and three 24 month old) volumes of Layer 1 somatosensory cortex mice brains from FIB-SEM stacks, using a combination of semi-automated and manual tools, ilastik and TrakEM2. Finally, the 3D visualization software, Blender, was used to analyze the dataset using the DBSCAN and KDTree Nearest neighbor algorithms to study the distribution of glycogen granules compared to synapses, using a plugin that was developed for this purpose. The Nearest Neighbors and clustering results of 6 datasets show that glycogen clusters around excitatory synapses more than inhibitory synapses and that, in general, glycogen is found around axonal boutons more than dendritic spines. There was no significant accumulation of glycogen with ageing within our admittedly small dataset. However, there was a homogenization of glycogen distribution with age and that is consistent with published literature. We conclude that glycogen distribution in the brain is not a random process but follows a function distribution.

  3. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  4. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Hiroko Sano

    2015-05-01

    Full Text Available The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2 acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps. A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R in insulin-producing cells (IPCs in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3, is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

  5. Raven's progressive matrices performance in adults with traumatic brain injury.

    Science.gov (United States)

    Hiscock, Merrill; Inch, Roxanne; Gleason, Angela

    2002-01-01

    Raven's Progressive Matrices (RPM), a widely used test of reasoning, is sensitive to aging, but it has not proven to be helpful in the assessment of acquired focal or lateralized brain damage. Clinical experience suggests that the test is insensitive to traumatic brain injury (TBI), but the data are difficult to interpret because of rapid inflation of norms over time (the Flynn effect). In examining data from 64 adult patients with TBI who were administered the Standard RPM between 1981 and 1989, we used previous and subsequent norms conjointly to adjust for the Flynn effect. Anterograde and retrograde adjustment of norms led to highly convergent results. After adjustment for the Flynn effect, RPM performance was comparable to Wechsler IQ, significantly below estimated premorbid IQ, and nearly 2 SD above performance on 2 TBI-sensitive neuropsychological tests. We conclude that RPM performance is neither more nor less sensitive than Wechsler IQ to the consequences of TBI in the adult, but erroneous conclusions are likely to be reached if the Flynn effect is not taken into account.

  6. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    Science.gov (United States)

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  7. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    Science.gov (United States)

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-09-18

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.

  8. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors.

    Directory of Open Access Journals (Sweden)

    Eric P Ratliff

    Full Text Available Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies. Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.

  9. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  10. Brain correlates of negative and positive visuospatial priming in adults.

    Science.gov (United States)

    Wright, Christopher I; Keuthen, Nancy J; Savage, Cary R; Martis, Brian; Williams, Danielle; Wedig, Michelle; McMullin, Katherine; Rauch, Scott L

    2006-04-15

    A balance of inhibitory and facilitatory mechanisms is essential for efficient and goal-directed behaviors. These mechanisms may go awry in several neuropsychiatric disorders characterized by uncontrolled, repetitive behaviors. The visuospatial priming paradigm is a well-established probe of inhibition and facilitation that has been used to demonstrate behavioral deficits in patients with Tourette syndrome and obsessive-compulsive disorder. However, the brain correlates of this visuospatial priming paradigm are not yet well established. In the present study, we used a visuospatial priming paradigm and event-related functional MRI, to probe inhibitory and facilitatory brain mechanisms in healthy adult women. When subjects performed the negative priming (i.e., inhibitory) task, several regions of the prefrontal cortex were selectively activated relative to the neutral condition. Non-overlapping regions of the prefrontal cortex were deactivated in the positive priming condition. These results support the notion that the prefrontal cortex is involved in both inhibitory and facilitatory processing and demonstrate that this visuospatial priming task shares brain correlates with other positive and negative priming tasks. In conjunction with functional MRI, this visuospatial priming task may be useful for studying the pathophysiology of neuropsychiatric disorders in which deficient inhibitory processing or excessive facilitation is a feature.

  11. An empirical EEG analysis in brain death diagnosis for adults.

    Science.gov (United States)

    Chen, Zhe; Cao, Jianting; Cao, Yang; Zhang, Yue; Gu, Fanji; Zhu, Guoxian; Hong, Zhen; Wang, Bin; Cichocki, Andrzej

    2008-09-01

    Electroencephalogram (EEG) is often used in the confirmatory test for brain death diagnosis in clinical practice. Because EEG recording and monitoring is relatively safe for the patients in deep coma, it is believed to be valuable for either reducing the risk of brain death diagnosis (while comparing other tests such as the apnea) or preventing mistaken diagnosis. The objective of this paper is to study several statistical methods for quantitative EEG analysis in order to help bedside or ambulatory monitoring or diagnosis. We apply signal processing and quantitative statistical analysis for the EEG recordings of 32 adult patients. For EEG signal processing, independent component analysis (ICA) was applied to separate the independent source components, followed by Fourier and time-frequency analysis. For quantitative EEG analysis, we apply several statistical complexity measures to the EEG signals and evaluate the differences between two groups of patients: the subjects in deep coma, and the subjects who were categorized as brain death. We report statistically significant differences of quantitative statistics with real-life EEG recordings in such a clinical study, and we also present interpretation and discussions on the preliminary experimental results.

  12. Optogenetics in Drosophila Neuroscience.

    Science.gov (United States)

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory.

  13. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  14. Clinical Feature And Pathogeny Analysis Of Brain Hemorrhage In Young Adult Group

    Institute of Scientific and Technical Information of China (English)

    Wang Jianming; Zeng Xiaoyun

    2000-01-01

    Objection: The trend of brain hemorrhage cases of young adults have increased recently. In this article, We studied brain hemorrhage clinical feature and pathogenic causes of 72 young adults, Whose ages are all beneath 45Y. We found That the major pathogen reasons of young adult brain hemorrhage are blood system diseases、 arteriovenous malformation of cerebral blood vessel、 hypertension arteriosclerosis、 arteritis and rheumatic heart disease et. We also found that the trend can be related to hard work、 tense life、 drinking too much alcohol and eating high lipid food, and cercbral vascular disease family history. So in order to reduce the incidence of young adult brain hemorrhage, Young adults should not drink and smoke heavily, should not eat too much high lipid food. Young adults who have hypertension and brain vessel disease family history should be regularly measured blood pressure and blood lipid. If they had hypertension, should be treated regularly.

  15. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Oyinkan Sofola

    2010-09-01

    Full Text Available Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD, with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3 is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.

  16. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Oyinkan Sofola

    2010-09-01

    Full Text Available Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD, with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3 is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.

  17. Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution.

    Science.gov (United States)

    Pech, Ulrike; Pooryasin, Atefeh; Birman, Serge; Fiala, André

    2013-12-01

    The mushroom body of the insect brain represents a neuronal circuit involved in the control of adaptive behavior, e.g., associative learning. Its function relies on the modulation of Kenyon cell activity or synaptic transmitter release by biogenic amines, e.g., octopamine, dopamine, or serotonin. Therefore, for a comprehensive understanding of the mushroom body, it is of interest not only to determine which modulatory neurons interact with Kenyon cells but also to pinpoint where exactly in the mushroom body they do so. To accomplish the latter, we made use of the GRASP technique and created transgenic Drosophila melanogaster that carry one part of a membrane-bound splitGFP in Kenyon cells, along with a cytosolic red fluorescent marker. The second part of the splitGFP is expressed in distinct neuronal populations using cell-specific Gal4 drivers. GFP is reconstituted only if these neurons interact with Kenyon cells in close proximity, which, in combination with two-photon microscopy, provides a very high spatial resolution. We characterize spatially and microstructurally distinct contact regions between Kenyon cells and dopaminergic, serotonergic, and octopaminergic/tyraminergic neurons in all subdivisions of the mushroom body. Subpopulations of dopaminergic neurons contact complementary lobe regions densely. Octopaminergic/tyraminergic neurons contact Kenyon cells sparsely and are restricted mainly to the calyx, the α'-lobes, and the γ-lobes. Contacts of Kenyon cells with serotonergic neurons are heterogeneously distributed over the entire mushroom body. In summary, the technique enables us to localize precisely a segmentation of the mushroom body by differential contacts with aminergic neurons.

  18. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  19. Genetic correlation between the pre-adult developmental period and locomotor activity rhythm in Drosophila melanogaster.

    Science.gov (United States)

    Takahashi, K H; Teramura, K; Muraoka, S; Okada, Y; Miyatake, T

    2013-04-01

    Biological clocks regulate various behavioural and physiological traits; slower circadian clocks are expected to slow down the development, suggesting a potential genetic correlation between the developmental period and circadian rhythm. However, a correlation between natural genetic variations in the developmental period and circadian rhythm has only been found in Bactrocera cucurbitae. The number of genetic factors that contribute to this genetic correlation is largely unclear. In this study, to examine whether natural genetic variations in the developmental period and circadian rhythm are correlated in Drosophila melanogaster, we performed an artificial disruptive selection on the developmental periods using wild-type strains and evaluated the circadian rhythms of the selected lines. To investigate whether multiple genetic factors mediate the genetic correlation, we reanalyzed previously published genome-wide deficiency screening data based on DrosDel isogenic deficiency strains and evaluated the effect of 438 genomic deficiencies on the developmental periods. We then randomly selected 32 genomic deficiencies with significant effects on the developmental periods and tested their effects on circadian rhythms. As a result, we found a significant response to selection for longer developmental periods and their correlated effects on circadian rhythms of the selected lines. We also found that 18 genomic regions had significant effects on the developmental periods and circadian rhythms, indicating their potential for mediating the genetic correlation between the developmental period and circadian rhythm. The novel findings of our study might lead to a better understanding of how this correlation is regulated genetically in broader taxonomic groups.

  20. The Drosophila Prosecretory Transcription Factor dimmed Is Dynamically Regulated in Adult Enteroendocrine Cells and Protects Against Gram-Negative Infection.

    Science.gov (United States)

    Beebe, Katherine; Park, Dongkook; Taghert, Paul H; Micchelli, Craig A

    2015-05-20

    The endocrine system employs peptide hormone signals to translate environmental changes into physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct physical contact with the microbial environment of the gut lumen. However, it remains unclear how this sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient, sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides "gain" in enteroendocrine output during the adaptive response to episodic pathogen exposure. Copyright © 2015 Beebe et al.

  1. Preimaginal exposure to azadirachtin affects food selection and digestive enzymes in adults of Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Kilani-Morakchi, Samira; Bezzar-Bendjazia, Radia; Ferdenache, Maroua; Aribi, Nadia

    2017-08-01

    Among the plant derived product, azadirachtin, a neem-based insecticide, is exceptional in having a broad range of bioactivity including toxicity, growth, development and reproduction effects, repellency and antifeedancy. If considerable progress on the physiological and biological activities and agricultural application of azadirachtin has been achieved, its exact mechanism of action remains uncertain. In this study, we aimed at assessing the lethal and sublethal behavioral and physiological effects of azadirachtin on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) as biological model. Azadirachtin was applied topically at two doses LD25 (0.28μg) and LD50 (0.67μg) on early third instar larvae. Results showed that flies preferentially ingested control medium rather than azadirachtin-treated medium. Pre-imaginal exposure (L3) to azadirachtin increased aversion to this substance suggesting a memorability of the learned avoidance. In addition, all tested flies revealed a clear preference for solvent odour rather than azadirachtin odour. Moreover, azadirachtin treatment decreased significantly the amount of food intake in the adults of both sexes. Finally, azadirachtin was found to affect digestive enzyme activities in the midgut of flies. Indeed, an inhibition of α-amylase, chitinase, and protease activities and an increase of lipasic activity were noted. These results may reflect interference of azadirachtin with regulation of feeding and metabolism, and provide some evidence of a long term antifeedancy and delayed effects through developmental stage which may reinforce the insecticidal activity of this bioinsecticide. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. {sup 1}H MR spectroscopic patterns of normal adult brain

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Chan; Chang, Kee Hyun; Min, Kwan Hong; Kim, Dong Sung; Han, Moon Hee; Kang, Sa Ouk; Min, Byoung Goo; Han, Man Chung [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-10-01

    To evaluate regional differences of {sup 1}H magnetic resonance(MR) spectral patterns in normal adult human brains. A total of 44 {sup 1}H MR spectra in 25 volunteers aged 27-45 were obtained in five regions including the frontal lobe(10), parietal lobe(10), temporal lobe(5), basal ganglia(10) and thalamus(9). {sup 1}H MR spectroscopy(MRS) was performed using a PRESS sequence with a TR of 2000 ms and a TE of 270ms from a volume of cm on a 1.5T clinical MR unit. Relative metabolite ratios of NAA/Cho, NAA/Cr and Cr/Cho in each region were measured and compared. A total of 44 reliable spectra were successfully obtained in all regions. NAA/Cho, NAA/Cr and Cr/Cho ratios varied considerably, ranging from 1.09{+-}0.2 to 2.46{+-}0.25, from 1.72{+-}0.35 to 2.45{+-}0.25 and from 0.64{+-}0.1 to 1.01{+-}0.12, respectively. Significant regional differences in metabolite ratios were observed; higher NAA/Cho and NAA/Cr ratios in the parietal lobe, lower NAA/Cho ratios in the temporal lobe, and lower Cr/Cho ratios in the temporal lobe compared to those of other regions(p<0.05). Differences in metabolite ratios between the right and left frontal lobes, and between the right and left basal ganglias were not significant. {sup 1}H MR spectra of the normal adult human brains using in vivo single voxel {sup 1}H MRS represented significant regional differences in metabolite ratios of NAA/Cho, NAA/Cr and Cr/Cho. Our {sup 1}H MR spectroscopic results are a useful reference for assessing the {sup 1}H MRS pattern of various intracranial diseases.

  3. The Steroid Molting Hormone Ecdysone Regulates Sleep in Adult Drosophila melanogaster

    OpenAIRE

    Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2010-01-01

    Ecdysone is the major steroid hormone in insects and plays essential roles in coordinating developmental transitions such as larval molting and metamorphosis through its active metabolite 20-hydroxyecdysone (20E). Although ecdysone is present throughout life in both males and females, its functions in adult physiology remain largely unknown. In this study we demonstrate that ecdysone-mediated signaling in the adult is intimately involved in transitions between the physiological states of slee...

  4. A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults.

    Science.gov (United States)

    Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H

    2015-08-01

    The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.

  5. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    Science.gov (United States)

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  6. Adult neurogenesis in the decapod crustacean brain: A hematopoietic connection?

    Science.gov (United States)

    Beltz, Barbara S.; Zhang, Yi; Benton, Jeanne L.; Sandeman, David C.

    2011-01-01

    New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the 1st- generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors coexist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the 1st-generation neuronal precursors in the crayfish Procambarus clarkii are not self-renewing. A source external to the neurogenic niche must therefore provide cells that replenish the 1st-generation precursor pool, because although these cells divide and produce a continuous efflux of 2nd-generation cells from the niche, the population of 1st-generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition. PMID:21929622

  7. Brain Function Differences in Language Processing in Children and Adults with Autism

    OpenAIRE

    2013-01-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children an...

  8. TALE-class homeodomain transcription factors, homothorax and extradenticle, control dendritic and axonal targeting of olfactory projection neurons in the Drosophila brain.

    Science.gov (United States)

    Ando, Mai; Totani, Yoko; Walldorf, Uwe; Furukubo-Tokunaga, Katsuo

    2011-10-01

    Precise neuronal connectivity in the nervous system depends on specific axonal and dendritic targeting of individual neurons. In the Drosophila brain, olfactory projection neurons convey odor information from the antennal lobe to higher order brain centers such as the mushroom body and the lateral horn. Here, we show that Homothorax (Hth), a TALE-class homeodomain transcription factor, is expressed in many of the antennal lobe neurons including projection neurons and local interneurons. In addition, HTH is expressed in the progenitors of the olfactory projection neurons, and the activity of hth is required for the generation of the lateral but not for the anterodorsal and ventral lineages. MARCM analyses show that the hth is essential for correct dendritic targeting of projection neurons in the antennal lobe. Moreover, the activity of hth is required for axonal fasciculation, correct routing and terminal branching of the projection neurons. We also show that another TALE-class homeodomain protein, Extradenticle (Exd), is required for the dendritic and axonal development of projection neurons. Mutation of exd causes projection neuron defects that are reminiscent of the phenotypes caused by the loss of the hth activity. Double immunostaining experiments show that Hth and Exd are coexpressed in olfactory projection neurons and their progenitors, and that the expressions of Hth and Exd require the activity of each other gene. These results thus demonstrate the functional importance of the TALE-class homeodomain proteins in cell-type specification and precise wiring of the Drosophila olfactory network.

  9. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  10. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2011-08-01

    Full Text Available Abstract Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

  11. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila.

    Science.gov (United States)

    Auer, Jasmin S; Nagel, Anja C; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-12-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H) (MAPK-) (ko) and a phospho-mimetic Su(H) (MAPK-ac) isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vg (BE) -lacZ). In general, Su(H) (MAPK-) (ko) induced a stronger response than wild-type Su(H), whereas the response to Su(H) (MAPK-ac) was very weak. Notch target genes cut, wingless and vg (BE) -lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DER (act) ) or the MAPK (rl (SEM) ) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones.

  12. Stability of adult emergence and activity/rest rhythms in fruit flies Drosophila melanogaster under semi-natural condition.

    Directory of Open Access Journals (Sweden)

    Nisha N Kannan

    Full Text Available Here we report the results of a study aimed at examining stability of adult emergence and activity/rest rhythms under semi-natural conditions (henceforth SN, in four large outbred fruit fly Drosophila melanogaster populations, selected for emergence in a narrow window of time under laboratory (henceforth LAB light/dark (LD cycles. When assessed under LAB, selected flies display enhanced stability in terms of higher amplitude, synchrony and accuracy in emergence and activity rhythms compared to controls. The present study was conducted to assess whether such differences in stability between selected and control populations, persist under SN where several gradually changing time-cues are present in their strongest form. The study revealed that under SN, emergence waveform of selected flies was modified, with even more enhanced peak and narrower gate-width compared to those observed in the LAB and compared to control populations in SN. Furthermore, flies from selected populations continued to exhibit enhanced synchrony and accuracy in their emergence and activity rhythms under SN compared to controls. Further analysis of zeitgeber effects revealed that enhanced stability in the rhythmicity of selected flies under SN was primarily due to increased sensitivity to light because emergence and activity rhythms of selected flies were as stable as controls under temperature cycles. These results thus suggest that stability of circadian rhythms in fruit flies D. melanogaster, which evolved as a consequence of selection for emergence in a narrow window of time under weak zeitgeber condition of LAB, persists robustly in the face of day-to-day variations in cycling environmental factors of nature.

  13. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents

    OpenAIRE

    2013-01-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator...

  14. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  15. Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain.

    NARCIS (Netherlands)

    Hollander, A.I. den; Ghiani, M.; Kok, Y.J.M. de; Wijnholds, J.; Ballabio, A.; Cremers, F.P.M.; Broccoli, V.

    2002-01-01

    Mutations in the human Crumbs homologue 1 (CRB1) gene cause severe retinal dystrophies. CRB1 is homologous to Drosophila Crumbs, a protein essential for establishing and maintaining epithelial polarity. We have isolated the mouse orthologue, Crb1, and analyzed its expression pattern in embryonic and

  16. RNA Interference: A New Mechanism by Which FMRP Acts in the Normal Brain? What Can Drosophila Teach Us?

    Science.gov (United States)

    Siomi, Haruhiko; Ishizuka, Akira; Siomi, Mikiko C.

    2004-01-01

    Fragile X syndrome is the most common heritable form of mental retardation caused by loss-of-function mutations in the "FMR1" gene. The "FMR1" gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. Recent work in "Drosophila melanogaster" has shown that the fly homolog of…

  17. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  18. Age-related changes of normal adult brain structure: analysed with diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Chun-yan; ZHANG Jing; LI Wei

    2005-01-01

    Background It is known that the brain structure changes with normal aging. The objective of this study was to quantify the anisotropy and average diffusion coefficient (DCavg) of the brain in normal adults to demonstrate the microstructure changes of brain with aging.Methods One hundred and six normal adults were examined with diffusion tensor imaging (DTI). The fractional anisotropy (FA), 1-volume ratio (1-VR), relative anisotropy (RA) and average diffusion coefficient (DCavg) of different anatomic sites of brain were measured, correlated with age and compared among three broad age groups.Results Except in lentiform nucleus, the anisotropy increased and DCavg decreased with aging. Both anisotropy and DCavg of lentiform nucleus increased with aging. The normal reference values of DTI parameters of normal Chinese adult in major anatomic sites were acquired. Conclusions DTI data obtained noninvasively can reflect the microstructural changes with aging. The normal reference values acquired can serve as reference standards in differentiation of brain white matter diseases.

  19. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults

    DEFF Research Database (Denmark)

    Hoogman, Martine; Bralten, Janita; Hibar, Derrek P

    2017-01-01

    BACKGROUND: Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies...

  20. Correlated changes in life history traits in response to selection for faster pre-adult development in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Yadav, Pankaj; Sharma, Vijay Kumar

    2014-02-15

    Insects including the fruit fly Drosophila melanogaster are under intense pressure to develop rapidly because they inhabit ephemeral habitats. We have previously shown that when selection for faster development was artificially imposed on D. melanogaster in the laboratory, reduction of pre-adult development time and shortening of the clock period occurs, suggesting a role for circadian clocks in the regulation of life history traits. Circadian clocks in D. melanogaster have also been implicated in the control of metabolic pathways, ageing processes, oxidative stress and defense responses to exogenous stressors. In order to rigorously examine correlations between pre-adult development time and other life history traits, we assayed pre-adult survivorship, starvation and desiccation resistance, body size and body weight, fecundity and adult lifespan in faster developing populations of D. melanogaster. The results revealed that selection for faster pre-adult development significantly reduced several adult fitness traits in the faster developing flies without affecting pre-adult survivorship. Although overall fecundity of faster developing flies was reduced, their egg output per unit body weight was significantly higher than that of controls, indicating that reduction in adult lifespan might be due to disproportionate investment in reproduction. Thus our results suggest that selection for faster pre-adult development in D. melanogaster yields flies with higher reproductive fitness. Because these flies also have shorter clock periods, our results can be taken to suggest that pre-adult development time and circadian clock period are correlated with various adult life history traits in D. melanogaster, implying that circadian clocks may have adaptive significance.

  1. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Science.gov (United States)

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  2. [What's new in the hippocampus? Neurons regenerate in the adult brain].

    Science.gov (United States)

    Sela, B A

    2001-11-01

    Since the late 1960's, the production of new neurons was known to occur in the brains of adult rodents however, only recently, neurogenesis was documented in the hippocampus of adult mammals. This region in the brain is related to the function of learning and memory. Hence, the finding that in response to training on associative learning tasks that require the hippocampus the number of newly generated neurons increases, could be highly significant.

  3. THE SOCIAL ENVIRONMENT AND NEUROGENESIS IN THE ADULT MAMMALIAN BRAIN

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2012-05-01

    Full Text Available Adult neurogenesis—the formation of new neurons in adulthood—has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones as well as exogenous (e.g., physical activity and environmental complexity factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. Most recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult-adult (e.g., mating, conspecific, and chemosensory signal exposure and adult-offspring (e.g., gestation, parenthood, and exposure to offspring interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant-subordinate interactions on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed.

  4. Risk of thyroid cancer, brain cancer, and non-Hodgkin lymphoma after adult leukemia

    DEFF Research Database (Denmark)

    Nielsen, Sune F; Bojesen, Stig E; Birgens, Henrik S

    2011-01-01

    Patients with childhood leukemia surviving into adulthood have elevated risk of developing thyroid cancer, brain cancer, and non-Hodgkin lymphoma (NHL); these risks cannot automatically be extrapolated to patients surviving adult leukemia. We tested whether survivors of adult leukemia...... are at increased risk of developing thyroid cancer, brain cancer, and NHL. We included the entire adult Danish population (14 years of age or older), in a 28-year follow-up period from 1980 through 2007, composed of 6 542 639 persons; during this period, 18 834 developed adult leukemia, 4561 developed thyroid...... cancer, 13 362 developed brain cancer, and 15 967 developed NHL. In nested studies using Cox regression models on individual participant data, we found that, after adult leukemia, the multivariate adjusted hazard ratios were 4.9 (95% confidence interval [CI], 2.8-8.5) for thyroid cancer, 1.9 (95% CI, 1...

  5. Risk of thyroid cancer, brain cancer, and non-Hodgkin lymphoma after adult leukemia

    DEFF Research Database (Denmark)

    Nielsen, Sune F; Bojesen, Stig E; Birgens, Henrik S

    2011-01-01

    Patients with childhood leukemia surviving into adulthood have elevated risk of developing thyroid cancer, brain cancer, and non-Hodgkin lymphoma (NHL); these risks cannot automatically be extrapolated to patients surviving adult leukemia. We tested whether survivors of adult leukemia...... are at increased risk of developing thyroid cancer, brain cancer, and NHL. We included the entire adult Danish population (14 years of age or older), in a 28-year follow-up period from 1980 through 2007, composed of 6 542 639 persons; during this period, 18 834 developed adult leukemia, 4561 developed thyroid...... cancer, 13 362 developed brain cancer, and 15 967 developed NHL. In nested studies using Cox regression models on individual participant data, we found that, after adult leukemia, the multivariate adjusted hazard ratios were 4.9 (95% confidence interval [CI], 2.8-8.5) for thyroid cancer, 1.9 (95% CI, 1...

  6. Doublecortin-like knockdown in the adult mouse brain : implications for neurogenesis, neuroplasticity and behaviour

    NARCIS (Netherlands)

    Saaltink, Dirk-Jan

    2014-01-01

    The results in this thesis showed for the first time doublecortin-like (DCL)-specific expression in the adult mouse brain. Besides the expected regions with the capacity to generate new neurons (hippocampus and olfactory forebrain), DCL expression was found in three novel brain areas namely

  7. Doublecortin-like knockdown in the adult mouse brain : implications for neurogenesis, neuroplasticity and behaviour

    NARCIS (Netherlands)

    Saaltink, Dirk-Jan

    2014-01-01

    The results in this thesis showed for the first time doublecortin-like (DCL)-specific expression in the adult mouse brain. Besides the expected regions with the capacity to generate new neurons (hippocampus and olfactory forebrain), DCL expression was found in three novel brain areas namely hypothal

  8. Understanding Specific Effects of Prenatal Alcohol Exposure on Brain Structure in Young Adults

    OpenAIRE

    Chen, Xiangchuan; Coles, Claire D.; Lynch, Mary E; Hu, Xiaoping

    2011-01-01

    Prenatal alcohol exposure (PAE) is associated with various adverse effects on human brain and behavior. Recently, neuroimaging studies have begun to identify PAE effects on specific brain structures. Investigation of such specific PAE effects is important for understanding the teratogenic mechanism of PAE on human brain, which is critical for differentiating PAE from other disorders. In this structural MRI study with young adults, PAE effects on the volumes of automatically segmented cortical...

  9. An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model.

    Science.gov (United States)

    Cragnaz, L; Klima, R; De Conti, L; Romano, G; Feiguin, F; Buratti, E; Baralle, M; Baralle, F E

    2015-12-17

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The average age of onset of both sporadic and familial cases is 50-60 years of age. The presence of cytoplasmic inclusions of the RNA-binding protein TAR DNA-binding protein-43 (TDP-43) in the affected neurons is seen in 95% of the ALS cases, which results in TDP-43 nuclear clearance and loss of function. The Drosophila melanogaster ortholog of TDP-43 (TBPH) shares many characteristics with the human protein. Using a TDP-43 aggregation inducer previously developed in human cells, we created a transgenic fly that shows an adult locomotive defect. Phenotype onset correlates with a physiologically age-related drop of TDP-43/TBPH mRNA and protein levels, seen both in mice and flies. Artificial reduction of mRNA levels, in vivo, anticipates the locomotion defect to the larval stage. Our study links, for the first time, aggregation and the age-related, evolutionary conserved reduction of TDP-43/TBPH levels with the onset of an ALS-like locomotion defect in a Drosophila model. A similar process might trigger the human disease. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. New neurons in the adult brain : The role of sleep and consequences of sleep loss

    NARCIS (Netherlands)

    Meerlo, Peter; Mistiberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis; Mistlberger, Ralph E.

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a

  11. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    Science.gov (United States)

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  12. New neurons in the adult brain : The role of sleep and consequences of sleep loss

    NARCIS (Netherlands)

    Meerlo, Peter; Mistiberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis; Mistlberger, Ralph E.

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a ma

  13. Migrating neuroblasts in the adult human brain: a stream reduced to a trickle

    Institute of Scientific and Technical Information of China (English)

    Miriam E van Strien; Simone A van den Berge; Elly M Hol

    2011-01-01

    It has long been thought that neurogenesis (birth of neurons) in the mammalian brain only occurs while the central nervous system is still developing.Although the first indications to the contrary already appeared in the 1960s,it took more than 30 years for the neuroscience community to accept that the mammalian adult brain also generates new neurons.Today it is completely accepted that neurogenesis occurs in two mammalian adult brain areas,the subventricular zone (SVZ) near the lateral ventricles and the subgranular zone in the hippocampus.

  14. Tools for neuroanatomy and neurogenetics in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B.; Celniker, Susan E.; Rubin, Gerald M.

    2008-08-11

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.

  15. Adult neurogenesis beyond the niche: its potential for driving brain plasticity.

    Science.gov (United States)

    Sailor, Kurt A; Schinder, Alejandro F; Lledo, Pierre-Marie

    2017-02-01

    Adult neurogenesis emerges as a tremendous form of plasticity with the continuous addition and loss of neurons in the adult brain. It is unclear how preexisting adult circuits generated during development are capable of modifying existing connections to accommodate the thousands of new synapses formed and exchanged each day. Here we first make parallels with sensory deprivation studies and its ability to induce preexisting non-neurogenic adult circuits to undergo massive reorganization. We then review recent studies that show high structural and synaptic plasticity in circuits directly connected to adult-born neurons. Finally, we propose future directions in the field to decipher how host circuits can accommodate new neuron integration and to determine the impact of adult neurogenesis on global brain plasticity.

  16. INTERACTION BETWEEN THE ADH AND ALPHA-GPDH LOCI IN DROSOPHILA-MELANOGASTER - ADULT SURVIVAL AT HIGH-TEMPERATURE

    NARCIS (Netherlands)

    OUDMAN, L; VANDELDEN, W; KAMPING, A; BIJLSMA, R

    1992-01-01

    The role of high temperature resistance in the world-wide cline of Adh and alpha-Gpdh allele frequencies of Drosophila melanogaster was investigated. Experimental strains were used with different combinations of Adh and alpha-Gpdh alleles but with similar genetic background. The survival time of adu

  17. Cerebroventricular microinjection (CVMI into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available The teleost fish Danio rerio (zebrafish has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain--in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish.

  18. Cognitive deficits in adult patients with brain tumours.

    NARCIS (Netherlands)

    Taphoorn, M.J.B.; Klein, M.

    2004-01-01

    Cognitive function, with survival and response on brain imaging, is increasingly regarded as an important outcome measure in patients with brain tumours. This measure provides us with information on a patient's clinical situation and adverse treatment effects. Radiotherapy has been regarded as the m

  19. Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain.

    Science.gov (United States)

    Berg, Daniel A; Kirkham, Matthew; Beljajeva, Anna; Knapp, Dunja; Habermann, Bianca; Ryge, Jesper; Tanaka, Elly M; Simon, András

    2010-12-01

    In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.

  20. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    Science.gov (United States)

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  1. Age-Related Differences in the Brain Areas outside the Classical Language Areas among Adults Using Category Decision Task

    Science.gov (United States)

    Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M.; Gaillard, William D.; Chang, Yongmin

    2012-01-01

    Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that…

  2. Analysis of neurotransmitter tissue content of Drosophila melanogaster in different life stages.

    Science.gov (United States)

    Denno, Madelaine E; Privman, Eve; Venton, B Jill

    2015-01-21

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development.

  3. Large litters rearing changes brain expression of GLUT3 and acetylcholinesterase activity in adult rats.

    Science.gov (United States)

    de Vasconcelos, Vivian Sarmento; Machado, Sonia Salgueiro; Guedes, Rubem Carlos Araújo; Bandeira, Bruno Carneiro; Ximenes-da-Silva, Adriana

    2012-09-06

    Effects of malnutrition in the brain are more pronounced during the period of growth spurt, corresponding to the suckling in rodents. Neuronal glucose transporter GLUT3 expression and acetylcholinesterase activity were studied in the brain of adult young rats (84 days old) suckled in litters formed by 6 (control group) or 12 pups (malnourished group). In the adult rats, brain weight, blood glucose levels and GLUT3 expression were decreased in malnourished group (5%, 18%, 58%, respectively, Pmalnutrition during suckling period decreased GLUT3 expression and increased acetylcholinesterase activity in the rat brain that could contribute to possible cognitive deficits and changes of brain metabolic activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain.

    Science.gov (United States)

    McEwen, B S

    2014-12-01

    The brain is a target of steroid hormone actions that affect brain architecture, molecular and neurochemical processes, behavior and neuroprotection via both genomic and non-genomic actions. Estrogens have such effects throughout the brain and this article provides an historical and current view of how this new view has come about and how it has affected the study of sex differences, as well as other areas of neuroscience, including the effects of stress on the brain.

  5. The Visual Orientation Memory of "Drosophila" Requires Foraging (PKG) Upstream of Ignorant (RSK2) in Ring Neurons of the Central Complex

    Science.gov (United States)

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking "Drosophila" flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein…

  6. The Visual Orientation Memory of "Drosophila" Requires Foraging (PKG) Upstream of Ignorant (RSK2) in Ring Neurons of the Central Complex

    Science.gov (United States)

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking "Drosophila" flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein…

  7. Experimentally increased codon bias in the Drosophila Adh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity.

    Science.gov (United States)

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B

    2010-02-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages.

  8. Pigment-dispersing factor (PDF) has different effects on Drosophila's circadian clocks in the accessory medulla and in the dorsal brain.

    Science.gov (United States)

    Wülbeck, Corinna; Grieshaber, Eva; Helfrich-Förster, Charlotte

    2008-10-01

    The neuropeptide pigment-dispersing factor (PDF) is a key transmitter in the circadian clock of Drosophila melanogaster. Here we studied the rhythmic behavior of neural mutants with modified arborizations of the large PDF neurons. In sine oculis(1) (so(1)) mutants we found a higher density of PDF fibers in the fly's pacemaker center, the accessory medulla. These flies exhibited a significantly longer period (24.6 h) than control flies. When PDF levels were elevated to very high levels in the dorsal brain as true for so(mda) mutants and small optic lobes;so(1) double mutants (sol(1);so( 1)), a short-period component split off the long period in behavioral rhythmicity. The short period became shorter the higher the amount of PDF in this brain region and reached a value of approximately 21 h. The period alterations were clearly dependent on PDF, because so(1);Pdf 01 and so(mda);Pdf 01 double mutants showed a single free-running component with a period similar to Pdf 01 mutants (approximately 22.5 h) and significantly longer than the short period of so(mda) mutants. These observations indicate that PDF feeds back on the clock neurons and changes their period. Obviously, PDF lengthens the period of some clock neurons and shortens that of others.

  9. It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain.

    Science.gov (United States)

    Janssens, Derek H; Lee, Cheng-Yu

    2014-04-01

    During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion.

  10. dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E.

    Directory of Open Access Journals (Sweden)

    Yingshi Ouyang

    Full Text Available Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53 was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E. Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago, a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has

  11. Adult brain abscess associated with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    Stathopoulos Georgios T

    2007-08-01

    Full Text Available Abstract Brain abscess results from local or metastatic septic spread to the brain. The primary infectious site is often undetected, more commonly so when it is distant. Unlike pediatric congenital heart disease, minor intracardiac right-to-left shunting due to patent foramen ovale has not been appreciated as a cause of brain abscess in adults. Here we present a case of brain abscess associated with a patent foramen ovale in a 53-year old man with dental-gingival sepsis treated in the intensive care unit. Based on this case and the relevant literature we suggest a link between a silent patent foramen ovale, paradoxic pathogen dissemination to the brain, and development of brain abscess.

  12. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    Science.gov (United States)

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P brain stimulation. Our finding of decreased metabolism in vermis and hippocampus of asymptomatic relatives suggests that heterozygocity influences the function of these brain regions.

  13. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.

    Directory of Open Access Journals (Sweden)

    Su-Jin Kwak

    Full Text Available Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application.

  14. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.

    Science.gov (United States)

    Kwak, Su-Jin; Hong, Seung-Hyun; Bajracharya, Rijan; Yang, Se-Yeol; Lee, Kyu-Sun; Yu, Kweon

    2013-01-01

    Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps) regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs) by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR) has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri) showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application.

  15. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    Science.gov (United States)

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  16. Neurobiological markers of exercise-related brain plasticity in older adults

    OpenAIRE

    Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Erin A Olson; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A; Pence, Brandt D.

    2012-01-01

    The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, ...

  17. Neural repair in the adult brain [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2016-02-01

    Full Text Available Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic.

  18. Using network science to evaluate exercise-associated brain changes in older adults

    Directory of Open Access Journals (Sweden)

    Jonathan H Burdette

    2010-06-01

    Full Text Available Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET or healthy aging educational control (HAC treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P trial. Following the four-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group’s hippocampal CBF exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and cerebral blood flow, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.

  19. Using network science to evaluate exercise-associated brain changes in older adults.

    Science.gov (United States)

    Burdette, Jonathan H; Laurienti, Paul J; Espeland, Mark A; Morgan, Ashley; Telesford, Qawi; Vechlekar, Crystal D; Hayasaka, Satoru; Jennings, Janine M; Katula, Jeffrey A; Kraft, Robert A; Rejeski, W Jack

    2010-01-01

    Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET) or healthy aging educational control (HAC) treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P) trial. Following the 4-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group's hippocampal cerebral blood flow (CBF) exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module) as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and CBF, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.

  20. An in vivo genetic screen in Drosophila identifies the orthologue of human cancer/testis gene SPO11 among a network of targets to inhibit lethal(3)malignant brain tumour growth.

    Science.gov (United States)

    Rossi, Fabrizio; Molnar, Cristina; Hashiyama, Kazuya; Heinen, Jan P; Pampalona, Judit; Llamazares, Salud; Reina, José; Hashiyama, Tomomi; Rai, Madhulika; Pollarolo, Giulia; Fernández-Hernández, Ismael; Gonzalez, Cayetano

    2017-08-01

    Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila. © 2017 The Authors.

  1. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  2. Brain function differences in language processing in children and adults with autism.

    Science.gov (United States)

    Williams, Diane L; Cherkassky, Vladimir L; Mason, Robert A; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2013-08-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience.

  3. Adaptation of A-to-I RNA editing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yuange Duan

    2017-03-01

    Full Text Available Adenosine-to-inosine (A-to-I editing is hypothesized to facilitate adaptive evolution by expanding proteomic diversity through an epigenetic approach. However, it is challenging to provide evidences to support this hypothesis at the whole editome level. In this study, we systematically characterized 2,114 A-to-I RNA editing sites in female and male brains of D. melanogaster, and nearly half of these sites had events evolutionarily conserved across Drosophila species. We detected strong signatures of positive selection on the nonsynonymous editing sites in Drosophila brains, and the beneficial editing sites were significantly enriched in genes related to chemical and electrical neurotransmission. The signal of adaptation was even more pronounced for the editing sites located in X chromosome or for those commonly observed across Drosophila species. We identified a set of gene candidates (termed "PSEB" genes that had nonsynonymous editing events favored by natural selection. We presented evidence that editing preferentially increased mutation sequence space of evolutionarily conserved genes, which supported the adaptive evolution hypothesis of editing. We found prevalent nonsynonymous editing sites that were favored by natural selection in female and male adults from five strains of D. melanogaster. We showed that temperature played a more important role than gender effect in shaping the editing levels, although the effect of temperature is relatively weaker compared to that of species effect. We also explored the relevant factors that shape the selective patterns of the global editomes. Altogether we demonstrated that abundant nonsynonymous editing sites in Drosophila brains were adaptive and maintained by natural selection during evolution. Our results shed new light on the evolutionary principles and functional consequences of RNA editing.

  4. The effects of sleep deprivation on brain functioning in older adults.

    Science.gov (United States)

    Almklov, Erin L; Drummond, Sean P A; Orff, Henry; Alhassoon, Omar M

    2015-01-01

    Few studies have examined the effects of total sleep deprivation (TSD) on cognitive performance and brain activation using functional MRI (fMRI) in older adults. The current study examines blood oxygen level-dependent (BOLD) activation in older adults and younger adults during the sustained attention (GO) and response inhibition (NOGO) portions of a GO-NOGO cognitive task following 36 hr of total sleep deprivation. No significant performance differences were observed between the groups on the behavioral outcome measures of total hits and false alarms. Neuroimaging results, however, revealed a significant interaction between age-group and sleep-deprivation status. Specifically, older adults showed greater BOLD activation as compared to younger adults after 36 hours total sleep deprivation in brain regions typically associated with attention and inhibitory processes. These results suggest in order for older adults to perform the GO-NOGO task effectively after sleep deprivation, they rely on compensatory recruitment of brain regions that aide in the maintenance of cognitive performance.

  5. Educating the adult brain: How the neuroscience of learning can inform educational policy

    Science.gov (United States)

    Knowland, Victoria C. P.; Thomas, Michael S. C.

    2014-05-01

    The acquisition of new skills in adulthood can positively affect an individual's quality of life, including their earning potential. In some cases, such as the learning of literacy in developing countries, it can provide an avenue to escape from poverty. In developed countries, job retraining in adulthood contributes to the flexibility of labour markets. For all adults, learning opportunities increase participation in society and family life. However, the popular view is that adults are less able to learn for an intrinsic reason: their brains are less plastic than in childhood. This article reviews what is currently known from neuroscientific research about how brain plasticity changes with age, with a particular focus on the ability to acquire new skills in adulthood. Anchoring their review in the examples of the adult acquisition of literacy and new motor skills, the authors address five specific questions: (1) Are sensitive periods in brain development relevant to learning complex educational skills like literacy? (2) Can adults become proficient in a new skill? (3) Can everyone learn equally effectively in adulthood? (4) What is the role of the learning environment? (5) Does adult education cost too much? They identify areas where further research is needed and conclude with a summary of principles for enhancing adult learning now established on a neuroscience foundation.

  6. Structural and functional rich club organization of the brain in children and adults.

    Directory of Open Access Journals (Sweden)

    David S Grayson

    Full Text Available Recent studies using Magnetic Resonance Imaging (MRI have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  7. Canonical Genetic Signatures of the Adult Human Brain

    Science.gov (United States)

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  8. Brain tissue pressure measurements in perinatal and adult rabbits.

    Science.gov (United States)

    Hornig, G W; Lorenzo, A V; Zavala, L M; Welch, K

    1987-12-01

    Brain tissue pressure (BTP) in pre- and post-natal anesthetized rabbits, held in a stereotactic head holder, was measured with a fluid filled 23 gauge open-ended cannula connected distally to a pressure transducer. By advancing the cannula step wise through a hole in the cranium it was possible to sequentially measure pressure from the cranial subarachnoid space, cortex, ventricle and basal ganglia. Separate cannulas and transducers were used to measure CSFP from the cisterna magna and arterial and/or venous pressure. Pressure recordings obtained when the tip of the BTP cannula was located in the cranial subarachnoid space or ventricle exhibited respiratory and blood pressure pulsations equivalent to and in phase with CSF pulsations recorded from the cisterna magna. When the tip was advanced into brain parenchymal sites such pulsations were suppressed or non-detectable unless communication with a CSF compartment had been established inadvertently. Although CSF pressures in the three spinal fluid compartments were equivalent, in most animals BTP was higher than CSFP. However, after momentary venting of the system BTP equilibrated at a pressure below that of CSFP. We speculate that venting of the low compliance system (1.20 x 10(-5) ml/mmHg) relieves the isometric pressure build-up due to insertion of the cannula into brain parenchyma. Under these conditions, and at all ages examined, BTP in the rabbit is consistently lower than CSFP and, as with CSFP, it increases as the animal matures.

  9. Splicing Regulatory Elements and mRNA-abundance of dlg1 and capt, Genetically Interacting with dFMRP in Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Maria Petrova

    2014-09-01

    Full Text Available To further understand the molecular and cellular mechanisms underlying the disease, we used the Drososphila FraX model and investigated a not well studied role of Drosophila Fragile X Mental Retardation Protein (dFMRP in alternative splicing of neuronal mRNAs to which it binds via a G-quartet sequence. By means of qRT-PCR we established the relative abundance of some isoforms of the gene dlg1, resulting from alternative exon skipping nearby a G-quartet and an exonic ESE-sequence, both acting as exonic splicing enhancers. We also investigated the relative mRNA-abundance of all capt-isoforms and the pre-mRNAs of both genes. We proposed a possible involvement of dFMRP in alternative splicing of genes, interacting with dfmr1. In the absence of dFMRP in larval and pupal brains, we found a change in the mRNA-level of one of the studied isoforms of dlg1 and of its pre-mRNA.We also established previously reported splicing regulatory elements and predicted computationally novel hexamere sequences in the exonic/intronic ends of both genes with p upative regulatory roles in alternative splicing.

  10. Drosophila mbm is a nucleolar myc and casein kinase 2 target required for ribosome biogenesis and cell growth of central brain neuroblasts.

    Science.gov (United States)

    Hovhanyan, Anna; Herter, Eva K; Pfannstiel, Jens; Gallant, Peter; Raabe, Thomas

    2014-05-01

    Proper cell growth is a prerequisite for maintaining repeated cell divisions. Cells need to translate information about intracellular nutrient availability and growth cues from energy-sensing organs into growth-promoting processes, such as sufficient supply with ribosomes for protein synthesis. Mutations in the mushroom body miniature (mbm) gene impair proliferation of neural progenitor cells (neuroblasts) in the central brain of Drosophila melanogaster. Yet the molecular function of Mbm has so far been unknown. Here we show that mbm does not affect the molecular machinery controlling asymmetric cell division of neuroblasts but instead decreases their cell size. Mbm is a nucleolar protein required for small ribosomal subunit biogenesis in neuroblasts. Accordingly, levels of protein synthesis are reduced in mbm neuroblasts. Mbm expression is transcriptionally regulated by Myc, which, among other functions, relays information from nutrient-dependent signaling pathways to ribosomal gene expression. At the posttranslational level, Mbm becomes phosphorylated by casein kinase 2 (CK2), which has an impact on localization of the protein. We conclude that Mbm is a new part of the Myc target network involved in ribosome biogenesis, which, together with CK2-mediated signals, enables neuroblasts to synthesize sufficient amounts of proteins required for proper cell growth.

  11. Combined Cognitive-Psychological-Physical Intervention Induces Reorganization of Intrinsic Functional Brain Architecture in Older Adults

    Directory of Open Access Journals (Sweden)

    Zhiwei Zheng

    2015-01-01

    Full Text Available Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.

  12. Combined cognitive-psychological-physical intervention induces reorganization of intrinsic functional brain architecture in older adults.

    Science.gov (United States)

    Zheng, Zhiwei; Zhu, Xinyi; Yin, Shufei; Wang, Baoxi; Niu, Yanan; Huang, Xin; Li, Rui; Li, Juan

    2015-01-01

    Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.

  13. Expression of alpha-synuclein in different brain parts of adult and aged rats.

    Science.gov (United States)

    Adamczyk, A; Solecka, J; Strosznajder, J B

    2005-03-01

    The synucleins are a family of presynaptic proteins that are abundant in neurons and include alpha-, beta, and gamma-synuclein. Alpha-synuclein (ASN) is involved in several neurodegenerative age-related disorders but its relevance in physiological aging is unknown. In the present study we investigated the expression of ASN mRNA and protein in the different brain parts of the adult (4-month-old) and aged (24-month-old) rats by using RT-PCR technique and Western blot, respectively. Our results indicated that mRNA expression and immunoreactivity of ASN is similar in brain cortex, hippocampus and striatum but markedly lower in cerebellum comparing to the other brain parts. Aging lowers ASN mRNA expression in striatum and cerebellum by about 40%. The immunoreactivity of ASN in synaptic plasma membranes (SPM) from aged brain cortex, hippocampus and cerebellum is significantly lower comparing to adult by 39%, 24% and 65%, respectively. Beta-synuclein (BSN) was not changed in aged brain comparing to adult. Age-related alteration of ASN may affect the nerve terminals structure and function.

  14. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Science.gov (United States)

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  15. Humor, Rapport, and Uncomfortable Moments in Interactions with Adults with Traumatic Brain Injury

    Science.gov (United States)

    Kovarsky, Dana; Schiemer, Christine; Murray, Allison

    2011-01-01

    We examined uncomfortable moments that damaged rapport during group interactions between college students in training to become speech-language pathologists and adults with traumatic brain injury. The students worked as staff in a community-based program affiliated with a university training program that functioned as a recreational gathering…

  16. A GAL4-Driver Line Resource for Drosophila Neurobiology

    Directory of Open Access Journals (Sweden)

    Arnim Jenett

    2012-10-01

    Full Text Available We established a collection of 7,000 transgenic lines of Drosophila melanogaster. Expression of GAL4 in each line is controlled by a different, defined fragment of genomic DNA that serves as a transcriptional enhancer. We used confocal microscopy of dissected nervous systems to determine the expression patterns driven by each fragment in the adult brain and ventral nerve cord. We present image data on 6,650 lines. Using both manual and machine-assisted annotation, we describe the expression patterns in the most useful lines. We illustrate the utility of these data for identifying novel neuronal cell types, revealing brain asymmetry, and describing the nature and extent of neuronal shape stereotypy. The GAL4 lines allow expression of exogenous genes in distinct, small subsets of the adult nervous system. The set of DNA fragments, each driving a documented expression pattern, will facilitate the generation of additional constructs for manipulating neuronal function.

  17. Strategies for Regenerating Striatal Neurons in the Adult Brain by Using Endogenous Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Kanako Nakaguchi

    2011-01-01

    Full Text Available Currently, there is no effective treatment for the marked neuronal loss caused by neurodegenerative diseases, such as Huntington's disease (HD or ischemic stroke. However, recent studies have shown that new neurons are continuously generated by endogenous neural stem cells in the subventricular zone (SVZ of the adult mammalian brain, including the human brain. Because some of these new neurons migrate to the injured striatum and differentiate into mature neurons, such new neurons may be able to replace degenerated neurons and improve or repair neurological deficits. To establish a neuroregenerative therapy using this endogenous system, endogenous regulatory mechanisms that can be co-opted for efficient regenerative interventions must be understood, along with any potential drawbacks. Here, we review current knowledge on the generation of new neurons in the adult brain and discuss their potential for use in replacing striatal neurons lost to neurodegenerative diseases, including HD, and to ischemic stroke.

  18. Piloting a physical activity centred education programme for adults with a brain injury.

    Science.gov (United States)

    Driver, Simon; Irwin, Kelley; Woolsey, Anne; Warren, Ann Marie

    2013-01-01

    To pilot test a physical activity centred education (PACE) programme for adults with a brain injury. Purposive sampling was utilized from a convenience sample of nine adults with a brain injury (five female; four male). The sample completed an 8-week health promotion programme focused on improving physical activity behaviours. Participants completed measures of self-efficacy, stage of change and rehabilitation outcomes pre- and post-programme. Descriptive analysis, effect sizes (ES) and percentage change in variables were assessed. Results indicated improved rehabilitation outcomes as participants decreased from moderate to mild limitation (ES = 1.67). Furthermore, participants reported increased self-efficacy (ES = 0.41) and intention to be active. Specialists are challenged to find modes of rehabilitation that improve the health of individuals with a brain injury. Pilot results from the PACE programme indicate that education about physical activity may play an important role in the rehabilitation process and lead to improved health outcomes.

  19. Oxytocin enhances inter-brain synchrony during social coordination in male adults.

    Science.gov (United States)

    Mu, Yan; Guo, Chunyan; Han, Shihui

    2016-12-01

    Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    Science.gov (United States)

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  1. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Science.gov (United States)

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  2. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor-kB (NF-KB) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... along the RMS with magnetic resonance imaging (MRI) in adult healthy mice. We evaluated various in situ (in vivo) labeling approaches using micron-sized iron oxide particles (MPIOs) on their efficiency to label endogenous NPCs. In situ labeling and visualization of migrating NPCs were analyzed...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  4. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain.

    Science.gov (United States)

    Kaneko, Naoko; Marín, Oscar; Koike, Masato; Hirota, Yuki; Uchiyama, Yasuo; Wu, Jane Y; Lu, Qiang; Tessier-Lavigne, Marc; Alvarez-Buylla, Arturo; Okano, Hideyuki; Rubenstein, John L R; Sawamoto, Kazunobu

    2010-07-29

    In the long-range neuronal migration of adult mammals, young neurons travel from the subventricular zone to the olfactory bulb, a long journey (millimeters to centimeters, depending on the species). How can these neurons migrate through the dense meshwork of neuronal and glial processes of the adult brain parenchyma? Previous studies indicate that young neurons achieve this by migrating in chains through astrocytic tunnels. Here, we report that young migrating neurons actively control the formation and maintenance of their own migration route. New neurons secrete the diffusible protein Slit1, whose receptor, Robo, is expressed on astrocytes. We show that the Slit-Robo pathway is required for morphologic and organizational changes in astrocytes that result in the formation and maintenance of the astrocytic tunnels. Through this neuron-glia interaction, the new neurons regulate the formation of the astrocytic meshwork that is needed to enable their rapid and directional migration in adult brain.

  5. THE RESPONSE TO SELECTION FOR FAST LARVAL DEVELOPMENT IN DROSOPHILA MELANOGASTER AND ITS EFFECT ON ADULT WEIGHT: AN EXAMPLE OF A FITNESS TRADE-OFF.

    Science.gov (United States)

    Nunney, Leonard

    1996-06-01

    A selection experiment using Drosophila melanogaster revealed a strong trade-off between adult weight and larval development time (LDT), supporting the view that antagonistic pleiotropy for these two fitness traits determines mean adult size. Two experimental lines of flies were selected for a shorter LDT (measured from egg laying to pupation). After 15 generations LDT was reduced by an average of 7.9%. The response appeared to be controlled primarily by autosomal loci. A correlated response to the selection was a reduction in adult dry weight: individuals from the selected populations were on average 15.1% lighter than the controls. The lighter females of the selected lines showed a 35% drop in fecundity, but no change in longevity. Thus, there is no direct relationship between LDT and adult longevity. The genetic correlation between weight and LDT, as measured from their joint response to selection, was 0.86. Although there was weak evidence for dominance in LDT, there was none for weight, making it unlikely that selection acting on this antagonistic pleiotropy could lead to a stable polymorphism. In all lines, sex differences in weight violated expectations based on intrasex genetic correlations: Females, being larger than males, ought to require a longer LDT, whereas there was a slight trend in the opposite direction. Because the sexual dimorphism in size was not significantly altered by selection, it appears that the controlling loci are either invariant or have very limited pleiotropic effect on developmental time. It is suggested that they probably control some intrinsic, energy-intensive developmental process in males. © 1996 The Society for the Study of Evolution.

  6. Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems.

    Science.gov (United States)

    Waisman, Ari; Ginhoux, Florent; Greter, Melanie; Bruttger, Julia

    2015-10-01

    Microglia are brain macrophages that emerge from early erythro-myeloid precursors in the embryonic yolk sac and migrate to the brain mesenchyme before the blood brain barrier is formed. They seed the brain, and proliferate until they have formed a grid-like distribution in the central nervous system that is maintained throughout lifespan. The mechanisms through which these embryonic-derived cells contribute to microglia homoeostasis at steady state and upon inflammation are still not entirely clear. Here we review recent studies that provided insight into the contribution of embryonically-derived microglia and of adult 'microglia-like' cells derived from monocytes during inflammation. We examine different microglia depletion models, and discuss the origin of their rapid repopulation after depletion and outline important areas of future research.

  7. Brain ventricular dimensions and relationship to outcome in adult patients with bacterial meningitis

    DEFF Research Database (Denmark)

    Sporrborn, Janni L; Knudsen, Gertrud B; Sølling, Mette;

    2015-01-01

    BACKGROUND: Experimental studies suggest that changes in brain ventricle size are key events in bacterial meningitis. This study investigated the relationship between ventricle size, clinical condition and risk of poor outcome in patients with bacterial meningitis. METHODS: Adult patients diagnosed...... with bacterial meningitis admitted to two departments of infectious diseases from 2003 through 2010 were identified. Clinical and biochemical data as well as cerebral computed tomographic images were collected. The size of the brain ventricles were presented as a Ventricle to Brain Ratio (VBR). Normal range......-day mortality, Mortality Rate Ratio: 6.03 (95 % confidence interval: 1.61-22.64, p = 0.008) for highest versus lowest tertile. A VBR deviating more than 2 standard deviations from the normal range was associated with increased mortality. CONCLUSIONS: Brain ventricles are commonly subject to marked...

  8. The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain.

    Science.gov (United States)

    Ceni, Claire; Pochon, Nathalie; Villaz, Michel; Muller-Steffner, Hélène; Schuber, Francis; Baratier, Julie; De Waard, Michel; Ronjat, Michel; Moutin, Marie-Jo

    2006-04-15

    cADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue. We also demonstrate, by comparing wild-type and Cd38-/- tissues, that brain cADPR content is independent of the presence of CD38 (the best characterized mammalian ADP-ribosyl cyclase) not only in adult but also in developing tissues. We show that Cd38-/- synaptosome preparations contain high ADP-ribosyl cyclase activities, which are more important in neonates than in adults, in line with the levels of endogenous cyclic nucleotide. By using an HPLC method and adapting the cycling assay developed initially to study endogenous cADPR, we accurately examined the properties of the synaptosomal ADP-ribosyl cyclase. This intracellular enzyme has an estimated K(m) for NAD+ of 21 microM, a broad optimal pH at 6.0-7.0, and the concentration of free calcium has no major effect on its cADPR production. It binds NGD+ (nicotinamide-guanine dinucleotide), which inhibits its NAD+-metabolizing activities (K(i)=24 microM), despite its incapacity to cyclize this analogue. Interestingly, it is fully inhibited by low (micromolar) concentrations of zinc. We propose that this novel mammalian ADP-ribosyl cyclase regulates the production of cADPR and therefore calcium levels within brain synaptic terminals. In addition, this enzyme might be a potential target of neurotoxic Zn2+.

  9. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  10. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    Science.gov (United States)

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  11. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2016-09-07

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  12. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  13. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  14. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  15. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Efficiently stimulated adult microglia cross-prime naive CD8+ T cells injected in the brain.

    Science.gov (United States)

    Jarry, Ulrich; Jeannin, Pascale; Pineau, Laurent; Donnou, Sabrina; Delneste, Yves; Couez, Dominique

    2013-05-01

    Microglia are the major myeloid-immune cells of the brain parenchyma. In a steady state, microglia monitor their environment for pathogens or damaged cells. In response to neural injury or inflammation, microglia become competent APCs able to prime CD4(+) and CD8(+) T lymphocytes. We previously demonstrated that neonatal and adult microglia cross-present exogenous soluble Ags in vitro. However, whether microglia are able to cross-present Ag to naive CD8(+) T cells in vivo, within the brain microenvironment, remains undetermined. Here, we have designed an original protocol in order to exclude the involvement in cross-presentation activity of peripheral migrating APCs and of CNS-associated APCs. In C57Bl/6 mice, in which the body but not the head has been properly irradiated, we analyzed the ability of resident microglia to stimulate intracerebrally injected CD8(+) T cells in vivo. This study demonstrates for the first time that adult microglia cross-present Ag to naive CD8(+) T cells in vivo and that full microglia activation is required to overcome the inhibitory constrains of the brain and to render microglia able to cross-prime naive CD8(+) T cells injected in the brain. These observations offer new insights in brain-tumor immunotherapy based on the induction of cytotoxic antitumoral T cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Graph theory analysis of functional brain networks and mobility disability in older adults.

    Science.gov (United States)

    Hugenschmidt, Christina E; Burdette, Jonathan H; Morgan, Ashley R; Williamson, Jeff D; Kritchevsky, Stephen B; Laurienti, Paul J

    2014-11-01

    The brain's structural integrity is associated with mobility function in older adults. Changes in function may be evident earlier than changes in structure and may be more directly related to mobility. Therefore, we assessed whether functional brain networks varied with mobility function in older adults. Short Physical Performance Battery (SPPB) and resting state functional magnetic resonance imaging were collected on 24 young (mean age = 26.4±5.1) and 48 older (mean age = 72.04±5.1) participants. Older participants were divided into three groups by SPPB score: Low SPPB (score = 7-9), Mid SPPB (score = 10), High SPPB (score = 11-12).Graph theory-based methods were used to characterize and compare brain network organization. Connectivity in the somatomotor cortex distinguished between groups based on SPPB score. The community structure of the somatomotor cortex was significantly less consistent in the Low SPPB group (mean = 0.097±0.05) compared with Young (mean = 0.163±0.09, p = .03) SPPB group. Striking differences were evident in second-order connections between somatomotor cortex and superior temporal gyrus and insula that reached statistical significance. The Low SPPB group (mean = 140.87±109.30) had a significantly higher number of connections than Young (mean = 45.05±33.79, p = .0003) or High (mean = 49.61±35.31, p = .002) SPPB group. Older adults with poorer mobility function exhibited reduced consistency of somatomotor community structure and a greater number of secondary connections with vestibular and multisensory regions of the brain. Further study is needed to fully interpret these effects, but analysis of functional brain networks adds new insights to the contribution of the brain to mobility. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  19. Interleukin-6 gene (IL-6: a possible role in brain morphology in the healthy adult brain

    Directory of Open Access Journals (Sweden)

    Baune Bernhard T

    2012-07-01

    Full Text Available Abstract Background Cytokines such as interleukin 6 (IL-6 have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology In a large sample of healthy individuals (N = 303, associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840 and brain volume (gray matter volume were analyzed using voxel-based morphometry (VBM. Selection of single nucleotide polymorphisms (SNPs followed a tagging SNP approach (e.g., Stampa algorigthm, yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286 = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577 within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress are warranted.

  20. Egg-laying rhythm in Drosophila melanogaster

    Indian Academy of Sciences (India)

    T. Manjunatha; Shantala Hari Dass; Vijay Kumar Sharma

    2008-12-01

    Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.

  1. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  2. The effect of developmental nutrition on life span and fecundity depends on the adult reproductive environment in Drosophila melanogaster

    NARCIS (Netherlands)

    May, C.M.; Doroszuk, A.; Zwaan, B.J.

    2015-01-01

    Both developmental nutrition and adult nutrition affect life-history traits; however, little is known about whether the effect of developmental nutrition depends on the adult environment experienced. We used the fruit fly to determine whether life-history traits, particularly life span and fecundity

  3. Role of hemocytes in invertebrate adult neurogenesis and brain repair

    Directory of Open Access Journals (Sweden)

    PG Chaves da Silva

    2015-05-01

    Full Text Available The repair of lesions of the central nervous system (CNS varies widely throughout the animal kingdom. At the level of neuronal replacement lie the major differences in CNS regeneration. At one extreme are the amniote vertebrates (reptile, avian and mammalian groups, which have very limited capacity for neuronal replacement, and therefore for neural regeneration; at the other extreme, animals such as planarians (flatworms and colonial tunicates can repair their entire CNS after major injuries. These differences can be attributed to the abundance of multipotent and/or pluripotent stem cells and/or undifferentiated precursors among the general cell population. In this review we discuss recent advancements in knowledge of regeneration of the CNS of invertebrates. We focus on ascidians, which are a sister group of vertebrates, but we also address other invertebrate groups. Because neurogenesis is central to the events that allow regeneration of the adult CNS, we address this issue focusing on crustaceans, which have provided a paradigm to study the mechanisms underlying this phenomenon. The attraction of hemocytes toward a neurogenic niche and respecification of these cells toward a neural fate has been strongly suggested. Based on recent and emerging research, we suggest that cells of the blood lineage are not only associated with the roles that are generally attributed to them, but are the cells that either signal other cell types to differentiate into neural cells, or even eventually themselves transdifferentiate into neural cells.

  4. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice.

    Science.gov (United States)

    Duan, Deyi; Fu, Yuhong; Paxinos, George; Watson, Charles

    2013-03-01

    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious

  5. Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas.

    Science.gov (United States)

    Whitney, Meredith Sorenson; Shemery, Ashley M; Yaw, Alexandra M; Donovan, Lauren J; Glass, J David; Deneris, Evan S

    2016-09-21

    Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep-wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we discovered that adult 5-HT

  6. Astrogliosis in the neonatal and adult murine brain post-trauma

    DEFF Research Database (Denmark)

    Rostworowski, M; Balasingam, V; Chabot, S

    1997-01-01

    inflammatory cytokines in injury systems in which the presence or absence of astrogliosis could be produced selectively. A stab injury to the adult mouse brain using a piece of nitrocellulose (NC) membrane elicited a prompt and marked increase in levels of transcripts for interleukin (IL)-1alpha, IL-1beta......, and because its exogenous administration to rodents enhanced astrogliosis after adult or neonatal insults. A lack of requirement for endogenous IFN-gamma was demonstrated by three lines of evidence. First, no increase in IFN-gamma transcripts could be found at injury. Second, the administration...

  7. Midlife obesity and trajectories of brain volume changes in older adults.

    Science.gov (United States)

    Driscoll, Ira; Beydoun, May A; An, Yang; Davatzikos, Christos; Ferrucci, Luigi; Zonderman, Alan B; Resnick, Susan M

    2012-09-01

    Although obesity has been linked to structural brain changes, little is known about its associations with the rates of brain atrophy. We examined associations between global (BMI) and central (waist circumference) midlife obesity and subsequent trajectories of regional brain atrophy in 152 individuals [M (age) = 69 ± 7.8] prospectively followed through the Baltimore Longitudinal Study of Aging; 21 individuals became impaired during follow-up. We report no associations (P > 0.05) between either global or central midlife obesity and subsequent rates of regional brain volume changes against a background of age-related atrophy in older individuals who remained nondemented. When looking at the entire sample, greater decline was observed in the volume of gray matter, precuneus, cingulate and orbito-frontal gyri for globally obese (P obesity, a different pattern of results emerged. Overall, our results suggest that midlife obesity may be an important modifier of brain atrophy in individuals who are developing cognitive impairment and dementia, while it has little effect on structural brain integrity in nondemented older adults. Moreover, the discrepancies in findings between studies may be in part due to participant sampling and methodological differences. Published 2011 Wiley Periodicals, Inc.

  8. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Rui Nouchi

    Full Text Available BACKGROUND: Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age on a wide range of cognitive functions in young adults. METHODS: We conducted a double-blind (de facto masking randomized controlled trial using a popular brain training game (Brain Age and a popular puzzle game (Tetris. Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability. RESULTS AND DISCUSSION: Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed in the healthy young adults. CONCLUSIONS: Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields

  9. Area-specific migration and recruitment of new neurons in the adult songbird brain

    DEFF Research Database (Denmark)

    Vellema, Michiel; Van der Linden, Annemie; Gahr, Manfred

    2010-01-01

    Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult...... sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model......, where cells originating from the overlying lateral ventricle can move independently in any direction. Other plastic song control areas, such as the medial magnocellular nucleus of anterior nidopallium and the robust nucleus of arcopallium, were specifically avoided by migrating neurons, while migration...

  10. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    Science.gov (United States)

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration.

  11. Brain volume and cognitive function in adult survivors of childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Edelmann, Michelle N; Krull, Kevin R

    2013-10-01

    The survival rate for childhood acute lymphoblastic leukemia (ALL) is greater than 80%. However, many of these survivors develop long-term chronic health conditions, with a relatively common late effect being neurocognitive dysfunction. Although neurocognitive impairments have decreased in frequency and severity as treatment has evolved, there is a subset of survivors in the current treatment era that are especially vulnerable to the neurotoxic effects of ALL and its treatment. Additionally, little is known about long-term brain development as survivors mature into adulthood. A recent study by Zeller et al. compared neurocognitive function and brain volume in 130 adult survivors of childhood ALL to 130 healthy adults matched on age and sex. They identified the caudate as particularly sensitive to the neurotoxic effects of chemotherapy. We discuss the implications and limitations of this study, including how their findings support the concept of individual vulnerability to ALL and its treatment.

  12. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  13. Applications of hybrid diffuse optics for clinical management of adults after brain injury

    Science.gov (United States)

    Kim, Meeri Nam

    Information about cerebral blood flow (CBF) is valuable for clinical management of patients after severe brain injury. Unfortunately, current modalities for monitoring brain are often limited by hurdles that include high cost, low throughput, exposure to ionizing radiation, probe invasiveness, and increased risk to critically ill patients when transportation out of their room or unit is required. A further limitation of current technologies is an inability to provide continuous bedside measurements that are often desirable for unstable patients. Here we explore the clinical utility of diffuse correlation spectroscopy (DCS) as an alternative approach for bedside CBF monitoring. DCS uses the rapid intensity fluctuations of near-infrared light to derive a continuous measure of changes in blood flow without ionizing radiation or invasive probing. Concurrently, we employ another optical technique, called diffuse optical spectroscopy (DOS), to derive changes in cerebral oxyhemoglobin ( HbO2) and deoxyhemoglobin (Hb) concentrations. Our clinical studies integrate DCS with DOS into a single hybrid instrument that simultaneously monitors CBF and HbO2/Hb in the injured adult brain. The first parts of this dissertation present the motivations for monitoring blood flow in injured brain, as well as the theory underlying diffuse optics technology. The next section elaborates on details of the hybrid instrumentation. The final chapters describe four human subject studies carried out with these methods. Each of these studies investigates an aspect of the potential of the hybrid monitor in clinical applications involving adult brain. The studies include: (1) validation of DCS-measured CBF against xenon-enhanced computed tomography in brain-injured adults; (2) a study of the effects of age and gender on posture-change-induced CBF variation in healthy subjects; (3) a study of the efficacy of DCS/DOS for monitoring neurocritical care patients during various medical interventions such

  14. New functions of the Drosophila rhomboid gene during embryonic and adult development are revealed by a novel genetic method, enhancer piracy.

    Science.gov (United States)

    Noll, R; Sturtevant, M A; Gollapudi, R R; Bier, E

    1994-08-01

    Localized expression of the Drosophila rhomboid (rho) gene has been proposed to hyperactivate EGF-Receptor signaling in specific cells during development of the embryo and adult. In this report we use a novel transposon based genetic method, enhancer piracy, to drive ectopic expression of a rho cDNA transgene by endogenous genomic enhancers. Many enhancer piracy transposon-rho insertions cause dominant phenotypes, over half of which cannot be duplicated by ubiquitous expression of rho. Genetic interactions between various dominant enhancer piracy alleles and mutations in the EGF-R/RAS signaling pathway indicate that many of these novel phenotypes result from ectopic activation of EGF-R signaling. Patterned mis-expression of the rho cDNA transgene correlates in several cases with localized dominant enhancer piracy phenotypes. Enhancer piracy lines reveal an unanticipated role for rho in imaginal disc formation and provide the first evidence that mis-expression of rho is sufficient for converting entire intervein sectors into veins. Enhancer piracy may prove to be a general strategy for obtaining dominant alleles of a gene of interest in diverse insects, worms, plants, and potentially in vertebrates such as mice and fish.

  15. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone

    Directory of Open Access Journals (Sweden)

    Yiu Chung eTse

    2012-03-01

    Full Text Available Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR, N-methyl-D-aspartate receptors (NMDAR are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is relatively stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however enhanced NMDAR function may be implicated in mechanisms of stress related psychopathologies including depression.

  16. Neural repair in the adult brain [version 1; referees: 3 approved

    OpenAIRE

    Sebastian Jessberger

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural rep...

  17. Biomaterial microenvironments to support the generation of new neurons in the adult brain.

    Science.gov (United States)

    Conway, Anthony; Schaffer, David V

    2014-05-01

    Neural stem cells (NSC) in two regions of the adult mammalian brain--the subventricular zone (SVZ) and hippocampus--continuously generate new neurons, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation, and integration of the newborn cells. A growing number of studies also report low-level neurogenesis in regions of the adult brain outside these established neurogenic niches--potentially via NSC recruitment or activation of local, quiescent NSCs--under perturbations such as ischemia, cell death, or viral gene delivery of proneural growth factors. We have explored whether implantation of engineered biomaterials can stimulate neurogenesis in normally quiescent regions of the brain. Specifically, recombinant versions of factors found within the NSC microenvironment, Sonic hedgehog, and ephrin-B2 were conjugated to long polymers, thereby creating highly bioactive, multivalent ligands that begin to emulate components of the neurogenic niche. In this engineered biomaterial microenvironment, new neuron formation was observed in normally non-neurogenic regions of the brain, the striatum, and the cortex, and combining these multivalent biomaterials with stromal cell-derived factor-1α increased neuronal commitment of newly divided cells seven- to eightfold in these regions. Additionally, the decreased hippocampal neurogenesis of geriatric rodents was partially rescued toward levels of young animals. We thus demonstrate for the first time de novo neurogenesis in both the cortex and striatum of adult rodents stimulated solely by delivery of synthetic biomaterial forms of proteins naturally found within adult neurogenic niches, offering the potential to replace neurons lost in neurodegenerative disease or injury as an alternative to cell implantation.

  18. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    OpenAIRE

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K.; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notabl...

  19. A gustatory second-order neuron that connects sucrose-sensitive primary neurons and a distinct region of the gnathal ganglion in the Drosophila brain.

    Science.gov (United States)

    Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark

    2015-01-01

    Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons (G2Ns) in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate G2Ns, we screened ∼5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single-cell analysis by FLP-out recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons' arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest

  20. Reawakening the sleeping beauty in the adult brain: neurogenesis from parenchymal glia.

    Science.gov (United States)

    Péron, Sophie; Berninger, Benedikt

    2015-10-01

    Life-long neurogenesis is highly restricted to specialized niches in the adult mammalian brain and therefore the brain's capacity for spontaneous regeneration is extremely limited. However, recent work has demonstrated that under certain circumstances parenchymal astrocytes and NG2 glia can generate neuronal progeny. In the striatum, stroke or excitotoxic lesions can reawaken in astrocytes a latent neurogenic program resulting in the genesis of new neurons. By contrast, in brain areas that fail to mount a neurogenic response following injury, such as the cerebral cortex, forced expression of neurogenic reprogramming factors can lineage convert local glia into induced neurons. Yet, injury-induced and reprogramming-induced neurogenesis exhibit intriguing commonalities, suggesting that they may converge on similar mechanisms.

  1. Hippocampal brain volume is associated with faster facial emotion identification in older adults: preliminary results

    Directory of Open Access Journals (Sweden)

    Sarah M Szymkowicz

    2016-08-01

    Full Text Available Fast correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging, this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analyses of covariance models with response time as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume. Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  2. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results.

    Science.gov (United States)

    Szymkowicz, Sarah M; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  3. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults

    Directory of Open Access Journals (Sweden)

    Michelle W Voss

    2010-08-01

    Full Text Available Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI to examine low-frequency (.008<.08 Hz coherence of cognitively relevant and sensory brain networks in older adults who participated in a one-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain’s resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after six months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after six months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction.

  4. Landmark-based morphometrics of the normal adult brain using MRI.

    Science.gov (United States)

    Free, S L; O'Higgins, P; Maudgil, D D; Dryden, I L; Lemieux, L; Fish, D R; Shorvon, S D

    2001-05-01

    We describe the application of statistical shape analysis to homologous landmarks on the cortical surface of the adult human brain. Statistical shape analysis has a sound theoretical basis. Landmarks are identified on the surface of a 3-D reconstruction of the segmented cortical surface from magnetic resonance image (MRI) data. Using publicly available software (morphologika) the location and size dependence of the landmarks are removed and the differences in landmark distribution across subjects are analysed using principal component analysis. These differences, representing shape differences between subjects, can be visually assessed using wireframe models and transformation grids. The MRI data of 58 adult brains (27 female and 15 left handed) were examined. Shape differences in the whole brain are described which concern the relative orientation of frontal lobe sulci. Analysis of all 116 hemispheres revealed a statistically significant difference (P < 0.001) between left and right hemispheres. This finding was significant for right- but not left-handed subjects alone. No other significant age, gender, handedness, or brain-size correlations with shape differences were found.

  5. Depressive symptoms and brain volumes in older adults: a longitudinal magnetic resonance imaging study

    Science.gov (United States)

    Dotson, Vonetta M.; Davatzikos, Christos; Kraut, Michael A.; Resnick, Susan M.

    2009-01-01

    Background Late-life depression is associated with decreased brain volumes, particularly in frontal and temporal areas. Evidence suggests that depressive symptoms at a subclinical level are also associated with brain atrophy in these regions, but most of these associations are based on cross-sectional data. Our objective was to investigate both cross-sectional and longitudinal relations between sub-threshold depressive symptoms and brain volumes in older adults and to examine whether these associations are modified by age. Methods In total, 110 dementia-free adults from the neuroimaging substudy of the Baltimore Longitudinal Study of Aging aged 56 years and older at baseline participated in this study. Participants received annual evaluations for up to 9 years, during which structural magnetic resonance imaging (MRI) scans were acquired and depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale. Results Mean depressive symptom scores over time were associated with grey matter volume reductions in the left temporal lobe. Depressive symptoms were associated with brain volume reductions with advancing age in the cingulate gyrus and orbitofrontal cortex. Moreover, individuals with higher mean depressive symptom scores showed a faster rate of volume decline in left frontal white matter. Depressive symptoms were not associated with hippocampus volumes. Limitations Limitations include the relative homogeneity of our primarily white and highly educated sample, the lack of information about age at onset of depressive symptoms and potential limitations of the automated brain volume registration. Conclusion Our results suggest that depressive symptoms, even at a subthreshold level, are associated with volume reductions in specific frontal and temporal brain regions, particularly with advancing age. PMID:19721847

  6. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    Science.gov (United States)

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.

  7. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  8. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum

    Directory of Open Access Journals (Sweden)

    Valentina eOlivera-Pasilio

    2014-09-01

    Full Text Available Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24hs and long (30d chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers, sparse slow cycling (potentially stem cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones.

  9. Direct evidence that genetic variation in glycerol-3-phosphate and malate dehydrogenase genes (Gpdh and Mdh1) affects adult ethanol tolerance in Drosophila melanogaster.

    Science.gov (United States)

    Eanes, Walter F; Merritt, Thomas J S; Flowers, Jonathan M; Kumagai, Seiji; Zhu, Chen-Tseh

    2009-02-01

    Many studies of alcohol adaptation in Drosophila melanogaster have focused on the Adh polymorphism, yet the metabolic elimination of alcohol should involve many enzymes and pathways. Here we evaluate the effects of glycerol-3-phosphate dehydrogenase (Gpdh) and cytosolic malate dehydrogenase (Mdh1) genotype activity on adult tolerance to ethanol. We have created a set of P-element-excision-derived Gpdh, Mdh1, and Adh alleles that generate a range of activity phenotypes from full to zero activity. Comparisons of paired Gpdh genotypes possessing 10 and 60% normal activity and 66 and 100% normal activity show significant effects where higher activity increases tolerance. Mdh1 null allele homozygotes show reductions in tolerance. We use piggyBac FLP-FRT site-specific recombination to create deletions and duplications of Gpdh. Duplications show an increase of 50% in activity and an increase of adult tolerance to ethanol exposure. These studies show that the molecular polymorphism associated with GPDH activity could be maintained in natural populations by selection related to adaptation to alcohols. Finally, we examine the interactions between activity genotypes for Gpdh, Mdh1, and Adh. We find no significant interlocus interactions. Observations on Mdh1 in both Gpdh and Adh backgrounds demonstrate significant increases in ethanol tolerance with partial reductions (50%) in cytosolic MDH activity. This observation strongly suggests the operation of pyruvate-malate and, in particular, pyruvate-citrate cycling in adaptation to alcohol exposure. We propose that an understanding of the evolution of tolerance to alcohols will require a system-level approach, rather than a focus on single enzymes.

  10. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery.

    Science.gov (United States)

    Aggarwal, M; Zhang, J; Miller, M I; Sidman, R L; Mori, S

    2009-09-15

    Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: postnatal day (P) 7, P14, P21, P28, P63 and in adults (P140-P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.

  11. Magnetic Resonance Imaging and Micro-Computed Tomography Combined Atlas of Developing and Adult Mouse Brains for Stereotaxic Surgery

    Science.gov (United States)

    Aggarwal, Manisha; Zhang, Jiangyang; Miller, Michael I.; Sidman, Richard L.; Mori, Susumu

    2009-01-01

    Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: P7, P14, P21, P28, P63 and in adults (P140–P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo MRI adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains. PMID:19490934

  12. Functional brain connectivity and cognition: effects of adult age and task demands.

    Science.gov (United States)

    Chou, Ying-Hui; Chen, Nan-Kuei; Madden, David J

    2013-08-01

    Previous neuroimaging research has documented that patterns of intrinsic (resting state) functional connectivity (FC) among brain regions covary with individual measures of cognitive performance. Here, we examined the relation between intrinsic FC and a reaction time (RT) measure of performance, as a function of age group and task demands. We obtained filtered, event-related functional magnetic resonance imaging data, and RT measures of visual search performance, from 21 younger adults (19-29 years old) and 21 healthy, older adults (60-87 years old). Age-related decline occurred in the connectivity strength in multiple brain regions, consistent with previous findings. Among 8 pairs of regions, across somatomotor, orbitofrontal, and subcortical networks, increasing FC was associated with faster responding (lower RT). Relative to younger adults, older adults exhibited a lower strength of this RT-connectivity relation and greater disruption of this relation by a salient but irrelevant display item (color singleton distractor). Age-related differences in the covariation of intrinsic FC and cognitive performance vary as a function of task demands.

  13. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    Science.gov (United States)

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  14. Role of resilience in the rehabilitation of adults with acquired brain injury.

    Science.gov (United States)

    Neils-Strunjas, Jean; Paul, Diane; Clark, Allison N; Mudar, Raksha; Duff, Melissa C; Waldron-Perrine, Brigid; Bechtold, Kathleen T

    2017-01-01

    The goals of this review paper are to present an overview of the literature on resilience in adults with ABI, to describe approaches to measuring resilience in clinical practice and to discuss practical suggestions for promoting resilience in rehabilitation of adults with ABI. We employed systematic review of journal articles, books, and websites related to resilience in adults with acquired brain injury (ABI). Resilience was associated with adaptation and adjustment for individuals faced with serious injury such as ABI. However, research examining the construct of resilience is limited. While rehabilitation typically focuses on the identification and reduction of impairments for improving functioning, a focus on resilience may allow for recovery in a broader sense that exceeds expected outcomes.

  15. Cognitive functioning in relation to brain amyloid-β in healthy adults with Down syndrome.

    Science.gov (United States)

    Hartley, Sigan L; Handen, Benjamin L; Devenny, Darlynne A; Hardison, Regina; Mihaila, Iulia; Price, Julie C; Cohen, Annie D; Klunk, William E; Mailick, Marsha R; Johnson, Sterling C; Christian, Bradley T

    2014-09-01

    Nearly all adults with Down syndrome show neuropathology of Alzheimer's disease, including amyloid-β deposition, by their fifth decade of life. In the current study, we examined the association between brain amyloid-β deposition, assessed via in vivo assessments of neocortical Pittsburgh compound B, and scores on an extensive neuropsychological battery of measures of cognitive functioning in 63 adults (31 male, 32 female) with Down syndrome aged 30-53 years who did not exhibit symptoms of dementia. Twenty-two of the adults with Down syndrome were identified as having elevated neocortical Pittsburgh compound B retention levels. There was a significant positive correlation (r = 0.62, P Down syndrome who had elevated neocortical Pittsburgh compound B retention levels and those who did not on any of the neuropsychological measures. Similarly, when examining Pittsburgh compound B as a continuous variable, after controlling for mental age and chronological age, only the Rivermead Picture Recognition score was significantly negatively associated with neocortical Pittsburgh compound B retention. Our findings indicate that many adults with Down syndrome can tolerate amyloid-β deposition without deleterious effects on cognitive functioning. However, we may have obscured true effects of amyloid-β deposition by controlling for chronological age in our analyses. Moreover, our sample included adults with Down syndrome who were most 'resistant' to the effects of amyloid-β deposition, as adults already exhibiting clinical symptoms of dementia symptoms were excluded from the study.

  16. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    Science.gov (United States)

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  17. Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association.

    Science.gov (United States)

    Gorelick, Philip B; Furie, Karen L; Iadecola, Costantino; Smith, Eric E; Waddy, Salina P; Lloyd-Jones, Donald M; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W; Girgus, Meighan; Howard, Virginia J; Lazar, Ronald M; Seshadri, Sudha; Testai, Fernando D; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte

    2017-10-01

    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to cardiovascular health may drive cognitive health. Defining optimal brain health in adults and its maintenance is consistent with the AHA's Strategic Impact Goal to improve cardiovascular health of all Americans by 20% and to reduce deaths resulting from cardiovascular disease and stroke by 20% by the year 2020. This work in defining optimal brain health in adults serves to provide the AHA/American Stroke Association with a foundation for a new strategic direction going forward in cardiovascular health

  18. Distinct Brain and Behavioral Benefits from Cognitive versus Physical Training: A Randomized Trial in Aging Adults

    Directory of Open Access Journals (Sweden)

    Sandra Bond Chapman

    2016-07-01

    Full Text Available Insidious declines in normal aging are well established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT versus physical training (PT on cognition and brain function in adults 56–75 years. Sedentary participants (N=36 were randomized to either CT or PT group for 3 hours/week over 12 weeks. They were assessed at baseline, mid-training and post-training using neurocognitive, MRI and physiological measures. The CT group improved on executive function whereas PT group’s memory was enhanced. Uniquely deploying cerebral blood flow (CBF and cerebral vascular reactivity (CVR MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex. Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health.

  19. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders.

  20. Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration.

    Science.gov (United States)

    Fonville, L; Giampietro, V; Williams, S C R; Simmons, A; Tchanturia, K

    2014-07-01

    Brain structure alterations have been reported in anorexia nervosa, but findings have been inconsistent. This may be due to inadequate sample size, sample heterogeneity or differences in methodology. High resolution magnetic resonance images were acquired of 33 adult participants with anorexia nervosa and 33 healthy participants, the largest study sample to date, in order to assess whole-brain volume, ventricular cerebrospinal fluid, white matter and grey matter volume. Voxel-based morphometry was conducted to assess regional grey matter volume. Levels of depression, anxiety, obsessionality and eating disorder-related symptoms were measured and used to explore correlations with brain structure. Participants with anorexia nervosa had smaller brain volumes as well as a global decrease in grey matter volume with ventricular enlargement. Voxel-based morphometry revealed a decrease in grey matter volume spanning across the cerebellum, temporal, frontal and occipital lobes. A correlation was found between grey matter volume loss and duration of illness in the cerebellum and mesencephalon. No correlations were found with clinical measures. Findings are in accordance with several previous studies on brain structure and match functional studies that have assessed the symptomatology of anorexia nervosa, such as body image distortion and cognitive bias to food. The correlation with duration of illness supports the implication of cerebellar atrophy in the maintenance of low weight and disrupted eating behaviour and illustrates its role in the chronic phase of anorexia nervosa. The lack of other correlations suggests that these findings are not related to the presence of co-morbid disorders.

  1. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes. Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  2. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J

    1999-01-01

    Receptor protein tyrosine phosphatases (RPTPs) comprise a family of proteins that feature intracellular phosphatase domains and an ectodomain with putative ligand-binding motifs. Several RPTPs are expressed in the brain, including RPTP-kappa which participates in homophilic cell-cell interactions...... in vitro [Y.-P. Jiang, H. Wang, P. D'Eustachio, J.M. Musacchio, J. Schlessinger, J. Sap, Cloning and characterization of R-PTP-kappa, a new member of the receptor protein tyrosine phosphatase family with a proteolytically cleaved cellular adhesion molecule-like extracellular region, Mol. Cell. Biol. 13...... processes such as axonal growth and target recognition, as has been demonstrated for certain Drosophila RPTPs. The brain distribution of RPTP-kappa-expressing cells has not been determined, however. In a gene-trap mouse model with a beta-gal+neo (beta-geo) insertion in the endogenous RPTP-kappa gene...

  3. Expression of connexin36 in the adult and developing rat brain.

    Science.gov (United States)

    Belluardo, N; Mudò, G; Trovato-Salinaro, A; Le Gurun, S; Charollais, A; Serre-Beinier, V; Amato, G; Haefliger, J A; Meda, P; Condorelli, D F

    2000-05-19

    The distribution of connexin36 (Cx36) in the adult rat brain and retina has been analysed at the protein (immunofluorescence) and mRNA (in situ hybridization) level. Cx36 immunoreactivity, consisting primarily of round or elongated puncta, is highly enriched in specific brain regions (inferior olive and the olfactory bulb), in the retina, in the anterior pituitary and in the pineal gland, in agreement with the high levels of Cx36 mRNA in the same regions. A lower density of immunoreactive puncta can be observed in several brain regions, where only scattered subpopulations of cells express Cx36 mRNA. By combining in situ hybridization for Cx36 mRNA with immunohistochemistry for a general neuronal marker (NeuN), we found that neuronal cells are responsible for the expression of Cx36 mRNA in inferior olive, cerebellum, striatum, hippocampus and cerebral cortex. Cx36 mRNA was also demonstrated in parvalbumin-containing GABAergic interneurons of cerebral cortex, striatum, hippocampus and cerebellar cortex. Analysis of developing brain further revealed that Cx36 reaches a peak of expression in the first two weeks of postnatal life, and decreases sharply during the third week. Moreover, in these early stages of postnatal development Cx36 is detectable in neuronal populations that are devoid of Cx36 mRNA at the adult stage. The developmental changes of Cx36 expression suggest a participation of this connexin in the extensive interneuronal coupling which takes place in several regions of the early postnatal brain.

  4. A different story on "Theory of Mind" deficit in adults with right hemisphere brain damage.

    Science.gov (United States)

    Tompkins, Connie A; Scharp, Victoria L; Fassbinder, Wiltrud; Meigh, Kimberly M; Armstrong, Elizabeth M

    2008-01-01

    BACKGROUND: Difficulties in social cognition and interaction can characterise adults with unilateral right hemisphere brain damage (RHD). Some pertinent evidence involves their apparently poor reasoning from a "Theory of Mind" perspective, which requires a capacity to attribute thoughts, beliefs, and intentions in order to understand other people's behaviour. Theory of Mind is typically assessed with tasks that induce conflicting mental representations. Prior research with a commonly used text task reported that adults with RHD were less accurate in drawing causal inferences about mental states than at making non-mental-state causal inferences from control texts. However, the Theory of Mind and control texts differed in the number and nature of competing discourse entity representations. This stimulus discrepancy, together with the explicit measure of causal inferencing, likely put the adults with RHD at a disadvantage on the Theory of Mind texts. AIMS: This study revisited the question of Theory of Mind deficit in adults with RHD. The aforementioned Theory of Mind texts were used but new control texts were written to address stimulus discrepancies, and causal inferencing was assessed relatively implicitly. Adults with RHD were hypothesised not to display a Theory of Mind deficit under these conditions. METHODS #ENTITYSTARTX00026; PROCEDURES: The participants were 22 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Participants listened to spoken texts that targeted either mental-state or non-mental-state causal inferences. Each text was followed by spoken True/False probe sentences, to gauge target inference comprehension. Both accuracy and RT data were recorded. Data were analysed with mixed, two-way Analyses of Variance (Group by Text Type). OUTCOMES #ENTITYSTARTX00026; RESULTS: There was a main effect of Text Type in both accuracy and RT analyses, with a performance advantage for the Theory of Mind

  5. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  6. Growth Factors Released from Gelatin Hydrogel Microspheres Increase New Neurons in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kanako Nakaguchi

    2012-01-01

    Full Text Available Recent studies have shown that new neurons are continuously generated by endogenous neural stem cells in the subventricular zone (SVZ of the adult mammalian brain. Some of these new neurons migrate to injured brain tissues and differentiate into mature neurons, suggesting that such new neurons may be able to replace neurons lost to degenerative disease or injury and improve or repair neurological deficits. Here, we tested whether delivering growth factors via gelatin hydrogel microspheres would support neurogenesis in the SVZ. Insulin-like growth factor-1 (IGF-1-containing microspheres increased the number of new neurons in the SVZ. Hepatocyte growth factor (HGF-containing microspheres increased the number of new neurons migrating from the SVZ towards the injured striatum in a stroke model in mouse. These results suggest that the strategy of using gelatin hydrogel microspheres to achieve the sustained release of growth factors holds promise for the clinical regeneration of damaged brain tissues from endogenous neural stem cells in the adult SVZ.

  7. The calcineurin inhibitor Sarah (Nebula exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Soojin Lee

    2016-03-01

    Full Text Available Expression of the Down syndrome critical region 1 (DSCR1 protein, an inhibitor of the Ca2+-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS or Alzheimer's disease (AD. Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula, a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi, exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1

  8. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    Science.gov (United States)

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  9. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    Science.gov (United States)

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  10. Eating disorder psychopathology, brain structure, neuropsychological correlates and risk mechanisms in very preterm young adults.

    Science.gov (United States)

    Micali, Nadia; Kothari, Radha; Nam, Kie Woo; Gioroukou, Elena; Walshe, Muriel; Allin, Matthew; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2015-03-01

    This study investigates the prevalence of eating disorder (ED) psychopathology, neuropsychological function, structural brain correlates and risk mechanisms in a prospective cohort of very preterm (VPT) young adults. We assessed ED psychopathology and neuropsychological correlates in 143 cohort individuals born at childhood and adolescence, were investigated using prospectively collected data throughout childhood/adolescence. VPT-born individuals had high levels of ED psychopathology at age 21 years. Executive function did not correlate with ED symptomatology. VPT adults presenting with ED psychopathology had smaller grey matter volume at age 14/15 years in the left posterior cerebellum and smaller white matter volume in the fusiform gyrus bilaterally, compared with VPT adults with no ED psychopathology. Caesarean delivery predicted engaging in compensatory behaviours, and severe eating difficulty at age 14 years predicted ED symptomatology in young adulthood. VPT individuals are at risk for ED symptomatology, with evidence of associated structural alterations in posterior brain regions. Further prospective studies are needed to clarify the pathways that lead from perinatal/obstetric complications to ED and relevant neurobiological mechanisms. © 2015 The Authors. European Eating Disorders Review published by John Wiley &Sons, Ltd.

  11. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  12. Classical and operant learning in the larvae of Drosophila melanogaster

    OpenAIRE

    Eschbach, Claire

    2012-01-01

    In dieser Doktorarbeit studiere ich einige psychologische Aspekte im Verhalten der Drosophila, insbesondere von Drosophila Larven. Nach einer Einleitung, in der ich den wissenschaftlichen Kontext darstelle und die Mechanismen der olfaktorischen Wahrnehmung sowie des klassichen und operanten Lernens beschreibe, stelle ich die verschiedenen Experimente meiner Doktorarbeit vor. Wahrnehmung Das zweite Kapitel behandelt die Art, in der adulte Drosophila zwischen Einzeldüften und Duftgemischen gene...

  13. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    Science.gov (United States)

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity.

  14. Methylmercury Induced Neurotoxicity and the Influence of Selenium in the Brains of Adult Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Josef Daniel Rasinger

    2017-03-01

    Full Text Available The neurotoxicity of methylmercury (MeHg is well characterised, and the ameliorating effects of selenium have been described. However, little is known about the molecular mechanisms behind this contaminant-nutrient interaction. We investigated the influence of selenium (as selenomethionine, SeMet and MeHg on mercury accumulation and protein expression in the brain of adult zebrafish (Danio rerio. Fish were fed diets containing elevated levels of MeHg and/or SeMet in a 2 × 2 full factorial design for eight weeks. Mercury concentrations were highest in the brain tissue of MeHg-exposed fish compared to the controls, whereas lower levels of mercury were found in the brain of zebrafish fed both MeHg and SeMet compared with the fish fed MeHg alone. The expression levels of proteins associated with gap junction signalling, oxidative phosphorylation, and mitochondrial dysfunction were significantly (p < 0.05 altered in the brain of zebrafish after exposure to MeHg and SeMet alone or in combination. Analysis of upstream regulators indicated that these changes were linked to the mammalian target of rapamycin (mTOR pathways, which were activated by MeHg and inhibited by SeMet, possibly through a reactive oxygen species mediated differential activation of RICTOR, the rapamycin-insensitive binding partner of mTOR.

  15. Large-Scale Identification of Coregulated Enhancer Networks in the Adult Human Brain

    Directory of Open Access Journals (Sweden)

    Marit W. Vermunt

    2014-10-01

    Full Text Available Understanding the complexity of the human brain and its functional diversity remain a major challenge. Distinct anatomical regions are involved in an array of processes, including organismal homeostasis, cognitive functions, and susceptibility to neurological pathologies, many of which define our species. Distal enhancers have emerged as key regulatory elements that acquire histone modifications in a cell- and species-specific manner, thus enforcing specific gene expression programs. Here, we survey the epigenomic landscape of promoters and cis-regulatory elements in 136 regions of the adult human brain. We identify a total of 83,553 promoter-distal H3K27ac-enriched regions showing global characteristics of brain enhancers. We use coregulation of enhancer elements across many distinct regions of the brain to uncover functionally distinct networks at high resolution and link these networks to specific neuroglial functions. Furthermore, we use these data to understand the relevance of noncoding genomic variations previously linked to Parkinson’s disease incidence.

  16. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  17. Regional brain activity change predicts responsiveness to treatment for stuttering in adults.

    Science.gov (United States)

    Ingham, Roger J; Wang, Yuedong; Ingham, Janis C; Bothe, Anne K; Grafton, Scott T

    2013-12-01

    Developmental stuttering is known to be associated with aberrant brain activity, but there is no evidence that this knowledge has benefited stuttering treatment. This study investigated whether brain activity could predict progress during stuttering treatment for 21 dextral adults who stutter (AWS). They received one of two treatment programs that included periodic H2(15)O PET scanning (during oral reading, monologue, and eyes-closed rest conditions). All participants successfully completed an initial treatment phase and then entered a phase designed to transfer treatment gains; 9/21 failed to complete this latter phase. The 12 pass and 9 fail participants were similar on speech and neural system variables before treatment, and similar in speech performance after the initial phase of their treatment. At the end of the initial treatment phase, however, decreased activation within a single region, L. putamen, in all 3 scanning conditions was highly predictive of successful treatment progress.

  18. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    Science.gov (United States)

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-05-09

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species.

  19. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katharine Askew

    2017-01-01

    Full Text Available Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis.

  20. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  1. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Science.gov (United States)

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  2. The long-term side effects of radiation therapy for benign brain tumors in adults.

    Science.gov (United States)

    al-Mefty, O; Kersh, J E; Routh, A; Smith, R R

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors (two of these also had pituitary dysfunction). One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered "safe" treatment for benign brain tumors.

  3. The long-term side effects of radiation therapy for benign brain tumors in adults

    Energy Technology Data Exchange (ETDEWEB)

    al-Mefty, O.; Kersh, J.E.; Routh, A.; Smith, R.R. (Univ. of Mississippi Medical Center, Jackson (USA))

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors. One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered safe treatment for benign brain tumors. 163 refs.

  4. Occupational and Environmental Risk Factors of Adult Primary Brain Cancers: A Systematic Review

    Directory of Open Access Journals (Sweden)

    J Gomes

    2011-03-01

    Full Text Available The incidence of brain neoplasm has been progressively increasing in recent years in the industrialized countries. One of the reasons for this increased incidence could be better access to health care and improved diagnosis in the industrialized countries. It also appears that Caucasians have a higher incidence than blacks or Hispanics or Asians. A number of risk factors have been identified and described including the genetic, ethnic and age-based factors. Certain occupational and environmental factors are also believed to influence the risk of primary adult brain tumors. Potential occupational and environmental factors include exposure to diagnostic and therapeutic radiations, electromagnetic radiation from cellular phones and other wireless devices, infectious agents, air pollution and residence near landfills and highvoltage power lines and jobs as firefighters, farmers, physician, chemists and jobs in industries such as petrochemical, power generation, synthetic rubber manufacturing, agricultural chemicals manufacturing. The purpose of this systematic review is to examine occupational and environmental risk factors of brain neoplasm. A range of occupational and environmental exposures are evaluated for significance of their relationship with adult primary brain tumors. On the basis of this review we suggest a concurrent evaluation of multiple risk factors both within and beyond occupational and environmental domains. The concurrent approach needs to consider better exposure assessment techniques, lifetime occupational exposures, genotypic and phenotypic characteristics and lifestyle and dietary habits. This approach needs to be interdisciplinary with contributions from neurologists, oncologists, epidemiologists and molecular biologists. Conclusive evidence that has eluded multitude of studies with single focus and single exposure needs to multifaceted and multidisciplinary.

  5. Distinct expression of Cbln family mRNAs in developing and adult mouse brains.

    Science.gov (United States)

    Miura, Eriko; Iijima, Takatoshi; Yuzaki, Michisuke; Watanabe, Masahiko

    2006-08-01

    Cbln1 belongs to the C1q and tumour necrosis factor superfamily, and plays crucial roles as a cerebellar granule cell-derived transneuronal regulator for synapse integrity and plasticity in Purkinje cells. Although Cbln2-Cbln4 are also expressed in the brain and could form heteromeric complexes with Cbln1, their precise expressions remain unclear. Here, we investigated gene expression of the Cbln family in developing and adult C57BL mouse brains by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and high-resolution in situ hybridization (ISH) analyses. In the adult brain, spatial patterns of mRNA expression were highly differential depending on Cbln subtypes. Notably, particularly high levels of Cbln mRNAs were expressed in some nuclei and neurons, whereas their postsynaptic targets often lacked or were low for any Cbln mRNAs, as seen for cerebellar granule cells/Purkinje cells, entorhinal cortex/hippocampus, intralaminar group of thalamic nuclei/caudate-putamen, and dorsal nucleus of the lateral lemniscus/central nucleus of the inferior colliculus. In the developing brain, Cbln1, 2, and 4 mRNAs appeared as early as embryonic day 10-13, and exhibited transient up-regulation during the late embryonic and neonatal periods. For example, Cbln2 mRNA was expressed in the cortical plate of the developing neocortex, displaying a high rostromedial to low caudolateral gradient. In contrast, Cbln3 mRNA was selective to cerebellar granule cells throughout development, and its onset was as late as postnatal day 7-10. These results will provide a molecular-anatomical basis for future studies that characterize roles played by the Cbln family.

  6. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    LENUS (Irish Health Repository)

    Hallahan, Brian P

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey\\/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood.

  7. Final height and body mass index among adult survivors of childhood brain cancer: childhood cancer survivor study.

    Science.gov (United States)

    Gurney, James G; Ness, Kirsten K; Stovall, Marilyn; Wolden, Suzanne; Punyko, Judy A; Neglia, Joseph P; Mertens, Ann C; Packer, Roger J; Robison, Leslie L; Sklar, Charles A

    2003-10-01

    The objectives of this study were 1) to compare final height and body mass index (BMI) between adult survivors of childhood brain cancer and age- and sex-matched population norms, 2) to quantify the effects of treatment- and cancer-related factors on the risk of final height below the 10th percentile (adult short stature) or having a BMI of 30 kg/m(2) or more (obesity). Treatment records were abstracted and surveys completed by 921 adults aged 20-45 yr who were treated for brain cancer as children and were participants in the multicenter Childhood Cancer Survivor Study. Nearly 40% of childhood brain cancer survivors were below the 10th percentile for height. The strongest risk factors for adult short stature were young age at diagnosis and radiation treatment involving the hypothalamic-pituitary axis (HPA). The multivariate odds ratio for adult short stature among those 4 yr of age or younger at diagnosis, relative to ages 10-20 yr, was 5.67 (95% confidence interval, 3.6-8.9). HPA radiation exposure increased the risk of adult short stature in a dose-response fashion (trend test, P obesity. Except for patients treated with surgery only, survivors of childhood brain cancer are at very high risk for adult short stature, and this risk increases with radiation dose involving the HPA. We did not find a corresponding elevated risk for obesity.

  8. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain

    Science.gov (United States)

    Wang, Congmin; Liu, Fang; Liu, Ying-Ying; Zhao, Cai-Hong; You, Yan; Wang, Lei; Zhang, Jingxiao; Wei, Bin; Ma, Tong; Zhang, Qiangqiang; Zhang, Yue; Chen, Rui; Song, Hongjun; Yang, Zhengang

    2011-01-01

    It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain. PMID:21577236

  9. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain

    Institute of Scientific and Technical Information of China (English)

    Congmin Wang; Qiangqiang Zhang; Yue Zhang; Rui Chen; Hongjun Song; Zhengang Yang; Fang Liu; Ying-Ying Liu; Cai-Hong Zhao; Yan You; Lei Wang; Jingxiao Zhang; Bin Wei; Tong Ma

    2011-01-01

    It is of great interest to identify new neurons in the adult human brain,but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial.In the present study,we have described the general configuration of the RMS in adult monkey,fetal human and adult human brains.We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain.The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin,polysialylated neural cell adhesion molecule and βI-tubulin.Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS,indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ.Interestingly,no neuroblasts are found in the adult human olfactory bulb.Taken together,our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain.

  10. Brain activation deficit in increased-load working memory tasks among adults with ADHD using fMRI.

    Science.gov (United States)

    Ko, Chih-Hung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Cheng-Sheng; Lin, Wei-Chen; Wang, Peng-Wei; Liu, Gin-Chung

    2013-10-01

    Working memory (WM) is impaired among adults with attention-deficit hyperactivity disorder (ADHD). This study aimed to investigate the brain activation deficit for low-level or increased-load WM among adults with ADHD. A total of 20 adults with ADHD and controls were recruited according to diagnostic interviewing by a psychiatrist. Phonological and visual-spatial 2-back and 3-back tasks were performed under functional magnetic resonance scanning. The results demonstrated that both the adults with ADHD and the controls exhibited activation of the fronto-parietal network for WM, and the intensity was greater in the adult ADHD group. The ADHD group had higher brain activation over the bilateral anterior cingulate, left inferior frontal lobe, hippocampus, and supplementary motor area (SMA) for phonological WM than the control group. When the task loading increased from 2-back to 3-back tasks, the adults with ADHD perceived greater difficulty. The control group exhibited increased brain activation over the frontal-parietal network in response to increased phonological WM load. However, the ADHD group showed decreased brain activation over the left precuneus, insula, and SMA. Further analysis demonstrated that the ADHD group exhibited a greater decrease in brain activation over the left fronto-parietal network, including the precuneus, SMA, insula/inferior frontal lobe, and dorsolateral prefrontal cortex, than the control group. These results suggest that adults with ADHD pay more effort to low demanding phonological WM. On the other hand, brain activation of the left fronto-parietal network is impaired when the demands of WM exceed the capacity of adults with ADHD.

  11. Primary Neuronal Precursors in Adult Crayfish Brain: Replenishment from a Non-neuronal Source

    Directory of Open Access Journals (Sweden)

    Sandeman David C

    2011-06-01

    Full Text Available Abstract Background Adult neurogenesis, the production and integration of new neurons into circuits in the brains of adult animals, is a common feature of a variety of organisms, ranging from insects and crustaceans to birds and mammals. In the mammalian brain the 1st-generation neuronal precursors, the astrocytic stem cells, reside in neurogenic niches and are reported to undergo self-renewing divisions, thereby providing a source of new neurons throughout an animal's life. In contrast, our work shows that the 1st-generation neuronal precursors in the crayfish (Procambarus clarkii brain, which also have glial properties and lie in a neurogenic niche resembling that of vertebrates, undergo geometrically symmetrical divisions and both daughters appear to migrate away from the niche. However, in spite of this continuous efflux of cells, the number of neuronal precursors in the crayfish niche continues to expand as the animals grow and age. Based on these observations we have hypothesized that (1 the neuronal stem cells in the crayfish brain are not self-renewing, and (2 a source external to the neurogenic niche must provide cells that replenish the stem cell pool. Results In the present study, we tested the first hypothesis using sequential double nucleoside labeling to track the fate of 1st- and 2nd-generation neuronal precursors, as well as testing the size of the labeled stem cell pool following increasing incubation times in 5-bromo-2'-deoxyuridine (BrdU. Our results indicate that the 1st-generation precursor cells in the crayfish brain, which are functionally analogous to neural stem cells in vertebrates, are not a self-renewing population. In addition, these studies establish the cycle time of these cells. In vitro studies examining the second hypothesis show that Cell Tracker™ Green-labeled cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to

  12. Abstracting meaning from complex information (gist reasoning) in adult traumatic brain injury.

    Science.gov (United States)

    Vas, Asha Kuppachi; Spence, Jeffrey; Chapman, Sandra Bond

    2015-01-01

    Gist reasoning (abstracting meaning from complex information) was compared between adults with moderate-to-severe traumatic brain injury (TBI, n = 30) at least one year post injury and healthy adults (n = 40). The study also examined the contribution of executive functions (working memory, inhibition, and switching) and memory (immediate recall and memory for facts) to gist reasoning. The correspondence between gist reasoning and daily function was also examined in the TBI group. Results indicated that the TBI group performed significantly lower than the control group on gist reasoning, even after adjusting for executive functions and memory. Executive function composite was positively associated with gist reasoning (p reasoning significantly predicted daily function in the TBI group beyond the predictive ability of executive function alone (p = .011). Synthesizing and abstracting meaning(s) from information (i.e., gist reasoning) could provide an informative index into higher order cognition and daily functionality.

  13. Effects of alcohol consumption on cognition and regional brain volumes among older adults.

    Science.gov (United States)

    Downer, Brian; Jiang, Yang; Zanjani, Faika; Fardo, David

    2015-06-01

    This study utilized data from the Framingham Heart Study Offspring Cohort to examine the relationship between midlife and late-life alcohol consumption, cognitive functioning, and regional brain volumes among older adults without dementia or a history of abusing alcohol. The results from multiple linear regression models indicate that late life, but not midlife, alcohol consumption status is associated with episodic memory and hippocampal volume. Compared to late life abstainers, moderate consumers had larger hippocampal volume, and light consumers had higher episodic memory. The differences in episodic memory according to late life alcohol consumption status were no longer significant when hippocampal volume was included in the regression model. The findings from this study provide new evidence that hippocampal volume may contribute to the observed differences in episodic memory among older adults and late life alcohol consumption status.

  14. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  15. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain

    Directory of Open Access Journals (Sweden)

    Kizil Caghan

    2012-07-01

    Full Text Available Abstract Background Unlike mammals, zebrafish exhibits extensive neural regeneration after injury in adult stages of its lifetime due to the neurogenic activity of the radial glial cells. However, the genes involved in the regenerative neurogenesis response of the zebrafish brain are largely unknown. Thus, understanding the underlying principles of this regeneration capacity of the zebrafish brain is an interesting research realm that may offer vast clinical ramifications. Results In this paper, we characterized the expression pattern of cxcr5 and analyzed the function of this gene during adult neurogenesis and regeneration of the zebrafish telencephalon. We found that cxcr5 was upregulated transiently in the RGCs and neurons, and the expression in the immune cells such as leukocytes was negligible during both adult neurogenesis and regeneration. We observed that the transgenic misexpression of cxcr5 in the ventricular cells using dominant negative and full-length variants of the gene resulted in altered proliferation and neurogenesis response of the RGCs. When we knocked down cxcr5 using antisense morpholinos and cerebroventricular microinjection, we observed outcomes similar to the overexpression of the dominant negative cxcr5 variant. Conclusions Thus, based on our results, we propose that cxcr5 imposes a proliferative permissiveness to the radial glial cells and is required for differentiation of the RGCs to neurons, highlighting novel roles of cxcr5 in the nervous system of vertebrates. We therefore suggest that cxcr5 is an important cue for ventricular cell proliferation and regenerative neurogenesis in the adult zebrafish telencephalon. Further studies on the role of cxcr5 in mediating neuronal replenishment have the potential to produce clinical ramifications in efforts for regenerative therapeutic applications for human neurological disorders or acute injuries.

  16. Brain activation in response to bladder filling in healthy adults: An activation likelihood estimation meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Arya, Nisha G; Weissbart, Steven J; Xu, Sihua; Rao, Hengyi

    2017-04-01

    Recent studies have used different neuroimaging techniques and identified various brain regions that are activated during bladder filling. However, there is a lack of consensus regarding which of these brain regions regulate the process of urine storage. The aim of this meta-analysis is to identify brain regions that are commonly activated during bladder filling in healthy adults across different studies. PubMed was searched for neuroimaging studies investigating the effects of bladder filling on regional brain activation. Studies were excluded if they did not report brain activation differences from whole-brain group analysis by comparing the state of bladder filling with the state of bladder rest. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. We identified 14 neuroimaging studies examining brain activation in response to experimental bladder filling in 181 healthy subjects, which reported 89 foci for ALE analysis. The meta-analysis revealed significant activation in multiple brain regions including thalamus (bilaterally), right insula, cerebellum, and brainstem (bilaterally). Several key brain regions involved in sensory processing are commonly activated during bladder filling in healthy adults across different studies. Neurourol. Urodynam. 36:960-965, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    Science.gov (United States)

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation

  18. Functional Characterization of CCHamide and Muscarinic Acetylcholine Receptor Signalling in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Ren, Guilin Robin

    G-protein coupled receptors (GPCRs) constitute a large and ancient superfamily of membraneproteins responsible for the transduction of extracellular signals to the inside of the cells. In thisPh.D. thesis, Drosophila melanogaster (Dm) was used as a model organism to investigate a numberof topics...... is a newly discovered insect peptide hormone. The function of this novel peptide hasnot been well characterised. In this Ph.D. thesis, I identified CCHamide-2 peptides in endocrinecells of the gut and neurones of the brain of larvae and endocrine cells of the gut of adultDrosophila. Behavioural assays...... little is known about muscarinic acetylcholine receptorsignalling in insects. In this study, I found that two types of mAChRs occur in D. melanogaster, onecoupling to Gq (A-type) and the other to Gi (B-type). Both A- and B-type Dm-mAChRs can beactivated by acetylcholine (ACh), but the classical...

  19. Functional Characterization of CCHamide and Muscarinic Acetylcholine Receptor Signalling in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Ren, Guilin Robin

    G-protein coupled receptors (GPCRs) constitute a large and ancient superfamily of membraneproteins responsible for the transduction of extracellular signals to the inside of the cells. In thisPh.D. thesis, Drosophila melanogaster (Dm) was used as a model organism to investigate a numberof topics...... is a newly discovered insect peptide hormone. The function of this novel peptide hasnot been well characterised. In this Ph.D. thesis, I identified CCHamide-2 peptides in endocrinecells of the gut and neurones of the brain of larvae and endocrine cells of the gut of adultDrosophila. Behavioural assays...... little is known about muscarinic acetylcholine receptorsignalling in insects. In this study, I found that two types of mAChRs occur in D. melanogaster, onecoupling to Gq (A-type) and the other to Gi (B-type). Both A- and B-type Dm-mAChRs can beactivated by acetylcholine (ACh), but the classical...

  20. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  1. New aspects of fenestrated vasculature and tissue dynamics in the sensory circumventricular organs of adult brains

    Directory of Open Access Journals (Sweden)

    Seiji eMiyata

    2015-10-01

    Full Text Available The blood–brain barrier (BBB generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs, which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT, subfornical organ (SFO, and area postrema (AP, have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF signaling may be involved in angiogenesis and

  2. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains.

    Science.gov (United States)

    Miyata, Seiji

    2015-01-01

    The blood-brain barrier (BBB) generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs), which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis and neurogliogenesis, both of

  3. Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm.

    Directory of Open Access Journals (Sweden)

    Anastasia K Kalpakidou

    Full Text Available Individuals who were born very preterm (VPT; <33 gestational weeks are at risk of experiencing deficits in tasks involving executive function in childhood and beyond. In addition, the type and severity of neonatal brain injury associated with very preterm birth may exert differential effects on executive functioning by altering its neuroanatomical substrates. Here we addressed this question by investigating with functional magnetic resonance imaging (fMRI the haemodynamic response during executive-type processing using a phonological verbal fluency and a working memory task in VPT-born young adults who had experienced differing degrees of neonatal brain injury. 12 VPT individuals with a history of periventricular haemorrhage and ventricular dilatation (PVH+VD, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage (UPVH, 13 VPT individuals with no history of neonatal brain injury and 17 controls received an MRI scan whilst completing a verbal fluency task with two cognitive loads ('easy' and 'hard' letters. Two groups of VPT individuals (PVH+VD; n = 10, UPVH; n = 8 performed an n-back task with three cognitive loads (1-, 2-, 3-back. Results demonstrated that VPT individuals displayed hyperactivation in frontal, temporal, and parietal cortices and in caudate nucleus, insula and thalamus compared to controls, as demands of the verbal fluency task increased, regardless of type of neonatal brain injury. On the other hand, during the n-back task and as working memory load increased, the PVH+VD group showed less engagement of the frontal cortex than the UPVH group. In conclusion, this study suggests that the functional neuroanatomy of different executive-type processes is altered following VPT birth and that neural activation associated with specific aspects of executive function (i.e., working memory may be particularly sensitive to the extent of neonatal brain injury.

  4. Embryonic expression of shuttle craft, a Drosophila gene involved in neuron development, is associated with adult lifespan.

    Science.gov (United States)

    Roshina, Natalia V; Symonenko, Alexander V; Krementsova, Anna V; Trostnikov, Mikhail V; Pasyukova, Elena G

    2014-12-01

    Despite the progress in aging research that highlights the role of the nervous system in longevity, whether genes that control development and consequently structure of the nervous system affect lifespan is unclear. We demonstrated that a mutation inshuttle craft, a gene involved in the nervous system development, increased the lifespan of unmated females and decreased the lifespan of mated females, without affecting males. Precise reversions of the mutation lead to the restoration of the lifespan specific to control females. In mutant unmated females, increased lifespan was associated with elevated locomotion at older ages, indicating slowed aging. In mutant mated females, reproduction was decreased compared to controls, indicating a lack of tradeoff between this trait and lifespan. No differences in shuttle craft transcription were observed between whole bodies, ovaries, and brains of mutant and control females of different ages, either unmated or mated. The amount of shuttle craft transcript appeared to be substantially decreased in mutant embryos. Our results demonstrated that a gene that regulates development of the nervous system might also influence longevity, and thus expanded the spectrum of genes involved in lifespan control. We hypothesize that this "carry-over" effect might be the result of transcription regulation in embryos.

  5. Associations between Mobility, Cognition, and Brain Structure in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Naiara Demnitz

    2017-05-01

    Full Text Available Mobility limitations lead to a cascade of adverse events in old age, yet the neural and cognitive correlates of mobility performance in older adults remain poorly understood. In a sample of 387 adults (mean age 69.0 ± 5.1 years, we tested the relationship between mobility measures, cognitive assessments, and MRI markers of brain structure. Mobility was assessed in 2007–2009, using gait, balance and chair-stands tests. In 2012–2015, cognitive testing assessed executive function, memory and processing-speed; gray matter volumes (GMV were examined using voxel-based morphometry, and white matter microstructure was assessed using tract-based spatial statistics of fractional anisotropy, axial diffusivity (AD, and radial diffusivity (RD. All mobility measures were positively associated with processing-speed. Faster walking speed was also correlated with higher executive function, while memory was not associated with any mobility measure. Increased GMV within the cerebellum, basal ganglia, post-central gyrus, and superior parietal lobe was associated with better mobility. In addition, better performance on the chair-stands test was correlated with decreased RD and AD. Overall, our results indicate that, even in non-clinical populations, mobility measures can be sensitive to sub-clinical variance in cognition and brain structures.

  6. Cortical neurogenesis in adult rats after ischemic brain injury:most new neurons fail to mature

    Institute of Scientific and Technical Information of China (English)

    Qing-quan Li; Guan-qun Qiao; Jun Ma; Hong-wei Fan; Ying-bin Li

    2015-01-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial ifbrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identiifed using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromode-oxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial ifbrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our ifndings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  7. GSK-3beta is required for memory reconsolidation in adult brain.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kimura

    Full Text Available Activation of GSK-3beta is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD, which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3beta in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3beta knockout (GSK+/- mice to form memories. In the Morris water maze (MWM, learning and memory performance of GSK+/- mice was no different from that of wild-type (WT mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/- mice, suggesting that GSK+/- mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC, context memory was normally consolidated in GSK+/- mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/- mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3beta was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3beta in the adult brain.

  8. The studies on neurogenesis indufced by brain injury in adult ring dove

    Institute of Scientific and Technical Information of China (English)

    ZUOMINGXUE

    1998-01-01

    It was the first time demonstrated by us that the number of newborn neurons was increased after making lesion in forebrain of adult ring dove(Streptopelia risoria) by means of autoradiography and imunohistochemistry,Neurogensis in the adult avian is restricted to the telencephalon.In doves with bilateral electrolytic lesion of nucleus ectostriatum(E),the mean mumber of proliferating cells in the lateral ventricular zone(LVZ) and newborn neurons in the forebrain increased by 1.95 times and 2.38 times respectively as compared with that in intact doves.The most remarkable incresase of neurogenesis induced by nucleus ectostriatum lesions was found at the anteriorposterior level 3(L3),where the lesion site was located.These results showed that the electrolytic brain lesion al tered the distribution pattern of proliferating cells in the LVZ and resulted in increase of the number of newborn neureons in the non-VZ areas of forebrain.The changes in number and distribution pattern of proliferating cells in LVZ and newbon neurons in forebrain may be dependent on site of lesion.Studies on the relationship between proliferating cells in LVZ and newly generated neurons in non-VZ aresa may help to understand the mechanism of brain plasticity and development.

  9. Proton Chemical Shift Imaging of the Brain in Pediatric and Adult Developmental Stuttering.

    Science.gov (United States)

    O'Neill, Joseph; Dong, Zhengchao; Bansal, Ravi; Ivanov, Iliyan; Hao, Xuejun; Desai, Jay; Pozzi, Elena; Peterson, Bradley S

    2017-01-01

    Developmental stuttering is a neuropsychiatric condition of incompletely understood brain origin. Our recent functional magnetic resonance imaging study indicates a possible partial basis of stuttering in circuits enacting self-regulation of motor activity, attention, and emotion. To further characterize the neurophysiology of stuttering through in vivo assay of neurometabolites in suspect brain regions. Proton chemical shift imaging of the brain was performed in a case-control study of children and adults with and without stuttering. Recruitment, assessment, and magnetic resonance imaging were performed in an academic research setting. Ratios of N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NAA) to creatine (Cr) and choline compounds (Cho) to Cr in widespread cerebral cortical, white matter, and subcortical regions were analyzed using region of interest and data-driven voxel-based approaches. Forty-seven children and adolescents aged 5 to 17 years (22 with stuttering and 25 without) and 47 adults aged 21 to 51 years (20 with stuttering and 27 without) were recruited between June 2008 and March 2013. The mean (SD) ages of those in the stuttering and control groups were 12.2 (4.2) years and 13.4 (3.2) years, respectively, for the pediatric cohort and 31.4 (7.5) years and 30.5 (9.9) years, respectively, for the adult cohort. Region of interest-based findings included lower group mean NAA:Cr ratio in stuttering than nonstuttering participants in the right inferior frontal cortex (-7.3%; P = .02), inferior frontal white matter (-11.4%; P stuttering sample included higher NAA:Cr and Cho:Cr ratios (regression coefficient, 197.4-275; P stuttering severity (r = 0.40-0.52; P = .001-.02). This spectroscopy study of stuttering demonstrates brainwide neurometabolite alterations, including several regions implicated by other neuroimaging modalities. Prior ascription of a role in stuttering to inferior frontal and superior temporal gyri, caudate, and other

  10. Local overexpression of Su(H-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila

    Directory of Open Access Journals (Sweden)

    Jasmin S. Auer

    2015-12-01

    Here we address the consequences of a local induction of three Su(H variants on Notch target gene expression. To this end, wild-type Su(H, a phospho-deficient Su(HMAPK-ko and a phospho-mimetic Su(HMAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(splm8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(splm8-lacZ, vgBE-lacZ. In general, Su(HMAPK-ko induced a stronger response than wild-type Su(H, whereas the response to Su(HMAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(splm8-lacZ was repressed by overexpression of Su(H proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact or the MAPK (rlSEM and individual Su(H variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes as well as to assay the response of the Notch target gene cut in cell clones.

  11. Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults

    Science.gov (United States)

    Titlow, Joshua S.; Davis, Ilan; Barker, Amy R.; Dawe, Helen R.

    2016-01-01

    ABSTRACT Cilia are conserved organelles that have important motility, sensory and signalling roles. The transition zone (TZ) at the base of the cilium is crucial for cilia function, and defects in several TZ proteins are associated with human congenital ciliopathies such as nephronophthisis (NPHP) and Meckel–Gruber syndrome (MKS). In several species, MKS and NPHP proteins form separate complexes that cooperate with Cep290 to assemble the TZ, but flies seem to lack core components of the NPHP module. We show that MKS proteins in flies are spatially separated from Cep290 at the TZ, and that flies mutant for individual MKS genes fail to recruit other MKS proteins to the TZ, whereas Cep290 seems to be recruited normally. Although there are abnormalities in microtubule and membrane organisation in developing MKS mutant cilia, these defects are less apparent in adults, where sensory cilia and sperm flagella seem to function quite normally. Thus, localising MKS proteins to the cilium or flagellum is not essential for viability or fertility in flies. PMID:27577095

  12. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    Science.gov (United States)

    List, Jonathan; Ott, Stefanie; Bukowski, Martin; Lindenberg, Robert; Flöel, Agnes

    2015-01-01

    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials. PMID:26052275

  13. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    Directory of Open Access Journals (Sweden)

    Jonathan eList

    2015-05-01

    Full Text Available Recurrent mild traumatic brain injuries (mTBIs are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and grey matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI>6 months prior to study enrolment (mTBI group, and 21 age-, sex- and education matched controls with no history of mTBI (control group. All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials.

  14. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    Science.gov (United States)

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  15. Neurobiological markers of exercise-related brain plasticity in older adults.

    Science.gov (United States)

    Voss, Michelle W; Erickson, Kirk I; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S; Alves, Heloisa; Szabo, Amanda; Phillips, Siobhan M; Wójcicki, Thomas R; Mailey, Emily L; Olson, Erin A; Gothe, Neha; Vieira-Potter, Victoria J; Martin, Stephen A; Pence, Brandt D; Cook, Marc D; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2013-02-01

    The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age=66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.

  16. Long-chain omega-3 fatty acids improve brain function and structure in older adults.

    Science.gov (United States)

    Witte, A Veronica; Kerti, Lucia; Hermannstädter, Henrike M; Fiebach, Jochen B; Schreiber, Stephan J; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2014-11-01

    Higher intake of seafish or oil rich in long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) may be beneficial for the aging brain. We tested in a prospective interventional design whether high levels of supplementary LC-n3-FA would improve cognition, and addressed potential mechanisms underlying the effects. Sixty-five healthy subjects (50-75 years, 30 females) successfully completed 26 weeks of either fish oil (2.2 g/day LC-n3-FA) or placebo intake. Before and after the intervention period, cognitive performance, structural neuroimaging, vascular markers, and blood parameters were assayed. We found a significant increase in executive functions after LC-n3-FA compared with placebo (P = 0.023). In parallel, LC-n3-FA exerted beneficial effects on white matter microstructural integrity and gray matter volume in frontal, temporal, parietal, and limbic areas primarily of the left hemisphere, and on carotid intima media thickness and diastolic blood pressure. Improvements in executive functions correlated positively with changes in omega-3-index and peripheral brain-derived neurotrophic factor, and negatively with changes in peripheral fasting insulin. This double-blind randomized interventional study provides first-time evidence that LC-n3-FA exert positive effects on brain functions in healthy older adults, and elucidates underlying mechanisms. Our findings suggest novel strategies to maintain cognitive functions into old age.

  17. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    Directory of Open Access Journals (Sweden)

    Claudia eBarth

    2015-02-01

    Full Text Available Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.

  18. Self-reported electrical appliance use and risk of adult brain tumors.

    Science.gov (United States)

    Kleinerman, Ruth A; Linet, Martha S; Hatch, Elizabeth E; Tarone, Robert E; Black, Peter M; Selker, Robert G; Shapiro, William R; Fine, Howard A; Inskip, Peter D

    2005-01-15

    Electrical appliances produce the highest intensity exposures to residential extremely low frequency electromagnetic fields. The authors investigated whether appliances may be associated with adult brain tumors in a hospital-based case-control study at three centers in the United States from 1994 to 1998. A total of 410 glioma, 178 meningioma, and 90 acoustic neuroma cases and 686 controls responded to a self-administered questionnaire about 14 electrical appliances. There was little evidence of association between brain tumors and curling iron, heating pad, vibrating massager, electric blanket, heated water bed, sound system, computer, television, humidifier, microwave oven, and electric stove. Ever use of hair dryers was associated with glioma (odds ratio = 1.7, 95% confidence interval: 1.1, 2.5), but there was no evidence of increasing risk with increasing amount of use. In men, meningioma was associated with electric shaver use (odds ratio = 10.9, 95% confidence interval: 2.3, 50), and odds ratios increased with cumulative minutes of use, although they were based on only two nonexposed cases. Recall bias for appliances used regularly near the head or chance may provide an alternative explanation for the observed associations. Overall, results indicate that extremely low frequency electromagnetic fields from commonly used household appliances are unlikely to increase the risk of brain tumors.

  19. Expression of Npas4 mRNA in telencephalic areas of adult and postnatal mouse brain

    Directory of Open Access Journals (Sweden)

    Joanne C Damborsky

    2015-11-01

    Full Text Available The transcription factor neuronal PAS domain-containing protein 4 (Npas4 is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON, piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu, septum and basolateral amygdala nucleus (BLA, basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5, transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission.

  20. Resident adult neural stem cells in Parkinson's disease--the brain's own repair system?

    Science.gov (United States)

    van den Berge, Simone A; van Strien, Miriam E; Hol, Elly M

    2013-11-05

    One important pathological process in the brain of Parkinson disease (PD) patients is the degeneration of the dopaminergic neurons in the substantia nigra, which leads to a decline in striatal dopamine levels and motor dysfunction. A major clinical problem is that this degenerative process currently cannot be stopped or reversed. Expectations from the restorative capacity of neural stem cells (NSCs) are high, as these cells can potentially replace the degenerating neurons. The discovery of the presence of NSCs in the adult human brain has instigated research into the potential of these cells as a resource to promote brain repair in neurodegenerative diseases. Neural stem and progenitor cells reside in the subventricular zone (SVZ), which is closely situated to the striatum, which is affected in PD. Therefore, restoring the dopamine levels in the striatum of PD patients through stimulating endogenous NSCs in the nearby SVZ to migrate into the striatum and differentiate into dopaminergic neurons might thus be an attractive future therapeutic approach. We will review the reported changes in NSCs in the SVZ of PD animal models and PD patients, which are due to a lack of striatal dopamine. Furthermore, we will summarise the reports that describe efforts to stimulate NSCs to replace dopaminergic cells in the SN and restore striatal dopamine levels. In our opinion, mobilizing the endogenous SVZ NSCs to replenish striatal dopamine is an attractive approach to alleviate the motor symptoms in PD patients, without the ethical and immunological challenges of transplantation of NSCs and foetal brain tissue. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Trajectories of brain aging in middle-aged and older adults: regional and individual differences.

    Science.gov (United States)

    Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M; Kennedy, Kristen M; Lindenberger, Ulman

    2010-06-01

    The human brain changes with age. However, the rate and the trajectories of change vary among the brain regions and among individuals, and the reasons for these differences are unclear. In a sample of healthy middle-aged and older adults, we examined mean volume change and individual differences in the rate of change in 12 regional brain volumes over approximately 30 months. In addition to the baseline assessment, there were two follow-ups, 15 months apart. We observed significant average shrinkage of the hippocampus, entorhinal cortex, orbital-frontal cortex, and cerebellum in each of the intervals. Shrinkage of the hippocampus accelerated with time, whereas shrinkage of the caudate nucleus, prefrontal subcortical white matter, and corpus callosum emerged only at the second follow-up. Throughout both assessment intervals, the mean volumes of the lateral prefrontal and primary visual cortices, putamen, and pons did not change. Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions (medial-temporal structures, the insula, and the basal ganglia) showed significant individual variation in change during the second follow-up. No individual variability was noted in the change of orbital frontal and visual cortices. In two white matter regions, we were able to identify factors associated with individual differences in brain shrinkage. In corpus callosum, shrinkage rate was greater in persons with hypertension, and in the pons, women and carriers of the ApoEepsilon4 allele exhibited declines not noted in the whole sample.

  2. The influence of intermittent hypobaric hypoxia on the brain iron metabolism in adult Sprague dawley rats

    Institute of Scientific and Technical Information of China (English)

    Wu Qiong; Li Yaru; Chang Yanzhong

    2015-01-01

    Objective:Iron is an essential element in all living organisms and is required as a cofactor for oxygen-binding proteins. Iron metabolism, oxygen homeostasis and erythropoiesis are consequently strongly inter-connected. In mammalian cells, exposure to a low-oxygen environment triggers a hypoxic response pathway cen-tered on the regulated expression of the hypoxia-inducible transcription factor ( HIF) . Hypoxia has been shown to increase the expression of a variety of proteins involved in iron homeostasis. However, little is known about brain iron metabolism after intermittent hypobaric hypoxia ( IHH) treatment. In this study, adult Sprague dawley ( SD) rats were treated with IHH for 28 days, 8h per day and then we detected iron homeostasis in different brain areas of SD rats. Results:The protein level of hippocampus transferrin receptor 1 ( TfR1 ) , divalent metal transporter 1 (DMT1) with IRE, DMT1 (-IRE), ferritin-H, iron regulatory protein (IRP) 2 and ceruloplasmin (CP) is ele-vated significantly while ferritin-L decreased. We have also found the down regulation of IRP1. We observe the same results in the cerebral cortex in the brain. Conclusions:We first discover that IHH has an influence on the brain iron homeostasis and the decreased ferritin-L corresponds to the down regulation of IRP1 indicating hypoxia can affect the expression of ferritin-L through IRE/IRP system. Although there is a marked increase in TfR1 ex-pression that would lead to the raised level of LIP in cells. It can finally result in the higher ROS which can damage the cells. The concerned mechanisms involved in it remain to be deliberated.

  3. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers

    Science.gov (United States)

    Bu, Limei; Yu, Dahua; Su, Shaoping; Ma, Yao; von Deneen, Karen M.; Luo, Lin; Zhai, Jinquan; Liu, Bo; Cheng, Jiadong; Guan, Yanyan; Li, Yangding; Bi, Yanzhi; Xue, Ting; Lu, Xiaoqi; Yuan, Kai

    2016-01-01

    Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking.

  4. An evaluation of reading comprehension of expository text in adults with traumatic brain injury.

    Science.gov (United States)

    Sohlberg, McKay Moore; Griffiths, Gina G; Fickas, Stephen

    2014-05-01

    This project was conducted to obtain information about reading problems of adults with traumatic brain injury (TBI) with mild-to-moderate cognitive impairments and to investigate how these readers respond to reading comprehension strategy prompts integrated into digital versions of text. Participants from 2 groups, adults with TBI (n = 15) and matched controls (n = 15), read 4 different 500-word expository science passages linked to either a strategy prompt condition or a no-strategy prompt condition. The participants' reading comprehension was evaluated using sentence verification and free recall tasks. The TBI and control groups exhibited significant differences on 2 of the 5 reading comprehension measures: paraphrase statements on a sentence verification task and communication units on a free recall task. Unexpected group differences were noted on the participants' prerequisite reading skills. For the within-group comparison, participants showed significantly higher reading comprehension scores on 2 free recall measures: words per communication unit and type-token ratio. There were no significant interactions. The results help to elucidate the nature of reading comprehension in adults with TBI with mild-to-moderate cognitive impairments and endorse further evaluation of reading comprehension strategies as a potential intervention option for these individuals. Future research is needed to better understand how individual differences influence a person's reading and response to intervention.

  5. Measuring inhibitory control in children and adults: brain imaging and mental chronometry.

    Science.gov (United States)

    Houdé, Olivier; Borst, Grégoire

    2014-01-01

    Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and elementary schoolchildren, and overestimated the capabilities of adolescents and even adults which are often biased by illogical intuitions and overlearned strategies (i.e., "fast thinking" in Daniel Kahneman's words). The crucial question is now to understand why, despite rich precocious knowledge about physical and mathematical principles observed over the last three decades in infants and young children, older children, adolescents and even adults are nevertheless so often bad reasoners. We propose that inhibition of less sophisticated solutions (or heuristics) by the prefrontal cortex is a domain-general executive ability that supports children's conceptual insights associated with more advanced Piagetian stages, such as number-conservation and class inclusion. Moreover, this executive ability remains critical throughout the whole life and even adults may sometimes need "prefrontal pedagogy" in order to learn inhibiting intuitive heuristics (or biases) in deductive reasoning tasks. Here we highlight some of the discoveries from our lab in the field of cognitive development relying on two methodologies used for measuring inhibitory control: brain imaging and mental chronometry (i.e., the negative priming paradigm). We also show that this new approach opens an avenue for re-examining persistent errors in standard classroom-learning tasks.

  6. Measuring inhibitory control in children and adults: brain imaging and mental chronometry

    Directory of Open Access Journals (Sweden)

    Olivier eHoudé

    2014-06-01

    Full Text Available Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and elementary schoolchildren, and overestimated the capabilities of adolescents and even adults which are often biased by illogical intuitions and overlearned strategies (i.e., fast thinking in Daniel Kahneman’s words. The crucial question is now to understand why, despite rich precocious knowledge about physical and mathematical principles observed over the last three decades in infants and young children, older children, adolescents and even adults are nevertheless so often bad reasoners. We propose that inhibition of less sophisticated solutions (or heuristics by the prefrontal cortex is a domain-general executive ability that supports children’s conceptual insights associated with more advanced Piagetian stages, such as number conservation and class inclusion. Moreover, this executive ability remains critical throughout the whole life and even adults may sometimes need prefrontal pedagogy in order to learn inhibiting intuitive heuristics (or biases in deductive reasoning tasks. Here we highlight some of the discoveries from our lab in the field of cognitive development relying on two methodologies used for measuring inhibitory control: brain imaging and mental chronometry (i.e., the negative-priming paradigm. We also show that this new approach opens an avenue for re-examining persistent errors in standard classroom-learning tasks.

  7. Biologic variability of N-terminal pro-brain natriuretic peptide in adult healthy cats.

    Science.gov (United States)

    Harris, Autumn N; Estrada, Amara H; Gallagher, Alexander E; Winter, Brandy; Lamb, Kenneth E; Bohannon, Mary; Hanscom, Jancy; Mainville, Celine A

    2017-02-01

    Objectives The biologic variability of N-terminal pro-brain natriuretic peptide (NT-proBNP) and its impact on diagnostic utility is unknown in healthy cats and those with cardiac disease. The purpose of this study was to determine the biologic variation of NT-proBNP within-day and week-to-week in healthy adult cats. Methods Adult cats were prospectively evaluated by complete blood count (CBC), biochemistry, total thyroxine, echocardiography, electrocardiography and blood pressure, to exclude underlying systemic or cardiac disease. Adult healthy cats were enrolled and blood samples were obtained at 11 time points over a 6 week period (0, 2 h, 4 h, 6 h, 8 h, 10 h and at weeks 2, 3, 4, 5 and 6). The intra-individual (coefficient of variation [CVI]) biologic variation along with index of individuality and reference change values (RCVs) were calculated. Univariate models were analyzed and included comparison of the six different time points for both daily and weekly samples. This was followed by a Tukey's post-hoc adjustment, with a P value of cats. Further research is warranted to evaluate NT-proBNP variability, particularly how serial measurements of NT-proBNP may be used in the diagnosis and management of cats with cardiac disease.

  8. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  9. A critical period of sleep for development of courtship circuitry and behavior in Drosophila.

    Science.gov (United States)

    Kayser, Matthew S; Yue, Zhifeng; Sehgal, Amita

    2014-04-18

    Most animals sleep more early in life than in adulthood, but the function of early sleep is not known. Using Drosophila, we found that increased sleep in young flies was associated with an elevated arousal threshold and resistance to sleep deprivation. Excess sleep results from decreased inhibition of a sleep-promoting region by a specific dopaminergic circuit. Experimental hyperactivation of this circuit in young flies results in sleep loss and lasting deficits in adult courtship behaviors. These deficits are accompanied by impaired development of a single olfactory glomerulus, VA1v, which normally displays extensive sleep-dependent growth after eclosion. Our results demonstrate that sleep promotes normal brain development that gives rise to an adult behavior critical for species propagation and suggest that rapidly growing regions of the brain are most susceptible to sleep perturbations early in life.

  10. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Annekathrin Widmann

    2016-10-01

    Full Text Available Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  11. The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults

    OpenAIRE

    Azeredo,Lucas A.; Tatiana De Nardi; Levandowski, Mateus L.; Tractenberg,Saulo G.; Julia Kommers-Molina; Andrea Wieck; Tatiana Q. Irigaray; Irênio G. da Silva Filho; Rodrigo Grassi-Oliveira

    2017-01-01

    Objective: Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cogni...

  12. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain.

    Science.gov (United States)

    Grote, Steffi; Prüfer, Kay; Kelso, Janet; Dannemann, Michael

    2016-10-15

    We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages. ABAEnrichment was implemented as an R package and is available under GPL (≥ 2) from the Bioconductor website (http://bioconductor.org/packages/3.3/bioc/html/ABAEnrichment.html). steffi_grote@eva.mpg.de, kelso@eva.mpg.de or michael_dannemann@eva.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. Adult sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to

  14. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  15. Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults.

    Directory of Open Access Journals (Sweden)

    Agnieszka Z Burzynska

    Full Text Available Higher cardiorespiratory fitness (CRF and physical activity (PA in old age are associated with greater brain structural and functional integrity, and higher cognitive functioning. However, it is not known how different aspects of lifestyle such as sedentariness, light PA (LI-PA, or moderate-to-vigorous physical activity (MV-PA relate to neural activity in aging. In addition, it is not known whether the effects of PA on brain function differ or overlap with those of CRF. Here, we objectively measured CRF as oxygen consumption during a maximal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy but low active older adults (aged 60-80 years. We modeled the relationships between CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As an index of functional brain integrity we used spontaneous moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD, known to be associated with better cognitive functioning in aging. We found that older adults who engaged more in LI-PA and MV-PA had greater SDBOLD in brain regions that play a role in integrating segregated functional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices. Our results suggest that engaging in higher intensity PA may have protective effects on neural processing in aging. Finally, we demonstrated that older adults with greater overall WM microstructure were those showing more LI-PA and MV-PA and greater SDBOLD. We conclude that SDBOLD is a promising correlate of functional brain health in aging. Future analyses will evaluate whether SDBOLD is modifiable with interventions aimed to increase PA and CRF in older adults.

  16. Neurogenetics of female reproductive behaviors in Drosophila melanogaster

    NARCIS (Netherlands)

    Laturney, Meghan; Billeter, Jean-Christophe; Friedmann, T; Dunlap, JC; Goodwin, SF

    2014-01-01

    We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular

  17. Alzheimer-like neurotransmitter deficits in adult Down's syndrome brain tissue.

    Science.gov (United States)

    Godridge, H; Reynolds, G P; Czudek, C; Calcutt, N A; Benton, M

    1987-01-01

    Brain tissue taken at necropsy from five cases of Down's syndrome and six controls was analysed for changes in neurotransmitter markers. Concentrations of noradrenaline (NA), dopamine (DA) and its major metabolite homovanillic acid (HVA), 5-hydroxytryptamine (5HT) and its metabolite 5-hydroxyindoleacetic acid (5HIAA) were determined by means of HPLC, whilst choline acetyltransferase (ChAT) was measured by a radiochemical technique. Significant reductions in NA, 5HT and ChAT were found in most cortical and subcortical regions of the Down's syndrome tissue investigated. The neuropathological lesions were assessed using a fluorescent stain for neuritic plaques and neurofibrillary tangles. These were present to varying extents in every Down's syndrome case except the youngest but were not found in control tissue of comparable age. The results indicate profound transmitter deficits and neuropathological abnormalities in adult patients with Down's syndrome, which closely resemble those of Alzheimer's disease. PMID:2440994

  18. Malnutrition during brain growth spurt alters the effect of fluoxetine on aggressive behavior in adult rats.

    Science.gov (United States)

    Barreto-Medeiros, J M; Feitoza, E G; Magalhaes, K; Cabral-Filho, J E; Manhaes-De-Castro, F M; De-Castro, C M; Manhaes-De-Castro, R

    2004-02-01

    Malnutrition effect during the suckling period on aggressive behavior was investigated in adult rats treated and not treated with fluoxetine, a selective serotonin reuptake inhibitor. Sixty-four Wistar male rats were allocated in two groups, according to their mothers' diet during lactation. The well-nourished group was fed by mothers receiving a 23% protein diet; the malnourished one by mothers receiving a 8% protein diet. Following weaning, all rats received the 23% protein diet. On the 90th day after birth, each nutritional group was divided into two subgroups, one receiving a single daily injection of fluoxetine (10 mg/kg) and the other of a saline solution (0.9% NaCl) for 14 days. Treatment with Fluoxetine reduced aggressive response in well-nourished but not in malnourished rats. These findings suggest that the serotoninergic system was affected by malnutrition during the critical period of brain development, and persisted even after a long period of nutritional recovery.

  19. Clinical utility of the Wechsler Adult Intelligence Scale-Fourth Edition after traumatic brain injury.

    Science.gov (United States)

    Donders, Jacobus; Strong, Carrie-Ann H

    2015-02-01

    The performance of 100 patients with traumatic brain injury (TBI) on the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) was compared with that of 100 demographically matched neurologically healthy controls. Processing Speed was the only WAIS-IV factor index that was able to discriminate between persons with moderate-severe TBI on the one hand and persons with either less severe TBI or neurologically healthy controls on the other hand. The Processing Speed index also had acceptable sensitivity and specificity when differentiating between patients with TBI who either did or did not have scores in the clinically significant range on the Trail Making Test. It is concluded that WAIS-IV Processing Speed has acceptable clinical utility in the evaluation of patients with moderate-severe TBI but that it should be supplemented with other measures to assure sufficient accuracy in the diagnostic process. © The Author(s) 2014.

  20. Perivascular instruction of cell genesis and fate in the adult brain.

    Science.gov (United States)

    Goldman, Steven A; Chen, Zhuoxun

    2011-10-26

    The perivascular niche for neurogenesis was first reported as the co-association of newly generated neurons and their progenitors with both dividing and mitotically quiescent endothelial cells in restricted regions of the brain in adult birds and mammals alike. This review attempts to summarize our present understanding of the interaction of blood vessels with neural stem and progenitor cells, addressing both glial and neuronal progenitor cell interactions in the perivascular niche. We review the molecular interactions that are most critical to the endothelial control of stem and progenitor cell mobilization and differentiation. The focus throughout will be on defining those perivascular ligand-receptor interactions shared among these systems, as well as those that clearly differ as a function of cell type and setting, by which specificity may be achieved in the development of targeted therapeutics.

  1. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  2. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    Science.gov (United States)

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  3. Dairy intake is associated with brain glutathione concentration in older adults123

    Science.gov (United States)

    Lee, Phil; Denney, Douglas R; Spaeth, Kendra; Nast, Olivia; Ptomey, Lauren; Roth, Alexandra K; Lierman, Jo Ann; Sullivan, Debra K

    2015-01-01

    Background: A reduction in key antioxidants such as glutathione has been noted in brain tissue undergoing oxidative stress in aging and neurodegeneration. To date, no dietary factor has been linked to a higher glutathione concentration. However, in an earlier pilot study, we showed evidence of a positive association between cerebral glutathione and dairy intake. Objective: We tested the hypothesis that dairy food consumption is associated with cerebral glutathione concentrations in older adults. Design: In this observational study, we measured cerebral glutathione concentrations in 60 healthy subjects (mean ± SD age: 68.7 ± 6.2 y) whose routine dairy intakes varied. Glutathione concentrations were measured by using a unique, noninvasive magnetic resonance chemical shift imaging technique at 3 T and compared with dairy intakes reported in 7-d food records. Results: Glutathione concentrations in the frontal [Spearman's rank-order correlation (rs) = 0.39, P = 0.013], parietal (rs = 0.50, P = 0.001), and frontoparietal regions (rs = 0.47, P = 0.003) were correlated with average daily dairy servings. In particular, glutathione concentrations in all 3 regions were positively correlated with milk servings (P ≤ 0.013), and those in the parietal region were also correlated with cheese servings (P = 0.015) and calcium intake (P = 0.039). Dairy intake was related to sex, fat-free mass, and daily intakes of energy, protein, and carbohydrates. However, when these factors were controlled through a partial correlation, correlations between glutathione concentrations and dairy and milk servings remained significant. Conclusions: Higher cerebral glutathione concentrations were associated with greater dairy consumption in older adults. One possible explanation for this association is that dairy foods may serve as a good source of substrates for glutathione synthesis in the human brain. PMID:25646325

  4. Abnormal brain connectivity patterns in adults with ADHD: a coherence study.

    Directory of Open Access Journals (Sweden)

    João Ricardo Sato

    Full Text Available Studies based on functional magnetic resonance imaging (fMRI during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC and regions of the Default Mode Network (DMN in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD relative to subjects with typical development (TD. Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC in three groups (adult patients with ADHD, n=21; TD age-matched subjects, n=21; young TD subjects, n=21 using a more comprehensive analytical approach - unsupervised machine learning using a one-class support vector machine (OC-SVM that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p=0.014; the ADHD and young TD indices did not differ significantly (p=0.480; the median abnormality index of young TD was greater than that of TD age-matched subjects (p=0.016. Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits.

  5. Gender, intoxication and the developing brain: Problematisations of drinking among young adults in Australian alcohol policy.

    Science.gov (United States)

    Manton, Elizabeth; Moore, David

    2016-05-01

    In this article, we draw on recent scholarly work in the poststructuralist analysis of policy to consider how policy itself functions as a key site in the constitution of alcohol 'problems', and the political implications of these problematisations. We do this by examining Australian alcohol policy as it relates to young adults (18-24 years old). Our critical analysis focuses on three national alcohol policies (1990, 2001 and 2006) and two Victorian state alcohol policies (2008 and 2013), which together span a 25-year period. We argue that Australian alcohol policies have conspicuously ignored young adult men, despite their ongoing over-representation in the statistical 'evidence base' on alcohol-related harm, while increasingly problematising alcohol consumption amongst other population subgroups. We also identify the development of a new problem representation in Australian alcohol policy, that of 'intoxication' as the leading cause of alcohol-related harm and rising hospital admissions, and argue that changes in the classification and diagnosis of intoxication may have contributed to its prioritisation and problematisation in alcohol policy at the expense of other forms of harm. Finally, we draw attention to how preliminary and inconclusive research on the purported association between binge drinking and brain development in those under 25 years old has been mobilised prematurely to support calls to increase the legal purchasing age from 18 to 21 years. Our critical analysis of the treatment of these three issues - gender, intoxication, and brain development - is intended to highlight the ways in which policy functions as a key site in the constitution of alcohol 'problems'.

  6. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  7. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace.

  8. Characteristics of diffusion-tensor imaging for healthy adult rhesus monkey brains

    Institute of Scientific and Technical Information of China (English)

    Xinxiang Zhao; Jun Pu; Yaodong Fan; Xiaoqun Niu; Danping Yu; Yanglin Zhang

    2013-01-01

    Diffusion-tensor imaging can be used to observe the microstructure of brain tissue. Fractional sotropy reflects the integrity of white matter fibers. Fractional anisotropy of a young adult brain is low in gray matter, high in white matter, and highest in the splenium of the corpus cal osum. Thus, we selected the anterior and posterior limbs of the internal capsule, head of the caudate nucleus, se-mioval center, thalamus, and corpus cal osum (splenium and genu) as regions of interest when using diffusion-tensor imaging to observe fractional anisotropy of major white matter fiber tracts and the deep gray matter of healthy rhesus monkeys aged 4-8 years. Results showed no laterality ferences in fractional anisotropy values. Fractional anisotropy values were low in the head of date nucleus and thalamus in gray matter. Fractional anisotropy values were highest in the sple-nium of corpus cal osum in the white matter, fol owed by genu of the corpus cal osum and the posterior limb of the internal capsule. Fractional anisotropy values were lowest in the semioval center and posterior limb of internal capsule. These results suggest that fractional anisotropy values in major white matter fibers and the deep gray matter of 4-8-year-old rhesus monkeys are similar to those of healthy young people.

  9. Expression of Bcl-2 in adult human brain regions with special reference to neurodegenerative disorders.

    Science.gov (United States)

    Vyas, S; Javoy-Agid, F; Herrero, M T; Strada, O; Boissiere, F; Hibner, U; Agid, Y

    1997-07-01

    The expression of the protooncogene bcl-2, an inhibitor of apoptosis in various cells, was examined in the adult human brain. Several experimental criteria were used to verify its presence; mRNA was analyzed by northern blot with parallel experiments in mouse tissues, by RNase protection, and by in situ hybridization histochemistry. Bcl-2 protein was detected by western blot analysis and immunohistochemistry. Two bcl-2 mRNA species were identified in the human brain. The pattern of distribution of bcl-2 mRNA at the cellular level showed labeling in neurons but not glia. The in situ hybridization signal was stronger in the pyramidal neurons of the cerebral cortex and in the cholinergic neurons of the nucleus basalis of Meynert than in the Purkinje neurons of the cerebellum. Both melanized and nonmelanized neurons were labeled in the substantia nigra. In the striatum, bcl-2 mRNA was detected in some but not all neurons. In the regions examined for Bcl-2 protein, the expression pattern correlated with the mRNA results. In patients with Alzheimer's and Parkinson's diseases, quantification of bcl-2 mRNA in the nucleus basalis of Meynert and substantia nigra, respectively, showed that the expression was unaltered compared with controls, raising the possibility that the expression of other components of apoptosis is modulated.

  10. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    Science.gov (United States)

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  11. Malnutrition and Risk of Structural Brain Changes Seen on Magnetic Resonance Imaging in Older Adults.

    Science.gov (United States)

    de van der Schueren, Marian A E; Lonterman-Monasch, Sabine; van der Flier, Wiesje M; Kramer, Mark H; Maier, Andrea B; Muller, Majon

    2016-12-01

    To study the associations between protein energy malnutrition, micronutrient malnutrition, brain atrophy, and cerebrovascular lesions. Cross-sectional. Geriatric outpatient clinic. Older adults (N = 475; mean age 80 ± 7). Nutritional status was assessed using the Mini Nutritional Assessment (MNA) and according to serum micronutrient levels (vitamins B1, B6, B12, D; folic acid). White matter hyperintensities (WMHs), global cortical brain atrophy, and medial temporal lobe atrophy on magnetic resonance imaging (MRI) were rated using visual rating scales. Logistic regression analyses were performed to assess associations between the three MNA categories (malnutrition (MNA = 17-23.5). Participants at risk of malnutrition (odds ratio (OR) = 1.93, 95% confidence interval (CI) = 1.01-3.71) or who were malnourished (OR = 2.80, 95% CI = 1.19-6.60) had a greater probability of having severe WMHs independent of age and sex than those with adequate nutritional status. Results remained significant after further adjustments for cognitive function, depressive symptoms, cardiovascular risk factors, history of cardiovascular disease, smoking and alcohol use, and micronutrient levels. Lower vitamin B1 (OR = 1.51, 95% CI = 1.11-2.08) and B12 (OR = 1.45, 95% CI = 1.02-2.04) levels were also related to greater risk of severe WMHs, independent of age and sex. Results remained significant after additional adjustments. MNA and vitamin levels were not associated with measures of brain atrophy. Malnutrition and lower vitamin B1 and B12 levels were independently associated with greater risk of WMHs. Underlying mechanisms need to be further clarified, and whether nutritional interventions can modify these findings also needs to be studied. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  12. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.

    Science.gov (United States)

    Krishna, Saritha; Dodd, Celia A; Hekmatyar, Shahryar K; Filipov, Nikolay M

    2014-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e., mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post-Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure.

  13. Intravenous multipotent adult progenitor cell therapy after traumatic brain injury: modulation of the resident microglia population

    Directory of Open Access Journals (Sweden)

    Walker Peter A

    2012-09-01

    Full Text Available Abstract Introduction We have demonstrated previously that the intravenous delivery of multipotent adult progenitor cells (MAPC after traumatic brain injury affords neuroprotection via interaction with splenocytes, leading to an increase in systemic anti-inflammatory cytokines. We hypothesize that the observed modulation of the systemic inflammatory milieu is related to T regulatory cells and a subsequent increase in the locoregional neuroprotective M2 macrophage population. Methods C57B6 mice were injected with intravenous MAPC 2 and 24 hours after controlled cortical impact injury. Animals were euthanized 24, 48, 72, and 120 hours after injury. In vivo, the proportion of CD4+/CD25+/FOXP3+ T-regulatory cells were measured in the splenocyte population and plasma. In addition, the brain CD86+ M1 and CD206+ M2 macrophage populations were quantified. A series of in vitro co-cultures were completed to investigate the need for direct MAPC:splenocyte contact as well as the effect of MAPC therapy on M1 and M2 macrophage subtype apoptosis and proliferation. Results Significant increases in the splenocyte and plasma T regulatory cell populations were observed with MAPC therapy at 24 and 48 hours, respectively. In addition, MAPC therapy was associated with an increase in the brain M2/M1 macrophage ratio at 24, 48 and 120 hours after cortical injury. In vitro cultures of activated microglia with supernatant derived from MAPC:splenocyte co-cultures also demonstrated an increase in the M2/M1 ratio. The observed changes were secondary to an increase in M1 macrophage apoptosis. Conclusions The data show that the intravenous delivery of MAPC after cortical injury results in increases in T regulatory cells in splenocytes and plasma with a concordant increase in the locoregional M2/M1 macrophage ratio. Direct contact between the MAPC and splenocytes is required to modulate activated microglia, adding further evidence to the central role of the spleen in MAPC

  14. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  16. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    Science.gov (United States)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  17. Developmental differences in the brain response to unhealthy food cues : An fMRI study of children and adults

    NARCIS (Netherlands)

    van Meer, Floor; van der Laan, Laura N; Charbonnier, Lisette; Viergever, Max A; Adan, Roger Ah; Smeets, Paul Am

    2016-01-01

    BACKGROUND: Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults to

  18. Brain Activity in Adults Who Stutter: Similarities across Speaking Tasks and Correlations with Stuttering Frequency and Speaking Rate

    Science.gov (United States)

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent…

  19. Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study

    Science.gov (United States)

    Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.

    2007-01-01

    Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…

  20. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Wang, Xiaoli; Cao, Qingjiu; Wang, Jinhui; Wu, Zhaomin; Wang, Peng; Sun, Li; Cai, Taisheng; Wang, Yufeng

    2016-01-01

    Cognitive-behavioral therapy (CBT) is an efficacious psychological treatment for adults with attention-deficit/hyperactivity disorder (ADHD), but the neural processes underlying the benefits of CBT are not well understood. This study aims to unravel psychosocial mechanisms for treatment ADHD by exploring the effects of CBT on functional brain networks. Ten adults with ADHD were enrolled and resting-state functional magnetic resonance imaging scans were acquired before and after a 12-session CBT. Twelve age- and gender-matched healthy controls were also scanned. We constructed whole-brain functional connectivity networks using graph-theory approaches and further computed the changes of regional functional connectivity strength (rFCS) between pre- and post-CBT in ADHD for measuring the effects of CBT. The results showed that rFCS was increased in the fronto-parietal network and cerebellum, the brain regions that were most often affected by medication, in adults with ADHD following CBT. Furthermore, the enhanced functional coupling between bilateral superior parietal gyrus was positively correlated with the improvement of ADHD symptoms following CBT. Together, these findings provide evidence that CBT can selectively modulate the intrinsic network connectivity in the fronto-parietal network and cerebellum and suggest that the CBT may share common brain mechanism with the pharmacology in adults with ADHD.

  1. Adult sex ratio effects on male survivorship of Drosophila melanogaster Meigen (Diptera, Drosophilidae Efeito da razão sexual de adultos na curva de sobrevivência de machos de Drosophila melanogaster Meigen (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    Marcelo Costa

    2010-01-01

    Full Text Available The behavioral biology has a central role in evolutionary biology mainly because the antagonistic relations that occur in the sexual reproduction. One involves the effect of reproduction on the future life expectation. In this scenario, changes in male operational sex ratio could lead to an increase in mortality due to costs associated with excessive courtship and mating displays. Thus, this work experimentally altered the male sex ratio of Drosophila melanogaster Meigen, 1830, to determine its impact on mortality. The results indicated that mortality increases as the sex ratio changes, including modifications in the survivorship curve type and in the curve concavity, measured by entropy.A biologia comportamental tem um papel central na biologia evolutiva principalmente pelas relações antagônicas que ocorrem na reprodução sexuada. Uma destas relações envolve o efeito da reprodução sobre a expectativa de vida futura. Neste cenário, alterações na razão sexual operacional de machos podem levar a um aumento na mortalidade por causa dos custos associados com o excesso de displays de corte e cópulas. Neste sentido este trabalho alterou experimentalmente a razão sexual em machos de Drosophila melanogaster Meigen, 1830, para determinar os efeitos em termos de mortalidade. Os resultados indicam que a mortalidade aumenta a medida que a razão sexual se enviesa incluindo alterações no tipo de curva de sobrevivência e da concavidade da curva, medida pela entropia.

  2. DCC Expression by Neurons Regulates Synaptic Plasticity in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katherine E. Horn

    2013-01-01

    Full Text Available The transmembrane protein deleted in colorectal cancer (DCC and its ligand, netrin-1, regulate synaptogenesis during development, but their function in the mature central nervous system is unknown. Given that DCC promotes cell-cell adhesion, is expressed by neurons, and activates proteins that signal at synapses, we hypothesized that DCC expression by neurons regulates synaptic function and plasticity in the adult brain. We report that DCC is enriched in dendritic spines of pyramidal neurons in wild-type mice, and we demonstrate that selective deletion of DCC from neurons in the adult forebrain results in the loss of long-term potentiation (LTP, intact long-term depression, shorter dendritic spines, and impaired spatial and recognition memory. LTP induction requires Src activation of NMDA receptor (NMDAR function. DCC deletion severely reduced Src activation. We demonstrate that enhancing NMDAR function or activating Src rescues LTP in the absence of DCC. We conclude that DCC activation of Src is required for NMDAR-dependent LTP and certain forms of learning and memory.

  3. Examination of validity in spoken language evaluations: Adult onset stuttering following mild traumatic brain injury.

    Science.gov (United States)

    Roth, Carole R; Cornis-Pop, Micaela; Beach, Woodford A

    2015-01-01

    Reports of increased incidence of adult onset stuttering in veterans and service members with mild traumatic brain injury (mTBI) from combat operations in Iraq and Afghanistan lead to a reexamination of the neurogenic vs. psychogenic etiology of stuttering. This article proposes to examine the merit of the dichotomy between neurogenic and psychogenic bases of stuttering, including symptom exaggeration, for the evaluation and treatment of the disorder. Two case studies of adult onset stuttering in service members with mTBI from improvised explosive device blasts are presented in detail. Speech fluency was disrupted by abnormal pauses and speech hesitations, brief blocks, rapid repetitions, and occasional prolongations. There was also wide variability in the frequency of stuttering across topics and conversational situations. Treatment focused on reducing the frequency and severity of dysfluencies and included educational, psychological, environmental, and behavioral interventions. Stuttering characteristics as well as the absence of objective neurological findings ruled out neurogenic basis of stuttering in these two cases and pointed to psychogenic causes. However, the differential diagnosis had only limited value for developing the plan of care. The successful outcomes of the treatment serve to illustrate the complex interaction of neurological, psychological, emotional, and environmental factors of post-concussive symptoms and to underscore the notion that there are many facets to symptom presentation in post-combat health.

  4. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures.

    Science.gov (United States)

    Bergey, Gregory K; Morrell, Martha J; Mizrahi, Eli M; Goldman, Alica; King-Stephens, David; Nair, Dileep; Srinivasan, Shraddha; Jobst, Barbara; Gross, Robert E; Shields, Donald C; Barkley, Gregory; Salanova, Vicenta; Olejniczak, Piotr; Cole, Andrew; Cash, Sydney S; Noe, Katherine; Wharen, Robert; Worrell, Gregory; Murro, Anthony M; Edwards, Jonathan; Duchowny, Michael; Spencer, David; Smith, Michael; Geller, Eric; Gwinn, Ryder; Skidmore, Christopher; Eisenschenk, Stephan; Berg, Michel; Heck, Christianne; Van Ness, Paul; Fountain, Nathan; Rutecki, Paul; Massey, Andrew; O'Donovan, Cormac; Labar, Douglas; Duckrow, Robert B; Hirsch, Lawrence J; Courtney, Tracy; Sun, Felice T; Seale, Cairn G

    2015-02-24

    The long-term efficacy and safety of responsive direct neurostimulation was assessed in adults with medically refractory partial onset seizures. All participants were treated with a cranially implanted responsive neurostimulator that delivers stimulation to 1 or 2 seizure foci via chronically implanted electrodes when specific electrocorticographic patterns are detected (RNS System). Participants had completed a 2-year primarily open-label safety study (n = 65) or a 2-year randomized blinded controlled safety and efficacy study (n = 191); 230 participants transitioned into an ongoing 7-year study to assess safety and efficacy. The average participant was 34 (±11.4) years old with epilepsy for 19.6 (±11.4) years. The median preimplant frequency of disabling partial or generalized tonic-clonic seizures was 10.2 seizures a month. The median percent seizure reduction in the randomized blinded controlled trial was 44% at 1 year and 53% at 2 years (p < 0.0001, generalized estimating equation) and ranged from 48% to 66% over postimplant years 3 through 6 in the long-term study. Improvements in quality of life were maintained (p < 0.05). The most common serious device-related adverse events over the mean 5.4 years of follow-up were implant site infection (9.0%) involving soft tissue and neurostimulator explantation (4.7%). The RNS System is the first direct brain responsive neurostimulator. Acute and sustained efficacy and safety were demonstrated in adults with medically refractory partial onset seizures arising from 1 or 2 foci over a mean follow-up of 5.4 years. This experience supports the RNS System as a treatment option for refractory partial seizures. This study provides Class IV evidence that for adults with medically refractory partial onset seizures, responsive direct cortical stimulation reduces seizures and improves quality of life over a mean follow-up of 5.4 years. © 2015 American Academy of Neurology.

  5. Adaptive modulation of adult brain gray and white matter to high altitude: structural MRI studies.

    Directory of Open Access Journals (Sweden)

    Jiaxing Zhang

    Full Text Available The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA. Voxel-based morphometry analysis of gray matter (GM volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA based on MRI images were conducted on 16 adults (20-22 years who immigrated to the Qinghai-Tibet Plateau (2300-4400 m for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits.

  6. Broad epigenetic signature of maternal care in the brain of adult rats.

    Directory of Open Access Journals (Sweden)

    Patrick O McGowan

    Full Text Available BACKGROUND: Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in expression of hundreds of additional genes in adult rats in response to differences in maternal care. METHODOLOGY/PRINCIPAL FINDINGS: We examine here using high-density oligonucleotide array the state of DNA methylation, histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response. Interestingly, the chromosomal region containing the protocadherin-α, -β, and -γ (Pcdh gene families implicated in synaptogenesis show the highest differential response to maternal care. CONCLUSIONS/SIGNIFICANCE: The results suggest for the first time that the epigenetic response to maternal care is coordinated in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set exploring

  7. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain.

    Science.gov (United States)

    Ramos-Moreno, Tania; Galazo, Maria J; Porrero, Cesar; Martínez-Cerdeño, Verónica; Clascá, Francisco

    2006-01-01

    Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.

  8. Depression among Older Adults Following Traumatic Brain Injury: A National Analysis

    Science.gov (United States)

    Albrecht, Jennifer S; Kiptanui, Zippora; Tsang, Yuen; Khokhar, Bilal; Liu, Xinggang; Simoni-Wastila, Linda; Zuckerman, Ilene H

    2014-01-01

    Objective Sequelae of traumatic brain injury (TBI) include depression, which could exacerbate the poorer cognitive and functional recovery experienced by older adults. The objective of this study was to estimate incidence rates of depression following hospital discharge for TBI among Medicare beneficiaries aged ≥65 years, quantify the increase in risk of depression following TBI, and evaluate risk factors for incident depression post-TBI. Design Retrospective analysis of Medicare claims data Participants Medicare beneficiaries ≥65 years hospitalized for traumatic brain injury (TBI) during 2006–2010 who survived to hospital discharge and had no documented diagnosis of depression prior to the study period(n=67,347). Measurement Diagnosis of depression during the study period. Results The annualized incidence rate of depression per 1,000 beneficiaries was 62.8 (95% confidence interval (CI) 61.6,64.1) pre-TBI and 123.9 (95%CI 121.6,126.2) post-TBI. Annualized incidence rates were highest immediately following hospital discharge and declined over the twelve months post-TBI. TBI increased the risk of incident depression in men (hazard ratio (HR) 1.95;95%CI 1.84,2.06, Wald χ2=511.4,df =1,p < 0.001) and in women (HR 1.69;95%CI 1.62,1.77, Wald χ2=589.3,df =1,p < 0.001). The strongest predictor of depression post-TBI for both men and women was discharge to a skilled nursing facility: men (odds ratio (OR) 1.91;95%CI 1.77,2.06, Wald χ2=277.1,df = 1,p < 0.001), women: (OR 1.72;95%CI 1.63,1.83, Wald χ2=324.2,df = 1,p < 0.001). Conclusions TBI significantly increased the risk of depression among older adults, especially among men and those discharged to a skilled nursing facility. Results from this study will help increase awareness of the risk of depression post-TBI among older adults. PMID:25154547

  9. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  10. Age-specific MRI brain and head templates for healthy adults from twenty through eighty-nine years of age

    Directory of Open Access Journals (Sweden)

    Paul T Fillmore

    2015-04-01

    Full Text Available This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in 5-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, an